WorldWideScience

Sample records for ischemia-reperfusion mediated cardiac

  1. Cardiac Sirt1 mediates the cardioprotective effect of caloric restriction by suppressing local complement system activation after ischemia-reperfusion.

    Science.gov (United States)

    Yamamoto, Tsunehisa; Tamaki, Kayoko; Shirakawa, Kohsuke; Ito, Kentaro; Yan, Xiaoxiang; Katsumata, Yoshinori; Anzai, Atsushi; Matsuhashi, Tomohiro; Endo, Jin; Inaba, Takaaki; Tsubota, Kazuo; Sano, Motoaki; Fukuda, Keiichi; Shinmura, Ken

    2016-04-15

    Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol 308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specific Sirt1 knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventional C3 knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fed C3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting

  2. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Intermittent hypoxia has been shown to provide myocardial protection against ishemia/reperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts compared with normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reduce myocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl

  3. SUV39H1 mediated SIRT1 trans-repression contributes to cardiac ischemia-reperfusion injury.

    Science.gov (United States)

    Yang, Guang; Zhang, Xinjian; Weng, Xinyu; Liang, Peng; Dai, Xin; Zeng, Sheng; Xu, Huihui; Huan, Hailin; Fang, Mingming; Li, Yuehua; Xu, Dachun; Xu, Yong

    2017-05-01

    Ischemic reperfusion (I/R) contributes to deleterious cardiac remodeling and heart failure. The deacetylase SIRT1 has been shown to protect the heart from I/R injury. We examined the mechanism whereby I/R injury represses SIRT1 transcription in the myocardium. There was accumulation of trimethylated histone H3K9 on the proximal SIRT1 promoter in the myocardium in mice following I/R injury and in cultured cardiomyocytes exposed to hypoxia-reoxygenation (H/R). In accordance, the H3K9 trimethyltransferase SUV39H1 bound to the SIRT1 promoter and repressed SIRT1 transcription. SUV39H1 expression was up-regulated in the myocardium in mice following I/R insults and in H/R-treated cardiomyocytes paralleling SIRT1 down-regulation. Silencing SUV39H1 expression or suppression of SUV39H1 activity erased H3K9Me3 from the SIRT1 promoter and normalized SIRT1 levels in cardiomyocytes. Meanwhile, SUV39H1 deficiency or inhibition attenuated I/R-induced infarction and improved heart function in mice likely through influencing ROS levels in a SIRT1-dependent manner. Therefore, our data uncover a novel mechanism for SIRT1 trans-repression during cardiac I/R injury and present SUV39H1 as a druggable target for the development of therapeutic strategies against ischemic heart disease.

  4. Protective role of fibrates in cardiac ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    G Singh

    2012-01-01

    Full Text Available Prevention of myocardial injury has been considered as the most important therapeutic challenge of today. Fibrates, the agonists of the peroxisome proliferator-activated receptor (PPAR-a receptor, have been regarded as potent therapeutic agents in this context. Hence, the present study has been designed to investigate the effect of fibrates, i.e., Clofibrate and Fenofibrate, the potent agonists PPAR-a, on ischemia-reperfusion (I/R-induced myocardial injury. The isolated Langendorff-perfused rat hearts were subjected to global ischemia for 30 minutes followed by reperfusion for 120 minutes. Myocardial infarct size and the release of lactate dehydrogenase (LDH and creatine kinase (CK in coronary effluent have been conducted to assess the degree of cardiac injury. Moreover, the oxidative stress in the heart was assessed by measuring lipid peroxidation, superoxide anion generation, and reduced glutathione. Clofibrate and Fenofibrate showed cardioprotection against I/R-induced myocardial injury in rat hearts as assessed in terms of reductions in myocardial infarct size, LDH, and CK levels in coronary effluent along with reduction in I/R-induced oxidative stress. It may be concluded that the observed cardioprotective potential of Clofibrate and Fenofibrate against I/R-induced myocardial injury was due to the reductions in infarct size and oxidative stress.

  5. Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis.

    Science.gov (United States)

    Wu, Nan; Zhang, Xiaowen; Jia, Pengyu; Jia, Dalin

    2015-12-01

    The effect of hypercholesterolemia on myocardial ischemia reperfusion injury (MIRI) is in controversy and the underlying mechanism is still not well understood. In the present study, we firstly detected the effects of hypercholesterolemia on MIRI and the role of endoplasmic reticulum (ER) stress-mediated apoptosis pathway in this process. The infarct size was determined by TTC staining, and apoptosis was measured by the TUNEL method. The marker proteins of ER stress response and ER stress-mediated apoptosis pathway were detected by Western blot. The results showed that high cholesterol diet-induced hypercholesterolemia significantly increased the myocardial infarct size, the release of myocardium enzyme and the ratio of apoptosis, but did not affect the recovery of cardiac function. Moreover, hypercholesterolemia also remarkably up-regulated the expressions of ER stress markers (glucose-regulated protein 78 and calreticulin) and critical molecules in ER stress-mediated apoptosis pathway (CHOP, caspase 12, phospho-JNK). In conclusion, our study demonstrated that hypercholesterolemia enhanced myocardial vulnerability/sensitivity to ischemia reperfusion injury involved in aggravation the ER stress and activation of ER stress-mediated apoptosis pathway and it gave us a new insight into the underlying mechanisms associated with hypercholesterolemia-induced exaggerated MIRI and also provided a novel target for preventing MIRI in the presence of hypercholesterolemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Protective function of tocilizumab in human cardiac myocytes ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng Cheng; Yan Feng; Da-Ming Jiang; Kai-Yu Tao; Min-Jian Kong

    2015-01-01

    Objective:To investigate the protective function of tocilizumab in human cardiac myocytes ischemia-reperfusion injury.Methods:The human cardiac myocytes were treated by tocilizumab with different concentrations(1.0 mg/mL, 3.0 mg/mL, 5.0 mg/mL) for 24 h,then cells were cultured in ischemia environment for 24 h and reperfusion environment for 1 h. The MTT and flow cytometry were used to detect the proliferation and apoptosis of human cardiac myocytes, respectively. The mRNA and protein expressions of Bcl-2 and Bax were measured by qRT-PCR and western blot, respectively.Results:Compared to the negative group, pretreated by tocilizumab could significantly enhance the proliferation viability and suppress apoptosis of human cardiac myocytes after suffering ischemia reperfusion injury(P<0.05).The expression of Bcl-2 in tocilizumab treated group were higher thanNC group(P<0.05), while theBax expression were lower(P<0.05).Conclusions:Tocilizumab could significantly inhibit apoptosis and keep the proliferation viability of human cardiac myocytes after suffering ischemia reperfusion injury. Tocilizumab may obtain a widely application in the protection of ischemia reperfusion injury.

  7. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lijuan [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Wang, Yingjie [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Pan, Yaohua; Zhang, Lan [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Shen, Chengxing [Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai (China); Qin, Gangjian [Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Ashraf, Muhammad [Pathology and Lab Med, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Weintraub, Neal [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Ma, Genshan, E-mail: magenshan@hotmail.com [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Tang, Yaoliang, E-mail: tangyg@ucmail.uc.edu [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States)

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  8. The effect of Allium sativum on ischemic preconditioning and ischemia reperfusion induced cardiac injury

    Directory of Open Access Journals (Sweden)

    Bhatti Rajbir

    2008-01-01

    Full Text Available In the present study, the effect of garlic (Allium sativum extract on ischemic preconditioning and ischemia-reperfusion induced cardiac injury has been studied. Hearts from adult albino rats of Wistar strain were isolated and immediately mounted on Langendorff′s apparatus for retrograde perfusion. After 15 minutes of stabilization, the hearts were subjected to four episodes of 5 min ischemia, interspersed with 5 min reperfusion (to complete the protocol of ischemic preconditioning, 30 min global ischemia, followed by 120 min of reperfusion. In the control and treated groups, respective interventions were given instead of ischemic preconditioning. The magnitude of cardiac injury was quantified by measuring Lactate Dehydrogenase and creatine kinase concentration in the coronary effluent and myocardial infarct size by macroscopic volume method. Our study demonstrates that garlic extract exaggerates the cardio protection offered by ischemic preconditioning and per se treatment with garlic extract also protects the myocardium against ischemia reperfusion induced cardiac injury.

  9. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models.

    Directory of Open Access Journals (Sweden)

    Zhenwei Pan

    Full Text Available Recent studies have revealed the critical role of microRNAs (miRNAs in regulating cardiac injury. Among them, the cardiac enriched microRNA-1(miR-1 has been extensively investigated and proven to be detrimental to cardiac myocytes. However, solid in vivo evidence for the role of miR-1 in cardiac injury is still missing and the potential therapeutic advantages of systemic knockdown of miR-1 expression remained unexplored. In this study, miR-1 transgenic (miR-1 Tg mice and locked nucleic acid modified oligonucleotide against miR-1 (LNA-antimiR-1 were used to explore the effects of miR-1 on cardiac ischemia/reperfusion injury (30 min ischemia followed by 24 h reperfusion. The cardiac miR-1 level was significantly increased in miR-1 Tg mice, and suppressed in LNA-antimiR-1 treated mice. When subjected to ischemia/reperfusion injury, miR-1 overexpression exacerbated cardiac injury, manifested by increased LDH, CK levels, caspase-3 expression, apoptosis and cardiac infarct area. On the contrary, LNA-antimiR-1 treatment significantly attenuated cardiac ischemia/reperfusion injury. The expression of PKCε and HSP60 was significantly repressed by miR-1 and enhanced by miR-1 knockdown, which may be a molecular mechanism for the role miR-1 in cardiac injury. Moreover, luciferase assay confirmed the direct regulation of miR-1 on protein kinase C epsilon (PKCε and heat shock protein 60 (HSP60. In summary, this study demonstrated that miR-1 is a causal factor for cardiac injury and systemic LNA-antimiR-1 therapy is effective in ameliorating the problem.

  10. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ewa Soltysinska

    Full Text Available Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP, but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of

  11. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Science.gov (United States)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria; Hattel, Helle; Thrush, A Brianne; Harper, Mary-Ellen; Qvortrup, Klaus; Larsen, Filip J; Schiffer, Tomas A; Losa-Reyna, Jose; Straubinger, Julia; Kniess, Angelina; Thomsen, Morten Bækgaard; Brüggemann, Andrea; Fenske, Stefanie; Biel, Martin; Ruth, Peter; Wahl-Schott, Christian; Boushel, Robert Christopher; Olesen, Søren-Peter; Lukowski, Robert

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at

  12. Ischemia/reperfusion mediated oxygen free radical production in rat brain endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Grammas, P.; Wood, K. (Univ. of Oklahoma, Oklahoma City (United States)); Liu, G.J.; Floyd, R.A. (Oklahoma Medical Research Foundation, Oklahoma City (United States)); Wood, K. (Univ. of Oklahoma Health Sciences Center, Oklahoma City (United States) Oklahoma Medical Research Foundation, Oklahoma City (United States))

    1991-03-11

    Oxygen free radicals have been increasingly implicated in ischemia/reperfusion mediated injury to tissue. Recent methods of assessing tissue oxygen free radical flux including spin trapping, salicylate hydroxylation, protein oxidation and specific enzymatic activity loss have clearly shown that ischemia/reperfusion mediates oxidative damage in brain. Vascular endothelia cells are increasingly implicated in inactivating oxidative damage. The authors have used salicylate to assess hydroxyl free radical flux during an anoxia-reoxygenation insult in isolated brain microvessels. Brain microvessels that were subjected to a 20 min anoxia period and then reoxygenated for 20 min hydroxylated salicylate to form tissue localized 2,3-dihydroxybenzoic acid (2,3-DHBA) whereas microvessels that remained oxygenated throughout contained very little 2,3-DHBA. The data suggest that anoxia/reoxygenation of microvessels produces tissue localized hydroxyl free radical flux.

  13. Diabetic Inhibition of Preconditioning- and Postconditioning-Mediated Myocardial Protection against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Xia Yin

    2012-01-01

    Full Text Available Ischemic preconditioning (IPC or postconditioning (Ipost is proved to efficiently prevent ischemia/reperfusion injuries. Mortality of diabetic patients with acute myocardial infarction was found to be 2–6 folds higher than that of non-diabetic patients with same myocardial infarction, which may be in part due to diabetic inhibition of IPC- and Ipost-mediated protective mechanisms. Both IPC- and Ipost-mediated myocardial protection is predominantly mediated by stimulating PI3K/Akt and associated GSK-3β pathway while diabetes-mediated pathogenic effects are found to be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore, this review briefly introduced the general features of IPC- and Ipost-mediated myocardial protection and the general pathogenic effects of diabetes on the myocardium. We have collected experimental evidence that indicates the diabetic inhibition of IPC- and Ipost-mediated myocardial protection. Increasing evidence implies that diabetic inhibition of IPC- and Ipost-mediated myocardial protection may be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore any strategy to activate PI3K/Akt and associated GSK-3β pathway to release the diabetic inhibition of both IPC and Ipost-mediated myocardial protection may provide the protective effect against ischemia/reperfusion injuries.

  14. Renal ischemia/reperfusion-induced cardiac hypertrophy in mice: Cardiac morphological and morphometric characterization

    Science.gov (United States)

    Cirino-Silva, Rogério; Kmit, Fernanda V; Trentin-Sonoda, Mayra; Nakama, Karina K; Panico, Karine; Alvim, Juliana M; Dreyer, Thiago R; Martinho-Silva, Herculano

    2017-01-01

    Background Tissue remodeling is usually dependent on the deposition of extracellular matrix that may result in tissue stiffness and impaired myocardium contraction. Objectives We had previously demonstrated that renal ischemia/reperfusion (I/R) is able to induce development of cardiac hypertrophy in mice. Therefore, we aimed to characterize renal I/R-induced cardiac hypertrophy. Design C57BL/6 J mice were subjected to 60 minutes’ unilateral renal pedicle occlusion, followed by reperfusion (I/R) for 5, 8, 12 or 15 days. Gene expression, protein abundance and morphometric analyses were performed in all time points. Results Left ventricle wall thickening was increased after eight days of reperfusion (p < 0.05). An increase in the number of heart ventricle capillaries and diameter after 12 days of reperfusion (p < 0.05) was observed; an increase in the density of capillaries starting at 5 days of reperfusion (p < 0.05) was also observed. Analyses of MMP2 protein levels showed an increase at 15 days compared to sham (p < 0.05). Moreover, TGF-β gene expression was downregulated at 12 days as well TIMP 1 and 2 (p < 0.05). The Fourier-transform infrared spectroscopy analysis showed that collagen content was altered only in the internal section of the heart (p < 0.05); such data were supported by collagen mRNA levels. Conclusions Renal I/R leads to impactful changes in heart morphology, accompanied by an increase in microvasculature. Although it is clear that I/R is able to induce cardiac remodeling, such morphological changes is present in only a section of the heart tissue.

  15. Roles of Calcium Regulating MicroRNAs in Cardiac Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Eunhyun Choi

    2014-09-01

    Full Text Available Cardiac Ca2+ cycling and signaling are closely associated with cardiac function. Changes in cellular Ca2+ homeostasis may lead to aberrant cardiac rhythm and may play a critical role in the pathogenesis of cardiac diseases, due to their exacerbation of heart failure. MicroRNAs (miRNAs play a key role in the regulation of gene expression at the post-transcriptional level and participate in regulating diverse biological processes. The emerging evidence indicates that the expression profiles of miRNAs vary among human diseases, including cardiovascular diseases. Cardiac Ca2+-handling and signaling proteins are also regulated by miRNAs. Given the relationship between cardiac Ca2+ homeostasis and signaling and miRNA, Ca2+-related miRNAs may serve as therapeutic targets during the treatment of heart failure. In this review, we summarize the knowledge currently available regarding the role of Ca2+ in cardiac function, as well as changes in Ca2+ cycling and homeostasis and the handling of these processes by miRNAs during cardiac ischemia-reperfusion injury.

  16. Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3.

    Science.gov (United States)

    Koentges, Christoph; Pfeil, Katharina; Meyer-Steenbuck, Maximilian; Lother, Achim; Hoffmann, Michael M; Odening, Katja E; Hein, Lutz; Bode, Christoph; Bugger, Heiko

    2016-01-01

    Lack of the mitochondrial deacetylase sirtuin 3 (SIRT3) impairs mitochondrial function and increases the susceptibility to induction of the mitochondrial permeability transition pore. Because these alterations contribute to myocardial ischemia-reperfusion (IR) injury, we hypothesized that SIRT3 deficiency may increase cardiac injury following myocardial IR. Hearts of 10-week-old mice were perfused in the isolated working mode and subjected to 17.5 min of global no-flow ischemia, followed by 30 min of reperfusion. Measurements before ischemia revealed a decrease in cardiac power (-20%) and rate pressure product (-15%) in SIRT3(-/-) mice. Mitochondrial state 3 respiration (-15%), ATP synthesis (-39%), and ATP/O ratios (-29%) were decreased in hearts of SIRT3(-/-) mice. However, percent recovery of cardiac power (WT 94% ± 9%; SIRT3(-/-) 89% ± 9%) and rate pressure product (WT 89% ± 16%; SIRT3(-/-) 96% ± 3%) following IR was similar in both groups. Myocardial infarct size was not increased in SIRT3(-/-) mice following permanent ligation of the left anterior descending coronary artery (LAD). Left ventricular pressure and dP/dtmax, and mitochondrial respiration and ATP synthesis were not different between groups following LAD ligation. Thus, despite pre-existing defects in cardiac function and mitochondrial respiratory capacity in SIRT3(-/-) mice, SIRT3 deficiency does not additionally impair cardiac function following IR or following myocardial infarction.

  17. Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Verma, Rajkumar; Mishra, Vikas; Sasmal, Dinakar; Raghubir, Ram

    2010-07-25

    Recently glutamate transporters have emerged as a potential therapeutic target in a wide range of acute and chronic neurological disorders, owing to their novel mode of action. The modulation of GLT-1, a major glutamate transporter has been shown to exert neuroprotection in various models of ischemic injury and motoneuron degeneration. Therefore, an attempt was made to explore its neuroprotective potential in cerebral ischemia/reperfusion injury using ceftriaxone, a GLT-1 modulator. Pre-treatment with ceftriaxone (100mg/kg. i.v) for five days resulted in a significant reduction (Pceftriaxone-mediated increased glutamine synthetase activity by dihydrokainate (DHK), a GLT-1 specific inhibitor, confirms the specific effect of ceftriaxone on GLT-1 activity. In addition, ceftriaxone also induced a significant (P<0.01) increase in [(3)H]-glutamate uptake, mediated by GLT-1 in glial enriched preparation, as evidenced by use of DHK and DL-threo-beta-benzyloxyaspartate (DL-TBOA). Thus, the present study provides overwhelming evidence that modulation of GLT-1 protein expression and activity confers neuroprotection in cerebral ischemia/reperfusion injury.

  18. TLR9 Mediates Remote Liver Injury following Severe Renal Ischemia Reperfusion.

    Directory of Open Access Journals (Sweden)

    Pieter J Bakker

    Full Text Available Ischemia reperfusion injury is a common cause of acute kidney injury and is characterized by tubular damage. Mitochondrial DNA is released upon severe tissue injury and can act as a damage-associated molecular pattern via the innate immune receptor TLR9. Here, we investigated the role of TLR9 in the context of moderate or severe renal ischemia reperfusion injury using wild-type C57BL/6 mice or TLR9KO mice. Moderate renal ischemia induced renal dysfunction but did not decrease animal well-being and was not regulated by TLR9. In contrast, severe renal ischemia decreased animal well-being and survival in wild-type mice after respectively one or five days of reperfusion. TLR9 deficiency improved animal well-being and survival. TLR9 deficiency did not reduce renal inflammation or tubular necrosis. Rather, severe renal ischemia induced hepatic injury as seen by increased plasma ALAT and ASAT levels and focal hepatic necrosis which was prevented by TLR9 deficiency and correlated with reduced circulating mitochondrial DNA levels and plasma LDH. We conclude that TLR9 does not mediate renal dysfunction following either moderate or severe renal ischemia. In contrast, our data indicates that TLR9 is an important mediator of hepatic injury secondary to ischemic acute kidney injury.

  19. Inhibition of vascular peroxidase alleviates cardiac dysfunction and apoptosis induced by ischemia-reperfusion.

    Science.gov (United States)

    Li, Ting-Ting; Zhang, Yi-Shuai; He, Lan; Liu, Bin; Shi, Rui-Zheng; Zhang, Guo-Gang; Peng, Jun

    2012-07-01

    Myeloperoxidase (MPO) is involved in myocardial ischemia-reperfusion (IR) injury and vascular peroxidase (VPO) is a newly identified isoform of MPO. This study was conducted to explore whether VPO is involved in IR-induced cardiac dysfunction and apoptosis. In a rat Langendorff model of myocardial IR, the cardiac function parameters (left ventricular pressure and the maximum derivatives of left ventricular pressure and coronary flow), creatine kinase (CK) activity, apoptosis, VPO1 activity were measured. In a cell (rat-heart-derived H9c2 cells) model of hypoxia-reoxygenation (HR), apoptosis, VPO activity, and VPO1 mRNA expression were examined. In isolated heart, IR caused a marked decrease in cardiac function and a significant increase in apoptosis, CK, and VPO activity. These effects were attenuated by pharmacologic inhibition of VPO. In vitro, pharmacologic inhibition of VPO activity or silencing of VPO1 expression significantly suppressed HR-induced cellular apoptosis. Our results suggest that increased VPO activity contributes to IR-induced cardiac dysfunction and inhibition of VPO activity may have the potential clinical value in protecting the myocardium against IR injury.

  20. Cardiac-specific expression of the tetracycline transactivator confers increased heart function and survival following ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Laila Elsherif

    Full Text Available Mice expressing the tetracycline transactivator (tTA transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury.

  1. Passive targeting of lipid-based nanoparticles to mouse cardiac ischemia-reperfusion injury

    NARCIS (Netherlands)

    Geelen, T.; Paulis, L.E.M.; Coolen, B.F.; Nicolay, K.; Strijkers, G.J.

    2013-01-01

    Reperfusion therapy is commonly applied after a myocardial infarction. Reperfusion, however, causes secondary damage. An emerging approach for treatment of ischemia-reperfusion (IR) injury involves the delivery of therapeutic nanoparticles to the myocardium to promote cell survival and constructivel

  2. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes.

    Science.gov (United States)

    Huang, Zhouqing; Han, Zhihua; Ye, Bozhi; Dai, Zhenyu; Shan, Peiren; Lu, Zhongqiu; Dai, Kezhi; Wang, Changqian; Huang, Weijian

    2015-09-05

    Ischemia/reperfusion (I/R)-induced autophagy increases the severity of cardiomyocyte injury. The aim of this study was to investigate the effects of berberine, a natural extract from Rhizoma coptidis, on the I/R-induced excessive autophagy in in vitro and in vivo models. Autophagy was increased both in H9c2 myocytes during hypoxia/reoxygenation (H/R) injury and in mouse hearts exposed to I/R. And the expression level of p-AMPK and p-mTORC2 (Ser2481) were increased during H/R period. In addition, the increased autophagy level was correlated with reduced cell survival in H9c2 myocytes and increased infarct size in mouse hearts. However, berberine treatment significantly enhanced the H/R-induced cell viability and reduced I/R-induced myocardial infarct size, which was accompanied by improved cardiac function. The beneficial effect of berberine is associated with inhibiting the cellular autophagy level, due to decreasing the expression level of autophagy-related proteins such as SIRT1, BNIP3, and Beclin-1. Furthermore, both the level of p-AMPK and p-mTORC2 (Ser2481) in H9c2 myocytes exposed to H/R were decreased by berberine. In summary, berberine protects myocytes during I/R injury through suppressing autophagy activation. Therefore, berberine may be a promising agent for treating I/R-induced cardiac myocyte injury.

  3. Postconditioning's Protection of THSG on Cardiac Ischemia-reperfusion Injury and Mechanism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    2,3,5,4'-tetra-hydroxystilbene-2-O-glucoside (THSG), the water-soluble active components extracted from dried tuber root of Polygonum multiflorum (Polygonaceae), can promote the release of nitric oxide (NO) from vascular endothelial cells and has strong antioxidation. The postconditioning's protection of THSG on cardiac ischemia-reperfusion injury and the mechanism were investigated. After reperfusion for 3 h following occlusion of rat left anterior descending coronary artery (LAD) for 30 min, SαT recovery speed, arrhythmia and cardiac infarct size were observed.The ischemic size and infarct size was identified by using Evans blue and TTC staining methods respectively. The results showed that the infarct size in THSG 7. 5 mg/kg postconditioning group was significantly decreased from 43.6 %±9.1 % in mode group to 16.5 %±6.5 % (P<0.01).SαT recovery was quicker and the incidence of arrhythmia (55.6 % vs 100 %, P<0.05) was significantly lower than in control group. The infarct size in THSG+glybenclamide group was greater than in THSG group, but equivalent to that in control group (46.8 %±9.8 % vs 43.6 %±9. 1 %, P >0. 05), SαT recovery speed slower and the incidence of arrhythmia also lower (33. 3 % vs 100 %, P<0. 01), suggesting that glybenclamide could abolish the effects of THSG postconditioning reducing the cardiac infart size. It was concluded that THSG administration before reperfusion could effectively alleviate the cardiac reperfusion injury and possessed the postconditioning effects of reducing cardiac infarct size, which might be related with the KATP channel opening.

  4. Deficiency of Senescence Marker Protein 30 Exacerbates Cardiac Injury after Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Shinpei Kadowaki

    2016-04-01

    Full Text Available Early myocardial reperfusion is an effective therapy but ischemia/reperfusion (I/R causes lethal myocardial injury. The aging heart was reported to show greater cardiac damage after I/R injury than that observed in young hearts. Senescence marker protein 30 (SMP30, whose expression decreases with age, plays a role in reducing oxidative stress and apoptosis. However, the impact of SMP30 on myocardial I/R injury remains to be determined. In this study, the left anterior descending coronary artery was occluded for 30 min, followed by reperfusion in wild-type (WT and SMP30 knockout (KO mice. After I/R, cardiomyocyte apoptosis and the ratio of infarct area/area at risk were higher, left ventricular fractional shortening was lower, and reactive oxygen species (ROS generation was enhanced in SMP30 KO mice. Moreover, the previously increased phosphorylation of GSK-3β and Akt was lower in SMP30 KO mice than in WT mice. In cardiomyocytes, silencing of SMP30 expression attenuated Akt and GSK-3β phosphorylation, and increased Bax to Bcl-2 ratio and cardiomyocyte apoptosis induced by hydrogen peroxide. These results suggested that SMP30 deficiency augments myocardial I/R injury through ROS generation and attenuation of Akt activation.

  5. Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice.

    Directory of Open Access Journals (Sweden)

    Megumi Eguchi

    Full Text Available Diabetes is associated with higher incidence of myocardial infarction (MI and increased propensity for subsequent events post-MI. Here we conducted a temporal analysis of the influence of diabetes on cardiac dysfunction and remodeling after ischemia reperfusion (IR injury in mice. Diabetes was induced using streptozotocin and IR performed by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for up to 42 days. We first evaluated changes in cardiac function using echocardiography after 24 hours reperfusion and observed IR injury significantly decreased the systolic function, such as ejection fraction, fractional shortening and end systolic left ventricular volume (LVESV in both control and diabetic mice. The longitudinal systolic and diastolic strain rate were altered after IR, but there were no significant differences between diabetic mice and controls. However, a reduced ability to metabolize glucose was observed in the diabetic animals as determined by PET-CT scanning using 2-deoxy-2-((18Ffluoro-D-glucose. Interestingly, after 24 hours reperfusion diabetic mice showed a reduced infarct size and less apoptosis indicated by TUNEL analysis in heart sections. This may be explained by increased levels of autophagy detected in diabetic mice hearts. Similar increases in IR-induced macrophage infiltration detected by CD68 staining indicated no change in inflammation between control and diabetic mice. Over time, control mice subjected to IR developed mild left ventricular dilation whereas diabetic mice exhibited a decrease in both end diastolic left ventricular volume and LVESV with a decreased intraventricular space and thicker left ventricular wall, indicating concentric hypertrophy. This was associated with marked increases in fibrosis, indicted by Masson trichrome staining, of heart sections in diabetic IR group. In summary, we demonstrate that diabetes principally influences distinct IR-induced chronic changes

  6. Quantitative cardiac phosphoproteomics profiling during ischemia-reperfusion in an immature swine model

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena R.; Kang, Min A.; Kajimoto, Masaki; Purvine, Samuel O.; Brewer, Heather M.; Pasa Tolic, Ljiljana; Portman, Michael A.

    2017-07-01

    Ischemia-reperfusion (I/R) results in altered metabolic and molecular responses, and phosphorylation is one of the most noted regulatory mechanisms mediating signaling mechanisms during physiological stresses. To expand our knowledge of the potential phosphoproteomic changes in the myocardium during I/R, we used Isobaric Tags for Relative and Absolute Quantitation-based analyses in left ventricular samples obtained from porcine hearts under control or I/R conditions. The data are available via ProteomeXchange with identifier PXD006066. We identified 1,896 phosphopeptides within left ventricular control and I/R porcine samples. Significant differential phosphorylation between control and I/R groups was discovered in 111 phosphopeptides from 86 proteins. Analysis of the phosphopeptides using Motif-x identified five motifs: (..R..S..), (..SP..), (..S.S..), (..S…S..), and (..S.T..). Semiquantitative immunoblots confirmed site location and directional changes in phosphorylation for phospholamban and pyruvate dehydrogenase E1, two proteins known to be altered by I/R and identified by this study. Novel phosphorylation sites associated with I/R were also identified. Functional characterization of the phosphopeptides identified by our methodology could expand our understanding of the signaling mechanisms involved during I/R damage in the heart as well as identify new areas to target therapeutic strategies.

  7. Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury.

    Science.gov (United States)

    Horikawa, Yousuke T; Patel, Hemal H; Tsutsumi, Yasuo M; Jennings, Michelle M; Kidd, Michael W; Hagiwara, Yasuko; Ishikawa, Yoshihiro; Insel, Paul A; Roth, David M

    2008-01-01

    Volatile anesthetics protect the heart from ischemia/reperfusion injury but the mechanisms for this protection are poorly understood. Caveolae, sarcolemmal invaginations, and caveolins, scaffolding proteins in caveolae, localize molecules involved in cardiac protection. We tested the hypothesis that caveolae and caveolins are essential for volatile anesthetic-induced cardiac protection using cardiac myocytes (CMs) from adult rats and in vivo studies in caveolin-3 knockout mice (Cav-3(-/-)). We incubated CM with methyl-beta-cyclodextrin (MbetaCD) or colchicine to disrupt caveolae formation, and then exposed the myocytes to the volatile anesthetic isoflurane (30 min, 1.4%), followed by simulated ischemia/reperfusion (SI/R). Isoflurane protected CM from SI/R [23.2+/-1.6% vs. 71.0+/-5.8% cell death (assessed by trypan blue exclusion), Pprotection was abolished by MbetaCD or colchicine (84.9+/-5.5% and 64.5+/-6.1% cell death, Pprotection in vivo was assessed by measurement of infarct size relative to the area at risk and cardiac troponin levels. Isoflurane-induced a reduction in infarct size and cardiac troponin relative to control (infarct size: 26.5%+/-2.6% vs. 45.3%+/-5.4%, Pprotection was abolished in Cav-3(-/-) mice (infarct size: 53.4%+/-6.1% vs. 53.2%+/-3.5%, Pprotection is thus dependent on the presence of caveolae and the expression of caveolin-3. We conclude that caveolae and caveolin-3 are critical for volatile anesthetic-induced protection of the heart from ischemia/reperfusion injury.

  8. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver

    Energy Technology Data Exchange (ETDEWEB)

    Becak DP, Holland NA; Shannahan, Jonathan H.

    2015-10-01

    Background: Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been previously reported. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of other nanomaterials. We hypothesized that pulmonary exposure to Ag core AgNP induces persistent increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and associated with altered coronary vessel reactivity. Methods: Male Sprague-Dawley rats were exposed to 200 µg of 20 nm citrate capped Ag core AgNP, or a citrate vehicle intratracheally (IT). One and 7 days following IT instillation lungs were evaluated for inflammation and silver presence, serum was analyzed for concentrations of selected cytokines, and cardiac I/R injury and coronary artery reactivity was assessed. Results: AgNP instillation resulted in modest pulmonary injury with detection of silver in lung tissue and infiltrating cells, elevation of serum cytokines: G-CSF, MIP-1α, IL-1β, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Seven days post IT instillation was associated with persistent detection of silver in lungs, elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. Conclusions: Based on these data, IT instillation of AgNP increases circulating levels of several cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.

  9. Insulin improves cardiac myocytes contractile function recovery in simulated ischemia-reperfusion: Key role of Akt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; ZHANG Haifeng; FAN Qian; MA Xinliang; GAO Feng

    2003-01-01

    The present study examined cardiac myocyte contractile and Ca2+ transient responses to insulin during simulated ischemia/reperfusion (I/R) and furtherinvestigated the role of protein kinase B (Akt) in the insulin- induced inotropic effect. Ventricular myocytes were enzymatically isolated from adult Sprague-Dawley rats and perfused with Tyrode solution while electrically field-stimulated. Simulated I/R was induced by perfusing the cells with chemical anoxic solution including sodium cyanide-sodium lactate for 15 min followed by reperfusion with normal oxygenated Tyrode solution with or without insulin. It is found that insulin only at concentration as high as 10 IU/L could increase cell shortening (16±5%, P < 0.05) in normal myocytes, whereas it concentration-dependently (0.01-10 IU/L) increased the contraction,the velocity of shortening/releng- theningand Ca2+ transient in I/R myocytes. In addition, insulin treatment (1 IU/L) increased Akt phosphorylation of I/R cardiomyocytes by 2.4-fold compared with that of the control (P < 0.01). Most importantly, pretreatment with LY 294002, a specific inhibitor of phosphatidylinositol 3′-kinase (PI3-kinase), significantly inhibited both Akt phosphorylation and the positive inotropic response to insulin in the I/R cardiomyocytes. These results suggest that insulin exerts direct positive inotropic effect by increasing Ca2+ transient of cardiomyocytes, which is enhanced in the pathological condition of I/R. Akt activation plays an important role in the insulin-induced improvement of myocyte contractile function following I/R.

  10. Sustained protective effects of 7-monohydroxyethylrutoside in an in vivo model of cardiac ischemia-reperfusion

    NARCIS (Netherlands)

    De Celle, T; Heeringa, P; Strzelecka, AE; Bast, A; Smits, JF; Janssen, BJ

    2004-01-01

    Earlier studies have shown that 7-monohydroxyethylrutoside (monoHER), an antioxidant flavonoid, protects against doxorubicin-induced cardiotoxicity. In this study, we investigated potential sustained cardioprotective effects of monoHER in a model of ischemia-reperfusion (I/R) in mice. Ischemia was i

  11. DAP12 expression in lung macrophages mediates ischemia/reperfusion injury by promoting neutrophil extravasation.

    Science.gov (United States)

    Spahn, Jessica H; Li, Wenjun; Bribriesco, Alejandro C; Liu, Jie; Shen, Hua; Ibricevic, Aida; Pan, Jie-Hong; Zinselmeyer, Bernd H; Brody, Steven L; Goldstein, Daniel R; Krupnick, Alexander S; Gelman, Andrew E; Miller, Mark J; Kreisel, Daniel

    2015-04-15

    Neutrophils are critical mediators of innate immune responses and contribute to tissue injury. However, immune pathways that regulate neutrophil recruitment to injured tissues during noninfectious inflammation remain poorly understood. DAP12 is a cell membrane-associated protein that is expressed in myeloid cells and can either augment or dampen innate inflammatory responses during infections. To elucidate the role of DAP12 in pulmonary ischemia/reperfusion injury (IRI), we took advantage of a clinically relevant mouse model of transplant-mediated lung IRI. This technique allowed us to dissect the importance of DAP12 in tissue-resident cells and those that infiltrate injured tissue from the periphery during noninfectious inflammation. Macrophages in both mouse and human lungs that have been subjected to cold ischemic storage express DAP12. We found that donor, but not recipient, deficiency in DAP12 protected against pulmonary IRI. Analysis of the immune response showed that DAP12 promotes the survival of tissue-resident alveolar macrophages and contributes to local production of neutrophil chemoattractants. Intravital imaging demonstrated a transendothelial migration defect into DAP12-deficient lungs, which can be rescued by local administration of the neutrophil chemokine CXCL2. We have uncovered a previously unrecognized role for DAP12 expression in tissue-resident alveolar macrophages in mediating acute noninfectious tissue injury through regulation of neutrophil trafficking.

  12. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.

    Science.gov (United States)

    Tang, Yao Liang; Qian, Keping; Zhang, Y Clare; Shen, Leping; Phillips, M Ian

    2005-12-01

    The effect of a cardiac specific, hypoxia-regulated, human heme oxygenase-1 (hHO-1) vector to provide cardioprotection from ischemia-reperfusion injury was assessed. When myocardial ischemia and reperfusion is asymptomatic, the damaging effects are cumulative and patients miss timely treatment. A gene therapy approach that expresses therapeutic genes only when ischemia is experienced is a desirable strategy. We have developed a cardiac-specific, hypoxia-regulated gene therapy "vigilant vector'' system that amplifies cardioprotective gene expression. Vigilant hHO-1 plasmids, LacZ plasmids, or saline (n = 40 per group) were injected into mouse heart 2 days in advance of ischemia-reperfusion injury. Animals were exposed to 60 minutes of ischemia followed by 24 hours of reperfusion. For that term (24 hours) effects, the protein levels of HO-1, inflammatory responses, apoptosis, and infarct size were determined. For long-term (3 week) effects, the left ventricular remodeling and recovery of cardiac function were assessed. Ischemia-reperfusion resulted in a timely overexpression of HO-1 protein. Infarct size at 24 hours after ischemia-reperfusion was significantly reduced in the HO-1-treated animals compared with the LacZ-treated group or saline-treated group (P < .001). The reduction of infarct size was accompanied by a decrease in lipid peroxidant activity, inflammatory cell infiltration, and proapoptotic protein level in ischemia-reperfusion-injured myocardium. The long-term study demonstrated that timely, hypoxia-induced HO-1 overexpression is beneficial in conserving cardiac function and attenuating left ventricle remodelling. The vigilant HO-1 vector provides a protective therapy in the heart for reducing cellular damage during ischemia-reperfusion injury and preserving heart function.

  13. Propofol improves cardiac functional recovery after ischemia-reperfusion by upregulating nitric oxide synthase activity in the isolated rat hearts

    Institute of Scientific and Technical Information of China (English)

    SUN Hai-yan; XUE Fu-shan; XU Ya-chao; LI Cheng-wen; XIONG Jun; LIAO Xu; ZHANG Yan-ming

    2009-01-01

    Background There are few studies to assess whether propofol attenuates myocardial ischemia-reperfusion injury via a mechanism related to nitric oxide (NO) route, so we designed this randomized blinded experiment to observe the changes of NO contents, nitric oxide synthase (NOS) activity, NOS contents in the myocardium, and cardiac function in ischemic reperfused isolated rat hearts, and to assess the relation between myocardial NO system and cardioprotection of propofol.Methods The hearts of 30 Sprague-Dawley male rats were removed, mounted on a Langendorff apparatus, and randomly assigned to one of three groups (n=10 each group) to be treated with the following treatments in a blinded manner: Group 1, control group, after perfusion with pure Krebs Henseleit bicarbonate (K-HBB) buffer solution for 15 minutes, hearts were subjected to 20 minutes global ischemia followed by 60 minutes reperfusion with pure K-HBB buffer; Group 2, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution; Group 3, after perfusion with K-HBB buffer solution containing propofol (10 μg/ml) and L-NAME (100 μmol/L) for 15 minutes, the hearts underwent 20 minutes global ischemia followed by 60 minutes reperfusion with the same K-HBB buffer solution. The cardiac function was continuously monitored throughout the experiment.The coronary flow was also measured. An ISO-NO electrode was placed into the right atrium close to the coronary sinus to continuously measure NO concentration in the coronary effluent. The tissue samples from apex of hearts in Groups 1 and 2 were obtained to measure the NOS activity by spectrophotometry and the NOS contents by immunohistochemistry, respectively.Results The cardiac function was significantly inhibited after ischemia and then gradually improved with reperfusion in all three groups. As compared with Group 1

  14. Protective effect of hyperoside on cardiac ischemia reperfusion injury through inhibition of ER stress and activation of Nrf2 signaling

    Institute of Scientific and Technical Information of China (English)

    Jia-Yin Hou; Ying Liu; Liang Liu; Xin-Ming Li

    2016-01-01

    Objective: To study the protective effect of hyperoside (Hyp) on cardiac ischemia reperfusion injury and its potential mechanism. Methods: Rats were divided into two groups for the evaluation, the Hyp (50 μM Hyp; n=8) and the control group (n=8). Rat hearts were isolated and perfused with Krebs-Henseleit buffer (KHB) for 30 min. After being inhibited with cardioplegic solution, they were stored for 4 h in B21 solution at 4 ℃. Afterwards, rat hearts were perfused with KHB again for 45 min. In this period, Hyp was added into solutions of cardioplegia for storage and KHB. Parameters of cardiac functions, including heart rate, the systolic pressure of the left ventricle, the end-diastolic pressure of the left ventricle, the developed pressure of the left ventricle, the left-ventricular systolic pressure and the peak rise rate of the pressure of the left ventricle were recorded. The levels of adenosine triphosphate (ATP), the content of malondialdehyde and apoptotic cells were determined to evaluate the protective effect of Hyp on hearts suffered from ischemia reperfusion injury. Moreover, cultured cardiac myocytes were subjected to the process simulating ischemia/reperfusion. What were analyzed included the endoplasmic reticulum (ER) stress hallmarks expressions, such as binding immunoglobulin protein and C/EBP homologous protein, using the western blot and real-time PCR. Besides, the NF-E2-related factor 2 (Nrf2) expression was measured to explore the potential mechanism. Results: Compared with the control group, the Hyp group had better cardiac functional parameters and higher ATP levels; pretreatment of Hyp greatly relieved the apoptosis of myocyte, decreased oxidative stress as well as ER stress and activated the signaling pathway of anti-oxidative Nrf2 to a further extent. Conclusions: Hyp plays an important role in preserving cardiac function by improving ATP levels of tissue, easing oxidative injury of myocardium and reducing apoptosis following IRI

  15. Sirtuin 1 (SIRT1 activation mediates sildenafil induced delayed cardioprotection against ischemia-reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Mona Shalwala

    Full Text Available BACKGROUND: It has been well documented that phosphodiesterase-5 inhibitor, sildenafil (SIL protects against myocardial ischemia/reperfusion (I-R injury. SIRT1 is part of the class III Sirtuin family of histone deacetylases that deacetylates proteins involved in cellular stress response including those related to I-R injury. OBJECTIVE/HYPOTHESIS: We tested the hypothesis that SIL-induced cardioprotection may be mediated through activation of SIRT1. METHODS: Adult male ICR mice were treated with SIL (0.7 mg/kg, i.p., Resveratrol (RSV, 5 mg/kg, a putative activator of SIRT1 used as the positive control, or saline (0.2 mL. The hearts were harvested 24 hours later and homogenized for SIRT1 activity analysis. RESULTS: Both SIL- and RSV-treated mice had increased cardiac SIRT1 activity (P<0.001 as compared to the saline-treated controls 24 hours after drug treatment. In isolated ventricular cardiomyocytes, pretreatment with SIL (1 µM or RSV (1 µM for one hour in vitro also upregulated SIRT1 activity (P<0.05. We further examined the causative relationship between SIRT1 activation and SIL-induced late cardioprotection. Pretreatment with SIL (or RSV 24 hours prior to 30 min ischemia and 24 hours of reperfusion significantly reduced infarct size, which was associated with a significant increase in SIRT1 activity (P<0.05. Moreover, sirtinol (a SIRT1 inhibitor, 5 mg/kg, i.p. given 30 min before I-R blunted the infarct-limiting effect of SIL and RSV (P<0.001. CONCLUSION: Our study shows that activation of SIRT1 following SIL treatment plays an essential role in mediating the SIL-induced cardioprotection against I-R injury. This newly identified SIRT1-activating property of SIL may have enormous therapeutic implications.

  16. Curcuma oil reduces endothelial cell-mediated inflammation in postmyocardial ischemia/reperfusion in rats.

    Science.gov (United States)

    Manhas, Amit; Khanna, Vivek; Prakash, Prem; Goyal, Dipika; Malasoni, Richa; Naqvi, Arshi; Dwivedi, Anil K; Dikshit, Madhu; Jagavelu, Kumaravelu

    2014-09-01

    Endothelial cells initiated inflammation persisting in postmyocardial infarction needs to be controlled and moderated for avoiding fatal complications. Curcuma oil (C.oil, Herbal Medicament), a standardized hexane soluble fraction of Curcuma longa has possessed neuroprotective effect. However, its effect on myocardial ischemia/reperfusion (MI/RP) and endothelial cells remains incompletely defined. Here, using in vivo rat MI/RP injury model and in vitro cellular approaches using EA.hy926 endothelial cells, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and myograph, we provide evidence that with effective regimen and preconditioning of rats with C.oil (250 mg/kg, PO), before and after MI/RP surgery protects rats from MI/RP-induced injury. C.oil treatment reduces left ventricular ischemic area and endothelial cell-induced inflammation, specifically in the ischemic region (*P < 0.0001) and improved endothelial function by reducing the expression of proinflammatory genes and adhesion factors on endothelial cells both in vitro and in vivo. Furthermore, mechanistic studies have revealed that C.oil reduced the expression of adhesion factors like E-selectin (#P = 0.0016) and ICAM-1 ($P = 0.0069) in initiating endothelial cells-induced inflammation. In line to the real-time polymerase chain reaction expression data, C.oil reduced the adhesion of inflammatory cells to endothelial cells as assessed by the interaction of THP-1 monocytes with the endothelial cells using flow-based adhesion and under inflammatory conditions. These studies provide evidence that salutary effect of C.oil on MI/RP could be achieved with pretreatment and posttreatment of rats, C.oil reduced MI/RP-induced injury by reducing the endothelial cell-mediated inflammation, specifically in the ischemic zone of MI/RP rat heart.

  17. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  18. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats.

    Science.gov (United States)

    Kim, Seok-Joo; Eum, Hyun-Ae; Billiar, Timothy R; Lee, Sun-Mee

    2013-04-01

    Hepatocellular apoptosis commonly occurs in ischemia/reperfusion (I/R) injury. The binding of tumor necrosis factor (TNF) to TNF receptor 1 (TNFR1) leads to the formation of a death-inducing signaling complex (DISC), which subsequently initiates a caspase cascade resulting in apoptosis. Heme oxygenase 1 (HO-1) confers cytoprotection against cell death in I/R injury and inhibits stress-induced apoptotic pathways in vitro. This study investigated the role of HO-1 in modulating TNF/TNFR1-mediated cell death pathways in hepatic I/R injury. Rats were pretreated with hemin, an HO-1 inducer, and zinc protoporphyrin (ZnPP), an HO-1 inhibitor, before undergoing hepatic I/R. Heme oxygenase 1 activity increased after reperfusion. Ischemia/reperfusion-induced hepatocellular apoptosis was attenuated by hemin, as determined by the caspase-3 and -8 activity assays and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling). Zinc protoporphyrin eliminated the cytoprotective effect of hemin. Hepatic TNFR1 protein expression was unchanged among the experimental groups, whereas mitochondrial TNFR1 protein increased after I/R. Ischemia/reperfusion increased the quantity of DISC components, including TRADD (TNFR1-associated death domain), FADD (Fas-associated death domain), and caspase-8, as well as the assembly of DISCs within the liver. In the mitochondrial fraction, TNFR1-associated caspase-8 was increased after I/R. These increases were attenuated by hemin; zinc protoporphyrin eliminated this effect. Our findings suggest that the cytoprotective effects of HO-1 are mediated by suppression of TNF/TNFR1-mediated apoptotic signaling, specifically by modulating apoptotic DISC formation and mitochondrial TNFR1 translocation during hepatic I/R.

  19. Effects of Acupuncture Pretreatment on Ischemic Cardiac Muscle Cell Apoptosis and Gene Expression in Ischemia-reperfusion Rats

    Institute of Scientific and Technical Information of China (English)

    赵宇辉; 孙忠人; 崔学军

    2009-01-01

    目的:针灸预处理对缺血心肌具有保护作用.通过观察针刺预处理对心肌缺血再灌注损伤大鼠心肌细胞凋亡及HSP70mPNA表达的影响,探讨针刺预处理的心肌保护机制.方法:64只Wistar大鼠随机分为8组,即正常对照组,假手术组,缺血再灌注组,缺血预处理组,手捻针预处理日1次组,电针预处理日1次组,手捻针预处理日2次组,电针预处理日2次组.建立大鼠心肌缺血再灌注模型,采用原位杂交法测定心肌HSP70mRNA的表达,TUNEL法检测细胞凋亡.结果:与正常对照组、假手术组比较,缺血再灌注组细胞凋亡增加,HSP70 mRNA表达增加;与缺血再灌注组比较,针刺预处理使心肌细胞凋亡减少、HSP70mRNA表达增加,且针刺预处理日2次组作用强于针刺预处理日1次组和缺血预处理组.结论:针刺预处理能够抑制心肌缺血再灌注损伤大鼠心肌细胞凋亡,上调心肌HSP70mRNA的表达.针刺预处理每日2次的作用强于针剌预处理每日1次.%Objective:To investigate the protective effects of acupuncture pretreatment on ischemic myocardium,the protective mechanism of acupuncture pretreatment on ischemic myocardium was explored by observing the cardiac muscle cell apoptosis and the expression of HSP70 mRNA of ischemia-reperfusion injury rats treated with acupuncture pretreatment.Methods:Sixty-four Wistar rats were randomly divided into eight groups:control group,sham surgery group,ischemia-repertusion group,ischemia pretreatment group,manual acupuncture pretreatment group(once a day),electroacupuncture pretreatment group(once a day),manual acupuncture pretreatment group(twice a day),and electroacupuncture pretreatment group(twice a day).The reperfusion model of rat myocardial ischemia was made.Expression of HSP70 mRNA was assayed by in situ hyrbridization,and cell apoptosis by TUNEL.Results:Compared with those in the control group and the sham surgery group,the apoptosis and the expression of HSP70 m

  20. Reducing the oxidative stress mediates the cardioprotection of bicyclol against ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jie CUI; Zhi LI; Ling-bo QIAN; Qin GAO; Jue WANG; Meng XUE; Xiao-e LOU

    2013-01-01

    Objective:To investigate the beneficial effect of bicyclol on rat hearts subjected to ischemia-reperfusion (IR) injuries and its possible mechanism.Methods:Male Sprague-Dawley rats were intragastrically administered with bicyclol (25,50 or 100 mg/(kg·d)) for 3 d.Myocardial IR was produced by occlusion of the coronary artery for 1 h and reperfusion for 3 h.Left ventricular hemodynamics was continuously monitored.At the end of reperfusion,myocardial infarct was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining,and serum lactate dehydrogenase (LDH) level and myocardial superoxide dismutase (SOD) activity were determined by spectrophotometry.Isolated ventricular myocytes from adult rats were exposed to 60 min anoxia and 30 min reoxygenation to simulate IR injuries.After reperfusion,cell viability was determined with trypan blue; reactive oxygen species (ROS) and mitochondrial membrane potential of the cardiomyocytes were measured with the fluorescent probe.The mitochondrial permeability transition pore (mPTP) opening induced by Ca2+ (200 μmol/L) was measured with the absorbance at 520 nm in the isolated myocardial mitochondria.Results:Low dose of bicyclol (25 mg/(kg·d)) had no significant improving effect on all cardiac parameters,whereas pretreatment with high bicyclol markedly reduced the myocardial infarct and improved the left ventricular contractility in the myocardium exposed to IR (P<0.05).Medium dose of bicyclol (50 mg/(kg·d))markedly improved the myocardial contractility,left ventricular myocyte viability,and SOD activity,as well decreased infarct size,serum LDH level,ROS production,and mitochondrial membrane potential in rat myocardium exposed to IR.The reduction of ventricular myocyte viability in IR group was inhibited by pretreatment with 50 and 100 mg/(kg.d) bicyclol (P<0.05 vs.IR),but not by 25 mg/(kg·d) bicyclol.The opening of mPTP evoked by Ca2+ was significantly inhibited by medium bicyclol.Conclusions:Bicyclol exerts

  1. Whole blood transcriptomics in cardiac surgery identifies a gene regulatory network connecting ischemia reperfusion with systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Orfeas Liangos

    Full Text Available BACKGROUND: Cardiac surgery with cardiopulmonary bypass (CS/CPB is associated with increased risk for postoperative complications causing substantial morbidity and mortality. To identify the molecular mechanisms underlying CS/CPB-induced pathophysiology we employed an integrative systems biology approach using the whole blood transcriptome as the sentinel organ. METHODOLOGY/PRINCIPAL FINDINGS: Total RNA was isolated and globin mRNA depleted from whole blood samples prospectively collected from 10 patients at time points prior (0, 2 and 24 hours following CS/CPB. Genome-wide transcriptional analysis revealed differential expression of 610 genes after CS/CPB (p<0.01. Among the 375 CS/CPB-upregulated genes, we found a gene-regulatory network consisting of 50 genes, reminiscent of activation of a coordinated genetic program triggered by CS/CPB. Intriguingly, the highly connected hub nodes of the identified network included key sensors of ischemia-reperfusion (HIF-1alpha and C/EBPbeta. Activation of this network initiated a concerted inflammatory response via upregulation of TLR-4/5, IL1R2/IL1RAP, IL6, IL18/IL18R1/IL18RAP, MMP9, HGF/HGFR, CalgranulinA/B, and coagulation factors F5/F12 among others. Differential regulation of 13 candidate genes including novel, not hitherto CS/CBP-associated genes, such as PTX3, PGK1 and Resistin, was confirmed using real-time quantitative RT-PCR. In support of the mRNA data, differential expression of MMP9, MIP1alpha and MIP1beta plasma proteins was further confirmed in 34 additional patients. CONCLUSIONS: Analysis of blood transcriptome uncovered critical signaling pathways governing the CS/CPB-induced pathophysiology. The molecular signaling underlying ischemia reperfusion and inflammatory response is highly intertwined and includes pro-inflammatory as well as cardioprotective elements. The herein identified candidate genes and pathways may provide promising prognostic biomarker and therapeutic targets.

  2. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways.

    Science.gov (United States)

    Gong, Lingli; Tang, Yuewen; An, Ran; Lin, Muya; Chen, Lijian; Du, Jian

    2017-10-05

    The reticulon family has been found to induce apoptosis, inhibit axon regeneration and regulate protein trafficking. However, little is known about the mechanisms of how reticulon proteins are involved in neuronal death-promoting processes during ischemia. Here, we report that the expression of Reticulon Protein 1-C (RTN1-C) was associated with the progression of cerebral ischemia/reperfusion (I/R) injury. Using a combination of rat middle cerebral artery occlusion (MCAO) stroke and oxygen-glucose deprivation followed by reoxygenation (OGD/R) models, we determined that the expression of RTN1-C was significantly increased during cerebral ischemic/reperfusion. RTN1-C overexpression induced apoptosis and increased the cell vulnerability to ischemic injury, whereas RTN1-C knockdown reversed ischemia-induced apoptosis and attenuated the vulnerability of OGD/R-treated neural cells. Mechanistically, we demonstrated that RTN1-C mediated OGD/R-induced apoptosis through ER stress and mitochondria-associated pathways. RTN1-C interacted with Bcl-xL and increased its localization in the ER, thus reducing the anti-apoptotic activity of Bcl-xL. Most importantly, knockdown of Rtn1-c expression in vivo attenuated apoptosis in MCAO rats and reduced the extent of I/R-induced brain injury, as assessed by infarct volume and neurological score. Collectively, these data support for the first time that RTN1-C may represent a novel candidate for therapies against cerebral ischemia/reperfusion injury.

  3. Low T3 State Is Correlated with Cardiac Mitochondrial Impairments after Ischemia Reperfusion Injury: Evidence from a Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Francesca Forini

    2015-11-01

    Full Text Available Mitochondria are major determinants of cell fate in ischemia/reperfusion injury (IR and common effectors of cardio-protective strategies in cardiac ischemic disease. Thyroid hormone homeostasis critically affects mitochondrial function and energy production. Since a low T3 state (LT3S is frequently observed in the post infarction setting, the study was aimed to investigate the relationship between 72 h post IR T3 levels and both the cardiac function and the mitochondrial proteome in a rat model of IR. The low T3 group exhibits the most compromised cardiac performance along with the worst mitochondrial activity. Accordingly, our results show a different remodeling of the mitochondrial proteome in the presence or absence of a LT3S, with alterations in groups of proteins that play a key role in energy metabolism, quality control and regulation of cell death pathways. Overall, our findings highlight a relationship between LT3S in the early post IR and poor cardiac and mitochondrial outcomes, and suggest a potential implication of thyroid hormone in the cardio-protection and tissue remodeling in ischemic disease.

  4. CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Guan

    2016-01-01

    Full Text Available Ischemia/reperfusion (I/R injury induces irreversible oxidative stress damage to the cardiac muscle. We previously observed that CD38 deficiency remarkably protects mouse embryonic fibroblasts (MEFs from oxidative stress-induced injury. However, whether CD38 deficiency protects from I/R injury in the heart is not explored. Here, we showed that the hearts of CD38 deficient mice or wild type mice supplied with exogenous NAD were significantly protected from ischemia/reperfusion injury, seen as reduction of the myocardial infarct sizes when the mice were subjected to 30 min ischemia followed by 24 hours of reperfusion. Consistently, the protection of CD38 deficiency on hypoxia/reoxygenation (H/R injury was confirmed with a CD38 knockdown H9c2 stable cell line. Furthermore, we observed that knockdown of CD38 remarkably inhibited ROS generation and intracellular Ca2+ overloading induced by H/R in H9c2 cells. The FOXO1 and FOXO3 expressions were significantly elevated by H/R injury in CD38 knockdown cells compared with normal H9c2 cells. The cell immunofluorescence assay showed that FOXO1 nuclear translocation was significantly increased in CD38 knockdown H9c2 cells. In addition, we demonstrated that the increase of FOXO1 nuclear translocation was associated with the increased expressions of antioxidant catalase and SOD2 and the attenuated expression of the ROS generation enzyme NOX4. In conclusion, our results provide new evidence that CD38 deficiency protects the heart from I/R injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway.

  5. Protective Effect of Peroxisome Proliferator-Activated Receptor α Activation against Cardiac Ischemia-Reperfusion Injury Is Related to Upregulation of Uncoupling Protein-3

    OpenAIRE

    2016-01-01

    Activation of peroxisome proliferator-activated receptor α (PPARα) confers cardioprotection, while its mechanism remains elusive. We investigated the protective effect of PPARα activation against cardiac ischemia-reperfusion injury in terms of the expression of uncoupling protein (UCP). Myocardial infarct size and UCP expression were measured in rats treated with WY-14643 20 mg/kg, a PPARα ligand, or vehicle. WY-14643 increased UCP3 expression in vivo. Myocardial infarct size was decreased in...

  6. A polysaccharide (PNPA) from Pleurotus nebrodensis offers cardiac protection against ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Yan, Bingju; Jing, Liying; Wang, Jun

    2015-11-20

    In this study, we isolated a polysaccharide (PNPA), with a molecular weight of 105kDa, from the fruiting bodies of Pleurotus nebrodensis. It had a backbone consisting of 1,3-linked-d-glucpyranosyl and 1,3,6-linked-d-galactopyranosyl residues, which was terminated with 1-linked-d-mannopyranosyl terminal at O-3 position of 1,3,6-linked-d-galactopyranosyl unit along the main chain in the ratio of 4:1:1. We further examined the effect of PNPA on myocardial ischemia-reperfusion (I/R) injury in rats and elucidated the underlying mechanism. Pretreatment with PNPA (100 and 400mg/kg) for 30 days significantly attenuated myocardial infarct size as compared to I/R model group. A decrease in superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) levels, as well as an increased malondialdehyde (MDA) content were observed in both myocardial serum and tissues of control I/R group, whereas pretreatment with PNPA markedly restored these change, and also relieved myocardial cell apoptosis. These results suggested that PNPA achieved protective effect on myocardial I/R injury in part through improving endogenous antioxidants and suppressing myocardial cell apoptosis.

  7. TIR/BB-loop mimetic AS-1 attenuates cardiac ischemia/reperfusion injury via a caveolae and caveolin-3-dependent mechanism

    Science.gov (United States)

    Hu, Yuanping; Zhang, Meiling; Shen, Xin; Dai, Guoliang; Ren, Danyang; Que, Linli; Ha, Tuanzhu; Li, Chuanfu; Xu, Yong; Ju, Wenzheng; Li, Yuehua

    2017-01-01

    AS-1, the TIR/BB loop mimetic, plays a protective role in cardiac ischemia/reperfusion (I/R) but the molecular mechanism remains unclear. The muscle specific caveolin3 (Cav-3) and the caveolae have been found to be critical for cardioprotection. This study aimed to evaluate our hypothesis that caveolae and Cav-3 are essential for AS-1-induced cardioprotection against myocardial I/R injury. To address these issues, we analyzed the involvement of Cav-3 in AS-1 mediated cardioprotection both in vivo and in vitro. We demonstrate that AS-1 administration significantly decreased infarct size, improved cardiac function after myocardial I/R and modulated membrane caveolae and Cav-3 expression in the myocardium. For in vitro studies, AS-1 treatment prevented Cav-3 re-distribution induced by H/R injury. In contrast, disruption of caveolae by MCD treatment or Cav-3 knockdown abolished the protection against H/R-induced myocytes injury by AS-1. Our findings reveal that AS-1 attenuates myocardial I/R injury through caveolae and Cav-3 dependent mechanism. PMID:28291255

  8. Catheter-based Intramyocardial Injection of FGF1 or NRG1-loaded MPs Improves Cardiac Function in a Preclinical Model of Ischemia-Reperfusion

    Science.gov (United States)

    Garbayo, Elisa; Gavira, Juan José; de Yebenes, Manuel Garcia; Pelacho, Beatriz; Abizanda, Gloria; Lana, Hugo; Blanco-Prieto, María José; Prosper, Felipe

    2016-05-01

    Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.

  9. A novel cardioprotective agent in cardiac transplantation: metformin activation of AMP-activated protein kinase decreases acute ischemia-reperfusion injury and chronic rejection.

    Science.gov (United States)

    Chin, Jocelyn T; Troke, Joshua J; Kimura, Naoyuki; Itoh, Satoshi; Wang, Xi; Palmer, Owen P; Robbins, Robert C; Fischbein, Michael P

    2011-12-01

    The main cause of mortality after the first year from cardiac transplantation is cardiac allograft vasculopathy (CAV), which leads to chronic rejection of the heart. To improve long-term outcomes in cardiac transplantation, treatments to prevent or diminish CAV are actively being researched. Ischemia-reperfusion (I-R) injury has been shown to be the strongest alloantigen-independent factor in the development of CAV. Here, we investigate the use of metformin in murine cardiac transplantation models as a novel cardioprotective agent to limit acute I-R injury and subsequent chronic rejection. We show that metformin treatment activates AMP-activated kinase (AMPK) in vitro and in vivo. In the acute transplantation model, metformin activation of AMPK resulted in significantly decreased apoptosis in cardiac allografts on postoperative day (POD) 1 and 8. In the chronic transplantation model, metformin pretreatment of allografts led to significantly improved graft function and significantly decreased CAV, as measured on POD 52. Taken together, our results in the acute and chronic rejection studies suggest a potential cardioprotective mechanism for metformin; we demonstrate a correlation between metformin-induced decrease in acute I-R injury and metformin-related decrease in chronic rejection. Thus, one of the ways by which metformin and AMPK activation may protect the transplanted heart from chronic rejection is by decreasing initial I-R injury inherent in donor organ preservation and implantation. Our findings suggest novel therapeutic strategies for minimizing chronic cardiac rejection via the use of metformin- and AMPK-mediated pathways to suppress acute I-R injury.

  10. Chronic testosterone replacement exerts cardioprotection against cardiac ischemia-reperfusion injury by attenuating mitochondrial dysfunction in testosterone-deprived rats.

    Directory of Open Access Journals (Sweden)

    Wanpitak Pongkan

    Full Text Available Although testosterone deficiency is associated with increased risks of heart disease, the benefits of testosterone therapy are controversial. Moreover, current understanding on the cardiac effect of testosterone during cardiac ischemia-reperfusion (I/R periods is unclear. We tested the hypothesis that testosterone replacement attenuates the impairment of left ventricular (LV function and heart rate variability (HRV, and reduces the infarct size and arrhythmias caused by I/R injury in orchiectomized (ORX rats.ORX or sham-operated male Wistar rats (n = 24 were randomly divided and received either testosterone (2 mg/kg, subcutaneously administered or the vehicle for 8 weeks. The ejection fraction (EF and HRV were determined at baseline and the 4th and 8th week. I/R was performed by left anterior descending coronary artery ligation for 30 minutes, followed by a 120-minute reperfusion. LV pressure, arrhythmia scores, infarct size and cardiac mitochondrial function were determined.Prior to I/R, EF and HRV were impaired in the ORX group, but were restored in the testosterone-treated group. During I/R, arrhythmia scores and the infarct size were greater, and cardiac mitochondrial function was impaired, whereas the time to 1st VT/VF onset and the LV end-systolic pressure were decreased in the ORX group when compared to the sham group. Testosterone replacement attenuated the impairment of these parameters in ORX rats during I/R injury, but did not show any benefit or adverse effect in non-ORX rats.Testosterone replacement restores cardiac function and autonomic regulation, and exerts cardioprotective effects during the I/R period via mitochondrial protection in ORX rats.

  11. Chronic Testosterone Replacement Exerts Cardioprotection against Cardiac Ischemia-Reperfusion Injury by Attenuating Mitochondrial Dysfunction in Testosterone-Deprived Rats

    Science.gov (United States)

    Pongkan, Wanpitak; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2015-01-01

    Background Although testosterone deficiency is associated with increased risks of heart disease, the benefits of testosterone therapy are controversial. Moreover, current understanding on the cardiac effect of testosterone during cardiac ischemia-reperfusion (I/R) periods is unclear. We tested the hypothesis that testosterone replacement attenuates the impairment of left ventricular (LV) function and heart rate variability (HRV), and reduces the infarct size and arrhythmias caused by I/R injury in orchiectomized (ORX) rats. Methodology ORX or sham-operated male Wistar rats (n = 24) were randomly divided and received either testosterone (2 mg/kg, subcutaneously administered) or the vehicle for 8 weeks. The ejection fraction (EF) and HRV were determined at baseline and the 4th and 8th week. I/R was performed by left anterior descending coronary artery ligation for 30 minutes, followed by a 120-minute reperfusion. LV pressure, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. Results Prior to I/R, EF and HRV were impaired in the ORX group, but were restored in the testosterone-treated group. During I/R, arrhythmia scores and the infarct size were greater, and cardiac mitochondrial function was impaired, whereas the time to 1st VT/VF onset and the LV end-systolic pressure were decreased in the ORX group when compared to the sham group. Testosterone replacement attenuated the impairment of these parameters in ORX rats during I/R injury, but did not show any benefit or adverse effect in non-ORX rats. Conclusions Testosterone replacement restores cardiac function and autonomic regulation, and exerts cardioprotective effects during the I/R period via mitochondrial protection in ORX rats. PMID:25822979

  12. The Effect of Sleep Deprivation on Cardiac Function and Tolerance to Ischemia-Reperfusion Injury in Male Rats.

    Science.gov (United States)

    Jeddi, Sajad; Asl, Amir Nezami; Asgari, Alireza; Ghasemi, Asghar

    2016-01-01

    Sleep deprivation (SD) is strongly associated with elevated risk for cardiovascular disease. To determine the effect of SD on basal hemodynamic functions and tolerance to myocardial ischemia-reperfusion (IR) injury in male rats. SD was induced by using the flowerpot method for 4 days. Isolated hearts were perfused with Langendorff setup, and the following parameters were measured at baseline and after IR: left ventricular developed pressure (LVDP); heart rate (HR); and the maximum rate of increase and decrease of left ventricular pressure (± dp/dt). Heart NOx level, infarct size and coronary flow CK-MB and LDH were measured after IR. Systolic blood pressure (SBP) was measured at start and end of study. In the SD group, the baseline levels of LVDP (19%), +dp/dt (18%), and -dp/dt (21%) were significantly (p function recovery compared to the controls. In the SD group, NOx level in heart, coronary flow CK-MB and LDH and infarct size significantly increased after IR; also SD rats had higher SBP after 4 days. Hearts from SD rats had lower basal cardiac function and less tolerance to IR injury, which may be linked to an increase in NO production following IR.

  13. The Effect of Sleep Deprivation on Cardiac Function and Tolerance to Ischemia-Reperfusion Injury in Male Rats

    Directory of Open Access Journals (Sweden)

    Sajad Jeddi

    2015-01-01

    Full Text Available AbstractBackground:Sleep deprivation (SD is strongly associated with elevated risk for cardiovascular disease.Objective:To determine the effect of SD on basal hemodynamic functions and tolerance to myocardial ischemia-reperfusion (IR injury in male rats.Method:SD was induced by using the flowerpot method for 4 days. Isolated hearts were perfused with Langendorff setup, and the following parameters were measured at baseline and after IR: left ventricular developed pressure (LVDP; heart rate (HR; and the maximum rate of increase and decrease of left ventricular pressure (±dp/dt. Heart NOx level, infarct size and coronary flow CK-MB and LDH were measured after IR. Systolic blood pressure (SBP was measured at start and end of study.Results:In the SD group, the baseline levels of LVDP (19%, +dp/dt (18%, and -dp/dt (21% were significantly (p < 0.05 lower, and HR (32% was significantly higher compared to the controls. After ischemia, hearts from SD group displayed a significant increase in HR together with a low hemodynamic function recovery compared to the controls. In the SD group, NOx level in heart, coronary flow CK-MB and LDH and infarct size significantly increased after IR; also SD rats had higher SBP after 4 days.Conclusion:Hearts from SD rats had lower basal cardiac function and less tolerance to IR injury, which may be linked to an increase in NO production following IR.

  14. Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model.

    Science.gov (United States)

    Chang, Guanglei; Zhang, Peng; Ye, Lin; Lu, Kai; Wang, Ying; Duan, Qin; Zheng, Aihua; Qin, Shu; Zhang, Dongying

    2013-10-15

    The purpose of this study is to investigate the effects and the underlying mechanisms of sitagliptin pretreatment on myocardial injury and cardiac function in myocardial ischemia/reperfusion (I/R) rat model. The rat model of myocardial I/R was constructed by coronary occlusion. Rats were pretreated with sitagliptin (300 mg/kg/day) for 2 weeks, and then subjected to 30 min ischemia and 2h reperfusion. The release of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB), cardiac function and cardiomyocyte apoptosis were evaluated. The levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in heart and glucagon-like peptide-1 (GLP-1) level in plasma were measured. Western blot analysis was performed to detect the target proteins of sitagliptin. Our results showed that sitagliptin pretreatment decreased LDH and CK-MB release, and MDA level in I/R rats. More importantly, we revealed for the first time that sitagliptin pretreatment decreased cardiomyocyte apoptosis while increased the levels of GSH-Px and SOD in heart. Sitagliptin also increased GLP-1 level and enhanced cardiac function in I/R rats. Furthermore, sitagliptin pretreatment up-regulated Akt(serine473) and Bad(serine136) phosphorylation, reduced the ratio of Bax/Bcl-2, and decreased expression levels of cleaved caspase-3 and caspase-3. Interestingly, the above observed effects of sitagliptin were all abolished when co-administered with GLP-1 receptor antagonist exendin-(9-39) or PI3K inhibitor LY294002. Taken together, our data indicate that sitagliptin pretreatment could reduce myocardial injury and improve cardiac function in I/R rats by reducing apoptosis and oxidative damage. The underlying mechanism might be the activation of PI3K/Akt signaling pathway by GLP-1/GLP-1 receptor. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  15. Enalapril protects against myocardial ischemia/reperfusion injury in a swine model of cardiac arrest and resuscitation

    Science.gov (United States)

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2016-01-01

    There is strong evidence to suggest that angiotensin-converting enzyme inhibitors (ACEIs) protect against local myocardial ischemia/reperfusion (I/R) injury. This study was designed to explore whether ACEIs exert cardioprotective effects in a swine model of cardiac arrest (CA) and resuscitation. Male pigs were randomly assigned to three groups: sham-operated group, saline treatment group and enalapril treatment group. Thirty minutes after drug infusion, the animals in the saline and enalapril groups were subjected to ventricular fibrillation (8 min) followed by cardiopulmonary resuscitation (up to 30 min). Cardiac function was monitored, and myocardial tissue and blood were collected for analysis. Enalapril pre-treatment did not improve cardiac function or the 6-h survival rate after CA and resuscitation; however, this intervention ameliorated myocardial ultrastructural damage, reduced the level of plasma cardiac troponin I and decreased myocardial apoptosis. Plasma angiotensin (Ang) II and Ang-(1–7) levels were enhanced in the model of CA and resuscitation. Enalapril reduced the plasma Ang II level at 4 and 6 h after the return of spontaneous circulation whereas enalapril did not affect the plasma Ang-(1–7) level. Enalapril pre-treatment decreased the myocardial mRNA and protein expression of angiotensin-converting enzyme (ACE). Enalapril treatment also reduced the myocardial ACE/ACE2 ratio, both at the mRNA and the protein level. Enalapril pre-treatment did not affect the upregulation of ACE2, Ang II type 1 receptor (AT1R) and MAS after CA and resuscitation. Taken together, these findings suggest that enalapril protects against ischemic injury through the attenuation of the ACE/Ang II/AT1R axis after CA and resuscitation in pigs. These results suggest the potential therapeutic value of ACEIs in patients with CA. PMID:27633002

  16. Protective effect of olmesartan against cardiac ischemia/reperfusion injury in spontaneously hypertensive rats.

    Science.gov (United States)

    Lu, Xin; Bi, Yan-Wen; Chen, Ke-Biao; Wang, Hong-Yue

    2015-06-01

    Olmesartan, as a new angiotensin II receptor blocker, has shown beneficial effects on cardiovascular diseases. Nevertheless, the effect of olmesartan on ischemia/reperfusion (I/R) injury in the hypertensive heart has not been investigated. Therefore, the present study aimed to investigate the effect of olmesartan on I/R injury in spontaneously hypertensive rats (SHRs). Experimental groups were designed with a 2×2 factorial design for olmesartan and I/R effects. In the I/R group, the left anterior descending coronary artery (LAD) was ligated for 40 min followed by a 180-min reperfusion. In the sham group, SHRs underwent the same surgical procedure as the I/R group, with the exception that the suture passed under the LAD without being tightened. In the Olm-I/R group, the SHRs received olmesartan (5 mg/kg) for 4 weeks prior to surgery and other procedures were the same as for the I/R group. In the Olm-sham group, the SHRs received olmesartan (5 mg/kg) for 4 weeks prior to surgery and other procedures were the same as for the sham group. Infarct size was measured for the I/R and Olm-I/R groups. Blood pressure (BP), serum creatine kinase (CK), left ventricular mass index (LVMI), high mobility group box 1 (HMGB1) protein expression levels and hypoxia-inducible factor-1α (HIF-1α) mRNA expression levels were measured for all four groups. Olmesartan significantly reduced BP and LVMI in the olmesartan-treated SHRs compared with those in the SHRs that were not treated with olmesartan. HMGB1 and HIF-1α expression levels were significantly decreased in the Olm-sham and Olm-I/R groups compared with those in the sham and I/R groups, respectively. The proportional increase in HIF-1α expression due to I/R was greater in the olmesartan-treated rats than in the untreated rats. Serum CK levels were significantly reduced in the Olm-I/R group compared with those in the I/R group. In conclusion, olmesartan ameliorates left ventricular hypotrophy and protects the heart against I

  17. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice.

    Science.gov (United States)

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.

  18. Cardioprotection by combination of three compounds from ShengMai preparations in mice with myocardial ischemia/reperfusion injury through AMPK activation-mediated mitochondrial fission

    Science.gov (United States)

    Li, Fang; Fan, Xiaoxue; Zhang, Yu; Pang, Lizhi; Ma, Xiaonan; Song, Meijia; Kou, Junping; Yu, Boyang

    2016-01-01

    GRS is a drug combination of three active components including ginsenoside Rb1, ruscogenin and schisandrin. It derived from the well-known TCM formula ShengMai preparations, a widely used traditional Chinese medicine for the treatment of cardiovascular diseases in clinic. The present study explores the cardioprotective effects of GRS on myocardial ischemia/reperfusion (MI/R) injury compared with ShengMai preparations and investigates the underlying mechanisms. GRS treatment significantly attenuated MI/R injury and exhibited similar efficacy as Shengmai preparations, as evidenced by decreased myocardium infarct size, ameliorated histological features, the decrease of LDH production and improved cardiac function, and also produced a significant decrease of apoptotic index. Mechanistically, GRS alleviated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway as reflected by inhibition of caspase-3 activity, normalization of Bcl-2/Bax levels and improved mitochondrial function. Moreover, GRS prevented cardiomyocytes mitochondrial fission and upregulated AMPKα phosphorylation. Interestingly, AMPK activation prevented hypoxia and reoxygenation induced mitochondrial fission in cardiomyocytes and GRS actions were significantly attenuated by knockdown of AMPKα. Collectively, these data show that GRS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and modulating AMPK activation-mediated mitochondrial fission, thereby providing a rationale for future clinical applications and potential therapeutic strategy for MI/R injury. PMID:27869201

  19. 心脏肥大细胞在心肌缺血/再灌注损伤中的研究进展%Cardiac mast cells in myocardial ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    张江玲; 陈杰; 王祥瑞

    2010-01-01

    Mast cells are multifunctional effector cells and originate from stem cells in the bone marrow. After being activated, it degranulates and releases several kind of inflammation mediators, (eg. cytokines and proteases) participating in inflammatory reaction and IgE-dependent histamine-mediated hypersusceptibility reaction. This article discusses the relationship between cardiac mast cells and the pathological progress such as inflammatory reaction、cell apoptosis and infarct recovery in myocardial ischemia-reperfusion injury.%肥大细胞是一种多效应细胞,起源于骨髓多分化细胞,激活后脱颗粒释放多种炎症介质、细胞因子及蛋白酶,参与炎症反应及IgE依赖的组胺介导的高敏反应.现讨论心脏肥大细胞与心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤中炎症反应、细胞凋亡及梗死修复等病理过程的相关关系.

  20. Adenovirus-mediated eNOS expression augments liver injury after ischemia/reperfusion in mice.

    Directory of Open Access Journals (Sweden)

    Arun P Palanisamy

    Full Text Available Hepatic ischemia/reperfusion (l/R injury continues to be a critical problem. The role of nitric oxide in liver I/R injury is still controversial. This study examines the effect of endothelial nitric oxide synthase (eNOS over-expression on hepatic function following I/R. Adenovirus expressing human eNOS (Ad-eNOS was administered by tail vein injection into C57BL/6 mice. Control mice received either adenovirus expressing LacZ or vehicle only. Sixty minutes of total hepatic ischemia was performed 3 days after adenovirus treatment, and mice were sacrificed after 6 or 24 hrs of reperfusion to assess hepatic injury. eNOS over expression caused increased liver injury as evidenced by elevated AST and ALT levels and decreased hepatic ATP content. While necrosis was not pervasive in any group, TUNEL demonstrated significantly increased apoptosis in Ad-eNOS infected livers. Western blotting demonstrated increased levels of protein nitration and upregulation of the pro-apoptotic proteins bax and p53. Our data suggest that over-expression of eNOS is detrimental in the setting of hepatic I/R.

  1. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    Science.gov (United States)

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found to be the most effective. Higher doses (more than 0.05%) were highly toxic, causing arrhythmia and cardiodepression, whereas the lower doses were ineffective. Garlic exaggerated the cardioprotective effect of ischemic preconditioning. The cardioprotective effect of ischemic preconditioning and garlic cardioprotection was significantly attenuated by theophylline (1,000 µmol/L) and 8-SPT (10 mg/kg, i.p.) and expressed by increased myocardial infarct size, increased LDH level, and reduced nitrite and adenosine levels. These findings suggest that adenosine is involved in the pharmacological and molecular mechanism of garlic induced cardioprotection and mediated by the modulation of nitric oxide. PMID:23554727

  2. Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Urankar Rakhee N

    2012-10-01

    not the C-grade as compared to SS. Conclusion Our results suggest that oropharyngeal aspiration of MWCNT promotes increased susceptibility of cardiac tissue to ischemia/reperfusion injury without a significant pulmonary inflammatory response. The cardiac injury effects were observed at low concentrations of MWCNTs and presence of MWCNTs may pose a significant risk to the cardiovascular system.

  3. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice.

    Directory of Open Access Journals (Sweden)

    Toshio Watanabe

    Full Text Available Toll-like receptor 2 (TLR2 recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO, a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α, intercellular adhesion molecule-1 (ICAM-1, and cyclooxygenase-2 (COX-2 in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory

  4. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury.

    Science.gov (United States)

    Feinman, Rena; Deitch, Edwin A; Watkins, Anthony C; Abungu, Billy; Colorado, Iriana; Kannan, Kolenkode B; Sheth, Sharvil U; Caputo, Francis J; Lu, Qi; Ramanathan, Madhuri; Attan, Shirhan; Badami, Chirag D; Doucet, Danielle; Barlos, Dimitrios; Bosch-Marce, Marta; Semenza, Gregg L; Xu, Da-Zhong

    2010-10-01

    Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) are major causes of death in trauma patients. Gut inflammation and loss of gut barrier function as a consequence of splanchnic ischemia-reperfusion (I/R) have been implicated as the initial triggering events that contribute to the development of the systemic inflammatory response, ALI, and MODS. Since hypoxia-inducible factor (HIF-1) is a key regulator of the physiological and pathophysiological response to hypoxia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Utilizing partially HIF-1α-deficient mice in a global trauma hemorrhagic shock (T/HS) model, we found that HIF-1 activation was necessary for the development of gut injury and that the prevention of gut injury was associated with an abrogation of lung injury. Specifically, in vivo studies demonstrated that partial HIF-1α deficiency ameliorated T/HS-induced increases in intestinal permeability, bacterial translocation, and caspase-3 activation. Lastly, partial HIF-1α deficiency reduced TNF-α, IL-1β, cyclooxygenase-2, and inducible nitric oxide synthase levels in the ileal mucosa after T/HS whereas IL-1β mRNA levels were reduced in the lung after T/HS. This study indicates that prolonged intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. Consequently, these results provide unique information on the initiating events in trauma-hemorrhagic shock-induced ALI and MODS as well as potential therapeutic insights.

  5. Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion.

    Science.gov (United States)

    Gao, Ling; Zheng, Yan-Jun; Gu, Shan-Shan; Tan, Ji-Liang; Paul, Christian; Wang, Yi-Gang; Yang, Huang-Tian

    2014-12-01

    Although ischemia/reperfusion (I/R)-induced myocardial contractile dysfunction is associated with a prominent decrease in myofilament Ca(2+) sensitivity, the underlying mechanisms have not yet been fully clarified. Phosphorylation of ventricular myosin light chain 2 (MLC-2v) facilitates actin-myosin interactions and enhances contractility, however, its level and regulation by cardiac MLC kinase (cMLCK) and cMLC phosphatase (cMLCP) in I/R hearts are debatable. In this study, the levels and/or effects of MLC-2v phosphorylation, cMLCK, cMLCP, and proteases during I/R were determined. Global myocardial I/R-suppressed cardiac performance in isolated rat hearts was concomitant with decreases of MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, and cMLCK content, but not cMLCP proteins. Consistently, simulated I/R in isolated cardiomyocytes inhibited cell shortening, Ca(2+) transients, MLC-2v phosphorylation, and myofilament sensitivity to Ca(2+). These observations were reversed by cMLCK overexpression, while the specific cMLCK knockdown by short hairpin RNA (shRNA) had the opposite effect. Moreover, the inhibition of matrix metalloproteinase-2 (MMP-2, a zinc-dependent endopeptidase) reversed IR-decreased cMLCK, MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, myocardial contractile function, and myofilament sensitivity to Ca(2+), while the inhibition or knockdown of cMLCK by ML-9 or specific shRNA abolished MMP-2 inhibition-induced cardioprotection. Finally, the co-localization in cardiomyocytes and interaction in vivo of MMP-2 and cMLCK were observed. Purified recombinant rat cMLCK was concentration- and time-dependently degraded by rat MMP-2 in vitro, and this was prevented by the inhibition of MMP-2. These findings reveal that the I/R-activated MMP-2 leads to the degradation of cMLCK, resulting in a reduction of MLC-2v phosphorylation, and myofibrillar Ca(2+)-stimulated ATPase activity, which subsequently suppresses

  6. Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion.

    Science.gov (United States)

    Meyer, Grégory; André, Lucas; Kleindienst, Adrien; Singh, François; Tanguy, Stéphane; Richard, Sylvain; Obert, Philippe; Boucher, François; Jover, Bernard; Cazorla, Olivier; Reboul, Cyril

    2015-04-01

    We investigated the role of inducible nitric oxide (NO) synthase (iNOS) on ischemic myocardial damage in rats exposed to daily low nontoxic levels of carbon monoxide (CO). CO is a ubiquitous environmental pollutant that impacts on mortality and morbidity from cardiovascular diseases. We have previously shown that CO exposure aggravates myocardial ischemia-reperfusion (I/R) injury partly because of increased oxidative stress. Nevertheless, cellular mechanisms underlying cardiac CO toxicity remain hypothetical. Wistar rats were exposed to simulated urban CO pollution for 4 wk. First, the effects of CO exposure on NO production and NO synthase (NOS) expression were evaluated. Myocardial I/R was performed on isolated perfused hearts in the presence or absence of S-methyl-isothiourea (1 μM), a NOS inhibitor highly specific for iNOS. Finally, Ca(2+) handling was evaluated in isolated myocytes before and after an anoxia-reoxygenation performed with or without S-methyl-isothiourea or N-acetylcystein (20 μM), a nonspecific antioxidant. Our main results revealed that 1) CO exposure altered the pattern of NOS expression, which is characterized by increased neuronal NOS and iNOS expression; 2) cardiac NO production increased in CO rats because of its overexpression of iNOS; and 3) the use of a specific inhibitor of iNOS reduced myocardial hypersensitivity to I/R (infarct size, 29 vs. 51% of risk zone) in CO rat hearts. These last results are explained by the deleterious effects of NO and reactive oxygen species overproduction by iNOS on diastolic Ca(2+) overload and myofilaments Ca(2+) sensitivity. In conclusion, this study highlights the involvement of iNOS overexpression in the pathogenesis of simulated urban CO air pollution exposure.

  7. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/rep...

  8. Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart

    NARCIS (Netherlands)

    R. Nederlof (Rianne); Gürel-Gurevin, E. (Ebru); O. Eerbeek (Otto); C. Xie (Chaoqin); Deijs, G.S.; Konkel, M. (Moritz); Hu, J. (Jun); N.C. Weber (Nina); C. Schumacher (Cees); A. Baartscheer (Antonius); E.G. Mik (Egbert); M.W. Hollmann (Markus); F.G. Akar (Fadi); C.J. Zuurbier (Coert J.)

    2016-01-01

    textabstractIschemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine

  9. RP105 Protects Against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-07-01

    Full Text Available Background: Myocardial apoptosis is heavily implicated in the myocardial damage caused by ischemia-reperfusion (I/R. Toll-like receptor 4 (TLR4 is a potent inducer of these apoptotic cascades. In contrast, the radioprotective 105 kDa protein (RP105 is a specific negative regulator of TLR4 signaling pathways. However, the precise mechanisms by which RP105 inhibits myocardium apoptosis via TLR4-associated pathways during I/R is not fully understood. Methods: We utilized a rat model of myocardial ischemic reperfusion injury (MIRI. Animals were pre-treated with Ad-EGFP adenovirus, Ad-EGFP-RP105 adenovirus, saline, or nothing (sham. After three days, rats underwent a 30min left anterior descending coronary artery occlusion and a 4h reperfusion. Mycardial tissue was assessed by immunohistochemistry, TUNEL-staining, Western blot, quantitative RT-PCR, and a morphometric assay. Results: RP105 overexpression resulted in a reduction in infarct size, fewer TUNEL-positive cardiomyocytes, and a reduction in mitochondrial-associated apoptosis cascade activity. Further, RP105 overexpression repressed I/R-induced myocardial injury by attenuating myocardial apoptosis. This was mediated by inhibiting TLR4 activation and the phosphorylation of P38MAPK and the downstream transcription factor AP-1. Conclusion: RP105 overexpression leads to the de-activation of TLR4, P38MAPK, and AP-1 signaling pathways, and subsequently represses apoptotic cascades and ensuing damage of myocardial ischemic reperfusion. These findings may become the basis of a novel therapeutic approach for reducing of cardiac damage caused by MIRI.

  10. Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Pei-Yu LIU; Yi TIAN; Shi-Yuan XU

    2014-01-01

    Background Electroacupuncture pretreatment plays a protective role in myocardial ischemia/reperfusion (I/R) injury and microRNAs (miRNAs) could act on various facets of cardiac function. However, the role of miRNAs in the cardioprotection by electroacupuncture pre-treatment on myocardial I/R injury remains unknown. The purpose of the study was to examine whether miR-214 was involved in cardio-protection by electroacupuncture. Methods Using rat myocardial I/R model, we examined the role of electroacupuncture pretreatment in myocardial I/R injury and analyzed the changes in the expression of miR-214. In addition, I/R was simulated in vitro by performing oxy-gen-glucose deprivation (OGD) on H9c2 cell cultures, and the effect of electroacupuncture pretreatment on I/R injury as well as expressional level of miR-214 were examined in vitro. Furthermore, the miR-214 mimic was transfected into OGD-treated H9c2 cells, we analyzed the cell apoptosis, lactate dehydrogenase (LDH) and creatine kinase (CK) activities, intracellular free Ca2+concentration ([Ca2+]i) as well as the relative protein levels of sodium/calcium exchanger 1(NCX1), BCL2-like 11 (BIM), calmodulin-dependent protein kinase IIδ(CaMKIIδ) and Cyclophilin D (CypD). Results The in vivo results revealed that compared with the I/R group, the electroacupuncture pretreatment group showed significant decreased myocardial infarct size, as well as the increased indices of the cardiac function, including heart rate, mean arterial pressure, left ventricular systolic pressure and maximal rate for left ventricular pressure rising and declining (±dp/dt max). In addition, electroacupuncture pretreatment could inhibit the elevation of LDH and CK activities induced by I/R injury. The quantitative PCR (qPCR) results demonstrated electroacupuncture pretreatment could provide cardioprotection against myocardial I/R injury in rats with miR-214 up-regulation. In the meanwhile, in vitro, electroacupuncture pretreatment protected H9

  11. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI

    Directory of Open Access Journals (Sweden)

    Chen Xueping

    2012-10-01

    Full Text Available Abstract Background Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. Methods To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI and copper-zinc superoxide dismutase (SOD1 were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Results Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the

  12. Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells.

    Science.gov (United States)

    Liu, Yi; Ma, Yanzhuo; Wang, Rutao; Xia, Chenhai; Zhang, Rongqing; Lian, Kun; Luan, Ronghua; Sun, Lu; Yang, Lu; Lau, Wayne B; Wang, Haichang; Tao, Ling

    2011-10-01

    The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. However, no causative link has been established between increased AGEs and enhanced endothelial injury after ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and incubated with AGE-modified bovine serum albumin (BSA) or BSA. After AGE-BSA or BSA preculture, CMECs were subjected to simulated ischemia (SI)/reperfusion (R). AGE-BSA increased SI/R injury as evidenced by enhanced lactate dehydrogenase release and caspase-3 activity. Moreover, AGE-BSA significantly increased SI/R-induced oxidative/nitrative stress in CMECs (as measured by increased inducible nitric oxide synthase expression, total nitric oxide production, superoxide generation, and peroxynitrite formation) and increased SI/R-induced nitrative inactivation of thioredoxin-1 (Trx-1), an essential cytoprotective molecule. Supplementation of EUK134 (peroxynitrite decomposition catalyst), human Trx-1, or soluble receptor of advanced end product (sRAGE) (a RAGE decoy) in AGE-BSA precultured cells attenuated SI/R-induced oxidative/nitrative stress, reduced SI/R-induced Trx-1 nitration, preserved Trx-1 activity, and reduced SI/R injury. Our results demonstrated that AGEs may increase SI/R-induced endothelial injury by increasing oxidative/nitrative injury and subsequent nitrative inactivation of Trx-1. Interventions blocking RAGE signaling or restoring Trx activity may be novel therapies to mitigate endothelial ischemia/reperfusion injury in the diabetic population.

  13. Effects of chromium picolinate on vascular reactivity and cardiac ischemia-reperfusion injury in spontaneously hypertensive rats.

    Science.gov (United States)

    Abebe, Worku; Liu, Jun Yao; Wimborne, Hereward; Mozaffari, Mahmood S

    2010-01-01

    Chromium picolinate [Cr(pic)(3)] is a nutritional supplement widely promoted to exert beneficial metabolic effects in patients with type 2 diabetes/impaired glucose tolerance. Frequent comorbidities in these individuals include systemic hypertension, abnormal vascular function and ischemic heart disease, but information on the effects of the supplement on these aspects is sparse. Utilizing male spontaneously hypertensive rats (SHR), we examined the potential impact of Cr(pic)(3) on blood pressure, vascular reactivity and myocardial ischemia-reperfusion injury (IRI). Dietary Cr(pic)(3) supplementation (as 10 mg chromium/kg diet for six weeks) did not affect blood pressure of the SHR. Also, neither norepinephrine (NE) and potassium chloride (KCl)-induced contractility nor sodium nitroprusside (SNP)-induced relaxation of aortic smooth muscle from the SHR was altered by Cr(pic)(3) treatment. However, Cr(pic)(3) augmented endothelium-dependent relaxation of aortas, produced by acetylcholine (ACh), and this effect was abolished by N-nitro-L-arginine methyl ester (L-NAME), suggesting induction of nitric oxide (NO) production/release. Treatment with Cr(pic)(3) did not affect baseline coronary flow rate and rate-pressure-product (RPP) or infarct size following regional IRI. Nonetheless, Cr(pic)(3) treatment was associated with improved coronary flow and recovery of myocardial contractility and relaxation following ischemia-reperfusion insult. In conclusion, dietary Cr(pic)(3) treatment of SHR alters neither blood pressure nor vascular smooth muscle reactivity but causes enhancement of endothelium-dependent vasorelaxation associated with NO production/release. Additionally, while the treatment does not affect infarct size, it improves functional recovery of the viable portion of the myocardium following IRI.

  14. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Wenjing [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wu, Yan [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiong, Wei [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Longyan [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Tong [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pan, Shangwen [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Song, Limin [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Hu, Lisha [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pei, Lei [Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yao, Shanglong, E-mail: ysltian@163.com [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); and others

    2016-03-25

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  15. Mast Cell Protease 5 Mediates Ischemia-Reperfusion Injury of Mouse Skeletal Muscle1

    Science.gov (United States)

    Abonia, J. Pablo; Friend, Daniel S.; Austen, William G.; Moore, Francis D.; Carroll, Michael C.; Chan, Rodney; Afnan, Jalil; Humbles, Alison; Gerard, Craig; Knight, Pamela; Kanaoka, Yoshihide; Yasuda, Shinsuke; Morokawa, Nasa; Austen, K. Frank; Stevens, Richard L.; Gurish, Michael F.

    2010-01-01

    Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R2 = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C4 synthase, hemopoietic PGD2 synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle. PMID:15905575

  16. Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle.

    Science.gov (United States)

    Abonia, J Pablo; Friend, Daniel S; Austen, William G; Moore, Francis D; Carroll, Michael C; Chan, Rodney; Afnan, Jalil; Humbles, Alison; Gerard, Craig; Knight, Pamela; Kanaoka, Yoshihide; Yasuda, Shinsuke; Morokawa, Nasa; Austen, K Frank; Stevens, Richard L; Gurish, Michael F

    2005-06-01

    Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R(2) = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C(4) synthase, hemopoietic PGD(2) synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle.

  17. Endothelin receptor mediated Ca(2+) signaling in coronary arteries after experimentally induced ischemia/reperfusion injury in rat

    DEFF Research Database (Denmark)

    Kristiansen, Sarah Brøgger; Haanes, Kristian A; Sheykhzade, Majid

    2017-01-01

    a phenotypical shift, which includes increased evoked ETB induced contraction in the smooth muscle cell, and also a higher basal tone development which both are dependent on Ca(2+) influx through VGCCs. This is combined with alterations in the ETA calcium handling, which has a stronger dependence on Ca(2...... greatly exacerbate the damage. For the latter, no medical treatment exist. In this study the aim was to characterize Ca(2+) sensitivity in coronary arteries following experimental ischemia/reperfusion injury. METHODS: Arteries were isolated from hearts exposed to a well-established rat ischemia...

  18. Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

    Science.gov (United States)

    Nakano, Yasuhiro; Matoba, Tetsuya; Tokutome, Masaki; Funamoto, Daiki; Katsuki, Shunsuke; Ikeda, Gentaro; Nagaoka, Kazuhiro; Ishikita, Ayako; Nakano, Kaku; Koga, Jun-Ichiro; Sunagawa, Kenji; Egashira, Kensuke

    2016-07-01

    Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor blocker with a peroxisome proliferator-activated receptor (PPAR)γ agonistic effect (irbesartan-NP). In a mouse model of IR injury, intravenous PLGA nanoparticles distribute to the IR myocardium and monocytes in the blood and in the IR heart. Single intravenous treatment at the time of reperfusion with irbesartan-NP (3.0 mg kg‑1 irbesartan), but not with control nanoparticles or irbesartan solution (3.0 mg kg‑1), inhibits the recruitment of inflammatory monocytes to the IR heart, and reduces the infarct size via PPARγ-dependent anti-inflammatory mechanisms, and ameliorates left ventricular remodeling 21 days after IR. Irbesartan-NP is a novel approach to treat myocardial IR injury in patients with AMI.

  19. The combined transduction of copper, zinc-superoxide dismutase and catalase mediated by cell-penetrating peptide, PEP-1, to protect myocardium from ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Guo Ling-Yun

    2011-05-01

    Full Text Available Abstract Background Our previous studies indicate that either PEP-1-superoxide dismutase 1 (SOD1 or PEP-1-catalase (CAT fusion proteins protects myocardium from ischemia-reperfusion-induced injury in rats. The aim of this study is to explore whether combined use of PEP-1-SOD1 and PEP-1-CAT enhances their protective effects. Methods SOD1, PEP-1-SOD1, CAT or PEP-1-CAT fusion proteins were prepared and purified by genetic engineering. In vitro and in vivo effects of these proteins on cell apoptosis and the protection of myocardium after ischemia-reperfusion injury were measured. Embryo cardiac myocyte H9c2 cells were used for the in vitro studies. In vitro cellular injury was determined by the expression of lactate dehydrogenase (LDH. Cell apoptosis was quantitatively assessed with Annexin V and PI double staining by Flow cytometry. In vivo, rat left anterior descending coronary artery (LAD was ligated for one hour followed by two hours of reperfusion. Hemodynamics was then measured. Myocardial infarct size was evaluated by TTC staining. Serum levels of myocardial markers, creatine kinase-MB (CK-MB and cTnT were quantified by ELISA. Bcl-2 and Bax expression in left ventricle myocardium were analyzed by western blot. Results In vitro, PEP-1-SOD1 or PEP-1-CAT inhibited LDH release and apoptosis rate of H9c2 cells. Combined transduction of PEP-1-SOD1 and PEP-1-CAT, however, further reduced the LDH level and apoptosis rate. In vivo, combined usage of PEP-1-SOD1 and PEP-1-CAT produced a greater effect than individual proteins on the reduction of CK-MB, cTnT, apoptosis rate, lipoxidation end product malondialdehyde, and the infarct size of myocardium. Functionally, the combination of these two proteins further increased left ventricle systolic pressure, but decreased left ventricle end-diastolic pressure. Conclusion This study provided a basis for the treatment or prevention of myocardial ischemia-reperfusion injury with the combined usage of PEP-1-SOD1

  20. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System.

    Science.gov (United States)

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2015-11-12

    Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R) injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR) model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg) group. Thirty min after drug infusion, ventricular fibrillation (8 min) and cardiopulmonary resuscitation (up to 30 min) was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II) and Ang (1-7) levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and the Ang (1-7) receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafil further boosted the upregulation of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) and inducible nitric oxide synthase(iNOS). Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation.

  1. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Guoxing Wang

    2015-11-01

    Full Text Available Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg group. Thirty min after drug infusion, ventricular fibrillation (8 min and cardiopulmonary resuscitation (up to 30 min was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II and Ang (1–7 levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE, ACE2, Ang II type 1 receptor (AT1R, and the Ang (1–7 receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafilfurther boosted the upregulation of endothelial nitric oxide synthase (eNOS, cyclic guanosine monophosphate (cGMP and inducible nitric oxide synthase(iNOS. Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation.

  2. Cardiac Ischemia and Ischemia/Reperfusion Cause Wide Proteolysis of the Coronary Endothelial Luminal Membrane: Possible Dysfunctions

    Science.gov (United States)

    Arroyo-Flores, Blanca; Chi-Ahumada, Erika; Briones-Cerecero, Erika; Barajas-Espinosa, Alma; Perez-Aguilar, Sandra; de la Rosa, Ana Barba; Knabb, Maureen; Rubio, Rafael

    2011-01-01

    Background: Ischemia and ischemia-reperfusion (I/R) are common clinical insults that disrupt the molecular structure of coronary vascular endothelial luminal membrane (VELM) that result in diverse microvasculature dysfunctions. However, the knowledge of the associated biochemical changes is meager. We hypothesized that ischemia and I/R-induced structural and functional VELM alterations result from biochemical changes. First, these changes need to be described and later the mechanisms behind be identified. Methods: During control conditions, in isolated perfused rat hearts VELM proteins were labeled with biotin. The groups of hearts were: control (C), no flow ischemia (I; 25 min), and I/R (I; 25 min, reperfusion 30 min). The biotinylated luminal endothelial membrane proteins in these three different groups were examined by 2-D electrophoresis and identified. But, it must be kept in mind the proteins were biotin-labeled during control. Results: A comparative analysis of the protein profiles under the 3 conditions following 2D gel electrophoresis showed differences in the molecular weight distribution such that MWC > MWI > MWI/R. Similar analysis for isoelectric points (pHi) showed a shift toward more acidic pHi under ischemic conditions. Of 100 % proteins identified during control 66% and 88% changed their MW-pHi during ischemia and I/R respectively. Among these lost proteins there were 9 proteins identified as adhesins and G-protein coupled receptors. General significance: I and I/R insults alter MW-pHi of most luminal glycocalyx proteins due to the activation of nonspecific hydrolizing mechanisms; suspect metalloproteases and glycanases. This makes necessary the identification of hydrolyzing enzymes reponsible of multiple microvascular dysfunctions in order to maintain the integrity of vascular endothelial membrane. VELM must become a target of future therapeutics. PMID:22262983

  3. Protective Effect of Peroxisome Proliferator-Activated Receptor α Activation against Cardiac Ischemia-Reperfusion Injury Is Related to Upregulation of Uncoupling Protein-3

    Directory of Open Access Journals (Sweden)

    Jong Wook Song

    2016-01-01

    Full Text Available Activation of peroxisome proliferator-activated receptor α (PPARα confers cardioprotection, while its mechanism remains elusive. We investigated the protective effect of PPARα activation against cardiac ischemia-reperfusion injury in terms of the expression of uncoupling protein (UCP. Myocardial infarct size and UCP expression were measured in rats treated with WY-14643 20 mg/kg, a PPARα ligand, or vehicle. WY-14643 increased UCP3 expression in vivo. Myocardial infarct size was decreased in the WY-14643 group (76 ± 8% versus 42 ± 12%, P<0.05. During reperfusion, the incidence of arrhythmia was higher in the control group compared with the WY-14643 group (9/10 versus 3/10, P<0.05. H9c2 cells were incubated for 24 h with WY-14643 or vehicle. WY-14643 increased UCP3 expression in H9c2 cells. WY-14643 decreased hypoxia-stimulated ROS production. Cells treated with WY-14643 were more resistant to hypoxia-reoxygenation than the untreated cells. Knocking-down UCP3 by siRNA prevented WY-14643 from attenuating the production of ROS. UCP3 siRNA abolished the effect of WY-14643 on cell viability against hypoxia-reoxygenation. In summary, administration of PPARα agonist WY-14643 mitigated the extent of myocardial infarction and incidence of reperfusion-induced arrhythmia. PPARα activation conferred cytoprotective effect against hypoxia-reoxygenation. Associated mechanisms involved increased UCP3 expression and resultant attenuation of ROS production.

  4. The Impact of Ischemia/Reperfusion Injury on Liver Allografts from Deceased after Cardiac Death versus Deceased after Brain Death Donors.

    Directory of Open Access Journals (Sweden)

    Jin Xu

    Full Text Available The shortage of organs for transplantation has led to increased use of organs procured from donors after cardiac death (DCD. The effects of cardiac death on the liver remain poorly understood, however. Using livers obtained from DCD versus donors after brain death (DBD, we aimed to understand how ischemia/reperfusion (I/R injury alters expression of pro-inflammatory markers ceramides and influences graft leukocyte infiltration.Hepatocyte inflammation, as assessed by ceramide expression, was evaluated in DCD (n = 13 and DBD (n = 10 livers. Allograft expression of inflammatory and cell death markers, and allograft leukocyte infiltration were evaluated from a contemporaneous independent cohort of DCD (n = 22 and DBD (n = 13 livers.When examining the differences between transplant stages in each group, C18, C20, C24 ceramides showed significant difference in DBD (p<0.05 and C22 ceramide (p<0.05 were more pronounced for DCD. C18 ceramide is correlated to bilirubin, INR, and creatinine after transplant in DCD. Prior to transplantation, DCD livers have reduced leukocyte infiltration compared to DBD allografts. Following reperfusion, the neutrophil infiltration and platelet deposition was less prevalent in DCD grafts while cell death and recipients levels of serum aspartate aminotransferase (AST of DCD allografts had significantly increased.These data suggest that I/R injury generate necrosis in the absence of a strong inflammatory response in DCD livers with an appreciable effect on early graft function. The long-term consequences of increased inflammation in DBD and increased cell death in DCD allografts are unknown and warrant further investigation.

  5. Protective effects of hypovolemic hypotension preconditioning on cardiopulmonary function after myocardium ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    陈雪君; 王昕; 夏中元; 罗涛; 涂仲凡

    2004-01-01

    Objective: To identify the protective effects of hypovolemic hypotension preconditioning on cardiopulmonary function after myocardial ischemia/reperfusion injury and to explore the possible mechanism.Methods: Twenty-four male white rabbits were randomly assigned to two groups. In the control group, ischemia/reperfusion animals(Group I/R, n=10) were subjected to thirty-minute occlusion of left anterior descending coronary artery and two-hour reperfusion. Animals in hypovolemic hypotension preconditioning group (Group HHP, n=14) experienced brief systemic ischemia preconditioning through blood withdrawl to lower blood pressure to 40%-50% of the baseline before myocardial ischemia/reperfusion. Hemodynamic parameters were recorded. Blood sample was taken to measure superoxide dismutase (SOD), malondialdehyde (MDA) and nitrogen monoxide (NO) changes with blood gas analysis. Myocardium specimens were sampled to examine apoptosis-related gene interleukin-1 beta converting enzyme (ICE) mRNA. Results: Cardiac mechanical function and lung gas exchange remained stable in Group HHP with a significant increase in NO level; while in Group I/R without preconditioning, cardiopulmonary dysfunction was present after 2 h reperfusion associated with a significant reduction in NO formation and an increase in MDA (P<0.001). There was negative expression of ICE mRNA in the two groups.Conclusions: Hypovolemic hypotension preconditioning significantly improves cardiopulmonary function and increases NO formation and the protective benefit associated with hypovolemic hypotension preconditioning of the heart may be regulated through NO mediated mechanism.

  6. Glaucocalyxin A Ameliorates Myocardial Ischemia-Reperfusion Injury in Mice by Suppression of Microvascular Thrombosis

    Science.gov (United States)

    Liu, Xiaohui; Xu, Dongzhou; Wang, Yuxin; Chen, Ting; Wang, Qi; Zhang, Jian; You, Tao; Zhu, Li

    2016-01-01

    Background The aim of this study was to evaluate the cardio-protective roles of glaucocalyxin A (GLA) in myocardial ischemia-reperfusion injury and to explore the underlying mechanism. Material/Methods Myocardial ischemia-reperfusion in wild-type C57BL/6J mice was induced by transient ligation of the left anterior descending artery. GLA or vehicle (solvent) was administrated intraperitoneally to the mice before reperfusion started. After 24 h of myocardial reperfusion, ischemic size was revealed by Evans blue/TTC staining. Cardiac function was evaluated by echocardiography and microvascular thrombosis was assessed by immunofluorescence staining of affected heart tissue. We also measured the phosphorylation of AKT, ERK, P-GSK-3β, and cleaved caspase 3 in the myocardium. Results Compared to the solvent-treated control group, GLA administration significantly reduced infarct size (GLA 13.85±2.08% vs. Control 18.95±0.97%, p<0.05) and improved left ventricular ejection fraction (LVEF) (GLA 53.13±1.11% vs. Control 49.99±1.25%, p<0.05) and left ventricular fractional shortening (LVFS) (28.34±0.71% vs. Control 25.11±0.74%, p<0.05) in mice subjected to myocardial ischemia-reperfusion. GLA also attenuated microvascular thrombosis (P<0.05) and increased the phosphorylation of pro-survival kinase AKT (P<0.05) and GSK-3β (P<0.05) in the myocardium upon reperfusion injury. Conclusions Administration of GLA before reperfusion ameliorates myocardial ischemia-reperfusion injury in mice. The cardio-protective roles of GLA may be mediated through the attenuation of microvascular thrombosis. PMID:27716735

  7. Abcc6 deficiency causes increased infarct size and apoptosis in a mouse cardiac ischemia-reperfusion model

    NARCIS (Netherlands)

    I.N. Mungrue; P. Zhao; Y. Yao; H. Meng; C. Rau; J.V. Havel; T.G.M.F. Gorgels; A.A.B. Bergen; W.R. Maclellan; T.A. Drake; K.I. Boström; A.J. Lusis

    2011-01-01

    ABCC6 genetic deficiency underlies pseudoxanthoma elasticum (PXE) in humans, characterized by ectopic calcification, and early cardiac disease. The spectrum of PXE has been noted in Abcc6-deficient mice, including dystrophic cardiac calcification. We tested the role of Abcc6 in response to cardiac i

  8. Gypenoside protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of mitogen-activated protein kinase mediated nuclear factor kappa B pathway in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Haijie eYu

    2016-06-01

    Full Text Available Gypenoside (GP is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia-reperfusion (I/R injury by using in vitro oxygen-glucose deprivation-reoxygenation (OGD/R H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IкB-α phosphorylation and nuclear factor (NF-кB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-кB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury.

  9. Sphk1 mediates neuroinflammation and neuronal injury via TRAF2/NF-κB pathways in activated microglia in cerebral ischemia reperfusion.

    Science.gov (United States)

    Su, Danying; Cheng, Yuefeng; Li, Shi; Dai, Dawei; Zhang, Wei; Lv, Manhua

    2017-04-15

    Sphingosine kinase 1 (Sphk1), a key enzyme responsible for phosphorylating sphingosine into sphingosine1-phosphate (S1P), plays an important role in mediating post-stroke neuroinflammation. However, the pathway and mechanism of the Sphk1-mediated inflammatory response remains unknown. In this study, we found that suppression of Sphk1 decreased IL17 production and relieved neuronal damage induced by microglia in cerebral ischemia reperfusion (IR) or in an in vitro oxygen-glucose deprivation reperfusion (OGDR) system. Inhibition of Sphk1 with an inhibitor or siRNA decreased tumor necrosis factor receptor-associated factor 2 (TRAF2) and nuclear factor-kappa B (NF-κB) sequentially in microglia in response to IR or OGDR. Moreover, we also found that after suppression of TRAF2 or NF-κB by siRNA in microglia, reductions in the downstream molecules NF-κB and IL-17 and in neuronal apoptosis were observed in response to OGDR. Taken together, we hypothesize that Sphk1, TRAF2 and NF-κB form an axis that leads to increased IL-17 and neuronal apoptosis. This axis may be a potential therapeutic target to control neuroinflammation in brain IR.

  10. Peroxisome proliferator-activated receptor-γ agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPAR-γ has recently emerged as potential therapeutic agents for cerebral ischemia-reperfusion (I/R injury because of anti-neuronal apoptotic actions. However, whether PPAR-γ activation mediates neuronal autophagy in such conditions remains unclear. Therefore, in this study, we investigated the role of PPAR-γ agonist 15-PGJ(2 on neuronal autophagy induced by I/R. The expression of autophagic-related protein in ischemic cortex such as LC3-II, Beclin 1, cathepsin-B and LAMP1 increased significantly after cerebral I/R injury. Furthermore, increased punctate LC3 labeling and cathepsin-B staining occurred in neurons. Treatment with PPAR-γ agonist 15d-PGJ(2 decreased not only autophagic-related protein expression in ischemic cortex, but also immunoreactivity of LC3 and cathepsin-B in neurons. Autophagic inhibitor 3-methyladenine (3-MA decreased LC3-II levels, reduced the infarct volume, and mimicked some protective effect of 15d-PGJ(2 against cerebral I/R injury. These results indicate that PPAR-γ agonist 15d-PGJ(2 exerts neuroprotection by inhibiting neuronal autophagy after cerebral I/R injury. Although the molecular mechanisms underlying PPAR-γ agonist in mediating neuronal autophagy remain to be determined, neuronal autophagy may be a new target for PPAR-γ agonist treatment in cerebral I/R injury.

  11. Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance.

    Directory of Open Access Journals (Sweden)

    Peng Yu

    Full Text Available Myocardial infarction leads to heart failure. Autophagy is excessively activated in myocardial ischemia/reperfusion (I/R in rats. The aim of this study is to investigate whether the protection of sevoflurane postconditioning (SPC in myocardial I/R is through restored impaired autophagic flux.Except for the sham control (SHAM group, each rat underwent 30 min occlusion of the left anterior descending coronary (LAD followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC staining. Cardiac function was examined by hemodynamics and echocardiography. The activation of autophagy was evaluated by autophagosome accumulation, LC3 conversion and p62 degradation. Potential molecular mechanisms were investigated by immunoblotting, real-time PCR and immunofluorescence staining.SPC improved the hemodynamic parameters, cardiac dysfunction, histopathological and ultrastructural damages, and decreased myocardial infarction size after myocardial I/R injury (P < 0.05 vs. I/R group. Compared with the cases in I/R group, myocardial ATP and NAD+ content, mitochondrial function related genes and proteins, and the expressions of SOD2 and HO-1 were increased, while the expressions of ROS and Vimentin were decreased in the SPC group (P < 0.05 vs. I/R group. SPC significantly activated Akt/mTOR signaling, and inhibited the formation of Vps34/Beclin1 complex via increasing expression of Bcl2 protein (P < 0.05 vs. I/R group. SPC suppressed elevated expressions of LC3 II/I ratio, Beclin1, Atg5 and Atg7 in I/R rat, which indicated that SPC inhibited over-activation of autophagy, and promoted autophagosome clearance. Meanwhile, SPC significantly suppressed the decline of Opa1 and increases of Drp1 and Parkin induced by I/R injury (P < 0.05 vs. I/R group. Moreover, SPC maintained the contents of ATP by reducing impaired mitochondria.SPC protects rat hearts against I/R injury via ameliorating mitochondrial impairment

  12. The PI3K/Akt pathway mediates the protection of SO2 preconditioning against myocardial ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Man-man ZHAO; Jin-yan YANG; Xin-bao WANG; Chao-shu TANG; Jun-bao DU; Hong-fang JIN

    2013-01-01

    Aim:To explore the mechanisms underlying the protection by SO2 preconditioning against rat myocardial ischemia/reperfusion (I/R)injury.Methods:Male Wistar rats underwent 30-min left coronary artery ligation followed by 120-min reperfusion.An S02 donor (1 μmol/kg)was intravenously injected 10 min before the ischemia,while LY294002 (0.3 mg/kg) was intravenously injected 30 min before the ischemia.Plasma activities of LDH and CK were measured with an automatic enzyme analyzer.Myocardial infarct size was detected using Evans-TTC method.The activities of caspase-3 and-9 in myocardium were assayed using a commercial kit,and the levels of p-Akt,Akt,P13K and p-P13K were examined with Western blotting.Results:Pretreatment with SO2 significantly reduced the myocardial infarct size and plasma LDH and CK activities,as well as myocardial caspase-3 and-9 activities in the rats.Furthermore,the pretreatment significantly increased the expression levels of myocardial p-Akt and p-PI3K p85.Administration of the PI3K inhibitor LY294002 blocked all the effects induced by SO2 pretreatment.Conclusion:The results suggest that the PI3K/Akt pathway mediates the protective effects of SO2 preconditioning against myocardial I/R injury in rats.

  13. Effectiveness of Panax ginseng on Acute Myocardial Ischemia Reperfusion Injury Was Abolished by Flutamide via Endogenous Testosterone-Mediated Akt Pathway.

    Science.gov (United States)

    Pei, Luo; Shaozhen, Hou; Gengting, Dong; Tingbo, Chen; Liang, Liu; Hua, Zhou

    2013-01-01

    Mechanisms for Panax ginseng's cardioprotective effect against ischemia reperfusion injury involve the estrogen-mediated pathway, but little is known about the role of androgen. A standardized Panax ginseng extract (RSE) was orally given with or without flutamide in a left anterior descending coronary artery ligation rat model. Infarct size, CK and LDH activities were measured. Time-related changes of NO, PI3K/Akt/eNOS signaling, and testosterone concentration were also investigated. RSE (80 mg/kg) significantly inhibited myocardial infarction and CK and LDH activities, while coadministration of flutamide abolished this effect of RSE. NO was increased by RSE and reached a peak after 15 min of ischemia; however, flutamide cotreatment suppressed this elevation. Western blot analysis showed that RSE significantly reversed the decreases of expression and activation of PI3K, Akt, and eNOS evoked by ischemia, whereas flutamide attenuated the effects of these protective mechanisms induced by RSE. RSE completely reversed the dropping of endogenous testosterone level induced by I/R injury. Flutamide plus RSE treatment not only abolished RSE's effect but also produced a dramatic change on endogenous testosterone level after pretreatment and ischemia. Our results for the first time indicate that blocking androgen receptor abolishes the ability of Panax ginseng to protect the heart from myocardial I/R injury.

  14. The fibrin-derived peptide Bbeta(15-42) significantly attenuates ischemia-reperfusion injury in a cardiac transplant model.

    NARCIS (Netherlands)

    Wiedemann, D.; Schneeberger, S.; Friedl, P.H.A.; Zacharowski, K.; Wick, N.; Boesch, F.; Margreiter, R.; Laufer, G.; Petzelbauer, P.; Semsroth, S.

    2010-01-01

    BACKGROUND: The inflammatory response after prolonged ischemia and subsequent reperfusion leads to increased risk of primary organ dysfunction after cardiac transplantation. It has been demonstrated that the fibrin-derived peptide Bbeta(15-42) (also called FX06) reduces infarct size in coronary arte

  15. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury.

    Science.gov (United States)

    Makhdoumi, Pouran; Roohbakhsh, Ali; Karimi, Gholamreza

    2016-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators. They are involved in the pathogenesis of different disorders including heart diseases. MiRNAs contribute to ischemia/reperfusion injury (I/RI) by altering numerous key signaling elements. Together with alterations in the various potential signaling pathways, modification in miRNA expression has been suggested as a part of the response network following ischemia/reperfusion (I/R). In addition, cardiac mitochondrial homeostasis is closely associated with cardiac function and impairment of mitochondrial activity occurred after ischemia/reperfusion injury. MiRNAs play a key role in the regulation of mitochondrial apoptotic pathway and signaling proteins. In this review, we summarize the knowledge currently available regarding the molecular mechanisms of miRNA-regulated mitochondrial functions during ischemia/reperfusion injury. This regulation occurs in different stages of mitochondrial apoptosis pathway.

  16. The calcium-binding protein complex S100A8/A9 has a crucial role in controlling macrophage-mediated renal repair following ischemia/reperfusion

    NARCIS (Netherlands)

    Dessing, M.C.; Tammaro, A.; Pulskens, W.P.C.; Teske, G.J.; Butter, L.M.; Claessen, N.; Eijk, M. van; Poll, T. van der; Vogl, T.; Roth, J.; Florquin, S.; Leemans, J.C.

    2015-01-01

    Upon ischemia/reperfusion (I/R)-induced injury, several damage-associated molecular patterns are expressed including the calcium-binding protein S100A8/A9 complex. S100A8/A9 can be recognized by Toll-like receptor-4 and its activation is known to deleteriously contribute to renal I/R-induced injury.

  17. Forebrain Ischemia-Reperfusion Simulating Cardiac Arrest in Mice Induces Edema and DNA Fragmentation in the Brain

    Directory of Open Access Journals (Sweden)

    Christina H. Liu

    2007-05-01

    Full Text Available Brain injury affects one-third of persons who survive after heart attack, even with restoration of spontaneous circulation by cardiopulmonary resuscitation. We studied brain injury resulting from transient bilateral carotid artery occlusion (BCAO and reperfusion by simulating heart attack and restoration of circulation, respectively, in live C57Black6 mice. This model is known to induce neuronal death in the hippocampus, striatum, and cortex. We report the appearance of edema after transient BCAO of 60 minutes and 1 day of reperfusion. Hyperintensity in diffusion-weighted magnetic resonance imaging (MRI was detectable in the striatum, thalamus, and cortex but not in the hippocampus. To determine whether damage to the hippocampus can be detected in live animals, we infused a T2 susceptibility magnetic resonance contrast agent (superparamagnetic iron oxide nanoparticles [SPIONs] that was linked to single-stranded deoxyribonucleic acid (DNA complementary in sequence to c-fos messenger ribonucleic acid (SPION-cfos; we acquired in vivo T2*-weighted MRI 3 days later. SPION retention was measured as T2* (milliseconds signal reduction or R2* value (s−1 elevation. We found that animals treated with 60-minute BCAO and 7-day reperfusion exhibited significantly less SPION retention in the hippocampus and cortex than sham-operated animals. These findings suggest that brain injury induced by cardiac arrest can be detected in live animals.

  18. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia-reperfusion in rats.

    Science.gov (United States)

    Bonetto, Jéssica Hellen Poletto; Fernandes, Rafael Oliveira; Seolin, Bruna Gazzi de Lima; Müller, Dalvana Daneliza; Teixeira, Rayane Brinck; Araujo, Alex Sander; Vassallo, Dalton; Schenkel, Paulo Cavalheiro; Belló-Klein, Adriane

    2016-05-01

    Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg(-1)·day(-1)) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.

  19. A Translational Study of a New Therapeutic Approach for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin into Reperfused Myocardium Reduces Ischemia-Reperfusion Injury in a Preclinical Porcine Model

    Science.gov (United States)

    Ichimura, Kenzo; Matoba, Tetsuya; Nakano, Kaku; Tokutome, Masaki; Honda, Katsuya; Koga, Jun-ichiro; Egashira, Kensuke

    2016-01-01

    Background There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction, for which interventional reperfusion therapy is hampered by ischemia-reperfusion (IR) injury. We recently reported that bioabsorbable poly(lactic acid/glycolic acid) (PLGA) nanoparticle-mediated treatment with pitavastatin (pitavastatin-NP) exerts a cardioprotective effect in a rat IR injury model by activating the PI3K-Akt pathway and inhibiting inflammation. To obtain preclinical proof-of-concept evidence, in this study, we examined the effect of pitavastatin-NP on myocardial IR injury in conscious and anesthetized pig models. Methods and Results Eighty-four Bama mini-pigs were surgically implanted with a pneumatic cuff occluder at the left circumflex coronary artery (LCx) and telemetry transmitters to continuously monitor electrocardiogram as well as to monitor arterial blood pressure and heart rate. The LCx was occluded for 60 minutes, followed by 24 hours of reperfusion under conscious conditions. Intravenous administration of pitavastatin-NP containing ≥ 8 mg/body of pitavastatin 5 minutes before reperfusion significantly reduced infarct size; by contrast, pitavastatin alone (8 mg/body) showed no therapeutic effects. Pitavastatin-NP produced anti-apoptotic effects on cultured cardiomyocytes in vitro. Cardiac magnetic resonance imaging performed 4 weeks after IR injury revealed that pitavastatin-NP reduced the extent of left ventricle remodeling. Importantly, pitavastatin-NP exerted no significant effects on blood pressure, heart rate, or serum biochemistry. Exploratory examinations in anesthetized pigs showed pharmacokinetic analysis and the effects of pitavastatin-NP on no-reflow phenomenon. Conclusions NP-mediated delivery of pitavastatin to IR-injured myocardium exerts cardioprotective effects on IR injury without apparent adverse side effects in a preclinical conscious pig model. Thus, pitavastatin-NP represents a novel therapeutic

  20. Effect of minocycline on cerebral ischemia- reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Zhichao Zhong; Hongling Fan; Xi Li; Quanzhong Chang

    2013-01-01

    Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-reperfusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.

  1. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Sheth, Sharvil U; Sharpe, Susan M; Dong, Wei; Lu, Qi; Xu, Dazhong; Deitch, Edwin A

    2011-03-01

    It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently, understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia-reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to 3 h of reperfusion. The ileal segments were divided into five groups. These included a nonischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcysteine (NAC), pancreatic proteases, or NAC + pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (molecular weight, 4,000 d) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA, and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively reestablished during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury, but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface

  2. Prostaglandin-E1 has a protective effect on renal ischemia/reperfusion-induced oxidative stress and inflammation mediated gastric damage in rats.

    Science.gov (United States)

    Gezginci-Oktayoglu, Selda; Orhan, Nurcan; Bolkent, Sehnaz

    2016-07-01

    Gastrointestinal complications are frequent in renal transplant recipients. In this regard, renal ischemia/reperfusion injury (IRI)-induced gastric damage seems to be important and there is no data available on the mechanism of this pathology. Because of its anti-inflammatory and anti-oxidant properties, it can be suggested that prostaglandin-E1 (PGE1) protects cells from renal IRI-induced gastric damage. The aim of this study was to investigate the molecular mechanisms of gastric damage induced by renal IRI and the effect of PGE1 on these mechanisms. We set an experiment with four different animal groups: physiological saline-injected and sham-operated rats, PGE1 (20μg/kg)-administered and sham operated rats, renal IRI subjected rats, and PGE1-administered and renal IRI subjected rats. The protective effect of PGE1 on renal IRI-induced gastric damage was determined based on reduced histological damage and lactate dehydrogenase activity. Moreover, we demonstrated that PGE1 shows its protective effect through reducing the production of reactive oxygen species and malondialdehyde levels. During histological examination, we observed the presence of common mononuclear cell infiltration. Therefore, pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β levels were measured and it has been shown that PGE1 suppressed both cytokines. Furthermore, it was found that PGE1 reduced the number of NF-κB(+) and caspase-3(+) inflammatory cells, and also NF-κB DNA-binding activity, while increasing proliferating cell nuclear antigen(+) epithelial cells in the stomach tissue of rats subjected to renal IR. Our data showed that PGE1 has a protective effect on renal IRI-induced oxidative stress and inflammation mediated gastric damage in rats.

  3. Does machine perfusion decrease ischemia reperfusion injury?

    Science.gov (United States)

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. 舒芬太尼对家兔心肌缺血再灌注后心功能的影响%The Effects Sufentanil on Myocardial Ischemia Reperfusion Cardiac Function in Rabbits

    Institute of Scientific and Technical Information of China (English)

    刘金波; 张好华

    2012-01-01

      Objective To observe the effects sufentanil on myocardial ischemia reperfusion cardiac function in rabbits and discuss the mechanism for clinical rational drug use, to provide the basis. Methods 24 rabbits were divided into three groups: control, sufentanil group, ketone, winding sufentanil group, each period in ischemia-reperfusion determination cardiac index. Results LVDP and LVSP, ±dp/dt ischemia period LVEDP reduced significantly, and increased significantly. And LVDP and LVSP, ± dp/dt in myocardial reperfusion not drops further, and after recovery started the trend. Conclusion Myocardial ischemia reperfusion to the rabbit cardiac had significant inhibitory, sufentanil can significantly improve cardiac function, as partial cancellation collaterals ketone of sufentanil myocardial protection.%  目的观察舒芬太尼对家兔心肌缺血再灌注后心功能的影响并探讨其作用机制,为临床合理用药提供实验依据。方法24只家兔随机分为3组:对照组、舒芬太尼组、纳络酮-舒芬太尼组,于缺血再灌注各个时期测定心功能指标。结果左室收缩峰压(LVSP)、左室发展压(LVDP)和心室收缩的最大速率(±dp/dt)缺血期明显降低,左室舒张末压(LVEDP)明显升高。而 LVSP、 LVDP 和±dp/dt 于心肌再灌注后未再进一步下降。而是随时间延长逐渐恢复并明显好转。结论心肌缺血再灌注对兔心功能有明显抑制,舒芬太尼能明显改善心脏功能,纳络酮可部分取消舒芬太尼的心肌保护作用。

  5. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  6. Melatonin Protects N2a against Ischemia/Reperfusion Injury through Autophagy Enhancement

    Institute of Scientific and Technical Information of China (English)

    国艳春; 王剑飞; 王忠强; 杨易; 王西明; 段秋红

    2010-01-01

    Researches have shown that melatonin is neuroprotectant in ischemia/reperfusion-mediated injury.Although melatonin is known as an effective antioxidant,the mechanism of the protection cannot be explained merely by antioxidation.This study was devoted to explore other existing mechanisms by investigating whether melatonin protects ischemia/reperfusion-injured neurons through elevating autophagy,since autophagy has been frequently suggested to play a crucial role in neuron survival.To find it out,an ischemia/...

  7. Evaluation of Chronic Physical and Psychological Stress Induction on Cardiac Ischemia / Reperfusion Injuries in Isolated Male Rat Heart: The Role of Sympathetic Nervous System.

    Science.gov (United States)

    Rakhshan, Kamran; Imani, Alireza; Faghihi, Mahdieh; Nabavizadeh, Fatemeh; Golnazari, Masoumeh; Karimian, SeyedMorteza

    2015-08-01

    Exposure to stress leads to physiological changes called "stress response" which are the result of the changes in the adrenomedullary hormone system, hypothalamus-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) activity. In the present study, the effects of chronic physical and psychological stress and also the role of sympathetic system effects in stress on ischemia/reperfusion (I/R) injuries have been studied in isolated rat heart. Rat heart was isolated and subjected to 30 min regional ischemia and 120 min reperfusion. The daily stress was induced for one week prior to I/R induction. Sympathectomy was done chemically by injection of hydroxyl-dopamine prior to stress induction. There were no significant changes in heart rate and Coronary Flow between groups. Left ventricular developed pressure (LVDP) and rate product pressure (RPP) in both physical and psychological stress groups decreased significantly compared to those in control group (Pphysical and psychological stress groups. Infarct size significantly increased in both physical and psychological stress groups and control group(Pstress led to the elimination of the deleterious effects of stress as compared with stress groups (Presults show that induction of chronic physical and psychological stress prior to ischemia/reperfusion causes enhancement of myocardial injuries and it seems that increased sympathetic activity in response to stress is responsible for these adverse effects of stress on ischemic/reperfused heart.

  8. Evaluation of Chronic Physical and Psychological Stress Induction on Cardiac Ischemia / Reperfusion Injuries in Isolated Male Rat Heart: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Kamran Rakhshan

    2015-10-01

    Full Text Available Exposure to stress leads to physiological changes called “stress response” which are the result ofthe changes in the adrenomedullary hormone system, hypothalamus-pituitary-adrenal (HPA and sympatheticnervous system (SNS activity. In the present study, the effects of chronic physical and psychological stressand also the role of sympathetic system effects in stress on ischemia/reperfusion (I/R injuries have beenstudied in isolated rat heart. Rat heart was isolated and subjected to 30 min regional ischemia and 120 minreperfusion. The daily stress was induced for one week prior to I/R induction. Sympathectomy was donechemically by injection of hydroxyl-dopamine prior to stress induction. There were no significant changes inheart rate and Coronary Flow between groups. Left ventricular developed pressure (LVDP and rate productpressure (RPP in both physical and psychological stress groups decreased significantly compared to those incontrol group (Pgroups. Infarct size significantly increased in both physical and psychological stress groups and control group(Pas compared with stress groups (Ppsychological stress prior to ischemia/reperfusion causes enhancement of myocardial injuries and it seemsthat increased sympathetic activity in response to stress is responsible for these adverse effects of stress onischemic/reperfused heart.

  9. The mucus layer is critical in protecting against ischemia/reperfusion-mediated gut injury and in the restitution of gut barrier function

    Science.gov (United States)

    Qin, Xiaofa; Sheth, Sharvil U.; Sharpe, Susan M.; Dong, Wei; Lu, Qi; Xu, Dazhong; Deitch, Edwin A.

    2011-01-01

    It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia/reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to three hours of reperfusion. The ileal segments were divided into 5 groups. These included a non-ischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcholine (NAC), pancreatic proteases or NAC plus pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (MW 4000 Da; FD4) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively re-established during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface

  10. Chikusetsu Saponin IVa Ameliorates Cerebral Ischemia Reperfusion Injury in Diabetic Mice via Adiponectin-Mediated AMPK/GSK-3β Pathway In Vivo and In Vitro.

    Science.gov (United States)

    Duan, Jialin; Yin, Ying; Cui, Jia; Yan, Jiajia; Zhu, Yanrong; Guan, Yue; Wei, Guo; Weng, Yan; Wu, Xiaoxiao; Guo, Chao; Wang, Yanhua; Xi, Miaomiao; Wen, Aidong

    2016-01-01

    Diabetes mellitus substantially increases the risk of stroke and enhances brain's vulnerability to ischemia insult. In a previous study, Chikusetsu saponin IVa (CHS) pretreatment was proved to protect the brain from cerebral ischemic in normal stroke models. Whether CHS could attenuate cerebral ischemia/reperfusion (I/R) injury in diabetic mice and the possible underlying mechanism are still unrevealed. Male C57BL/6 mice were injected streptozotocin to induce diabetes. After that, the mice were pretreated with CHS for 1 month, and then, focal cerebral ischemia was induced following 24-h reperfusion. The neurobehavioral scores, infarction volumes, and some cytokines in the brain were measured. Apoptosis was analyzed by caspase-3, Bax, and Bcl-2 expression. Downstream molecules of adiponectin (APN) were investigated by Western blotting. The results showed that CHS reduced infarct size, improved neurological outcomes, and inhibited cell injury after I/R. In addition, CHS pretreatment increased APN level and enhanced neuronal AdipoR1, adenosine monophosphate-activated protein kinase (AMPK), and glycogen synthase kinase 3 beta (GSK-3β) expression in a concentration-dependent manner in diabetic mice, and these effects were abolished by APN knockout (KO). In vitro test, CHS treatment also alleviated PC12 cell injury and apoptosis, evidenced by reduced tumor necrosis factor alpha (TNF-α), malondialdehyde (MDA) and caspase-3 expression, and Bax/Bcl-2 ratio in I/R injured cells. Moreover, CHS enhanced AdipoR1, AMPK, and GSK-3β expression in a concentration-dependent manner. Likewise, short interfering RNA (sinRNA) knockdown of liver kinase B1 (LKB1), an upstream kinase of AMPK, reduced the ability of CHS in protecting cells from I/R injury. Furthermore, this LKB1-dependent cellular protection resulted from AdipoR1 and APN activation, as supported by the experiment using sinRNA knockdown of AdipoR1 and APN. Thus, CHS protected brain I/R in diabetes through AMPK-mediated

  11. Effect of renal and non-renal ischemia/reperfusion on cell-mediated immunity in organs and plasma

    DEFF Research Database (Denmark)

    Brøchner, Anne Craveiro; Dagnæs-Hansen, Frederik; Toft, Palle

    2010-01-01

    study, 80 mice were divided into four groups. The following surgeries were performed on the groups compared: bilateral renal I/R by clamping, unilateral renal ischemia, anesthesia only, and unilateral hind leg I/R. Half of the animals were killed after 2 h and the other half after 24 h. To assess...... following renal I/R. All kinds of I/R induced an upregulation of the adhesion molecule CD 11b and a downregulation of MHC II. Renal and non-renal I/R induced neutrophil infiltration in distant organs. Renal I/R does not induce a larger cell-mediated inflammatory response in blood and organs than non-renal I/R....

  12. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    Science.gov (United States)

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Efficacy of Noble Gases in the Attenuation of Ischemia Reperfusion Injury: A Systematic Review and Meta-Analyses.

    Science.gov (United States)

    De Deken, Julie; Rex, Steffen; Monbaliu, Diethard; Pirenne, Jacques; Jochmans, Ina

    2016-09-01

    Noble gases have been attributed to organ protective effects in ischemia reperfusion injury in a variety of medical conditions, including cerebral and cardiac ischemia, acute kidney injury, and transplantation. The aim of this study was to appraise the available evidence by systematically reviewing the literature and performing meta-analyses. PubMed, EMBASE, and the Cochrane Library. Inclusion criteria specified any articles on noble gases and either ischemia reperfusion injury or transplantation. In vitro studies, publications without full text, review articles, and letters were excluded. Information on noble gas, organ, species, model, length of ischemia, conditioning and noble gas dose, duration of administration of the gas, endpoints, and effects was extracted from 79 eligible articles. Study quality was evaluated using the Jadad scale. Effect sizes were extracted from the articles or retrieved from the authors to allow meta-analyses using the random-effects approach. Argon has been investigated in cerebral, myocardial, and renal ischemia reperfusion injury; helium and xenon have additionally been tested in hepatic ischemia reperfusion injury, whereas neon was only explored in myocardial ischemia reperfusion injury. The majority of studies show a protective effect of these noble gases on ischemia reperfusion injury across a broad range of experimental conditions, organs, and species. Overall study quality was low. Meta-analysis for argon was only possible in cerebral ischemia reperfusion injury and did not show neuroprotective effects. Helium proved neuroprotective in rodents and cardioprotective in rabbits, and there were too few data on renal ischemia reperfusion injury. Xenon had the most consistent effects, being neuroprotective in rodents, cardioprotective in rodents and pigs, and renoprotective in rodents. Helium and xenon show organ protective effects mostly in small animal ischemia reperfusion injury models. Additional information on timing, dosing, and

  14. Tyrosol prevents ischemia/reperfusion-induced cardiac injury in H9c2 cells: involvement of ROS, Hsp70, JNK and ERK, and apoptosis.

    Science.gov (United States)

    Sun, Liwei; Fan, Hang; Yang, Lingguang; Shi, Lingling; Liu, Yujun

    2015-02-25

    Ischemia-Reperfusion (I/R) injury causes ROS overproduction, creating oxidative stress, and can trigger myocyte death, resulting in heart failure. Tyrosol is an antioxidant abounded in diets and medicine. Our objective was to investigate the protective effect of tyrosol on I/R-caused mortality in H9c2 cardiomyocytes through its influence on ROS, Hsp70, ERK, JNK, Bcl-2, Bax and caspase-8. A simulated I/R model was used, myocytes loss was examined by MTT, and ROS levels were measured using DCFH-DA. Nuclear condensation and caspase-3 activity were assessed by DAPI staining and fluorometric assay. Phosphorylated ERK and JNK were determined by electrochemiluminescent ELISA, and Hsp70, Bcl-2, Bax and caspase-8 were examined by Western blotting. Results show that tyrosol salvaged myocyte loss, inhibited nuclear condensation and caspase-3 activity dose-dependently, indicating its protection against I/R-caused myocyte loss. Furthermore, tyrosol significantly inhibited ROS accumulation and activation of ERK and JNK, augmenting Hsp70 expression. Besides, tyrosol inhibited I/R-induced apoptosis, associated with retained anti-apoptotic Bcl-2 protein, and attenuated pro-apoptotic Bax protein, resulting in a preservation of Bcl-2/Bax ratio. Finally, tyrosol notably decreased cleaved caspase-8 levels. In conclusion, cytoprotection of tyrosol in I/R-caused myocyte mortality was involved with the mitigation of ROS, prohibition of the activation of ERK, JNK and caspase-8, and elevation of Hsp70 and Bcl-2/Bax ratio.

  15. Tyrosol Prevents Ischemia/Reperfusion-Induced Cardiac Injury in H9c2 Cells: Involvement of ROS, Hsp70, JNK and ERK, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Liwei Sun

    2015-02-01

    Full Text Available Ischemia-Reperfusion (I/R injury causes ROS overproduction, creating oxidative stress, and can trigger myocyte death, resulting in heart failure. Tyrosol is an antioxidant abounded in diets and medicine. Our objective was to investigate the protective effect of tyrosol on I/R-caused mortality in H9c2 cardiomyocytes through its influence on ROS, Hsp70, ERK, JNK, Bcl-2, Bax and caspase-8. A simulated I/R model was used, myocytes loss was examined by MTT, and ROS levels were measured using DCFH-DA. Nuclear condensation and caspase-3 activity were assessed by DAPI staining and fluorometric assay. Phosphorylated ERK and JNK were determined by electrochemiluminescent ELISA, and Hsp70, Bcl-2, Bax and caspase-8 were examined by Western blotting. Results show that tyrosol salvaged myocyte loss, inhibited nuclear condensation and caspase-3 activity dose-dependently, indicating its protection against I/R-caused myocyte loss. Furthermore, tyrosol significantly inhibited ROS accumulation and activation of ERK and JNK, augmenting Hsp70 expression. Besides, tyrosol inhibited I/R-induced apoptosis, associated with retained anti-apoptotic Bcl-2 protein, and attenuated pro-apoptotic Bax protein, resulting in a preservation of Bcl-2/Bax ratio. Finally, tyrosol notably decreased cleaved caspase-8 levels. In conclusion, cytoprotection of tyrosol in I/R-caused myocyte mortality was involved with the mitigation of ROS, prohibition of the activation of ERK, JNK and caspase-8, and elevation of Hsp70 and Bcl-2/Bax ratio.

  16. Does closure of acid-sensing ion channels reduce ischemia/reperfusion injury in the rat brain?

    Institute of Scientific and Technical Information of China (English)

    Jie Wang; Yinghui Xu; Zhigang Lian; Jian Zhang; Tingzhun Zhu; Mengkao Li; Yi Wei; Bin Dong

    2013-01-01

    Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/l expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.

  17. Autophagy and Liver Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  18. Fas/FasL System and Myocardial Ischemia Reperfusion Apoptosis%Fas/FasL系统与心肌缺血再灌注细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    左耿

    2011-01-01

    Myocardial ischemia reperfusion injury is closely related to a number of apoptosis related genes. Fas/FasL system plays a key role in myocardial ischemia reperfusion injury. It is one way of causing apoptosis and one of the critical mediators of cardiac myocyte apoptosis signal transduction. This article reviews current research in the Fas/FasL system and myocardial ischemia reperfusion apoptosis.%心肌缺血再灌注损伤与众多凋亡基因密切相关.Fas/FasL系统在心肌缺血再灌注损伤中起关键作用,是引起细胞凋亡的主要途径之一,是直接启动细胞凋亡信号传导的系统之一.Fas/FasL系统与心肌缺血再灌注细胞凋亡及其信号传导机制是目前国内外研究的热点,现对该问题做一综述.

  19. Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase.

    Science.gov (United States)

    Wang, Pengqi; Zhu, Qingjun; Wu, Nan; Siow, Yaw L; Aukema, Harold; O, Karmin

    2013-04-17

    Tyrosol is a natural phenolic antioxidant compound. Oxidative stress represents one of the important mechanisms underlying ischemia-reperfusion-induced kidney injury. The aim of this study was to investigate the effect of tyrosol against ischemia-reperfusion-induced acute kidney injury. The left kidney of Sprague-Dawley rats was subjected to 45 min of ischemia followed by reperfusion for 6 h. Ischemia-reperfusion caused an increase in peroxynitrite formation and lipid peroxidation. The level of nitric oxide (NO) metabolites and the mRNA of inducible nitric oxide synthase (iNOS) were elevated in ischemia-reperfused kidneys. Administration of tyrosol (100 mg/kg body weight) to rats prior to the induction of ischemia significantly reduced peroxynitrite formation, lipid peroxidation, and the level of NO metabolites. Tyrosol administration also attenuated ischemia-reperfusion-induced NF-κB activation and iNOS expression. Such a treatment improved kidney function. Results suggest that tyrosol may have a protective effect against acute kidney injury through inhibition of iNOS-mediated oxidative stress.

  20. 心脏死亡捐献供肝热缺血再灌注损伤及MRI评价的研究进展%Study progress of hepatic warm ischemia-reperfusion injury in donation after cardiac death liver graft and its MRI evaluation

    Institute of Scientific and Technical Information of China (English)

    季倩; 沈文

    2016-01-01

    供体严重短缺是制约我国肝移植事业发展的瓶颈,而心脏死亡捐献(DCD)将有效扩大供体来源,但肝脏热缺血再灌注损伤一直困扰着DCD供肝的利用效果。功能MR成像能够无创、准确评价活体肝组织的微观信息变化,并获得动态的定量资料,对进一步认识肝脏热缺血再灌注损伤的机制及其预后评估提供有价值的信息。现就我国DCD供肝现状、肝脏热缺血再灌注损伤及MRI评价予以综述。%Donor shortage has hampered the development of liver transplantation in China. Donation after Cardiac Death (DCD) will effectively expand the donor source, while hepatic warm ischemia-reperfusion injury has severe influence on the prognosis of DCD liver graft. Functional MR imaging can evaluate microscopic information changes of liver tissue in vivo non-invasively, accurately and quantitatively, the results are expected to provide valuable information on further understanding the mechanism and prognosis of hepatic warm ischemia-reperfusion injury. The aims of the present review were as follows: (a) to present the state of DCD donor liver in China, (b) to present the hepatic warm ischemia-reperfusion injury, and (c) to review the MRI evaluation of hepatic warm ischemia-reperfusion injury.

  1. α-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway.

    Directory of Open Access Journals (Sweden)

    Chao Deng

    Full Text Available BACKGROUND: The present study investigates the effects and mechanisms of α-Lipoic acid (LA on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in rat hearts subjected to in vivo myocardial ischemia/reperfusion (MI/R injury. METHODOLOGY/PRINCIPAL FINDINGS: Male adult rats underwent 30 minutes of ischemia followed by 3, 24, or 72 h of reperfusion. Animals were pretreated with LA or vehicle before coronary artery ligation. The level of MI/R- induced LDH and CK release, infarct size, cardiomyocyte apoptosis and cardiac functional impairment were examined and compared. Western blot analysis was performed to elucidate the mechanism of LA pretreatment. The level of inflammatory cytokine TNF-α released to serum and accumulated in injured myocardium as well as neutrophil accumulation in injured myocardium were also examined after MI/R injury. Our results reveal that LA administration significantly reduced LDH and CK release, attenuated myocardial infarct size, decreased cardiomyocytes apoptosis, and partially preserved heart function. Western blot analysis showed that LA pretreatment up-regulated Akt phosphorylation and Nrf2 nuclear translocation while producing no impact on p38MAPK activation or nitric oxide (NO production. LA pretreatment also increased expression of HO-1, a major target of Nrf2. LA treatment inhibited neutrophil accumulation and release of TNF-α. Moreover, PI3K inhibition abolished the beneficial effects of LA. CONCLUSIONS/SIGNIFICANCE: This study indicates that LA attenuates cardiac dysfunction by reducing cardiomyoctyes necrosis, apoptosis and inflammation after MI/R. LA exerts its action by activating the PI3K/Akt pathway as well as subsequent Nrf2 nuclear translocation and induction of cytoprotective genes such as HO-1.

  2. Hydroxyfasudil-mediated inhibition of ROCK1 and ROCK2 improves kidney function in rat renal acute ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Dominik Kentrup

    Full Text Available Renal ischemia-reperfusion (IR injury (IRI is a common and important trigger of acute renal injury (AKI. It is inevitably linked to transplantation. Involving both, the innate and the adaptive immune response, IRI causes subsequent sterile inflammation. Attraction to and transmigration of immune cells into the interstitium is associated with increased vascular permeability and loss of endothelial and tubular epithelial cell integrity. Considering the important role of cytoskeletal reorganization, mainly regulated by RhoGTPases, in the development of IRI we hypothesized that a preventive, selective inhibition of the Rho effector Rho-associated coiled coil containing protein kinase (ROCK by hydroxyfasudil may improve renal IRI outcome. Using an IRI-based animal model of AKI in male Sprague Dawley rats, animals treated with hydroxyfasudil showed reduced proteinuria and polyuria as well as increased urine osmolarity when compared with sham-treated animals. In addition, renal perfusion (as assessed by (18F-fluoride Positron Emission Tomography (PET, creatinine- and urea-clearances improved significantly. Moreover, endothelial leakage and renal inflammation was significantly reduced as determined by histology, (18F-fluordesoxyglucose-microautoradiography, Evans Blue, and real-time PCR analysis. We conclude from our study that ROCK-inhibition by hydroxyfasudil significantly improves kidney function in a rat model of acute renal IRI and is therefore a potential new therapeutic option in humans.

  3. Neuroprotective Effect of Paeonol Mediates Anti-Inflammation via Suppressing Toll-Like Receptor 2 and Toll-Like Receptor 4 Signaling Pathways in Cerebral Ischemia-Reperfusion Injured Rats

    Directory of Open Access Journals (Sweden)

    Wen-Yen Liao

    2016-01-01

    Full Text Available Paeonol is a phenolic compound derived from Paeonia suffruticosa Andrews (MC and P. lactiflora Pall (PL. Paeonol can reduce cerebral infarction volume and improve neurological deficits through antioxidative and anti-inflammatory effects. However, the anti-inflammatory pathway of paeonol remains unclear. This study investigated the relationship between anti-inflammatory responses of paeonol and signaling pathways of TLR2 and TLR4 in cerebral infarct. We established the cerebral ischemia-reperfusion model in Sprague Dawley rats by occluding right middle cerebral artery for 60 min, followed by reperfusion for 24 h. The neurological deficit score was examined, and the brains of the rats were removed for cerebral infarction volume and immunohistochemistry (IHC analysis. The infarction volume and neurological deficits were lower in the paeonol group (pretreatment with paeonol; 20 mg/kg i.p. than in the control group (without paeonol treatment. The IHC analysis revealed that the number of TLR2-, TLR4-, Iba1-, NF-κB- (P50-, and IL-1β-immunoreactive cells and TUNEL-positive cells was significantly lower in the paeonol group; however, the number of TNF-α-immunoreactive cells did not differ between the paeonol and control groups. The paeonol reveals some neuroprotective effects in the model of ischemia, which could be due to the reduction of many proinflammatory receptors/mediators, although the mechanisms are not clear.

  4. Intra-coronary administration of soluble receptor for advanced glycation end-products attenuates cardiac remodeling with decreased myocardial transforming growth factor-β1 expression and fibrosis in minipigs with ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    LU Lin; SHEN Wei-feng; ZHANG Qi; XU Yan; ZHU Zheng-bin; GENG Liang; WANG Ling-jie; JIN Cao; CHEN Qiu-jing; Ann Marie Schmidt

    2010-01-01

    Background The cardioprotective effects of soluble receptor for advanced glycation end-products (sRAGE) have not been evaluated in large animals and the underlying mechanisms are not fully understood. This study aimed to evaluate the effects of intra-coronary administration of sRAGE on left ventricular function and myocardial remodeling in a porcine model of ischemia-reperfusion (I/R) injury. Methods Ten male minipigs with I/R injury were randomly allocated to receive intra-coronary administration of sRAGE (sRAGE group, n=5) or saline (control group, n=5). Echocardiography was performed before and 2 months after infarction. Myocardial expression of transforming growth factor (TGF)-β1was determined by immunohistochemistry and fibrosis was evaluated by Sirius red staining. Results As compared with the baseline values in the control animals, left ventricular end-diastolic volume (from (19.5 5.1) to (32.3 5.6) ml, P <0.05) and end-systolic volume (from (8.3 3.2) to (15.2 4.1) ml, P <0.05) were significantly increased, whereas ejection fraction was decreased (from (61.6 13.3)% to (50.2 11.9)%, P<0.05). No obvious change in these parameters was observed in the sRAGE group. Myocardial expression of TGF-β1 was significantly elevated in the infarct and non-infarct regions in the control group, as compared with sRAGE group (both P<0.01). Fibrotic lesions were consistently more prominent in the infarct region of the myocardium in the control animals (P<0.05). Conclusion Intra-coronary sRAGE administration attenuates RAGE-mediated myocardial fibrosis and I/R injury through a TGF-β1-dependent mechanism, suggesting a clinical potential in treating RAGE/ligand-associated cardiovascular diseases.

  5. σ1-Receptor Agonism Protects against Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Hosszu, Adam; Antal, Zsuzsanna; Lenart, Lilla; Hodrea, Judit; Koszegi, Sandor; Balogh, Dora B; Banki, Nora F; Wagner, Laszlo; Denes, Adam; Hamar, Peter; Degrell, Peter; Vannay, Adam; Szabo, Attila J; Fekete, Andrea

    2017-01-01

    Mechanisms of renal ischemia-reperfusion injury remain unresolved, and effective therapies are lacking. We previously showed that dehydroepiandrosterone protects against renal ischemia-reperfusion injury in male rats. Here, we investigated the potential role of σ1-receptor activation in mediating this protection. In rats, pretreatment with either dehydroepiandrosterone or fluvoxamine, a high-affinity σ1-receptor agonist, improved survival, renal function and structure, and the inflammatory response after sublethal renal ischemia-reperfusion injury. In human proximal tubular epithelial cells, stimulation by fluvoxamine or oxidative stress caused the σ1-receptor to translocate from the endoplasmic reticulum to the cytosol and nucleus. Fluvoxamine stimulation in these cells also activated nitric oxide production that was blocked by σ1-receptor knockdown or Akt inhibition. Similarly, in the postischemic rat kidney, σ1-receptor activation by fluvoxamine triggered the Akt-nitric oxide synthase signaling pathway, resulting in time- and isoform-specific endothelial and neuronal nitric oxide synthase activation and nitric oxide production. Concurrently, intravital two-photon imaging revealed prompt peritubular vasodilation after fluvoxamine treatment, which was blocked by the σ1-receptor antagonist or various nitric oxide synthase blockers. In conclusion, in this rat model of ischemia-reperfusion injury, σ1-receptor agonists improved postischemic survival and renal function via activation of Akt-mediated nitric oxide signaling in the kidney. Thus, σ1-receptor activation might provide a therapeutic option for renoprotective therapy.

  6. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xing-miao CHEN; Han-sen CHEN; Ming-jing XU; Jian-gang SHEN

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases.Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply,but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury,which are mediated by free radicals.As an important component of free radicals,reactive nitrogen species (RNS),including nitric oxide (NO) and peroxynitrite (ONO0ˉ),play important roles in the process of cerebral ischemia-reperfusion injury.Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOOˉ) in ischemic brain,which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage.There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage.Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury.Herein,we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONO0ˉ to treat ischemic stroke.We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemiareperfusion injury.

  7. Therapeutic potential of cannabidiol against ischemia/reperfusion liver injury in rats.

    Science.gov (United States)

    Fouad, Amr A; Jresat, Iyad

    2011-11-16

    The therapeutic potential of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated in rats exposed to ischemia/reperfusion liver injury. Ischemia was induced by clamping the pedicle of the left hepatic lobe for 30 min, and cannabidiol (5mg/kg, i.v.) was given 1h following the procedure and every 24h thereafter for 2 days. Ischemia/reperfusion caused significant elevations of serum alanine aminotransferase and hepatic malondialdehyde, tumor necrosis factor-α and nitric oxide levels, associated with significant decrease in hepatic reduced glutathione. Cannabidiol significantly attenuated the deterioration in the measured biochemical parameters mediated by ischemia/reperfusion. Histopathological examination showed that cannabidiol ameliorated ischemia/reperfusion-induced liver damage. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin protein in ischemic/reperfused liver tissue. These results emphasize that cannabidiol represents a potential therapeutic option to protect the liver against hypoxia-reoxygenation injury.

  8. Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Gu

    Full Text Available Poloxamer 188 (P188, a multiblock copolymer surfactant, has been shown to protect against ischemic tissue injury of cardiac muscle, testes and skeletal muscle, but the mechanisms have not been fully understood. In this study, we explored whether P188 had a protective effect against cerebral ischemia/reperfusion injury and its underlying mechanisms. The in vivo results showed that P188 significantly reduced the infarct volume, ameliorated the brain edema and neurological symptoms 24 h after ischemia/reperfusion. In the long-term outcome study, P188 markedly alleviated brain atrophy and motor impairments and increased survival rate in 3 weeks of post stroke period. Additionally, P188 protected cultured hippucampal HT22 cells against oxygen-glucose deprivation and reoxygenation (OGD/R injury. The ability in membrane sealing was assessed with two fluorescent membrane-impermeant dyes. The results showed that P188 treatment significantly reduced the PI-positive cells following ischemia/reperfusion injury and repaired the HT22 cell membrane rupture induced by Triton X-100. In addition, P188 inhibited ischemia/reperfusion-induced activation of matrix metalloproteinase (MMP-9 and leakage of Evans blue. Therefore, the present study concludes that P188 can protect against cerebral ischemia/reperfusion injury, and the protection involves multi-mechanisms in addition to the membrane resealing.

  9. The Role of Tetrahydrobiopterin and Dihydrobiopterin in Ischemia/Reperfusion Injury When Given at Reperfusion

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2010-01-01

    Full Text Available Reduced nitric oxide (NO bioavailability and increased oxidative stress are major factors mediating ischemia/reperfusion (I/R injury. Tetrahydrobiopterin (BH4 is an essential cofactor of endothelial NO synthase (eNOS to produce NO, whereas dihydrobiopterin (BH2 can shift the eNOS product profile from NO to superoxide, which is further converted to hydrogen peroxide (H2O2 and cause I/R injury. The effects of BH4 and BH2 on oxidative stress and postreperfused cardiac functions were examined in ex vivo myocardial and in vivo femoral I (20 min/R (45 min models. In femoral I/R, BH4 increased NO and decreased H2O2 releases relative to saline control, and these effects correlated with improved postreperfused cardiac function. By contrast, BH2 decreased NO release relative to the saline control, but increased H2O2 release similar to the saline control, and these effects correlated with compromised postreperfused cardiac function. In conclusion, these results suggest that promoting eNOS coupling to produce NO and decrease H2O2 may be a key mechanism to restore postreperfused organ function during early reperfusion.

  10. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nagaoka

    Full Text Available There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction (AMI, for which the effectiveness of interventional reperfusion therapy is hampered by myocardial ischemia-reperfusion (IR injury. Pretreatment with statins before ischemia is shown to reduce MI size in animals. However, no benefit was found in animals and patients with AMI when administered at the time of reperfusion, suggesting insufficient drug targeting into the IR myocardium. Here we tested the hypothesis that nanoparticle-mediated targeting of pitavastatin protects the heart from IR injury.In a rat IR model, poly(lactic acid/glycolic acid (PLGA nanoparticle incorporating FITC accumulated in the IR myocardium through enhanced vascular permeability, and in CD11b-positive leukocytes in the IR myocardium and peripheral blood after intravenous treatment. Intravenous treatment with PLGA nanoparticle containing pitavastatin (Pitavastatin-NP, 1 mg/kg at reperfusion reduced MI size after 24 hours and ameliorated left ventricular dysfunction 4-week after reperfusion; by contrast, pitavastatin alone (as high as 10 mg/kg showed no therapeutic effects. The therapeutic effects of Pitavastatin-NP were blunted by a PI3K inhibitor wortmannin, but not by a mitochondrial permeability transition pore inhibitor cyclosporine A. Pitavastatin-NP induced phosphorylation of Akt and GSK3β, and inhibited inflammation and cardiomyocyte apoptosis in the IR myocardium.Nanoparticle-mediated targeting of pitavastatin induced cardioprotection from IR injury by activation of PI3K/Akt pathway and inhibition of inflammation and cardiomyocyte death in this model. This strategy can be developed as an innovative cardioprotective modality that may advance currently unsatisfactory reperfusion therapy for AMI.

  11. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus.

    Science.gov (United States)

    Lejay, Anne; Fang, Fei; John, Rohan; Van, Julie A D; Barr, Meredith; Thaveau, Fabien; Chakfe, Nabil; Geny, Bernard; Scholey, James W

    2016-02-01

    Ischemia/reperfusion, which is characterized by deficient oxygen supply and subsequent restoration of blood flow, can cause irreversible damages to tissue. Mechanisms contributing to the pathogenesis of ischemia reperfusion injury are complex, multifactorial and highly integrated. Extensive research has focused on increasing organ tolerance to ischemia reperfusion injury, especially through the use of ischemic conditioning strategies. Of morbidities that potentially compromise the protective mechanisms of the heart, diabetes mellitus appears primarily important to study. Diabetes mellitus increases myocardial susceptibility to ischemia reperfusion injury and also modifies myocardial responses to ischemic conditioning strategies by disruption of intracellular signaling responsible for enhancement of resistance to cell death. The purpose of this review is twofold: first, to summarize mechanisms underlying ischemia reperfusion injury and the signal transduction pathways underlying ischemic conditioning cardioprotection; and second, to focus on diabetes mellitus and mechanisms that may be responsible for the lack of effect of ischemic conditioning strategies in diabetes.

  12. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alexa Thibodeau

    2016-01-01

    Full Text Available Pyruvate dehydrogenase (PDH complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.

  13. Functionally Selective AT(1) Receptor Activation Reduces Ischemia Reperfusion Injury

    DEFF Research Database (Denmark)

    Hostrup, Anders; Christensen, Gitte Lund; Bentzen, Bo Hjort;

    2012-01-01

    of the physiological functions of AngII. The AT(1)R mediates its effects through both G protein-dependent and independent signaling, which can be separated by functionally selective agonists. In the present study we investigate the effect of AngII and the ß-arrestin biased agonist [SII]AngII on ischemia......-reperfusion injury in rat hearts. Isolated hearts mounted in a Langendorff perfused rat heart preparations showed that preconditioning with [SII]AngII reduced the infarct size induced by global ischemia from 46±8.4% to 22±3.4%. In contrast, neither preconditioning with AngII nor postconditioning with AngII or [SII...

  14. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury

    Science.gov (United States)

    Masuzawa, Akihiro; Black, Kendra M.; Pacak, Christina A.; Ericsson, Maria; Barnett, Reanne J.; Drumm, Ciara; Seth, Pankaj; Bloch, Donald B.; Levitsky, Sidney; Cowan, Douglas B.

    2013-01-01

    Mitochondrial damage and dysfunction occur during ischemia and modulate cardiac function and cell survival significantly during reperfusion. We hypothesized that transplantation of autologously derived mitochondria immediately prior to reperfusion would ameliorate these effects. New Zealand White rabbits were used for regional ischemia (RI), which was achieved by temporarily snaring the left anterior descending artery for 30 min. Following 29 min of RI, autologously derived mitochondria (RI-mitochondria; 9.7 ± 1.7 × 106/ml) or vehicle alone (RI-vehicle) were injected directly into the RI zone, and the hearts were allowed to recover for 4 wk. Mitochondrial transplantation decreased (P mitochondria (7.9 ± 2.9%) compared with RI-vehicle (34.2 ± 3.3%, P mitochondria hearts returned to normal contraction within 10 min after reperfusion was started; however, RI-vehicle hearts showed persistent hypokinesia in the RI zone at 4 wk of recovery. Electrocardiogram and optical mapping studies showed that no arrhythmia was associated with autologously derived mitochondrial transplantation. In vivo and in vitro studies show that the transplanted mitochondria are evident in the interstitial spaces and are internalized by cardiomyocytes 2–8 h after transplantation. The transplanted mitochondria enhanced oxygen consumption, high-energy phosphate synthesis, and the induction of cytokine mediators and proteomic pathways that are important in preserving myocardial energetics, cell viability, and enhanced post-infarct cardiac function. Transplantation of autologously derived mitochondria provides a novel technique to protect the heart from ischemia-reperfusion injury. PMID:23355340

  15. The Effects of Two Anesthetics, Propofol and Sevoflurane, on Liver Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Zhijie Xu

    2016-04-01

    Full Text Available Background: Propofol and sevoflurane are widely used in clinical anesthesia, and both have been reported to exert a protective effect in organ ischemia/reperfusion (IR. This study aims to investigate and compare the effects of propofol and sevoflurane on liver ischemia/reperfusion and the precise molecular mechanism. Methods and Materials: Rats were randomized into four groups: the sham group, I/R group, propofol treatment group (infused with 1% propofol at 500 µg· kg-1· min-1, and sevoflurane treatment group (infused with 3% (2 L/min sevoflurane. The liver ischemia/reperfusion model was used to evaluate the hepatoprotective effect on ischemic injury. Liver enzyme leakage, liver cytokines and histopathological examination were used to evaluate the extent of hepatic ischemia/reperfusion injury. Oxidative stress was investigated by evaluating the levels of Malondialdehyde(MDA, Superoxide Dismutase(SOD and NO. The terminal dexynucleotidyl transferase(TdT-mediated dUTP nick end labeling (TUNEL assay and western blot were applied to detect apoptosis in the ischemic liver tissue and its mechanism. Results: Both propofol and sevoflurane attenuated the extent of hepatic ischemia/reperfusion injury which is evident from the hisopathological studies and alterations in liver enzymes such as AST and LDH by inhibiting Nuclear factor kappa B (NFκB activation and subsequent alterations in inflammatory cytokines interleukin-1(IL-1, interleukin-6(IL-6, tumor necrosis factor-alpha (TNF-a and increased IL10 release. Propofol exhibited a similar protective effect and a lower IL-1 release, while sevoflurane decreased TNF-a leakage more significantly. Meanwhile, oxidative stress was attenuated by reduced MDA and NO and elevated SOD release. The expression of antiapoptotic protein Bcl-2 and Bcl-xl were enhanced while that of apoptotic protein Bax and Bak were reduced by both propofol and sevoflurane to regulate hepatic apoptosis. In addition, propofol

  16. The Anti-Apoptotic and Cardioprotective Effects of Salvianolic Acid A on Rat Cardiomyocytes following Ischemia/Reperfusion by DUSP-Mediated Regulation of the ERK1/2/JNK Pathway

    Science.gov (United States)

    Chen, Qiuping; Zhu, Shasha; Liu, Yang; Pan, Defeng; Chen, Xiaohu; Li, Dongye

    2014-01-01

    The purpose of this study was to observe the effects of salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I

  17. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    Full Text Available The purpose of this study was to observe the effects of salvianolic acid A (SAA pretreatment on the myocardium during ischemia/reperfusion (I/R and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI. Wistar rats were divided into the following six groups: control group (CON, I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R, PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R. The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR, left ventricular systolic pressure (LVSP, left ventricular end-diastolic pressure (LVEDP, maximum rate of ventricular pressure rise and fall (±dp/dtmax, myocardial infarction areas (MIA, lactate dehydrogenase (LDH, and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4

  18. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  19. MG132 Inhibits Myocardial Ischemia-reperfusion Injury by Regulating Apoptotic Pathway

    Institute of Scientific and Technical Information of China (English)

    Dai Cuilian; Luo Kailiang; Chen Zhangrong

    2007-01-01

    Objectives To administrated proteasome inhibitor-MG-132 prior to reperfusion in rat myocardial ischemia-reperfusion model to determine whether MG-132 could reduce myocytic apoptosis. Methods and results MG-132 (0.75 mg/kg in 2 ml DMSO) injection 5 min prior to reperfusion resulted significant reduction of myocardial reperfusion injury. This effect was accompanied by reduced polymorphonuclear neutrophils(PMN) infiltration in myocardial region surrounding the myocardial infarct, reduced apoptosis in cardiac myocytes, reduced NF-κB activation, as determined by electron microscopy, histology, immunohistochemistry, the terminal deoxynucleotidyl transferase-mediated nick endlabeling (TUNEL) method, reverse transcription-polymerase chain reaction. Functional effects of MG-132 on PMN accumulation, activation of nuclear factor kappa B(p65 mRNA and protein levels ), and apoptosis were characterized in rat myocardial tissue. MG132 time-dependently inhibited myocardial p65 mRNA expression and reduced myocardial apoptotic index (AI) after reperfusion for 2 h, 6 h and 24 h ( P<0.01 ). Moreover, MG-132 time-dependently decreased Bax protein levels, while increased Bcl-2 protein levels in ischemic and reperfused myocardium ( P<0.05 ), its effect peaked after reperfusion for 24 h. Conclusions Our results demonstrate that MG-132 reduced myocardial reperfusion injury by inhibiting myosytic apoptotic cell death and blocking activation of NF-κB, down-regulating Bax expression and up-regulating Bcl-2 expression as well as elevating Bcl-2/Bax ratio.

  20. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Tingyang Zhou

    2015-01-01

    Full Text Available Myocardial ischemia-reperfusion (I/R injury is experienced by individuals suffering from cardiovascular diseases such as coronary heart diseases and subsequently undergoing reperfusion treatments in order to manage the conditions. The occlusion of blood flow to the tissue, termed ischemia, can be especially detrimental to the heart due to its high energy demand. Several cellular alterations have been observed upon the onset of ischemia. The danger created by cardiac ischemia is somewhat paradoxical in that a return of blood to the tissue can result in further damage. Reactive oxygen species (ROS have been studied intensively to reveal their role in myocardial I/R injury. Under normal conditions, ROS function as a mediator in many cell signaling pathways. However, stressful environments significantly induce the generation of ROS which causes the level to exceed body’s antioxidant defense system. Such altered redox homeostasis is implicated in myocardial I/R injury. Despite the detrimental effects from ROS, low levels of ROS have been shown to exert a protective effect in the ischemic preconditioning. In this review, we will summarize the detrimental role of ROS in myocardial I/R injury, the protective mechanism induced by ROS, and potential treatments for ROS-related myocardial injury.

  1. Strategies for pharmacological organoprotectionduring extracorporeal circulation targeting ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Aida eSalameh

    2015-12-01

    Full Text Available Surgical correction of congenital cardiac malformations or aortocoronary bypass surgery in many cases implies the use of cardiopulmonary-bypass (CPB. However, a possible negative impact of CPB on internal organs such as brain, kidney, lung and liver cannot be neglected. In general, CPB initiates a systemic inflammatory response (SIRS which is presumably caused by contact of blood components with the surface of CPB tubing. Moreover, during CPB the heart typically undergoes a period of cold ischemia, and the other peripheral organs a global low flow hypoperfusion. As a result, a plethora of pro-inflammatory mediators and cytokines is released activating different biochemical pathways, which finally may result in the occurrence of microthrombosis, microemboli, in depletion of coagulation factors and haemorrhagic diathesis besides typical ischemia-reperfusion injuries. In our review we will focus on possible pharmacological interventions in patients to decrease negative effects of CPB and to improve post-operative outcome with regard to heart and other organs like brain, kidney or lung.

  2. The Influence of Copper (Cu) Deficiency in a Cardiomyocyte Cell Model (HL-1 Cell) of Ischemia/Reperfusion Injury

    Science.gov (United States)

    Mitochondria are important mediators of cell death and this study examines whether mitochondrial dysfunction caused by Cu deprivation promotes cell death in a cell culture model for ischemia/reperfusion injury in cardiomyocytes. HL-1 cells (kindly donated by Dr. William C. Claycomb, LSU Health Scien...

  3. Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury**

    Institute of Scientific and Technical Information of China (English)

    Chunlin Yan; Ji Zhang; Shu Wang; Guiping Xue; Yong Hou

    2013-01-01

    Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia reperfusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 µg/kg carpine were given to mice via intraperitoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae-carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu-rological function fol owing injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice.

  4. Quercetin protects rat skeletal muscle from ischemia reperfusion injury.

    Science.gov (United States)

    Ekinci Akdemir, Fazile Nur; Gülçin, İlhami; Karagöz, Berna; Soslu, Recep

    2016-01-01

    In this study, we investigated the potential beneficial effects of quercetin on skeletal muscle ischemia reperfusion injury. Twenty-four Sprague-Dawley type rats were randomly divided into four groups. In the sham group, only gastrocnemius muscle were removed and given no quercetin. In ischemia group, all the femoral artery, vein and collaterals were occluded in the left hindlimb by applying tourniquate under general anaesthesia for three hours but reperfusion was not done. In the Quercetin + Ischemia reperfusion group, quercetin (200 mg kg(-1) dose orally) was given during one-week reoperation and later ischemia reperfusion model was done. Finally, gastrocnemius muscle samples were removed to measure biochemical parameters. The biomarkers, MDA levels, SOD, CAT and GPx activities, were evaluated related to skeletal muscle ischemia reperfusion injury. MDA levels reduced and SOD, CAT and GPx activities increased significantly in Quercetin + Ischemia reperfusion group. Results clearly showed that Quercetin have a protective role against oxidative damage induced by ischemia reperfusion in rats.

  5. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

    Science.gov (United States)

    Yu, Haijie; Shi, Liye; Qi, Guoxian; Zhao, Shijie; Gao, Yuan; Li, Yuzhe

    2016-01-01

    Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia–reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation–reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury. PMID:27313532

  6. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Da-min [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Lu, Pei-Hua, E-mail: lphty1_1@163.com [Department of Medical Oncology, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Zhang, Ke; Wang, Xiang [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Sun, Min [Department of General Surgery, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Chen, Guo-Qian [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Wang, Qiong, E-mail: WangQiongprof1@126.com [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China)

    2015-02-13

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.

  7. Apoptosis of motor neurons in the spinal cord after ischemia reperfusion injury delayed paraplegia in rabbits

    Institute of Scientific and Technical Information of China (English)

    Liu Bibo; Liu Miao; Ma Wei; Wang Duoning

    2007-01-01

    Objective To clarify the pathologic change of the motor neuron on spinal cord ischemia reperfusion injury delayed paraplegia. Methods The infrarenal aorta of White New Zealand rabbits (n=24) was occluded for 26 minutes using two bulldog clamps. Rabbits were killed after 8, 24, 72, or 168 hours (n=6 per group), respectively. The clamps was placed but never clamped in sham-operated rabbits (n=24). The lumbar segment of the spinal cord (L5 to L7) was used for morphological studies, including hematoxylin and eosin staining, the expression of bcl-2 and bax proteins in spinal cord was detected with immunohistochemistry. The apoptotic neurons in spinal cord were measured with terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end-labeling of DNA fragments (TUNEL) staining. Results Delayed paraplegia occurred in all rabbits of ischemia reperfusion group at 16-24 hours, but not in sham groups. Motor neurons were selectively lost at 7 days after transient ischemia. After ischemia, the positive expression of bcl-2 protein were in the sham controls but decreased significantly as compared with that of the IR group (P<0.01), especially in 72 hours reperfusion. The positive expression of bax protein were also in the sham controls, but increased in the IR group, especially in 72 hours reperfusion; In addition, TUNEL study demonstrated that no cells were positively labeled until 24 hours after ischemia, but nuclei of some motor neurons were positively labeled at peak after ischemia reperfusion at 72 hours. Conclusion Spinal cord ischemia in rabbits induces morphological and biochemical changes suggestive of apoptosis. These data raise the possibility that apoptosis contributes to neuronal cell death after spinal cord ischemia reperfusion.

  8. Ischemia/Reperfusion Induces Interferon-Stimulated Gene Expression in Microglia.

    Science.gov (United States)

    McDonough, Ashley; Lee, Richard V; Noor, Shahani; Lee, Chungeun; Le, Thu; Iorga, Michael; Phillips, Jessica L H; Murphy, Sean; Möller, Thomas; Weinstein, Jonathan R

    2017-08-23

    Innate immune signaling is important in the pathophysiology of ischemia/reperfusion (stroke)-induced injury and recovery. Several lines of evidence support a central role for microglia in these processes. Recent work has identified Toll-like receptors (TLRs) and type I interferon (IFN) signaling in both ischemia/reperfusion-induced brain injury and ischemic preconditioning-mediated neuroprotection. To determine the effects of "ischemia/reperfusion-like" conditions on microglia, we performed genomic analyses on wild-type (WT) and TLR4(-/-) cultured microglia after sequential exposure to hypoxia/hypoglycemia and normoxia/normoglycemia (H/H-N/N). We observed increased expression of type 1 IFN-stimulated genes (ISGs) as the predominant transcriptomal feature of H/H-N/N-exposed WT, but not TLR4(-/-), microglia. Microarray analysis on ex vivo sorted microglia from ipsilateral male mouse cortex after a transient in vivo ischemic pulse also demonstrated robust expression of ISGs. Type 1 IFNs, including the IFN-αs and IFN-β, activate the interferon-α/β receptor (IFNAR) complex. We confirmed both in vitro H/H-N/N- and in vivo ischemia/reperfusion-induced microglial ISG responses by quantitative real-time PCR and demonstrated that both were dependent on IFNAR1. We characterized the effects of hypoxia/hypoglycemia on phosphorylation of signal transducer and activator of transcription 1 (STAT1), release of type 1 IFNs, and surface expression of IFNAR1 in microglia. We demonstrated that IFN-β induces dose-dependent secretion of ISG chemokines in cultured microglia and robust ISG expression in microglia both in vitro and in vivo Finally, we demonstrated that the microglial ISG chemokine responses to TLR4 agonists were dependent on TLR4 and IFNAR1. Together, these data suggest novel ischemia/reperfusion-induced pathways for both TLR4-dependent and -independent, IFNAR1-dependent, type 1 IFN signaling in microglia.SIGNIFICANCE STATEMENT Stroke is the fifth leading cause of

  9. Role of Mitochondria in Neuron Apoptosis during Ischemia-Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    段秋红; 王西明; 王忠强; 卢涛; 韩义香; 何善述

    2004-01-01

    To investigate the role of mitochondria in neuronal apoptosis, ischemia-reperfusion mediated neuronal cell injury model was established by depriving of glucose, serum and oxygen in media.DNA fragmentation, cell viability, cytochrome C releasing, caspase3 activity and mitochondrial transmembrane potential were observed after N2a cells suffered the insults. The results showed that N2a cells in ischemic territory exhibited survival damage, classical cell apoptosis change, DNA ladder and activation of caspase3. Apoptosis-related alterations in mitochondrial functions, including release of cytochrome C and depression of mitochondrial transmembrane potential (△ψm)were testified in N2a cells after mimic ischemia-reperfusion. Moreover, activation of caspase3 occurred following the release of cytochrome C. However, the inhibitor of caspase3, Ac-DEVDinhibitor of mitochondria permeability transition pore only partly inhibited caspase3 activity and reduced DNA damage. Interestingly, treatment of Z-IETD-FMK, an inhibitor of caspase8 could comthat there were caspase3 dependent and independent cellular apoptosis pathways in N2a cells suffering ischemia-reperfusion insults. Mitochondria dysfunction may early trigger apoptosis and amplify apoptosis signal.

  10. Protective Effects of HDL Against Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Gomaraschi, Monica; Calabresi, Laura; Franceschini, Guido

    2016-01-01

    Several lines of evidence suggest that, besides being a strong independent predictor of the occurrence of primary coronary events, a low plasma high density lipoprotein (HDL) cholesterol level is also associated with short- and long-term unfavorable prognosis in patients, who have recovered from a myocardial infarction, suggesting a direct detrimental effect of low HDL on post-ischemic myocardial function. Experiments performed in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury have clearly shown that HDL are able to preserve cardiac function when given before ischemia or at reperfusion; the protective effects of HDL against I/R injury have been also confirmed in other tissues and organs, as brain and hind limb. HDL were shown to act on coronary endothelial cells, by limiting the increase of endothelium permeability and promoting vasodilation and neoangiogenesis, on white blood cells, by reducing their infiltration into the ischemic tissue and the release of pro-inflammatory and matrix-degrading molecules, and on cardiomyocytes, by preventing the activation of the apoptotic cascade. Synthetic HDL retains the cardioprotective activity of plasma-derived HDL and may become a useful adjunctive therapy to improve clinical outcomes in patients with acute coronary syndromes or undergoing coronary procedures.

  11. Humanized cobra venom factor decreases myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Gorsuch, W Brian; Guikema, Benjamin J; Fritzinger, David C; Vogel, Carl-Wilhelm; Stahl, Gregory L

    2009-12-01

    Cobra venom factor (CVF) is a complement activating protein in cobra venom, which functionally resembles C3b, and has been used for decades for decomplementation of serum to investigate the role of complement in many model systems of disease. The use of CVF for clinical practice is considered impractical because of immunogenicity issues. Humanization of CVF was recently demonstrated to yield a potent CVF-like molecule. In the present study, we demonstrate that mice treated with recombinant humanized CVF (HC3-1496) are protected from myocardial ischemia-reperfusion (MI/R) injuries with resultant preservation of cardiac function. Also, C3 deposition in the myocardium following MI/R was not observed following treatment with HC3-1496. HC3-1496 led to complement activation and depletion of C3, but preserved C5 titers. These data suggest, unlike CVF, HC3-1496 does not form a C5 convertase in the mouse, similar to recent studies in human sera/plasma. These results suggest that humanized CVF (HC3-1496) protects the ischemic myocardium from reperfusion injuries induced by complement activation and represents a novel anti-complement therapy for potential clinical use.

  12. Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning

    Institute of Scientific and Technical Information of China (English)

    Kai Sun; Zhi-Su Liu; Quan Sun

    2004-01-01

    AIM: To investigate the role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning (IPC).METHODS: A rat model of acute hepatic ischemia-reperfusion was established, 24 healthy male Wistar rats were randomly divided into sham-operated group, ischemia-reperfusion group (IR) and IPC group. IPC was achieved by several brief pre-reperfusions followed by a persistent reperfusion.Concentration of malondialdehyde (MDA) and activity of several antioxidant enzymes in hepatic tissue were measured respectively. Apoptotic cells were detected by TdT-mediated dUTP-biotin nick end labeling (TUNEL) and expression of Bcl-2 protein was measured by immunohistochemical techniques. Moreover, mitochondrial ultrastructure and parameters of morphology of the above groups were observed by electron microscope.RESULTS: Compared with IR group, the concentration of MDA and the hepatocellular apoptotic index in IPC group was significantly reduced (P<0.05), while the activity of antioxidant enzymes and OD value of Bcl-2 protein were markedly enhanced (P<0.05). Moreover, the injury of mitochondrial ultrastructure in IPC group was also obviously relieved.CONCLUSION: IPC can depress the synthesis of oxygen free radicals to protect the mitochondrial ultrastructure and increase the expression of Bcl-2 protein that lies across the mitochondrial membrane. Consequently, IPC can reduce hepatocellular apoptosis after reperfusion and has a protective effect on hepatic ischemia-reperfusion injury.

  13. Emergent role of gasotransmitters in ischemia-reperfusion injury.

    Science.gov (United States)

    Moody, Bridgette F; Calvert, John W

    2011-04-27

    Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are lipid-soluble, endogenously produced gaseous messenger molecules collectively known as gasotransmitters. Over the last several decades, gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury. Specifically, when used at physiological levels, the exogenous and endogenous manipulation of these three gases has been shown to modulate ischemia/reperfusion injury by inducing a number of cytoprotective mechanisms including: induction of vasodilatation, inhibition of apoptosis, modulation of mitochondrial respiration, induction of antioxidants, and inhibition of inflammation. However, while the actions are similar, there are some differences in the mechanisms by which these gasotransmitters induce these effects and the regulatory actions of the enzyme systems can vary depending upon the gas being investigated. Furthermore, there does appear to be some crosstalk between the gases, which can provide synergistic effects and additional regulatory effects. This review article will discuss several models and mechanisms of gas-mediated cytoprotection, as well as provide a brief discussion on the complex interactions between the gasotransmitter systems.

  14. Emergent role of gasotransmitters in ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Moody Bridgette F

    2011-04-01

    Full Text Available Abstract Nitric oxide (NO, carbon monoxide (CO and hydrogen sulfide (H2S are lipid-soluble, endogenously produced gaseous messenger molecules collectively known as gasotransmitters. Over the last several decades, gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury. Specifically, when used at physiological levels, the exogenous and endogenous manipulation of these three gases has been shown to modulate ischemia/reperfusion injury by inducing a number of cytoprotective mechanisms including: induction of vasodilatation, inhibition of apoptosis, modulation of mitochondrial respiration, induction of antioxidants, and inhibition of inflammation. However, while the actions are similar, there are some differences in the mechanisms by which these gasotransmitters induce these effects and the regulatory actions of the enzyme systems can vary depending upon the gas being investigated. Furthermore, there does appear to be some crosstalk between the gases, which can provide synergistic effects and additional regulatory effects. This review article will discuss several models and mechanisms of gas-mediated cytoprotection, as well as provide a brief discussion on the complex interactions between the gasotransmitter systems.

  15. Methylene blue protects the cortical blood-brain barrier against ischemia/reperfusion-induced disruptions.

    Science.gov (United States)

    Miclescu, Adriana; Sharma, Hari Shanker; Martijn, Cécile; Wiklund, Lars

    2010-11-01

    To investigate the effects of cardiac arrest and the reperfusion syndrome on blood-brain barrier permeability and evaluate whether methylene blue counteracts blood-brain barrier disruption in a pig model of controlled cardiopulmonary resuscitation. Randomized, prospective, laboratory animal study. University-affiliated research laboratory. Forty-five piglets. Forty-five anesthetized piglets were subjected to cardiac arrest alone or 12-min cardiac arrest followed by 8 mins cardiopulmonary resuscitation. The first group (n = 16) was used to evaluate blood-brain barrier disruptions after untreated cerebral ischemia after 0, 15, or 30 mins after untreated cardiac arrest. The other two groups received either an infusion of saline (n = 10) or infusion of saline with methylene blue (n = 12) 1 min after the start of cardiopulmonary resuscitation and continued 50 mins after return of spontaneous circulation. In these groups, brains were removed for immunohistological analyses at 30, 60, and 180 mins after return of spontaneous circulation. An increase of injured neurons and albumin immunoreactivity was demonstrated with increasing duration of ischemia/reperfusion. Less blood-brain barrier disruption was observed in subjects receiving methylene blue as demonstrated by decreased albumin leakage (p blue treatment reduced cerebral tissue nitrite/nitrate content (p blood-brain barrier permeability and neurologic injury were increased early in reperfusion after cardiac arrest. Methylene blue exerted neuroprotective effects against the brain damage associated with the ischemia/reperfusion injury and ameliorated the blood-brain barrier disruption by decreasing nitric oxide metabolites.

  16. 重复无创肢体缺血预适应对大鼠心肌缺血再灌注损伤的保护作用%Protective effects of repetition limb ischemic preconditioning on cardiac ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    陈敏; 宋二飞; 张轩萍; 梁月琴; 张明升

    2012-01-01

    目的 研究重复多次无创肢体缺血预适应对大鼠心肌缺血再灌注损伤的保护作用.方法 SD大鼠24只随机分为对照组、单次无创肢体预适应(LPC)组、反复无创后肢缺血预适应(RLPC)组各8只,观察重复无创性肢体缺血预适应对大鼠心脏缺血再灌注损伤的作用.通过颈动脉插管法测定大鼠的平均动脉压(MAP),肢体Ⅱ导联记录心电图以分析心率、心律失常情况.实验结束后采血测定血清中的丙二醛(MDA)含量、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)的活性,留取心脏染色测定各组梗死面积.结果 与对照组相比,LPC组和RLPC组可以减小梗死面积,减轻心律失常情况,血清MDA浓度降低,SOD,GSH-PX的活性增加.但LPC组和RLPC组差异无统计学意义.结论 RLPC对大鼠缺血再灌注损伤的保护作用与LPC相似.%Objective To determine the protective effects of repetition limb ischemic preconditioning (RLPC) on cardiac ischemia-reperfusion injury. Methods Sprague-Dawley rats were randomly assigned to control group (group C), limb ischemic preconditioning group (group LPC) and repetition limb ischemic preconditioning group (group RLPC), respectively, thus allowing for determination of the protective effects of RLPC on cardiac ischemia-reperfusion injury. Mean arterial pressure (MAP) was measured via cervical catheterization, and incidence of cardiac arrhythmia was monitored based on lead II electrocardiogram and the heart rate. The levels of serum malondialdehyde (MDA) and superoxide dismutase (SOD) and activity of glutathione peroxidase (GSH-PX) were assayed at the end of study. Furthermore, the size of myocardial infarction was assessed by pathologic staining. Results Compared with control group, both LPC and RLPC resulted in reduced size of myocardial infarction, incidence of cardiac arrhythmia and serum MDA yet increased activity of SOD and GSH-PX. However, the difference in groups LPC and RLPC did not

  17. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury.

    Science.gov (United States)

    He, Ben; Zhao, Yichao; Xu, Longwei; Gao, Lingchen; Su, Yuanyuan; Lin, Nan; Pu, Jun

    2016-04-01

    Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury.

  18. Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts

    Directory of Open Access Journals (Sweden)

    Guberski Dennis

    2008-10-01

    Full Text Available Abstract We investigated the role of polyol pathway enzymes aldose reductase (AR and sorbitol dehydrogenase (SDH in mediating injury due to ischemia-reperfusion (IR in Type 2 diabetic BBZ rat hearts. Specifically, we investigated, (a changes in glucose flux via cardiac AR and SDH as a function of diabetes duration, (b ischemic injury and function after IR, (c the effect of inhibition of AR or SDH on ischemic injury and function. Hearts isolated from BBZ rats, after 12 weeks or 48 weeks diabetes duration, and their non-diabetic littermates, were subjected to IR protocol. Myocardial function, substrate flux via AR and SDH, and tissue lactate:pyruvate (L/P ratio (a measure of cytosolic NADH/NAD+, and lactate dehydrogenase (LDH release (a marker of IR injury were measured. Zopolrestat, and CP-470,711 were used to inhibit AR and SDH, respectively. Myocardial sorbitol and fructose content, and associated changes in L/P ratios were significantly higher in BBZ rats compared to non-diabetics, and increased with disease duration. Induction of IR resulted in increased ischemic injury, reduced ATP levels, increases in L/P ratio, and poor cardiac function in BBZ rat hearts, while inhibition of AR or SDH attenuated these changes and protected hearts from IR injury. These data indicate that AR and SDH are key modulators of myocardial IR injury in BBZ rat hearts and that inhibition of polyol pathway could in principle be used as a therapeutic adjunct for protection of ischemic myocardium in Type 2 diabetic patients.

  19. Mangafodipir protects against hepatic ischemia-reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Romain Coriat

    Full Text Available INTRODUCTION AND AIM: Mangafodipir is a contrast agent used in magnetic resonance imaging that concentrates in the liver and displays pleiotropic antioxidant properties. Since reactive oxygen species are involved in ischemia-reperfusion damages, we hypothesized that the use of mangafodipir could prevent liver lesions in a mouse model of hepatic ischemia reperfusion injury. Mangafodipir (MnDPDP was compared to ischemic preconditioning and intermittent inflow occlusion for the prevention of hepatic ischemia-reperfusion injury in the mouse. METHODS: Mice were subjected to 70% hepatic ischemia (continuous ischemia for 90 min. Thirty minutes before the ischemic period, either mangafodipir (10 mg/kg or saline was injected intraperitoneally. Those experimental groups were compared with one group of mice preconditioned by 10 minutes' ischemia followed by 15 minutes' reperfusion, and one group with intermittent inflow occlusion. Hepatic ischemia-reperfusion injury was evaluated by measurement of serum levels of aspartate aminotransferase (ASAT activity, histologic analysis of the livers, and determination of hepatocyte apoptosis (cytochrome c release, caspase 3 activity. The effect of mangafodipir on the survival rate of mice was studied in a model of total hepatic ischemia. RESULTS: Mangafodipir prevented experimental hepatic ischemia-reperfusion injuries in the mouse as indicated by a reduction in serum ASAT activity (P<0.01, in liver tissue damages, in markers of apoptosis (P<0.01, and by higher rates of survival in treated than in untreated animals (P<0.001. The level of protection by mangafodipir was similar to that observed following intermittent inflow occlusion and higher than after ischemic preconditioning. CONCLUSIONS: Mangafodipir is a potential new preventive treatment for hepatic ischemia-reperfusion injury.

  20. Reduced silent information regulator 1 signaling exacerbates myocardial ischemia-reperfusion injury in type 2 diabetic rats and the protective effect of melatonin.

    Science.gov (United States)

    Yu, Liming; Liang, Hongliang; Dong, Xiaochao; Zhao, Guolong; Jin, Zhenxiao; Zhai, Mengen; Yang, Yang; Chen, Wensheng; Liu, Jincheng; Yi, Wei; Yang, Jian; Yi, Dinghua; Duan, Weixun; Yu, Shiqiang

    2015-10-01

    Diabetes mellitus (DM) increases myocardial oxidative stress and endoplasmic reticulum (ER) stress. Melatonin confers cardioprotective effect by suppressing oxidative damage. However, the effect and mechanism of melatonin on myocardial ischemia-reperfusion (MI/R) injury in type 2 diabetic state are still unknown. In this study, we developed high-fat diet-fed streptozotocin (HFD-STZ) rat, a well-known type 2 diabetic model, to evaluate the effect of melatonin on MI/R injury with a focus on silent information regulator 1 (SIRT1) signaling, oxidative stress, and PERK/eIF2α/ATF4-mediated ER stress. HFD-STZ treated rats were exposed to melatonin treatment in the presence or the absence of sirtinol (a SIRT1 inhibitor) and subjected to MI/R surgery. Compared with nondiabetic animals, type 2 diabetic rats exhibited significantly decreased myocardial SIRT1 signaling, increased apoptosis, enhanced oxidative stress, and ER stress. Additionally, further reduced SIRT1 signaling, aggravated oxidative damage, and ER stress were found in diabetic animals subjected to MI/R surgery. Melatonin markedly reduced MI/R injury by improving cardiac functional recovery and decreasing myocardial apoptosis in type 2 diabetic animals. Melatonin treatment up-regulated SIRT1 expression, reduced oxidative damage, and suppressed PERK/eIF2α/ATF4 signaling. However, these effects were all attenuated by SIRT1 inhibition. Melatonin also protected high glucose/high fat cultured H9C2 cardiomyocytes against simulated ischemia-reperfusion injury-induced ER stress by activating SIRT1 signaling while SIRT1 siRNA blunted this action. Taken together, our study demonstrates that reduced cardiac SIRT1 signaling in type 2 diabetic state aggravates MI/R injury. Melatonin ameliorates reperfusion-induced oxidative stress and ER stress via activation of SIRT1 signaling, thus reducing MI/R damage and improving cardiac function.

  1. The neuroprotection of Aspirin on Cerebral Ischemia-Reperfusion rats

    Institute of Scientific and Technical Information of China (English)

    QiuLi-ying; YuJuan; ChenChong-hong; ZhouYu

    2004-01-01

    AIM: Aspirin (aeetylsalicylic acid, ASA as a nonsteroidal anti-inflammatory drug not only has well-established efficacy in anti-thromboxane, but also has direct neuroprotective effect. In this study, we design to investigate its neuroprotective effect on focal cerebral ischemia-reperfusion injury (CIRI rats, and its effect on ATP level from occluded brain tis-

  2. Glycine preconditioning to ameliorate pulmonary ischemia reperfusion injury in rats

    NARCIS (Netherlands)

    Sommer, Sebastian-Patrick; Sommer, Stefanie; Sinha, Bhanu; Leyh, Rainer G.

    2012-01-01

    This study examines the impact of glycine (Gly) preconditioning on ischemia reperfusion (IR)-induced pulmonary mitochondrial injury to research the previously, in pig lungs, demonstrated Gly-dependent amelioration of pulmonary IR injury. IR injury was induced in rat lungs by 30 min pulmonary hilum c

  3. Cardioprotective effects of anesthetic preconditioning in rats with ischemia-reperfusion injury: propofol versus isoflurane

    Institute of Scientific and Technical Information of China (English)

    Xing TAO; Ling-qiao LU; Qing XU; Shu-ren LI; Mao-tsun LIN

    2009-01-01

    Objective: We compare the cardioprotective effects of anesthetic preconditioning by propofol and/or isoflurane in rats with ischemia-reperfusion injury. Methods: Male adult Wistar rats were subjected to 60 min of anterior descending coronary artery occlusion followed by 120 min of reperfusion. Before the long ischemia, anesthetics were administered twice for 10 min followed by 5 min washout. Isoflurane was inhaled at I MAC (0.016) in I group, whereas propofol was inhaled intravenously at 37.5 mg/(kg.h) in P group. A combination ofisoflurane and propofol was administered simultaneously in I+P group. Results: In control (without anesthetic preconditioning, C group), remarkable myocardial infarction and apoptosis accompanied by an increased level of cardiac troponin T were noted 120 rain after ischemia-reperfusion. As compared to those of control group, I and P groups had comparable cardioprotection. In addition, I+P group shares with I and P groups the comparable cardioprotective effects in terms of myocardial infarction and cardiac troponin T elevation. Conclusion: A combination of isoflurane and propofol produced no ad-ditional cardioprotection.

  4. Donor pretreatment with carbon monoxide prevents ischemia/reperfusion injury following heart transplantation in rats

    Directory of Open Access Journals (Sweden)

    Noritomo Fujisaki

    2016-01-01

    Full Text Available Because inhaled carbon monoxide (CO provides potent anti-inflammatory and antioxidant effects against ischemia reperfusion injury, we hypothesized that treatment of organ donors with inhaled CO would decrease graft injury after heart transplantation. Hearts were heterotopically transplanted into syngeneic Lewis rats after 8 hours of cold preservation in University of Wisconsin solution. Donor rats were exposed to CO at a concentration of 250 parts per million for 24 hours via a gas-exposure chamber. Severity of myocardial injury was determined by total serum creatine phosphokinase and troponin I levels at three hours after reperfusion. In addition, Affymetrix gene array analysis of mRNA transcripts was performed on the heart graft tissue prior to implantation. Recipients of grafts from CO-exposed donors had lower levels of serum troponin I and creatine phosphokinase; less upregulation of mRNA for interleukin-6, intercellular adhesion molecule-1, and tumor necrosis factor-α; and fewer infiltrating cells. Although donor pretreatment with CO altered the expression of 49 genes expressly represented on the array, we could not obtain meaningful data to explain the mechanisms by which CO potentiated the protective effects.Pretreatment with CO gas before organ procurement effectively protected cardiac grafts from ischemia reperfusion-induced injury in a rat heterotopic cardiac transplant model. A clinical report review indicated that CO-poisoned organ donors may be comparable to non-poisoned donors.

  5. Beneficial properties of selenium incorporated guar gum nanoparticles against ischemia/reperfusion in cardiomyoblasts (H9c2).

    Science.gov (United States)

    Soumya, R S; Vineetha, V P; Salin Raj, P; Raghu, K G

    2014-11-01

    Nanotechnology for the treatment and diagnosis has been emerging recently as a potential area of research and development. In the present study, selenium incorporated guar gum nanoparticles have been prepared by nanoprecipitation and characterized by transmission electron microscopy and particle size analysis. The nanoparticles were screened for antioxidant potential (metal chelation, total reducing power and hydroxyl radical scavenging activity) and were evaluated against the cell line based cardiac ischemia/reperfusion model with special emphasis on oxidative stress and mitochondrial parameters. The cell based cardiac ischemia model was employed using H9c2 cell lines. Investigations revealed that there was a significant alteration (P ≤ 0.05) in the innate antioxidant status (glutathione↓, glutathione peroxidase↓, thioredoxin reductase↓, superoxide dismutase↓, catalase↓, lipid peroxidation↑, protein carbonyl↑, xanthine oxidase↑ and caspase 3 activity↑), mitochondrial functions (reactive oxygen species generation, membrane potential, and pore opening) and calcium homeostasis (calcium ATPase and intracellular calcium overload) during both ischemia and reperfusion. For comparative evaluation, selenium, guar gum and selenium incorporated guar gum nanoparticles were evaluated for their protective properties against ischemia/reperfusion. The study reveals that selenium incorporated guar gum nanoparticles were better at protecting the cells from ischemia/reperfusion compared to selenium and guar gum nanoparticles. The potent antioxidant capability shown by the sample in in vitro assays may be the biochemical basis of its better biological activity. Further, the nanodimensions of the particle may be the additional factor responsible for its better effect.

  6. Tempol protects the gallbladder against ischemia/reperfusion.

    Science.gov (United States)

    Gomez-Pinilla, Pedro J; Camello, Pedro J; Tresguerres, Jesus A F; Pozo, María José

    2010-06-01

    Impairment in gallbladder emptying, increase in residual volume, and reduced smooth muscle contractility are hallmarks of acute acalculous cholecystitis and seem to be related to ischemia/reperfusion (I/R). This study was designed to determine the effects of tempol, a general antioxidant, on I/R-induced changes in gallbladder contractile capacity, the mechanisms involved in the contractile process, and the level of inflammatory mediators. Experimental gallbladder I/R was induced in male guinea pigs by common bile duct ligation for 2 days, then a deligation of the duct was performed and after 2 days the animals were sacrificed. A group of animals was treated with tempol, administered in the drinking water at 1 mmol/l for 10 days prior the bile duct ligation and until animal sacrifice. Isometric tension recordings showed that KCl and cholecystokinin-induced contractions were impaired by I/R, which correlated with decreased F-actin content and detrimental effects on Ca(2+) influx. In addition, I/R depolarized mitochondrial membrane potential, as indicated by the reduction of the heterogeneity of the rhodamine123 fluorescence signal, and increased the expression of NF-kappaB, COX-2, and iNOS. Tempol treatment improved contractility via normalization of Ca(2+) handling and improvement of F-actin content. Moreover, the antioxidant ameliorated mitochondrial polarity and normalized the expression levels of the inflammatory mediators. These results show that antioxidant treatment protects the gallbladder from I/R, indicating the potential therapeutic benefits of tempol in I/R injury.

  7. Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Kruse, Lars Schack; Berchtold, Lukas Adrian

    2017-01-01

    of proteins (pERK1/2, prepro-endothelin-1, endothelin-1, and endothelin ETA and ETB receptors) were analysed by Western blot and immunohistochemistry. We found that pERK1/2 was significantly augmented in the ischemic area 3 hours after ischemia-reperfusion; this correlated with increased ETB receptor and ET-1...... gene expressions in ischemic myocardium and in coronary arteries. ETB receptor-mediated vasoconstriction was observed to be increased in coronary arteries 24 hours after ischemia-reperfusion. Treatment with U0126 reduced pERK1/2, expression of ET-1 and ETB receptor, and ETB receptor...

  8. Riluzole improves outcome following ischemia-reperfusion injury to the spinal cord by preventing delayed paraplegia.

    Science.gov (United States)

    Wu, Y; Satkunendrarajah, K; Fehlings, M G

    2014-04-18

    The spinal cord is vulnerable to ischemic injury due to trauma, vascular malformations and correction of thoracic aortic lesions. Riluzole, a sodium channel blocker and anti-glutamate drug has been shown to be neuroprotective in a model of ischemic spinal cord injury, although the effects in clinically relevant ischemia/reperfusion models are unknown. Here, we examine the effect of riluzole following ischemia-reperfusion injury to the spinal cord. Female rats underwent high thoracic aortic balloon occlusion to produce an ischemia/reperfusion injury. Tolerance to ischemia was evaluated by varying the duration of occlusion. Riluzole (8mg/kg) was injected intraperitoneally 4h after injury. Locomotor function (Basso, Beattie and Bresnahan (BBB) scale) was assessed at 4h, 1day, and 5days post-ischemia. Spinal cords were extracted and evaluated for neuronal loss using immunohistology (choline acetyltransferase (ChAT) and neuronal nuclei (NeuN)), inflammation (CD11b), astrogliosis (glial fibrillary acidic protein - GFAP) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Ischemic injury lasting between 5.5 and 6.75min resulted in delayed paraplegia, whereas longer ischemia induced immediate paraplegia. When riluzole was administered to rats that underwent 6min of occlusion, delayed paraplegia was prevented. The BBB score of riluzole-treated rats was 11.14±4.85 compared with 1.86±1.07 in control animals. Riluzole also reduced neuronal loss, infiltration of microglia/macrophages and astrogliosis in the ventral horn and intermediate zone of the gray matter. In addition, riluzole reduced apoptosis of neurons in the dorsal horn of the gray matter. Riluzole has a neuroprotective effect in a rat model of spinal cord injury/reperfusion when administered up to 4h post-injury, a clinically relevant therapeutic time window.

  9. Sildenafil citrate (viagra) induces cardioprotective effects after ischemia/reperfusion injury in infant rabbits.

    Science.gov (United States)

    Bremer, Yvonne A; Salloum, Fadi; Ockaili, Ramzi; Chou, Eric; Moskowitz, William B; Kukreja, Rakesh C

    2005-01-01

    Infants undergoing surgery for congenital heart disease are at risk for myocardial ischemia during cardiopulmonary bypass, circulatory arrest, or low-flow states. The purpose of this study was to demonstrate the effects of sildenafil, a selective phosphodiesterase-5 (PDE-5) inhibitor on myocardial functional improvement and infarct size reduction during ischemia/reperfusion injury in infant rabbits. Infant rabbits (aged 8 wk) were treated with sildenafil citrate (0.7 mg/kg i.v.) or normal saline 30 min before sustained ischemia for 30 min and reperfusion for 3 h. Transesophageal echocardiography (TEE) was used to assess left ventricular cardiac output (LVCO) and aortic velocity time integral (VTI). After ischemia/reperfusion, risk area was demarcated by Evan's blue dye and infarct size determined by computer morphometry of triphenyltetrazolium chloride-stained sections. The sildenafil-treated group had preservation and elevation in LVCO (143% of baseline, p sildenafil group compared with controls (n = 6/group, p sildenafil-treated group had significant reduction in infarct size (15.5 +/- 1.2 versus 33 +/- 2.3 in the saline group, % risk area, mean +/- SEM, n = 10-15/group, p sildenafil citrate promotes myocardial protection in infant rabbits as evidenced by postischemic preservation and elevation in LVCO and aortic VTI and reduction in infarct size.

  10. Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng; XIANG Meng; MENG Dan; SUN Ning; CHEN Si-feng

    2016-01-01

    Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine .In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia /reperfusion injury based on the reports pub-lished between January 2000 and September 2015 and indexed in the PubMed and Web of Science databases .The effect of exosomes on heart function was evaluated according to the following parameters:the area at risk as a percentage of the left ventricle , infarct size as a percentage of the area at risk , infarct size as a percentage of the left ventricle , left ventricular ejection fraction , left ventricular frac-tion shortening , end-diastolic volume , and end-systolic volume .Our analysis indicated that the currently available evidence confirmed the therapeutic potential of mesenchymal stem cell-secreted exosomes in the improvement of heart function .However , further mechanis-tic studies, therapeutic safety and clinical trials are required for optimization and validation of this approach to cardiac regeneration after ischemia/reperfusion injury .

  11. 无创性延迟肢体缺血预适应保护糖尿病大鼠缺血/再灌注心肌%Cardiac protective effects of noninvasive delayed limb ischemic preconditioning against ischemia-reperfusion injury in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    朱学慧; 娄建石; 李玉梅; 袁恒杰; 吴艳娜; 康毅; 焦建杰

    2009-01-01

    AIM: To study the effects of noninvasive delayed limb ischemic preconditioning (NDLIP) on myocardium ischemia-reperfusion injury in diabetic rats. METHODS: The acute diabetic rat models were induced by injecting streptozotocin (STZ) through vena caudalis. The diabetic rats were randomly divided into ischemia-reperfusion (I/R) group, cardiac ischemic preconditioning (CIP) group and NDLIP group. Rats in NDLIP group subjected to NDLIP left hind limb for 3 days, and at the fourth day, all rats were subjected to myocardial ischemia/reperfusion injury. Rats in CIP group were myocardial ischemic preconditioning before ischemia. Blood pressure and electrocardiogram were monitored continuously. The effects of myocardial electrophysiology function, myocardial infarction size and myocardial enzyme were observed in the diabetic rats with NDLIP after myocardium ischemia-reperfusion injury, and the superoxide dismutase(SOD), the activities of glutathion peroxidase(GSH-Px), the content of mal-onaldehyde in rats muscular tissues were detected. RESULTS: The levels of blood glucose were increased and the body weights were decreased in diabetic model rats(P < 0.01). Compared with I/R group, the elevation extent of ST segment in NDLIP and CIP group were degraded, the emergence time of ventricular premature contraction and ventricular tachycardia were delayed and the duration of both was shortened, and the incidence of ventricular arrhythmia was decreased (P < 0.05), the myocardial infarct size was reduced(P < 0.01), the releases of cadiocyte lactate dehydrogenase (LDH), creatine kinase (CK), and creatine kinase isozyme were decreased (P<0.05, P < 0.01), the activities of SOD and GSH-Px in rats muscular tissues were increased (P < 0.01) and the content of MDA was decreased in CIP and NDLIP groups(P < 0.05, P <0.01). CONCLUSION: NDLIP can relieve cadiocyte damage induced by I/R injury in the diabetic rats and the leakage of cardiac muscle enzyme is decreased, and the physiologic

  12. Cardioprotective Effects of Salvianolic Acid A on Myocardial Ischemia-Reperfusion Injury In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Huaying Fan

    2012-01-01

    Full Text Available Salvianolic acid A (SAA, one of the major active components of Danshen that is a traditional Chinese medicine, has been reported to possess protective effect in cardiac diseases and antioxidative activity. This study aims to investigate the cardioprotection of SAA in vivo and in vitro using the model of myocardial ischemia-reperfusion in rat and hydrogen peroxide (H2O2-induced H9c2 rat cardiomyoblasts apoptosis. It was found that SAA significantly limited infarct size of ischemic myocardium when given immediately prior to reperfusion. SAA also significantly suppressed cellular injury and apoptotic cell death. Additionally, the results of western blot and phospho-specific antibody microarray analysis showed that SAA could up-regulate Bcl-2 expression and increase the phosphorylation of proteins such as Akt, p42/p44 extracellular signal-related kinases (Erk1/2, and their related effectors. The phosphorylation of those points was related to suppress apoptosis. In summary, SAA possesses marked protective effect on myocardial ischemia-reperfusion injury, which is related to its ability to reduce myocardial cell apoptosis and damage induced by oxidative stress. The protection is achieved via up-regulation of Bcl-2 expression and affecting protein phosphorylation. These findings indicate that SAA may be of value in cardioprotection during myocardial ischemia-reperfusion injury, which provide pharmacological evidence for clinical application.

  13. Cardioprotective Effects of Salvianolic Acid A on Myocardial Ischemia-Reperfusion Injury In Vivo and In Vitro

    Science.gov (United States)

    Fan, Huaying; Yang, Liu; Fu, Fenghua; Xu, Hui; Meng, Qinggang; Zhu, Haibo; Teng, Lirong; Yang, Mingyan; Zhang, Leiming; Zhang, Ziliang; Liu, Ke

    2012-01-01

    Salvianolic acid A (SAA), one of the major active components of Danshen that is a traditional Chinese medicine, has been reported to possess protective effect in cardiac diseases and antioxidative activity. This study aims to investigate the cardioprotection of SAA in vivo and in vitro using the model of myocardial ischemia-reperfusion in rat and hydrogen peroxide (H2O2)-induced H9c2 rat cardiomyoblasts apoptosis. It was found that SAA significantly limited infarct size of ischemic myocardium when given immediately prior to reperfusion. SAA also significantly suppressed cellular injury and apoptotic cell death. Additionally, the results of western blot and phospho-specific antibody microarray analysis showed that SAA could up-regulate Bcl-2 expression and increase the phosphorylation of proteins such as Akt, p42/p44 extracellular signal-related kinases (Erk1/2), and their related effectors. The phosphorylation of those points was related to suppress apoptosis. In summary, SAA possesses marked protective effect on myocardial ischemia-reperfusion injury, which is related to its ability to reduce myocardial cell apoptosis and damage induced by oxidative stress. The protection is achieved via up-regulation of Bcl-2 expression and affecting protein phosphorylation. These findings indicate that SAA may be of value in cardioprotection during myocardial ischemia-reperfusion injury, which provide pharmacological evidence for clinical application. PMID:21789047

  14. Cardioprotective Effect of Aloe vera Biomacromolecules Conjugated with Selenium Trace Element on Myocardial Ischemia-Reperfusion Injury in Rats.

    Science.gov (United States)

    Yang, Yang; Yang, Ming; Ai, Fen; Huang, Congxin

    2017-06-01

    The present study was undertaken to evaluate the cardioprotection potential and underlying molecular mechanism afforded by a selenium (Se) polysaccharide (Se-AVP) from Aloe vera in the ischemia-reperfusion (I/R) model of rats in vivo. Myocardial I/R injury was induced by occluding the left anterior descending coronary artery (LAD) for 30 min followed by 2-h continuous reperfusion. Pretreatment with Se-AVP (100, 200, and 400 mg/kg) attenuated myocardial damage, as evidenced by reduction of the infarct sizes, increase in serum and myocardial endogenous antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT)), and decrease in the malondialdehyde (MDA) level in the rats suffering I/R injury. This cardioprotective activity afforded by Se-AVP is further supported by the decreased levels of cardiac marker enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as the rise of myocardial Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in I/R rats. Additionally, cardiomyocytic apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining and the result showed that the percent of TUNEL-positive cells in myocardium of Se-AVP-treated groups was lower than I/R rats. In conclusion, we clearly demonstrated that Se-AVP had a protective effect against myocardial I/R injury in rats by augmenting endogenous antioxidants and protecting rat hearts from oxidative stress-induced myocardial apoptosis.

  15. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Liu, Y H; Yang, X P; Sharov, V G; Sigmon, D H; Sabbath, H N; Carretero, O A

    1996-01-01

    After transient episodes of ischemia, benefits of thrombolytic or angioplastic therapy may be limited by reperfusion injury. Angiotensin-converting enzyme inhibitors protect the heart against ischemia/reperfusion injury, an effect mediated by kinins. We examined whether the protective effect of the angiotensin-converting enzyme inhibitor ramiprilat on myocardial ischemia/reperfusion is due to kinin stimulation of prostaglandin and/or nitric oxide release. The left anterior descending coronary artery of Lewis inbred rats was occluded for 30 minutes, followed by 120 minutes of reperfusion. Immediately before reperfusion rats were treated with vehicle, ramiprilat, or the angiotensin II type 1 receptor antagonist losartan. We tested whether pretreatment with the kinin receptor antagonist Hoe 140, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester, or the cyclooxygenase inhibitor indomethacin blocked the effect of ramiprilat on infarct size and reperfusion arrhythmias. In controls, infarct size as a percentage of the area at risk was 79 +/- 3%; ramiprilat reduced this to 49 +/- 4% (P < .001), but losartan had little effect (74 +/- 6%, P = NS). Pretreatment with Hoe 140, NG-nitro-L-arginine methyl ester, or indomethacin abolished the beneficial effect of ramiprilat. Compared with the 30-minute ischemia/120-minute reperfusion group, nonreperfused hearts with 30 minutes of ischemia had significantly smaller infarct size as a percentage of the area at risk, whereas in the 150-minute ischemia group it was significantly larger. This suggests that reperfusion caused a significant part of the myocardial injury, but it also suggests that compared with prolonged ischemia, reperfusion salvaged some of the myocardium. Ventricular arrhythmias mirrored the changes in infarct size. Thus, angiotensin-converting enzyme inhibitors protect the myocardium against ischemia/reperfusion injury and arrhythmias; these beneficial effects are mediated primarily by a kinin

  16. Cardioprotection by polysaccharide sulfate against ischemia/reperfusion injury in isolated rat hearts

    Institute of Scientific and Technical Information of China (English)

    Ying YANG; Shen-jiang HU; Liang LI; Guo-ping CHEN

    2009-01-01

    Aim: Polysaccharide sulfate (PSS) is a new type of heparinoid synthesized with alginic acid as the basic material and then by chemical introduction of effective groups. Although PSS is successfully applied in ischemic cardio-cerebrovascular dis-ease, its effect on cardiac function after ischemia/reperfusion (I/R) injury has previously not been investigated. The aim of the present study was to investigate whether PSS can protect the heart from I/R injury and the underlying mechanism of protection. Methods: Isolated rat hearts were perfused (Langendorff) and subjected to 20 min global ischemia followed by 60 min rep-effusion with Kreb's Henseleit solution or PSS (0.3-100 mg/L). Myocardial contractile function was continuously recorded. Creatine kinase (CK) and lactate dehydrogenase (LDH) leakage were measured. Tumor necrosis factor-α (TNF-α) expres-sion in cardiomyocytes was investigated. Western blot analysis for extracellular regulated kinases (ERKs), c-jun amino-terminal kinase (INKs) and p38 mitogen-activated protein kinase (MAPK) activity was performed. Results: After I/R, cardiac contractility decreased, CK and LDH levels increased in the coronary effluent, and TNF-α expression increased in cardiomyocytes. PSS administration at concentrations of 1-30 mg/L improved cardiac contractility, reduced CK and LDH release and inhibited TNF-α production. Phosphorylated-p38MAPK (p-p38MAPK) and p-p54/p46-JNK increased in I/R rat hearts but diminished in PSS (1-30 mg/L) treated hearts. P-p44/p42-ERK levels were unchanged. In contrast, high concentrations of PSS (100 mg/L) had adverse effects that caused a worsening of heart function. Conclusion: PSS has dose-dependent cardioprotective effects on the rat heart after I/R injury. The beneficial effects may be mediated through normalization of the activity of p38 MAPK and JNK pathways as well as controlling the level of TNF-α expression.

  17. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury.

    Science.gov (United States)

    Okudan, N; Belviranlı, M; Gökbel, H; Oz, M; Kumak, A

    2013-07-15

    The aim of this study was to investigate the effects curcumin on inflammation and oxidative stress markers in the intestinal ischemia reperfusion (IIR) injury induced rats. Rats were divided into four groups: sham (S), intestinal IR (IIR), curcumin plus sham (CS), and curcumin plus intestinal IR (CIIR). Curcumin was given 200 mg kg⁻¹ for 20 days. IIR was produced by 45 min of intestinal ischemia followed by a 120 min of reperfusion. Although interleukin-6 levels tended to increase in IIR group tumor necrosis factor-α levels were not different. Intestinal myeloperoxidase activity in CS group was lower than IIR group. In intestine and heart tissues, malondialdehyde levels in CS and CIIR groups were lower than S and IIR groups. Superoxide dismutase activity in CIIR group was higher than IIR group in intestine and lung tissues. Curcumin has a protective role against ischemia reperfusion injury.

  18. The complement system in ischemia-reperfusion injuries.

    Science.gov (United States)

    Gorsuch, William B; Chrysanthou, Elvina; Schwaeble, Wilhelm J; Stahl, Gregory L

    2012-11-01

    Tissue injury and inflammation following ischemia and reperfusion of various organs have been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field.

  19. Oral delivery of insulin withDesmodium gangeticum root aqueous extract protects rat hearts against ischemia reperfusion injury in streptozotocin induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Gino A Kurian; Jose Paddikkala

    2010-01-01

    Objective:To evaluate the effect of insulin administered via oral route with the help of aqueous extract ofDesmodium gangeticum (DG) root in rendering cardio protection against ischemia reperfusion injury in diabetic rats.Methods: Diabetes mellitus was induced in rats by theβ-cell toxin, streptozotocin (STZ, 60 mg/kg). Isolated rat (IR) heart was used to investigate the effect of insulin mixed DG pretreatment on ischemia reperfusion injury. Mitochondrial respiratory enzymes and microsomal enzymes were used to assess the metabolic recovery of myocardium. Cardiac marker enzymes were used to find the functional recovery, which were compared with that of the STZ treated IR rats.Results: Compared with IR control group, rat treated with insulin mixed DG showed a significant functional and metabolic recovery of myocardium from the insult of ischemia reperfusion. Even though orally administered insulin mixed DG displayed a slow but prolonged hypoglycemic effect, the cardio protection it provided was more significant than when it was given intra peritoneal. Furthermore the above result indicates that insulin mixed DG can overcome the barriers in the gastrointestinal tract and be absorbed.Conclusions: The above results indicate the efficacy of insulin mixed DG in protecting the heart from ischemia reperfusion induced injury in diabetic rats. Furthermore the study gives additional information that herbal extracts can be used to transport insulin across the membrane and found to be a feasible approach for developing the oral delivery of insulin, as well as other peptide drugs.

  20. Neuroprotective effects of atorvastatin against cerebral ischemia/reperfusion injury through the inhibition of endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Jian-wen Yang; Zhi-ping Hu

    2015-01-01

    Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cere-bral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the speciifc inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats in-tragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental ifndings indi-cate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway.

  1. Dapagliflozin, SGLT2 Inhibitor, Attenuates Renal Ischemia-Reperfusion Injury

    OpenAIRE

    Yoon-Kyung Chang; Hyunsu Choi; Jin Young Jeong; Ki-Ryang Na; Kang Wook Lee; Beom Jin Lim; Dae Eun Choi

    2016-01-01

    Dapagliflozin, a new type of drug used to treat diabetes mellitus (DM), is a sodium/glucose cotransporter 2 (SGLT2) inhibitor. Although some studies showed that SGLT2 inhibition attenuated reactive oxygen generation in diabetic kidney the role of SGLT2 inhibition is unknown. We evaluated whether SLT2 inhibition has renoprotective effects in ischemia-reperfusion (IR) models. We evaluated whether dapagliflozin reduces renal damage in IR mice model. In addition, hypoxic HK2 cells were treated wi...

  2. 芬太尼预处理对兔心肌缺血再灌注后心肌梗死范围及心功能的影响%Effects of pretreatment with fentanyl on myocardial infarction size and cardiac function in rabbits with acute myocardial ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    郑向明; 孟凡民; 王春亭

    2012-01-01

    Objective To study the myocardial protective effect of pretreatment with fentanyl on rabbits with acute myocardial ischemia reperfusion injury.Methods Twenty-four male New Zealand White rabbits were randomly divided into 3 groups:group C ( acute myocardial ischemia reperfusion injury group),group F ( fentanyl group) and group N-F ( naloxone-fentanyl group),with 8 cases in each group.All rabbits experienced 30 min of regional ischemia through the occlusion of the left anterior descending coronary artery( LAD),followed by 120 min of reperfusion.The rabbits in C group were only subjected to the above ischemia/reperfusion (I/R) sequence.The rabbits in Group F were intravenously injected with fentany1 0.15 mg/kg at 15 minutes before the coronary occlusion.The rabbits in Group N-F were intravenously injected with naloxone 3 mg/kg,followed by 70 μg/(kg · min) infusion before reperfusion and were intravenously injected with fentanyl 0.15 mg/kg at 15 min before myocardial ischemia.Heart rate(HR),left ventricular systolic pressure( LVSP),left ventricular end diastolic pressure( LVEDP),maximum positive and minimum negative left ventricular pressure derivatives ( + dp/dt and-dp/dt) were continuously monitored and recorded at baseline ( T0 ),30 min after ischemia( T1 ),and 10 min ( T2 ),30 min(T3 ),120 min(T4) after reperfusion during I/R process.After 120 min reperfusion,hearts were removed for the measurement of myocardial ischemia and infarction size.Results Compared with the baseline(T0),LVSP,± dp/dt decreased whereas LVEDP increased significantly during T1-T4 (P <0.05 ).There were no significant differences in homodynamic parameters between group C and group N F ( P > 0.05 ).In F group,the LVSP and + dp/dt were significantly higher than those of group C and group N-F after 30 min in reperfusion ( P < 0.05 ) and the infarction size and weight were smaller (P <0.01 ).Conclusions Pretreatment with fentanyl has protective effect against ischemia/reperfusion injury

  3. Preconditioning of intravenous parecoxib attenuates focal cerebral ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Na; GUO Qu-lian; YE Zhi; XIA Ping-ping; WANG E; YUAN Ya-jing

    2011-01-01

    Background Several studies suggest that oyclooxygenase-2 (COX-2) contributes to the delayed progression of ischemic brain damage. This study was designed to investigate whether COX-2 inhibition with parecoxib reduces focal cerebral ischemia/reperfusion injury in rats.Methods Ninety male Sprague-Dawley rats were randomly assigned to three groups: the sham group, ischemia/reperfusion (I/R) group and parecoxib group. The parecoxib group received 4 mg/kg of parecoxib intravenously via the vena dorsalis penis 15 minutes before ischemia and again at 12 hours after ischemia. The neurological deficit scores (NDSs) were evaluated at 24 and 72 hours after reperfusion. The rats then were euthanized. Brains were removed and processed for hematoxylin and eosin staining, Nissl staining, and measurements of high mobility group Box 1 protein (HMGB1) and tumor necrosis factor-a (TNF-α) levels. Infarct volume was assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining.Results The rats in the I/R group had lower NDSs (P <0.05), larger infarct volume (P <0.05), lower HMGB1 levels (P<0.05), and higher TNF-α levels (P<0.05) compared with those in the sham group. Parecoxib administration significantly improved NDSs, reduced infarct volume, and decreased HMGB1 and TNF-α levels (P <0.05).Conclusions Pretreatment with intravenous parecoxib was neuroprotective. Its effects may be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory mediators.

  4. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  5. Salidroside attenuates myocardial ischemia-reperfusion injury via PI3K/Akt signaling pathway.

    Science.gov (United States)

    Xu, Mao-Chun; Shi, Hai-Ming; Gao, Xiu-Fang; Wang, Hao

    2013-01-01

    To investigate the cardioprotective effects of salidroside on myocardial ischemia-reperfusion injury (IRI) in rabbits and the underlying action mechanisms in PI3K/Akt signaling pathway, a rabbit ischemia/reperfusion model was created by ligating the left anterior descending coronary arterial branch for 30 min and by releasing the ligature to allow reperfusion for 120 min. Salidroside or salidroside+PI3K inhibitor (LY294002) was administered via intracoronary injections at the onset of reperfusion. Apoptosis of cardiomyocytes was assessed by terminal dUTP nick-end labeling assay, and the expression of apoptosis-related proteins was observed by immunohistochemistry. The expressions of total Akt and phosphorylated Akt (p-Akt) were detected by western blot analysis. The results showed that intracoronary injection of salidroside at the onset of reperfusion markedly reduced the apoptosis of cardiomyocytes, significantly increasing Bcl-2 and p-Akt proteins expressions and decreasing Bax and caspase-3 expressions in the hearts subjected to ischemia followed by 120-min reperfusion. However, the anti-apoptotic effect induced by salidroside was inhibited by LY294002, which blocked the activation of Akt. These results suggested that intracoronary administration of salidroside at the onset of reperfusion could significantly reduce the IRI-induced apoptosis of cardiomyocytes, and this protective mechanism seemed to be mediated by the PI3K-Akt signaling pathway.

  6. Inhibition of mitochondria responsible for the anti-apoptotic effects of melatonin during ischemia-reperfusion

    Institute of Scientific and Technical Information of China (English)

    HAN Yi-xiang; ZHANG Sheng-hui; WANG Xi-ming; WU Jian-bo

    2006-01-01

    Objective: To investigate a possible mechanism responsible for anti-apoptotic effects of melatonin and provide theoretical evidences for clinical therapy. Methods: Ischemia-reperfusion mediated neuronal cell injury model was constructed in cerebellar granule neurons (CGNs) by deprivation of glucose, serum and oxygen in media. After ischemia, melatonin was added to the test groups to reach differential concentration during reperfusion. DNA fragmentation, mitochondrial transmembrane potential,mitochondrial cytochrome c release and caspase-3 activity were observed after subjecting cerebellar granule neurons to oxygen-glucose deprivation (OGD). Results: The results showed that OGD induced typical cell apoptosis change, DNA ladder and apoptosis-related alterations in mitochondrial functions including depression of mitochondrial transmembrane potential (its maximal protection ratio was 73.26%) and release of cytochrome c (its maximal inhibition ratio was 42.52%) and the subsequent activation of caspase-3 (its maximal protection ratio was 59.32%) in cytoplasm. Melatonin reduced DNA damage and inhibited release of mitochondrial cytochrome c and activation of caspase-3. Melatonin can strongly prevent the OGD-induced loss of the mitochondria membrane potential. Conclusion: Our findings suggested that the direct inhibition of mitochondrial pathway might essentially contribute to its anti-apoptotic effects in neuronal ischemia-reperfusion.

  7. Neuroprotective effects of KR-62980, a new PPARγ agonist, against chemical ischemia-reperfusion in SK-N-SH cells.

    Science.gov (United States)

    Kim, Ki Young; Cho, Hyun Sill; Lee, Su Hee; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2011-02-01

    PPARγ agonists exert neuroprotective effects against various types of brain injuries. In the present study, we investigated the effects of KR-62980, a new PPARγ agonist, and rosiglitazone on the neuronal cell death induced by chemical ischemia-reperfusion in SK-N-SH cells and their underlying molecular mechanisms. Both agonists inhibited chemical ischemia-reperfusion-induced cell death, and the effects were associated with anti-apoptotic action. KR-62980 and rosiglitazone suppressed NO and ROS formation, and N-acetyl-N-acetoxy-4-chlorobenzenesulfonamide, an NO generator, reversed the protective effects of the agonists on cell viability. In the agonist-induced anti-apoptotic process, PTEN expression was suppressed in parallel with increased Akt and ERK phosphorylation, whereas PD98059 (an ERK inhibitor) or wortmannin (a PI-3K inhibitor) abolished the cell survival by KR-62980 and rosiglitazone. All of the effects of KR-62980 and rosiglitazone appeared to be PPARγ-dependent because the effects were reversed by bisphenol A diglycidyl ether, a PPARγ antagonist, or by PPARγ knockdown. Our results demonstrate that two PPARγ agonists, KR-62980 and rosiglitazone, inhibited chemical ischemia-reperfusion-induced neuronal cell death by PPARγ-mediated anti-apoptotic and anti-oxidant mechanisms related to PTEN suppression and ERK phosphorylation.

  8. Effects of ischemic preconditioning and iloprost on myocardial ischemia-reperfusion damage in rats.

    Science.gov (United States)

    Ay, Yasin; Kara, Ibrahim; Aydin, Cemalettin; Ay, Nuray Kahraman; Teker, Melike Elif; Senol, Serkan; Inan, Bekir; Basel, Halil; Uysal, Omer; Zeybek, Rahmi

    2013-01-01

    This study investigates the effects of cardiac ischemic preconditioning and iloprost on reperfusion damage in rats with myocardial ischemia/reperfusion. 38 male Wistar Albino rats used in this study were divided into 5 groups. The control group (Group 1) (n=6), ischemia/reperfusion (IR) group (Group 2) (n=8), cardiac ischemic preconditioning (CIP) group (Group 3) (n=8), iloprost (ILO) group (Group 4) (n=8), and cardiac ischemic preconditioning + iloprost (CIP+ILO) group (Group 5) (n=8). Pre-ischemia, 15 minutes post-ischemia, 45 minutes post-reperfusion, mean blood pressure (MBP), and heart rates (HR) were recorded. The rate-pressure product (RPP) was calculated. Post-reperfusion plasma creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin (cTn) vlaues, and infarct size/area at risk (IS/AAR) were calculated from myocardial tissue samples. Arrhythmia and ST segment elevations were evaluated during the ischemia and reperfusion stages. Although the MBP, HR, RPP values, biochemical parameters of CK-MB and LDH levels, IS/AAR rates, ST segment elevation values were found to be similar in CIP and CIP+ILO groups and the IR and ILO groups (p>0.05), CIP-containing group values had a positively meaningful difference (pILO group. While mild-moderate findings of damage were observed in Group 3 and Group 5, severely findings of damage were releaved in Group 2 and Group 4. The arrhythmia score of the ILO group was meaningfully lower (F: 41.4, p<0.001) than the IR group. We can conclude that the effects of myocardial reperfusion damage can be reduced by cardiac ischemic preconditioning, intravenous iloprost reduced the incidence of ventricular arrhythmia associated with reperfusion, and its use with CIP caused no additional changes.

  9. miR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival.

    Science.gov (United States)

    Yang, Yanfei; Del Re, Dominic P; Nakano, Noritsugu; Sciarretta, Sebastiano; Zhai, Peiyong; Park, Jiyeon; Sayed, Danish; Shirakabe, Akihiro; Matsushima, Shoji; Park, Yongkyu; Tian, Bin; Abdellatif, Maha; Sadoshima, Junichi

    2015-10-23

    In Drosophila, the Hippo signaling pathway negatively regulates organ size by suppressing cell proliferation and survival through the inhibition of Yorkie, a transcriptional cofactor. Yes-associated protein (YAP), the mammalian homolog of Yorkie, promotes cardiomyocyte growth and survival in postnatal hearts. However, the underlying mechanism responsible for the beneficial effect of YAP in cardiomyocytes remains unclear. We investigated whether miR-206, a microRNA known to promote hypertrophy in skeletal muscle, mediates the effect of YAP on promotion of survival and hypertrophy in cardiomyocytes. Microarray analysis indicated that YAP increased miR-206 expression in cardiomyocytes. Increased miR-206 expression induced cardiac hypertrophy and inhibited cell death in cultured cardiomyocytes, similar to that of YAP. Downregulation of endogenous miR-206 in cardiomyocytes attenuated YAP-induced cardiac hypertrophy and survival, suggesting that miR-206 plays a critical role in mediating YAP function. Cardiac-specific overexpression of miR-206 in mice induced hypertrophy and protected the heart from ischemia/reperfusion injury, whereas suppression of miR-206 exacerbated ischemia/reperfusion injury and prevented pressure overload-induced cardiac hypertrophy. miR-206 negatively regulates Forkhead box protein P1 expression in cardiomyocytes and overexpression of Forkhead box protein P1 attenuated miR-206-induced cardiac hypertrophy and survival, suggesting that Forkhead box protein P1 is a functional target of miR-206. YAP increases the abundance of miR-206, which in turn plays an essential role in mediating hypertrophy and survival by silencing Forkhead box protein P1 in cardiomyocytes. © 2015 American Heart Association, Inc.

  10. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chun-juan Jiang

    2016-01-01

    Full Text Available Some in vitro experiments have shown that erythropoietin (EPO increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI and diffusion-weighted imaging (DWI have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.

  11. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury:a characteristic analysis using magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Chun-juan Jiang; Zhong-juan Wang; Yan-jun Zhao; Zhui-yang Zhang; Jing-jing Tao; Jian-yong Ma

    2016-01-01

    Somein vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival follow-ing cerebral ischemia. However, results fromin vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidencein vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our ifndings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment pro-vides imaging evidencein vivo for EPO treating cerebral ischemia/reperfusion injury.

  12. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging.

    Science.gov (United States)

    Jiang, Chun-Juan; Wang, Zhong-Juan; Zhao, Yan-Jun; Zhang, Zhui-Yang; Tao, Jing-Jing; Ma, Jian-Yong

    2016-09-01

    Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.

  13. Role of P-selectin and anti-P-selectin monoclonal antibody in apoptosis during hepatic/renal ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Pei Wu; Xiao Li; Tong Zhou; Wei Ming Wang; Nan Chen; De Chang Dong; Ming Jun Zhang; Jin Lian Chen

    2000-01-01

    AIM To evaluale the potential role of P-selectin and anti-P-selectin monoclonal antibody (mAb) in apoptosis during hepatic/renal ischemiareperfusion injury. METHODS Plasma P-selectin level, hepatic/renal P-selectin expression and cell apoptosis were detected in rat model of hepatic/ renal ischemia-reperfusion injury. ELISA, immunohistochemistry and TUNEL were used. Some ischemia-reperfusion rats were treated with antiP-selectin mAb. RESULTS Hepatic/ renal function insufficiency, up-regulated expression of P-selectin in plasma and hepatic/renal tissue, hepatic/renal histopathological damages and cell apoptosis were found in rats with hepatic/renal ischemiareperfusion injury, while these changes became less conspicuous in animals treated with anti-P selectin mAb. CONCLUSION P-selectin might mediate neutrophil infiltration and cell apoptosis and contribute to hepatic/renal ischemia-reperfusion injury, anti-P-selectin mAb might be an efficient approach for the prevention and treatment of hepatic/renal ischemia-reperfusion injury.

  14. Sphingosine-1-Phosphate reduces ischemia/reperfusion injury by phosphorylating the gap junction protein Connexin43

    DEFF Research Database (Denmark)

    Morel, Sandrine; Christoffersen, Christina; Axelsen, Lene N;

    2016-01-01

    AIM: Increasing evidence points to lipoprotein composition rather than reverse cholesterol transport in the cardioprotective properties of high-density lipoproteins (HDL). HDL binding to receptors at the surface of cardiomyocytes activates signalling pathways promoting survival, but downstream...... targets are largely unknown. Here, we investigate the pathways by which the Sphingosine-1-Phosphate (S1P) constituent of HDL limits cell death induced by cardiac ischemia/reperfusion (I/R). METHODS AND RESULTS: Apolipoprotein M (ApoM) transgenic (Apom-Tg) mice, in which plasma S1P is increased by 296......%, and wild-type (WT) mice were subjected to in vivo I/R. Infarct size, neutrophil infiltration into the infarcted area and serum Troponin I were less pronounced in Apom-Tg mice. In vitro experiments suggest that this cardioprotection depends on direct effects of S1P on cardiomyocytes, whereas leukocyte...

  15. Neuroprotective Effect of Phosphocreatine on Focal Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Tiegang Li

    2012-01-01

    Full Text Available Phosphocreatine (PCr is a natural compound, which can donate high-energy phosphate group to ADP to synthesize ATP, even in the absence of oxygen and glucose. At present, it is widely used in cardiac and renal ischemia-reperfusion (IR disease. In this study, to examine the protective efficacy of PCr against cerebral IR, disodium creatine phosphate was injected intravenously into rats before focal cerebral IR. Intracranial pressure (ICP, neurological score, cerebral infarction volume, and apoptotic neurons were observed. Expression of caspase-3 and aquaporin-4 (AQP4 was analyzed. Compared with IR group, rats pretreated with PCr had better neurologic score, less infarction volume, fewer ultrastructural histopathologic changes, reduced apoptosis, and lower aquaporin-4 level. In conclusion, PCr is neuroprotective after transient focal cerebral IR injury. Such a protection might be associated with apoptosis regulating proteins.

  16. Cardiomyocyte apoptosis in rats with myocardial ischemia/reperfusion injury after Exendin-4 pretreatment%心肌缺血再灌注损伤模型大鼠经艾塞那肽预处理后心肌细胞的凋亡

    Institute of Scientific and Technical Information of China (English)

    李文凯; 尚斌; 连小鹏; 马捷

    2015-01-01

    BACKGROUND:Exendin can regulate blood glucose, blood lipid and blood pressure, exert anti-inflammation and anti-oxidative stress effects, improve myocardial infarction and heart failure, and protect heart vessels. However, the effect on the apoptosis of cardiac muscle cels after ischemia/reperfusion injury remains unclear. OBJECTIVE:To observe the effects of Exendin-4 pretreatment on the cardiomyocyte apoptosis and the expression of Bcl-2 and Bax in rats with myocardial ischemia/reperfusion injury. METHODS:The myocardial ischemia/reperfusion injury model was established in rats and then received Exendin-4 pretreatment. Ischemia/reperfusion group and sham operation group were set. RESULTS AND CONCLUSION:Immunohistochemical staining, TUNEL and reverse transcriptase-polymerase chain reaction results showed that Bcl-2 protein and mRNA expression levels in the Exendin-4 group were significantly increased (P < 0.05), while Bax protein and mRNA expression levels were significantly decreased compared with ischemia/reperfusion group (P < 0.05). In addition, apoptosis index was more significantly decreased in the Exendin-4 group than in the ischemia/reperfusion group (P < 0.05). Exendin-4 can protect rat heart muscle against ischemia/reperfusion injury and effectively inhibit the apoptosis of cardiomyocytes, and the underlying mechanism is mediated by up-regulating Bcl-2 expression and down-regulating Bax expression.%背景:有研究表明艾塞那肽可改善心肌梗死和心力衰竭等过程发挥心血管保护作用,但其对缺血再灌注损伤后心肌细胞凋亡的作用尚未阐明。目的:艾塞那肽预处理心肌缺血再灌注损伤模型大鼠,观察其对心肌组织细胞凋亡及对凋亡因子Bcl-2、Bax表达的影响。方法:建立心肌缺血再灌注损伤模型大鼠,用艾塞那肽进行预处理,并设缺血再灌注组和假手术组作对照。结果与结论:免疫组织化学染色、原位末端标记检测RT-PCR检测显

  17. TGF-β1转基因对大鼠心脏移植物缺血-再灌注损伤的影响%Effect of Ad. mTGF-β1-gene transfection on ischemia-reperfusion injury to the cardiac allografts of rat in vitro

    Institute of Scientific and Technical Information of China (English)

    崔广晖; 赵松; 王铁栓; 廖崇先

    2010-01-01

    Objective Isohemia-reperfusion injury oecurred during heart transplantation may result in failure of grafts and the death of receivers perioperatively. Over expression of TGF-β1 in the myocardium therapeutically was shown to be help-ful in limiting the reperfusion injury to the grafts. The study was designed to investigate the role of Ad. mTGF-β1 gene transfec-tion during ischemia-reperfusion injury in vitro after heart transplantation in rats and the possible mechanisms. Methods The model of heterotopic cardiac transplantation was established by Heron's technique with cuff vessel anastomosis. Animals were divided into 3 groups: in group A ( n =6, control group), the donor hearts were perfusod with 6 ml of Stanford University cardio-plegic solution via coronary arteries at 4℃ for about 40 minutes; in group B ( n =6, vector alone group), the donor hearts were perfused with 6 ml of Stanford University cardioplegic solution containing 5 × 10~9 plaque-forming units( pfu)/gram of the vec-tor, and in group C (study group), the donor hearts were perfused with the solution containing 5 × 10~9 pfu/gram vector with mTGF-β1. The donor hearts were observed with an electro-microscope. The expression of mTGF-β1 in the grafts was identified with immunohistochemical staining. Gene products expressed in tissues were quantified by one step RT-PCR. Activities of SOD ,MDA ,MPO in the grafts were measured. Results At 8 hours after transplantation, mTGF-β1 and its expression were de-tected by means of RT-PCR and immunohistochemical staining in the rats of group C. Expression scores of foreign gene were significantly higher in groups A and B. The apoptotic index of the myocardial cells in group C was lower than those in groups A and B. The activity of SOD was higher in group C than those in groups A and B, though the activities of MDA and MPO were decreased. Conclusion The study demonstrated that gent transfer in vitro via coronary artery was effective. Ad. mTGF-β1 gene

  18. Glycyrrhiza glabra protects from myocardial ischemia-reperfusion injury by improving hemodynamic, biochemical, histopathological and ventricular function.

    Science.gov (United States)

    Ojha, Shreesh; Golechha, Mahaveer; Kumari, Santosh; Bhatia, Jagriti; Arya, Dharamvir S

    2013-01-01

    Present study evaluated the cardioprotective effect of Glycyrrhiza glabra against ischemia-reperfusion injury (I-R) induced by ligation of left anterior descending coronary artery (LADCA) in rats. Ligation of LADCA for 45 min followed by 60 min of reperfusion has induced significant (pglabra significantly (pglabra also prevented GSH depletion and inhibited lipid peroxidation in heart. In addition to improving biochemical indices of myocardial function, G. glabra also significantly (pglabra. Taken together, results of the present study clearly suggest the cardioprotective potential of G. glabra against myocardial infarction by amelioration of oxidative stress and favorable modulation of cardiac function.

  19. Insulin improves cardiomyocyte contractile function through enhancement of SERCA2a activity in simulated ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Jie YU; Hai-feng ZHANG; Feng WU; Qiu-xia LI; Heng MA; Wen-yi GUO; Hai-chang WANG; Feng GAO

    2006-01-01

    Aim: Insulin exerts anti-apoptotic effects in both cardiomyocytes and coronary endothelial cells following ischemia/reperfusion (I/R) via the Akt-endothelial nitric oxide synthase survival signal pathway. This important insulin signaling might further contribute to the improvement of cardiac function after reperfusion. In this study, we tested the hypothesis that sarcoplasmic reticulum calcium-AT-Pase (SERCA2a) is involved in the insulin-induced improvement of cardiac contractile function following I/R. Methods: Ventricular myocytes were enzymatically isolated from adult SD rats. Simulated I/R was induced by perfusing cells with chemical anoxic solution for 15 min followed by reperfusion with Tyrode's solution with or without insulin for 30 min. Myocyte shortening and intracellular calcium transients were assessed and underlying mechanisms were investigated. Results: Reperfusion with insulin (10-7 mol/L) significantly improved the recovery of contractile function (n=15-20 myocytes from 6-8 hearts, P<0.05), and increased calcium transients, as evidenced by the increased calcium (Ca2+) fluorescence ratio, shortened time to peak Ca2+ and time to 50% diastolic Ca2+, compared with those in cells reperfused with vehicle (P<0.05). In addition, Akt phosphorylation and SERCA2a activity were both increased in insulin-treated I/R cardiomyocytes, which were markedly inhibited by pretreatment of cells with a specific Akt inhibitor. Moreover, inhibition of Akt activity abolished insulin-induced positive contractile and calcium transients responses in I/R cardiomyocytes. Conclusion: These data demonstrated for the first time that insulin improves the recovery of contractile function in simulated I/R cardiomyocytes in an Akt-dependent and SERCA2a-mediated fashion.

  20. Ginkgolide B Reduces the Degradation of Membrane Phospholipids to Prevent Ischemia/Reperfusion Myocardial Injury in Rats.

    Science.gov (United States)

    Pei, Hong-Xia; Hua, Rong; Guan, Cha-Xiang; Fang, Xiang

    2015-01-01

    Platelet-activating factor (PAF), a bioactive phospholipid, plays an important role in the integrity of the cellular membrane structure, and is involved in the pathogenesis of myocardial ischemia/reperfusion (IR) injuries. In this study, we tested the hypothesis that blockage of PAF receptor by BN 52021 (Ginkgolide B) can prevent IR-induced degradation of the myocardial membrane phospholipid, and deterioration of the cardiac function. Rat hearts in situ were subjected to 5 min ischemia and followed by 10 min reperfusion. Cardiac performances during periods of ischemia and reperfusion were monitored, and the amount of membrane phospholipids was analyzed. Myocardial total phospholipids, phosphatidylcholine, and phosphatidylethanolamine were decreased significantly in ischemia-reperfusion rat hearts compared with those of sham-operated rat hearts. Degradation of the membrane phospholipid was accompanied by the deterioration of cardiac functions and increase in serum lactate dehydrogenase (LDH) activity. BN 52021 (15 mg/kg), given by intravenous infusion 10 min prior to the left anterior descending coronary artery occlusion, reduced IR-related degradation of the myocardial phospholipids, the activity of serum LDH, and was concomitant with improvement of cardiac function. Furthermore, we demonstrated that the production of PAF was increased and BN 52021 decreased cellular damage in cultured anoxic cardiomyocytes. These results indicated that PAF antagonist BN 52021 has a protective effect against IR-induced myocardial dysfunction and degradation of the membrane phospholipids.

  1. Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Zeghichi-Hamri, Sabrina; de Lorgeril, Michel; Salen, Patricia; Chibane, Mohamed; de Leiris, Joël; Boucher, François; Laporte, François

    2010-12-01

    Dietary n-3 polyunsaturated fatty acids (PUFA) reduce coronary heart disease (CHD) complications, such as chronic arrhythmia and sudden cardiac death. Improved myocardial resistance to ischemia-reperfusion injury results in smaller myocardial infarction, which is a major factor in the occurrence of CHD complications. We hypothesized that a specific dietary fatty acid profile (low in saturated and n-6 PUFA but high in plant and marine n-3 PUFA) may improve myocardial resistance to ischemia-reperfusion injury and reduce infarct size. To test this assumption, we used a well-defined rat model of myocardial infarction. Based on our results, in comparison to a diet that is high in either saturated or n-6 PUFA but poor in plant and marine n-3 PUFA, a diet that is low in saturated fats and n-6 PUFA but rich in plant and marine n-3 PUFA results in smaller myocardial infarct size (P fatty acid composition of plasma, erythrocyte cell membranes, and the phospholipids of myocardial mitochondria. The results show a great accumulation of n-3 PUFA and a parallel decrease in arachidonic acid, the main n-6 PUFA, in plasma, cell membranes, and cardiac mitochondria (P < .0001). We conclude that improved myocardial resistance to ischemia-reperfusion may be one of the critical factors explaining the protective effects of dietary n-3 PUFA against CHD complications in humans. In addition to increasing n-3 PUFA intake, an optimal dietary pattern aimed at reducing cardiovascular mortality should include a reduction of the intake of both saturated and n-6 PUFA.

  2. Adipose Tissue Drives Response to Ischemia-Reperfusion Injury in a Murine Pressure Sore Model.

    Science.gov (United States)

    Gust, Madeleine J; Hong, Seok Jong; Fang, Robert C; Lanier, Steven T; Buck, Donald W; Nuñez, Jennifer M; Jia, Shengxian; Park, Eugene D; Galiano, Robert D; Mustoe, Thomas A

    2017-05-01

    Ischemia-reperfusion injury contributes significantly to the pathogenesis of chronic wounds such as pressure sores and diabetic foot ulcers. The authors' laboratory has previously developed a cyclical murine ischemia-reperfusion injury model. The authors here use this model to determine factors underlying tissue response to ischemia-reperfusion injury. C57BL/6 mice were subjected to cycles of ischemia-reperfusion that varied in number (one to four cycles) and duration of ischemia (1 to 2 hours). For each ischemia-reperfusion condition, the following variables were analyzed: (1) digital photographs for area of necrosis; (2) hematoxylin and eosin staining and immunohistochemistry for inflammatory infiltrate; and (3) expression of inflammatory markers by quantitative polymerase chain reaction. In addition, human adipocytes and fibroblasts were cultured in vitro under conditions of hypoxia and reoxygenation, and expression of inflammatory markers was analyzed by quantitative polymerase chain reaction. Increases in both ischemia-reperfusion cycle number and ischemia duration correlated with increased areas of epithelial necrosis both grossly and histologically, and with an increase in cellularity and neutrophil density. This increased inflammatory infiltrate and a significant increase in the expression of proinflammatory markers (Hmox1, interleukin-6, interleukin-1, and monocyte chemoattractant protein-1) was observed in adipose tissue subjected to ischemia-reperfusion injury, but not in dermis. These results were mirrored in human adipose tissue. The authors further characterize a novel, reproducible murine model of ischemia-reperfusion injury. The results of their study indicate that adipose tissue is less tolerant of ischemia-reperfusion than dermal tissue. Rather than being an "innocent bystander," adipose tissue plays an active role in driving the inflammatory response to ischemia-reperfusion injury.

  3. Myocardial ischemia/reperfusion impairs neurogenesis and hippocampal-dependent learning and memory.

    Science.gov (United States)

    Evonuk, Kirsten S; Prabhu, Sumanth D; Young, Martin E; DeSilva, Tara M

    2017-03-01

    The incidence of cognitive impairment in cardiovascular disease (CVD) patients has increased, adversely impacting quality of life and imposing a significant economic burden. Brain imaging of CVD patients has detected changes in the hippocampus, a brain region critical for normal learning and memory. However, it is not clear whether adverse cardiac events or other associated co-morbidities impair cognition. Here, using a murine model of acute myocardial ischemia/reperfusion (I/R), where the coronary artery was occluded for 30min followed by reperfusion, we tested the hypothesis that acute myocardial infarction triggers impairment in cognitive function. Two months following cardiac I/R, behavioral assessments specific for hippocampal cognitive function were performed. Mice subjected to cardiac I/R performed worse in the fear-conditioning paradigm as well as the object location memory behavioral test compared to sham-operated mice. Reactive gliosis was apparent in the hippocampal subregions CA1, CA3, and dentate gyrus 72h post-cardiac I/R as compared with sham, which was sustained two months post-cardiac I/R. Consistent with the inflammatory response, the abundance of doublecortin positive newborn neurons was decreased in the dentate gyrus 72h and 2months post-cardiac I/R as compared with sham. Therefore, we conclude that following acute myocardial infarction, rapid inflammatory responses negatively affect neurogenesis, which may underlie long-term changes in learning and memory.

  4. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion.

    Science.gov (United States)

    Okere, Isidore C; McElfresh, Tracy A; Brunengraber, Daniel Z; Martini, Wenjun; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Brunengraber, Henri; Stanley, William C

    2006-01-01

    In the normal heart, there is loss of citric acid cycle (CAC) intermediates that is matched by the entry of intermediates from outside the cycle, a process termed anaplerosis. Previous in vitro studies suggest that supplementation with anaplerotic substrates improves cardiac function during myocardial ischemia and/or reperfusion. The present investigation assessed whether treatment with the anaplerotic medium-chain fatty acid heptanoate improves contractile function during ischemia and reperfusion. The left anterior descending coronary artery of anesthetized pigs was subjected to 60 min of 60% flow reduction and 30 min of reperfusion. Three treatment groups were studied: saline control, heptanoate (0.4 mM), or hexanoate as a negative control (0.4 mM). Treatment was initiated after 30 min of ischemia and continued through reperfusion. Myocardial CAC intermediate content was not affected by ischemia-reperfusion; however, treatment with heptanoate resulted in a more than twofold increase in fumarate and malate, with no change in citrate and succinate, while treatment with hexanoate did not increase fumarate or malate but increased succinate by 1.8-fold. There were no differences among groups in lactate exchange, glucose oxidation, oxygen consumption, and contractile power. In conclusion, despite a significant increase in the content of carbon-4 CAC intermediates, treatment with heptanoate did not result in improved mechanical function of the heart in this model of reversible ischemia-reperfusion. This suggests that reduced anaplerosis and CAC dysfunction do not play a major role in contractile and metabolic derangements observed with a 60% decrease in coronary flow followed by reperfusion.

  5. Sodium Hypochlorite-Modified Hemosorbents in the Treatment of Limb Ischemia-Reperfusion Syndrome: Experimental Study

    Directory of Open Access Journals (Sweden)

    V. I. Sergiyenko

    2007-01-01

    Full Text Available Objective: to enhance the efficiency of treatment for limb ischemia-reperfusion syndrome in an experiment, by using the modified hemosorbents that have oxidative properties.Materials and methods. The investigation was conducted on 94 mongrel male dogs divided into 3 groups: 1 intact animals (n=20; 2 animals treated with hemocarboperfusion on the standard sorbent CKH-1K (n=36; 3 animals received hemocarboperfusion on sodium hypochloride-modified sorbent CKH-1K (n=38. A model of acute ischemia-reperfusion syndrome was created by the method of V. D. Pasechnikov et al. Partial oxygen tension (pO2 was determined by pin polarography. The levels of vasoactive eicosanoids were measured by enzyme immunoassay.Results. In the animals with leg ischemia syndrome, there is a significant pO2 reduction in the muscles of the hip and shin, which does not completely recover after reperfusion. Standard CKN-1K sorbent hemocarboperfusion reduces pO2 as compared with the reperfusion period while the use of modified CKH-1K hemosorbent increased pO2 in the study hind limb muscles to the level observed in intact animals. The development of ischemia and reperfusion is accompanied by the elevated levels of inflammatory mediators that have vasoconstrictive properties (thromboxane B2, endothelin-1, leukotrienes C4/D4/E4 and the lower concentration of the vasodilator prostacyclin. Standard CKN-1K sorbent hemocarboperfusion results in a further increase in the concentrations of thromboxane B2 and leukotrienes C4/D4/E4, a decrease in the concentration of endothelin-1, and an elevation of the levels of prostacyclin and prostaglandin E2. When sodium hypochlorite-modified CKN-1K sorbent hemocarboperfusion is employed, the concentrations of thromboxane B2, endothelin-1, and leukotrienes C4/D4/E4 decrease, and the level of prostacyclin increases.Conclusion. Hemocarboperfusion used in the treatment of leg ischemia-reperfusion syndrome leads to restoration of tissue oxygenation and

  6. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats.

    Directory of Open Access Journals (Sweden)

    Jakub Bukowczan

    pancreatic exocrine secretion. Administration of obestatin at doses used was without significant effect with regard to daily food intake or pancreatic exocrine secretion in sham-operated rats, as well as in rats with acute pancreatitis. On the other hand, obestatin abolished a statistical significance of difference in food intake between animals with AP and control animals without pancreatic fistula and induction of AP.Treatment with the exogenous obestatin reduces severity of ischemia/reperfusion-induced acute pancreatitis and accelerates recovery in this disease. The involved mechanisms are likely to be multifactorial, and are mediated, at least in part, by anti-inflammatory properties of obestatin.

  7. Ischemia-Reperfusion Injury and Ischemic-Type Biliary Lesions following Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2012-01-01

    Full Text Available Ischemia-reperfusion (I-R injury after liver transplantation (LT induces intra- and/or extrahepatic nonanastomotic ischemic-type biliary lesions (ITBLs. Subsequent bile duct stricture is a significant cause of morbidity and even mortality in patients who underwent LT. Although the pathogenesis of ITBLs is multifactorial, there are three main interconnected mechanisms responsible for their formation: cold and warm I-R injury, injury induced by cytotoxic bile salts, and immunological-mediated injury. Cold and warm ischemic insult can induce direct injury to the cholangiocytes and/or damage to the arterioles of the peribiliary vascular plexus, which in turn leads to apoptosis and necrosis of the cholangiocytes. Liver grafts from suboptimal or extended-criteria donors are more susceptible to cold and warm I-R injury and develop more easily ITBLs than normal livers. This paper, focusing on liver I-R injury, reviews the risk factors and mechanisms leading to ITBLs following LT.

  8. Matrix metalloproteinase-9: A deleterious link between hepatic ischemia-reperfusion and colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Sébastien Lenglet; Fran(c)ois Mach; Fabrizio Montecucco

    2012-01-01

    Despite the advent of improved surgical techniques and the development of cytotoxic chemotherapeutic agents useful for the treatment of colorectal cancer,the primary clinical challenge remains that of preventing and combating metastatic spread.Surgical resection is the best treatment for colorectal metastases isolated to the liver.However,in rodent models,the hepatic ischemia-reperfusion (I/R) applied during the surgery accelerates the outgrowth of implanted tumors.Among the adverse effects of I/R on cellular function,several studies have demonstrated an over expression of the matrix metalloproteinase-9 (MMP-9) in the ischemic liver.Since several studies showed high local levels of expression and activity of this proteolytic enzyme in the primary colorectal adenocarcinoma,the role of MMP-9 might be considered as a potential common mediator,favoring both growth of local tumor and the dissemination of colorectal carcinoma metastases.

  9. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1

    Directory of Open Access Journals (Sweden)

    Liming Yu

    2016-01-01

    Full Text Available Berberine (BBR exerts potential protective effect against myocardial ischemia/reperfusion (MI/R injury. Activation of silent information regulator 1 (SIRT1 signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91phox expression, malondialdehyde (MDA level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.

  10. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia/reperfusion

  11. Ligustrazine monomer against cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Gao

    2015-01-01

    Full Text Available Ligustrazine (2,3,5,6-tetramethylpyrazine is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mechanism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administration, and the most effective mode of administration for clinical treatment of cerebral ischemia/reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine administration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyloxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC195 after cerebral ischemia were better than ligustrazine.

  12. Effects of kefir on ischemia-reperfusion injury.

    Science.gov (United States)

    Yener, A U; Sehitoglu, M H; Ozkan, M T A; Bekler, A; Ekin, A; Cokkalender, O; Deniz, M; Sacar, M; Karaca, T; Ozcan, S; Kurt, T

    2015-01-01

    We aimed to investigate the effect of kefir on Ischemia-Reperfusion (I/R) injury on rats. 24 male Sprague-Dawley rats between 250-350 g were selected. Rats were divided into three groups, and there were eight rats in each group. Rats were fed for 60 days. All of the rats were fed with the same diet for the first 30 days. In the second thirty days, kefir [10 cc/kg/day body weight (2 x 109 cfu/kg/day)] was added to the diet of the study group by gavage method. In all groups, lung and kidney tissues were removed after the procedure and rats were sacrificed. The biochemical and histopathological changes were observed in the lung and kidney within the samples. Serum urea, creatinine and tumor necrosis factor (TNF-α) were determined. Kefir + I/R groups was compared with I/R groups, a significant decrease (p Kefir + I/R groups of renal tissues were significantly (p Kefir reduced the levels of serum urea, creatinine and TNF-α significantly.   This would be useful in this model against ischemia/reperfusion, and shows the protective effect of kefir in tissue and serum functions.

  13. Intestinal microflora in rats with ischemia/reperfusion liver injury

    Institute of Scientific and Technical Information of China (English)

    XING Hui-chun; LI Lan-juan; XU Kai-jin; SHEN Tian; CHEN Yun-bo; SHENG Ji-fang; YU Yun-song; CHEN Ya-gang

    2005-01-01

    Objectives: To investigate the intestinal microflora status related to ischemia/reperfusion (I/R) liver injury and explore the possible mechanism. Methods: Specific pathogen free grade Sprague-Dawley rats were randomized into three groups: Control group (n=8), sham group (n=6) and I/R group (n=10). Rats in the control group did not receive any treatment, rats in the I/R group were subjected to 20 min of liver ischemia, and rats in the sham group were only subjected to sham operation. Twenty-two hours later, the rats were sacrificed and liver enzymes and malondialdehyde (MDA), superoxide dismutase (SOD), serum endotoxin,intestinal bacterial counts, intestinal mucosal histology, bacterial translocation to mesenteric lymph nodes, liver, spleen, and kidney were studied. Results: Ischemia/reperfusion increased liver enzymes, MDA, decreased SOD, and was associated with plasma endotoxin elevation in the I/R group campared to those in the sham group. Intestinal Bifidobacteria and Lactobacilli decreased and intestinal Enterobacterium and Enterococcus, bacterial translocation to kidney increased in the I/R group compared to the sham group. Intestinal microvilli were lost, disrupted and the interspace between cells became wider in the I/R group.Conclusion: I/R liver injury may lead to disturbance of intestinal microflora and impairment of intestinal mucosal barrier function,which contributes to endotoxemia and bacterial translocation to kidney.

  14. [Free radicals and hepatic ischemia-reperfusion].

    Science.gov (United States)

    Szijártó, Attila

    2015-11-22

    The critical importance of the ischemic-reperfusive injury is well documented with regards to numerous organs and clinical conditions. Oxygen free radicals play a central role in the mediation of the injury, which dominantly influences the prevalence of postoperative complications, (long term) organ damage, and the potential manifestation of systemic reactions. The both anatomically and pathophysiologically unique ischemic-reperfusive injury of the liver, which is expressively vulnerable to free radicals, is of utmost importance in liver surgery. Several techniques (adaptive maneuvers, chemical agents) are known to ameliorate the reperfusive injury. Based on the prior research of the workgroup of the author, the aim of the current article is to overview the set of measures capable of attenuating ischemic-reperfusive injury (ischemic preconditioning, -perconditioning, administration of adenosine, -inosine, -levosimendan, and -poly-ADP-ribose-polymerase inhibitor), with special attention to the ischemic-reperfusive injury of the liver, as well as the special pathophysiological role of free radicals in mediating hepatic damage.

  15. Effects of Ethyl Pyruvate on Myocardial Apoptosis and Expression of Bcl-2 and Bax Proteins after Ischemia-reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    Jialong GUO; Kailun ZHANG; Yanmei JI; Xionggang JIANG; Shunqing ZUO

    2008-01-01

    In order to study the effects of ethyl pyruvate on cardiomyocyte apoptosis following ischemia/reperfusion (I/R) in vitro and the expression of Bcl-2 and Bax proteins, isolated rat hearts were perfused in a Langendorff model. Twenty-four rats were randomly divided into 3 groups (n=8 in each group): control group was perfused for 120min. In the I/R group, after 30min stabilization the injury was induced by 30min global ischemia followed by 60min reperfusion. Ethyl pyruvate (EP) group was set up with the same protocol as I/R group except that it was supplied with 2mmol/L EP 15min before ischemia and throughout reperfusion. Myocardial malonaldehyde (MDA) content Was measured. Myocardial apoptotic index (AI) was tested by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method. The expression of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in cardiac myocytes was detected by immunohistochemistry. As compared with control group, the content of MDA, myocardial AI and the expression of Bcl-2, Bax proteins were increased significantly in I/R group, but the content of MDA, myocardial AI and the expression of Bax protein were decreased obviously and the expression of Bcl-2 protein was up-regulated in EP group (P<0.05). These results demonstrate that EP could inhibit apoptosis of cardiac myocytes possibly via alleviating oxidative stress, up-regulating Bcl-2 and down-regulating Bax proteins.

  16. Ischemic Postconditioning-Regulated miR-499 Protects the Rat Heart Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis through PDCD4

    Directory of Open Access Journals (Sweden)

    Jianbing Zhu

    2016-11-01

    Full Text Available Background: Here, we determined miR-499 involvement in the protective effect of ischemic postconditioning (IPC against myocardial ischemia/reperfusion (I/R injury and identified the underlying mechanisms. Methods: To investigate the cardioprotective effect of IPC-induced miR-499, rats were divided into the following five groups: sham, I/R, IPC, IPC + scramble, and IPC + antagomiR-499. Hemodynamic indexes were measured by carotid-artery intubation to assess left ventricular function . Ischemia and infarction areas of rat hearts were determined by Evans blue and triphenyltetrazolium chloride staining, and cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end-labeling assay. Results: IPC attenuated I/R-induced infarct size of the left ventricle (45.28 ± 5.40% vs. 23.56 ± 6.20%, P vs. 990.21 ± 172.39%, P vs. 1289.11 ± 347.28%, P vs. 4.85 ± 1.52%, P in vivo and in vitro by knockdown of cardiac miR-499, suggesting that miR-499 may participate in the protective function of IPC against I/R injury through targeting programmed cell death 4 (PDCD4. Conclusion: Our data revealed that IPC-regulated miR-499 plays an important role in IPC-mediated cardiac protection against I/R injury by targeting PDCD4.

  17. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Aleksandra Kezic

    2016-01-01

    Full Text Available Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS peptides (Bendavia, SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.

  18. Neuregulin-1 preconditioning protects the heart against ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism

    Institute of Scientific and Technical Information of China (English)

    FANG Shan-juan; WU Xue-si; HAN Zhi-hong; ZHANG Xiao-xia; WANG Chun-mei; LI Xin-yan; LU Ling-qiao; ZHANG Jing-lan

    2010-01-01

    Background Neuregulin-1 (NRG-1), the ligand of the myocardial ErbB receptor, is a protein mediator with regulatory actions in the heart. This study investigated whether NRG-1 preconditioning has protective effects on myocardial ischemia/reperfusion (I/R) injury and its potential mechanism.Methods We worked with an in vivo rat model with induced myocardial ischemia (45 minutes) followed by reperfusion (3 hours). NRG-1 message was detected in the heart using RT-PCR and the protein levels of NRG-1 and ErbB4 were detected by Western blotting analysis. Infarct size was assessed using the staining agent triphenyltetrazolium chloride and cardiac function was continuously monitored. The levels of creatine kinase and lactate dehydrogenase in plasma were analyzed to assess the degree of cardiac injury. The extent of cardiac apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and by Western blotting analysis of cleaved caspase-3. We examined the phosphorylation of Akt in the myocardium and the effect of PI3K/Akt inhibition on NRG-1-induced cardioprotection.Results Transcription and expression of NRG-1 and phosphorylation of its ErbB4 receptor were significantly upregulated in the I/R hearts. NRG-1 pretreatment reduced the infarct size following cardiac I/R in a concentration-dependent manner with an optimal concentration of 4 μg/kg in vivo. NRG-1 pretreatment with 4 μg/kg, i.v.markedly reduced the plasma creatine kinase and lactate dehydrogenase levels. Pretreatment with NRG-1 also significantly reduced the percentage of TUNEL positive myocytes and the level of cleaved caspase-3 in the I/R hearts.Pretreatment with NRG-1 significantly increased phosphorylation of Akt following I/R. Furthermore, the cardioprotective effect limiting the infarct size that was induced by NRG-1 was abolished by co-administration of the PI3K inhibitor LY294002.Conclusions The concentration of NRG-1, a new autacoid, was rapidly upregulated

  19. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury.

    Science.gov (United States)

    Huang, Yuxiang; Qiao, Fei; Atkinson, Carl; Holers, V Michael; Tomlinson, Stephen

    2008-12-01

    Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1-5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-fHfH were highly effective at inhibiting the alternative pathway in vitro and demonstrated a higher specific activity than CR2-Crry. CR2-fH was also more effective than endogenous serum fH in blocking target deposition of C3. Target binding and complement inhibitory activity of CR2-fH/CR2-fHfH was dependent on CR2- and C3-mediated interactions. The alternative pathway of complement plays a role in intestine ischemia/reperfusion injury. However, serum fH fails to provide protection against intestine ischemia/reperfusion injury although it can bind to and provide cell surfaces with protection from complement and is present in plasma at a high concentration. In a mouse model, CR2-fH and CR2-fHfH provided complete protection from local (intestine) and remote (lung) injury. CR2-fH targeted to the site of local injury and greatly reduced levels of tissue C3 deposition. Thus, the targeting mechanism significantly enhances alternative pathway-specific complement inhibitory activity of the N-terminal domain of fH and has the potential to reduce side effects that may be associated with systemic complement blockade. The data further indicate alternative pathway dependence for local and remote injury following intestinal ischemia/reperfusion in a clinically relevant therapeutic paradigm.

  20. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Liu; Zhigang Mei; Jingping Qian; Yongbao Zeng; Mingzhi Wang

    2013-01-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that an-ti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic an-ti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be in-volved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re-duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-αin brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observa-tions were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonistα-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re-sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be me-diated through the activation of the cholinergic anti-inflammatory pathway.

  1. Triptolide inhibits NF-κB activation and reduces injury of donor lung induced by ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Jing-kang HE; Shu-dong YU; Hong-Jun ZHU; Jun-chao WU; Zhen-ghong QIN

    2007-01-01

    Aim: To investigate the protective effect of triptolide (TRI) on ischemia/reperfusion- induced injury of transplanted rabbit lungs and to investigate the mechanisms underlying the actions of TRI. Methods: We established the rabbit lung trans- plantation model and studied lung injury induced by ischemia/reperfusion and the inhibitory effect of TRI on NF-r,B. The severity of lung injury was determined by a gradual decline in PvO2, the degree of lung edema, the increase in the myeloperoxidase (MPO) activity, and the ultrastructural changes of transplanted lungs. The activation of NF-r,B was measured by immunohistochemistry. The increase in intercellular adhesion molecule- 1 (ICAM- 1), which is the target gene of NF-κB, was evaluated by ELISA. Results: After reperfusion, there was a gradual decline in the PvO2 level in the control group (group I). The level of PvO2 in the group treated with lipopolysaccharide (group Ⅱ) was significantly decreased, whereas that of the group treated with TRI (group Ⅲ) was markedly improved (P<0.01). In group Ⅲ, the activity of MPO was downregulated, and the pulmonary edema did not become severe and the ultrastructure of the donor lung remained normal. The activity of NF-κB and the expression of ICAM-1 was significantly increased in the donor lungs. TRI blocked NF-κB activation and ICAM-1 expression. Conclusion: The effects of TRI on reducing injury to donor lungs induced by ischemia/reperfusion may possibly be mediated by inhibiting the activity of NF-κB and the expression of the NF-rd3 target gene ICAM-1. Thus, TRI could be used in lung transplantations for improving the function of donor lungs.

  2. 慢病毒介导的Cdh1-siRNA在大鼠全脑缺血再灌注损伤后的表达及功能%Expression and function of lentivirus-mediated Cdh1-siRNA in global brain ischemia-reperfusion damage of rats

    Institute of Scientific and Technical Information of China (English)

    陈志则; 祁月红; 张雪; 姚文龙; 张传汉

    2013-01-01

    目的:探讨慢病毒介导RNA干扰Cdh1的表达对全脑缺血再灌注损伤的影响.方法:将150只雄性SD大鼠随机分成生理盐水组(A组)、空慢病毒组(B组)和重组慢病毒组(C组)各50只.分别给予3组大鼠注射生理盐水、空慢病毒和重组慢病毒,注射3d后采用改良4-VO法建立SD大鼠全脑缺血再灌注损伤模型,采用荧光定量PCR检测大鼠海马组织Cdh1 mRNA表达,Western blot检测Cyclin B的变化,TUNEL法检测海马CA1区凋亡细胞指数(AI).于全脑缺血再灌注术后第7天行Morris水迷宫测试认知功能的变化.结果:C组Cdh1 mRNA表达明显低于A、B组(P<0.05);AI值及Cyclin B表达均明显高于A、B组(P<0.05);水迷宫测试结果显示,术后第9~11天各时间点C组的寻台潜伏期明显长于A、B组(P<0.05).结论:细胞周期末期分裂促进复合物及其调节亚基Cdh1可能通过Cyclin B堆积介导缺血性神经元的凋亡.%Objective:To investigate the expression and function of Cdh1-siRNA in cerebral ischemia-reperfusion injury of rats.Methods:All 150 male Sprague-Dawlcy rats were randomly divided into normal saline group (group A,n=50),lentivirus vector group (group B,n 50) and recombinant lentivirus group (group C,n=50).The rats in 3 groups were injected with normal saline,lentivirus vector and recombinant lentivirus respectively.At the 3rd day after injection,cerebral ischemia-reperfusion injury model of rat was established by modified four-vessel occlusion (4-VO) method.The expression of Cdh1 mRNA and Cyclin B was detected by quantitative real-time PCR and Western blotting.Apoptosis index (AI) was examined by using TUNEL staining method and the behavior was evaluated with Morris water maze test at the 7th day.Results:The expression of Cdh1 mRNA in group C was significantly lower than that in groups A and B (P<0.05),but that of Cyclin B and the levels of AI in group C were significantly higher than those in groups A and B (P<0.05).In addition

  3. Intermedin protects against myocardial ischemia-reperfusion injury in hyperlipidemia rats.

    Science.gov (United States)

    Yang, S M; Liu, J; Li, C X

    2014-10-20

    Hyperlipidemia is a well-established risk factor for the development of coronary atherosclerosis, while intermedin (IMD) has been identified as a novel calcitonin/calcitonin gene-related peptide family member involved in cardiovascular protection. However, whether IMD protects against hyperlipidemia-associated myocardial ischemia/reperfusion (MI/R) injury is unknown. We established a hyperlipidemia model using Sprague-Dawley rats, and created a MI/R condition by ligating the cardiac left circumflex artery. The possible pathophysiological role of IMD and its physiological function in MI/R was further studied. The level of IMD significantly decreased in hyperlipidemia rats (P hyperlipidemia rats compared to the sham-operated rats (P hyperlipidemia rats (P hyperlipidemia-associated MI/R injury. Additional IMD could protect cardiac myocytes against MI/R injury via reduction of apoptosis and inflammation in the hyperlipidemia rat model, and thus, it may play a potential role as a novel therapeutic target for cardiac ischemic injury in hyperlipidemic patients.

  4. Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion

    Science.gov (United States)

    Rodríguez-Lara, Simón Quetzalcoatl; Ramírez-Lizardo, Ernesto Javier; Totsuka-Sutto, Sylvia Elena; Castillo-Romero, Araceli; García-Cobián, Teresa Arcelia

    2016-01-01

    Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states. PMID:28116037

  5. Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Simón Quetzalcoatl Rodríguez-Lara

    2016-01-01

    Full Text Available Ischemia/reperfusion (I/R lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.

  6. Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Dongdong Wu

    2015-01-01

    Full Text Available Ischemia-reperfusion (I/R injury is one of the major causes of high morbidity, disability, and mortality in the world. I/R injury remains a complicated and unresolved situation in clinical practice, especially in the field of solid organ transplantation. Hydrogen sulfide (H2S is the third gaseous signaling molecule and plays a broad range of physiological and pathophysiological roles in mammals. H2S could protect against I/R injury in many organs and tissues, such as heart, liver, kidney, brain, intestine, stomach, hind-limb, lung, and retina. The goal of this review is to highlight recent findings regarding the role of H2S in I/R injury. In this review, we present the production and metabolism of H2S and further discuss the effect and mechanism of H2S in I/R injury.

  7. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2015-01-01

    Full Text Available Ischemia-reperfusion (IR injury is directly related to the formation of reactive oxygen species (ROS, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.

  8. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    Science.gov (United States)

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury. Copyright © 2017, American Journal of Physiology-Endocrinology and Metabolism.

  9. Characterization of microparticles after hepatic ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Christopher M Freeman

    Full Text Available BACKGROUND: Hepatic ischemia-reperfusion (I/R is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins-platelets, neutrophils, and endolethial cells-following hepatic ischemia-reperfusion injury. METHODS: A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. RESULTS: MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. CONCLUSION: This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver.

  10. Ketamine anesthesia reduces intestinal ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Carlos Roddgo Cámara; Francisco Javier Guzmán; Ernesto Alexis Barrera; Andrés Jesús Cabello; Armando Garcia; Nancy Esthela Fernández; Eloy Caballero; Jesus Ancer

    2008-01-01

    AIM:To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats.METHODS:Thirty maIe Wistar rats weighing 200-250 g were used.Ischemia was induced by obstructing blood flow in 25% of the total small intestinal length(ileum)with a vascular clamp for 45 min,after which either 60 min or 24 h of reperfusion was allowed.Rats were either anesthetized with pento-barbital sodium(50 mg/kg)or ketamine(100 mg/kg).Control groups received sham surgery,After 60 min of reperfusion,the intestine was examined for mor-phological alterations,and after 24 h intestinal basic electrical rhythm(BER)frequency was calculated,and intestinal transit determined in all groups.RESULTS:The intestinal mucosa in rats that were anesthetized with ketamine showed moderate alterations such as epithelial lifting,while ulceration and hemorrhage was observed in rats that received pento-barbital sodium after 60 min of reperfusion.Quantitative analysis of structural damage using the Chiu scale showed significantly Iess injury in rats that received ketamine than in rats that did not(2.35±1.14 vs 4.58 ±0.50,P<0.0001).The distance traveled by a marker,expressed as percentage of total intestinal length,in rats that received pentobarbital sodium was 20% ± 2% in comparison with 25.9% ±1.64% in rats that received ketamine(P=0.017).BER was not statistically different between groups.CONCLUSION:Our results show that ketamine anesthesia is associated with diminished intestinal iniury and abolishes the intestinal transit delay induced by ischemia/reperfusion.(C)2008 The WJG Press.All rights reserved.

  11. Melatonin protects liver from intestine ischemia reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jian-Yi Li; Hong-Zhuan Yin; Xi Gu; Yong Zhou; Wen-Hai Zhang; Yi-Min Qin

    2008-01-01

    AIM:To investigate the protective effect of melatonin on liver after intestinal ischemia-reperfusion injury in rats.METHODS:One hundred and fifty male Wistar rats,weighing 190-210 g,aged 7 wk,were randomly divided into melatonin exposure group,alcohol solvent control group and normal saline control group.Rats in the melatonin exposure group received intraperitoneal (IP) melatonin (20 mg/kg) 30 min before intestinal ischemia-reperfusion (IR),rats in the alcohol solvent control group received the same concentration and volume of alcohol,and rats in the normal saline control group received the same volume of normal saline.Serum samples were collected from each group 0.5,1,6,12,and 24 h after intestinal IR.Levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured with an auto-biochemical analyzer.Serum TNF-a was tested by enzyme-linked immunosorbent assay (ELISA).Malondialdehyde (MDA) in liver was detected by colorimetric assay.Pathological changes in liver and immunohistochemical straining of ICAM-1 were observed under an optical microscope.RESULTS:The levels of ALT measured at various time points after intestinal IR in the melatonin exposure group were significantly lower than those in the other two control groups (P<0.05).The serum AST levels 12 and 24 h after intestinal IR and the ICAM-1 levels (%) 6,12 and 24 h after intestinal IR in the melatonin exposure group were also significantly lower than those in the other two control groups (P<0.05).CONCLUSION:Exotic melatonin can inhibit the activity of ALT,AST and TNF-a decrease the accumulation of MDA,and depress the expression of ICAM-1 in liver after intestinal IR injury,thus improving the liver function.

  12. Ketamine anesthesia reduces intestinal ischemia/reperfusion injury in rats

    Science.gov (United States)

    Cámara, Carlos Rodrigo; Guzmán, Francisco Javier; Barrera, Ernesto Alexis; Cabello, Andrés Jesús; Garcia, Armando; Fernández, Nancy Esthela; Caballero, Eloy; Ancer, Jesus

    2008-01-01

    AIM: To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats. METHODS: Thirty male Wistar rats weighing 200-250 g were used. Ischemia was induced by obstructing blood flow in 25% of the total small intestinal length (ileum) with a vascular clamp for 45 min, after which either 60 min or 24 h of reperfusion was allowed. Rats were either anesthetized with pentobarbital sodium (50 mg/kg) or ketamine (100 mg/kg). Control groups received sham surgery. After 60 min of reperfusion, the intestine was examined for morphological alterations, and after 24 h intestinal basic electrical rhythm (BER) frequency was calculated, and intestinal transit determined in all groups. RESULTS: The intestinal mucosa in rats that were anesthetized with ketamine showed moderate alterations such as epithelial lifting, while ulceration and hemorrhage was observed in rats that received pentobarbital sodium after 60 min of reperfusion. Quantitative analysis of structural damage using the Chiu scale showed significantly less injury in rats that received ketamine than in rats that did not (2.35 ± 1.14 vs 4.58 ± 0.50, P < 0.0001). The distance traveled by a marker, expressed as percentage of total intestinal length, in rats that received pentobarbital sodium was 20% ± 2% in comparison with 25.9% ± 1.64% in rats that received ketamine (P = 0.017). BER was not statistically different between groups. CONCLUSION: Our results show that ketamine anesthesia is associated with diminished intestinal injury and abolishes the intestinal transit delay induced by ischemia/reperfusion. PMID:18777596

  13. The pathways by which mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injur y

    Institute of Scientific and Technical Information of China (English)

    Chun Luo; Su-yue Pan

    2015-01-01

    Several studies have demonstrated that mild hypothermia exhibits a neuroprotective role and it can inhibit endothelial cell apoptosis following ischemia/reperfusion injury by decreasing casp-ase-3 expression. It is hypothesized that mild hypothermia exhibits neuroprotective effects on neurons exposed to ischemia/reperfusion condition produced by oxygen-glucose deprivation. Mild hypothermia signiifcantly reduced the number of apoptotic neurons, decreased the expres-sion of pro-apoptotic protein Bax and increased mitochondrial membrane potential, with the peak of anti-apoptotic effect appearing between 6 and 12 hours after the injury. These ifndings indicate that mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury by protecting the mitochondria and that the effective time window is 6–12 hours after ischemia/reperfusion injury.

  14. The pathways by which mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Chun Luo

    2015-01-01

    Full Text Available Several studies have demonstrated that mild hypothermia exhibits a neuroprotective role and it can inhibit endothelial cell apoptosis following ischemia/reperfusion injury by decreasing casp-ase-3 expression. It is hypothesized that mild hypothermia exhibits neuroprotective effects on neurons exposed to ischemia/reperfusion condition produced by oxygen-glucose deprivation. Mild hypothermia significantly reduced the number of apoptotic neurons, decreased the expression of pro-apoptotic protein Bax and increased mitochondrial membrane potential, with the peak of anti-apoptotic effect appearing between 6 and 12 hours after the injury. These findings indicate that mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury by protecting the mitochondria and that the effective time window is 6-12 hours after ischemia/reperfusion injury

  15. Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Barr Amy J

    2010-07-01

    Full Text Available Abstract Background During and following myocardial ischemia, glucose oxidation rates are low and fatty acids dominate as a source of oxidative metabolism. This metabolic phenotype is associated with contractile dysfunction during reperfusion. To determine the mechanism of this reliance on fatty acid oxidation as a source of ATP generation, a functional proteomics approach was utilized. Results 2-D gel electrophoresis of mitochondria from working rat hearts subjected to 25 minutes of global no flow ischemia followed by 40 minutes of aerobic reperfusion identified 32 changes in protein abundance compared to aerobic controls. Of the five proteins with the greatest change in abundance, two were increased (long chain acyl-coenzyme A dehydrogenase (48 ± 1 versus 39 ± 3 arbitrary units, n = 3, P In silico analysis identified the putative kinases as the insulin receptor kinase for the more basic form and protein kinase Cζ or protein kinase A for the more acidic form. These modifications of pyruvate dehydrogenase are associated with a 35% decrease in glucose oxidation during reperfusion. Conclusions Cardiac ischemia/reperfusion induces significant changes to a number of metabolic proteins of the mitochondrial proteome. In particular, ischemia/reperfusion induced the post-translational modification of pyruvate dehydrogenase, the rate-limiting step of glucose oxidation, which is associated with a 35% decrease in glucose oxidation during reperfusion. Therefore these post-translational modifications may have important implications in the regulation of myocardial energy metabolism.

  16. Antioxidant effects of ethyl acetate extract of Desmodium gangeticum root on myocardial ischemia reperfusion injury in rat hearts

    Directory of Open Access Journals (Sweden)

    Raman Archana

    2010-01-01

    Full Text Available Abstract Background This study aims to evaluate the antioxidant potential of the ethyl acetate extract of Desmodium gangeticum root for cardioprotection from ischemia reperfusion-induced oxidative stress. Methods The in vitro antioxidant potential of the extract was in terms of hydroxyl radical scavenging activity, lipid peroxide scavenging activity, nitric oxide scavenging activity and diphenylpicrylhydrazyl radical scavenging activity. The in vivo antioxidant potential of the extract was assessed in an isolated rat heart model. Results Free radicals were scavenged by the extract in a concentration-dependent manner within the range of the given concentrations in all models. Administration of the ethyl acetate extract of Desmodium gangeticum root (100 mg per kg body weight before global ischemia caused a significant improvement of cardiac function and a decrease in the release of lactate dehydrogenase in coronary effluent, as well as the level of malondialdehyde in myocardial tissues. Conclusion The ethyl acetate extract of Desmodium gangeticum root protects the myocardium against ischemia-reperfusion-induced damage in rats. The effects of the extract may be related to the inhibition of lipid peroxidation.

  17. Cardioprotective effect of aqueous extract of Chichorium intybus on ischemia-reperfusion injury in isolated rat heart.

    Science.gov (United States)

    Sadeghi, Najmeh; Dianat, Mahin; Badavi, Mohammad; Malekzadeh, Ahad

    2015-01-01

    Several studies have shown that Chichorium intybus (C. intybus) which possesses flavonoid compounds has an effective role in treatment of cardiovascular diseases. Contractile dysfunction mostly occurs after acute myocardial infarction, cardiac bypass surgery, heart transplantation and coronary angioplasty. The aim of the present study was to investigate the effect of aqueous extract of C. intybus on ischemia- reperfusion injury in isolated rat heart. The animals were divided into four groups (Sham, Control, 1 mg/ml and 3 mg/ml of extract) of 8 rats. The aorta was cannulated, and then the heart was mounted on a Langendorff apparatus. Next, a balloon was inserted into the left ventricle (LV) and peak positive value of time derivate of LV pressure (+dp/dt), coronary flow (CF), and left ventricular systolic pressure (LVSP) in pre-ischemia and reperfusion period were calculated by a Power Lab system. All groups underwent a 30-minute global ischemia followed by a 60-minute reperfusion. The results showed that heart rate (HR), coronary flow, and left ventricular developed pressure (LVDP) and rate of pressure product (RPP) significantly decreased in the control group during reperfusion, while these values in the groups receiving the extract (3mg/ml) improved significantly during reperfusion (p<0.001). It seems that flavonoid compounds of aqueous extract of C. intybus reduce ischemia - reperfusion injuries, suggesting its protective effect on heart function after ischemia.

  18. Additional Effects of Back-Shu Electroacupuncture and Moxibustion in Cardioprotection of Rat Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Seung Min Kathy Lee

    2015-01-01

    Full Text Available Many preclinical studies show that electroacupuncture (EA on PC6 and ST36 can reduce infarct size after ischemia-reperfusion (IR injury. Yet studies to enhance the treatment effect size are limited. The purpose of this study was to explore whether EA has additional myocardial protective effects on an ischemia-reperfusion (IR injury rat model when back-shu EA and moxibustion are added. SD rats were divided into several groups and treated with either EA only, EA + back-shu EA (B, or EA + B + moxibustion (M for 5 consecutive days. Transthoracic echocardiography and molecular and immunohistochemical evaluations were performed. It was found that although myocardial infarct areas were significantly lower and cardiac function was also significantly preserved in the three treatment groups compared to the placebo group, there were no additional differences between the three treatment groups. In addition, HSP20 and HSP27 were expressed significantly more in the treatment groups. The results suggest that adding several treatments does not necessarily increase protection. Our study corroborates previous findings that more treatment, such as prolonging EA duration or increasing EA intensity, does not always lead to better results. Other methods of increasing treatment effect size should be explored.

  19. Effects of nerve growth factor on the expression of caspase-12 of nerve cells in cerebral ischemia/reperfusion area

    Institute of Scientific and Technical Information of China (English)

    Jiping Yang; Huaijun Liu; Ying Li; Yan Liu; Haiqing Yang

    2006-01-01

    BACKGROUND: Researches suggest that cascade reaction of cysteine protease mediated by caspase-12 can cause apoptosis after cerebral ischemia/reperfusion injury;however, nerve growth factor (NGF) can reduce apoptosis through inhibiting activation of that reaction.OBJECTTVE: To observe the effect of NGF on the expression of caspase-12 in brain tissue of rabbits with cerebral ischemia/reperfusion injury, and elucidate the protective mechanism of NGF on neural apoptosis induced by cerebral ischemia/reperfusion injury.DESIGN: Randomized controlled animal study.SETTING: Department of Image, Second Hospital, Hebei Medical University.MATERIALS: A total of 26 healthy New Zealand rabbits, of clean grade, aged 4.5-5 months, weighing (2.6±0.2) kg, were selected in this study. Reagents: NGF (Xiamen Beida Zhilu Biotechnology Co., Ltd.);caspase-12 (Santa Cruz Biotechnology Company, USA, clone number: SC-12395); caspase-3 (Santa Cruz Biotechnology Company, USA, clone number: SC-7272); biotin-antibody Ⅱ and ABC compound (Wuhan Boster Company); in situ end-labeling (ISEL, Beijing Zhongshan Company).METHODS: The experiment was carried out in the Laboratories of Nerve Molecule Image Science and Neurology of the Second Hospital of Hebei Medical University from May to August 2005. ① All animals were randomly divided into three groups. Ischemia/reperfusion (I/R) group (n=10): Left middle cerebral artery (MCA) was blocked for 2 hours and then blooded for 2 hours in order to establish focal cerebral ischemia/reperfusion models. Sham operation group (n=6): Cork was inserted with 3 cm in depth, and then pulled to common carotid artery. Other procedures were as the same as those in ischemia/reperfusion group.Treatment group (n=10): After modeling, 400 AU (16 μg/L) NGF was inserted into cerebral infarction focus sham operation group and at 3 days after reperfusion in other two groups. In addition, contents of caspase-12 and caspase-3 were measured with immunohistochemical technique; mean

  20. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    OpenAIRE

    2013-01-01

    OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, an...

  1. Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury.

    Science.gov (United States)

    Block, Helena; Herter, Jan M; Rossaint, Jan; Stadtmann, Anika; Kliche, Stefanie; Lowell, Clifford A; Zarbock, Alexander

    2012-02-13

    Neutrophils trigger inflammation-induced acute kidney injury (AKI), a frequent and potentially lethal occurrence in humans. Molecular mechanisms underlying neutrophil recruitment to sites of inflammation have proved elusive. In this study, we demonstrate that SLP-76 (SH2 domain-containing leukocyte phosphoprotein of 76 kD) and ADAP (adhesion and degranulation promoting adaptor protein) are involved in E-selectin-mediated integrin activation and slow leukocyte rolling, which promotes ischemia-reperfusion-induced AKI in mice. By using genetically engineered mice and transduced Slp76(-/-) primary leukocytes, we demonstrate that ADAP as well as two N-terminal-located tyrosines and the SH2 domain of SLP-76 are required for downstream signaling and slow leukocyte rolling. The Tec family kinase Bruton tyrosine kinase is downstream of SLP-76 and, together with ADAP, regulates PI3Kγ (phosphoinositide 3-kinase-γ)- and PLCγ2 (phospholipase Cγ2)-dependent pathways. Blocking both pathways completely abolishes integrin affinity and avidity regulation. Thus, SLP-76 and ADAP are involved in E-selectin-mediated integrin activation and neutrophil recruitment to inflamed kidneys, which may underlie the development of life-threatening ischemia-reperfusion-induced AKI in humans.

  2. Aldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xing-zhen Liu

    2017-01-01

    Full Text Available Aldehyde dehydrogenase 2 (ALDH2 is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury. Therefore, we hypothesized that ALDH2 could reduce spinal cord ischemia/reperfusion injury. Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta. After successful model establishment, the agonist group was administered a daily consumption of 2.5% alcohol. At 7 days post-surgery, the Basso, Beattie, and Bresnahan score significantly increased in the agonist group compared with the spinal cord ischemia/reperfusion injury group. ALDH2 expression also significantly increased and the number of apoptotic cells significantly decreased in the agonist group than in the spinal cord ischemia/reperfusion injury group. Correlation analysis revealed that ALDH2 expression negatively correlated with the percentage of TUNEL-positive cells (r = −0.485, P < 0.01. In summary, increased ALDH2 expression protected the rat spinal cord against ischemia/reperfusion injury by inhibiting apoptosis.

  3. Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injur y

    Institute of Scientific and Technical Information of China (English)

    Baogang Wang; Qingsan Zhu; Xiaxia Man; Li Guo; Liming Hao

    2014-01-01

    Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-de-pendently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reper-fusion injury. These ifndings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression.

  4. The effect of aloe vera on ischemia--Reperfusion injury of sciatic nerve in rats.

    Science.gov (United States)

    Guven, Mustafa; Gölge, Umut Hatay; Aslan, Esra; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Cosar, Murat

    2016-04-01

    Aloe vera is compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of aloe vera treatment in rats with experimental sciatic nerve ischemia/reperfusion injury. Twenty-eight male Wistar Albino rats were divided equally into 4 groups. Groups; Control group (no surgical procedure or medication), sciatic nerve ischemia/reperfusion group, sciatic nerve ischemia/reperfusion+aloe vera group and sciatic nerve ischemia/reperfusion+methylprednisolone group. Ischemia was performed by clamping the infrarenal abdominal aorta. 24 hours after ischemia, all animals were sacrificed. Sciatic nerve tissues were also examined histopathologically and biochemically. Ischemic fiber degeneration significantly decreased in the pre-treated with aloe vera and treated with methylprednisolone groups, especially in the pre-treated with aloe vera group, compared to the sciatic nerve ischemia/reperfusion group (paloe vera group was not statistically different compared to the MP group (p>0.05). Aloe vera is effective neuroprotective against sciatic nerve ischemia/reperfusion injury via antioxidant and anti-inflammatory properties. Also aloe vera was found to be as effective as MP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Protective effects of pinacidil hyperpolarizing cardioplegia on myocardial ischemia reperfusion injury by mitochondrial KATP channels

    Institute of Scientific and Technical Information of China (English)

    YU Tian; FU Xiao-yun; LIU Xing-kui; YU Zhi-hao

    2011-01-01

    Background Many studies have indicated that hyperpolarizing cardioplegia is responsible for myocardial preservation and researchers have suggested that the adenosine triphosphate-sensitive potassium channels (KATP) were the end effectors of cardio-protection.But whether mitochondrial KATP plays an important role in hyperpolarizing cardioplegia is not apparent.The present study investigated the effect of hyperpolarizing cardioplegia containing pinacidil (a nonselective KATP opener) on ischemia/reperfusion injury in rat hearts,especially the role of mitochondrial KATP in pinacidil hyperpolarizing cardioplegia.Methods Sprague-Dawley rat hearts were Langendorff-perfused for 20 minutes with Krebs-Henseleit buffer at 37℃before equilibration.Cardiac arrest was then induced in different treatments:there was no arrest and ischemia in the normal group,the control group were arrested by clamping the aorta,depolarizing caidioplegia (St.Thomas solution containing 16 mmol/L KCI) and hyperpolarizing cardioplegia groups used St.Thomas solution containing 0.05 mmol/L pinacidil and 5 mmol/L KCI to induce cardiac arrest in group hyperkalemic and group pinacidil,in group hyperkalemic + 5-hydroxydecanote (5HD) and Pinacidil + 5HD,5HD (0.1 mmol/L) was added to the above two solutions to block mitochondria KATP channels.Global ischemia was then administrated for 40 minutes at 37℃,followed by 30 minutes of reperfusion.At the end of equilibration and reperfusion,hemodynamics,ultrastructure,and mitochondrial function were measured.Results In the control group,ischemia/reperfusion decreased the left ventricular developed pressure,heart rate,coronary flow,mitochondrial membrane potential,impaired mitochondrial respiratory function,increased reactive oxygen species and left ventricular end diastolic pressure.Damage to myocardial ultrastructure was also evident.Both depolarized arrest and especially hyperpolarized cardioplegia significantly reduced these lesions.5HD partially blocked the

  6. N-Acetylcysteine Attenuates Diabetic Myocardial Ischemia Reperfusion Injury through Inhibiting Excessive Autophagy

    Science.gov (United States)

    Wang, Sheng; Yan, Fuxia; Wang, Tingting; He, Yi

    2017-01-01

    Background. Excessive autophagy is a major mechanism of myocardial ischemia reperfusion injury (I/RI) in diabetes with enhanced oxidative stress. Antioxidant N-acetylcysteine (NAC) reduces myocardial I/RI. It is unknown if inhibition of autophagy may represent a mechanism whereby NAC confers cardioprotection in diabetes. Methods and Results. Diabetes was induced in Sprague-Dawley rats with streptozotocin and they were treated without or with NAC (1.5 g/kg/day) for four weeks before being subjected to 30-minute coronary occlusion and 2-hour reperfusion. The results showed that cardiac levels of 15-F2t-Isoprostane were increased and that autophagy was evidenced as increases in ratio of LC3 II/I and protein P62 and AMPK and mTOR expressions were significantly increased in diabetic compared to nondiabetic rats, concomitant with increased postischemic myocardial infarct size and CK-MB release but decreased Akt and eNOS activation. Diabetes was also associated with increased postischemic apoptotic cell death manifested as increases in TUNEL positive cells, cleaved-caspase-3, and ratio of Bax/Bcl-2 protein expression. NAC significantly attenuated I/RI-induced increases in oxidative stress and cardiac apoptosis, prevented postischemic autophagy formation in diabetes, and reduced postischemic myocardial infarction (all p < 0.05). Conclusions. NAC confers cardioprotection against diabetic heart I/RI primarily through inhibiting excessive autophagy which might be a major mechanism why diabetic hearts are less tolerant to I/RI. PMID:28265179

  7. Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/Reperfusion Injury

    Science.gov (United States)

    Melo, Dirceu S.; Costa-Pereira, Liliane V.; Santos, Carina S.; Mendes, Bruno F.; Costa, Karine B.; Santos, Cynthia Fernandes F.; Rocha-Vieira, Etel; Magalhães, Flávio C.; Esteves, Elizabethe A.; Ferreira, Anderson J.; Guatimosim, Sílvia; Dias-Peixoto, Marco F.

    2016-01-01

    Background and Aims: Recent studies have proposed that if a severe caloric restriction (SCR) is initiated at the earliest period of postnatal life, it can lead to beneficial cardiac adaptations later on. We investigated the effects of SCR in Wistar rats from birth to adult age on risk factors for cardiac diseases (CD), as well as cardiac function, redox status, and HSP72 content in response to ischemia/reperfusion (I/R) injury. Methods and Results: From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Food intake was assessed daily and body weight were assessed weekly. In the last week of the SCR protocol, systolic blood pressure and heart rate were measured and the double product index was calculated. Also, oral glucose and intraperitoneal insulin tolerance tests were performed. Thereafter, rats were decapitated, visceral fat was weighed, and blood and hearts were harvested for biochemical, functional, tissue redox status, and western blot analyzes. Compared to AL, CR50 rats had reduced the main risk factors for CD. Moreover, the FR50 rats showed increased cardiac function both at baseline conditions (45% > AL rats) and during the post-ischemic period (60% > AL rats) which may be explained by a decreased cardiac oxidative stress and increased HSP72 content. Conclusion: SCR from birth to adult age reduced risk factors for CD, increased basal cardiac function and protected hearts from the I/R, possibly by a mechanism involving ROS. PMID:27092082

  8. Cardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury

    Science.gov (United States)

    Talukder, M. A. Hassan; Elnakish, Mohammad T.; Yang, Fuchun; Nishijima, Yoshinori; Alhaj, Mazin A.; Velayutham, Murugesan; Hassanain, Hamdy H.

    2013-01-01

    The GTP-binding protein Rac regulates diverse cellular functions including activation of NADPH oxidase, a major source of superoxide production (O2·−). Rac1-mediated NADPH oxidase activation is increased after myocardial infarction (MI) and heart failure both in animals and humans; however, the impact of increased myocardial Rac on impending ischemia-reperfusion (I/R) is unknown. A novel transgenic mouse model with cardiac-specific overexpression of constitutively active mutant form of Zea maize Rac D (ZmRacD) gene has been reported with increased myocardial Rac-GTPase activity and O2·− generation. The goal of the present study was to determine signaling pathways related to increased myocardial ZmRacD and to what extent hearts with increased ZmRacD proteins are susceptible to I/R injury. The effect of myocardial I/R was examined in young adult wild-type (WT) and ZmRacD transgenic (TG) mice. In vitro reversible myocardial I/R for postischemic cardiac function and in vivo regional myocardial I/R for MI were performed. Following 20-min global ischemia and 45-min reperfusion, postischemic cardiac contractile function and heart rate were significantly reduced in TG hearts compared with WT hearts. Importantly, acute regional myocardial I/R (30-min ischemia and 24-h reperfusion) caused significantly larger MI in TG mice compared with WT mice. Western blot analysis of cardiac homogenates revealed that increased myocardial ZmRacD gene expression is associated with concomitant increased levels of NADPH oxidase subunit gp91phox, O2·−, and P21-activated kinase. Thus these findings provide direct evidence that increased levels of active myocardial Rac renders the heart susceptible to increased postischemic contractile dysfunction and MI following acute I/R. PMID:23161879

  9. Ozone protects rat heart against ischemia-reperfusion injury: A role for oxidative preconditioning in attenuating mitochondrial injury.

    Science.gov (United States)

    Meng, Weixin; Xu, Ying; Li, Dandan; Zhu, Erjun; Deng, Li; Liu, Zonghong; Zhang, Guowei; Liu, Hongyu

    2017-04-01

    Ischemia-reperfusion injury (IRI) is a major cause of cardiac dysfunction during cardiovascular surgery, heart transplantation and cardiopulmonary bypass procedures. The purpose of the present study was to explore, firstly, whether ozone induces oxidative preconditioning by activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and, secondly, whether ozone oxidative preconditioning (OzoneOP) can protect the heart against IRI by attenuating mitochondrial damage. Rats were subjected to 30min of cardiac ischemia followed by 2h of reperfusion, with or without prior OzoneOP (100μg/kg/day) for 5 days. Antioxidant capacity, myocardial apoptosis and mitochondrial damage were evaluated and compared at the end of reperfusion. OzoneOP was found to increase antioxidant capacity and to protect the myocardium against IRI by attenuating mitochondrial damage and myocardial apoptosis. The study suggests a potential role for OzoneOP in protecting the heart against IRI during cardiovascular surgery, cardiopulmonary bypass procedures or transplantation.

  10. The Effect of Transcutaneous Electrical Acupoint Stimulation on Inflammatory Response in Patients Undergoing Limb Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yunchang Mo

    2017-01-01

    Full Text Available Reperfusion after tourniquet use can induce inflammation and cause remote organ injury. We evaluated the therapeutic effect of transcutaneous electrical acupoint stimulation (TEAS on inflammatory mediators and lung function in patients receiving lower limb tourniquets. Forty patients undergoing unilateral lower extremity surgery with tourniquet were randomly assigned to two groups: the TEAS group and ischemia-reperfusion (I/R group. The C-C motif chemokine ligand 2 (CCL2, C-X-C motif chemokine ligand 8 (CXCL8, interleukin-1 (IL-1, interleukin-6 (IL-6, interleukin-10 (IL-10, tumor necrosis factor-α (TNF-α, and arterial blood gas analysis were measured preoperatively and 6 h after tourniquet removal. The levels of CXCL8, IL-1, IL-6, TNF-α, and CCL2 were significantly increased compared to baseline values in both groups, but the increase was significantly smaller in the TEAS group. In the TEAS group, the partial pressure of oxygen and arterial-alveolar oxygen tension ratio were significantly decreased, and the alveolar-arterial oxygen tension difference and respiratory index were significantly increased, compared to those in the I/R group at 6 h after reperfusion. In conclusion, TEAS diminished the upregulation of proinflammatory factors in response to lower limb ischemia-reperfusion and improved pulmonary gas exchange.

  11. Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury.

    Science.gov (United States)

    Zhang, Y; Xing, F; Zheng, H; Xi, J; Cui, X; Xu, Z

    2013-07-01

    While nitric oxide (NO) induces cardioprotection by targeting the mitochondrial permeability transition pore (mPTP), the precise mitochondrial signaling events that mediate the action of NO remain unclear. The purpose of this study was to test whether NO induces cardioprotection against ischemia/reperfusion by inhibiting oxidative stress through mitochondrial zinc and Src tyrosine kinase. The NO donor S-nitroso-N-acetyl penicillamine (SNAP) given before the onset of ischemia reduced cell death in rat cardiomyocytes subjected to simulated ischemia/reperfusion, and this was abolished by the zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and the Src tyrosine kinase inhibitor PP2. SNAP also prevented loss of mitochondrial membrane potential (ΔΨm) at reperfusion, an effect that was blocked by TPEN and PP2. SNAP increased mitochondrion-free zinc upon reperfusion and enhanced mitochondrial Src phosphorylation in a zinc-dependent manner. SNAP inhibited both mitochondrial complex I activity and mitochondrial reactive oxygen species (ROS) generation at reperfusion through zinc and Src tyrosine kinase. Finally, the anti-infarct effect of SNAP was abrogated by TPEN and PP2 applied at reperfusion in isolated rat hearts. In conclusion, NO induces cardioprotection at reperfusion by targeting mitochondria through attenuation of oxidative stress resulted from the inhibition of complex I at reperfusion. Activation of mitochondrial Src tyrosine kinase by zinc may account for the inhibition of complex I.

  12. Effects of N-n-butyl Haloperidol Iodide on Myocardial Ischemia/Reperfusion Injury and Egr-1 Expression in Rat

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei ZHANG; Gang-Gang SHI; Zhao TANG; Jin-Hong ZHENG; Wei-Qiu LI; Fu-Xiao GUO; Qiang-Yong JIA

    2006-01-01

    We have previously shown that N-n-butyl haloperidol iodide (F2) derived from haloperidol reduces ischemia/reperfusion-induced myocardial injury by blocking intracellular Ca2+ overload. This study tested the hypothesis that cardio-protection with F2 is associated with an attenuation in the expression of early growth response gene 1 (Egr-1). In an in vivo rat model of 60 min coronary occlusion followed by 180 min of reperfusion, treatment with F2 significantly reduced myocardial injury evidenced by the reduction in release of plasma creatine kinase, myocardial creatine kinase isoenzyme and lactate dehydrogenase. In cultured neonatal rat cardiomyocytes of hypoxia for 3 h and reoxygenation for 1 h, F2 treatment attenuated necrotic and apoptotic cell death, as demonstrated by electron microscopy. Concomitant with cardio-protection by F2, the increased expression levels of Egr-1 mRNA and proteinwere significantly reduced in myocardial tissue and cultured cardiomyocytes as detected by reverse transcription-polymerase chain reaction, immunohistochemistry and immunocytochemistry. In conclusion, these results suggest that the protective effect of F2 on ischemia/reperfusion- or hypoxia/reoxygenation-induced myocardial injury might be partly mediated by downregulating Egr-1 expression.

  13. Neohesperidin attenuates cerebral ischemia-reperfusion injury via inhibiting the apoptotic pathway and activating the Akt/Nrf2/HO-1 pathway.

    Science.gov (United States)

    Wang, Ji-Jun; Cui, Ping

    2013-09-01

    Oxidative stress is well known to play a pivotal role in cerebral ischemia-reperfusion injury. On the basis of this fact, antioxidative agents have been demonstrated to be neuroprotective. Neohesperidin (NH) is abundant in citrus flavonoids and possesses reactive oxygen species scavenging activity and neuroprotective effects in vitro. However, little is known about its effects on cerebral ischemia-reperfusion injury and the underlying mechanisms. In this study, we use a rat model of middle cerebral artery occlusion (MCAO) to investigate the neuroprotective effects of NH. NH significantly improved neurological functions and attenuated MCAO-induced infarct volume, pathological changes, and neuronal loss. Moreover, it enhanced antioxidant capacity and suppressed oxidative stress in the brain. NH inhibited the MCAO-induced upregulation of Bax, cytochrome c, and cleaved caspase-9 and -3, as well as the downregulation of Bcl-2. Interestingly, NH treatment upregulated heme oxygenase-1 (HO-1) in a concentration-dependent manner, which was due to the NH-mediated activation of the protein kinase B (Akt)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. NH also abolished the MCAO-induced inhibition of the Akt/Nrf2 pathway. In conclusion, NH attenuates cerebral ischemia-reperfusion injury via the inhibition of neuronal apoptosis and oxidative stress through the regulation of the apoptotic pathway and the Akt/Nrf2/HO-1 pathway. NH might be a promising preventive agent for ischemic stroke.

  14. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-06-01

    Full Text Available This study aimed to determine the role of mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP channels and protein kinase C (PKC-ε in the delayed protective effects of sevoflurane preconditioning using Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts were randomly divided into 6 groups (n=9. The rats were exposed for 60 min to 2.5% sevoflurane (the second window of protection group, SWOP group or 33% oxygen inhalation (I/R group 24 h before coronary occlusion. The control group (CON and the sevoflurane group (SEVO group were exposed to 33% oxygen and 2.5% sevoflurane for 60 min, respectively, without coronary occlusion. The mitoKATP channel inhibitor 5-hydroxydecanoate (5-HD was given 30 min before sevoflurane preconditioning (5-HD+SWOP group. Cardiac function indices, infarct sizes, serum cardiac troponin I (cTnI concentrations, and the expression levels of phosphorylated PKC-ε (p-PKC-ε and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε expression was upregulated, caspase-8 expression was downregulated, cTnI concentrations were decreased, and the infarcts were significantly smaller (P<0.05 in the SWOP group compared with the I/R group. Cardiac function was worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated, cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group (P<0.05 compared with the SWOP group. The results suggest that mitoKATP channels are involved in the myocardial protective effects of sevoflurane in preconditioning against I/R injury, by regulating PKC-ε phosphorylation before ischemia, and by downregulating caspase-8 during reperfusion.

  15. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Institute of Neuroscience, Soochow University, Suzhou (China); Hu, S.M. [Institute of Neuroscience, Soochow University, Suzhou (China); Xie, H.; Qiao, S.G. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Liu, H. [Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Davis, CA (United States); Liu, C.F. [Institute of Neuroscience, Soochow University, Suzhou (China)

    2015-03-27

    This study aimed to determine the role of mitochondrial adenosine triphosphate-sensitive potassium (mitoK{sub ATP}) channels and protein kinase C (PKC)-ε in the delayed protective effects of sevoflurane preconditioning using Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts were randomly divided into 6 groups (n=9). The rats were exposed for 60 min to 2.5% sevoflurane (the second window of protection group, SWOP group) or 33% oxygen inhalation (I/R group) 24 h before coronary occlusion. The control group (CON) and the sevoflurane group (SEVO) group were exposed to 33% oxygen and 2.5% sevoflurane for 60 min, respectively, without coronary occlusion. The mitoK{sub ATP} channel inhibitor 5-hydroxydecanoate (5-HD) was given 30 min before sevoflurane preconditioning (5-HD+SWOP group). Cardiac function indices, infarct sizes, serum cardiac troponin I (cTnI) concentrations, and the expression levels of phosphorylated PKC-ε (p-PKC-ε) and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε expression was upregulated, caspase-8 expression was downregulated, cTnI concentrations were decreased, and the infarcts were significantly smaller (P<0.05) in the SWOP group compared with the I/R group. Cardiac function was worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated, cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group (P<0.05) compared with the SWOP group. The results suggest that mitoK{sub ATP} channels are involved in the myocardial protective effects of sevoflurane in preconditioning against I/R injury, by regulating PKC-ε phosphorylation before ischemia, and by downregulating caspase-8 during reperfusion.

  16. Taurine inhibits ischemia/reperfusion-induced compartment syndrome in rabbits

    Institute of Scientific and Technical Information of China (English)

    Ji-xian WANG; Yan LI; Li-ke ZHANG; Jing ZHAO; Yong-zheng PANG; Chao-shu TANG; Jing ZHANG

    2005-01-01

    Aim: To investigate effects of taurine on ischemia/reperfusion (I/R)-induced compartment syndrome in rabbit hind limbs.Methods: Rabbits underwent femoral artery occ lusion after ligation of branches from terminal aorta to femoral artery.After a 7-h ischemia, reperfusion was established with the use of heparinized by iv infusion 10 min before shunt placement.During reperfusion, anterior compartment pressure (ACP) was monitored continuously in the left lower extremity.Gastrocnemius muscle triphenyltetrazolium chloride (TTC) level, taurine content and myeloperoxidase activity were assayed.Oxidative stress was induced in the in vitro gastrocnemius muscle slices by free radical generating systems (FRGS),and the malondialdehyde content was measured in presence or absence of taurine.Results: After 7 h of ischemia, none of the parameters that we measured were different from those before ischemia, except that TTC reduction decreased by 80%.In the control group, after 2 h of reperfusion, ACP increased 4.5-fold, and gastrocnemius muscle taurine content was reduced by 33%.In taurine-treated animals, at 2 h reperfusion, the mean arterial blood pressure and heart rate were increased, by 6% and 10%.ACP decreased by 39%, muscle edema decreased by 16%, TTC reduction increased by 150%, and lactate dehydrogenase decreased by 36% compared to control group.Plasma and muscle taurine content increased by 70% and 88%, respectively.In the taurine-treated group, at 2 h reperfusion, plasma malondialdehyde and conjugated diene content were decreased by 38% and 23%,respectively, and muscle malondialdehyde and conjugated diene content decreased by 22% and 30%, respectively compared to the control group.At 2 h reperfusion,myeloperoxidase activity was increased 3.5-fold in control animals.In the in vitro study, taurine decreased malondialdehyde content in muscle slices incubated with hypochlorous acid in a dose-dependent manner, but there was no change when incubated with hydrogen peroxide and

  17. Protection Against Hepatic Ischemia-reperfusion Injury in Rats by Oral Pretreatment With Quercetin

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To investigate the possible protection provided by oral quercetin pretreatment against hepatic ischemia-reperfusion injury in rats. Methods The quercetin (0.13 mmol/kg) was orally administrated in 50 min prior to hepatic ischemia-reperfusion injury. Ascorbic acid was also similarly administered. The hepatic content of quercetin was assayed by high performance liquid chromatography (HPLC). Plasma glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT) activities and malondialdehyde (MDA) concentration were measured as markers of hepatic ischemia-reperfusion injury. Meanwhile, hepatic content of glutathione (GSH), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and xanthine oxidase (XO), total antioxidant capacity (TAOC), contents of reactive oxygen species (ROS) and MDA, DNA fragmentation were also determined. Results Hepatic content of quercetin after intragastric administration of quercetin was increased significantly. The increases in plasma GPT, GOT activities and MDA concentration after hepatic ischemia-reperfusion injury were reduced significantly by pretreatment with quercetin. Hepatic content of GSH and activities of SOD, GSH-Px and TAOC were restored remarkably while the ROS and MDA contents were significantly diminished by quercetin pretreatment after ischemia-reperfusion injury. However, quercetin pretreatment did not reduce significantly hepatic XO activity and DNA fragmentation. Ascorbic acid pretreatment had also protective effects against hepatic ischemia-reperfusion injury by restoring hepatic content of GSH, TAOC and diminishing ROS and MDA formation and DNA fragmentation. Conclusion It is indicated that quercetin can protect the liver against ischemia-reperfusion injury after oral pretreatment and the underlying mechanism is associated with improved hepatic antioxidant capacity.

  18. Propofol Prevents Renal Ischemia-Reperfusion Injury via Inhibiting the Oxidative Stress Pathways

    Directory of Open Access Journals (Sweden)

    Yingjie Li

    2015-08-01

    Full Text Available Background/Aims: Renal ischemia/reperfusion injury (IRI is a risk for acute renal failure and delayed graft function in renal transplantation and cardiac surgery. The purpose of this study is to determine whether propofol could attenuate renal IRI and explore related mechanism. Methods: Male rat right kidney was removed, left kidney was subjected to IRI. Propofol was intravenously injected into rats before ischemia. The kidney morphology and renal function were analyzed. The expression of Bax, Bcl-2, caspase-3, cl-caspase-3, GRP78, CHOP and caspase-12 were detected by Western blot analysis. Results: IR rats with propofol pretreatment had better renal function and less tubular apoptosis than untreated IR rats. Propofol pretreated IR rats had lower Bax/Bcl-2 ratio and less cleaved caspase-3. The protein expression levels of GRP78, CHOP and caspase-12 decreased significantly in propofol pretreated IR rats. In vitro cell model showed that propofol significantly increased the viability of NRK-52E cells that were subjected to hypoxia/reoxygenation (H/R in a dose-dependent manner. The effect of propofol on the expression regulation of Bax, Bcl-2, caspase-3, GRP78, CHOP was consistent in both in vitro and in vivo models. Conclusion: Experimental results suggest that propofol prevents renal IRI via inhibiting oxidative stress.

  19. Cardioprotective properties of Crataegus oxycantha extract against ischemia-reperfusion injury

    Science.gov (United States)

    Swaminathan, Jayachandran Kesavan; Khan, Mahmood; Mohan, Iyappu K; Selvendiran, Karuppaiyah; Devaraj, S. Niranjali; Rivera, Brian K.; Kuppusamy, Periannan

    2010-01-01

    The aim of the study was to investigate the cardioprotective effect and mechanism of Crataegus oxycantha (COC) extract, a well-known natural antioxidant-based cardiotonic, against ischemia/reperfusion (I/R) injury. Electron paramagnetic resonance studies showed that COC extract was capable of scavenging superoxide, hydroxyl, and peroxyl radicals, in vitro. The cardioprotective efficacy of the extract was studied in a crystalloid perfused heart model of I/R injury. Hearts were subjected to 30 min of global ischemia followed by 45 min of reperfusion. During reperfusion, COC extract was infused at a dose rate of 1 mg/ml/min for 10 min. Hearts treated with COC extract showed a significant recovery in cardiac contractile function, reduction in infarct size, and decrease in creatine kinase and lactate dehydrogenase activities. The expressions of xanthine oxidase and NADPH oxidase were significantly reduced in the treated group. A significant upregulation of the anti-apoptotic proteins Bcl-2 and Hsp70 with simultaneous downregulation of the pro-apoptotic proteins cytochrome c and cleaved caspase-3 was observed. The molecular signaling cascade including phospho-Akt (ser-473) and HIF-1α that lead to the activation or suppression of apoptotic pathway also showed a significant protective role in the treatment group. No significant change in phospho-p38 levels was observed. The results suggested that the COC extract may reduce the oxidative stress in the reperfused myocardium, and play a significant role in the inhibition of apoptotic pathways leading to cardioprotection. PMID:20171068

  20. Lipoxin A4 Preconditioning and Postconditioning Protect Myocardial Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qifeng Zhao

    2013-01-01

    Full Text Available This study aims to investigate the pre- and postconditioning effects of lipoxin A4 (LXA4 on myocardial damage caused by ischemia/reperfusion (I/R injury. Seventy-two rats were divided into 6 groups: sham groups (C1 and C2, I/R groups (I/R1 and I/R2, and I/R plus LXA4 preconditioning and postconditioning groups (LX1 and LX2. The serum levels of IL-1β, IL-6, IL-8, IL-10, TNF-α, and cardiac troponin I (cTnI were measured. The content and the activity of Na+-K+-ATPase as well as the superoxide dismutase (SOD, and malondialdehyde (MDA levels were determined. Along with the examination of myocardium ultrastructure and ventricular arrhythmia scores (VAS, connexin 43 (Cx43 expression were also detected. Lower levels of IL-1β, IL-6, IL-8, TNF-α, cTnI, MDA content, and VAS and higher levels of IL-10, SOD activity, Na+-K+-ATPase content and activity, and Cx43 expression appeared in LX groups than I/R groups. Besides, H&E staining, TEM examination as well as analysis of gene, and protein confirmed that LXA4 preconditioning was more effective than postconditioning in preventing arrhythmogenesis via the upregulation of Cx43. That is, LXA4 postconditioning had better protective effect on Na+-K+-ATPase and myocardial ultrastructure.

  1. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue.

    Directory of Open Access Journals (Sweden)

    Kimberley E Wever

    Full Text Available Renal ischemia/reperfusion injury (IRI frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5 homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo.

  2. Mitochondrial uncoupling does not decrease reactive oxygen species production after ischemia-reperfusion.

    Science.gov (United States)

    Quarrie, Ricardo; Lee, Daniel S; Reyes, Levy; Erdahl, Warren; Pfeiffer, Douglas R; Zweier, Jay L; Crestanello, Juan A

    2014-10-01

    Cardiac ischemia-reperfusion (IR) leads to myocardial dysfunction by increasing production of reactive oxygen species (ROS). Mitochondrial H(+) leak decreases ROS formation; it has been postulated that increasing H(+) leak may be a mechanism of decreasing ROS production after IR. Ischemic preconditioning (IPC) decreases ROS formation after IR, but the mechanism is unknown. We hypothesize that pharmacologically increasing mitochondrial H(+) leak would decrease ROS production after IR. We further hypothesize that IPC would be associated with an increase in the rate of H(+) leak. Isolated male Sprague-Dawley rat hearts were subjected to either control or IPC. Mitochondria were isolated at end equilibration, end ischemia, and end reperfusion. Mitochondrial membrane potential (mΔΨ) was measured using a tetraphenylphosphonium electrode. Mitochondrial uncoupling was achieved by adding increasing concentrations of FCCP. Mitochondrial ROS production was measured by fluorometry using Amplex-Red. Pyridine dinucleotide levels were measured using HPLC. Before IR, increasing H(+) leak decreased mitochondrial ROS production. After IR, ROS production was not affected by increasing H(+) leak. H(+) leak increased at end ischemia in control mitochondria. IPC mitochondria showed no change in the rate of H(+) leak throughout IR. NADPH levels decreased after IR in both IPC and control mitochondria while NADH increased. Pharmacologically, increasing H(+) leak is not a method of decreasing ROS production after IR. Replenishing the NADPH pool may be a means of scavenging the excess ROS thereby attenuating oxidative damage after IR.

  3. Cardioprotective Effect of Electroacupuncture Pretreatment on Myocardial Ischemia/Reperfusion Injury via Antiapoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Sheng-feng Lu

    2016-01-01

    Full Text Available Objectives. Our previous study has used RNA-seq technology to show that apoptotic molecules were involved in the myocardial protection of electroacupuncture pretreatment (EAP on the ischemia/reperfusion (I/R animal model. Therefore, this study was designed to investigate how EAP protects myocardium against myocardial I/R injury through antiapoptotic mechanism. Methods. By using rats with myocardial I/R, we ligated the left anterior descending artery (LAD for 30 minutes followed by 4 hr of reperfusion after EAP at the Neiguan (PC6 acupoint for 12 days; we employed arrhythmia scores, serum myocardial enzymes, and cardiac troponin T (cTnT to evaluate the cardioprotective effect. Heart tissues were harvested for western blot analyses for the expressions of pro- and antiapoptotic signaling molecules. Results. Our preliminary findings showed that EAP increased the survival of the animals along with declined arrhythmia scores and decreased CK, LDH, CK-Mb, and cTnT levels. Further analyses with the heart tissues detected reduced myocardial fiber damage, decreased number of apoptotic cells and the protein expressions of Cyt c and cleaved caspase 3, and the elevated level of Endo G and AIF after EAP intervention. At the same time, the protein expressions of antiapoptotic molecules, including Xiap, BclxL, and Bcl2, were obviously increased. Conclusions. The present study suggested that EAP protected the myocardium from I/R injury at least partially through the activation of endogenous antiapoptotic signaling.

  4. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice

    Science.gov (United States)

    Dong, Qian; Li, Jing; Wu, Qiong-feng; Zhao, Ning; Qian, Cheng; Ding, Dan; Wang, Bin-bin; Chen, Lei; Guo, Ke-Fang; Fu, Dehao; Han, Bing; Liao, Yu-Hua; Du, Yi-Mei

    2017-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable nonselective cation channel and can be activated during ischemia/reperfusion (I/R). This study tested whether blockade of TRPV4 can alleviate myocardial I/R injury in mice. TRPV4 expression began to increase at 1 h, reached statistically at 4 h, and peaked at 24–72 h. Treatment with the selective TRPV4 antagonist HC-067047 or TRPV4 knockout markedly ameliorated myocardial I/R injury as demonstrated by reduced infarct size, decreased troponin T levels and improved cardiac function at 24 h after reperfusion. Importantly, the therapeutic window for HC-067047 lasts for at least 12 h following reperfusion. Furthermore, treatment with HC-067047 reduced apoptosis, as evidenced by the decrease in TUNEL-positive myocytes, Bax/Bcl-2 ratio, and caspase-3 activation. Meanwhile, treatment with HC-067047 attenuated the decrease in the activation of reperfusion injury salvage kinase (RISK) pathway (phosphorylation of Akt, ERK1/2, and GSK-3β), while the activation of survival activating factor enhancement (SAFE) pathway (phosphorylation of STAT3) remained unchanged. In addition, the anti-apoptotic effects of HC-067047 were abolished by the RISK pathway inhibitors. We conclude that blockade of TRPV4 reduces apoptosis via the activation of RISK pathway, and therefore might be a promising strategy to prevent myocardial I/R injury. PMID:28205608

  5. Gene transfer of heat-shock protein 20 protects against ischemia/reperfusion injury in rat hearts

    Institute of Scientific and Technical Information of China (English)

    Yan-hui ZHU; Tie-min MA; Xian WANG

    2005-01-01

    Aim: To explore whether overexpression of HSP20 in the myocardium could protect against ischemia/reperfusion injury in rats. Methods: Rat hearts were injected with vector, recombinant adenovirus encoding green fluorescent protein (Ad. GFP) or recombinant adenovirus encoding wild-type HSP20 (Ad. HSP20) in the left ventricle. Four days later, hearts were removed and expression of HSP20was measured in the left ventricle. Subsets of animals in the vector-, Ad. GFP-, and Ad. HSP20-treated groups were subjected to 20-min ischemia and 120-min reperfusion. Myocardial injury was evaluated by infarct size and level of serum cardiac troponin T and creatine phosphokinase. Apoptosis of cardiomyocytes was determined by TUNEL staining. Cardiac function was evaluated by hemodynamic indexes. Results: Infarct size and serum cardiac troponin T and creatine phosphokinase levels were significantly reduced in Ad. HSP20-treated hearts compared with vector- and Ad. GFP-treated hearts. The ratio of TUNEL-positive cardiomyocytes to total number of cardiomyocytes in the Ad. HSP20 group was significantly reduced as compared with the vector and Ad. GFP groups. Left ventricular end systolic pressure, and maximal rate of pressure increase (+dp/dtmax)and decrease (-dp/dtmin) values were increased significantly, while left ventricular end diastolic pressure was decreased significantly in Ad.HSP20-treated hearts compared with vector- and Ad. GFP-treated hearts. Conclusion: These data indicate that the cardioprotective effects of HSP20 may contribute to the reduction of myocardial necrosis and apoptosis in ischemia/reperfusion injury in rats.

  6. Saffron (Crocus sativus) pretreatment confers cardioprotection against ischemia-reperfusion injuries in isolated rabbit heart.

    Science.gov (United States)

    Nader, Moni; Chahine, Nathalie; Salem, Charelle; Chahine, Ramez

    2016-12-01

    Restoration of blood flow to the ischemic myocardium is imperative to avoid demise of cardiomyocytes, but is paradoxically associated with irreversible damage to cardiac tissues due to the excessive generation of reactive oxygen species (ROS). We have previously reported that saffron, a natural antioxidant, attenuated ischemia-reperfusion (IR) injuries in vitro; however, its role in a meaningful cardiac recovery remains unknown. Here, we show that saffron supplement (oral administration for 6 weeks) reduced myocardial damage and restored cardiac function in an IR model of rabbit hearts. This was evidenced by improved left ventricle pressure, heart rate and coronary flow, and left ventricle end diastolic pressure (LVEDP) in IR hearts (isolated from rabbits pre-exposed to saffron (S/IR)). Electrophysiological recordings revealed a significant decline in both premature ventricle contraction and ventricle tachycardia/fibrillation in S/IR compared to IR hearts. This was paralleled by increased expression of the contractile proteins α-actinin and Troponin C in the myocardium of S/IR hearts. Histological examination combined to biochemical analysis indicated that hearts pre-exposed to saffron exhibited reduced infarct size, lower lipid peroxidation, with increased glutathione peroxidase activity, and oxidation of nitro blue tetrazolium (by reactive oxygen species). Furthermore, in contrast with IR hearts, saffron pretreatment induced restoration of the phosphorylation level of the survival proteins Akt and 4EBP1 and reduced activity of p38. Collectively, our data demonstrate that the natural antioxidant saffron plays a pivotal role in halting IR-associated cardiac injuries and emerges as a novel preventive tool for ischemic heart disease.

  7. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Carol Chen-Scarabelli; Richard Knight; Pratik R Agrawal; Louis Saravolatz; Cadigia Abuniat; Gabriele Scarabelli; Anastasis Stephanou; Leena Loomba; Jagat Narula; Tiziano M Scarabelli

    2014-01-01

    A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cyto-plasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated cata-bolic cellular‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protec-tive mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the va-riability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic ma-nipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.

  8. Comparative analysis of different cyclosporine A doses on protection after myocardial ischemia/reperfusion injury in rat

    Institute of Scientific and Technical Information of China (English)

    Kang Huang; Shi-Juan Lu; Jiang-Hua Zhong; Qun Xiang; Liu Wang; Miao Wu

    2014-01-01

    Objective:To investigate the protective effect of different cyclosporinA(CsA) doses on myocardial ischemia/reperfusion injury in rat models.Methods:A rat model of myocardial ischemia/reperfusion injury was established in vivoand the rats were randomly divided into four groups: placebo(PBS;T1), low-dose(CsA dose:1.0 mg/kg;T2), medium-dose(CsA dose:2.5 mg/kg;T3), and high-dose(CsA dose:5.0 mg/kg;T4) groups.Heart function indexes were monitored at different time points, the extent of myocardial infarction was assessed byEvans Blue-TTC staining, and creatine kinase MB mass and cardiac troponinI values were measured by biochemical assays.Results:Compared with theT1 andT2 groups, both the creatine kinase MB mass and cardiac troponinI were significantly lower in theT3 andT4 groups(P<0.05).The mean arterial pressure(MAP) and left ventricular systolic pressure(LVSP) decreased sequentially in each group, with the extending reperfusion time.Significant decreases inLVSP andMAP were observed in theT3 andT4 groups as compared to theT1 andT2 group(P<0.05), and theT2 group showed a significantly lowerLVSP andMAP decline than theT1 group(P<0.05).Compared with theT1 group, the rats from theT2,T3, andT4 groups suffered from a significantly lower extent of myocardial infarction(P<0.05).Also, the animals in theT3 andT4 groups had a significantly smaller extent of myocardial infarction than those in theT2 group(P<0.05).Conclusions:Various CsA doses exert different degrees of protection against ischemia/reperfusion injury, and this protective effect peaks at approximately2.5 mg/kg in rat models.

  9. Does Dexpantenol Protect the Kidney from Ischemia-Reperfusion Injury?

    Directory of Open Access Journals (Sweden)

    Sezen ÖZKISACIK

    2011-05-01

    Full Text Available OBJECTIVES: Tissue injury occurs following reperfusion after creation of ischemia. Plenty of chemical agents have been shown to protect from such an injury. We planned to evaluate the protective effect of dexpanthenol (dxp in ischemia-reperfusion injury. MATERIAL and METHODS: 24 adult rats were used and divided into 3 groups. A right nephrectomy was performed through a median laparotomy incision in all groups. Additionally, in group 1 (sham group, left nephrectomy was made 6 hours later without creation of ischemia. In group 2 (Saline group, the left kidney was left ischemic for 1 hour and reperfusion was established for 6 hours. Saline was administered intraperitoneally thirty minutes before creation of ischemia and just before reperfusion. In group 3 (Dexpanthenol group, the left kidney was left ischemic for 1 hour and reperfusion was established for 6 hours. Dxp (500 mg/kg was administered intraperitoneally thirty minutes before creation of ischemia and just before reperfusion. A left nephrectomy was performed at the end of the 6 hours of reperfusion. Nephrectomy specimens were histopathologically analysed for congestion, inflammation and necrosis. Tissue NO, glutathione reductase, catalase and MDA levels were measured. RESULTS: There was no significant differences between the groups histopathologically or biochemically. CONCLUSION: Dexpanthenol is the biologically active form of pantothenic acid and has an antioxidant effect. Our study was not in correlation with the literature regarding a protective effect of dxp on various organs via its antioxidant effect.

  10. Ablation of cereblon attenuates myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Kim, Jooyeon; Lee, Kwang Min; Park, Chul-Seung; Park, Woo Jin

    2014-05-16

    Cereblon (CRBN) was originally identified as a target protein for a mild type of mental retardation in humans. However, recent studies showed that CRBN acts as a negative regulator of AMP-activated protein kinase (AMPK) by binding directly to the AMPK catalytic subunit. Because AMPK is implicated in myocardial ischemia-reperfusion (I-R) injury, we reasoned that CRBN might play a role in the pathology of myocardial I-R through regulation of AMPK activity. To test this hypothesis, wild-type (WT) and crbn knockout (KO) mice were subjected to I-R (complete ligation of the coronary artery for 30 min followed by 24h of reperfusion). We found significantly smaller infarct sizes and less fibrosis in the hearts of KO mice than in those of WT mice. Apoptosis was also significantly reduced in the KO mice compared with that in WT mice, as shown by the reduced numbers of TUNEL-positive cells. In parallel, AMPK activity remained at normal levels in KO mice undergoing I-R, whereas it was significantly reduced in WT mice under the same conditions. In rat neonatal cardiomyocytes, overexpression of CRBN significantly reduced AMPK activity, as demonstrated by reductions in both phosphorylation levels of AMPK and the expression of its downstream target genes. Collectively, these data demonstrate that CRBN plays an important role in myocardial I-R injury through modulation of AMPK activity.

  11. Tadalafil significantly reduces ischemia reperfusion injury in skin island flaps

    Directory of Open Access Journals (Sweden)

    Oguz Kayiran

    2013-01-01

    Full Text Available Introduction: Numerous pharmacological agents have been used to enhance the viability of flaps. Ischemia reperfusion (I/R injury is an unwanted, sometimes devastating complication in reconstructive microsurgery. Tadalafil, a specific inhibitor of phosphodiesterase type 5 is mainly used for erectile dysfunction, and acts on vascular smooth muscles, platelets and leukocytes. Herein, the protective and therapeutical effect of tadalafil in I/R injury in rat skin flap model is evaluated. Materials and Methods: Sixty epigastric island flaps were used to create I/R model in 60 Wistar rats (non-ischemic group, ischemic group, medication group. Biochemical markers including total nitrite, malondialdehyde (MDA and myeloperoxidase (MPO were analysed. Necrosis rates were calculated and histopathologic evaluation was carried out. Results: MDA, MPO and total nitrite values were found elevated in the ischemic group, however there was an evident drop in the medication group. Histological results revealed that early inflammatory findings (oedema, neutrophil infiltration, necrosis rate were observed lower with tadalafil administration. Moreover, statistical significance (P < 0.05 was recorded. Conclusions: We conclude that tadalafil has beneficial effects on epigastric island flaps against I/R injury.

  12. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Beilei Chen

    2015-01-01

    Full Text Available Background. Calreticulin (CRT can bind to Fas ligand (FasL and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI. Methods. Mice underwent middle cerebral artery occlusion (MCAO and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI.

  13. Effect of oxytocin on gastric ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenwen; ZHANG Jianfu; XU Ming; ZHANG Yongmei

    2007-01-01

    The effect of peripherally administered oxytocin (OT)on gastric ischemia-reperfusion injury(GI-RI)and its possible mechanism were investigated.The Sprague-Dawley (SD)rats were randomly divided into different treatment groups(n=6).The animal GI-RI model was established by clamping the celiac artery for 30 min to induce ischemia and then released to allow reperfusion for 1 h,and the degree of GI-RI was assessed by scoring the gastric mucosal damage index(GMDI),the gastric fluid output,gastric fluid output,gastric acidity were measured and the surgical preparations of vagotomy and sympathectomy were used to investigate the possible mechanism of OT on GI-RI.The results were as follows.Compared with the control group(NS plus GI-R only,GMDI 121.33±10.40,n=6),the intraperitoneal(ip)administration of oxytocin(20,100 μg/0.5 mL)obviously attenuated GI-RI(P<0.05),GMDI were 82.33±14.26,53.5±5.58 respectively(n=6);the gastric fluid output and the gastric acidity(evaluated by pH)of the control group were(430.17±87.36)μL,1.55±0.25(n=6),and those of the OT group were(102.45+48.00)μL,2.65+0.40(n=6)respectively;differences had statistical significance(P<0.01).The effect of oxytocin was reversed by atosiban,a selective oxytocin receptor antagonist.The GMDI of the group given atosiban 10 min before OT was 138.17±24.06(n=6),which had no significant difference with the control group.Oxytocin further attenuated GI-RI after vagotomy and sympathectomy(GMDI 6.83±8.89,29.67±5.54,n=6),compared with the GI-R group and the oxytocin group (P<0.01).These results indicated that the oxytocin could significantly protect gastric mucosal against injury induced by ischemia-reperfusion,and the oxytocin receptor was involved.This effect of oxytocin may be mediated through the vagus and sympathetic nerve,and then lead to the reduction of gastric juice output and the depression of gastric acidity.

  14. Role of Nuclear Factor kappaB in Intestine Injury Induced by Hepatic Ischemia Reperfusion

    Institute of Scientific and Technical Information of China (English)

    陈俊华; 王国斌

    2004-01-01

    Summary: The role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion was investigated. Eighteen male Wistar rats were divided into 3 groups randomly: sham operation group (group A), hepatic ischemia reperfusion group (group B) and hepatic ischemia reperfusion plus pyrrolidine dithiocarbamate (PDTC) group (group C). The rats in group A were only subjected to laparotomy, those in group B underwent partial hepatic ischemia reperfusion (ischemia for 1 h and reperfusion for 2 h) and those in group C underwent the same procedure as that of group B but received PDTC 200 mg/kg i.v. before and after ischemia. After reperfusion, tissues of jejunum and venous blood were obtained for measurement of TNF-α, MDA and MPO. The levels of TNF-α in jejunum and venous blood, the levels of MPO in jejunum in group B were significantly higher than those in group A and group C (P<0.05). There was no significant different in the levels of MDA between group B and group C. The severity of histological intestinal injury in group B and group C was similar. Hepatic ischemia reperfusion caused intestine injury, NF-kappaB may play an important role in this course and the targeting of upstream components of the inflammatory response, such as NF-kappaB, may have important therapeutic applications.

  15. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Fang-fang Liu

    2015-01-01

    Full Text Available Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.

  16. Stress protein expression in early phase spinal cord ischemia/reperfusion injury*

    Institute of Scientific and Technical Information of China (English)

    Shanyong Zhang; Dankai Wu; Jincheng Wang; Yongming Wang; Guoxiang Wang; Maoguang Yang; Xiaoyu Yang

    2013-01-01

    Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differential y expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initial y improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradual y decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6–12 hours, showing a characterization of induction-inhibition-induc-tion. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.

  17. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  18. Effects of ulinastatin on renal ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Cong-cong CHEN; Zi-ming LIU; Hui-hua WANG; Wei HE; Yi WANG; Wei-dong WU

    2004-01-01

    AIM: To investigate the effect and possible mechanism of ulinastatin on renal ischemia-reperfusion injury in rats.METHODS: Male Sprague-Dawley rats were subjected to 45-min bilateral renal ischemia, treated with intravenously 12 500 U ulinastatin at 30 min prior to ischemia and at the beginning of reperfusion, compared with a nontreated group without ulinastatin and a sham-operation group without bilateral renal ischemia. After 0 h, 2 h, 6 h, 12 h, and 24 h of reperfusion, serum creatinine and blood urea nitrogen were measured for the assessment of renal function, renal sections were used for histologic grading of renal injury, for immunohistochemical localization of Bcl-2 and heat shock protein 70. Renal ultrastructure was observed through a transmission electron microscope.RESULTS: Ulinastatin significantly reduced the increase in blood urea nitrogen and creatinine produced by renal ischemia-reperfusion, suggesting an improvement in renal function. Ulinastatin reduced the histologic evidence of renal damage associated with ischemia-reperfusion and accompanied with an up-regulation in the expression of Bcl-2 protein, but it had no significent effect on the expression of HSP 70. Ulinastatin also significantly reduced kidney ultrastructure damage caused by renal ischemia-reperfusion. CONCLUSION: The protease inhibitor, ulinastatin,reduced the renal dysfunction and injury associated with ischemia-reperfusion of the kidney. The protective effect of ulinastatin might be associated with the up-regulation of Bcl-2 expression and the effect on membrane fragility.

  19. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2010-09-01

    Full Text Available Abstract Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg, a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8 or saline (9 mg/ml, n = 8. Area at risk (AAR was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007. Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23. The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.

  20. Iloprost reduces myocardial edema in a rat model of myocardial ischemia reperfusion.

    Science.gov (United States)

    Caliskan, A; Yavuz, C; Karahan, O; Yazici, S; Guclu, O; Demirtas, S; Mavitas, B

    2014-05-01

    Myocardial ischemia severely reduces myocyte longevity and function. Extensive interstitial edema and cell damage occur as a result of myocardial reperfusion injury. Current therapies are directed at prevention of ischemia-induced damage to cardiac tissue. Iloprost is a novel pharmaceutical agent for the treatment of ischemia. Twenty rats were segregated into four experimental groups. The procedure control group consisted of four rats undergoing a sham operation. The remaining 16 rats were divided into two equal groups. The first group (control group) received a continuous intravenous infusion of physiological serum immediately prior to the procedure. Iloprost was administered by a continuous intravenous infusion into the right jugular vein at an infusion rate of 100 ng/kg/min for 30 minutes prior to reperfusion in the experimental group (study group). Following the infusion treatments, ligation of the left coronary artery was conducted for 30 minutes to induce myocardial ischemia. The rats were euthanized 24 hours after reperfusion and cardiac tissue was harvested from all specimens for analysis. Histological examination revealed three myocardial tissue specimens with grade II damage and five myocardial tissue specimens with grade III reperfusion injury in the control group. However, the study group consisted of two grade III myocardial tissue specimens, five grade II myocardial tissue specimens and one grade I myocardial tissue specimen. Moreover, a statistically significant reduction in myocardial edema was observed in the study group (p=0.022). Our results support the hypothesis that iloprost enhances protection against cardiac ischemia reperfusion injury. This protective effect may be associated with vasodilation, antioxidant or anti-edema mechanisms.

  1. Ultrasound-enhanced protective effect of tetramethylpyrazine against cerebral ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Chunbing Zhang

    Full Text Available In traditional Chinese medicine, Ligusticum wallichii (Chuan Xiong and its bioactive ingredient, tetramethylpyrazine (TMP, have been used to treat cardiovascular diseases and to relieve various neurological symptoms, such as those associated with ischemic injury. In the present study, we investigated whether ultrasound (US exposure could enhance the protective effect of TMP against cerebral ischemia/reperfusion (I/R injury. Glutamate-induced toxicity to pheochromocytoma (PC12 cells was used to model I/R injury. TMP was paired with US to examine whether this combination could alleviate glutamate-induced cytotoxicity. The administration of TMP effectively protected cells against glutamate-induced apoptosis, which could be further enhanced by US-mediated sonoporation. The anti-apoptotic effect of TMP was associated with the inhibition of oxidative stress and a change in the levels of apoptosis-related proteins, Bcl-2 and Bax. Furthermore, TMP reduced the expression of proinflammatory cytokines such as TNF-α and IL-8, which likely also contributes to its cytoprotective effects. Taken together, our findings suggest that ultrasound-enhanced TMP treatment might be a promising therapeutic strategy for ischemic stroke. Further study is required to optimize ultrasound treatment parameters.

  2. Allopurinol Protects against Ischemia/Reperfusion-Induced Injury in Rat Urinary Bladders

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Shin

    2015-01-01

    Full Text Available Bladder ischemia-reperfusion (I/R injury results in the generation of reactive oxygen species (ROS and markedly elevates the risk of lower urinary tract symptoms (LUTS. Allopurinol is an inhibitor of xanthine oxidase (XO and thus can serve as an antioxidant that reduces oxidative stress. Here, a rat model was used to assess the ability of allopurinol treatment to ameliorate the deleterious effects of urinary bladder I/R injury. I/R injury reduced the in vitro contractile responses of longitudinal bladder strips, elevated XO activity in the plasma and bladder tissue, increased the bladder levels of tumor necrosis factor-α (TNF-α, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase, reduced the bladder levels of extracellular regulated kinase (ERK, and decreased and increased the bladder levels of Bcl-2 and Bax, respectively. I/R injury also elevated lipid peroxidation in the bladder. Allopurinol treatment in the I/R injury was generated significantly ameliorating all I/R-induced changes. Moreover, an in situ fluorohistological approach also showed that allopurinol reduces the generation of intracellular superoxides enlarged by I/R injury. Together, the beneficial effects of allopurinol reducing ROS production may be mediated by normalizing the activity of the ERK, JNK, and Bax/Bcl-2 pathways and by controlling TNF-α expression.

  3. The role of heat shock protein 90 in modulating ischemia-reperfusion injury in the kidney.

    Science.gov (United States)

    O'Neill, Stephen; Ross, James A; Wigmore, Stephen J; Harrison, Ewen M

    2012-10-01

    Kidney transplantation is the gold standard treatment for end-stage renal disease. Ischemia-reperfusion injury (IRI) is an unavoidable consequence of the transplantation procedure and is responsible for delayed graft function and poorer long-term outcomes. Pharmacological induction of heat shock protein (Hsp) expression is an emerging pre-conditioning strategy aimed at reducing IRI following renal transplantation. Hsp90 inhibition up-regulates protective Hsps (especially Hsp70) and potentially down-regulates NF-κB by disruption of the IκB kinase (IKK) complex. However, the clinical application of Hsp90 inhibitors is currently limited by their toxicity profile and the exact mechanism of protection conferred is unknown. Toll-like receptor 4 (TLR4) is a further regulator of NF-κB and recent studies suggest TLR4 plays a dominant role in mediating kidney damage following IRI. The full interaction of Hsps with TLRs is yet to be delineated and whether TLR4 signalling can be targeted by Hsp90 inhibition in IRI remains uncertain. Pharmacological pre-conditioning by Hsp90 inhibition involves direct treatment to the kidney donor and/or organ, which aims to reduce injury prior to the onset of ischemia. The major challenges going forward are to establish the exact mechanism of protection offered by these drugs and the investgiation of less toxic analogues that could be safely translated into human studies.

  4. Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits

    Directory of Open Access Journals (Sweden)

    Shan Le-qun

    2010-08-01

    Full Text Available Abstract Background Hydroxysafflor Yellow A (HSYA, which is one of the most important active ingredients of the Chinese herb Carthamus tinctorius L, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R injury is still unknown. Methods Thirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6 were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL staining. Results Neurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA level and increased superoxide dismutase (SOD activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits. Conclusions These findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.

  5. Pretreatment with Danhong injection protects the brain against ischemia-reperfusion injury.

    Science.gov (United States)

    Wang, Shaoxia; Guo, Hong; Wang, Xumei; Chai, Lijuan; Hu, Limin; Zhao, Tao; Zhao, Buchang; Tan, Xiaoxu; Jia, Feifei

    2014-08-01

    Danhong injection (DHI), a Chinese Materia Medica standardized product extracted from Radix Salviae miltiorrhizae and Flos Carthami tinctorii, is widely used in China for treating acute ischemic stroke. In the present study, we explored the neuroprotective efficacy of DHI in a rat model of temporary middle cerebral artery occlusion, and evaluated the potential mechanisms underlying its effects. Pretreatment with DHI (0.9 and 1.8 mL/kg) resulted in a significantly smaller infarct volume and better neurological scores than pretreatment with saline. Furthermore, DHI significantly reduced the permeability of the blood-brain barrier, increased occludin protein expression and decreased neutrophil infiltration, as well as profoundly suppressing the upregulation of matrix metallopeptidase-9 expression seen in rats that had received vehicle. Matrix metallopeptidase-2 expression was not affected by ischemia or DHI. Moreover, DHI (1.8 mL/kg) administered 3 hours after the onset of ischemia also improved neurological scores and reduced infarct size. Our results indicate that the neuroprotective efficacy of DHI in a rat model of cerebral ischemia-reperfusion injury is mediated by a protective effect on the blood-brain barrier and the reversal of neutrophil infiltration.

  6. Phellinus linteus Mycelium Alleviates Myocardial Ischemia-Reperfusion Injury through Autophagic Regulation

    Science.gov (United States)

    Su, Hsing-Hui; Chu, Ya-Chun; Liao, Jiuan-Miaw; Wang, Yi-Hsin; Jan, Ming-Shiou; Lin, Chia-Wei; Wu, Chiu-Yeh; Tseng, Chin-Yin; Yen, Jiin-Cherng; Huang, Shiang-Suo

    2017-01-01

    The incidence of myocardial ischemia-reperfusion (IR) injury is rapidly increasing around the world and this disease is a major contributor to global morbidity and mortality. It is known that regulation of programmed cell death including apoptosis and autophagy reduces the impact of myocardial IR injury. In this study, the cardioprotective effects and underlying mechanisms of Phellinus linteus (Berk. and Curt.) Teng, Hymenochaetaceae (PL), a type of medicinal mushroom, were examined in rats subjected to myocardial IR injury. The left main coronary artery of rats was ligated for 1 h and reperfused for 3 h. The arrhythmia levels were monitored during the entire process and the infarct size was evaluated after myocardial IR injury. Furthermore, the expression levels of proteins in apoptotic and autophagic pathways were observed. Pretreatment with PL mycelium (PLM) significantly reduced ventricular arrhythmia and mortality due to myocardial IR injury. PLM also significantly decreased myocardial infarct size and plasma lactate dehydrogenase level after myocardial IR injury. Moreover, PLM administration resulted in decreased caspase 3 and caspase 9 activation and increased Bcl-2/Bax ratio. Phosphorylation level of AMPK was elevated while mTOR level was reduced. Becline-1 and p62 levels decreased. These findings suggest that PLM is effective in protecting the myocardium against IR injury. The mechanism involves mediation through suppressed pro-apoptotic signaling and regulation of autophagic signaling, including stimulation of AMPK-dependent pathway and inhibition of beclin-1-dependent pathway, resulting in enhancement of protective autophagy and inhibition of excessive autophagy. PMID:28420993

  7. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Li, Xin-Juan; Li, Chao-Kun; Wei, Lin-Yu; Lu, Na; Wang, Guo-Hong; Zhao, Hong-Gang; Li, Dong-Liang

    2015-06-01

    The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

  8. Effect of morphine preconditioning on neuronal apoptosis following cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    He Dong; Xiangyu Ji; Dong Wang; Yueyi Ren; Shiduan Wang; Jianfang Song

    2010-01-01

    Apoptosis,a form of neuronal damage,takes place following cerebral ischemia/reperfusion injury,and caspase-3 plays an important role in apoptosis.Studies have shown that morphine preconditioning influences neuronal apoptosis and related protein expression following cerebral ischemia/reperfusion injury.In the present study,neuronal degeneration was attenuated,and the number of apoptotic cells and caspase-3 expression decreased following morphine preconditioning in a rat model of cerebral ischemia/reperfusion injury.Moreover,pathological changes were attenuated with increasing morphine doses,as well as the number of apoptotic cells and caspase-3 expression.Results from the present study revealed that morphine preconditioning reduced ischemic brain injury and improved cerebral ischemic tolerance in a dose-dependent manner.The anti-apoptotic mechanism of morphine is closely related to Caspase-3.

  9. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  10. Protective Effect of Extract of Folium Ginkgo on Repeated Cerebral Ischemia-Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the protective effect of extract of Folium Ginkgo (FGE) on repeated cerebral ischemia-reperfusion injury. Methods: The model in waking mice induced by repeated cerebral ischemia-reperfusion were used in the experiment to observe the effect of FGE on behavior, oxygen free radical metabolism and prostaglandin E2 (PGE2) content by step-through experiment, diving stand and colorimetric method. Results: FGE could obviously improve the learning ability and memory of model animals, and could lower obviously the content of malonyldialdehyde, nitric oxide and PGE2, restore the lowered activity of superoxide dismutase and catalase in cerebral tissue. Conclusion: FGE has highly protective effect against repeated ischemia-reperfusion injury, the mechanism might be related with its action on anti-lipid oxidatin, improve the activity of antioxidase and inhibit the producing of PGE2.

  11. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  12. Hydrogen sulifde intervention in focal cerebral ischemia/reperfusion injur y in rats

    Institute of Scientific and Technical Information of China (English)

    Xin-juan Li; Chao-kun Li; Lin-yu Wei; Na Lu; Guo-hong Wang; Hong-gang Zhao; Dong-liang Li

    2015-01-01

    The present study aimed to explore the mechanism underlying the protective effects of hydro-gen sulifde against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulifde donor compound sodium hydrosulifde. Immunolfuorescence revealed that the immu-noreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treat-ment of these rats with hydrogen sulifde signiifcantly lowered mortality, the Longa neurological deifcit scores, and infarct volume. These results indicate that hydrogen sulifde may be protec-tive in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

  13. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injur y

    Institute of Scientific and Technical Information of China (English)

    Xiao-ge Yan; Bao-hua Cheng; Xin Wang; Liang-cai Ding; Hai-qing Liu; Jing Chen; Bo Bai

    2015-01-01

    Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immuno-histochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our ifndings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  14. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  15. FTY720 impairs necrosis development after ischemia-reperfusion injury.

    Science.gov (United States)

    Oliveira, C M S; Borra, R C; Franco, M; Schor, N; Silva, H T; Pestana, J O M; Bueno, V

    2004-05-01

    Ischemia-reperfusion (IR) injury is a common early feature that contributes to graft damage by impairing resident cell function. Our previous results showed that IR injury impaired renal function, by causing extensive tubular necrosis and increasing MHC class II and ICAM-1 molecule expression by mesangial cells (MC). MCs are likely candidates to come into close contact with immune cells such as monocytes or lymphocytes. It has been suggested that under inflammatory circumstances, there is increased MC expression of MHC class II, of adhesion molecules (such as ICAM-1), of cytokines receptors, and of molecules associated with cellular death (apoptosis). The immunosuppressive properties of FTY720 have been shown in clinical and experimental situations. It has also been shown to be protective against IR injury in rats. We sought to evaluate the role of FTY720 in a murine IR model by measuring renal function, tubular necrosis, and surface molecule expression by cultured mesangial cells. Intravenous administration of FTY720 (1 mg/kg) immediately before IR induction did not improve the short-term (24 hours) outcome of renal function or reduced MHC class II and ICAM-1 surface molecule expression. However, there was a decreased percentage of tubular necrosis in mice treated with FTY720 (51.3% +/- 1.6%) compared with vehicle-treated mice (66% +/- 5.5%). These results suggest a protective role of FTY720 in an IR injury model. More studies are required to identify the mechanisms involved in the protective activity of FTY720 in the IR injury model.

  16. Pretreatment with erythropoietin reduces hepatic ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yu-Hong Luo; Zheng-Dong Li; Li-Xin Liu; Gao-Hong Dong

    2009-01-01

    BACKGROUND: During hepatectomy, a period of ischemia and restoration of the blood supply can result in hepatic ischemia-reperfusion injury (IRI). Current research indicates that erythropoietin (EPO) has a protective effect in animal models of cerebral ischemia, myocardial infarction, and renal IRI. However there is lack of research into the role of EPO in hepatic IRI. This study aimed to explore the role of EPO in hepatic IRI and its possible mechanism of action. METHODS: Thirty male Sprague-Dawley rats were divided into three groups: (1) ten rats in the experimental group were given 1000 IU/kg EPO one day before the operation; (2) ten rats in a control group were given normal saline preoperatively as a placebo; and (3) ten rats served as a sham-operated group. Hepatic IRI was induced by occluding the hepatic arteries of the three cephalad hepatic segments and the portal vein for about 45 minutes, while in the sham-operated group only laparotomy was performed. The levels of ALT and AST were tested 24 hours pre- and post-operation. All rats were sacriifced 24 hours after the operation to assess the pathologic changes in the liver and measure the expression of heme oxygenase-1 (HO-1) through Western blotting and RT-PCR. RESULTS: Hepatic IRI was markedly mitigated in the experimental group as compared with the control group. Moreover, the expression of HO-1 at the level of both transcription and protein increased prominently (P<0.05) in the experimental group. CONCLUSION: These results demonstrate that EPO can up-regulate HO-1 in liver tissues and accordingly decrease hepatic injury through its anti-inlfammatory property.

  17. Ischemia/reperfusion injury in the rat colon.

    Science.gov (United States)

    Murthy, S; Hui-Qi, Q; Sakai, T; Depace, D E; Fondacaro, J D

    1997-04-01

    This study investigated metabolic and biochemical consequences of colonic ischemia/reperfusion (I/R) in the rat and evaluated whether antioxidants prevent I/R-induced functional damage in the rat colon. The surgical preparation involved a 10 cm segment of the colon and occlusion of the superior mesenteric artery (SMA) to induce I/R. Arterial blood from the aorta and venous blood from the superior mesenteric vein (SMV) was collected to measure blood gases, lactic acid (LA) and arachidonic acid (AA) metabolites. Tissue xanthine oxidase (XO) and thiobarbituric acid (TBA) derivatives were measured before and after reperfusion. In addition, vascular and mucosal permeability, and the effect of MDL 73404 (a water soluble vitamin E analog) and 5-aminosalicylic acid on LA, AA, XO and TBA was measured. After ischemia, the colon displayed a metabolic shift from aerobic to anaerobic course by increasing lactic acid production in the colon (183% increase in SMV lactate level compared 87% in the SMA; p < 0.03). After 10 minutes of reperfusion, circulating 6-keto-prostaglandin F1 alpha increased by 3.85 fold (p < 0.001) and thromboxane B2 increased by 2 to 3 fold. An Ischemia time longer than 60 minutes was required to cause changes in tissue XO levels. Tissue TBA levels showed a good dose response corresponding with I/R time. I/R (60 minutes) caused a three and 16 fold increase (p < 0.01) in vascular and mucosal permeability, respectively. MDL 73404 and 5-aminosalicylic acid significantly inhibited the vascular permeability and decreased LA, AA, XO and TBA. These observations provide the first direct experimental evidence for I/R-induced damage in the colon and some of its effects can be reversed by conventional and novel antioxidants.

  18. Effectiveness of sugammadex for cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Sule Ozbilgin

    2016-06-01

    Full Text Available Cerebral ischemia may cause permanent brain damage and behavioral dysfunction. The efficacy and mechanisms of pharmacological treatments administered immediately after cerebral damage are not fully known. Sugammadex is a licensed medication. As other cyclodextrins have not passed the necessary phase tests, trade preparations are not available, whereas sugammadex is frequently used in clinical anesthetic practice. Previous studies have not clearly described the effects of the cyclodextrin family on cerebral ischemia/reperfusion (I/R damage. The aim of this study was to determine whether sugammadex had a neuroprotective effect against transient global cerebral ischemia. Animals were assigned to control, sham-operated, S 16 and S 100 groups. Transient global cerebral ischemia was induced by 10-minute occlusion of the bilateral common carotid artery, followed by 24-hour reperfusion. At the end of the experiment, neurological behavior scoring was performed on the rats, followed by evaluation of histomorphological and biochemical measurements. Sugammadex 16 mg/kg and 100 mg/kg improved neurological outcome, which was associated with reductions in both histological and neurological scores. The hippocampus TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase results in the S 16 and S 100 treatment groups were significantly lower than those of the I/R group. Neurological scores in the treated groups were significantly higher than those of the I/R group. The study showed that treatment with 16 mg/kg and 100 mg/kg sugammadex had a neuroprotective effect in a transient global cerebral I/R rat model. However, 100 mg/kg sugammadex was more neuroprotective in rats.

  19. Effectiveness of sugammadex for cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Ozbilgin, Sule; Yılmaz, Osman; Ergur, Bekir Ugur; Hancı, Volkan; Ozbal, Seda; Yurtlu, Serhan; Gunenc, Sakize Ferim; Kuvaki, Bahar; Kucuk, Burcu Ataseven; Sisman, Ali Rıza

    2016-06-01

    Cerebral ischemia may cause permanent brain damage and behavioral dysfunction. The efficacy and mechanisms of pharmacological treatments administered immediately after cerebral damage are not fully known. Sugammadex is a licensed medication. As other cyclodextrins have not passed the necessary phase tests, trade preparations are not available, whereas sugammadex is frequently used in clinical anesthetic practice. Previous studies have not clearly described the effects of the cyclodextrin family on cerebral ischemia/reperfusion (I/R) damage. The aim of this study was to determine whether sugammadex had a neuroprotective effect against transient global cerebral ischemia. Animals were assigned to control, sham-operated, S 16 and S 100 groups. Transient global cerebral ischemia was induced by 10-minute occlusion of the bilateral common carotid artery, followed by 24-hour reperfusion. At the end of the experiment, neurological behavior scoring was performed on the rats, followed by evaluation of histomorphological and biochemical measurements. Sugammadex 16 mg/kg and 100 mg/kg improved neurological outcome, which was associated with reductions in both histological and neurological scores. The hippocampus TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and caspase results in the S 16 and S 100 treatment groups were significantly lower than those of the I/R group. Neurological scores in the treated groups were significantly higher than those of the I/R group. The study showed that treatment with 16 mg/kg and 100 mg/kg sugammadex had a neuroprotective effect in a transient global cerebral I/R rat model. However, 100 mg/kg sugammadex was more neuroprotective in rats. Copyright © 2016. Published by Elsevier Taiwan.

  20. Simvastatin inhibits inflammation in ischemia-reperfusion injury.

    Science.gov (United States)

    Zhao, Yilin; Feng, Qingzhao; Huang, Zhengjie; Li, Wenpeng; Chen, Baisheng; Jiang, Long; Wu, Binglin; Ding, Weiji; Xu, Gang; Pan, Heng; Wei, Wei; Luo, Weiyuan; Luo, Qi

    2014-10-01

    Ischemia/reperfusion (I/R) is associated with leukocyte accumulation and tissue injury. The aim of this research was to investigate the protective effect of simvastatin on hind limb I/R inflammation and tissue damage. Mice were subjected to hind limb ischemic insult for 2 h and were simultaneously administered an intraperitoneal injection of simvastatin (5 mg/kg); this was followed by 36 h of reperfusion. Myeloperoxidase (MPO) levels in the muscles of the hind limb were determined. CXC chemokines and pro-inflammatory cytokines, such as macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant (KC), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and P-selectin, were assessed using enzyme-linked immunosorbent assay (ELISA). Leukocyte rolling and adhesion in vitro was assessed to indicate leukocyte recruitment at the site of inflammation. Quantitative measurement of skeletal muscle tissue injury was performed. The fluorescent dye level in tissue and serum was used to determine hind limb vascular leakage and tissue edema after I/R. Systemic and differentiated leukocytes were also counted. Simvastatin significantly reduced MIP-2, KC, TNF-α, MPO, IL-6, and P-selectin levels compared to the sham group and I/R plus pretreatment with phosphate-buffered saline (PBS) group (Pinflammation, vascular leakage, and muscular damage (P<0.05). Simvastatin also significantly inhibited leukocyte rolling and adhesion compared to PBS (P<0.05). Our results suggest that simvastatin may be an effective protectant against tissue injury associated with I/R.

  1. Effect of total flavonoids of Radix Ilicis pubescentis on cerebral ischemia reperfusion model

    Directory of Open Access Journals (Sweden)

    Xiaoli Yan

    2017-03-01

    Full Text Available This paper aims to observe the effects of total flavonoids of Radix Ilicis pubescentis on mouse model of cerebral ischemia reperfusion. Mice were orally given different doses of total flavonoids of Radix Ilicis pubescentis 10 d, and were administered once daily. On the tenth day after the administration of 1 h in mice after anesthesia, we used needle to hook the bilateral common carotid artery (CCA for 10 min, with 10 min ischemia reperfusion, 10 min ischemia. Then we restored their blood supply, copy the model of cerebral ischemia reperfusion; We then had all mice reperfused for 24 h, and then took their orbital blood samples and measured blood rheology. We quickly removed the brain, with half of the brain having sagittal incision. Then we fixed the brains and sectioned them to observe the pathological changes of brain cells in the hippocampus and cortex. We also measured the other half sample which was made of brain homogenate of NO, NOS, Na+-K+-, ATP enzyme Mg2+-ATPase and Ca2+-ATPase. Acupuncture needle hook occlusion of bilateral common carotid arteries can successfully establish the model of cerebral ischemia reperfusion. After comparing with the model mice, we concluded that Ilex pubescens flavonoids not only reduce damage to the brain nerve cells in the hippocampus and cortex, but also significantly reduce the content of NO in brain homogenate, the activity of nitric oxide synthase (NOS and increases ATP enzyme activity (P < 0.05, P < 0.01. In this way, cerebral ischemia reperfusion injury is improved. Different dosages of Ilex pubescens flavonoids on mouse cerebral ischemia reperfusion model have good effects.

  2. Effect of U-74500A, a 21-aminosteroid on renal ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Kaur, Hitchintan; Satyanarayana, Padi S V; Chopra, Kanwaljit

    2003-03-01

    Renal ischemia-reperfusion injury constitutes the most common pathogenic factor for acute renal failure and is the main contributor to renal dysfunction in allograft recipients and revascularization surgeries. Many studies have demonstrated that reactive oxygen species play an important role in ischemic acute renal failure. The aim of the present study was to investigate the effects of the synthetic antioxidant U-74500A, a 21-aminosteroid in a rat model of renal ischemia-reperfusion injury. Renal ischemia-reperfusion was induced by clamping unilateral renal artery for 45 min followed by 24 h of reperfusion. Two doses of U-74500A (4.0 mg/kg, i.v.) were administered 45 min prior to renal artery occlusion and then 15 min prior to reperfusion. Tissue lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS) in kidney homogenates. Renal function was assessed by estimating serum creatinine, blood urea nitrogen (BUN), creatinine and urea clearance. Renal morphological alterations were assessed by histopathological examination of hematoxylin-eosin stained sections of the kidneys. Ischemia-reperfusion produced elevated levels of TBARS and deteriorated the renal function as assessed by increased serum creatinine, BUN and decreased creatinine and urea clearance as compared to sham operated rats. The ischemic kidneys of rats showed severe hyaline casts, epithelial swelling, proteinaceous debris, tubular necrosis, medullary congestion and hemorrhage. U-74500A markedly attenuated elevated levels of TBARS as well as morphological changes, but did not improve renal dysfunction in rats subjected to renal ischemia-reperfusion. These results clearly demonstrate the in vivo antioxidant effect of U-74500A, a 21-aminosteroid in attenuating renal ischemia-reperfusion injury.

  3. Ischemia/reperfusion-induced Kidney Injury in Heterozygous PACAP-deficient Mice.

    Science.gov (United States)

    Laszlo, E; Varga, A; Kovacs, K; Jancso, G; Kiss, P; Tamas, A; Szakaly, P; Fulop, B; Reglodi, D

    2015-09-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with very diverse distribution and functions. Among others, PACAP is a potent cytoprotective peptide due to its antiapoptotic, anti-inflammatory, and antioxidant actions. This also has been shown in different kidney pathologies, including ischemia/reperfusion-induced kidney injury. Similar protective effects of the endogenous PACAP are confirmed by the increased vulnerability of PACAP-deficient mice to different harmful stimuli. Kidneys of homozygous PACAP-deficient mice have more severe damages in renal ischemia/reperfusion and kidney cell cultures isolated from these mice show increased sensitivity to renal oxidative stress. In our present study we raised the question of whether the partial lack of the PACAP gene is also deleterious, i.e. whether heterozygous PACAP-deficient mice also display more severe damage after renal ischemia/reperfusion. Mice underwent 45 or 60 minutes of ischemia followed by 2 weeks reperfusion. Histological evaluation of the kidneys was performed and individual histopathological parameters were graded. Furthermore, we investigated apoptotic markers, cytokine expression, and the activity of superoxide dismutase (SOD) enzyme 24 hours after 60 minutes of renal ischemia/reperfusion. We found no difference between the intact kidneys of wild-type and heterozygous mice, but marked differences could be observed following ischemia/reperfusion. Heterozygous PACAP-deficient mice had more severe histological alterations, with significantly higher histopathological scores for most of the tested parameters. Higher level of the proapoptotic pp38 MAPK and of some proinflammatory cytokines, as well as lower activity of the antioxidant SOD could be found in these mice. In conclusion, the partial lack of the PACAP gene results in worse outcomes in cases of renal ischemia/reperfusion, confirming that PACAP functions as an endogenous protective factor in the kidney.

  4. Curcumin reduces inflammatory reactions following transient cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Shanshan Yu; Lan Li; Xuemei Lin; Yong Zhao

    2011-01-01

    Inflammatory reactions are important pathophysiological mechanisms of ischemic brain injury. The present study analyzed the anti-inflammatory characteristics of curcumin via myeloperoxidase activity and nitric oxide content after 2-hour ischemia/24-hour reperfusion in Sprague Dawley rats. In addition, expressions of nuclear factor kappa B, tumor necrosis factor-α and interleukin-1β protein were measured. Curcumin significantly reduced myeloperoxidase and nitric oxide synthase activities and suppressed expressions of nuclear factor kappa B, tumor necrosis factor-a, and interleukin-1β in ischemia/reperfusion brain tissue. Results suggested that the neuroprotective effect of curcumin following cerebral ischemia/reperfusion injury could be associated with inhibition of inflammatory reactions.

  5. Transcription factor changes following long term cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhang; Weijuan Gao; Tao Qian; Jinglong Tang; Jun Li

    2013-01-01

    The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.

  6. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Directory of Open Access Journals (Sweden)

    Chua Sarah

    2011-05-01

    Full Text Available Abstract Background Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury. Methods Adult male Sprague-Dawley (SD rats (n = 24 were equally randomized into group 1 (sham control, group 2 (IR plus culture medium only, and group 3 (IR plus immediate intra-renal administration of 1.0 × 106 autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR. The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed. Results Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p Conclusion ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.

  7. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury

    Science.gov (United States)

    Stone, Matthew L.; Sharma, Ashish K.; Zhao, Yunge; Charles, Eric J.; Huerter, Mary E.; Johnston, William F.; Kron, Irving L.; Lynch, Kevin R.

    2015-01-01

    Outcomes for lung transplantation are the worst of any solid organ, and ischemia-reperfusion injury (IRI) limits both short- and long-term outcomes. Presently no therapeutic agents are available to prevent IRI. Sphingosine 1-phosphate (S1P) modulates immune function through binding to a set of G protein-coupled receptors (S1PR1-5). Although S1P has been shown to attenuate lung IRI, the S1P receptors responsible for protection have not been defined. The present study tests the hypothesis that protection from lung IRI is primarily mediated through S1PR1 activation. Mice were treated with either vehicle, FTY720 (a nonselective S1P receptor agonist), or VPC01091 (a selective S1PR1 agonist and S1PR3 antagonist) before left lung IR. Function, vascular permeability, cytokine expression, neutrophil infiltration, and myeloperoxidase levels were measured in lungs. After IR, both FTY720 and VPC01091 significantly improved lung function (reduced pulmonary artery pressure and increased pulmonary compliance) vs. vehicle control. In addition, FTY720 and VPC01091 significantly reduced vascular permeability, expression of proinflammatory cytokines (IL-6, IL-17, IL-12/IL-23 p40, CC chemokine ligand-2, and TNF-α), myeloperoxidase levels, and neutrophil infiltration compared with control. No significant differences were observed between VPC01091 and FTY720 treatment groups. VPC01091 did not significantly affect elevated invariant natural killer T cell infiltration after IR, and administration of an S1PR1 antagonist reversed VPC01091-mediated protection after IR. In conclusion, VPC01091 and FTY720 provide comparable protection from lung injury and dysfunction after IR. These findings suggest that S1P-mediated protection from IRI is mediated by S1PR1 activation, independent of S1PR3, and that selective S1PR1 agonists may provide a novel therapeutic strategy to prevent lung IRI. PMID:25910934

  8. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Sunny Yang XIANG; Linda L YE; LI-lu Marie DUAN; Li-hui LIU; Zhi-dong GE; John A AUCHAMPACH; Garrett J GROSS; Dayue Darrel DUAN

    2011-01-01

    Aim: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postcondtioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury.Methods: CFTR knockout (CFTR-/-) mice and age- and gender-matched wild-type (CFTR+/+) and heterozygous (CFTR+/-) mice were used.In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined.Results: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR+/+) (from 40.4%±5.3% to 10.4%±2.0%, n=8, P<0.001) and heterozygous (CFTR+/-) littermates (from 39.4%±2.4% to 15.4%±5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR-/-) mice from I/R induced myocardial infarction (46.9%±6.2% vs 55.5%±7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTRgene abolished the protective effects of IPC against I/R-induced apoptosis.Conclusion: These results provide compelling evidence for a critical role for CFTR Cl- channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.

  9. 腺病毒介导过氧化物酶体增殖物激活受体-γ1基因脑室内转染对大鼠缺血/再灌注脑的保护作用%The neuroprotection of adenoviral vector-mediated PPAR-γ1 intracerebroventricular transfection against the ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    唐吉伟; 徐军美; 钱自亮

    2012-01-01

    Objective To explore the feasibility of PPAR-γ1 gene transfection via intracerebroventricular injection and possible protective effect against cerebral ischemia reperfusion injury.Methods Ninety adult male SD rats were randomly divided into 6 groups(n=18).In group Ⅰ,the rats were intracerebroventricularly injected with normal saline 0.1 ml.In group Ⅱ,the rats were injected with empty adenoviral(Adv)vector 0.1 ml.In group Ⅲ,the rats were injected with 0.1 ml Adv-PPAR-γ1 and the group Ⅳ received Adv-EGFP 0.1 ml.The group Ⅴ was intragastrically administered with Pioglitazone.After 3 days,middle cerebral artery occlusion model was established.The group I was sham-operation group.In group Ⅱ-Ⅴ middle cerebral artery was obstructed for 90 min followed by reperfusion for 24 h.Twenty-four hours after operation,samples were collected.The expression of green fluorescent protein in Group Ⅳ was observed with fluorescence microscope to assess the adenovirus-mediated transfection.The cerebral infarction volume was measured by triphenyltetrazolium chloride(TTC)staining.The permeability of blood-brain barrier was determined by Evan's blue.Brain water was calculated by wet-dry weight method.The histopathology was observed under light microscope and electron microscope.The activity of myeloperoxidase(MPO)was tested.The expressions of IL-1β,inter-cellular adhesion mdecule-1(ICAM-1),aquaporin protein(AQP-4)and matrix metalloproteinase-9(MMP-9)protein were determined by Western Blotting.Results After the animals were intracerebroventricularly administered Adv-EGFP plasmid,that the fluorescence for EGFP was positive in brain tissue suggested the successful transfection of viral gene.In response to I/R injury,the permeability of blood-brain barrier(0.094 5±0.009 5),brain water(87.4±4.7),and the activity of MPO were dramatically increased(0.213±0.044)as well as the cerebral infarction volume(42.3±2.6).The expressions of IL-1β(0.84±0.05),ICAM-1(0.85±0.07),AQP-4

  10. Anisodamine augments mucosal blood flow during gut ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Hu Sen; Sheng Zhiyong

    2002-01-01

    Objective: To determine if anisodamine is able to augment mucosal perfusion during gut ischemia-reperfusion (I/R). Methods: A jejunal sac was formed in Sprague Dawley rat. A Laser Doppler probe and a tonometer were inserted into the sac which was filled with saline. The superior mesenteric artery was occluded (SMAO) for 60minutes followed by 90 minutes of reperfusion. At the end of 60 minutes of SMAO, either 0.2mg/kg of anisodmine or dobutamine was injected into the jejunal sac. Laser Doppler mucosal blood flow and regional PCO2 (PrCO2) measurements were made. Results: Mucosal blood flow was significantly increased at 30,60 and 90 minutes of reperfusion (R30, R60, R90 ) when intraluminal anisodamine or dobutamine was introduced compared to intraluminal saline only (44±3.3)% or (48±4.1)% vs. (37±2.6) % at R30, (57±5.0)% or (56±4.7)% vs. (45±2.7)% at R60, (64±3.3) % or (56 ± 4.2) % vs. (48 ± 3.4) % at R90 , respectively P<0.05). Blood flow changes were also reflected by lowering of jejunal PrCO2 measurements after intraluminal anisodamine or dobutamine compared with that of the saline controls (41±3. 1)mmHg or (44±3.0)mmHg vs. (49±3.7) mmHg at R30 , (38±3.7)mmHg or (40±2. 1)mmHg vs. (47±3.8) mmHgat R60, (34±2.1) mmHg or (39± 3.0) mmHg vs. (46±3.4) mmHg at R90, respectively,P<0. 05). The most interesting finding was that there were significantly higher mucosal blood flow and lower jejunal PrCO2 in anisodamine group than those in dobutamine group at 90 minutes of reperfusion (64± 3.3) %vs. (56±4.2)% for blood flow or (34 ± 2.1)mmHg vs. (39 ± 3.0)mmHg for PrCO2, respectively, P<0.05),suggesting that anisodamine had more lasting effect on mucosal perfusion than dobutamine. Conclusions:Intraluminal anisodamine can augment mucosal blood flow during gut I/R, and it may provide the protective effect on gut from ischemia and reperfusion injury.

  11. Suv39h1 Protects from Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2014-04-01

    Full Text Available Background: Patients with diabetes are at increased risk of ischemic events. Suv39h1 is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9, which is associated with the suppression of inflammatory genes in diabetes. However, the role of Suv39h1 in myocardial ischemia/reperfusion (I/R injury under diabetic condition has not been evaluated. Methods: To generate diabetic model, male SD rats were fed with 60% fat diet followed by intraperitoneal injection with 40mg/kg streptozotocin. Adenovirus encoding Suv39h1 gene was used for Suv39h1 overexpression. Each rat received injections of adenovirus at five myocardial sites. Three days after gene transfection, each rat was subjected to left main coronary artery occlusion and reperfusion. After 30 min ischemia and reperfusion for 4 h, the rats were euthanized for real-time PCR, Western blot, immunohistochemical staining, and morphometric analysis. Results: Delivery of Ad-Suv39h1 into the hearts of diabetic rats could markedly increase Suv39h1 expression. Up-regulation of Suv39h1 significantly reduced infarct size and tissue damage after I/R injury, which was associated with protection from apoptosis of cardiac myocytes and reduction of inflammatory response. In addition, compared with injury group, Ad-Suv39h1 led to a decreased activity of mitogen-activated protein kinase family and its down-steam transcriptional factor NF-κB. Conclusion: Overexpression of Suv39h1 results in the de-activation of proinflammatory pathways and reduced apoptosis and myocardial injury. Therefore, Suv39h1 might represent a novel therapeutic strategy to reduce I/R injury under diabetic condition.

  12. Redox activation of Ref-1 potentiates cell survival following myocardial ischemia reperfusion injury.

    Science.gov (United States)

    Gurusamy, Narasimman; Malik, Gautam; Gorbunov, Nikolai V; Das, Dipak K

    2007-08-01

    A recent study showed that cardiac adaptation could potentiate translocation of thioredoxin-1 (Trx-1) into the nucleus, which then interacted with Ref-1, resulting in a survival signal. Here, we present evidence that such adaptation also causes nuclear translocation of Ref-1, which is almost completely inhibited when the hearts were pretreated with antisense Ref-1 that also abolished the cardioprotective adaptive response. Significant amounts of NFkappaB and Nrf2 were found to be associated with Ref-1 when the nuclear extract obtained from the left ventricle was immunoprecipitated with Ref-1. Such Ref-1-NFkappaB and Ref-1-Nrf2 interactions were significantly inhibited with antisense Ref-1. However, immunoprecipitation of nuclear extract with NFkappaB showed that the association of Trx-1 with NFkappaB is increased in the adapted heart, which was again significantly blocked by antisense Ref-1. Nrf2 was also associated with NFkappaB; however, such association appeared to be independent of Ref-1. In contrast, myocardial adaptation to ischemia inhibited the ischemia reperfusion-induced loss of Nrf2 from the nucleus, which was inhibited by antisense Ref-1. The nuclear translocation and activation of Ref-1 appeared to generate a survival signal as evidenced by the increased phosphorylation of Akt that was inhibited with antisense Ref-1. Finally, confocal microscopy confirmed the results of immunoblotting, clearly showing the nuclear translocation of Ref-1 and nuclear 3D colocalization of Ref-1 with NFkappaB in the adapted heart and its inhibition with antisense Ref-1. Our results show that PC potentiates a survival signal through the phosphorylation of Akt by causing nuclear translocation and activation of Ref-1, where significant interaction among NFkappaB and Ref-1, Trx-1, and Nrf2 appears to regulate Ref-1-induced survival signal.

  13. The protective effect of erdosteine on short-term global brain ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Ozerol, Elif; Bilgic, Sedat; Iraz, Mustafa; Cigli, Ahmet; Ilhan, Atilla; Akyol, Omer

    2009-02-01

    Experimental studies have demonstrated that free radicals play a major role on neuronal injury during ischemia/reperfusion (I/R) in rats. Erdosteine is a thioderivative endowed with mucokinetic, mucolytic and free-radical-scavenging properties. The aim of the present study was to investigate the effect of erdosteine treatment against short-term global brain ischemia/reperfusion injury in rats. The study was carried out on Wistar rats divided into four groups. (i) Control group, (ii) ischemia/reperfusion group, (iii) ischemia/reperfusion+erdosteine group, and (iv) erdosteine group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities as well as thiobarbituric acid reactive substances (TBARSs) and nitric oxide (NO) levels were analysed in erythrocyte and plasma of rats. Plasma NO levels were significantly higher in the ischemia/reperfusion group than the other groups. The activities of SOD and GSH-Px were decreased, while TBARS levels increased in the ischemia/reperfusion group compared to other groups in both plasma and erythrocyte. The erythrocyte CAT activity was higher in erdosteine group and there was a statistically significant increase, when compared with the erdosteine plus ischemia/reperfusion group. By treating the rats with erdosteine, the depletion of endogenous antioxidant enzymes (SOD, CAT, GSH-Px) and increase of TBARS and NO levels were prevented. This study, therefore, suggests that erdosteine reduces parameters of oxidative stress is well supported by the data.

  14. Melanocortin 4 receptor activation protects against testicular ischemia-reperfusion injury by triggering the cholinergic antiinflammatory pathway.

    Science.gov (United States)

    Minutoli, Letteria; Bitto, Alessandra; Squadrito, Francesco; Irrera, Natasha; Rinaldi, Mariagrazia; Nicotina, Piero Antonio; Arena, Salvatore; Magno, Carlo; Marini, Herbert; Spaccapelo, Luca; Ottani, Alessandra; Giuliani, Daniela; Romeo, Carmelo; Guarini, Salvatore; Antonuccio, Pietro; Altavilla, Domenica

    2011-10-01

    Melanocortins (MC) trigger a vagus nerve-mediated cholinergic-antiinflammatory pathway projecting to the testis. We tested whether pharmacological activation of brain MC receptors might protect the testis from the damage induced by ischemia-reperfusion. Adult male rats were subjected to 1-h testicular ischemia, followed by 24-h reperfusion [testicular ischemia-reperfusion (TI/R)]. Before TI/R, groups of animals were subjected to bilateral cervical vagotomy, or pretreated with the nicotinic acetylcholine receptor antagonist chlorisondamine or the selective MC(4) receptor antagonist HS024. Immediately after reperfusion, rats were ip treated with saline or the MC analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) (340 μg/kg). We evaluated testicular IL-6 and TNF-α by Western blot analysis and organ damage by light microscopy. Some experimental groups were prepared for neural efferent activity recording along the vagus nerve starting 30 min after treatment with NDP-α-MSH or saline, and for a 30-min period. Additional groups of TI/R rats were treated for 30 d with saline, NDP-α-MSH, chlorisondamine plus NDP-α-MSH, or HS024 plus NDP-α-MSH to evaluate spermatogenesis, organ damage, and the apoptosis machinery. After a 24-h reperfusion, in TI/R saline-treated rats, there was an increase in IL-6 and TNF-α expression and a marked damage in both testes. NDP-α-MSH inhibited IL-6 and TNF-α expression, decreased histological damage, and increased neural efferent activity. Furthermore, NDP-α-MSH administration for 30 d greatly improved spermatogenesis, reduced organ damage, and inhibited apoptosis. All positive NDP-α-MSH effects were abrogated by vagotomy, chlorisondamine, or HS024. Our data suggest that selective MC(4) receptor agonists might be therapeutic candidates for the management of testicular torsion.

  15. Effect of tramadol on lung injury induced by skeletal muscle ischemia-reperfusion: an experimental study

    Directory of Open Access Journals (Sweden)

    Mohammad Ashrafzadeh Takhtfooladi

    2013-06-01

    Full Text Available OBJECTIVE: To determine whether tramadol has a protective effect against lung injury induced by skeletal muscle ischemia-reperfusion. METHODS: Twenty Wistar male rats were allocated to one of two groups: ischemia-reperfusion (IR and ischemia-reperfusion + tramadol (IR+T. The animals were anesthetized with intramuscular injections of ketamine and xylazine (50 mg/kg and 10 mg/kg, respectively. All of the animals underwent 2-h ischemia by occlusion of the femoral artery and 24-h reperfusion. Prior to the occlusion of the femoral artery, 250 IU heparin were administered via the jugular vein in order to prevent clotting. The rats in the IR+T group were treated with tramadol (20 mg/kg i.v. immediately before reperfusion. After the reperfusion period, the animals were euthanized with pentobarbital (300 mg/kg i.p., the lungs were carefully removed, and specimens were properly prepared for histopathological and biochemical studies. RESULTS: Myeloperoxidase activity and nitric oxide levels were significantly higher in the IR group than in the IR+T group (p = 0.001 for both. Histological abnormalities, such as intra-alveolar edema, intra-alveolar hemorrhage, and neutrophil infiltration, were significantly more common in the IR group than in the IR+T group. CONCLUSIONS: On the basis of our histological and biochemical findings, we conclude that tramadol prevents lung tissue injury after skeletal muscle ischemia-reperfusion.

  16. Treatment of Tourniquet-Induced Ischemia Reperfusion Injury with Muscle Progenitor Cells

    Science.gov (United States)

    2011-09-01

    Weinstein AL, et al. Therapeutic met- abolic inhibition: Hydrogen sulfide significantly mitigates skele- tal muscle ischemia reperfusion injury in vitro...muscle function in animal models of muscular diseases, dener- vation, toxins , cryo-injuries, and volumetricmuscle loss [21–24], and have been used to

  17. Antioxidant effects of xanthohumol and functional impact on hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Hartkorn, Andreas; Hoffmann, Florian; Ajamieh, Hussam; Vogel, Susanne; Heilmann, Jörg; Gerbes, Alexander L; Vollmar, Angelika M; Zahler, Stefan

    2009-10-01

    Therapeutic effects of dietary flavonoids have been attributed mainly to their antioxidant capacity. Xanthohumol (1), a prominent flavonoid of the hop plant, Humulus lupulus, was investigated for its antioxidant potential and for its effect on NF-kappaB activation. To examine the biological relevance of 1, a hepatic ischemia/reperfusion model was chosen as a widely accepted model of oxidative stress generation. The impact of 1 on endogenous antioxidant systems, on the NF-kappaB signal transduction pathway as well as on apoptotic parameters, and on hepatic tissue damage was evaluated. Compound 1 markedly decreased the level of reactive oxygen species in vitro. Furthermore, levels of enzymatic and nonenzymatic antioxidants were restored after pretreatment in postischemic hepatic tissue, and lipid peroxidation was attenuated. NF-kappaB activity was reduced in vitro as well as in hepatic tissue after ischemia/reperfusion upon pretreatment with 1. In addition, the phosphorylation of Akt was markedly inhibited. Surprisingly, 1 decreased the expression of the antiapoptotic protein Bcl-X and increased caspase-3 like-activity, a proapoptotic parameter. Moreover, hepatic tissue damage as well as TNF-alpha levels increased in xanthohumol-pretreated liver tissue after ischemia/reperfusion. In summary, xanthohumol did not protect against ischemia/reperfusion injury in rat liver, despite its antioxidant and NF-kappaB inhibitory properties.

  18. Systemic gene therapy with interleukin-13 attenuates renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Sandovici, M.; Henning, R. H.; van Goor, H.; Helfrich, W.; de Zeeuw, D.; Deelman, L. E.

    2008-01-01

    Ischemia-reperfusion injury is a leading cause of acute renal failure and a major determinant in the outcome of kidney transplantation. Here we explored systemic gene therapy with a modified adenovirus expressing Interleukin (IL)-13, a cytokine with strong anti-inflammatory and cytoprotective proper

  19. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  20. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury

    NARCIS (Netherlands)

    Oostendorp, M. van; Vries, E.E. de; Slenter, J.M.; Peutz-Kootstra, C.J.; Snoeijs, M.G.; Post, M.J.; Heurn, L.W. van; Backes, W.H.

    2011-01-01

    The in vivo assessment of renal damage after ischemia-reperfusion injury, such as in sepsis, hypovolemic shock or after transplantation, is a major challenge. This injury often results in temporary or permanent nonfunction. In order to improve the clinical outcome of the kidneys, novel therapies are

  1. NADPH oxidase inhibitor apocynin attenuates ischemia/reperfusion induced myocardial injury in rats

    Institute of Scientific and Technical Information of China (English)

    罗秀菊

    2013-01-01

    Objective To explore the role of NADPH oxidase inhibitor apocynin on ischemia/reperfusion(I/R)-induced myocardial injury. Methods Male SD rat hearts were divided into the normal control group; sham group;I/R group(1 h ischemia followed by 3 h reperfusion); I/R+ apocynin group(50 mg/kg,administrated at 30 min

  2. Protective effects of amifostine on ischemia-reperfusion injury of rat kidneys

    Directory of Open Access Journals (Sweden)

    Ayse Arducoglu Merter

    2015-01-01

    Conclusion: Amifostine could decrease the degree and severity of necrosis after reperfusion. Amifostine could not prevent membrane lipid peroxidation caused by superoxide anion radicals in kidney but they could protect tissues from the harmful effects of ischemia/reperfusion injury by increasing the level of reduced GSH which is a well-known oxygen radical eliminator.

  3. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    Jongbloed, Franny; De Bruin, Ron W F; Pennings, Jeroen L A; Payán-Gómez, César; Van Den Engel, Sandra; Van Oostrom, Conny T.; De Bruin, Alain; Hoeijmakers, Jan H J; Van Steeg, Harry; IJzermans, Jan N M; Dollé, Martijn E T

    2014-01-01

    Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a

  4. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    F. Jongbloed (Franny); R.W.F. de Bruin (Ron); J.L.A. Pennings (Jeroen); C. Payan-Gomez; S. van den Engel (Sandra); C.T.M. van Oostrom (Conny); A. de Bruin (Alain); J.H.J. Hoeijmakers (Jan); H. van Steeg (Harry); J.N.M. IJzermans (Jan); M.E.T. Dollé (Martijn)

    2014-01-01

    textabstractIschemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly

  5. New insights in intestinal ischemia-reperfusion injury: implications for intestinal transplantation.

    Science.gov (United States)

    Lenaerts, Kaatje; Ceulemans, Laurens J; Hundscheid, Inca H R; Grootjans, Joep; Dejong, Cornelis H C; Olde Damink, Steven W M

    2013-06-01

    Ischemia-reperfusion injury is inevitable during intestinal transplantation and can negatively affect the transplant outcome. Here, an overview is provided of the recent advances in the pathophysiological mechanisms of intestinal ischemia-reperfusion injury and how this may impact graft survival. The intestine hosts a wide range of microorganisms and its mucosa is heavily populated by immune cells. Intestinal ischemia-reperfusion results in the disruption of the epithelial lining, affecting also protective Paneth cells (antimicrobials) and goblet cells (mucus), and creates a more hostile intraluminal microenvironment. Consequently, both damage-associated molecular patterns as well as pathogen-associated molecular patterns are released from injured tissue and exogenous microorganisms, respectively. These 'danger' signals may synergistically activate the innate immune system. Exaggerated innate immune responses, involving neutrophils, mast cells, platelets, dendritic cells, as well as Toll-like receptors and complement proteins, may shape the adaptive T-cell response, thereby triggering the destructive alloimmune response toward the graft and resulting in transplant rejection. Innate immune activation as a consequence of ischemia-reperfusion injury may compromise engraftment of the intestine. More dedicated research is required to further establish this concept in man and to design more effective therapeutic strategies to better tolerize intestinal grafts.

  6. Complement Depletion Protects Lupus-prone Mice from Ischemia-reperfusion-initiated Organ Injury

    Science.gov (United States)

    2012-10-25

    Complement depletion protects lupus-prone mice from ischemia-reperfusion- initiated organ injury Antonis Ioannou,1,3 Linda A. Lieberman,1 Jurandir J...Thiel S, Nielsen S, Taka- hashi K, Shi L, Ezekowitz A, Jensenius JC, Gadjeva M. Mannan- binding lectin recognizes structures on ischemic reperfused mouse

  7. Renoprotective capacities of non-erythropoietic EPO derivative, ARA290, following renal ischemia/reperfusion injury

    NARCIS (Netherlands)

    van Rijt, Willem G; Nieuwenhuijs-Moeke, Gertrude J; van Goor, Harry; Ottens, Petra J; Ploeg, Rutger J; Leuvenink, Henri G D

    2013-01-01

    Background: ARA290 is a non-erythropoietic EPO derivative which only binds to the cytoprotective receptor complex (EPOR2-beta cR(2)) consisting of two EPO-receptors (EPOR) and two beta common receptors (beta cR). ARA290 is renoprotective in renal ischemia/reperfusion (I/R). In a renal I/R model we f

  8. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid prevents cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shumin Zhao; Wei Kong; Shufeng Zhang; Meng Chen; Xiaoying Zheng; Xiangyu Kong

    2013-01-01

    Pretreatment with scutel aria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scu-tel aria baicalensis stem-leaf total flavonoid intragastrical y at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutel aria baicalensis stem-leaf total flavo-noid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutel aria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutel a-ria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological func-tions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury.

  9. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    Jongbloed, Franny; De Bruin, Ron W F; Pennings, Jeroen L A; Payán-Gómez, César; Van Den Engel, Sandra; Van Oostrom, Conny T.; De Bruin, Alain; Hoeijmakers, Jan H J; Van Steeg, Harry; IJzermans, Jan N M; Dollé, Martijn E T

    2014-01-01

    Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a

  10. Beneficial effects of gaseous hydrogen sulfide in hepatic ischemia/reperfusion injury

    NARCIS (Netherlands)

    Bos, Eelke M.; Snijder, Pauline M.; Jekel, Henrike; Weij, Michel; Leemans, Jaklien C.; van Dijk, Marcory C. F.; Hillebrands, Jan-Luuk; Lisman, Ton; van Goor, Harry; Leuvenink, Henri G. D.

    Hydrogen sulfide (H2S) can induce a reversible hypometabolic state, which could protect against hypoxia. In this study we investigated whether H2S could protect livers from ischemia/reperfusion injury (IRI). Male C57BL/6 mice were subjected to partial hepatic IRI for 60 min. Animals received 0 (IRI)

  11. Beneficial effects of gaseous hydrogen sulfide in hepatic ischemia/reperfusion injury.

    NARCIS (Netherlands)

    Bos, E.M.; Snijder, P.M.; Jekel, H.; Weij, M.; Leemans, J.C.; Dijk, M.C.R.F. van; Hillebrands, J.L.; Lisman, T.; Goor, H. van; Leuvenink, H.G.

    2012-01-01

    Hydrogen sulfide (H(2) S) can induce a reversible hypometabolic state, which could protect against hypoxia. In this study we investigated whether H(2) S could protect livers from ischemia/reperfusion injury (IRI). Male C57BL/6 mice were subjected to partial hepatic IRI for 60 min. Animals received 0

  12. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    F. Jongbloed (Franny); R.W.F. de Bruin (Ron); J.L.A. Pennings (Jeroen); C. Payan-Gomez; S. van den Engel (Sandra); C.T.M. van Oostrom (Conny); A. de Bruin (Alain); J.H.J. Hoeijmakers (Jan); H. van Steeg (Harry); J.N.M. IJzermans (Jan); M.E.T. Dollé (Martijn)

    2014-01-01

    textabstractIschemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly l

  13. Danhong injection A modulator for Golgi structural stability after cerebral ischemia-reperfusion injury*

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Zhiping Hu; Wei Lu

    2013-01-01

    The cerebral ischemia-reperfusion model was established using the suture occlusion method, and rats were intraperitoneal y given 8 mL/kg Danhong injection once a day prior to model establishment. Rat brain tissues were harvested at 6, 24, 48, 72 hours after reperfusion. Immunohistochemical staining showed that transforming growth factor-β1 expression increased, while Golgi matrix protein GM130 expression decreased after cerebral ischemia-reperfusion. Danhong injection was shown to significantly up-regulate the expression of transforming growth factor-β1 and GM130, and expres-sion levels peaked at 7 days after reperfusion. At 7 days after cerebral ischemia-reperfusion, Golgi morphology was damaged in untreated rats, while Golgi morphology breakage was not observed after intervention with Danhong injection. These experimental findings indicate that Danhong injec-tion can up-regulate the expression of transforming growth factor-β1 and GM130, and maintain Golgi stability, thus playing a neuroprotective role in rats after cerebral ischemia-reperfusion.

  14. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury.

    Science.gov (United States)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei; Yu, Ning; Liu, Jia

    2015-06-01

    The mitochondrial calcium uniporter (MCU) transports free Ca(2+) into the mitochondrial matrix, maintaining Ca(2+) homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca(2+) concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca(2+) transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury.

  15. 76 FR 42716 - Effects of Ischemia Reperfusion Injury on Outcomes in Kidney Transplantation; Public Workshop

    Science.gov (United States)

    2011-07-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Effects of Ischemia Reperfusion Injury on Outcomes in Kidney... Food and Drug Administration (FDA) is announcing a public workshop to discuss the effects of...

  16. Marginal Copper Deficiency Increases Liver Neutrophil Accumulation After Ischemia/Reperfusion in Rats

    Science.gov (United States)

    Copper deficiency can lead to an augmented inflammatory response through effects on both neutrophils and the microvascular endothelium. In the present study, we evaluated the effect of marginal copper deficiency on the inflammatory injury response to hepatic ischemia/reperfusion injury. Male weanlin...

  17. Ischemia-Reperfusion Injury : Maintaining skeletal muscle function and vasomotor control

    NARCIS (Netherlands)

    With, M.C.J. de

    2009-01-01

    In reconstructive surgery, ischemia-reperfusion (I-R) injury of skeletal muscle tissue occurs during replantations, free vascularized transfers of muscle flaps and following composite tissue allograft (CTA) transplantations. The latter is a newly emerging field and involves the allotransplantation o

  18. Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats

    NARCIS (Netherlands)

    Broekema, M; Harmsen, MC; Koerts, JA; Petersen, AH; van Luyn, MJA; Navis, G; Popa, ER

    2005-01-01

    Background. Ischemia/reperfusion (I/R) injury is a major cause of acute renal failure (ARF). ARF is reversible, due to an innate regenerative process, which is thought to depend partly on bone marrow-derived progenitor cells. The significance of these cells in the repair process has been questioned

  19. The antiendotoxin agent taurolidine potentially reduces ischemia/reperfusion injury through its metabolite taurine.

    LENUS (Irish Health Repository)

    Doddakula, Kishore K

    2010-09-01

    Cardiopulmonary bypass results in ischemia\\/reperfusion (I\\/R)-induced endotoxemia. We conducted a prospective randomized trial to investigate the effect of taurolidine, an antiendotoxin agent with antioxidant and membrane-stabilizing properties, on patients undergoing coronary artery bypass grafting (CABG).

  20. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury

    NARCIS (Netherlands)

    Oostendorp, M. van; Vries, E.E. de; Slenter, J.M.; Peutz-Kootstra, C.J.; Snoeijs, M.G.; Post, M.J.; Heurn, L.W. van; Backes, W.H.

    2011-01-01

    The in vivo assessment of renal damage after ischemia-reperfusion injury, such as in sepsis, hypovolemic shock or after transplantation, is a major challenge. This injury often results in temporary or permanent nonfunction. In order to improve the clinical outcome of the kidneys, novel therapies are

  1. 全脑缺血/再灌注致线粒体损伤的研究进展%Advances in Mitochondrial Injury Induced By Complete Cerebral Ischemia-Reperfusion

    Institute of Scientific and Technical Information of China (English)

    杨晴

    2011-01-01

    能量代谢障碍是心跳呼吸骤停后脑损伤的主要病理生理改变,其损伤机制与心跳骤停后全脑缺血/再灌注导致的脑组织氧供和能量代谢紊乱有关.线粒体是产生三磷酸腺苷的主要场所,也是缺血/再灌注损伤的重要靶器官,它的损伤可能是导致脑细胞能量代谢障碍的关键.现就全脑缺血/再灌注后线粒体损伤变化的研究进展予以综述.%Energy metabolism failure is a main pathophysiological change of brain injury after cardiac arrest.Its damage mechanism is associated with brain tissue oxygen supply and energy metabolism disorder caused by complete cerebral ischemia-reperfusion after cardiac arrest.Mitochondria is the main site to produce adenosine triphosphate,as well as the targeted organ in ischemia-reperfusion, so its injury may be the key of causing cellular energy metabolism disturbance.The research progress of mitochondrial changes after global cerebral ischemia-reperfusion are reviewed here.

  2. Protective effects of acupuncture on brain tissue following ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Mingshan Wang; Fuguo Ma; Huailong Chen

    2008-01-01

    BACKGROUND: In patients with cerebrovascular disease, by means of the neuroendocrine system, acupuncture supports the transformation of a local pathological status into a physiological status. Recently, great progress has been made in studying the protective effects of acupuncture on brain ischemia/reperfusion injury. OBJECTIVE: To summarize research advances in the protective effects of acupuncture on brain ischemia/reperfusion injury. RETRIEVAL STRATEGY: Using the terms "acupuncture, transcutaneous electrical acupoint stimulation, cerebral ischemia/reperfusion injury, and cerebral protection", we retrieved articles from the PubMed database published between January 1991 and June 1994. Meanwhile, we searched the China National Knowledge Infrastructure with the same terms. Altogether, 114 articles and their results were analyzed. Inclusive criteria: studies that were closely related to the protective effects of acupuncture on brain ischemia/reperfusion injury, or studies, whose contents were in the same study field and were published recently, or in the authorized journals. Exclusive criteria: repetitive studies. LITERATURE EVALUATION: Thirty articles that related to the protective effects of acupuncture on brain ischemia/reperfusion injury were included. Among them, 7 were clinical studies, and the remaining 23 articles were animal experimental studies. DATA SYNTHESIS: ① Animal experimental studies have demonstrated that acupuncture improves brain blood perfusion and brain electrical activity, influences pathomorphological and ultramicrostructural changes in ischemic brain tissue, is beneficial in maintaining the stability of intracellular and extracellular ions, resists free radical injury and lipid peroxidation, and influences cytokine, neurotransmitter, brain cell signal transduction, and apoptosis-regulating genes. ② Clinical studies have demonstrated that acupuncture not only promotes nutritional supply to local brain tissue in patients with cerebral

  3. IMPACT OF SEVOFLURANE AND ACETYLCYSTEINE ON ISCHEMIA-REPERFUSION INJURY OF THE LIVER FROM BRAIN-DEAD DONOR

    Directory of Open Access Journals (Sweden)

    A. E. Shcherba

    2013-01-01

    Full Text Available Aim. The purpose of our work was to estimate the impact of preconditioning with acetylcysteine and sevoflurane on ischemia-reperfusion injury of cadaveric donor liver with marginal features. Methods and results. In this prospective randomized controlled trial we recruited 21 heart beating donors with brain death. We assigned 11 donors to the study group, and 10 donors to the control group. Morphological characteristics of ischemia- reperfusion injury in both groups were analyzed. Conclusion. Use of pharmacological preconditioning with acetylcysteine and sevoflurane resulted in necrosis and hepatocyte apoptosis reduction as compared to the control group, thereby had a protective effect against ischemia-reperfusion injury. 

  4. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Directory of Open Access Journals (Sweden)

    Pauline M Snijder

    Full Text Available BACKGROUND: Ischemia-reperfusion injury (IRI is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. RESULTS: Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05. Seven days post-reperfusion, both 10 ppm (p<0.01 and 100 ppm (p<0.05 H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05 and 60% (p<0.001, respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05 and 67% (p<0.01 and ANP by 84% and 63% (p<0.05, respectively. CONCLUSIONS: Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac

  5. The protecting effects and mechanism of betaine hydrochloride on hepatic ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    XIN Xiao-ming; MA Lian-long; GAO Yong-feng; WANG Hao; WANG Xiao-dan; ZHU Yu-yun; GAO Yun-sheng

    2008-01-01

    Objective To study the protecting effects and mechanism of betaine hydrochloride on hepatic ischemia-reperfusion injury in rats. Methods Fourty SD rats were randomly divided into 5 groups (8 animals in each group) : sham-operated control group (A), hepatic ischemia-reperfusion group (B), 200 mg·kg-1 400 mg·kg-1 800 mg·kg-1 betaine hydrochloride + hepatic ischemia-reperfusion group (C、D、E). betaine hydrochloride was administered to animals byoral route in group C、D、E for 7 days before ischemia. A、B group was administered with NS. Made the animal model of part hepatic ischemia-reperfusion. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels in the blood and themalondialdehyde (MDA), superoxide dismutase (SOD), protein content in hepatic tissue were determined after the liver had been reperfused for 24 hours; the hepatic tissue was examined under lightmieroscope and the cell apoptosis was demonstrated with flow cytometry. Results ALT, AST, MDA increased and SOD decreased significantly in B group when compared those in the A group (P<0.05), Hepatic apoptosis was significantly increased; ALT, AST, MDA decreased and SOD increased significantly in betaine hydrochloride 200 mg·kg-1(C) group when compared those in the B group(P<0.05). Hepatic apoptosis was significantly lower, The histologic changes of the liver tissue under lightmicroscope in the C group was more easer than in the I/R group (B). Conclusions Betaine hydrochloride has the ability to scavenge oxygen free radical (OFR), reduce lipid peroxidation and inhibition of apoptosis. So it can protect the rats liver damaged by ischemia-reperfusion.

  6. Role of mucus in ischemia/reperfusion-induced gastric mucosal injury in rats.

    Science.gov (United States)

    Mojzis, J; Hegedüsová, R; Mirossay, L

    2000-01-01

    Gastric mucus plays an important role in gastric mucosal protection. Apart from its "barrier" function, it has been demonstrated that mucus protects gastric epithelial cells against toxic oxygen metabolites derived from the xanthine/ xanthine oxidase system. In this study, we investigated the effect of malotilate and sucralfate (mucus production stimulators) and N-acetylcysteine (mucolytic agent) on ischemia/reperfusion-induced gastric mucosal injury. Gastric ischemia was induced by 30 min clamping of the coeliac artery followed by 30 min of reperfusion. The mucus content was determined by the Alcian blue method. Sucralfate (100 mg/kg), malotilate (100 mg/kg), and N-acetylcysteine (100 mg/kg) were given orally 30 min before surgery. Both sucralfate and malotilate increased the mucus production in control rats. On the other hand, N-acetyloysteine significantly decreased mucus content in control (sham) group. A significant decrease of mucus content was found in the control and the N-acetylcysteine pretreated group during the period of ischemia. On the other hand, sucralfate and malotilate prevented the decrease the content of mucus during ischemia. A similar result can be seen after ischemia/reperfusion. In the control group and N-acetylcysteine pretreated group a significant decrease of adherent mucus content was found. However, sucralfate and malotilate increased mucus production (sucralfate significantly). Sucralfate and malotilate also significantly protected the gastric mucosa against ischemia/reperfusion-induced injury. However, N-acetylcysteine significantly increased gastric mucosal injury after ischemia/reperfusion. These results suggest that gastric mucus may be involved in the protection of gastric mucosa after ischemia/reperfusion.

  7. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  8. Role of TRPV1 channels in ischemia/reperfusion-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Lan Chen

    Full Text Available OBJECTIVES: Transient receptor potential vanilloid 1 (TRPV1 -positive sensory nerves are widely distributed in the kidney, suggesting that TRPV1-mediated action may participate in the regulation of renal function under pathophysiological conditions. Stimulation of TRPV1 channels protects against ischemia/reperfusion (I/R-induced acute kidney injury (AKI. However, it is unknown whether inhibition of these channels is detrimental in AKI or not. We tested the role of TRPV1 channels in I/R-induced AKI by modulating these channels with capsaicin (TRPV1 agonist, capsazepine (TRPV1 antagonist and using Trpv1-/- mice. METHODS AND RESULTS: Anesthetized C57BL/6 mice were subjected to 25 min of renal ischemia and 24 hrs of reperfusion. Mice were pretreated with capsaicin (0.3 mg/kg body weight or capsazepine (50 mg/kg body weight. Capsaicin ameliorated the outcome of AKI, as measured by serum creatinine levels, tubular damage,neutrophil gelatinase-associated lipocalin (NGAL abundance and Ly-6B.2 positive polymorphonuclear inflammatory cells in injured kidneys. Neither capsazepine nor deficiency of TRPV1 did deteriorate renal function or histology after AKI. Measurements of endovanilloids in kidney tissue indicate that 20-hydroxyeicosatetraeonic acid (20-HETE or epoxyeicosatrienoic acids (EETs are unlikely involved in the beneficial effects of capsaicin on I/R-induced AKI. CONCLUSIONS: Activation of TRPV1 channels ameliorates I/R-induced AKI, but inhibition of these channels does not affect the outcome of AKI. Our results may have clinical implications for long-term safety of renal denervation to treat resistant hypertension in man, with respect to the function of primary sensory nerves in the response of the kidney to ischemic stimuli.

  9. Fucoidan reduces inflammatory response in a rat model of hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Li, Xiao-Jing; Ye, Qi-Fa

    2015-11-01

    Ischemia-reperfusion (I/R) injury after a liver transplant is a major cause of severe complications that lead to graft dysfunction. Fucoidan, a complex of sulfated polysaccharides derived from marine brown algae, demonstrated antiapoptotic as well as potential anti-inflammatory properties in previous studies. Fucoidan has also shown protective effects on I/R-injured kidney and heart. However, whether fucoidan can attenuate hepatic I/R injury has not been examined. To clarify the role of fucoidan in hepatic I/R injury, Sprague-Dawley rats were subjected to sham operation or ischemia followed by reperfusion with treatment of saline or fucoidan (50, 100, or 200 mg·(kg body mass)(-1)·d(-1)). The fucoidan-treated group showed decreased levels of alanine aminotransferase and aspartate aminotransferase compared with the control group. Myeloperoxidase and malondialdehyde activities and mRNA levels of CD11b in the fucoidan-treated group were significantly decreased. Hepatocellular swelling/necrosis, sinusoidal/vascular congestion, and inflammatory cell infiltration were also attenuated in the fucoidan group. The expression of TNF-α, IL-6, IL-1β, CXCL-10, VCAM-1, and ICAM-1 were markedly decreased in the samples from the fucoidan-treated group. Fucoidan largely prevented activation of the inflammatory signaling pathway, compared with the control group. In summary, fucoidan can protect the liver from I/R injury through suppressing activation of the inflammatory signaling pathway, as well as the expression of inflammatory mediators, and inflammatory cell infiltration.

  10. Remote ischemic preconditioning protects against liver ischemia-reperfusion injury via heme oxygenase-1-induced autophagy.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available BACKGROUND: Growing evidence has linked autophagy to a protective role of preconditioning in liver ischemia/reperfusion (IR. Heme oxygenase-1 (HO-1 is essential in limiting inflammation and preventing the apoptotic response to IR. We previously demonstrated that HO-1 is up-regulated in liver graft after remote ischemic preconditioning (RIPC. The aim of this study was to confirm that RIPC protects against IR via HO-1-mediated autophagy. METHODS: RIPC was performed with regional ischemia of limbs before liver ischemia, and HO-1 activity was inhibited pre-operation. Autophagy was assessed by the expression of light chain 3-II (LC3-II. The HO-1/extracellular signal-related kinase (ERK/p38/mitogen-activated protein kinase (MAPK pathway was detected in an autophagy model and mineral oil-induced IR in vitro. RESULTS: In liver IR, the expression of LC3-II peaked 12-24 h after IR, and the ultrastructure revealed abundant autophagosomes in hepatocytes after IR. Autophagy was inhibited when HO-1 was inactivated, which we believe resulted in the aggravation of liver IR injury (IRI in vivo. Hemin-induced autophagy also protected rat hepatocytes from IRI in vitro, which was abrogated by HO-1 siRNA. Phosphorylation of p38-MAPK and ERK1/2 was up-regulated in hemin-pretreated liver cells and down-regulated after treatment with HO-1 siRNA. CONCLUSIONS: RIPC may protect the liver from IRI by induction of HO-1/p38-MAPK-dependent autophagy.

  11. Protective effects of Guizhi-Fuling-Capsules on rat brain ischemia/reperfusion injury.

    Science.gov (United States)

    Li, Tie-Jun; Qiu, Yan; Mao, Jun-Qin; Yang, Peng-Yuan; Rui, Yao-Cheng; Chen, Wan-Sheng

    2007-09-01

    Previous studies revealed that Guizhi-Fuling-Capsules (GZFLC), a traditional Chinese medical (Kampo) formulation composed of five kinds of medicinal plants, Cinnamomum cassia BLUME (Cinnamomi Cortex), Paeonia lactiflora PALL. (Peonies Radix), Paeonia suffruticosa ANDREWS (Moutan Cortex), Prunus persica BATSCH (Persicae Semen), and Poria cocos WOLF (Hoelen), exerts a protective effect against vascular injury and has a protective effect against glutamate- or nitro oxide-mediated neuronal damage. In the present study, the effect of GZFLC in a rat in vivo model of focal cerebral ischemia and reperfusion was investigated. Administration of GZFLC (0.3 and 0.9 g/kg, p.o.) after focal cerebral ischemia significantly decreased brain infarction and water contents in rats subjected to 2-h ischemia followed by 24-h reperfusion from 31.72 +/- 2.49%, 84.76 +/- 1.63% in the model group to 17.31 +/- 3.66%, 82.51 +/- 1.36% and 8.30 +/- 3.73%, 81.35 +/- 1.73%, respectively. Furthermore, analysis of inflammatory cytokines in ischemic brain showed that GZFLC treatment significantly down-regulated expressions of pro-inflammatory cytokines including interleukin (IL)-1beta and tissue necrosis factor-alpha and markedly up-regulated expressions of anti-inflammatory cytokines IL-10 and IL-10R both in mRNA and protein levels. The serum levels of these inflammatory cytokines were also regulated the same way. These results suggested that GZFLC may be beneficial for the treatment of brain ischemia-reperfusion injury partly due to its anti-inflammatory properties.

  12. Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion.

    Directory of Open Access Journals (Sweden)

    Rongqian Wu

    Full Text Available BACKGROUND: Gut ischemia/reperfusion (I/R injury is a serious condition in intensive care patients. Activation of immune cells adjacent to the huge endothelial cell surface area of the intestinal microvasculature produces initially local and then systemic inflammatory responses. Stimulation of the vagus nerve can rapidly attenuate systemic inflammatory responses through inhibiting the activation of macrophages and endothelial cells. Ghrelin, a novel orexigenic hormone, is produced predominately in the gastrointestinal system. Ghrelin receptors are expressed at a high density in the dorsal vagal complex of the brain stem. In this study, we investigated the regulation of the cholinergic anti-inflammatory pathway by the novel gastrointestinal hormone, ghrelin, after gut I/R. METHODS AND FINDINGS: Gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery for 90 min in male adult rats. Our results showed that ghrelin levels were significantly reduced after gut I/R and that ghrelin administration inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival after gut I/R. Administration of a specific ghrelin receptor antagonist worsened gut I/R-induced organ injury and mortality. To determine whether ghrelin's beneficial effects after gut I/R require the intact vagus nerve, vagotomy was performed in sham and gut I/R animals immediately prior to the induction of gut ischemia. Our result showed that vagotomy completely eliminated ghrelin's beneficial effect after gut I/R. To further confirm that ghrelin's beneficial effects after gut I/R are mediated through the central nervous system, intracerebroventricular administration of ghrelin was performed at the beginning of reperfusion after 90-min gut ischemia. Our result showed that intracerebroventricular injection of ghrelin also protected the rats from gut I

  13. Downstream signaling of reactive oxygen species, protein kinase C epsilon translocation and delayed neuroprotection in sevoflurane preconditioned rats following cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Zhi Ye; Qulian Guo; E Wang; Yundan Pan; Qing Li; Honghao Zhou

    2009-01-01

    blot analysis. Infarct volume was calculated using the TTC assay. Neurological deficits were evaluated in rats using a scoring system of 8 points.RESULTS: After 6 hours reperfusion, the ratio of PKC- ε in membrane/(cytosol + membrane) was significantly less in the sham operation group than in the ischemia/reperfusion, sevoflurane, MPG +sevoflur.ane), and MPG groups (P 0.05). Following 24 hours reperfusion,the ratio of PKC-ε in membrane/(cytosol + membrane) was significantly less in the sham operation group than in the ischemiaJreperfusion, sevoflurane, MPG + sevoflurane, and MPG groups (P 0.05). Compared with the ischemia/reperfusion, MPG + sevoflurane, and MPG groups, infarct volume was significantly smaller, and neurological deficits were significantly improved,in the sevoflurane group (P 0.05). Infarcts or neurological deficits were not detected in the sham operation group.CONCLUSION: A single preconditioning administration of sevoflurane reduced infarct volumes and improved neurological deficits in ischemic rats. Delayed neuroprotection may be mediated by reactive oxygen species and correlated to PKC-ε activation.

  14. Combined Salvianolic Acid B and Ginsenoside Rg1 Exerts Cardioprotection against Ischemia/Reperfusion Injury in Rats.

    Science.gov (United States)

    Deng, Yanping; Yang, Min; Xu, Feng; Zhang, Qian; Zhao, Qun; Yu, Haitao; Li, Defang; Zhang, Ge; Lu, Aiping; Cho, Kenka; Teng, Fukang; Wu, Peng; Wang, Linlin; Wu, Wanying; Liu, Xuan; Guo, De-An; Jiang, Baohong

    2015-01-01

    Lack of pharmacological strategies in clinics restricts the patient prognosis with myocardial ischemia/reperfusion (I/R) injury. The aim of this study was to evaluate the cardioprotection of combined salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1) against myocardial I/R injury and further investigate the underlying mechanism. I/R injury was induced by coronary artery ligation for Wistar male rats and hypoxia/reoxygenation injury was induced on H9c2 cells. Firstly, the best ratio between SalB and Rg1was set as 2:5 based on their effects on heart function detected by hemodynamic measurement. Then SalB-Rg1 (2:5) was found to maintain mitochondrial membrane potential and resist apoptosis and necrosis in H9c2 cell with hypoxia/reoxygenation injury. Companying with same dose of SalB or Rg1 only, SalB-Rg1 showed more significant effects on down-regulation of myocardial infarct size, maintenance of myocardium structure, improvement on cardiac function, decrease of cytokine secretion including TNF-α, IL-1β, RANTES and sVCAM-1. Finally, the SalB-Rg1 improved the viability of cardiac myocytes other than cardiac fibroblasts in rats with I/R injury using flow cytometry. Our results revealed that SalB-Rg1 was a promising strategy to prevent myocardial I/R injury.

  15. Combined Salvianolic Acid B and Ginsenoside Rg1 Exerts Cardioprotection against Ischemia/Reperfusion Injury in Rats.

    Directory of Open Access Journals (Sweden)

    Yanping Deng

    Full Text Available Lack of pharmacological strategies in clinics restricts the patient prognosis with myocardial ischemia/reperfusion (I/R injury. The aim of this study was to evaluate the cardioprotection of combined salvianolic acid B (SalB and ginsenoside Rg1 (Rg1 against myocardial I/R injury and further investigate the underlying mechanism. I/R injury was induced by coronary artery ligation for Wistar male rats and hypoxia/reoxygenation injury was induced on H9c2 cells. Firstly, the best ratio between SalB and Rg1was set as 2:5 based on their effects on heart function detected by hemodynamic measurement. Then SalB-Rg1 (2:5 was found to maintain mitochondrial membrane potential and resist apoptosis and necrosis in H9c2 cell with hypoxia/reoxygenation injury. Companying with same dose of SalB or Rg1 only, SalB-Rg1 showed more significant effects on down-regulation of myocardial infarct size, maintenance of myocardium structure, improvement on cardiac function, decrease of cytokine secretion including TNF-α, IL-1β, RANTES and sVCAM-1. Finally, the SalB-Rg1 improved the viability of cardiac myocytes other than cardiac fibroblasts in rats with I/R injury using flow cytometry. Our results revealed that SalB-Rg1 was a promising strategy to prevent myocardial I/R injury.

  16. Acetylcholine- and sodium hydrosulfide-induced endothelium-dependent relaxation and hyperpolarization in cerebral vessels of global cerebral ischemia-reperfusion rat.

    Science.gov (United States)

    Han, Jun; Chen, Zhi-Wu; He, Guo-Wei

    2013-01-01

    We investigated the effects of endothelium-derived hyperpolarizing factor (EDHF) and the role of hydrogen sulphide (H2S) in the cerebral vasorelaxation induced by acetylcholine (ACh) in global cerebral ischemia-reperfusion (CIR) rats. CIR was induced by occlusion of bilateral carotid and vertebral arteries. Isolated arterial segments from the cerebral basilar (CBA) and middle artery (MCA) of CIR rats were studied in a pressurized chamber. Transmembrane potential was recorded using glass microelectrodes to evaluate hyperpolarization. In the CIR CBAs and MCAs preconstricted by 30 mM KCl, ACh induced concentration-dependent vasorelaxation and hyperpolarization that were partially attenuated by NG-nitro-l-arginine methyl ester (l-NAME, 30 μM) and l-NAME plus indomethacin (10 μM). The residual responses were abolished by the H2S inhibitor dl-propargylglycine (PPG, 100 μM). The H2S donor NaHS and l-Cys, the substrate of endogenous H2S synthase, elicited similar responses to ACh and was inhibited by tetraethylamonine (1 mM) or PPG. ACh induces EDHF-mediated vasorelaxation and hyperpolarization in rat cerebral arteries. These responses are up-regulated by ischemia-reperfusion while NO-mediated responses are down-regulated. Further, the ACh-induced, EDHF-mediated relaxation, and hyperpolarization and the inhibition of these responses are similar to the H2S-induced responses, suggesting that H2S is a possible candidate for EDHF in rat cerebral vessels.

  17. Protective effects of inhibition of adenosine monophosphate activated protein kinase activity against cerebral ischemia-reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    补娟

    2013-01-01

    Objective To observe the effect of inhibition of adenosine monophosphate activated protein kinase (AMPK) on shape,function and inflammatory factor of microglia for mice after cerebral ischemia-reperfusion

  18. Transient Acidosis during Early Reperfusion Attenuates Myocardium Ischemia Reperfusion Injury via PI3k-Akt-eNOS Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xin Qiao

    2013-01-01

    Full Text Available In this paper, we concluded that transient acidosis reperfusion conferred cardioprotection against myocardial ischemia reperfusion injury in isolated rat hearts through activating PI3K-Akt-eNOS pathway.

  19. Anti-inlfammatory properties of lipoxin A4 protect against diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Jiang-quan Han; Cheng-ling Liu; Zheng-yuan Wang; Ling Liu; Ling Cheng; Ya-dan Fan

    2016-01-01

    Lipoxin A4 can alleviate cerebral ischemia/reperfusion injury by reducing the inlfammatory reaction, but it is currently unclear whether it has a protective effect on diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury. In this study, we established rat models of diabetes mellitus using an intraperitoneal injection of streptozotocin. We then induced focal cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours. After administration of lipoxin A4via the lateral ventricle, infarction volume was reduced, the expression levels of pro-inlfammatory factors tumor necrosis factor alpha and nuclear fac-tor-kappa B in the cerebral cortex were decreased, and neurological functioning was improved. These ifndings suggest that lipoxin A4 has strong neuroprotective effects in diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury and that the underlying mech-anism is related to the anti-inlfammatory action of lipoxin A4.

  20. Change of CD11a and myeloperoxidase content during rat renal ischemia-reperfusion injury%肾缺血再灌注损伤中CD11a及髓过氧化酶的变化

    Institute of Scientific and Technical Information of China (English)

    洪伟; 王禾; 石炳毅; 沈瑞雄; 柏宏伟; 李州利; 周文强

    2003-01-01

    AIM:To investigate the change of CD11a and myeloperoxidase(MPO) content during rat renal ischemia-reperfusion injury(IRI),as well as the role of LFA-1 in renal IRI.METHODS:We utillzed the rat model of renal IRI to detect the renal tissue contents of CD11a and MPO.RESULT:Level of CD11a and MPO was very low in normal renal tissue,but was increased significantiy in those of ischemia reperfusion.And this level in the ischemia 60 min reperfusion group was higher than that in ischemia 30 min reperfusion group.CONCLUSION:Level of CD11a and MPO in rat renal tissue increased dignificantly during rat renal IRI.LFAK-1 mediated leukocyte adherence plays an important role in renal IRI.

  1. C1q/TNF-Related Protein 9 Protects Diabetic Rat Heart against Ischemia Reperfusion Injury: Role of Endoplasmic Reticulum Stress

    Science.gov (United States)

    Bai, Sanxing; Cheng, Liang; Yang, Yang; Fan, Chongxi; Zhao, Dajun; Qin, Zhigang; Feng, Xiao; Zhao, Lin; Ma, Jipeng; Wang, Xiaowu; Yang, Jian; Xu, Xuezeng

    2016-01-01

    As a newly identified adiponectin paralog, C1q/TNF-related protein 9 (CTRP9) reduces myocardial ischemia reperfusion (IR) injury through partially understood mechanisms. In the present study, we sought to identify the role of endoplasmic reticulum stress (ERS) in CTRP9 induced cardioprotection in diabetic heart. Isolated hearts from high-fat-diet (HFD) induced type 2 diabetic Sprague-Dawley rats were subjected to ex vivo IR protocol via a Langendorff apparatus at the presence of globular CTRP9. CTRP9 significantly improved post-IR heart function and reduced cardiac infarction, cardiomyocytes apoptosis, Caspase-3, Caspase-9, Caspase-12, TNF-α expression, and lactate dehydrogenase activity. The cardioprotective effect of CTRP9 was associated with reduced ERS and increased expression of disulfide-bond A oxidoreductase-like protein (DsbA-L) in diabetic heart. CTRP9 reduced ERS in thapsigargin (TG) treated cardiomyocytes and protected endoplasmic reticulum (ER) stressed H9c2 cells against simulated ischemia reperfusion (SIR) injury, concurrent with increased expression of DsbA-L. Knockdown of DsbA-L increased ERS and attenuated CTRP9 induced protection against SIR injury in H9c2 cells. Our findings demonstrated for the first time that CTRP9 exerts cardioprotection by reducing ERS in diabetic heart through increasing DsbA-L.

  2. Function of Heat Shock Protein 70 in Myocardial Ischemia-Reperfusion Injury%热休克蛋白70在心肌缺血/再灌注损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    高奎乐

    2012-01-01

    Ischemia-reperfusion injury is an important cause of myocardial injury during cardiac surgery under cardiopulmonary bypass. Heat shock protein 70 is an important endogenous protective factor,which enhances cell damage tolerance of ischemia-reperfusion injury,maintaining the normal function of the cell metabolism,and improving cell survival. It also plays an important role in the anti-arrhythmia and myocardial anti-oxidative process. Heat shock protein 70 has an endogenous protective effect on myocardial in ischemia-reperfusion injury.%缺血/再灌注损伤是体外循环下心脏手术中心肌损伤的重要原因.热休克蛋白70是一种重要的内源性保护因子,它在缺血/再灌注损伤过程中增强细胞对损害的耐受程度,维持细胞的正常功能代谢,提高细胞生存率,在抗心律失常及心肌抗氧化过程中也起到重要作用.热休克蛋白70对缺血/再灌注损伤心肌具有内源性保护作用.

  3. ATP敏感性钾通道在心肌缺血/再灌注损伤中的作用%Roles of ATPV sensitive Potassium Channels against Myocardial Ischemia/Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    李清

    2012-01-01

    心肌缺血/再灌注损伤是缺血性心脏病以及心脏手术后心功能不全的主要病理基础.寻找有效的心肌保护措施减轻心肌缺血/再灌注损伤具有重要意义.各种心肌保护措施,如心脏停搏液、缺血预处理和缺血后处理等成为人们研究的热点.ATP敏感性钾通道在缺血/再灌注心肌损伤的心肌保护策略中发挥了重要作用,是心肌保护的重要作用机制.%Ischemia/reperfusion injury is a major pathophysiologic mechanism leading to myocardial dysfunction after myocardial infarction or cardiac surgery. It is necessary to find effective methods to limit ischemia/reperfusion injury. Many effective methods,such as cardioplegia, ischemia preconditioning and ischemia postconditioning garners are drawing more and more attention. ATP-sensitive potassium channels play important roles in myocardial protection against ischemia/reperfusion injury,which are the important mechanisms for cardio-protection..

  4. Extracellular ascorbic acid fluctuation during the protective process of ischemic preconditioning in rabbit renal ischemia-reperfusion model measured

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; LIN Yu-qing; YAN Long-tao; HONG Kai; HOU Xiao-fei; MAO Lan-qun; MA Lu-lin

    2010-01-01

    Background Ascorbic acid has important antioxidant properties, and may play a role in the protective effects of ischemic preconditioning on later ischemia-reperfusion. Herein, we examined the role of endogenous extracellular ascorbic acid in ischemic preconditioning in the kidney.Methods We developed a solitary rabbit kidney model where animals received ischemia-reperfusion only (ischemia-reperfusion group, n=15) or ischemic preconditioning followed by ischemia-reperfusion (ischemic preconditioning group, n=15). Ischemia-reperfusion was induced by occluding and loosening of the renal pedicle. The process of ischemic preconditioning included 15-minute brief ischemia and 10-minute reperfusion. In vivo microdialysis coupled with online electrochemical detection was used to determine levels of endogenous extracellular ascorbic acid in both groups. The extent of tissue damage was determined in kidney sections stained with hematoxylin and eosin. Serum creatinine and urea nitrogen were also detected to assess renal function.Results During ischemia-reperfusion, the extracellular ascorbic acid concentration during ischemia increased rapidly to the peak level ((130.01 ±9.98)%), and then decreased slowly to near basal levels. Similar changes were observed during reperfusion (peak level, (126.78±18.24)%). In the ischemic preconditioning group there was a similar pattern of extracellular ascorbic acid concentration during ischemic preconditioning. However, the ascorbic acid level was significantly lower during the ischemia and early reperfusion stage compared to the ischemia-reperfusion group. Additionally, the extent of glomerular ischemic collapse, tubular dilation, tubular denudation, and loss of brush border were markedly attenuated in the ischemic preconditioning group. Levels of serum creatinine and urea nitrogen were also decreased significantly in the ischemic preconditioning group.Conclusions Ischemic preconditioning may protect renal tissue against ischemia-reperfusion

  5. Protective effects of icariin on neurons injured by cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    LI Li; ZHOU Qi-xin; SHI Jing-shan

    2005-01-01

    Background It is very important to search for novel anti-ischemia/reperfusion neuroprotective drugs for prevention or treatment of cerebrovascular diseases. Icariin, the major active component of traditional Chinese herb Yinyanghuo, may have a beneficial role for neurons in cerebral ischemia/reperfusion caused by accident. However, it was not clear yet. In this study, we observed the protective effects of icariin on neurons injured by ischemia/reperfusion in vitro and in vivo and investigated its protective mechanism.Methods Cerebral cortical neurons of Wistar rats in primary culture were studied during the different periods of oxygen-glucose deprivation and reperfusion with oxygen and glucose. Cell viability was determined by methyl thiazoleterazolium (MTT) assay. The activity of lactate dehydrogenase (LDH) leaked from neurons, cell apoptosis and the concentration of intracellular free calcium were measured respectively. On the other hand, the mice model of transient cerebral ischemia/reperfusion was made by bilateral occlusion of common carotid arteries and ischemic hypotension/reperfusion. The mice were divided into several groups at random: sham operated group, model group and icariin preventive treatment group. The changes of mice behavioral, activities of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were measured, respectively. Results Treatment with icariin (final concentration 0.25, 0.5, and 1 mg/L) during ischemia/reperfusion-mimetic incubation in vitro concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing LDH release, decreasing cell apoptosis, and blunting elevation of intracellular calcium concentration. And in vivo the learning and memory abilities significantly decreased,activities of SOD were diminished and MDA level increased obviously in model group,compared with that in sham operated group. But pre-treatment of model mice with icariin (10, 30

  6. Protective Effect of Alpha Lipoic Acid on Rat Sciatic Nerve Ischemia Reperfusion Damage

    Science.gov (United States)

    Turamanlar, Ozan; Özen, Oğuz Aslan; Songur, Ahmet; Yağmurca, Murat; Akçer, Sezer; Mollaoğlu, Hakan; Aktaş, Cevat

    2015-01-01

    Background: Alpha lipoic acid is a potent antioxidant that plays numerous roles in human health. This study examined the effect of ALA on rat sciatic nerve ischemia reperfusion damage. Aims: Protective effect of alpha lipoic acid (ALA) on sciatic nerve following ischemia-reperfusion in rats was investigated by using light microscopy and biochemical methods. Provided that the protective effect of ALA on sciatic nerve is proven, we think the damage to the sciatic nerve that has already occurred or might occur in patients for various reasons maybe prevented or stopped by giving ALA in convenient doses. Study Design: Animal experiment. Methods: Forty-two adult male Sprague-Dawley rats (250–300 grams) were used in this study. Rats were randomly divided into six groups including one control (Group 1), one sham (Group 2), two ischemia-reperfusion (Groups 3 and 4) and two treatment groups (Groups5 and 6). Doses of 60 and 100 mg/kg ALA were given (Group 5 and 6) intra peritoneally twice, 1 and 24 hours before the ischemia to each treatment group. Ischemia was carried out the abdominal aorta starting from the distal part of the renal vein for two hours followed by reperfusion for three hours. In immunohistochemical methods, fibronectin immunoreactivity was analyzed. For biochemical analyses, the tissues were taken in eppendorf microtubes and superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) enzyme activities as well as malondialdehyde (MDA) and nitricoxide (NO) levels were measured. Results: Fibronectin was observed to have increased significantly in the ischemia group; on the other hand, it was observed to have decreased in parallel to the doses in the ALA groups. Biochemical studies showed that SOD and GSHPx declined with ischemia-reperfusion, but the activities of these enzymes were increased in the treatment groups in parallel with the dose. It was found that increased MDA levels with ischemia-reperfusion were decreased in parallel with ALA dose. There were

  7. Changes in neuronal apoptosis and apoptosis modulatory factors in cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Liying Qiu; Ying Li; Hongbin Fan; Bin Du; Zhiyong Yang; Jianqing Cheng

    2007-01-01

    BACKGROUND: The high concentration of glutamate release is the main cause for neuronal cell death. The relationship between glutamate level and apoptosis during ischemia/reperfusion injury is still unclear. OBJECTIVE: To observe the neuronal apoptosis at 24 and 72 hours following cerebral ischemia/reperfusion in rats, and analyze the possible influencing factors. DESIGN: A randomized controlled animal experiment. SETTING: School of Medicine, Southern Yangtze University.MATERIALS: Totally 30 male adult Sprague Dawley (SD) rats of clean grade, weighing 240 - 290 g, were obtained from Shanghai Experimental Animal Center, Chinese Academy of Sciences. The rats were randomly divided into sham-operated group (n=10) and model group (n=20). Each group was observed at 24 and 72 hours after ischemia/reperfusion, 5 rats at each time point in the sham-operated group, whereas 12 at 24 hours and 8 at 72 hours in the model group. Kits for determining apoptosis and Bcl-2 were bought from Wuhan Boster Biological Technology, Co., Ltd.; Kit for calcineurin from Nanjing Jiancheng Bioengineering Institute.METHODS: The experiment was carried out in the Functional Scientific Research Room of Southern Yangtze University from June to October in 2006.①Right middle cerebral artery was occluded by inserting a thread through internal carotid artery (ICA). The surgical process for the sham-operated rats was the same as that in the model group except a nylon suture inserted the ICA. According to Longa five-degree standard, the neurological deficit evaluation of rats was evaluated after surgery, and grades 1-3 were taken as successful model establishment. The blood was recirculated by withdrawing the nylon filament under anesthesia at 2 hours after ischemia in successful rat models.②After reperfusion, the brain tissue was quickly removed at 24 or 72 hours and the slices were obtained from optic chiasma to funnel manubrium. The changes of the number of apoptotic cells were observed using the

  8. Endogenous nitric oxide induces activation of apoptosis signal-regulating kinase 1 via S-nitrosylation in rat hippocampus during cerebral ischemia-reperfusion.

    Science.gov (United States)

    Liu, D-H; Yuan, F-G; Hu, S-Q; Diao, F; Wu, Y-P; Zong, Y-Y; Song, T; Li, C; Zhang, G-Y

    2013-01-15

    Apoptosis signal-regulating kinase 1 (ASK1) is a general mediator of cell death in response to a variety of stimuli, including reactive oxygen species, tumor necrosis factor α, lipopolysaccharide, endoplasmic reticulum stress, calcium influx and ischemia. Here we reported ASK1 was activated by nitric oxide (NO) through S-nitrosylation during cerebral ischemia-reperfusion. The reagents that abrogate neuronal nitric oxide synthase (nNOS) activity such as nNOS inhibitor 7NI and N-methyl-D-aspartate receptor antagonist MK801 prevented ASK1 activation via decreasing ASK1 S-nitrosylation. In HEK293 cells, over-expressed ASK1 could be S-nitrosylated by both exogenous and endogenous NO and Cys869 was identified as the site of ASK1 S-nitrosylation. S-nitrosylation increased the level of ASK1 phosphorylation at Thr845, which represents ASK1 activation. Our results further confirmed that S-nitrosylation led to the increment of ASK1 dimerization. S-nitrosylation of ASK1 also activated the downstream JNK signaling and JNK-mediated nucleic pathway. The exogenous NO (SNP and GSNO) reversed the effect of endogenous NO by suppressing S-nitrosylation of ASK1 and exerted neuroprotection during ischemia-reperfusion. These results suggest that inhibiting ASK1 S-nitrosylation may be a novel approach for stroke therapy. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Intralipid, a Clinically Safe Compound, Protects the Heart Against Ischemia-Reperfusion Injury More Efficiently Than Cyclosporine-A

    Science.gov (United States)

    Li, Jingyuan; Iorga, Andrea; Sharma, Salil; Youn, Ji-Youn; Partow-Navid, Rod; Umar, Soban; Cai, Hua; Rahman, Siamak; Eghbali, Mansoureh

    2013-01-01

    Background We have recently shown that post-ischemic administration of intralipid protects the heart against ischemia/reperfusion injury. Here we compared the cardioprotective effects of intralipid with cyclosporine-A, a potent inhibitor of the mitochondrial permeability transition pore opening. Methods In-vivo rat hearts or isolated Langendorff-perfused mouse hearts were subjected to ischemia followed by reperfusion with Intralipid (0.5%, 1% and 2% ex-vivo and 20% in-vivo), cyclosporine-A (0.2μM, 0.8μM and 1.5μM ex-vivo and 10mg/kg in-vivo) or vehicle. The hemodynamic function, infarct size, calcium retention capacity, mitochodrial superoxide production and phosphorylation levels of Akt/GSK-3β were measured. The values are mean±SEM. Results Administration of intralipid at reperfusion significantly reduced myocardial infarct size compared with cyclosporine-A in-vivo ((infarct size/area at risk)%: 22.9±2.5% vs. 35.2±3.5%; p=0.030, n=7/group). Postischemic administration of intralipid at its optimal dose (1%) was more effective than cyclosporine-A (0.8μM) in protecting the ex-vivo heart against ischemia/reperfusion injury as the rate pressure product at the end of reperfusion was significantly higher (mmHg*beats/min:12740±675(n=7) vs. 9203±10781(n=5), p=0.024), and the infarct size was markedly smaller (17.3±2.9(n=7) vs. 29.2±2.7(n=5), p=0.014). Intralipid was as efficient as cyclosporine-A in inhibiting the mPTP opening (calcium retention capacity=280±8.2 vs. 260.3±2.9nmol/mg-mitochondria-protein in cyclosporine-A, p=0.454, n=6) and in reducing cardiac mitochondrial superoxide production. Unlike intralipid, which increased phosphorlyation of Akt (6-fold) and GSK-3β (5-fold), cyclosporine-A had no effect on the activation of these pro-survival kinases. Conclusions Although intralipid inhibits the opening of the mitochondrial permeability transition pore as efficiently as cyclosporine-A, intralipid is more effective in reducing the infarct size and

  10. Quantitative Mitochondrial Proteomics Study on Protective Mechanism of Grape Seed Proanthocyanidin Extracts Against Ischemia/Reperfusion Heart Injury in Rat

    Institute of Scientific and Technical Information of China (English)

    LU Wei-da; QIU Jie; ZHAO Gai-xia; QIE Liang-yi; WEI Xin-bing; GAO Hai-qing

    2012-01-01

    Cardiac ischemia/reperfusion(I/R) injury is a critical condition,often associated with high morbidity and mortality.The cardioprotective effect of grape seed proanthocyanidin extracts(GSPE) against oxidant injury during I/R has been described in previous studies.However,the underlying molecular mechanisms have not been fully elucidated.This study investigated the effect of GSPE on reperfusion arrhythmias especially ventricular tachycardia(VT)and ventricular fibrillation(VF),the lactic acid accumulation and the ultrastructure of ischemic cardiomyocytes as well as the global changes of mitochondria proteins in in vivo rat heart model against I/R injury.GSPE significantly reduced the incidence of VF and VT,lessened the lactic acid accumulation and attenuated the ultrastructure damage.Twenty differential proteins related to cardiac protection were revealed by isobaric tag for relative and absolute quantitation(iTRAQ) profiling.These proteins were mainly involved in energy metabolism.Besides,monoamine oxidase A(MAOA) was also identified.The differential expression of several proteins was validated by Western blot.Our study offered important information on the mechanism of GSPE treatment in ischemic heart disease.

  11. Inhibition of ALDH2 by O-GlcNAcylation contributes to the hyperglycemic exacerbation of myocardial ischemia/reperfusion injury.

    Science.gov (United States)

    Liu, Baoshan; Wang, Jiali; Li, Minghua; Yuan, Qiuhuan; Xue, Mengyang; Xu, Feng; Chen, Yuguo

    2016-12-27

    Although hyperglycemia is causally related to adverse outcomes after myocardial ischemia/reperfusion (I/R), the underlying mechanisms are largely unknown. Here, we investigated whether excessive O-linked-N-acetylglucosamine (O-GlcNAc) modification of acetaldehyde dehydrogenase 2 (ALDH2), an important cardioprotective enzyme, was a mechanism for the hyperglycemic exacerbation of myocardial I/R injury. Both acute hyperglycemia (AHG) and diabetes (DM)-induced chronic hyperglycemia increased cardiac dysfunction, infarct size and apoptosis index compared with normal saline (NS)+I/R rats (PO-GlcNAc modification was increased whereas its activity was decreased in AHG+I/R and DM+I/R rats. High glucose (HG, 30mmol/L) markedly increased ALDH2 O-GlcNAc modification compared with Con group (5mmol/L) (PO-GlcNAc modification was increased by 62.9% in Con+PUGNAc group whereas it was decreased by 44.1% in Con+DON group compared with Con group (PO-GlcNAc modification and improved infarct size, apoptosis index and cardiac dysfunction induced by I/R combined with hyperglycemia. These findings demonstrate that ALDH2 O-GlcNAc modification is a key mechanism for the hyperglycemic exacerbation of myocardial I/R injury and Alda-1 has therapeutic potential for inducing cardioprotection.

  12. Myocardial Ablation of G Protein-Coupled Receptor Kinase 2 (GRK2 Decreases Ischemia/Reperfusion Injury through an Anti-Intrinsic Apoptotic Pathway.

    Directory of Open Access Journals (Sweden)

    Qian Fan

    Full Text Available Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2 activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R injury. To do this we utilized two independent lines of GRK2 knockout (KO mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

  13. 大豆异黄酮对大鼠离体心肌缺血/再灌注损伤的保护作用%Protective Effect of Soy Isoflavones on Myocardial Ischemia-Reperfusion Injury in Isolated Rat Hearts

    Institute of Scientific and Technical Information of China (English)

    贾强; 杨锐; 刘小粉; 马善峰

    2011-01-01

    Objective To study the effect of soy isoflavones(SI) against myocardium iscahemia-reperfusion injury in isolated rat hearts. Methods The isolated Langendorff heart perfusion method was used. The effect of soy isofiavones(SI) against myocardium iscahemia-reperfusion was studied by hemodynamics experiment. Results Hemodynamic experiment in vitro showed that cardiac dysfunction was induced by ischemia-reperfusion, the changes of left ventricular pressure, dp/dt and CF in groups of ischemia-reperfusion containing soy isoflavones (SI) was smaller than those groups of ischemia-reperfusion without soy isofiavones ( SI ). It suggested that soy isoflavones(SI) could protect myocardium against ischemia-reperfusion lesion. Conclusion It was shown that soy isofiavones(SI) played an important role on protection ischemia-reperfusion induced cardiac dysfunction.%目的 观察大豆异黄酮对离体大鼠心脏缺血-再灌注(I/R)损伤的保护效应.方法 本文采用Langendorff离体心脏灌流方法,通过心脏动力学实验对大豆异黄酮抗I/R效应进行研究.结果 通过离体大鼠心脏动力学实验显示,缺血前药物各组心功能参数与对照组相比较,差异没有统计学意义(P>0.05);缺血后药物各组与对照组相比较,dp/dtmax与-dp/dtmax差异有统计学意义(P<0.01);再灌注后药物各组与对照组相比较,心率有改善,低剂量组差异有统计学意义(P<0.05).低剂量、高剂量组与对照组相比较dp/dtmax与-dp/dtmax有显著改善(P<0.01).结论 心肌缺血再灌注可抑制心脏的舒缩功能,大豆异黄酮不影响离体心脏的正常功能,但能改善缺血后再灌注引起的心律失常的离体心脏功能,可促进I/R后心功能的恢复.

  14. Buyang Huanwu decoction enhances cell membrane fluidity in rats with cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Chenxu Li

    2012-01-01

    After bilateral carotid artery occlusion for 30 minutes and reperfusion for 2 hours, distinct patho-logical changes presented in the cerebral cortex and cerebellum of rats. Compared with normal rats, nerve cell membrane fluidity significantly decreased in ischemia/reperfusion rats as detected by spin-labeling electron spin resonance, consistent with order parameter S and rotational correlation time TC measurements. Brain nerve cells from rats with ischemia/reperfusion injury were cultured with 1-100 mg/mL Buyang Huanwu decoction. Results showed that Buyang Huanwu decoction gradually increased membrane fluidity dose-dependently to normal levels, and eliminated hydroxide (OH·) and superoxide (O2·) free radicals dose-dependently. These findings suggest that Buyang Huanwu decoction can protect against cell membrane fluidity changes in rats with ischemia/ reper-fusion injury by scavenging free radicals.

  15. Propofol inhibits inflammation and lipid peroxidation following cerebral ischemia/ reperfusion in rabbits

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Wei; Xing Wan; Bo Zhao; Jiabao Hou; Min Liu; Bangchang Cheng

    2012-01-01

    The present study established a rabbit model of global cerebral ischemia using the ‘six-vessel' method, which was reperfused after 30 minutes of ischemia. Rabbits received intravenous injection of propofol at 5 mg/kg prior to ischemia and 20 mg/kg per hour after ischemia until samples were prepared. Results revealed that propofol inhibited serum interleukin-8, endothelin-1 and malondialdehyde increases and promoted plasma superoxide dismutase activity after cerebral ischemia/reperfusion. In addition, cerebral cortex edema was attenuated with little neuronal nuclear degeneration and pyknosis with propofol treatment. The cross-sectional area of neuronal nuclei was, however, increased following propofol treatment. These findings suggested that propofol could improve anti-oxidant activity and inhibit synthesis of inflammatory factors to exert a protective effect on cerebral ischemia/reperfusion injury.

  16. Synthesis and Protective Effect of Scutellarein on Focal Cerebral Ischemia/Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Nian-Guang Li

    2012-09-01

    Full Text Available Scutellarein, the main metabolite of scutellarin in vivo, has relatively better solubility, bioavailability and bio-activity than scutellarin. However, compared with scutellarin, it is very difficult to obtain scutellarein from Nature. Therefore, the present study focused on establishing an efficient route for the synthesis of scutellarein by hydrolyzing scutellarin. Neurological deficit score and cerebral infarction volume with the administration of scutellarein were then used to compare its neuroprotective effects on focal cerebral ischemia/reperfusion in rats induced by middle cerebral artery occlusion (MCAO with those of scutellarin. The results showed that scutellarein had better protective effect on focal cerebral ischemia/reperfusion than scutellarin, which laid the foundation for further research and development of scutellarein as a promising candidate for ischemic cerebro-vascular disease.

  17. Protective effect of ginkgo proanthocyanidins against cerebral ischemia/reperfusion injury associated with its antioxidant effects

    Science.gov (United States)

    Cao, Wang-li; Huang, Hai-bo; Fang, Ling; Hu, Jiang-ning; Jin, Zhu-ming; Wang, Ru-wei

    2016-01-01

    Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proanthocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and 72 hours before reperfusion. Results showed that ginkgo proanthocyanidins could effectively mitigate neurological disorders, shorten infarct volume, increase superoxide dismutase activity, and decrease malondialdehyde and nitric oxide contents. Simultaneously, the study on grape seed proanthocyanidins (40 mg/kg) confirmed that different sources of proanthocyanidins have a similar effect. The neurological outcomes of ginkgo proanthocyanidins were similar to that of nimodipine in the treatment of cerebral ischemia/reperfusion injury. Our results suggest that ginkgo proanthocyanidins can effectively lessen cerebral ischemia/reperfusion injury and protect ischemic brain tissue and these effects are associated with antioxidant properties. PMID:28123420

  18. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus.

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-08-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

  19. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin......, an endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized...... to a dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma...

  20. The effect of herbs on cerebral energy metabolism in cerebral ischemia-reperfusion mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Vascular dementia is one of the most familiar types of senile dementia. Over the past few years, the research on the damage of cerebral tissues after ischemia has become a focus. The factors and mechanism of cerebral tissue damage after ischemia are very complex. The handicap of energy metabolism is regarded as the beginning factor which leads to the damage of neurons, but its dynamic changes in ischemic area and its role during the process of neuronal damage are not very clear. There are few civil reports on using 31 P nuclear magnetic resonance instrument to explore the changes of cerebral energy metabolism in intravital animals. After exploring the influence of herbs on cerebral energy metabolism in ischemia-reperfusion mice, we came to the conclusion that herbs can improve the cerebral energy metabolism in ischemia-reperfusion mice.

  1. Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion

    OpenAIRE

    Liu, Ai-Fen; Zhao, Feng-bo; Wang, Jing; Lu, Yi-Fan; Tian, Jian; Zhao, Yin; Gao, Yan; Hu, Xia-jun; LIU, XIAO-YAN; Tan, Jie; Tian, Yun-li; Shi, Jing

    2016-01-01

    Background Vagus nerve stimulation (VNS) has become the most common non-pharmacological treatment for intractable drug-resistant epilepsy. However, the contribution of VNS to neurological rehabilitation following stroke has not been thoroughly examined. Therefore, we investigated the specific role of acute VNS in the recovery of cognitive functioning and the possible mechanisms involved using a cerebral ischemia/reperfusion (I/R) injury model in rats. Methods The I/R-related injury was modele...

  2. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms.

    Science.gov (United States)

    Yang, Zhang; Weian, Chen; Susu, Huang; Hanmin, Wang

    2016-01-15

    The aim of our study was to investigate the protective properties of mangiferin, a natural glucosyl xanthone found in both mango and papaya on the cerebral ischemia-reperfusion injury and the underlying mechanism. Wistar male rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Mangiferin (25, 50, and 100mg/kg, ig) or 0.5% carboxymethyl cellulose sodium was administered three times before ischemia and once at 2h after the onset of ischemia. Neurological score, infarct volume, and brain water content, some oxidative stress markers and inflammatory cytokines were evaluated after 24h of reperfusion. Treatment with mangiferin significantly ameliorated neurologic deficit, infarct volume and brain water content after cerebral ischemia reperfusion. Mangiferin also reduced the content of malondialdehyde (MDA), IL-1β and TNF-α, and up-regulated the activities of superoxide dismutase (SOD), glutathione (GSH) and IL-10 levels in the brain tissue of rats with the cerebral ischemia-reperfusion injury. Moreover, mangiferin up-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream anti-oxidant protein heme oxygenase-1 (HO-1). The results indicate that mangiferin can play a certain protective role in the cerebral ischemia-reperfusion injury, and the protective effect of mangiferin may be related to the improvement on the antioxidant capacity of brain tissue and the inhibition of overproduction of inflammatory cytokines. The mechanisms are associated with enhancing the oxidant defense systems via the activation of Nrf2/HO-1 pathway.

  3. Role of interleukin 18 in acute lung inflammation induced by gut ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    Yong-Jie Yang; Yun Shen; Song-Hua Chen; Xi-Rui Ge

    2005-01-01

    AIM: To study the changes of endogenous interleukin 18 (IL-18) levels and evaluate the role of IL-18 on lung injury following gut ischemia/reperfusion.METHODS: A superior mesenteric artery occlusion model was selected for this research. The mice were randomly divided into four groups: Sham operation (sham), ischemia (0.5 h) followed by different times of reperfusion (I/R),and I/R pretreated with exogenous IL-18 (I/R+IL-18) or IL-18 neutralizing antibody (I/R+IL-18Ab) 15 min before ischemia. Serum IL-18 levels were detected by Western blot and ELISA, and the levels of IL-18 in lung tissue were evaluated by immunohistochemical staining. For the study of pulmonary inflammation, the lung myeloperoxidase (MPO) contents and morphological changes were evaluated.RESULTS: Gut ischemia/reperfusion induced rapid increase of serum IL-18 levels, peaked at 1 h after reperfusion and then declined. The levels of IL-18 in lung tissue were gradually enhanced as the progress of reperfusion.Compared with I/R group, exogenous administration of IL-18 (I/R+IL-18) further remarkably enhanced the pulmonary MPO activity and inflammatory cell infiltration,and in I/R+IL-18Ab group, the content of MPO were significantly reduced and lung inflammation was also decreased.CONCLUSION: Gut ischemia/reperfusion induces the increase of IL-18 expression, which may make IL-18 act as an important proinflammatory cytokine and contribute to gut ischemia/reperfusion-induced lung inflammation.

  4. Intestinal ischemia/reperfusion induces bronchial hyperreactivity and increases serum TNF-alpha in rats

    Directory of Open Access Journals (Sweden)

    Arruda Marcio Jose Cristiano de

    2006-01-01

    Full Text Available INTRODUCTION: Intestinal or hepatic ischemia/reperfusion induces acute lung injury in animal models of multiple organ failure. Tumor necrosis factor (TNF- alpha is involved in the underlying inflammatory mechanism of acute respiratory distress syndrome. Although the inflammatory cascade leading to acute respiratory distress syndrome has been extensively investigated, the mechanical components of acute respiratory distress syndrome are not fully understood. Our hypothesis is that splanchnic ischemia/reperfusion increases airway reactivity and serum TNF-alpha levels. OBJECTIVE: To assess bronchial smooth muscle reactivity under methacholine stimulation, and to measure serum TNF-alpha levels following intestinal and/or hepatic ischemia/reperfusion in rats. METHOD: Rats were subjected to 45 minutes of intestinal ischemia, or 20 minutes of hepatic ischemia, or to both (double ischemia, or sham procedures (control, followed by 120 minutes of reperfusion. The animals were then sacrificed, and the bronchial response to increasing methacholine molar concentrations (10-7 to 3 x 10-4 was evaluated in an ex-vivo bronchial muscle preparation. Serum TNF-alpha was determined by the L929-cell bioassay. RESULTS: Bronchial response (g/100 mg tissue showed increased reactivity to increasing methacholine concentrations in the intestinal ischemia and double ischemia groups, but not in the hepatic ischemia group. Similarly, serum TNF-alpha (pg/mL concentration was increased in the intestinal ischemia and double ischemia groups, but not in the hepatic ischemia group. CONCLUSION: Intestinal ischemia, either isolated or associated with hepatic ischemia, increased bronchial smooth muscle reactivity, suggesting a possible role for bronchial constriction in respiratory dysfunction following splanchnic ischemia/reperfusion. This increase occurred in concomitance with serum TNF-alpha increase, but whether the increase in TNF-alpha caused this bronchial contractility remains

  5. The protective effect of diosmin on hepatic ischemia reperfusion injury: an experimental study

    Science.gov (United States)

    Tanrikulu, Yusuf; Şahin, Mefaret; Kismet, Kemal; Kilicoglu, Sibel Serin; Devrim, Erdinc; Tanrikulu, Ceren Sen; Erdemli, Esra; Erel, Serap; Bayraktar, Kenan; Akkus, Mehmet Ali

    2013-01-01

    Liver ischemia reperfusion injury (IRI) is an important pathologic process leading to bodily systemic effects and liver injury. Our study aimed to investigate the protective effects of diosmin, a phlebotrophic drug with antioxidant and anti-inflammatory effects, in a liver IRI model. Forty rats were divided into 4 groups. Sham group, control group (ischemia-reperfusion), intraoperative treatment group, and preoperative treatment group. Ischemia reperfusion model was formed by clamping hepatic pedicle for a 60 minute of ischemia followed by liver reperfusion for another 90 minutes. Superoxide dismutase (SOD) and catalase (CAT) were measured as antioaxidant enzymes in the liver tissues, and malondialdehyde (MDA) as oxidative stress marker, xanthine oxidase (XO) as an oxidant enzyme and glutathione peroxidase (GSH-Px) as antioaxidant enzyme were measured in the liver tissues and the plasma samples. Hepatic function tests were lower in treatment groups than control group (p<0.001 for ALT and AST). Plasma XO and MDA levels were lower in treatment groups than control group, but plasma GSH-Px levels were higher (p<0.05 for all). Tissue MDA levels were lower in treatment groups than control group, but tissue GSH-Px, SOD, CAT and XO levels were higher (p<0.05 for MDA and p<0.001 for others). Samples in control group histopathologically showed morphologic abnormalities specific to ischemia reperfusion. It has been found that both preoperative and intraoperative diosmin treatment decreases cellular damage and protects cells from toxic effects in liver IRI. As a conclusion, diosmin may be used as a protective agent against IRI in elective and emergent liver surgical operations. PMID:24289756

  6. Evaluation of stem cell administration in a model of kidney ischemia-reperfusion injury.

    Science.gov (United States)

    da Silva, Léa Bueno Lucas; Palma, Patrícia Viana Bonini; Cury, Patrícia Maluf; Bueno, Valquiria

    2007-12-15

    Ischemia-reperfusion injury is a common early event in kidney transplantation and contributes to a delay in organ function. Acute tubular necrosis, impaired kidney function and organ leukocyte infiltration are the major findings. The therapeutic potential of stem cells has been the focus of recent research as these cells possess capabilities such as self-renewal, multipotent differentiation and aid in regeneration after organ injury. FTY720 is a new synthetic compound that has been associated with preferential migration of blood lymphocytes to peripheral lymph nodes instead of inflammatory sites. Bone marrow stem cells (BMSC) and/or FTY720 were used as therapy to promote recovery of tubule cells and avoid inflammation at the renal site, respectively. Mice were submitted to renal ischemia-reperfusion injury and were either treated with two doses of FTY720, 10x10(6) BMSC, or both in order to compare the therapeutic effect with non-treated and control animals. Renal function and structure were investigated as were cell numbers in peripheral blood and spleen. Activation and apoptosis markers were also evaluated in splenocytes using flow cytometry. We found that the combined therapy (FTY720+BMSC) was associated with more significant changes in renal function and structure after ischemia-reperfusion injury when compared with the other groups. Also a decrease at cell numbers and prevention of spleen cells activation and apoptosis was observed. In conclusion, in our model it was not possible to demonstrate the potential of stem cells alone or in combination with FTY720 to promote early kidney recovery after ischemia-reperfusion injury.

  7. The Impact of Prophylactic Fasciotomy Following Porcine (Sus scrofa) Hind Limb Ischemia/Reperfusion Injury

    Science.gov (United States)

    2012-03-23

    ANSI Std. Z39.18 The Impact of Prophylactic Fasciotomy Following Porcine (Sus scrofa ) Hind Limb Ischemia/reperfusion Injury CAPT Thomas J...porcine model of hind limb ischemia. Method: Swine (Sus Scrofa ; 76 +/-6kg) were randomly assigned to no fasciotomy or prophylactic fasciotomy after...of ischemic intervals on neuromuscular recovery in a porcine (Sus scrofa ) survival model of extremity vascular injury. J Vasc Surg. 2011 Jan;53(1):165

  8. Inhibition of Sevoflurane Postconditioning Against Cerebral Ischemia Reperfusion-Induced Oxidative Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shi-Dong Zhang

    2011-12-01

    Full Text Available The volatile anesthetic sevoflurane is capable of inducing preconditioning and postconditioning effects in the brain. In this study, we investigated the effects of sevoflurane postconditioning on antioxidant and immunity indexes in cerebral ischemia reperfusion (CIR rats. Rats were randomly assigned to five separate experimental groups I–V. In the sham group (I, rats were subjected to the same surgery procedures except for occlusion of the middle cerebral artery and exposed to 1.0 MAC sevoflurane 90 min after surgery for 30 min. IR control rats (group II were subjected to middle cerebral artery occlusion (MCAO for 90 min and exposed to O2 for 30 min at the beginning of reperfusion. Sevoflurane 0.5, 1.0 and 1.5 groups (III, IV, V were all subjected to MCAO for 90 min, but at the beginning of reperfusion exposed to 0.5 MAC, 1.0 MAC or 1.5 MAC sevoflurane for 30 min, respectively. Results showed that sevoflurane postconditioning can decrease serum tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β, nitric oxide (NO, nitric oxide synthase (NOS and increase serum interleukin-10 (IL-10 levels in cerebral ischemia reperfusion rats. In addition, sevoflurane postconditioning can still decrease blood lipid, malondialdehyde (MDA levels, infarct volume and increase antioxidant enzymes activities, normal pyramidal neurons density in cerebral ischemia reperfusion rats. It can be concluded that sevoflurane postconditioning may decrease blood and brain oxidative injury and enhance immunity indexes in cerebral ischemia reperfusion rats.

  9. Research progress of traditional Chinese medicine extract for retinal ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Qian-Yu Jia

    2015-05-01

    Full Text Available Retinal ischemia-reperfusion injury(RIRIis a common clinical disease, and the producing mechanism is still in research. Experimental and clinical research in recent years have showed that the mechanism of RIRI and oxygen free radicals, gene regulation, calcium overload, inflammatory cytokines and other factors are closely related. In this article, we summarized the current situation that the scholars at home and abroad study traditional Chinese medicine extract of prevention and treatment of RIRI.

  10. Apoptosis of motor neurons in the spinal cord after ischemia reperfusion injury delayed paraplegia in rabbits

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Apoptosis is known to occur in the centralnervous system during development and in patho-logical settings such ischemia reperfusion(IR)inju-ry[1].Apoptosis requires an active commit ment ofthe cell to degrade its own DNA,according to aninternal programof self-destruction[2].Newproteinsynthesis is required for apoptosis,and protein syn-thesis inhibitors have been shown to reduce celldeath postischemically[3].Incontrast,necrosis is nota gene-facilitated process but results frominjuriouschanges in the environm...

  11. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats.

    Science.gov (United States)

    Mard, Seyyed Ali; Mojadami, Shahnaz; Farbood, Yaghoob; Gharib Naseri, Mohammad Kazem

    2015-01-01

    The present study aimed to evaluate the protective effect of gallic acid on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rat. Forty male rats were randomly divided into sham, control (I/R injury) and three gallic acid-pretreated groups. To induce I/R lesions, the celiac artery was clamped for 30 min and then the clamp was removed to allow reperfusion for 6 hr. Pretreated rats received gallic acid (15, 30 or 60 mg kg(-1), intraperitoneally) 30 min prior to the induction of I/R injury. Macroscopic and microscopic evaluations of the areas of ulceration were compared. Samples of gastric mucosa were collected to evaluate the protein expression of pro-apoptotic factor, caspase-3, and pro-inflammatory enzyme, inducible nitric oxide synthase (iNOS) using western blot. Pretreatment with gallic acid decreased the total area of gastric lesions. Gallic acid at 30 mg kg(-1) decreased the levels of protein expression of caspase-3 and iNOS induced by I/R injury. Our findings showed the protective effect of gallic acid on gastric mucosa against ischemia-reperfusion injury. This effect of gallic acid was mainly mediated by reducing protein expression of iNOS and caspase-3.

  12. Diffusion-weighted magnetic resonance imaging reflects activation of signal transducer and activator of transcription 3 during focal cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Wen-juan Wu

    2017-01-01

    Full Text Available Signal transducer and activator of transcription (STAT is a unique protein family that binds to DNA, coupled with tyrosine phosphorylation signaling pathways, acting as a transcriptional regulator to mediate a variety of biological effects. Cerebral ischemia and reperfusion can activate STATs signaling pathway, but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging (DWI in rats after cerebral ischemia/reperfusion. Here, we established a rat model of focal cerebral ischemia injury using the modified Longa method. DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient. STAT3 protein expression showed no significant change after reperfusion, but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours. Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area. These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.

  13. Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury.

    Science.gov (United States)

    Damman, Jeffrey; Daha, Mohamed R; van Son, Willem J; Leuvenink, Henri G; Ploeg, Rutger J; Seelen, Marc A

    2011-04-01

    Two central pathways of innate immunity, complement and Toll-like receptors (TLRs), play an important role in the pathogenesis of renal injury inherent to kidney transplantation. Recent findings indicate close crosstalk between complement and TLR signaling pathways. It is suggested that mitogen activated protein kinases (MAPKs) might be the key molecules linking both the complement and TLR pathways together. Complement and TLRs are important mediators of renal ischemia-reperfusion injury (IRI). Besides IRI, complement C3 can also be upregulated and activated in the kidney before transplantation as a direct result of brain death (BD) in the donor. This local upregulation and activation of complement in the donor kidney has been proven to be detrimental for renal allograft outcome. Also TLR4 and several of its major ligands are upregulated by donor BD compared to living donors. Important and in line with the observations above, kidney transplant recipients have a benefit when receiving a kidney from a TLR4 Asp299Gly/Thr399Ile genotypic donor. The role of complement and TLRs and crosstalk between these two innate immune systems in relation to renal injury during donor BD and ischemia-reperfusion are focus of this review. Future strategies to target complement and TLR activation in kidney transplantation are considered.

  14. The role of the mitochondrial calcium uniporter in cerebral ischemia/reperfusion injury in rats involves regulation of mitochondrial energy metabolism.

    Science.gov (United States)

    Zhao, Qin; Wang, Shilei; Li, Yu; Wang, Peng; Li, Shuhong; Guo, Yunliang; Yao, Ruyong

    2013-04-01

    The mitochondrial calcium uniporter (MCU) maintains intracellular Ca2+ homeostasis by transporting Ca2+ from the cell cytosol into the mitochondrial matrix and is important for shaping Ca2+ signals and the activation of programmed cell death. Inhibition of MCU by ruthenium red (RR) or Ru360 has previously been reported to protect against neuronal death. The aim of the present study was to analyze the mechanisms underlying the effects of MCU activity in a rat model of cerebral ischemia/reperfusion (I/R) injury. Adult male Wistar rats were divided into 4 groups; sham, I/R, I/R + RR and I/R + spermine (Sper) and were subjected to reversible middle cerebral artery occlusion for 2 h followed by 24 h of reperfusion. A bolus injection of RR administered 30 min prior to ischemia was found to significantly decrease the total infarct volume and reduce neuronal damage and cell apoptosis compared with ischemia/reperfusion values. However, treatment with Sper, an activator of the MCU, increased the injury induced by I/R. Analysis of energy metabolism revealed that I/R induced progressive inhibition of complexes I‑IV of the electron transport chain, decreased ATP production, dissipated the mitochondrial membrane potential and increased the generation of reactive oxygen species. Treatment with RR ameliorated the condition, while spermine had the opposite effect. In conclusion, blocking MCU was demonstrated to exert protective effects against I/R injury and this process may be mediated by the prevention of energy failure.

  15. Hydrogen-rich saline reduces cell death through inhibition of DNA oxidative stress and overactivation of poly (ADP-ribose) polymerase-1 in retinal ischemia-reperfusion injury.

    Science.gov (United States)

    Liu, Hongwei; Hua, Ning; Xie, Keliang; Zhao, Tingting; Yu, Yonghao

    2015-08-01

    Overactivation of poly (ADP-ribose) polymerase 1 (PARP-1), as a result of sustained DNA oxidation in ischemia-reperfusion injury, triggers programmed cell necrosis and apoptosis. The present study was conducted to demonstrate whether hydrogen-rich saline (HRS) has a neuroprotective effect on retinal ischemia reperfusion (RIR) injury through inhibition of PARP-1 activation. RIR was induced by transient elevation of intraocular pressure in rats. HRS (5 ml/kg) was administered peritoneally every day from the beginning of reperfusion in RIR rats until the rats were sacrificed. Retinal damage and cell death was determined using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. DNA oxidative stress was evaluated by immunofluorescence staining of 8-hydroxy-2-deoxyguanosine. In addition, the expression of PARP-1 and caspase-3 was investigated by western blot analysis and/or immunohistochemical staining. The results demonstrated that HRS administration improved morphological alterations and reduced apoptosis following RIR injury. Furthermore, the present study found that HRS alleviated DNA oxidation and PARP-1 overactivation in RIR rats. HRS can protect RIR injury by inhibition of PARP-1, which may be involved in DNA oxidative stress and caspase-3-mediated apoptosis.

  16. Matrix metalloproteinase-9 expression and blood brain barrier permeability in the rat brain after cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Lifang Lei; Xiaohong Zi; Qiuyun Tu

    2008-01-01

    BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injuryOBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability.DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006.MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used.METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3,6,12 hours, 1,2,4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled.MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method.RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter

  17. Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model

    Institute of Scientific and Technical Information of China (English)

    Jinnan Zhang; Wei Lu; Qiang Lei; Xi Tao; Hong You; Pinghui Xie

    2013-01-01

    Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi-crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue fol owing ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneal y injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smal er infarct area and a significantly lower number of apoptotic cel s were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression.

  18. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    Science.gov (United States)

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  19. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model

    Directory of Open Access Journals (Sweden)

    Mehmet Salih Aydin

    2015-02-01

    Full Text Available Introduction: Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. Objective: We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Methods: Thirty rats were divided into three groups as sham (n=10, control (n=10 and thymoquinone (TQ treatment group (n=10. Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS, and oxidative stress index (OSI in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Results: Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI. Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons. Conclusion: Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.

  20. Effect and mechanism of salvianolic acid B on the myocardial ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Ling Xue; Zhen Wu; Xiao-Ping Ji; Xia-Qing Gao; Yan-Hua Guo

    2014-01-01

    Objective: To investigate the effect of salvianolic acid B on rats with myocardial ischemia-reperfusion injury. Methods: SD rats were randomly divided into five groups (n=10 in each group): A sham operation group, B ischemic reperfusion group model group, C low dose salvianolic acid B group, D median dose salvianolic acid B group, E high dose salvianolic acid B group. One hour after establishment of the myocardial ischemia-reperfusion model, the concentration and the apoptotic index of the plasma level of myocardial enzymes (CTnⅠ, CK-MB), SOD, MDA, NO, ET were measured. Heart tissues were obtained and micro-structural changes were observed. Results: Compared the model group, the plasma CTnⅠ, CK-MB, MDA and ET contents were significantly increased, NO, T-SOD contents were decreased in the treatment group (group C, D, and E) (P<0.05); compared with group E, the plasma CTnⅠ, CK-MB, MDA and ET levels were increased, the NO, T-SOD levels were decreased in groups C and D (P<0.05). Infarct size was significantly reduced, and the myocardial ultrastructural changes were improved significantly in treatment group. Conclusions: Salvianolic acid B has a significant protective effect on myocardial ischemia-reperfusion injury. It can alleviate oxidative stress, reduce calcium overload, improve endothelial function and so on.

  1. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    Science.gov (United States)

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.

  2. Neuroprotective Effect of Ulinastatin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits

    Directory of Open Access Journals (Sweden)

    Bingbing Liu

    2015-01-01

    Full Text Available Ulinastatin (UTI, a trypsin inhibitor, is isolated and purified from human urine and has been shown to exert protective effect on myocardial ischemia reperfusion injury in patients. The present study was aimed at investigating the effect of ulinastatin on neurologic functions after spinal cord ischemia reperfusion injury and the underlying mechanism. The spinal cord IR model was achieved by occluding the aorta just caudal to the left renal artery with a bulldog clamp. The drugs were administered immediately after the clamp was removed. The animals were terminated 48 hours after reperfusion. Neuronal function was evaluated with the Tarlov Scoring System. Spinal cord segments between L2 and L5 were harvested for pathological and biochemical analysis. Ulinastatin administration significantly improved postischemic neurologic function with concomitant reduction of apoptotic cell death. In addition, ulinastatin treatment increased SOD activity and decreased MDA content in the spinal cord tissue. Also, ulinastatin treatment suppressed the protein expressions of Bax and caspase-3 but enhanced Bcl-2 protein expression. These results suggest that ulinastatin significantly attenuates spinal cord ischemia-reperfusion injury and improves postischemic neuronal function and that this protection might be attributable to its antioxidant and antiapoptotic properties.

  3. Brief exposure to carbon monoxide preconditions cardiomyogenic cells against apoptosis in ischemia-reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Kondo-Nakamura, Mihoko [Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shintani-Ishida, Kaori, E-mail: kaori@m.u-tokyo.ac.jp [Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Uemura, Koichi; Yoshida, Ken-ichi [Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2010-03-12

    We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced O{sub 2}{sup -} generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A) but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an O{sub 2}{sup -} scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of O{sub 2}{sup -}, which is then converted by SOD to H{sub 2}O{sub 2}, and subsequent Akt activation by H{sub 2}O{sub 2} attenuates apoptosis in ischemia-reperfusion.

  4. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation.

    Science.gov (United States)

    Yue, Shi; Rao, Jianhua; Zhu, Jianjun; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2014-06-01

    Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in regulating cell proliferation is well established, its function in immune responses remains to be fully appreciated. In the current study, we analyzed myeloid-specific PTEN function in regulating tissue inflammatory immune response in a murine liver partial warm ischemia model. Myeloid-specific PTEN knockout (KO) resulted in liver protection from ischemia reperfusion injury (IRI) by deviating the local innate immune response against ischemia reperfusion toward the regulatory type: expression of proinflammatory genes was selectively decreased and anti-inflammatory IL-10 was simultaneously increased in ischemia reperfusion livers of PTEN KO mice compared with those of wild-type (WT) mice. PI3K inhibitor and IL-10-neutralizing Abs, but not exogenous LPS, recreated liver IRI in these KO mice. At the cellular level, Kupffer cells and peritoneal macrophages isolated from KO mice expressed higher levels of M2 markers and produced lower TNF-α and higher IL-10 in response to TLR ligands than did their WT counterparts. They had enhanced Stat3- and Stat6-signaling pathway activation, but diminished Stat1-signaling pathway activation, in response to TLR4 stimulation. Inactivation of Kupffer cells by gadolinium chloride enhanced proinflammatory immune activation and increased IRI in livers of myeloid PTEN KO mice. Thus, myeloid PTEN deficiency protects livers from IRI by facilitating M2 macrophage differentiation.

  5. Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hai-lei DING; Hai-feng ZHU; Jian-wen DONG; Wei-zhong ZHU; Wei-wei YANG; Huang-tian YANG; Zhao-nian ZHOU

    2005-01-01

    Aim: To investigate the role of inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) in the cardioprotection of intermittent hypoxia (IH) against ischemia/reperfusion (I/R) injury. Methods: Langendorff-perfused isolated rat hearts were used to measure variables of left ventricular function during baseline perfusion, ischemia, and reperfusion period. Nitrate plus nitrite (NOx) content in myocardium was measured using a biochemical method, iNOS mRNA and protein expression in rat left ventricles were detected using reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Results: Myocardial function recovered better in IH rat hearts than in normoxic control hearts.The iNOS-selective inhibitor aminoguanidine (AG) (100 μmol/L) significantly inhibited the protective effects of IH, but had no influence on normoxic rat hearts.The baseline content of NOx in IH hearts was higher than that in normoxic hearts.After 30 min ischemia, the NOx level in normoxic hearts increased compared to the corresponding baseline level, whereas there was no significant change in IH hearts. However, the NOx level in IH hearts was still higher than that of normoxic hearts during ischemia and reperfusion period. AG 100 μmol/L significantly diminished the NOx content in IH and normoxic hearts during ischemia and reperfusion period. The baseline levels of iNOS mRNA and protein in IH hearts were higher than those of normoxic hearts. Compared to the corresponding baseline level,iNOS mRNA and protein levels in normoxic rat hearts increased and those in IH rat hearts decreased after reperfusion. The addition of AG 100 μmol/L significantly decreased iNOS mRNA and protein expression in IH rat hearts after I/R.Conclusion: IH upregulated the baseline level of iNOS mRNA and protein expression leading to an increase in NO production, which may play an important role in the cardiac protection of IH against I/R injury.

  6. Cardioprotective Effect of Licochalcone D against Myocardial Ischemia/Reperfusion Injury in Langendorff-Perfused Rat Hearts.

    Directory of Open Access Journals (Sweden)

    Xuan Yuan

    Full Text Available Flavonoids are important components of 'functional foods', with beneficial effects on cardiovascular function. The present study was designed to investigate whether licochalcone D (LD could be a cardioprotective agent in ischemia/reperfusion (I/R injury and to shed light on its possible mechanism. Compared with the I/R group, LD treatment enhanced myocardial function (increased LVDP, dp/dtmax, dp/dtmin, HR and CR and suppressed cardiac injury (decreased LDH, CK and myocardial infarct size. Moreover, LD treatment reversed the I/R-induced cleavage of caspase-3 and PARP, resulting in a significant decrease in proinflammatory factors and an increase in antioxidant capacity in I/R myocardial tissue. The mechanisms underlying the antiapoptosis, antiinflammation and antioxidant effects were related to the activation of the AKT pathway and to the blockage of the NF-κB/p65 and p38 MAPK pathways in the I/R-injured heart. Additionally, LD treatment markedly activated endothelial nitric oxide synthase (eNOS and reduced nitric oxide (NO production. The findings indicated that LD had real cardioprotective potential and provided support for the use of LD in myocardial I/R injury.

  7. [Cardioprotective effect of heme oxygenase-1 induction by hemin on the isolated rat heart during ischemia--reperfusion].

    Science.gov (United States)

    Kukoba, T V; Moĭbenko, O O; Kotsioruba, A V

    2003-01-01

    The aim of the study was to determine the role of both an inducible isoform of heme oxygenase (HO-1) and products of heme catabolism (carbon monoxide (CO), cardiac bilirubin and Fe2+) in protecting myocardium against post-ischemic myocardial dysfunction. Rat hearts were isolated and perfused according to the Langendorff technique to evaluate the recovery of myocardial function after total ischemia (20 min) and reperfusion (40 min) and production of reactive oxygen forms at a reperfusion phase. Ischemia/reperfusion caused impairment in myocardial function: left ventricular developing pressure (LVDP) was shown to be decreased, while end-diastolic pressure (EDP) and both coronary perfusion pressure and coronary resistance increased. Free oxygen radicals were generated at the reperfusion phase which led to injuries to cardiomyocytes and creatine kinase efflux into perfusate. We have found that upregulation of HO-1 by preliminary (24 h before ischemia) injections of 25 mg/kg hemin (i.p.) resulted in improving the myocardial function due to increasing the enzyme activity and forming the cardial bilirubine, while generation of reactive oxygen forms was inhibited, as well as the contents of creatine kinase reduced. As a result, impairment in cardiomyocytes diminished, and coronary vessels dilated to improve the functional parametres of the heart work.

  8. Cardioprotective effect of aqueous extract of Chichorium intybus L. on ischemia-reperfusion injury in isolated rat heart

    Directory of Open Access Journals (Sweden)

    Najmeh Sadeghi

    2015-10-01

    Full Text Available Objective: Several studies have shown that Chichorium intybus L. (C. intybus which possesses flavonoid compounds has an effective role in treatment of cardiovascular diseases. Contractile dysfunction mostly occurs after acute myocardial infarction, cardiac bypass surgery, heart transplantation and coronary angioplasty. The aim of the present study was to investigate the effect of aqueous extract of C. intybus on ischemia- reperfusion injury in isolated rat heart. Materials and Methods: The animals were divided into four groups (Sham, Control, 1 mg/ml and 3 mg/ml of extract of 8 rats. The aorta was cannulated, and then the heart was mounted on a Langendorff apparatus. Next, a balloon was inserted into the left ventricle (LV and peak positive value of time derivate of LV pressure (+dp/dt, coronary flow (CF, and left ventricular systolic pressure (LVSP in pre-ischemia and reperfusion period were calculated by a Power Lab system. All groups underwent a 30-minute global ischemia followed by a 60-minute reperfusion. Results: The results showed that heart rate (HR, coronary flow, and left ventricular developed pressure (LVDP and rate of pressure product (RPP significantly decreased in the control group during reperfusion, while these values in the groups receiving the extract (3mg/ml improved significantly during reperfusion (p

  9. Electro-acupuncture at Neiguan pretreatment alters genome-wide gene expressions and protects rat myocardium against ischemia-reperfusion.

    Science.gov (United States)

    Huang, Yan; Lu, Sheng-Feng; Hu, Chen-Jun; Fu, Shu-Ping; Shen, Wei-Xing; Liu, Wan-Xin; Li, Qian; Wang, Ning; He, Su-Yun; Liang, Fan-Rong; Zhu, Bing-Mei

    2014-10-09

    This study investigated genome-wide gene expressions and the cardioprotective effects of electro-acupuncture pretreatment at the PC6 Neiguan acupoint on myocardial ischemia reperfusion (I/R) injury. Male SD rats were randomly divided into four groups: sham operation (SO), I/R, electro-acupuncture at the PC6 Neiguan acupoint pretreatment (EA) and electro-acupuncture at non-acupoint pretreatment (NA). Compared with the I/R group, the survival rate of the EA group was significantly increased, the arrhythmia score, infarction area, serum concentrations of CK, LDH and CK-Mb and plasma level of cTnT were significantly decreased. RNA-seq results showed that 725 genes were up-regulated and 861 genes were down-regulated under I/R conditions compared to the SO group; both EA and NA reversed some of these gene expression levels (592 in EA and 238 in NA group). KEGG pathway analysis indicated that these genes were involved in multiple pathways, including ECM, MAPK signaling, apoptosis, cytokine and leukocyte pathways. In addition, some pathways were uniquely regulated by EA, but not NA pretreatment, such as oxidative stress, cardiac muscle contraction, gap junction, vascular smooth muscle contraction, hypertrophic, NOD-like receptor, and P53 and B-cell receptor pathways. This study was first to reveal the gene expression signatures of acute myocardial I/R injury and electro-acupuncture pretreatment in rats.

  10. Electro-Acupuncture at Neiguan Pretreatment Alters Genome-Wide Gene Expressions and Protects Rat Myocardium against Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2014-10-01

    Full Text Available This study investigated genome-wide gene expressions and the cardioprotective effects of electro-acupuncture pretreatment at the PC6 Neiguan acupoint on myocardial ischemia reperfusion (I/R injury. Male SD rats were randomly divided into four groups: sham operation (SO, I/R, electro-acupuncture at the PC6 Neiguan acupoint pretreatment (EA and electro-acupuncture at non-acupoint pretreatment (NA. Compared with the I/R group, the survival rate of the EA group was significantly increased, the arrhythmia score, infarction area, serum concentrations of CK, LDH and CK-Mb and plasma level of cTnT were significantly decreased. RNA-seq results showed that 725 genes were up-regulated and 861 genes were down-regulated under I/R conditions compared to the SO group; both EA and NA reversed some of these gene expression levels (592 in EA and 238 in NA group. KEGG pathway analysis indicated that these genes were involved in multiple pathways, including ECM, MAPK signaling, apoptosis, cytokine and leukocyte pathways. In addition, some pathways were uniquely regulated by EA, but not NA pretreatment, such as oxidative stress, cardiac muscle contraction, gap junction, vascular smooth muscle contraction, hypertrophic, NOD-like receptor, and P53 and B-cell receptor pathways. This study was first to reveal the gene expression signatures of acute myocardial I/R injury and electro-acupuncture pretreatment in rats.

  11. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  12. Synergic effects of NO and oxygen free radicals in the injury of ischemia-reperfused myocardium——ESR studies on NO free radicals generated from ischemia-reperfused myocardium

    Institute of Scientific and Technical Information of China (English)

    赵保路; 沈剑刚; 呼俊改; 万谦; 忻文娟

    1996-01-01

    The ESR signal of NO bound to hemoglobin was detected during the ischemia-reperfusion of myocardium with low temperature ESR technique, and the synergic effects of NO and oxygen free radicals in the injury of the process were studied with this technique. Oxygen free radicals and NO bound to β-subunit of hemoglobin (β-NO complex) could be detected simultaneously in the ischemia-reperfused myocardium. Those signals could not be detected from the normal myocardium even in the presence of L-arginme. However, those signals could be detected and were dose-dependent with L-arginine in the ischemia-reperfused myocardiums and the signal could be suppressed with the inhibitor of NO synthetase, NG-nitro-L-arginine methylester (NAME). Measurement of the activities of lactate dehydrogenase (LDH) and creatine kinase (CK) in the coronary artery effluent of ischemia-reperfused heart showed that L-arginine at lower concentration (<1 mmol/L) could protect the heart from the ischemia-reperfusion injury but at higher con

  13. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation

    Directory of Open Access Journals (Sweden)

    Heemann Uwe

    2010-05-01

    Full Text Available Abstract Inflammatory reactions in the graft have a pivotal influence on acute as well as long-term graft function. The main reasons for an inflammatory reaction of the graft tissue are rejection episodes, infections as well as ischemia/reperfusion (I/R injury. The latter is of particular interest as it affects every solid organ during the process of transplantation. I/R injury impairs acute as well as long-term graft function and is associated with an increased number of acute rejection episodes that again affect long-term graft outcome. I/R injury is the result of ATP depletion during prolonged hypoxia. Further tissue damage results from the reperfusion of the tissue after the ischemic insult. Adaptive cellular responses activate the innate immune system with its Toll-like receptors and the complement system as well as the adaptive immune system. This results in a profound inflammatory tissue reaction with immune cells infiltrating the tissue. The damage is mediated by various cytokines, chemokines, adhesion molecules, and compounds of the extracellular matrix. The expression of these factors is regulated by specific transcription factors with NF-κB being one of the key modulators of inflammation. Strategies to prevent or treat I/R injury include blockade of cytokines/chemokines, adhesion molecules, NF-κB, specific MAP kinases, metalloproteinases, induction of protective genes, and modulation of the innate immune system. Furthermore, preconditioning of the donor is an area of intense research. Here pharmacological treatment as well as new additives to conventional cold storage solutions have been analyzed together with new techniques for the perfusion of grafts, or methods of normothermic storage that would avoid the problem of cold damage and graft ischemia. However, the number of clinical trials in the field of I/R injury is limited as compared to the large body of experimental knowledge that accumulated during recent years in the field of

  14. Protective effect of salvianolate on lung injury induced by ischemia reperfusion injury of liver in mice

    Directory of Open Access Journals (Sweden)

    Zheng-xin WANG

    2011-11-01

    Full Text Available Objective To evaluate the protective effect of salvianolate on lung injury induced by hepatic ischemia reperfusion(IR injury in mice and its underlying mechanisms.Methods A hepatic IR model of mice was reproduced,and 24 animals were assigned into 3 groups(8 each: sham operation(SO group,control group and salvianolate(SV group.Just before ischemia induction,animals in SV group received salvianolate injection at a dose of 60 mg/kg via tail vein,while in control group the mice received normal saline with an equal volume,and in SO group the mice received the same operation as in SV group but without producing liver ischemia.Four hours after reperfusion,the serum,liver and lung tissue were collected.The alanine aminotransferase(ALT and aspartate aminotransferase(AST levels in serum were detected and the histological changes in liver and lung were examined.The wet-to-dry weight ratio of pulmonary tissue was measured.The contents of tumor necrosis factor α(TNF-α,interleukin(IL-6,IL-1β and IL-10 in bronchoalveolar lavage fluid(BALF were detected by enzyme linked immunosorbent assay(ELISA,and the relative mRNA levels of TNF-α,IL-6,IL-1β and IL-10 in pulmonary tissue were analyzed by real-time reverse transcription PCR(RT-PCR.The activaty of transcription factor NF-κB was measured with Western blotting analysis.Results No significant pathologic change was found in mice of SO group.Compared with the mice in control group,those in SV group exhibited lower levels of ALT and AST(P < 0.01,lighter histological changes in liver and lung(P < 0.05,lower levels of wet-to-dry weight ratio of lung tissue(P < 0.05,lower expression levels of TNF-α,IL-6,IL-1β and IL-10 in BALF and lung tissue(P < 0.05 or P < 0.01.Further examination demonstrated that the activity of NF-κB in SV group was significantly down-regulated as compared with that in control group.Conclusion Salvianolate can attenuate lung injury induced by hepatic IR in mice,the mechanism may inclade

  15. Inhibition of ERK1/2 worsens intestinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Kechen Ban

    Full Text Available BACKGROUND: The role of extracellular signal-regulated protein kinase (ERK in intestinal ischemia/reperfusion (I/R injury has not been well investigated. The aim of the current study was to examine the effect of inhibition of the ERK pathway in an in vitro and in vivo model of intestinal I/R injury. METHODS: ERK1/2 activity was inhibited using the specific inhibitor, U0126, in intestinal epithelial cells under hypoxia/reoxygenation conditions and in mice subjected to 1 hour of intestinal ischemia followed by 6 hours reperfusion. In vitro, cell proliferation was assessed by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay, apoptosis by DNA fragmentation, and migration using an in vitro model of intestinal wound healing. Cells were also transfected with a p70S6K plasmid and the effects of overexpression similarly analyzed. In vivo, the effects of U0126 on intestinal cell proliferation and apoptosis, intestinal permeability, lung and intestinal neutrophil infiltration and injury, and plasma cytokine levels were measured. Survival was also assessed after U0126. Activity of p70S6 kinase (p70S6K was measured by Western blot. RESULTS: In vitro, inhibition of ERK1/2 by U0126 significantly decreased cell proliferation and migration but enhanced cell apoptosis. Overexpression of p70S6K promoted cell proliferation and decreased cell apoptosis. In vivo, U0126 significantly increased cell apoptosis and decreased cell proliferation in the intestine, increased intestinal permeability, intestinal and lung neutrophil infiltration, and injury, as well as systemic pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β. Mortality was also significantly increased by U0126. Inhibition of ERK1/2 by U0126 also abolished activity of p70S6K both in vitro and in vivo models. CONCLUSION: Pharmacologic inhibition of ERK1/2 by U0126 worsens intestinal IR injury. The detrimental effects are mediated, at least in part, by inhibition of p70S6K, the major

  16. [Calpains and cardiac diseases].

    Science.gov (United States)

    Perrin, C; Vergely, C; Rochette, L

    2004-09-01

    Calpains are a large family of cytosolic cysteine proteases composed of at least fourteen distinct isoforms. The family can be divided into two groups on the basis of distribution: ubiquitous and tissue-specific. Our current knowledge about calpains properties apply mainly to the ubiquitous isozymes, micro- and milli-calpain (classic calpains). These forms are activated after autolysis. Translocation and subsequent interactions with phospholipids of these enzymes increase their activity. Calpains are able to cleave a subset of substrates, as enzymes, structural and signalling proteins. Cardiac pathologies, such as heart failure, atrial fibrillation or clinical states particularly ischemia reperfusion, are associated with an increase of cytosolic calcium and in this regards, calpain activation has been evoked as one of the mediators leading to myocardial damage. Calpain activities have been shown to be increased in hearts experimentally subjected to ischemia reperfusion or during hypertrophy, but also in atrial tissue harvested from patients suffering from atrial fibrillations. These activities have been related to an increase of the proteolysis of different myocardial components, particularly, troponins, which are major regulators of the contraction of cardiomyocytes. Moreover, recent works have demonstrated that calpains are involved in the development of myocardial cell death by necrosis or apoptosis.

  17. Functional protection of pentoxifylline against spinal cord ischemia/reperfusion injury in rabbits: necrosis and apoptosis effects

    Institute of Scientific and Technical Information of China (English)

    ZHU Dan-jie; XIA Bing; BI Qing; ZHANG Shui-jun; QIU Bin-song; ZHAO Chen

    2008-01-01

    Background Little is known about neuronal death mechanisms following spinal cord ischemia.The present study aimed to investigate the protective effect of pentoxifylline (PIX) against spinal cord ischemia/reperfusion (I/R) injury.Methods Rabbits sustained spinal cord ischemia following 45 minutes cress-clamping of the infrarenal aorta.Experimental groups were as follows: the first group of animals (sham,n=8) underwent laparotomy alone and served as the sham group; the second group (I/R,n=20) received carrier (3 ml saline solution) and served as the control group; the third group (PTX-A,n=20) received PTX intravenously 10 minutes prior to ischemia; and the fourth group (PTX-B,n=20)received PTX intravenously at the onset of reperfusion.Rabbits were evaluated for hind-limb motor function with the Tarlov scoring system at 48 hours.Serum was assayed with enzyme-linked immunosorbent assay for tumor necrosis factor α (TNF-α) and spinal cords were harvested for myeloperoxidase (MPO) activity,histopathological analysis,terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining,platelet/endothelial cell adhesion molecule-1 (PECAM-1) and caspase-3 immunohistochemistry,and the number of necrotic and apoptotic neuron were counted and data analyzed at 12,24,48 and 72 hours of reperfusion.Spinal cords were studied by electron microscopy.Results Improved Tarlov scores were seen in PTX-treated rabbits as compared with ischemic control rabbits at 48 hours.A significant reduction was found in TNF-α in serum,activity of MPO and immunoreactivity of the PECAM-1 and caspase-3 in PTX-treated rabbits.There were fewer apoptotic neurons than necrotic neurons (P<0.05).A significant decrease in both necrotic and apoptotic neurons was observed in the PTX-treated groups (PTX-A and PTX-B) compared with the I/R group (P<0.05).Both necrotic and apoptotic neurons were found with the electron microscope.Conclusions PTX may induce protection against ischemia injury in the

  18. Total flavonoid of Litsea coreana leve exerts anti-oxidative effects and alleviates focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shuying Dong; Xuhui Tong; Jun Li; Cheng Huang; Chengmu Hu; Hao Jiao; Yuchen Gu

    2013-01-01

    In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered oral y to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly al eviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in gluta-thione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion in-jury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso-ciated with its antioxidant activities.

  19. Memory deficits and oxidative stress in cerebral ischemia-reperfusion: neuroprotective role of physical exercise and green tea supplementation.

    Science.gov (United States)

    Schimidt, Helen L; Vieira, Aline; Altermann, Caroline; Martins, Alexandre; Sosa, Priscila; Santos, Francielli W; Mello-Carpes, Pâmela B; Izquierdo, Ivan; Carpes, Felipe P

    2014-10-01

    Ischemic stroke is a major cause of morbidity and mortality all over the world. Among impairments observed in survivors there is a significant cognitive learning and memory deficit. Neuroprotective strategies are being investigated to minimize such deficits after an ischemia event. Here we investigated the neuroprotective potential of physical exercise and green tea in an animal model of ischemia-reperfusion. Eighty male rats were divided in 8 groups and submitted to either transient brain ischemia-reperfusion or a sham surgery after 8 weeks of physical exercise and/or green tea supplementation. Ischemia-reperfusion was performed by bilateral occlusion of the common carotid arteries during 30 min. Later, their memory was evaluated in an aversive and in a non-aversive task, and hippocampus and prefrontal cortex were removed for biochemical analyses of possible oxidative stress effects. Ischemia-reperfusion impaired learning and memory. Reactive oxygen species were increased in the hippocampus and prefrontal cortex. Eight weeks of physical exercise and/or green tea supplementation before the ischemia-reperfusion event showed a neuroprotective effect; both treatments in separate or together reduced the cognitive deficits and were able to maintain the functional levels of antioxidant enzymes and glutathione.

  20. Insulin alone or with captopril: effects on signaling pathways (AKT and AMPK) and oxidative balance after ischemia-reperfusion in isolated hearts.

    Science.gov (United States)

    de Oliveira, Ubirajara Oliveira; Belló-Kein, Adriane; de Oliveira, Álvaro Reischak; Kuchaski, Luiz Carlos; Machado, Ubiratan Fabres; Irigoyen, Maria Claudia; Schaan, Beatriz D'Agord

    2012-12-01

    Insulin and the inhibition of the renin-angiotensin system have independent benefits for ischemia-reperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemia-reperfusion. Isolated hearts were perfused (Langendorff technique) with Krebs-Henseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was ∼31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (∼2.2 times) in all groups vs. group KH and was ∼35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was ∼28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.

  1. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression.

    Science.gov (United States)

    Vesentini, Nicoletta; Barsanti, Cristina; Martino, Alessandro; Kusmic, Claudia; Ripoli, Andrea; Rossi, AnnaMaria; L'Abbate, Antonio

    2012-02-29

    Changes in cardiac gene expression due to myocardial injury are usually assessed in whole heart tissue. However, as the heart is a heterogeneous system, spatial and temporal heterogeneity is expected in gene expression. In an ischemia/reperfusion (I/R) rat model we evaluated gene expression of mitochondrial and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod) and thioredoxin reductase (trxr1) upon short (4 h) and long (72 h) reperfusion times in the right ventricle (RV), and in the ischemic/reperfused (IRR) and the remote region (RR) of the left ventricle. Gene expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR). In order to select most stable reference genes suitable for normalization purposes, in each myocardial region we tested nine putative reference genes by geNorm analysis. The genes investigated were: Actin beta (actb), Glyceraldehyde-3-P-dehydrogenase (gapdh), Ribosomal protein L13A (rpl13a), Tyrosine 3-monooxygenase (ywhaz), Beta-glucuronidase (gusb), Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt), TATA binding box protein (tbp), Hydroxymethylbilane synthase (hmbs), Polyadenylate-binding protein 1 (papbn1). According to our findings, most stable reference genes in the RV and RR were hmbs/hprt and hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for normalization purposes; however, in view of experimental feasibility limitations, target gene expression could be normalized against the three most stable reference genes (ywhaz/pabp/hmbs) without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR alone. trxr1 expression did not vary. This study provides a validation of reference genes in the RV and in the anterior and posterior wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should be assessed separately in each region.

  2. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression

    Directory of Open Access Journals (Sweden)

    Vesentini Nicoletta

    2012-02-01

    Full Text Available Abstract Background Changes in cardiac gene expression due to myocardial injury are usually assessed in whole heart tissue. However, as the heart is a heterogeneous system, spatial and temporal heterogeneity is expected in gene expression. Results In an ischemia/reperfusion (I/R rat model we evaluated gene expression of mitochondrial and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod and thioredoxin reductase (trxr1 upon short (4 h and long (72 h reperfusion times in the right ventricle (RV, and in the ischemic/reperfused (IRR and the remote region (RR of the left ventricle. Gene expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR. In order to select most stable reference genes suitable for normalization purposes, in each myocardial region we tested nine putative reference genes by geNorm analysis. The genes investigated were: Actin beta (actb, Glyceraldehyde-3-P-dehydrogenase (gapdh, Ribosomal protein L13A (rpl13a, Tyrosine 3-monooxygenase (ywhaz, Beta-glucuronidase (gusb, Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt, TATA binding box protein (tbp, Hydroxymethylbilane synthase (hmbs, Polyadenylate-binding protein 1 (papbn1. According to our findings, most stable reference genes in the RV and RR were hmbs/hprt and hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for normalization purposes; however, in view of experimental feasibility limitations, target gene expression could be normalized against the three most stable reference genes (ywhaz/pabp/hmbs without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR alone. trxr1 expression did not vary. Conclusions This study provides a validation of reference genes in the RV and in the anterior and posterior wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should be assessed separately in

  3. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Chen JR

    2015-06-01

    Full Text Available Jing Rui Chen,1–3 Jing Wei,1–3 Ling Yan Wang,1–3 Yan Zhu,1–3 Lan Li,1–3 Mary Akinyi Olunga,1–3 Xiu Mei Gao,1–3 Guan Wei Fan1–31Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China; 2Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, 3Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of ChinaAim: To investigate the potential cardioprotective effects of QiShenYiQi Pill® (QSYQ on myocardial ischemia/reperfusion (I/R injury through antioxidative stress and mitochondrial protection.Methods and results: Sprague Dawley rats were pretreated with QSYQ or saline for 7 days and subjected to ischemia (30 minutes occlusion of the left anterior descending coronary artery and reperfusion (120 minutes. Cardiac functions were evaluated by echocardiogram and hemodynamics. Myocardial mitochondria were obtained to evaluate changes in mitochondrial structure and function, immediately after 120 minutes reperfusion. Pretreatment with QSYQ protected against I/R-induced myocardial structural injury and improved cardiac hemodynamics, as demonstrated by normalized serum creatine kinase and suppressed oxidative stress. Moreover, the impaired myocardial mitochondrial structure and function decreased level of ATP (accompanied by reduction of ATP5D and increase in the expression of cytochrome C. Myocardial fiber rupture, interstitial edema, and infiltrated leukocytes were all significantly ameliorated by pretreatment with QSYQ.Conclusion: Pretreatment of QSYQ in Sprague Dawley rats improves ventricular function and energy metabolism and reduces oxidative stress via ameliorating multiple mitochondrial dysfunctions during I/R injury.Keywords: QSYQ, ischemia/reperfusion injury, energy metabolism, mitochondria

  4. MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Li-Feng Liu; Zhuo Liang; Zhen-Rong Lv; Xiu-Hua Liu; Jing Bai; Jie Chen; Chen Chen; Yu Wang

    2012-01-01

    Objective Several studies have indicated that miR-15a,miR-15b and miR-16 may be the important regulators of apoptosis.Since attenuate apoptosis could protect myocardium and reduce infarction size,the present study was aimed to find out whether these miRNAs participate in regulating myocardial ischemia reperfusion (I/R) injury.Methods Apoptosis in mice hearts subjected to I/R was detected by TUNEL assay in vivo,while flow cytometry analysis followed by Annexin V/PI double stain in vitro was used to detect apoptosis in cultured cardiomyocytes which were subjected to hypoxia/reoxygenation (H/R).Taqman real-time quantitative PCR was used to confirm whether miR-15a/15b/16 were involved in the regulation of cardiac I/R and H/R.Results Compared to those of the controls,I/R or H/R induced apoptosis of cardiomyocytes was significantly iucreased both in vivo (24.4% ± 9.4% vs.2.2% ± 1.9%,P < 0.01,n =5) and in vitro (14.12% ±0.92% vs.2.22% ± 0.08%).The expression of miR-15a and miR-15b,but not miR-16,was increased in the mice I/R model,and the results were consistent in the H/R model.Conclusions Our data indicate miR-15 and miR-15b are up-regulated in response to cardiac I/R injury,therefore,down-regulation of miR- 15a/b may be a promising strategy to reduce myocardial apoptosis induced by cardiac I/R injury.

  5. Rat experimental model of myocardial ischemia/reperfusion injury: an ethical approach to set up the analgesic management of acute post-surgical pain.

    Directory of Open Access Journals (Sweden)

    Maria Chiara Ciuffreda

    Full Text Available RATIONALE: During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focused on 3R's ethic principles, in particular the principle of Reduction. METHODS: Rats undergoing surgery were treated with pre-surgical tramadol (45 mg/kg intra-peritoneal, or carprofen (5 mg/kg sub-cutaneous, or with pre-surgical administration of carprofen followed by 2 post-surgery tramadol injections (multi-modal group. We assessed behavioral signs of pain and made a subjective evaluation of stress and suffering one and two hours after surgery. RESULTS: Multi-modal treatment significantly reduced the number of signs of pain compared to carprofen alone at both the first hour (61±42 vs 123±47; p<0.05 and the second hour (43±21 vs 74±24; p<0.05 post-surgery. Tramadol alone appeared as effective as multi-modal treatment during the first hour, but signs of pain significantly increased one hour later (from 66±72 to 151±86, p<0.05. Carprofen alone was more effective at the second hour post-surgery when signs of pain reduced to 74±24 from 113±40 in the first hour (p<0.05. Stress behaviors during the second hour were observed in only 20% of rats in the multimodal group compared to 75% and 86% in the carprofen and tramadol groups, respectively (p<0.05. CONCLUSIONS: Multi-modal treatment with carprofen and tramadol was more effective in preventing pain during the second hour after surgery compared with both tramadol or carprofen. Our results suggest that the combination of carprofen and tramadol represent the best therapy to prevent animal pain after

  6. Rat experimental model of myocardial ischemia/reperfusion injury: an ethical approach to set up the analgesic management of acute post-surgical pain.

    Science.gov (United States)

    Ciuffreda, Maria Chiara; Tolva, Valerio; Casana, Renato; Gnecchi, Massimiliano; Vanoli, Emilio; Spazzolini, Carla; Roughan, John; Calvillo, Laura

    2014-01-01

    During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focused on 3R's ethic principles, in particular the principle of Reduction. Rats undergoing surgery were treated with pre-surgical tramadol (45 mg/kg intra-peritoneal), or carprofen (5 mg/kg sub-cutaneous), or with pre-surgical administration of carprofen followed by 2 post-surgery tramadol injections (multi-modal group). We assessed behavioral signs of pain and made a subjective evaluation of stress and suffering one and two hours after surgery. Multi-modal treatment significantly reduced the number of signs of pain compared to carprofen alone at both the first hour (61±42 vs 123±47; p<0.05) and the second hour (43±21 vs 74±24; p<0.05) post-surgery. Tramadol alone appeared as effective as multi-modal treatment during the first hour, but signs of pain significantly increased one hour later (from 66±72 to 151±86, p<0.05). Carprofen alone was more effective at the second hour post-surgery when signs of pain reduced to 74±24 from 113±40 in the first hour (p<0.05). Stress behaviors during the second hour were observed in only 20% of rats in the multimodal group compared to 75% and 86% in the carprofen and tramadol groups, respectively (p<0.05). Multi-modal treatment with carprofen and tramadol was more effective in preventing pain during the second hour after surgery compared with both tramadol or carprofen. Our results suggest that the combination of carprofen and tramadol represent the best therapy to prevent animal pain after myocardial ischemia/reperfusion. We obtained our results

  7. The stability of the atherosclerotic plaque depends on the extent of injured endothelium: results from a novel model of ischemia /reperfusion induced atherosclerosis in carotid artery of rats

    Institute of Scientific and Technical Information of China (English)

    晋学庆

    2014-01-01

    Objective To observe the atherogenic lesion progress in a novel ischemia/reperfusion induced atherosclerosis model in the carotid artery of rats.Methods Rats were divided into normal control,sham-operated control and ischemia-reperfusion injury(IRI)groups(n=10each).IRI was induced by 30 min carotid artery occlusion with a 2 cm

  8. Intermittent Ischemia but Not Ischemic Preconditioning Is Effective in Restoring Bile Flow After Ischemia Reperfusion Injury in the Livers of Aged Rats

    NARCIS (Netherlands)

    Schiesser, Marc; Wittert, Anna; Nieuwenhuijs, Vincent B.; Morphett, Arthur; Padbury, Robert T. A.; Barritt, Greg J.

    2009-01-01

    BackgroundlAims. Ischemic preconditioning (IPC) and intermittent ischemia (INT) reduce liver injury following ischemia reperfusion in liver resections. Aged livers are at higher risk for ischemia reperfusion injury, but little is known of the effectiveness of IPC and INT in aged livers. The aim of t

  9. Transient ureteral obstruction prevents against kidney ischemia/reperfusion injury via hypoxia-inducible factor (HIF-2α activation.

    Directory of Open Access Journals (Sweden)

    Shun Zhang

    Full Text Available Although the protective effect of transient ureteral obstruction (UO prior to ischemia on subsequent renal ischemia/reperfusion (I/R injury has been documented, the underlying molecular mechanism remains to be understood. We showed in the current study that 24 h of UO led to renal tubular hypoxia in the ipsilateral kidney in mice, with the accumulation of hypoxia-inducible factor (HIF-2α, which lasted for a week after the release of UO. To address the functions of HIF-2α in UO-mediated protection of renal IRI, we utilized the Mx-Cre/loxP recombination system to knock out target genes. Inactivation of HIF-2α, but not HIF-1α blunted the renal protective effects of UO, as demonstrated by much higher serum creatinine level and severer histological damage. UO failed to prevent postischemic neutrophil infiltration and apoptosis induction in HIF-2α knockout mice, which also diminished the postobstructive up-regulation of the protective molecule, heat shock protein (HSP-27. The renal protective effects of UO were associated with the improvement of the postischemic recovery of intra-renal microvascular blood flow, which was also dependent on the activation of HIF-2α. Our results demonstrated that UO protected the kidney via activation of HIF-2α, which reduced tubular damages via preservation of adequate renal microvascular perfusion after ischemia. Thus, preconditional HIF-2α activation might serve as a novel therapeutic strategy for the treatment of ischemic acute renal failure.

  10. Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice

    Science.gov (United States)

    Qin, Jianjie; Zhou, Junjin; Dai, Xinzheng; Zhou, Haoming; Pan, Xiongxiong; Wang, Xuehao; Zhang, Feng; Rao, Jianhua; Lu, Ling

    2016-01-01

    Calorie restriction or starvation (fasting) has some beneficial effects in terms of prolonging life and increasing resistance to stress. It has also been shown that calorie restriction has a protective role during ischemia-reperfusion injury (IRI) in several organs, but the underlying mechanism has not been elucidated. In this study we investigated the effects and molecular mechanisms of short-term starvation (STS) on liver IRI in a mouse liver IRI model. We found that STS significantly attenuated liver IRI in this model, as evidenced by inhibition of serum aminotransferase levels, and decreased pathological damage and hepatocellular apoptosis, especially after 2- or 3-day starvation. Furthermore, we found that 2- or 3-day starvation induced expression of hepatocellular autophagy in vivo and in vitro. Further experiments provided support for the notion that STS-induced autophagy played a key role during starvation-regulated protection against liver IRI via autophagy inhibition with 3-methyladenine. Interestingly, the longevity gene Sirt1 was also significantly up-regulated in liver after STS. Importantly, inhibition of Sirt1 by sirtinol abolished STS-induced autophagy and further abrogated STS-mediated protection against liver IRI. In conclusion, our results indicate that STS attenuates liver IRI via the Sirt1-autophagy pathway. Our findings provide a rationale for a novel therapeutic strategy for managing liver IRI. PMID:27648127

  11. Amelioration of ischemia/reperfusion-induced myocardial infarction by the 2-alkynyladenosine derivative 2-octynyladenosine (YT-146).

    Science.gov (United States)

    Sasamori, Jun; Aihara, Kazuyuki; Yoneyama, Fumiya; Sato, Isamu; Kogi, Kentaro; Takeo, Satoshi

    2006-04-01

    The present study was aimed at determining whether the novel adenosine A2-agonist YT-146 may have cardioprotective effects against ischemia-reperfusion injury. Anesthetized open-chest dogs underwent 90-min occlusion of the left anterior descending artery and subsequent 300-min reperfusion. The animals were randomly assigned to receive vehicle, 3, or 10 microg/kg YT-146 or ischemic preconditioning (4 episodes of 5 min occlusion followed by 5 min of reperfusion). Blood pressure, heart rate, and regional myocardial blood flow throughout the experiment were measured, as was the myocardial infarct size after reperfusion. The infarct size of the vehicle-treated dog was 56.2% +/- 2.7% (n = 5), whereas that of 3 or 10 microg/kg YT-146-treated dog was smaller (ie, 29.5% +/- 8.7% or 20.2% +/- 7.0%, respectively; n = 5). The infarct size of the dog treated with 10 microg/kg YT-146 was reduced to a degree similar to that of the ischemic preconditioning (19.2% +/- 6.3%, n = 5). YT-146 at both doses elicited a dose-dependent increase in acute hyperemic coronary flow immediately after reperfusion. The cardioprotective effect may be attributed to the limitation of the infarct size, probably via A2-receptor-mediated coronary artery dilatation during the early period of reperfusion.

  12. Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons.

    Science.gov (United States)

    Hao, Lingyun; Wei, Xuewen; Guo, Peng; Zhang, Guangyi; Qi, Suhua

    2016-07-12

    Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies.

  13. Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury.

    Science.gov (United States)

    Wise, Andrea F; Williams, Timothy M; Kiewiet, Mensiena B G; Payne, Natalie L; Siatskas, Christopher; Samuel, Chrishan S; Ricardo, Sharon D

    2014-05-15

    Mesenchymal stem cells (MSCs) ameliorate injury and accelerate repair in many organs, including the kidney, although the reparative mechanisms and interaction with macrophages have not been elucidated. This study investigated the reparative potential of human bone marrow-derived MSCs and traced their homing patterns following administration to mice with ischemia-reperfusion (IR) injury using whole body bioluminescence imaging. The effect of MSCs on macrophage phenotype following direct and indirect coculture was assessed using qPCR. Human cytokine production was measured using multiplex arrays. After IR, MSCs homed to injured kidneys where they afforded protection indicated by decreased proximal tubule kidney injury molecule-1 expression, blood urea nitrogen, and serum creatinine levels. SDS-PAGE and immunofluorescence labeling revealed MSCs reduced collagen α1(I) and IV by day 7 post-IR. Gelatin zymography confirmed that MSC treatment significantly increased matrix metalloproteinase-9 activity in IR kidneys, which contributed to a reduction in total collagen. Following direct and indirect coculture, macrophages expressed genes indicative of an anti-inflammatory "M2" phenotype. MSC-derived human GM-CSF, EGF, CXCL1, IL-6, IL-8, MCP-1, PDGF-AA, and CCL5 were identified in culture supernatants. In conclusion, MSCs home to injured kidneys and promote repair, which may be mediated by their ability to promote M2 macrophage polarization.

  14. Effects and mechanisms of store-operated calcium channel blockade on hepatic ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Li-Jie Pan; Zi-Chao Zhang; Zhen-Ya Zhang; Wen-Jun Wang; Yue Xu; Zong-Ming Zhang

    2012-01-01

    AIM: To further investigate the important role of storeoperated calcium channels (SOCs) in rat hepatocytes and to explore the effects of SOC blockers on hepatic ischemia-reperfusion injury (HIRI). METHODS: Using freshly isolated hepatocytes from a rat model of HIRI (and controls), we measured cytosolic free Ca2+ concentration (by calcium imaging), net Ca2+ fluxes (by a non-invasive micro-test technique), the SOC current (ISOC; by whole-cell patch-clamp recording), and taurocholate secretion [by high-performance liquid chromatography and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays]. RESULTS: Ca2+ oscillations and net Ca2+ fluxes mediated by Ca2+ entry via SOCs were observed in rat hepatocytes. ISOC was significantly higher in HIRI groups than in controls (57.0 ± 7.5 pA vs 31.6 ± 2.7 pA, P <0.05) and was inhibited by La3+. Taurocholate secretion by hepatocytes into culture supernatant was distinctly lower in HIRI hepatocytes than in controls, an effect reversed by SOC blockers. CONCLUSION: SOCs are pivotal in HIRI. SOC blockers protected against HIRI and assisted the recovery of secretory function in hepatocytes. Thus, they are likely to become a novel class of effective drugs for prevention or therapy of HIRI patients in the future.

  15. Pre-existing interleukin 10 in cerebral arteries attenuates subsequent brain injury caused by ischemia/reperfusion.

    Science.gov (United States)

    Liang, Qiu-Juan; Jiang, Mei; Wang, Xin-Hong; Le, Li-Li; Xiang, Meng; Sun, Ning; Meng, Dan; Chen, Si-Feng

    2015-09-01

    Recurrent stroke is difficult to treat and life threatening. Transfer of anti-inflammatory gene is a potential gene therapy strategy for ischemic stroke. Using recombinant adeno-associated viral vector 1 (rAAV1)-mediated interleukin 10 (IL-10), we investigated whether transfer of beneficial gene into the rat cerebral vessels during interventional treatment for initial stroke could attenuate brain injury caused by recurrent stroke. Male Wistar rats were administered rAAV1-IL-10, rAAV1-YFP, or saline into the left cerebral artery. Three weeks after gene transfer, rats were subjected to occlusion of the left middle cerebral artery (MCAO) for 45 min followed by reperfusion for 24 h. IL-10 levels in serum were significantly elevated 3 weeks after rAAV1-IL-10 injection, and virus in the cerebral vessels was confirmed by in situ hybridization. Pre-existing IL-10 but not YFP decreased the neurological dysfunction scores, brain infarction volume, and the number of injured neuronal cells. AAV1-IL-10 transduction increased heme oxygenase (HO-1) mRNA and protein levels in the infarct boundary zone of the brain. Thus, transduction of the IL-10 gene in the cerebral artery prior to ischemia attenuates brain injury caused by ischemia/reperfusion in rats. This preventive approach for recurrent stroke can be achieved during interventional treatment for initial stroke.

  16. Granulocyte colony-stimulating factor regulates JNK pathway to alleviate damage after cerebral ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    LI Ya-guo; LIU Xiao-li; ZHENG Chao-bo

    2013-01-01

    Background Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent hematopoietic growth factor that both enhances the survival and drives the differentiation and proliferation of myeloid lineage cells.Recent studies have suggested that GM-CSF has a neuroprotective effect against cerebral ischemia injury,but the molecular mechanisms have been unclear.This study aimed to investigate the influences of a short-acting (half-life 3.5 hours) G-CSF and a long-acting (half-life 40 hours) pegylated G-CSF on the JNK signaling pathway after cerebral ischemia reperfusion.Methods A total of 52 Sprague-Dawley rats were randomly divided into four groups:a sham group (n=4),a vehicle with saline (n=16),a short-acting G-CSF treatment group (n=16) and a long-acting G-CSF treatment group (n=16).The cerebral ischemia reperfusion model was established for the sham group and G-CSF treatment groups by middle cerebral artery occlusion (MCAO).Five days post reperfusion,rats were sacrificed and the brains were removed.Changes in neurological function after cerebral ischemia reperfusion was evaluated according to Neurological Severity Score (NSS) and the lesion volume and infarct size were measured by 2,3,5-triphenyltetrazolium chloride staining.The numbers of apoptotic neurons in these ischemic areas:left cerebral cortex,striatum and hippocampus were calculated by TUNEL assay,and expression of JNK/P-JNK,c-jun/P-c-jun in these areas was detected by Western blotting.Results Compared with the saline vehicle group ((249.68±23.36) mm3,(19.27±3.37)%),G-CSF-treated rats revealed a significant reduction in lesion volume (long-acting:(10.89±1.90)%,P <0.01; short-acting G-CSF:(11.69±1.41)%,P <0.01)and infarct size (long-acting:(170.53±18.47) mm3,P <0.01; short-acting G-CSF:(180.74±16.93) mm3,P <0.01) as well as less neuron functional damage (P <0.01) and a smaller number of apoptotic neurons in ischemic areas (P <0.01).The activity of P-JNK and P-c-jun in the

  17. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Na Zhang; Gen-Yang Cheng; Xian-Zhi Liu; Feng-Jiang Zhang

    2014-01-01

    Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue. Methods:Fourty eight rats were randomly divided into four groups(n=12): sham operation group,30 min ischemia60 min reperfusion group,60 min ischemia60 min reperfusion group, and 120 min ischemia60 min reperfusion group.The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreasedBcl-2 expression, increasedBax expression, upregulated expression ofNF-κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.

  18. Protective effects of emulsified isoflurane after myocardial ischemia-reperfusion injury and its mechanism in rabbits

    Institute of Scientific and Technical Information of China (English)

    RAO Yan; WANG Yan-lin; CHEN Yong-quan; ZHANG Wen-sheng; LIU Jin

    2009-01-01

    Objective: To evaluate the protective effects of 8% emulsified isoflurane after myocardial ischemia-reperfusion injury and its mechanism in rabbits.Methods: Twenty-four male adult New Zealand white rabbits were anesthetized with intravenous injection of 30 mg/kg pentobarbital followed by 5 mg·kg-1·h-1 infusion. All rabbits were subjected to 30 minutes of left anterior de-scending coronary artery (LAD) occlusion and 3 hours of subsequent reperfusion. Before LAD occlusion, the rabbits were randomly allocated into three groups for precondi-tioning treatment (eight for each group). The control group (C group) received intravenously 0.9% NaCl for 30 minutes. The emulsified isoflurane group (EI group) received 8% emulsified isoflurane intravenously till 0.64% end-tidal con-centration for 30 minutes that was followed by a 15-minute washout period. The Intralipid group (IN group) received 30% Intralipid for 30 minutes. The infarcted area, plasma malondialdehyde (MDA) content, superoxide dismutase activity (SOD) and nitrite concentration after 3-hour myo-cardial perfusion were recorded simultaneously.Results: For the myocardial ischemia-reperfusion in-jury animals, the infarcted size in the EI group was signifi-cantly reduced (91.9%±8%) as compared with control group (39%±6%,t=5.19, P<0.01). The plasma SOD activity and nitrite concentration in EI group were significantly higher than those in control group (t=2.82, t=8.46, P<0.05), but MDA content was lower in EI group than that in control group (t=2.56, P<0.05).Conclusions: The results indicate that emulsified isoflurane has a cardioprotection effect against ischemia-reperfusion injury. This beneficial effect of emulsified isoflurane is probably through NO release and consequently by increase in autioxidation of myocardium.

  19. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  20. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    Science.gov (United States)

    la Garza, Francisco Javier Guzmán-de; Ibarra-Hernández, Juan Manuel; Cordero-Pérez, Paula; Villegas-Quintero, Pablo; Villarreal-Ovalle, Claudia Ivette; Torres-González, Liliana; Oliva-Sosa, Norma Edith; Alarcón-Galván, Gabriela; Fernández-Garza, Nancy Esthela; Muñoz-Espinosa, Linda Elsa; Cámara-Lemarroy, Carlos Rodrigo; Carrillo-Arriaga, José Gerardo

    2013-01-01

    OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, and the markers of intestinal mucosal damage were intestinal fatty acid binding protein and D-lactate. We used Chiús classification to grade the histopathological damage. METHODS: We studied 35 Wistar rats divided into groups according to reperfusion time. The superior mesenteric artery was clamped for 30 minutes, and blood and biopsies were collected at 1, 3, 6, 12, 24, and 48 hours after reperfusion. We plotted the mean ± standard deviation and compared the baseline and maximum values for each marker using Student's t-test. RESULTS: The maximum values of interleukin-1 beta and lactic dehydrogenase were present before the maximal histopathological damage. The maximum tumor necrosis factor alpha and D-lactate expressions coincided with histopathological damage. Alanine aminotransaminase and aspartate aminotransferase had a maximum expression level that increased following the histopathological damage. The maximum expressions of interluken-6 and intestinal fatty acid binding protein were not significantly different from the Sham treated group. CONCLUSION: For the evaluation of injury secondary to acute intestinal ischemia reperfusion with a 30 minute ischemia period, we recommend performing histopathological grading, quantification of D-lactate, which is synthesized by intestinal bacteria and is considered an indicator of mucosal injury, and quantification of tumor necrosis factor alpha as indicators of acute inflammation three hours after reperfusion. PMID:23917671

  1. Effects of Rosa Canina L. on Ischemia/ Reperfusion Injury in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    S Karimi

    2012-04-01

    Full Text Available Background: Ischemia/reperfusion induced acute renal failure causes excretory functional disorders of nephrons. Ischemia/reperfusion injury is accompanied by generation of reactive oxygen species that leads to dysfunction, injury, and death of renal cells. Antioxidants of plant origin minimize the harmful effects of reactive oxygen species. The aim of this study was to determine the possible therapeutic potentials of Rosa canina L. in preventing renal functional disturbances during the post-ischemic reperfusion period. Methods: In this experimental study undertaken for evaluating renal excretory function in 30 male Wistar rats, renal ischemia was induced by occluding both renal arteries for 45 min, followed by 24 h of reperfusion. The rats received 2 ml of tap water or a hydroalcoholic extract of Rosa canina (500 mg/kg orally for 7 days before induction of ischemia. In plasma samples, creatinine and urea nitrogen levels were measured, and in renal tissue samples, red blood cells were counted. The data were analyzed using ANOVA and Duncan tests.Results: Renal ischemia for 45 minutes increased plasma levels of creatinine (P<0.001 and nitrogen urea (P<0.01 while reducing red blood cell counts in renal glomeruli (P<0.001. Rosa canina administration diminished the increase in creatinine (P<0.001 and nitrogen urea concentrations (P<0.01, and prevented reductions in red blood cell counts in renal glomeruli (P<0.001. Conclusion: Rosa canina seems to be useful as a preventive agent against renal damages induced by ischemia/reperfusion injuries in rats.

  2. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Francisco Javier Guzmán-de la Garza

    2013-07-01

    Full Text Available OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, and the markers of intestinal mucosal damage were intestinal fatty acid binding protein and D-lactate. We used Chiús classification to grade the histopathological damage. METHODS: We studied 35 Wistar rats divided into groups according to reperfusion time. The superior mesenteric artery was clamped for 30 minutes, and blood and biopsies were collected at 1, 3, 6, 12, 24, and 48 hours after reperfusion. We plotted the mean ± standard deviation and compared the baseline and maximum values for each marker using Student’s t-test. RESULTS: The maximum values of interleukin-1 beta and lactic dehydrogenase were present before the maximal histopathological damage. The maximum tumor necrosis factor alpha and D-lactate expressions coincided with histopathological damage. Alanine aminotransaminase and aspartate aminotransferase had a maximum expression level that increased following the histopathological damage. The maximum expressions of interluken-6 and intestinal fatty acid binding protein were not significantly different from the Sham treated group. CONCLUSION: For the evaluation of injury secondary to acute intestinal ischemia reperfusion with a 30 minute ischemia period, we recommend performing histopathological grading, quantification of D-lactate, which is synthesized by intestinal bacteria and is considered an indicator of mucosal injury, and quantification of tumor necrosis factor alpha as indicators of acute inflammation three hours after reperfusion.

  3. Therapeutic effect of bFGF on retina ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    牛膺筠; 赵岩松; 高云霞; 周占宇; 王红云; 袁春燕

    2004-01-01

    Background Basic fibroblast growth factor (bFGF) plays important roles in retina degeneration, light injury, mechanical injury, especially in retina ischemia-reperfusion injury (RIRI). This study was to investigate the therapeutical effect of bFGF on RIRI and its mechanisms. Methods Experimental RIRI was induced by increasing intraocular pressure (lOP) in the eyes of 48 rats. These rats were divided into normal control, ischemia-reperfusion and bFGF-treated groups. Histological and ultrastructural changes of in the retina of different groups were observed, and the number of retinal ganglion cells (RGCs) was quantitatively analyzed under microscopy. Apoptotic cells were detected using the TdT-dUTP terminal nick-end labeling (TUNEL) method. The expression of caspase-3 was determined by streptavidin peroxidase (SP) immunohistochemistry. Atomic absorption spectrum method was used to evaluate the intracellular calcium changes. Results At the early stage of retinal ischemia-reperfusion injury, retina edema in the treated group was significantly eliminated compared with the untreated ischemic animals. RGCs in the bFGF-treated group was more than those in the untreated ischemic group during the post-reperfusion stages. In ischemic group, apoptotic cells could be found at 6th hours after reperfusion and reached the peak at 24th hours. At 72th hours no apoptotic cells could be found. The changes in caspase-3 expression had a similar manner. The intracellular calcium of rat retina began to increase at l th hour, reached the peak at 24 hours, and began to decease at 72th hours. The change of the three markers in the treatment group showed a similar pattern, but they were all relatively less obvious. Conclusion Apoptosis may play a vital role in RIRI. bFGF may has therapeutical effects on RIRI by inhibiting the increase of intracellular calciums and caspase-3 expression.

  4. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    János Pálóczi

    2016-01-01

    Full Text Available Background and Aims. Human embryonic stem cell- (hESC- derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days and then on more differentiated cardiomyocytes (6 + 24 days, both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following tre