WorldWideScience

Sample records for irs 5-35 micrometers

  1. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  2. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  3. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  4. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  5. 27 CFR 5.35 - Class and type.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Class and type. 5.35 Section 5.35 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF DISTILLED SPIRITS Labeling Requirements for...

  6. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  7. Infrared spectroscopic ellipsometry of micrometer-sized SiO2 line gratings

    Science.gov (United States)

    Walder, Cordula; Zellmeier, Matthias; Rappich, Jörg; Ketelsen, Helge; Hinrichs, Karsten

    2017-09-01

    For the design and process control of periodic nano-structured surfaces spectroscopic ellipsometry is already established in the UV-VIS spectral regime. The objective of this work is to show the feasibility of spectroscopic ellipsometry in the infrared, exemplarily, on micrometer-sized SiO2 line gratings grown on silicon wafers. The grating period ranges from 10 to about 34 μm. The IR-ellipsometric spectra of the gratings exhibit complex changes with structure variations. Especially in the spectral range of the oxide stretching modes, the presence of a Rayleigh singularity can lead to pronounced changes of the spectrum with the sample geometry. The IR-ellipsometric spectra of the gratings are well reproducible by calculations with the RCWA method (Rigorous Coupled Wave Analysis). Therefore, infrared spectroscopic ellipsometry allows the quantitative characterization and process control of micrometer-sized structures.

  8. Copper-micrometer-sized diamond nanostructured composites

    International Nuclear Information System (INIS)

    Nunes, D; Livramento, V; Fernandes, H; Silva, C; Carvalho, P A; Shohoji, N; Correia, J B

    2011-01-01

    Reinforcement of a copper matrix with diamond enables tailoring the properties demanded for thermal management applications at high temperature, such as the ones required for heat sink materials in low activated nuclear fusion reactors. For an optimum compromise between thermal conductivity and mechanical properties, a novel approach based on multiscale diamond dispersions is proposed: a Cu-nanodiamond composite produced by milling is used as a nanostructured matrix for further dispersion of micrometer-sized diamond (μDiamond). A series of Cu-nanodiamond mixtures have been milled to establish a suitable nanodiamond fraction. A refined matrix with homogeneously dispersed nanoparticles was obtained with 4 at.% μDiamond for posterior mixture with microdiamond and subsequent consolidation. Preliminary consolidation by hot extrusion of a mixture of pure copper and μDiamond has been carried out to define optimal processing parameters. The materials produced were characterized by x-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

  9. From nanometer aggregates to micrometer crystals

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas; Dideriksen, Knud; Lakshtanov, Leonid

    2014-01-01

    Grain size increases when crystals respond to dynamic equilibrium in a saturated solution. The pathway to coarsening is generally thought to be driven by Ostwald ripening, that is, simultaneous dissolution and reprecipitation, but models to describe Ostwald ripening neglect solid-solid interactions...... and crystal shapes. Grain coarsening of calcite, CaCO3, is relevant for biomineralization and commercial products and is an important process in diagenesis of sediments to rock during geological time. We investigated coarsening of pure, synthetic calcite powder of sub-micrometer diameter crystals and aged...... it in saturated solutions at 23, 100, and 200 °C for up to 261 days. Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis showed rapid coarsening at 100 and 200 °C. Evidence of particle growth at 23 °C was not visible by SEM, but high resolution X-ray diffraction (XRD) data...

  10. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.; Qaisi, Ramy M.; Hussain, Muhammad Mustafa

    2013-01-01

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids

  11. 46 CFR 5.35 - Conviction for a dangerous drug law violation, use of, or addiction to the use of dangerous drugs.

    Science.gov (United States)

    2010-10-01

    ..., or addiction to the use of dangerous drugs. 5.35 Section 5.35 Shipping COAST GUARD, DEPARTMENT OF... Definitions § 5.35 Conviction for a dangerous drug law violation, use of, or addiction to the use of dangerous... complaint will allege conviction for a dangerous drug law violation or use of dangerous drugs or addiction...

  12. Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia

    Directory of Open Access Journals (Sweden)

    A. Massling

    2007-06-01

    Full Text Available Hygroscopic properties of aerosol particles in the sub-micrometer and one-micrometer size ranges were measured during the ACE-Asia study (Aerosol Characterization Experiment-Asia in spring 2001. The measurements took place off the coasts of Japan, Korea, and China. All instruments contributing to this study were deployed in a container on the forward deck of the NOAA Research Vessel Ronald H. Brown. Air masses with primarily marine influence and air masses from the Asian continent affected by both anthropogenic sources and by the transport of desert dust aerosol were encountered during the cruise.

    Results showed very different hygroscopic behavior in the sub-micrometer size range compared to the one-micrometer size range. In general, for all continentally influenced air masses, the one-micrometer particle population was characterized by two different particle groups – a nearly hydrophobic fraction with growth factors around 1.0 representative of dust particles and a sea salt fraction with hygroscopic growth factors around 2.0. The number fraction of dust particles was generally about 60% independent of long-range air mass origin.

    For sub-micrometer particles, a dominant, more hygroscopic particle fraction with growth factors between 1.5 and 1.9 (depending on dry particle size consistent with ammonium sulfate or non-neutralized sulfates as major component was always found. In marine air masses and for larger sizes within the sub-micrometer range (Dp=250 and 350 nm, a sea salt fraction with growth factors between 2.0 and 2.1 was also observed. For all other air masses, the more hygroscopic particle fraction in the sub-micrometer size range was mostly accompanied by a less hygroscopic particle fraction with growth factors between 1.20 and 1.55 depending on both the continental sources and the dry particle size. Number fractions of this particle group varied between 4 and 39% depending on dry particle size and air mass

  13. Compact erbium lasers in the IR photorefractive keratectomy (PRK)

    Science.gov (United States)

    Liu, Baining; Eichler, Hans J.; Sperlich, O.; Holschbach, A.; Kayser, M.

    1996-09-01

    Erbium lasers deliver laser radiation near 3 micrometers and are a promising alternative to excimer laser photorefractive keratectomy (UV-PRK). In addition to easier handling due to all solid state technology, especially when operated in the fundamental mode, IR-PRK eliminates the potential of mutagenic side effects associated with UV-PRK. However, a successful IR-PRK for the clinic treatment in the near future demands both technological development of erbium lasers in different operation modes and clinical investigation of interaction between 3 micrometers radiation and human corneas. The excellent cooperation between university, company and hospital makes this possible. Uncoated thin plates made from infrared materials were found to be effective etalon reflectors with high damage threshold as high as 1 GW/cm2 for erbium lasers. Four kinds of such reflectors were successfully tested in Q-switched Er:YAG-laser at 2.94 micrometers and Er:Cr:YSGG-laser at 2.80 micrometers. Very stable operation of our erbium lasers with high output energy both in free-running and Q-switched modes is realized. First infrared photorefractive keratectomy (IR-PRK) for myopic correction in human corneas by a free-running erbium laser based on our new construction concepts was achieved.

  14. Synthesis and characterization of micrometer Cu/PVP architectures

    International Nuclear Information System (INIS)

    Luo, Huajuan; Zhao, Yanbao; Sun, Lei

    2011-01-01

    Graphical abstract: A simple method for the synthesis of novel micrometer flower-like Cu/PVP architectures was introduced. Highlights: → Micrometer flower-like copper/polyvinylpyrrolidone architectures were obtained by a simple chemical route. → The amount of N 2 H 4 ·H 2 O, the reaction temperature, the molar ratio of CuCl 2 to PVP and different molecular weights of PVP play an important role in the controlling the morphology of the Cu/PVP architectures. → A possible mechanism of the formation of Cu/PVP architectures was discussed. -- Abstract: Micrometer-sized flower-like Cu/polyvinylpyrrolidone (PVP) architectures are synthesized by the reduction of copper (II) salt with hydrazine hydrate in aqueous solution in the presence of PVP capping agent. The resulting Cu/PVP architectures are investigated by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The Cu/PVP flowers have uniform morphologies with an average diameter of 10 μm, made of several intercrossing plates. The formation of Cu/PVP flowers is a new kinetic control process, and the factors such as the amount of N 2 H 4 ·H 2 O, reaction temperature, molar ratio of CuCl 2 to PVP and molecular weight of PVP have significant effect on the morphology of Cu/PVP architectures. A possible mechanism of the formation of micrometer Cu/PVP architectures was discussed.

  15. Patterned Electroplating of Micrometer Scale Magnetic Structures on Glass Substrates

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, Johannes S.; Krenn, Bea E.; van Driel, Roel

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  16. Patterned electroplating of micrometer scale magnetic structures on glass substrates.

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, S.J.; Krenn, G.E.; van Driel, R.

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  17. PEP-II IR-2 Alignment

    International Nuclear Information System (INIS)

    Seryi, A

    2004-01-01

    This paper describes the first results and preliminary analysis obtained with several alignment monitoring systems recently installed in the PEP-II interaction region. The hydrostatic level system, stretched wire system, and laser tracker have been installed in addition to the existing tiltmeters and LVDT sensors. These systems detected motion of the left raft, which correlated primarily with the low energy ring (LER) current. The motion is of the order of 120 micrometers. The cause was identified as synchrotron radiation heating the beampipe, causing its expansion which then results in its deformation and offset of the IR quadrupoles. We also discuss further plans on measurements, analysis and means to counteract this motion

  18. Sub-micrometer waveguide for nano-optics

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Dyndgaard, Morten Glarborg; Andersen, Karin Nordström

    2003-01-01

    With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide for prob......With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide...... for probing the reflection of light against a nano structure. The planar waveguide is based on a silicon nitride core layer, surrounded by a silica cladding region. In our design we utilize this waveguide to couple light into a nano-structure....

  19. Additive Manufacturing of Metal Structures at the Micrometer Scale.

    Science.gov (United States)

    Hirt, Luca; Reiser, Alain; Spolenak, Ralph; Zambelli, Tomaso

    2017-05-01

    Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro-stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser-assisted electrophoretic deposition, laser-induced forward transfer, local electroplating methods, laser-induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1-10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2013-10-23

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids. The sustainable design is comprised of a graphene anode, an air cathode, and a polymer-based substrate platform for flexibility. The graphene layer was grown on a nickel thin film by using chemical vapor deposition at atmospheric pressure. Our demonstration provides a low-cost option to generate useful power for lab-on-chip applications and could be promising to rapidly screen and scale up microbial fuel cells for water purification without consuming excessive power (unlike other water treatment technologies).

  1. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Science.gov (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  2. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation

    Directory of Open Access Journals (Sweden)

    Kamola Saydaminova

    Full Text Available Genome editing with site-specific endonucleases has implications for basic biomedical research as well as for gene therapy. We generated helper-dependent, capsid-modified adenovirus (HD-Ad5/35 vectors for zinc-finger nuclease (ZFN– or transcription activator-like effector nuclease (TALEN–mediated genome editing in human CD34+ hematopoietic stem cells (HSCs from mobilized adult donors. The production of these vectors required that ZFN and TALEN expression in HD-Ad5/35 producer 293-Cre cells was suppressed. To do this, we developed a microRNA (miRNA-based system for regulation of gene expression based on miRNA expression profiling of 293-Cre and CD34+ cells. Using miR-183-5p and miR-218-5p based regulation of transgene gene expression, we first produced an HD-Ad5/35 vector expressing a ZFN specific to the HIV coreceptor gene ccr5. We demonstrated that HD-Ad5/35.ZFNmiR vector conferred ccr5 knock out in primitive HSC (i.e., long-term culture initiating cells and NOD/SCID repopulating cells. The ccr5 gene disruption frequency achieved in engrafted HSCs found in the bone marrow of transplanted mice is clinically relevant for HIV therapy considering that these cells can give rise to multiple lineages, including all the lineages that represent targets and reservoirs for HIV. We produced a second HD-Ad5/35 vector expressing a TALEN targeting the DNase hypersensitivity region 2 (HS2 within the globin locus control region. This vector has potential for targeted gene correction in hemoglobinopathies. The miRNA regulated HD-Ad5/35 vector platform for expression of site-specific endonucleases has numerous advantages over currently used vectors as a tool for genome engineering of HSCs for therapeutic purposes.

  3. Optical design for a breadboard high-resolution spectrometer for SIRTF/IRS

    Science.gov (United States)

    Brown, Robert J.; Houck, James R.; van Cleve, Jeffrey E.

    1996-11-01

    The optical design of a breadboard high resolution infrared spectrometer for the IRS instrument on the SIRTF mission is discussed. The spectrometer uses a crossed echelle grating configuration to cover the spectral region from 10 to 20 micrometer with a resolving power of approximately equals 600. The all reflective spectrometer forms a nearly diffraction limited image of the two dimensional spectrum on a 128 multiplied by 128 arsenic doped silicon area array with 75 micrometer pixels. The design aspects discussed include, grating numerology, image quality, packaging and alignment philosophy.

  4. The Design of Phase-Locked-Loop Circuit for Precision Capacitance Micrometer

    Directory of Open Access Journals (Sweden)

    Li Shujie

    2016-01-01

    Full Text Available High precision non-contact micrometer is normally divided into three categories: inductance micrometer, capacitance micrometer and optical interferometer micrometer. The capacitance micrometer is widely used because it has high performance to price ratio. With the improvement of automation level, precision of capacitance micrometer is required higher and higher. Generally, capacitance micrometer consists of the capacitance sensor, capacitance/voltage conversion circuit, and modulation and demodulation circuits. However, due to the existing of resistors, capacitors and other components in the circuit, the phase shift of the carrier signal and the modulated signal might occur. In this case, the specific value of phase shift cannot be determined. Therefore, error caused by the phase shift cannot be eliminated. This will reduce the accuracy of micrometer. In this design, in order to eliminate the impact of the phase shift, the phase-locked-loop (PLL circuit is employed. Through the experiment, the function of tracking the input signal phase and frequency is achieved by the phase-locked-loop circuit. This signal processing method can also be applied to tuber electrical resistance tomography system and other precision measurement circuit.

  5. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  6. 640 X 480 MOS PtSi IR sensor

    Science.gov (United States)

    Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.

    1991-12-01

    The design of a 1st and 2nd generation 640(H) X 480(V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. Measured performance characteristics for Gen 1 devices are presented along with calculated performance for the Gen 2 design. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non- interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS170 operation) resulting in a form of 'electronic shutter,' or variable exposure control. The pixel size of 24-micrometers X 24-micrometers results in a fill factor of 38% for 1.5-micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.

  7. Comparison of the 3.36 micrometer feature to the ISM

    International Nuclear Information System (INIS)

    Tokunaga, A.T.; Brooke, T.Y.

    1988-01-01

    It has been noted that the 3.36 micrometer emission feature is not the same as that of any ISM band at 3.4 micrometer. This is documented herein. There is no convincing analog to the cometary 3.36 micrometer emission feature seen in the Interstellar Matter band. This fact suggests that if the carbonaceous material in comets came from the ISM, it was either further processed in the solar nebula or has a different appearance because of the different excitation environment of the sun and ISM

  8. Comparison of the 3.36 micrometer feature to the ISM

    Science.gov (United States)

    Tokunaga, Alan T.; Brooke, Timothy Y.

    1988-01-01

    It has been noted that the 3.36 micrometer emission feature is not the same as that of any ISM band at 3.4 micrometer. This is documented herein. There is no convincing analog to the cometary 3.36 micrometer emission feature seen in the Interstellar Matter band. This fact suggests that if the carbonaceous material in comets came from the ISM, it was either further processed in the solar nebula or has a different appearance because of the different excitation environment of the sun and ISM.

  9. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.

    2006-01-01

    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies

  10. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis

    DEFF Research Database (Denmark)

    Antfolk, M.; Muller, Peter Barkholt; Augustsson, P.

    2014-01-01

    Handling of sub-micrometer bioparticles such as bacteria are becoming increasingly important in the biomedical field and in environmental and food analysis. As a result, there is an increased need for less labor-intensive and time-consuming handling methods. Here, an acoustophoresis-based microfl......Handling of sub-micrometer bioparticles such as bacteria are becoming increasingly important in the biomedical field and in environmental and food analysis. As a result, there is an increased need for less labor-intensive and time-consuming handling methods. Here, an acoustophoresis......-based microfluidic chip that uses ultrasound to focus sub-micrometer particles and bacteria, is presented. The ability to focus sub-micrometer bioparticles in a standing one-dimensional acoustic wave is generally limited by the acoustic-streaming-induced drag force, which becomes increasingly significant the smaller...... particles as small as 0.5 μm in diameter in microchannels of square or rectangular cross sections, is demonstrated. Numerical analysis was used to determine generic transverse particle trajectories in the channels, which revealed spiral-shaped trajectories of the sub-micrometer particles towards the center...

  11. On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography

    International Nuclear Information System (INIS)

    Gregusova, D.; Martaus, J.; Fedor, J.; Kudela, R.; Kostic, I.; Cambel, V.

    2009-01-01

    We developed a technology of sub-micrometer Hall probes for future application in scanning hall probe microscopy (SHPM) and magnetic force microscopy (MFM). First, the Hall probes of ∼9-μm dimensions are prepared on the top of high-aspect-ratio GaAs pyramids with an InGaP/AlGaAs/GaAs active layer using wet-chemical etching and non-planar lithography. Then we show that the active area of planar Hall probes can be downsized to sub-micrometer dimensions by local anodic oxidation technique using an atomic force microscope. Such planar probes are tested and their noise and magnetic field sensitivity are evaluated. Finally, the two technologies are combined to fabricate sub-micrometer Hall probes on the top of high-aspect ratio mesa for future SHPM and MFM techniques.

  12. HDAd5/35++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in Human Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Chang Li

    2018-06-01

    Full Text Available We generated helper-dependent HDAd5/35++ adenovirus vectors expressing CRISPR/Cas9 for potential hematopoietic stem cells (HSCs gene therapy of β-thalassemia and sickle cell disease through re-activation of fetal γ-globin expression (HDAd-globin-CRISPR. The process of CRISPR/Cas9 gene transfer using these vectors was not associated with death of human CD34+ cells and did not affect their in vitro expansion and erythroid differentiation. However, functional assays for primitive HSCs, e.g., multi-lineage progenitor colony formation and engraftment in irradiated NOD/Shi-scid/interleukin-2 receptor γ (IL-2Rγ null (NSG mice, revealed toxicity of HDAd-globin-CRISPR vectors related to the prolonged expression and activity of CRISPR/Cas9. To control the duration of CRISPR/Cas9 activity, we generated an HDAd5/35++ vector that expressed two anti-CRISPR (Acr peptides (AcrII4 and AcrII2 capable of binding to the CRISPR/Cas9 complex (HDAd-Acr. CD34+ cells that were sequentially infected with HDAd-CRISPR and HDAd-Acr engrafted at a significantly higher rate. Target site disruption frequencies in engrafted human cells were similar to those in pre-transplantation CD34+ cells, indicating that genome-edited primitive HSCs survived. In vitro differentiated HSCs isolated from transplanted mice demonstrated increased γ-globin expression as a result of genome editing. Our data indicate that the HDAd-Acr vector can be used as a tool to reduce HSC cytotoxicity of the CRISPR/Cas9 complex.

  13. Ultra-Sensitive Transition-Edge Sensors (TESs) for Far-IR/Submm Space-Borne Spectroscopy

    Science.gov (United States)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J .J.; Leduc, H. G.

    2011-01-01

    We have built surface micromachined thin-film metallized Si(x)N(y) optical absorbers for transition-edge sensors (TESs) suitable for the Background - Limited far-IR/Submm Spectrograph (BLISS). BLISS is a broadband (38 micrometers - 433 micrometers), grating spectrometer consisting of five wavebands each with a modest resolution of R (is) approx. 1000. Because BLISS requires the effective noise equivalent power (NEP) of the TES to be below 10 (exp 19) W/Hz(exp 1/2), our TESs consist of four long (1000 micrometers), narrow (0.4 micrometers ), and thin (0.25 micrometers ) Si(x) N(y) support beams that reduce the thermal conductance G between the substrate and the optical absorber. To reduce the heat capacity of the absorber and make the response time tau fast enough for BLISS, our absorbers are patterned into a mesh geometry with a fill factor of less than 10%. We use a bilayer of Ti/Au to make the effective impedance of the absorber match the impedance of the incoming radiation for each band. Measurements of the response time of the metallized absorbers to heat pulses show that their heat capacity exceeds the predictions of the Debye model. Our results are suggestive that the surface of the low pressure chemical vapor deposition (LPCVD) Si(x)N(y) used in the absorbers' construction is the source of microstates that dominate the heat capacity.

  14. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  15. Micrometer-sized Isolated Patterns of Conductive ZnO derived by Micromoulding

    NARCIS (Netherlands)

    Göbel, Ole F.; ten Elshof, Johan E.; Blank, David A.H.

    2009-01-01

    We succeeded in the fabrication of large-area patterns with micrometer-sized, isolated features of a simple oxide by a technically simple patterning method. By micromoulding a polymeric precursor solution for ZnO with an elastomeric (PDMS) mould, and a subsequent heat treatment, patterned ZnO films

  16. Injection molding of nanopatterned surfaces in the sub-micrometer range with induction heating aid

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    . A tool insert having a surface containing functional geometries in the sub-micrometer range was produced using aluminum anodization and nickel electroplating. In order to provide elevated mold temperatures necessary for the complete replica of the pattern, a new mold setup was developed, which allows...

  17. Micrometer sized dust particles in a fr plasma under varying gravity conditions

    NARCIS (Netherlands)

    Beckers, J.; Stoffels, W.W.; Kroesen, G.M.W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2009-01-01

    For diagnostic purposes micrometer-sized particles can be used as floating electrostatic probes. Once injected into a complex rf plasma, these particles will become negatively charged and can be trapped in the plasma sheath due to an equilibrium of several forces working on them, e.g. the

  18. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Science.gov (United States)

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  19. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  20. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  1. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example MicroMet

  2. IR sensor design insight from missile-plume prediction models

    Science.gov (United States)

    Rapanotti, John L.; Gilbert, Bruno; Richer, Guy; Stowe, Robert

    2002-08-01

    Modern anti-tank missiles and the requirement of rapid deployment have significantly reduced the use of passive armour in protecting land vehicles. Vehicle survivability is becoming more dependent on sensors, computers and countermeasures to detect and avoid threats. An analysis of missile propellants suggests that missile detection based on plume characteristics alone may be more difficult than anticipated. Currently, the passive detection of missiles depends on signatures with a significant ultraviolet component. This approach is effective in detecting anti-aircraft missiles that rely on powerful motors to pursue high-speed aircraft. The high temperature exhaust from these missiles contains significant levels of carbon dioxide, water and, often, metal oxides such as alumina. The plumes emits strongest in the infrared, 1 to 5micrometers , regions with a significant component of the signature extending into the ultraviolet domain. Many anti-tank missiles do not need the same level of propulsion and radiate significantly less. These low velocity missiles, relying on the destructive force of shaped-charge warhead, are more difficult to detect. There is virtually no ultraviolet component and detection based on UV sensors is impractical. The transition in missile detection from UV to IR is reasonable, based on trends in imaging technology, but from the analysis presented in this paper even IR imagers may have difficulty in detecting missile plumes. This suggests that the emphasis should be placed in the detection of the missile hard body in the longer wavelengths of 8 to 12micrometers . The analysis described in this paper is based on solution of the governing equations of plume physics and chemistry. These models will be used to develop better sensors and threat detection algorithms.

  3. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  4. Microstructural Control and Characterization of Bi2V0.9Cu0.1O5.35 (BICUVOX) Ceramics

    Science.gov (United States)

    Razmyar, Soheil

    2011-12-01

    The widespread commercialization of solid-oxide fuel cells (SOFCs) and solid-oxide electrolyte cells (SOECs) is primarily limited by material degradation issues related to the required high temperature operation (>800°C). Applications of stabilized zirconia based electrolytes, which are the most commonly used oxide ion conductors, have been limited to this high temperature regime due to its low oxygen ion conductivity below 800°C. Solid electrolytes made of the BIMEVOX compositional family of materials (Bi2MexV 1-xO5.5-delta where Me=Cu, Co, Mg, Ni, Fe...) exhibit high oxide ionic conductivity similar to YSZ at a low temperature (300--600°C). Among these materials copper-substituted bismuth vanadate (Bi2V0.9Cu0.1O5.35, BICUVOX), was reported to have the highest ionic conductivity at 400°C (0.02 S/cm). It's one of the most important drawbacks of using BICUVOX, as a SOFC electrolyte is the low mechanical strength, which makes it unusable for most electrolyte supported applications. This research aims at improving mechanical strength by careful control of synthesis processing and sintering processes, thus making BICUVOX a viable material option for intermediate temperature SOFC. A co-precipitation method was used to synthesize submicron BICUVOX powder. The powder was utilized to fabricate a thin (< 250 microm) BICUVOX electrolyte membrane, with 2.5 cm2 active area and high mechanical strength. The fabricated BICUVOX membranes were densified to 97% theoretical density at lower sintering temperature and shorter time (675°C/1 h), and shows fine grain size (<1.5microm) and high mechanical strength (159 MPa).

  5. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5 micrometer spectrum

    Science.gov (United States)

    Treffers, R. R.; Larson, H. P.; Fink, U.; Gautier, T. N.

    1978-01-01

    A high-resolution spectrum of Jupiter at 5 micrometers recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4) of molecules with mixing ratios with hydrogen as low as 10 to the minus 9th power. In future observations at 5 micrometers the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10 to the minus 10th power, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.

  6. Absorption by airborne and deposited particles in the 8-13 micrometer range

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K; Grassl, H

    1975-01-01

    The absorption of radiation by natural aerosol particles was measured in the 8 to 13 micrometer wavelength interval. A comparison was made between an in situ method and measurements of particles of deposited form. The results are in agreement to about 30 percent. The main feature of aerosol absorption within the infrared window is a strong absorption peak near 9 micrometers caused by sulfate or quartz particles present in all continental aerosol types. Consequences for the atmospheric heat balance are clear sky cooling rates growing from about 2 per cent in the tropics to about 20 per cent of the total cooling in arctic regions under normal conditions, additionally increasing with increasing relative humidity.

  7. Micrometer-sized isolated patterns of conductive ZnO derived by micromoulding

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ole F.; Elshof, Johan E. ten; Blank, Dave A.H. [Inorganic Materials Science, Institute for Nanotechnology, University of Twente, Enschede (Netherlands)

    2009-07-01

    We succeeded in the fabrication of large-area patterns with micrometer-sized, isolated features of a simple oxide by a technically simple patterning method. By micromoulding a polymeric precursor solution for ZnO with an elastomeric (PDMS) mould, and a subsequent heat treatment, patterned ZnO films could be obtained. The features of the various patterns, including parallel or crossed lines and arrangements of dots, were several micrometers in diameter, and so were the spaces between them. The features were nearly isolated from each other, as the micromoulding process left behind a thin residual layer of ZnO of only about 15 nm thickness. By applying a tempering step, the transparent films could be rendered conductive. The process was applied successfully also to other oxide materials such as Bi2212 or CoFe2O4.

  8. On-surface synthesis of covalent coordination polymers on micrometer scale

    Institute of Scientific and Technical Information of China (English)

    Mathieu Koudia; Elena Nardi; Olivier Siri; Mathieu Abel

    2017-01-01

    On-surface synthesis under ultrahigh vacuum provides a promising strategy to control matter at the atomic level,with important implications for the design of new two-dimensional materials having remarkable electronic,magnetic,or catalytic properties.This strategy must address the problem of limited extension of the domains due to the irreversible nature of covalent bonds,which prevents the ripening of defects.We show here that extended materials can be produced by a controlled co-deposition process.In particular,co-deposition of quinoid zwitterion molecules with iron atoms on a Ag(111) surface held at 570 K allows the formation of micrometer-sized domains based on covalent coordination bonds.This work opens up the construction of micrometer-scale single-layer covalent coordination materials under vacuum conditions.

  9. Application of ferrofluid density separation to particles in the micrometer-size range

    International Nuclear Information System (INIS)

    Strebin, R.S. Jr.; Johnson, J.W.; Robertson, D.M.

    1976-02-01

    A device designed and described by AVCO* as a ''Ferrofluid Density Separator''/sup (1)/ develops an apparent fluid density from nominally 2 to 20 g/cm 3 dependent on the magnitude of an imposed magnetic field gradient. The ferrofluid retains other normal properties of a liquid. One of these devices and a concentration series of ferrofluids were obtained in order to determine the practicality of separating groups of micrometer-size particles into density fractions. Such separations would be of enormous value in the study of various particle burdens because particles of interest are almost always diluted with overwhelming amounts of other particles. The results of a study of separations of micrometer-size particles with the ferrofluid density separator are presented

  10. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanhui [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Ding, Yi [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Shandong Applied Research Center for Gold Technology (Au-SDARC), Yantai 264005 (China)

    2011-09-15

    A sub-micrometer-thick, flexible, all-solid-state supercapacitor is fabricated. Through simultaneous realization of high dispersity of pseudocapacitance materials and quick electrode response, the hybrid nanostructures show enhanced volumetric capacitance and excellent stability, as well as very high power and energy densities. This suggests their potential as next-generation, high-performance energy conversion and storage devices for wearable electronics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VI. EROSION OF LARGE AGGREGATES AS A SOURCE OF MICROMETER-SIZED PARTICLES

    International Nuclear Information System (INIS)

    Schraepler, Rainer; Blum, Juergen

    2011-01-01

    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik pointed out for the first time the difficulty in explaining the strong mid-infrared excess of classical T Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect, the erosion halts for impact velocities up to ∼30 m s -1 within our error bars. For higher velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a next step, we build an analytical disk model and implement the experimentally found erosive effect. The model shows that erosion is a strong source of micrometer-sized particles in a protoplanetary disk. Finally, we use the stationary solution of this model to explain the amount of micrometer-sized particles in the observational infrared data of Furlan et al.

  12. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    Directory of Open Access Journals (Sweden)

    Schanila Nawaz

    Full Text Available The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.

  13. Porous micrometer-sized MnO cubes as anode of lithium ion battery

    International Nuclear Information System (INIS)

    Fan, Xiaoyong; Li, Siheng; Lu, Li

    2016-01-01

    In this study, porous micrometer-sized MnO cubes have been designed and synthesized by hydrothermal treatment followed by high temperature annealing. The pore size is controlled by changing annealing temperature in order to achieve good electrochemical performance. The cube edge length is about 10 μm and the pore size changes from mesoporous to macroporous. The presence of pores in the MnO cubes is able to accommodate the volumetric changes during electrochemical cycling, and enables electrolyte easy penetration so that to improve the electrochemical performance. The porous micrometer-sized MnO cubes prepared by hydrothermal treatment at 100 °C followed by annealing at 700 °C delivers the best long-term and rate cyclability owing to its stable porous structure serving as lithium ion rapid transfer channels and enough pore volume to accommodate volumetric changes during electrochemical cycling. The reversible capacity in the first cycle is 615.9 mAh g"−"1at 0.2 A g"−"1, slightly decreases to 404.6 mAh g"−"1 at 1.0 A g"−"1in the 6"t"h cycle and remains at 425.5 mAh g"−"1 at 1.0 A g"−"1 even after 495 cycles. The same porous micrometer-sized MnO cube electrode delivers high rate reversible specific capacities of 201.8 and 50.4 mAh g"−"1 at 5.0 and 10.0 A g"−"1 respectively.

  14. Influence of wavelength and pulse duration on peripheral thermal and mechanical damage to dentin and alveolar bone during IR laser ablation

    Science.gov (United States)

    Lee, C.; Ragadio, Jerome N.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the peripheral thermal damage produced during the laser ablation of alveolar bone and dentin for clinically relevant IR laser systems. Previous studies have demonstrated that a char layer produced around the laser incision site can inhibit the wound healing process. Moreover, in the case of dentin, a char layer is unsightly and is difficult to bond to with restorative materials. Thermal damage was assessed using polarized light microscopy for laser pulse widths from 500 ns to 300 microseconds at 2.94 micrometer and 9.6 micrometer. Water- cooling was not employed to alleviate thermal damage during the laser irradiation. At 9.6 micrometer, minimal thermal damage was observed for pulse widths on the order of the thermal relaxation time of the deposited laser energy in the tissue, 3 - 4 microseconds, and peripheral thermal damage increased with increasing pulse duration. At 2.94 micrometer, thermal damage was minimal for the Q-switched (500 ns) laser system. This study shows that 9.6 micrometer CO2 laser pulses with pulse widths of 5 - 10 microseconds are well suited for the efficient ablation of dentin and bone with minimal peripheral damage. This work was supported by NIH/NIDCR R29DE12091.

  15. Visualization data on the freezing process of micrometer-scaled aqueous citric acid drops

    Directory of Open Access Journals (Sweden)

    Anatoli Bogdan

    2017-02-01

    Full Text Available The visualization data (8 movies presented in this article are related to the research article entitled “Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid” (A. Bogdan, M.J. Molina, H. Tenhu, 2016 [1]. The movies recorded in-situ with optical cryo-miscroscopy (OC-M demonstrate for the first time freezing processes that occur during the cooling and subsequent warming of emulsified micrometer-scaled aqueous citric acid (CA drops. The movies are made publicly available to enable critical or extended analyzes.

  16. Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Albert, Magnus

    2009-01-01

    We demonstrate a general technique to achieve a precise radial displacement of the nodal line of the radiofrequency (rf) field in a linear Paul trap. The technique relies on the selective adjustment of the load capacitance of the trap electrodes, achieved through the addition of capacitors...... to the basic resonant rf circuit used to drive the trap. Displacements of up to ~100 µm with micrometer precision are measured using a combination of fluorescence images of ion Coulomb crystals and coherent coupling of such crystals to a mode of an optical cavity. The displacements are made without measurable...

  17. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  18. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  19. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    Science.gov (United States)

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  20. Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle.

    Science.gov (United States)

    Alzahrani, Khaled; Burton, David; Lilley, Francis; Gdeisat, Munther; Bezombes, Frederic; Qudeisat, Mohammad

    2012-02-27

    We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10(-5). Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

  1. Nanometer-resolution electron microscopy through micrometers-thick water layers

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Niels de, E-mail: niels.de.jonge@vanderbilt.edu [Vanderbilt University Medical Center, Department of Molecular Physiology and Biophysics, Nashville, TN 37232-0615 (United States); Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); Poirier-Demers, Nicolas; Demers, Hendrix [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada); Peckys, Diana B. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6064 (United States); University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN 37996-1605 (United States); Drouin, Dominique [Universite de Sherbrooke, Electrical and Computer Engineering, Sherbrooke, Quebec J1K 2R1 (Canada)

    2010-08-15

    Scanning transmission electron microscopy (STEM) was used to image gold nanoparticles on top of and below saline water layers of several micrometers thickness. The smallest gold nanoparticles studied had diameters of 1.4 nm and were visible for a liquid thickness of up to 3.3 {mu}m. The imaging of gold nanoparticles below several micrometers of liquid was limited by broadening of the electron probe caused by scattering of the electron beam in the liquid. The experimental data corresponded to analytical models of the resolution and of the electron probe broadening as function of the liquid thickness. The results were also compared with Monte Carlo simulations of the STEM imaging on modeled specimens of similar geometry and composition as used for the experiments. Applications of STEM imaging in liquid can be found in cell biology, e.g., to study tagged proteins in whole eukaryotic cells in liquid and in materials science to study the interaction of solid:liquid interfaces at the nanoscale.

  2. Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination

    International Nuclear Information System (INIS)

    Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T

    2015-01-01

    A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)

  3. On the laser lift-off of lightly doped micrometer-thick n-GaN films from substrates via the absorption of IR radiation in sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Voronenkov, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Virko, M. V.; Kogotkov, V. S.; Leonidov, A. A. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Pinchuk, A. V.; Zubrilov, A. S.; Gorbunov, R. I.; Latishev, F. E.; Bochkareva, N. I.; Lelikov, Y. S.; Tarkhin, D. V.; Smirnov, A. N.; Davydov, V. Y. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Sheremet, I. A. [Financial University under the Government of the Russian Federation (Russian Federation); Shreter, Y. G., E-mail: y.shreter@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The intense absorption of CO{sub 2} laser radiation in sapphire is used to separate GaN films from GaN templates on sapphire. Scanning of the sapphire substrate by the laser leads to the thermal dissociation of GaN at the GaN/sapphire interface and to the detachment of GaN films from the sapphire. The threshold density of the laser energy at which n-GaN started to dissociate is 1.6 ± 0.5 J/cm{sup 2}. The mechanical-stress distribution and the surface morphology of GaN films and sapphire substrates before and after laser lift-off are studied by Raman spectroscopy, atomic-force microscopy, and scanning electron microscopy. A vertical Schottky diode with a forward current density of 100 A/cm{sup 2} at a voltage of 2 V and a maximum reverse voltage of 150 V is fabricated on the basis of a 9-μm-thick detached n-GaN film.

  4. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  5. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands

    Directory of Open Access Journals (Sweden)

    H. Herrmann

    2009-12-01

    Full Text Available Monomethylamine (MA, dimethylamine (DMA and diethylamine (DEA were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines. This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment.

  6. Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates

    International Nuclear Information System (INIS)

    Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li

    2011-01-01

    Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  8. A scanning tunneling microscope with a scanning range from hundreds of micrometers down to nanometer resolution.

    Science.gov (United States)

    Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina

    2012-10-01

    A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.

  9. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  10. Reaching (sub-)micrometer resolution of photo-immobilized proteins using diffracted light beams

    DEFF Research Database (Denmark)

    Skovsen, Esben; Neves Petersen, Teresa; Petersen, Steffen B.

    2008-01-01

    , with dimensions as small as a few micrometers. The ultimate size of the immobilized spots is dependent on the focal area of the UV beam. The technology involves light induced formation of free, reactive thiol groups in molecules containing aromatic residues nearby disulphide bridges. It is not only limited...... to immobilizing molecules according to conventional patterns like microarrays, as any bitmap motif can virtually be used a template for patterning. We now show that molecules (proteins) can be immobilized on a surface with any arbitrary pattern according to diffraction patterns of light. The pattern of photo......-immobilized proteins reproduces the diffraction pattern of light expected with the optical setup. Immobilising biomolecules according to diffraction patterns of light will allow achievement of smaller patterns with higher resolution. The flexibility of this new technology leads to any patterns of photo...

  11. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles.

    Science.gov (United States)

    Tanaka, Takuya; Komatsu, Yoshifumi; Fujibayashi, Teruhisa; Minami, Hideto; Okubo, Masayoshi

    2010-03-16

    Micrometer-sized, monodisperse dimple and hemispherical polystyrene (PS) particles were successfully prepared by heating (55-70 degrees C) of spherical PS particles dispersed in methanol/water media (40/60 to 80/20, w/w) in the presence of decane droplets, and subsequent cooling down to room temperature. Decane was absorbed by the PS particles during the heating process. Decane-absorbed PS particles phase-separated into PS and decane phases in the inside during the cooling process, and eventually dimple and/or hemispherical particles were formed by removal of the decane phase from phase-separated PS/decane particles by evaporation. The size of the dimple, which is determined by the volume of decane phase-separated from decane-absorbed PS particles during the cooling process, increased with increases in the heating temperature and the methanol content.

  12. A Convenient and Templated Method for the Fabrication of Monodisperse Micrometer Hollow Titania Spheres

    Directory of Open Access Journals (Sweden)

    Haibo Yao

    2013-01-01

    Full Text Available A simple and widely applicable methodology was presented to synthesize monodisperse micrometer hollow titania spheres (HTS based on the templating method. It was performed by using the preformed poly(styrene-acrylic acid (PSA as template spheres which was mixed with tetrabutyltitanate (TBOT in an ethanol solvent under steam treatment. The HTS which were obtained by the calcination of PSA/TiO2 composite core-shell spheres had a narrow particle size distribution and commendable surface topography characterized by SEM. The calcined HTS at 500°C displayed crystalline reflection peaks that were characteristic to the anatase phase by XRD. Moreover, some key influencing factors including TBOT concentration and reaction time were analyzed. As expected, the diameter of HTS could be readily controlled by altering the size of PSA template spheres. In addition, the approach was also applied to fabricate hollow zirconia spheres and other inorganic spheres.

  13. Non-destructive identification of micrometer-scale minerals and their position within a bulk sample

    DEFF Research Database (Denmark)

    Sørensen, Henning O.; Hakim, Sepide S.; Pedersen, Stefan

    2012-01-01

    . Crushing or disintegrating a sample annihilates any possibility for gathering information from the texture of the porous media or the mineral assemblage close to the grains in question. A new method using three-dimensional X-ray diffraction (3DXRD) microscopy can be successfully applied to natural...... materials. We combined X-ray microtomography (XMT) and 3DXRD to investigate a sample of very fine-grained chalk containing fracture minerals. The XMT technique provides three-dimensional images of the particles and pore structure at very high resolution (350 nm voxel dimension) on samples less than 500 μm......Using the conventional techniques of mineralogy, it has been a challenge to determine mineral identity, crystal orientation and spatial position of micrometer-sized crystals that are embedded in a rock, sediment or soil. Traditionally, the individual grains must be extracted and analyzed separately...

  14. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1979-01-01

    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  15. Pose measurement method with six parameters for microassembly based on an optical micrometer

    Science.gov (United States)

    Ye, Xin; Wang, Qiang; Zhang, Zhi-jing; Sun, Yuan; Zhang, Xiao-feng

    2009-07-01

    This paper presents a new pose measurement method of microminiature parts that is capable of transforming one dimension (1D) contour size obtained by optical micrometer to three dimension (3D) data with six parameters for microassembly. Pose measurement is one of the most important processes for microminiature parts' alignment and insertion in microassembly. During the past few years, researchers have developed their microassembly systems focusing on visual identification to obtain two or three dimension data with no more than three parameters. Scanning electronic microscope (SEM), optical microscope, and stereomicroscope are applied in their systems. However, as structures of microminiature parts become increasingly complex, six parameters to represent their position and orientation are specifically needed. Firstly, The pose measurement model is established based on the introduction of measuring objects and measuring principle of optical micrometer. The measuring objects are microminiature parts with complex 3D structure. Two groups of two dimension (2D) data are gathered at two different measurement positions. Then part pose with 6 parameters is calculated, including 3 position parameters of feature point of the part and 3 orientation parameters of the part axis. Secondly, pose measurement process for a small shaft, vertical orientation determination, and position parameters obtaining are presented. 2D data is gathered by scanning the generatrix of the part, and valid data is extracted and saved in arrays. A vertical orientation criterion is proposed to determine whether the part is parallel to the Z-axis of the coordinate. If not, 2D data will be fixed into a linear equation using least square algorithm. Then orientation parameters are calculated. Center of Part End (CPE) is selected as feature point of the part, and its position parameters are extracted form two group of 2D data. Finally, a fast pose measurement device is developed and representative

  16. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  17. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  18. Attenuation on an Earth-space path measured in the wavelength range of 8 to 14 micrometers.

    Science.gov (United States)

    Wilson, R W

    1970-06-19

    A telescope operating over the wavelength range of 8 to 14 micrometers has been added to the Crawford Hill sun tracker for the purpose of measuring attenuation in that atmospheric window. Over a 9-month period the attenuation (typically from clouds) exceeded 10, 20, and 30 decibels for 48, 43, and 34 percent of the time.

  19. Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars - A natural laser

    Science.gov (United States)

    Mumma, M. J.; Buhl, D.; Chin, G.; Deming, D.; Espenak, F.; Kostiuk, T.; Zipoy, D.

    1981-01-01

    Fully resolved intensity profiles of various lines in the carbon dioxide band at 10.4 micrometers have been measured on Mars with an infrared heterodyne spectrometer. Analysis of the line shapes shows that the Mars atmosphere exhibits positive gain in these lines. The detection of natural optical gain amplification enables identification of these lines as a definite natural laser.

  20. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    Science.gov (United States)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a

  1. Climate Prediction Center IR 4km Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  2. Fabrication of Micrometer- and Nanometer-Scale Polymer Structures by Visible Light Induced Dielectrophoresis (DEP Force

    Directory of Open Access Journals (Sweden)

    Wen J. Li

    2011-12-01

    Full Text Available We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional (3D polymer structures using visible light sources instead of ultra-violet (UV light sources or lasers. This method also does not require the conventional micro-photolithographic technique (i.e., photolithographic masks for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: (1 any cross-linked network of photoactive polymers (examples of fabricated poly(ethylene glycol (PEG-diacrylate hydrogel structures are shown in this paper; (2 an Optically-induced Dielectrophoresis (ODEP System which includes an “ODEP chip” (i.e., any chip that changes its surface conductivity when exposed to visible light, an optical microscope, a projector, and a computer; and (3 an animator software hosted on a computer that can generate virtual or dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution inside the microfluidic platform formed by the “ODEP chip” bonded to another substrate, and applying an alternating current (a.c. electrical potential across the polymer solution (typically ~20 Vp-p at 10 kHz, solid polymer micro/nano structures can then be formed on the “ODEP chip” surface when visible-light is projected onto the chip. The 2D lateral geometry (x and y dimensions and the thickness (height of the micro/nano structures are dictated by the image geometry of the visible light projected onto the “ODEP chip” and also the time duration of projection. Typically, after an image projection with intensity ranging from ~0.2 to 0.4 mW/cm2 for 10 s, ~200 nm high structures can be formed. In our current system, the thickness of these polymer structures can be controlled to form from ~200 nanometers to ~3

  3. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  4. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  5. Modelling of the 10-micrometer natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Deming, D.; Mumma, M. J.

    1983-01-01

    The NLTE radiative transfer problem is solved to obtain the 00 deg 1 vibrational state population. This model successfully reproduces the existing center-to-limb observations, although higher spatial resolution observations are needed for a definitive test. The model also predicts total fluxes which are close to the observed values. The strength of the emission is predicted to be closely related to the instantaneous near-IR solar heating rate.

  6. Distribution analysis of thermal effusivity for sub-micrometer YBCO thin films using thermal microscope

    International Nuclear Information System (INIS)

    Yagi, T.; Taketoshi, N.; Kato, H.

    2004-01-01

    Thermal effusivity measurements have been carried out for sub-micrometer YBCO superconducting films using thermal microscope based upon thermoreflectance technique. Two samples were prepared: c-axis aligned YBCO thin films with 800 nm in thickness synthesized on MgO and SrTiO 3 substrates. Measured thermal effusivities perpendicular to the surface, i.e. in parallel with c-axis were determined to be 1770 J/m 2 s 0.5 K on MgO substrate and 1420 J/m 2 s 0.5 K for that on SrTiO 3 substrate, respectively. The scatter of the measurements is estimated to be lower than ±5.2%. These values are consistent with reported values of YBCO single crystal in the direction of c-axis. In addition, 2D profiling image, that is, in-plane distribution of thermal effusivity was well obtained for the YBCO film on MgO substrate by operating this thermal microscope in a scanning mode. Its standard deviation of the in-plane thermal effusivity scattering due to the non-uniformity is evaluated to be ±5.7%

  7. Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus

    International Nuclear Information System (INIS)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M.J.

    1983-06-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T 204 + or - 10 K

  8. Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA-Protein Nanostructures.

    Science.gov (United States)

    Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander

    2017-07-25

    Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.

  9. A simple indentation device for measuring micrometer-scale tissue stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Levental, I; Levental, K R; Janmey, P A [Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Klein, E A; Assoian, R [Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Miller, R T [Departments of Medicine and Physiology, Louis Stokes VAMC, Cleveland, OH (United States); Wells, R G, E-mail: janmey@mail.med.upenn.ed [Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2010-05-19

    Mechanical properties of cells and extracellular matrices are critical determinants of function in contexts including oncogenic transformation, neuronal synapse formation, hepatic fibrosis and stem cell differentiation. The size and heterogeneity of biological specimens and the importance of measuring their mechanical properties under conditions that resemble their environments in vivo present a challenge for quantitative measurement. Centimeter-scale tissue samples can be measured by commercial instruments, whereas properties at the subcellular (nm) scale are accessible by atomic force microscopy, optical trapping, or magnetic bead microrheometry; however many tissues are heterogeneous on a length scale between micrometers and millimeters which is not accessible to most current instrumentation. The device described here combines two commercially available technologies, a micronewton resolution force probe and a micromanipulator for probing soft biological samples at sub-millimeter spatial resolution. Several applications of the device are described. These include the first measurement of the stiffness of an intact, isolated mouse glomerulus, quantification of the inner wall stiffness of healthy and diseased mouse aortas, and evaluation of the lateral heterogeneity in the stiffness of mouse mammary glands and rat livers with correlation of this heterogeneity with malignant or fibrotic pathology as evaluated by histology.

  10. Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.

  11. Ballistic magnetoresistance of electrodeposited nanocontacts in thin film and micrometer wire gaps

    International Nuclear Information System (INIS)

    Garcia, N.; Cheng, H.; Wang, H.; Nikolic, N.D.; Guerrero, C.A.; Papageorgopoulos, A.C.

    2004-01-01

    In this paper, we review the recent advances and progress in ballistic magnetoresistance (BMR) in magnetic nanocontacts electrodeposited in thin films and micrometer gaps. We report the influence of magnetostriction in the measurements under different configurations and substrates, as well as the contribution of the magnetic material forming the contacts. To avoid the magnetostriction effect, we have fabricated magnetic nanocontacts in Cu wires and Cu films. Similar BMR results can be observed in these systems. Our results show that the BMR effect should depend on the microproperties of the nanocontacts and should not be related with the macroproperties of the electrodes. The magnetostriction results, measured by an atomic force microscopy system with a built-in electromagnet, clearly show that there is no direct relationship between the displacement (caused by the magnetostriction effect) and the value of BMR. In fact, we present large magnetoresistance values for permalloy, coinciding with displacements in the latter's structure less than 1 nm, which is the smallest clearly observable shift allowed by our atomic force microscope. Repetitions of hundreds of R(H) curves are presented for different materials with different coercive fields. The interpretation of the results is based on the formation of an interfacial transparent layer (non-stoichiometric oxide, sulfur, etc.) at the nanocontact where the theory can explain large magnetoresistance values

  12. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale.

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F Jackson

    2015-08-21

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr(+) ions. For light bosons (mass≤0.1  eV) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |g(A)(e)g(A)(e)/4πℏc|≤1.2×10(-17). Assuming CPT invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  13. GAUGE R&R FOR AN OPTICAL MICROMETER INDUSTRIAL TYPE MACHINE

    Directory of Open Access Journals (Sweden)

    Georgia A. Louka

    2010-12-01

    Full Text Available The measurement of the uncertainty of a metric system, as 'Gauge R&R' and the collation of results between the Xbar & R and the ANOVA method, are extended in this essay. In an academic school laboratory we accomplished a sequence of measurements with the use of an Optical Micrometer Industrial Type Machine (MUL 300. This paper analyzes the measurement system that used in the laboratory and checks the reasons of the variability's provocation that observed in the machine, between the theoretical calculations and measurements. In order to find out this problem, we will use the 'Gage Repeatability and Reproducibility' technique of Measurement System Analysis (M.S.A.. This technique uses analysis of variance. In addition, will use Minitab program in order to find out the factors that we have in the whole experiment as enlarge the problem of measurements. In this paper, a statistical method using the correlation between Gage R&R and process capability indices is proposed for evaluating the adequacy of the acceptance criteria of P/T ratio. Finally, a comparative analysis has also been performed for evaluating the accuracy of Gage R&R between two methods (ANOVA and R- Xbar method. Hopefully, the results of this research can provide a useful reference for quality practitioners in various industries.

  14. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    Science.gov (United States)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  15. Micrometer sized immobilization of protein molecules onto quartz, silicium and gold.

    Science.gov (United States)

    Petersen, Steffen B.; Neves-Petersen, Maria Teresa; Klitgaard, Søren; Duroux, Meg Crookshanks

    2006-02-01

    We demonstrate that ultraviolet light can be used to make sterically oriented covalent immobilization of a large variety of protein molecules onto either gold or thiolated quartz or silicium. The reaction mechanism behind the reported new technology involves light induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol reactive surfaces. The protein molecules in general retain their function. The size of the immobilization spot is determined by the dimension of the UV beam. In principle, the spot size may be as small as 1 micrometer or less. We have developed the necessary technology for preparing large protein arrays of enzymes and fragments of monoclonal antibodies. Dedicated Image Processing Software has been developed for making quality assessment of the protein arrays. A multitude of important application areas such as drug carriers and drug delivery, bioelectronics, carbon nanotubes, nanoparticles as well as protein glue are discussed.

  16. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups

    Science.gov (United States)

    van der Wel, Casper; van de Stolpe, Guido L.; Verweij, Ruben W.; Kraft, Daniela J.

    2018-03-01

    Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.

  17. Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene.

    Science.gov (United States)

    Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; Son, Young-Woo; Park, Yeonggu; Lee, Mi Jung; Byun, Ik-Su; Kim, Jin-Soo; Choi, Choon-Gi; Bostwick, Aaron; Rotenberg, Eli; Park, Bae Ho

    2014-12-01

    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzag directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. The correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.

  18. Modeling Transport of Cesium in Grimsel Granodiorite With Micrometer Scale Heterogeneities and Dynamic Update of Kd

    Science.gov (United States)

    Voutilainen, Mikko; Kekäläinen, Pekka; Siitari-Kauppi, Marja; Sardini, Paul; Muuri, Eveliina; Timonen, Jussi; Martin, Andrew

    2017-11-01

    Transport and retardation of cesium in Grimsel granodiorite taking into account heterogeneity of mineral and pore structure was studied using rock samples overcored from an in situ diffusion test at the Grimsel Test Site. The field test was part of the Long-Term Diffusion (LTD) project designed to characterize retardation properties (diffusion and distribution coefficients) under in situ conditions. Results of the LTD experiment for cesium showed that in-diffusion profiles and spatial concentration distributions were strongly influenced by the heterogeneous pore structure and mineral distribution. In order to study the effect of heterogeneity on the in-diffusion profile and spatial concentration distribution, a Time Domain Random Walk (TDRW) method was applied along with a feature for modeling chemical sorption in geological materials. A heterogeneous mineral structure of Grimsel granodiorite was constructed using X-ray microcomputed tomography (X-μCT) and the map was linked to previous results for mineral specific porosities and distribution coefficients (Kd) that were determined using C-14-PMMA autoradiography and batch sorption experiments, respectively. After this the heterogeneous structure contains information on local porosity and Kd in 3-D. It was found that the heterogeneity of the mineral structure on the micrometer scale affects significantly the diffusion and sorption of cesium in Grimsel granodiorite at the centimeter scale. Furthermore, the modeled in-diffusion profiles and spatial concentration distributions show similar shape and pattern to those from the LTD experiment. It was concluded that the use of detailed structure characterization and quantitative data on heterogeneity can significantly improve the interpretation and evaluation of transport experiments.

  19. Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    CERN Document Server

    Andricek, L; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tunability, charge collection, cluster sizes and hit efficiencies. Targeting at ...

  20. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  1. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  2. Hermann agreement updates IRS guidelines for incentives.

    Science.gov (United States)

    Broccolo, B M; Peregrine, M W

    1995-01-01

    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  3. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  4. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  5. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    Science.gov (United States)

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  6. Teaching IR to Medical Students: A Call to Action.

    Science.gov (United States)

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  7. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  8. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  9. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  10. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...

  11. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  12. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  13. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  14. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje

    OpenAIRE

    Vijeikis, Juozas; Makštutis, Antanas

    2009-01-01

    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  15. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  16. Micromanipulation and pick-up system for X-Ray diffraction characterization of micrometer-sized single particles

    International Nuclear Information System (INIS)

    Takeichi, Y; Inami, N; Saito, K; Otori, H; Sagayama, R; Kumai, R; Ono, K; Ueno, T

    2014-01-01

    We describe a micromanipulation and pick-up system for preparing a micrometer-sized single particle for X-ray diffraction characterization. Combining a microgripper based on microelectromechanical systems, piezo-motor-driven linear stages, and a gamepad, the system provides precise and intuitive handling of the object. Single-crystal X-ray diffraction measurements of Sm-Fe-N permanent magnet were performed using this system. We also describe a method to distinguish crystallographically homogeneous particles found in powder-form samples.

  17. New target for high-intensity laser-matter interaction: Gravitational flow of micrometer-sized powders

    International Nuclear Information System (INIS)

    Servol, M.; Quere, F.; Bougeard, M.; Monot, P.; Martin, Ph.; Faenov, A.Ya; Pikuz, T.A.; Audebert, P.; Francucci, M.; Petrocelli, G.

    2005-01-01

    The design of efficient targets for high-intensity laser-matter interaction is essential to fully exploit the advantages of laser-induced photons or particles sources. We present an advantageous kind of target, consisting in a free gravitational flow of micrometer-sized powder, and describe its main technical characteristics. We demonstrate a laser-induced keV x-ray source using this target, and show that the photon flux obtained for the Kα line of Si by irradiating different silica powders is comparable to the one obtained with a bulk silica target

  18. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  19. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    Science.gov (United States)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the

  20. Vartotojų lojalumas : formavimas ir valdymas

    OpenAIRE

    Zikienė, Kristina

    2010-01-01

    Vienas iš esminių daugelio organizacijų tikslų, garantuojančių tolesnį sėkmingą konkuravimą nuolat besikeičiančiame verslo pasaulyje, yra vartotojų lojalumo įgijimas ir išlaikymas. Įvairios lojalumo formavimo ir valdymo problemos plačiai ir detaliai analizuojamos šioje mokomojoje knygoje. Knyga pradedama vartotojų lojalumo analize marketingo mokslo raidos kontekste. Tolesnis dėmesys skiriamas vartotojų lojalumo vadybinio aspekto analizei, atskleidžiant vartotojų lojalumo koncepcijos teorines ...

  1. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  2. Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals

    International Nuclear Information System (INIS)

    Guo Shaojun; Wang Yuling; Wang Erkang

    2007-01-01

    Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl 4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (∼25 nm)

  3. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  4. High Power Mid-IR Semiconductor Lasers for LADAR

    National Research Council Canada - National Science Library

    Lester, Luke

    2003-01-01

    The growing need for antimonide-based, room temperature, 2-5 micrometers, semiconductor lasers for trace gas spectroscopy, ultra-low loss communication, infrared countermeasures, and ladar motivated this work...

  5. Activity uniformity of Ir-192 seeds

    International Nuclear Information System (INIS)

    Ling, C.C.; Gromadzki, Z.C.

    1981-01-01

    A simple device that uses materials and apparatus commonly available in a radiotherapy department has been designed, fabricated and used in routine quality control relative to the activity uniformity of clinical Ir-192 seeds in ribbons. Detailed evaluation indicated that this system is easy to use and can yield relative activity measurements of individual Ir-192 seeds accurate to within 2%. With this device, activity uniformity of commercial Ir-192 seeds from two manufacturers has been assessed. For the seven shipments of Ir-192 seeds studied, the root mean square variations of individual seed strength from the average of each shipment ranged from 3.4 to 7.1%. Variation in seed activity by more than +- 10% from the average is not uncommon

  6. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  7. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  8. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.

    Science.gov (United States)

    Fujii, Syuji; Matsuzawa, Soichiro; Hamasaki, Hiroyuki; Nakamura, Yoshinobu; Bouleghlimat, Azzedine; Buurma, Niklaas J

    2012-02-07

    A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully

  9. Influence of Solar-Geomagnetic Disturbances on SABER Measurements of 4.3 Micrometer Emission and the Retrieval of Kinetic Temperature and Carbon Dioxide

    Science.gov (United States)

    Mertens, Christopher J.; Winick, Jeremy R.; Picard, Richard H.; Evans, David S.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Xu, Xiaojing; Mlynczak, Martin G.; Russell, James M., III

    2008-01-01

    Thermospheric infrared radiance at 4.3 micrometers is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO(+) (i.e., NO(+)(v)) and subsequent 4.3 micrometer emission in the ionospheric E-region. Large enhancements of nighttime 4.3 m emission were observed by the TIMED/SABER instrument during the April 2002 and October-November 2003 solar storms. Global measurements of infrared 4.3 micrometer emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO(+) concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 micrometer emission observed from SABER and assess the impact of NO(+)(v) 4.3 micrometer emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.

  10. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing

    International Nuclear Information System (INIS)

    Yan, Wensheng; Gu, Min; Cumming, Benjamin P

    2015-01-01

    Micrometer-sized parabolic mirror arrays have significant applications in both light emitting diodes and solar cells. However, low fabrication throughput has been identified as major obstacle for the mirror arrays towards large-scale applications due to the serial nature of the conventional method. Here, the mirror arrays are fabricated by using a parallel laser direct-write processing, which addresses this barrier. In addition, it is demonstrated that the parallel writing is able to fabricate complex arrays besides simple arrays and thus offers wider applications. Optical measurements show that each single mirror confines the full-width at half-maximum value to as small as 17.8 μm at the height of 150 μm whilst providing a transmittance of up to 68.3% at a wavelength of 633 nm in good agreement with the calculation values. (paper)

  11. Sub-micrometer-scale patterning on Zr-based metallic glass using focused ion beam irradiation and chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Kawasegi, Noritaka [Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Morita, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Yamada, Shigeru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Takano, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Oyama, Tatsuo [Department of Mechanical and Intellectual Systems Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ashida, Kiwamu [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Momota, Sadao [Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, 185 Tosayamada, Kochi 782-8502 (Japan); Taniguchi, Jun [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Miyamoto, Iwao [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Ofune, Hitoshi [YKK Corporation, 200 Yoshida, Kurobe, Toyama 938-8601 (Japan)

    2007-09-19

    This report describes a method of sub-micrometer-scale rapid patterning on a Zr-based metallic glass surface using a combination of focused ion beam irradiation and wet chemical etching. We found that a Zr-based metallic glass surface irradiated with Ga{sup +} ions could be selectively etched; a concave structure with a width and depth of several tens to hundreds of nanometers rapidly formed in the irradiated area. Moreover, we determined that the etching was enhanced by the presence of Ga{sup +} ions rather than a change in the crystal structure, and the structure could be fabricated while the substrate remained amorphous. The shape of the structure was principally a function of the dose and the etch time.

  12. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  13. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  14. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  15. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  16. Kas netilpo tarp politikos ir diplomatijos?

    OpenAIRE

    Streikus, Arūnas

    2008-01-01

    The review analyzes A. Kasparavičius’s monograph “Tarp Politikos ir Diplomatijos: Šventasis Sostas ir Lietuvos Respublika” (Vilnius, 2008). The historiographic value of the study is undisputed. A. Kasperavičius had an opportunity to use a broad spectrum of sources, among which two sets of archive documents stand out: the funds of the archives of Ministry of Foreign Affairs of Lithuania and the Lithuanian Embassy under the Holy See in Rome. A. Kasparavičius managed to avoid the arid scientific...

  17. Elecciones Legislativas en Irán

    Directory of Open Access Journals (Sweden)

    José Antonio Sainz de la Peña

    2012-05-01

    Full Text Available Las elecciones legislativas en Irán, una vez eliminados los reformistas se han celebrado en un clima de rivalidad. Las elecciones tenían que dejar claro quién mandaba en Irán, si los clérigos y el Guía el ayatolá Seyed Ali Jamenei o, el Presidente de la República, el laico Mahmud Ahmadineyad, apoyado en el Cuerpo de Guardias Revolucionarios. La realidad ha sido que las facciones conservadoras encabezadas por el Frente Unido Principalista, apoyados por el Guía Supremo, han obtenido el triunfo.

  18. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  19. TIJAH: Embracing IR Methods in XML Databases

    NARCIS (Netherlands)

    List, Johan; Mihajlovic, V.; Ramirez, Georgina; de Vries, A.P.; Hiemstra, Djoerd; Blok, H.E.

    2005-01-01

    This paper discusses our participation in INEX (the Initiative for the Evaluation of XML Retrieval) using the TIJAH XML-IR system. TIJAH's system design follows a `standard' layered database architecture, carefully separating the conceptual, logical and physical levels. At the conceptual level, we

  20. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael

    2005-01-01

    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  1. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  2. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  3. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  4. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.

    2007-01-01

    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  5. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  6. Vernier Caliper and Micrometer Computer Models Using Easy Java Simulation and Its Pedagogical Design Features--Ideas for Augmenting Learning with Real Instruments

    Science.gov (United States)

    Wee, Loo Kang; Ning, Hwee Tiang

    2014-01-01

    This paper presents the customization of Easy Java Simulation models, used with actual laboratory instruments, to create active experiential learning for measurements. The laboratory instruments are the vernier caliper and the micrometer. Three computer model design ideas that complement real equipment are discussed. These ideas involve (1) a…

  7. Detección de micrometástasis de carcinoma de colon en ganglios linfáticos

    Directory of Open Access Journals (Sweden)

    A. Roma

    2003-10-01

    Full Text Available En el carcinoma colorrectal la diseminación a los ganglios linfáticos es un factor pronóstico reconocido. La presencia de ganglios linfáticos con micrometástasis en muchos casos no puede ser detectada por técnicas rutinarias. Se estudiaron prospectivamente 162 ganglios linfáticos de 30 pacientes con carcinoma de colon, los cuales según los resultados de las técnicas rutinarias fueron clasificados como Dukes A (2, Dukes B (19 y Dukes C (9. Un paciente con enfermedad colónica benigna se uso como control negativo. Todos los ganglios se seccionaron en mitades, una de las cuales se almacenó en nitrógeno líquido para su ulterior estudio por técnicas de biología molecular, mediante la expresión del antígeno carcinoembrionario (CEA. La otra mitad fue fijada en formaldehído e incluida en parafina para su estudio anatomopatológico e inmunohistoquímico. Del total de los casos se detectó un aumento del 50% de la sensibilidad en la detección de micrometástasis mediante la reacción en cadena de la polimerasa con transcriptasa reversa (RT-PCR para los Dukes A-B y se detectó la expresión de dicho antígeno en el total de los casos Dukes C. Estos resultados evidencian una mayor sensibilidad en la detección de micrometástasis utilizando RT-PCR en comparación con las técnicas rutinarias, incluyendo la inmunohistoquímica.Dissemination of lymph nodes is a known prognostic factor in colorectal carcinoma. Micrometastases in lymph nodes can be missed when studied by routine techniques. We analyzed 162 lymph nodes from 30 patients with colonic carcinoma and using routine techniques, they were classified as follows: two Dukes A; nineteen Dukes B; and nine Dukes C. A patient with benign colon disease served as negative control. Lymph nodes were all sectioned in halves, with one of the halves stored in liquid nitrogen for molecular biology examination by carcinoembryonic antigen expression. The other formalin-fixed and paraffin embedded

  8. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  9. Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing

    Science.gov (United States)

    Wang, Yu; Wu, Zhijun; Ma, Nan; Wu, Yusheng; Zeng, Limin; Zhao, Chunsheng; Wiedensohler, Alfred

    2018-02-01

    The take-up of water of aerosol particles plays an important role in heavy haze formation over North China Plain, since it is related with particle mass concentration, visibility degradation, and particle chemistry. In the present study, we investigated the size-resolved hygroscopic growth factor (HGF) of sub-micrometer aerosol particles (smaller than 350 nm) on a basis of 9-month Hygroscopicity-Tandem Differential Mobility Analyzer measurement in the urban background atmosphere of Beijing. The mean hygroscopicity parameter (κ) values derived from averaging over the entire sampling period for particles of 50 nm, 75 nm, 100 nm, 150 nm, 250 nm, and 350 nm in diameters were 0.14 ± 0.07, 0.17 ± 0.05, 0.18 ± 0.06, 0.20 ± 0.07, 0.21 ± 0.09, and 0.23 ± 0.12, respectively, indicating the dominance of organics in the sub-micrometer urban aerosols. In the spring, summer, and autumn, the number fraction of hydrophilic particles increased with increasing particle size, resulting in an increasing trend of overall particle hygroscopicity with enhanced particle size. Differently, the overall mean κ values peaked in the range of 75-150 nm and decreased for particles larger than 150 nm in diameter during wintertime. Such size-dependency of κ in winter was related to the strong primary particle emissions from coal combustion during domestic heating period. The number fraction of hydrophobic particles such as freshly emitted soot decreased with increasing PM2.5 mass concentration, indicating aged and internal mixed particles were dominant in the severe particulate matter pollution. Parameterization schemes of the HGF as a function of relative humidity (RH) and particle size between 50 and 350 nm were determined for different seasons and pollution levels. The HGFs calculated from the parameterizations agree well with the measured HGFs at 20-90% RH. The parameterizations can be applied to determine the hygroscopic growth of aerosol particles at ambient conditions for the area

  10. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  11. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  12. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer - Sized SiO{sub 2} Particle - Reinforced Epoxy Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyu Sang; Kang, Hee Yong; Lee, Gyo Woo [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-02-15

    In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix.

  13. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer - Sized SiO2 Particle - Reinforced Epoxy Composites

    International Nuclear Information System (INIS)

    Jo, Hyu Sang; Kang, Hee Yong; Lee, Gyo Woo

    2015-01-01

    In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix

  14. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement

    International Nuclear Information System (INIS)

    Lin, J C; Chang, T K; Yang, J H; Jeng, J H; Lee, D L; Jiang, S B

    2009-01-01

    Micrometer Ni–Cu alloy columns have been fabricated by the micro-anode-guided electroplating (MAGE) process in the citrate bath. The surface morphology and chemical composition of the micro-columns were determined by copper concentration in the bath and by the electrical bias of MAGE. When fabricated in a bath of dilute copper (i.e. 4 mM) at lower voltages (e.g. 3.8 and 4.0 V), the alloy micro-columns revealed uniform diameter and smooth appearance. The alloy composition demonstrated an increase in the wt% ratio of Ni/Cu from 75/25, 80/20, 83/17 to 87/13 with increasing electrical bias from 3.8, 4.0, 4.2 to 4.4 V. However, it decreases from 75/25, 57/43 to 47/53 with increasing copper concentration from 4, 8 to 12 mM in the bath. Citrate plays a role in forming complexes with nickel and copper at similar reduction potentials, thus reducing simultaneously to Ni–Cu alloy. The mechanism for fabricating alloy micro-columns could be delineated on the basis of cathodic polarization of the complexes. A couple of micro-columns were fabricated using MAGE in constructing a pure copper micro-column on the top of a Ni/Cu (at 47/53) alloy micro-column. This micro-thermocouple provides a satisfactory measurement with good sensitivity and precision

  15. Introducing micrometer-sized artificial objects into live cells: a method for cell-giant unilamellar vesicle electrofusion.

    Directory of Open Access Journals (Sweden)

    Akira C Saito

    Full Text Available Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC field to induce a linear cell-GUV alignment, and then a direct current (DC pulse was applied to facilitate transient electrofusion. With uniformly sized fluorescent beads as size indexes, we successfully and efficiently introduced beads of 1 µm in diameter into living cells along with a plasmid mammalian expression vector. Our electrofusion did not affect cell viability. After the electrofusion, cells proliferated normally until confluence was reached, and the introduced fluorescent beads were inherited during cell division. Analysis by both confocal microscopy and flow cytometry supported these findings. As an alternative approach, we also introduced a designed nanostructure (DNA origami into live cells. The results we report here represent a milestone for designing artificial symbiosis of functionally active objects (such as micro-machines in living cells. Moreover, our technique can be used for drug delivery, tissue engineering, and cell manipulation.

  16. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers

    International Nuclear Information System (INIS)

    Skotak, Maciej; Ragusa, Jorge; Gonzalez, Daniela; Subramanian, Anuradha

    2011-01-01

    Gelatin-based nanofibrous scaffolds with a mean fiber diameter of 300 nm were prepared with and without micrometer-sized polyethylene glycol (PEG) fibers that served as sacrificial templates. Upon fabrication of the scaffolds via electrospinning, the gelatin fibers were crosslinked with glutaraldehyde, and the PEG templates were removed using tert-butanol to yield nanofibrous scaffolds with pore diameters ranging from 10 to 100 μm, as estimated with mercury intrusion porosimetry. Non-templated gelatin-based nanofibrous matrices had an average pore size of 1 μm. Fibroblasts were seeded onto both types of the gelatin-based nanofibrous surfaces and cultured for 14 days. For comparative purposes, chitosan-based and polyurethane-based macroporous scaffolds with pore sizes of 100 and 170 μm, respectively, were also included. The number of cells as a function of the depth into the scaffold was judged and quantitatively assessed using nuclei staining. Cell penetration up to a depth of 250 and 90 μm was noted in gelatin scaffolds prepared with sacrificial templates and gelatin-only nanofibrous scaffolds. Noticeably, scaffold preparation protocol presented here allowed the structural integrity to be maintained even with high template content (95%) and can easily be extended toward other classes of electrospun polymer matrices for tissue engineering.

  17. Aerodynamic Factors Responsible for the Deaggregation of Carrier-Free Drug Powders to form Micrometer and Submicrometer Aerosols

    Science.gov (United States)

    Longest, P. Worth; Son, Yoen-Ju; Holbrook, Landon; Hindle, Michael

    2013-01-01

    Purpose The objective of this study was to employ in vitro experiments combined with computational fluid dynamics (CFD) analysis to determine which aerodynamic factors were most responsible for deaggregating carrier-free powders to form micrometer and submicrometer aerosols from a capsule-based platform. Methods Eight airflow passages were evaluated for deaggregation of the aerosol including a standard constricted tube, impaction surface, 2D mesh, inward radial jets, and newly proposed 3D grids and rod arrays. CFD simulations were implemented to evaluate existing and new aerodynamic factors for deaggregation and in vitro experiments were used to evaluate performance of each inhaler. Results For the carrier-free formulation considered, turbulence was determined to be the primary deaggregation mechanism. A strong quantitative correlation was established between the mass median diameter (MMD) and newly proposed non-dimensional specific dissipation (NDSD) factor, which accounts for turbulent energy, inverse of the turbulent length scale, and exposure time. A 3D rod array design with unidirectional elements maximized NDSD and produced the best deaggregation with MMD<1μm. Conclusions The new NDSD parameter can be used to develop highly effective dry powder inhalers like the 3D rod array that can efficiently produce submicrometer aerosols for next-generation respiratory drug delivery applications. PMID:23471640

  18. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    Science.gov (United States)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  19. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale.

    Science.gov (United States)

    van Rheenen, Jacco; Jalink, Kees

    2002-09-01

    Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) at the inner leaflet of the plasma membrane has been proposed to locally regulate the actin cytoskeleton. Indeed, recent studies that use GFP-tagged pleckstrin homology domains (GFP-PH) as fluorescent PIP(2) sensors suggest that this lipid is enriched in membrane microdomains. Here we report that this concept needs revision. Using three distinct fluorescent GFP-tagged pleckstrin homology domains, we show that highly mobile GFP-PH patches colocalize perfectly with various lipophilic membrane dyes and, hence, represent increased lipid content rather than PIP(2)-enriched microdomains. We show that bright patches are caused by submicroscopical folds and ruffles in the membrane that can be directly visualized at approximately 15 nm axial resolution with a novel numerically enhanced imaging method. F-actin motility is inhibited significantly by agonist-induced PIP(2) breakdown, and it resumes as soon as PIP(2) levels are back to normal. Thus, our data support a role for PIP(2) in the regulation of cortical actin, but they challenge a model in which spatial differences in PIP(2) regulation of the cytoskeleton exist at a micrometer scale.

  20. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  1. Development of Kossel micro-diffraction for strain and stress analysis at the micrometer scale: applications to crystalline materials

    International Nuclear Information System (INIS)

    Bouscaud, D.

    2012-01-01

    X-ray diffraction is a non-destructive method frequently used in materials science to analyse the stress state at a macroscopic scale. Due to the growing complexity of new materials and their applications, it is necessary to know the strain and stress state at a lower scale. Thus, a Kossel micro-diffraction experimental set-up was developed inside a scanning electron microscope. It allows to obtain the crystallographic orientation as well as the strains and stresses within a volume of a few cubic micrometers. Some experiments were also performed using a synchrotron radiation. An experimental procedure was developed to optimize the acquisition of Kossel line patterns and their post-processing. The stress calculation from Kossel patterns was validated by comparing the stress state of single crystals during in situ mechanical loading, obtained by Kossel micro-diffraction and with classical diffraction methods. Then Kossel micro-diffraction was applied to polycrystalline samples by gradually decreasing the grain size. Intergranular stress heterogeneities were for example measured in an interstitial-free steel. Experiments were finally carried out in thin layer samples representative of microelectronic components. (author)

  2. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  3. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  4. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  5. Development of pixellated Ir-TESs

    Science.gov (United States)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-04-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.

  6. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-01-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  7. Development of Ir/Au-TES microcalorimeter

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Fukuda, Daiji; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Ataka, Manabu; Ohkubo, Masataka; Hirayama, Fuminori

    2004-01-01

    We are developing X-ray microcalorimeters using transition edge sensors (TES) for high resolution x-ray spectroscopy. Microcalorimeters are thermal detectors which measure the energy of an incident x-ray photon using a TES thermometer operated at a sharp transition edge between normal and superconducting states. TES microcalorimeters can achieve faster response than conventional microcalorimeters by keeping the operating point of TES in the transition region through the use of strong negative electrothermal feedback (ETF). We developed a bilayer TES where a normal metal Au was deposited on a superconductor Ir in order to improve the thermal conductivity of the Ir-TES. We investigated resistance-temperature characteristics. As a result, it showed a very sharp transition within 1 mK at the temperature of 110 mK. The energy resolution of 9.4 eV (FWHM) was achieved for a 5899 eV Mn K al line. (author)

  8. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.

    2006-01-01

    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  9. Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat

    Science.gov (United States)

    Ibarra, Juan G.; Tao, Yang; Xin, Hongwei

    2000-11-01

    A noninvasive method for the estimation of internal temperature in chicken meat immediately following cooking is proposed. The external temperature from IR images was correlated with measured internal temperature through a multilayer neural network. To provide inputs for the network, time series experiments were conducted to obtain simultaneous observations of internal and external temperatures immediately after cooking during the cooling process. An IR camera working at the spectral band of 3.4 to 5.0 micrometers registered external temperature distributions without the interference of close-to-oven environment, while conventional thermocouples registered internal temperatures. For an internal temperature at a given time, simultaneous and lagged external temperature observations were used as the input of the neural network. Based on practical and statistical considerations, a criterion is established to reduce the nodes in the neural network input. The combined method was able to estimate internal temperature for times between 0 and 540 s within a standard error of +/- 1.01 degree(s)C, and within an error of +/- 1.07 degree(s)C for short times after cooking (3 min), with two thermograms at times t and t+30s. The method has great potential for monitoring of doneness of chicken meat in conveyor belt type cooking and can be used as a platform for similar studies in other food products.

  10. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099

    Data.gov (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  11. An assessment of the land surface emissivity in the 8 - 12 micrometer window determined from ASTER and MODIS data

    Science.gov (United States)

    Schmugge, T.; Hulley, G.; Hook, S.

    2009-04-01

    The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region

  12. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)

    2014-01-01

    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  13. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  14. The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Chen Yiming; Zeng Guoxun; Huang Huiping; Xie Zhiwei; Jie Xiaohua

    2007-01-01

    We have synthesized multi-wall carbon nanotubes by catalytic chemical vapour deposition (CCVD) method using an AB 5 hydrogen storage alloy with diameter ranging from 38 to 150 μm as a catalyst. The H 2 uptake capacity of the carbon nanotubes prepared using an AB 5 alloy as a catalyst is about 4 wt.% through to the pressure of 8 MPa at room temperature. Differential thermal analysis-thermogravimetric analysis (DTA-TGA) technique has been applied to investigate the effect of the diameters of the AB 5 alloy catalyst of micrometer magnitude and the technique conditions in the CCVD process on the thermal properties of carbon nanotubes. As the catalyst diameter increases from 38 to 150 μm, the average diameter of the prepared carbon nanotubes increases and the diameter distribution also enlarges. Electron microscope, Raman spectrum and thermal analysis all indicated that the catalyst sizes affect the diameter and the thermal properties of the carbon nanotubes. When the catalyst diameter increases, the initial weight loss temperature and the differential thermal peak temperature of the carbon nanotubes increases, which shows that the lager the diameter of the carbon nanotubes is, the higher the oxidation temperature, and the better the anti-oxidizablity. However, if the diameter of the catalyst is larger than 100 μm, the anti-oxidizablity does not rise anymore but tend to be invariableness. In the CCVD preparation process, the anti-oxidizability of the carbon nanotubes increases, when raising the ratio of the hydrogen gas in the reaction gas in our experimental range (4:1, 3:1, and 2:1, respectively)

  15. Phase Composition Maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale

    Science.gov (United States)

    Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen

    2017-12-01

    Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.

  16. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  17. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  18. Fabrication of yttrium-doped barium zirconate thin films with sub-micrometer thickness by a sol–gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hanlin; Su, Pei-Chen, E-mail: peichensu@ntu.edu.sg

    2015-06-01

    A modified sol–gel process was developed for the fabrication of sub-micrometer scale yttrium-doped barium zirconate (BZY) thin film at much lower processing temperatures. The film was fabricated by direct spin-coating of the sol on a Si{sub 3}N{sub 4} passivated Si substrate, followed by low temperature thermal annealing at 1000 °C, and single BZY phase without barium carbonate residue was obtained. A 200 nm-thick thin film without obvious through-film cracks was fabricated with optimized process parameters of sol concentration and heating rate. The stoichiometry of the BZY thin film was well-controlled and no Ba evaporation was observed due to the low processing temperature. The combination of sol–gel and spin coating method can be a promising alternative to vacuum-based thin film deposition techniques for the fabrication of sub-micrometer scale BZY thin film. - Highlights: • A sol–gel spin coating method was developed for the fabrication of BZY thin films. • The processing temperature was much lower compared to powder-based sintering. • Sub-micrometer scale BZY thin film with well-controlled stoichiometry was obtained.

  19. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  20. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  1. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke

    2013-01-01

    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...... pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene...

  2. Computer dosimetry of 192Ir wire

    International Nuclear Information System (INIS)

    Kline, R.W.; Gillin, M.T.; Grimm, D.F.; Niroomand-Rad, A.

    1985-01-01

    The dosimetry of 192 Ir linear sources with a commercial treatment planning computer system has been evaluated. Reference dose rate data were selected from the literature and normalized in a manner consistent with our clinical and dosimetric terminology. The results of the computer calculations are compared to the reference data and good agreement is shown at distances within about 7 cm from a linear source. The methodology of translating source calibration in terms of exposure rate for use in the treatment planning computer is developed. This may be useful as a practical guideline for users of similar computer calculation programs for iridium as well as other sources

  3. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  4. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)

    2015-11-24

    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  5. Atsiskaitymai e. versle: ypatumai ir naujos tendencijos

    OpenAIRE

    Vyšniauskas, Jonas

    2014-01-01

    Alternatyvių atsiskaitymų e. versle sistemos pradeda kelti rimtą grėsmę tradiciniams atsiskaitymams elektronine bankininkyste, mokėjimo kortelėmis ar grynaisiais pinigais. Todėl būtina detaliau išsiaiškinti kokie yra alternatyvių atsiskaitymų ypatumai, kurie veiksniai vartotojams yra svarbiausi ir kokie yra alternatyvūs atsiskaitymo būdai. Tai siekiama padaryti išanalizuojant mokslinę literatūrą, pateikiant pagrindines alternatyvių atsiskaitymų sistemas, atliekant alternatyvių atsiskaitymų pa...

  6. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    Chen Xiangbo

    2001-01-01

    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  7. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  8. IR detectors for the Infrared Atmospheric Sounding Interferometer (IASI) instrument payload for the METOP-1 ESA polar platform

    Science.gov (United States)

    Royer, Michel; Lorans, Dominique; Bischoff, Isabelle; Giotta, Dominique; Wolny, Michel

    1994-12-01

    IASI is an Infrared Atmospheric Sounding Interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the second ESA Polar Platform called METOP-1, planned to be launched in the year 2000. The main purpose of this high performance instrument is to record temperature and humidity profiles. The required lifetime is 4 years. This paper presents the characteristics of the LW IR detection arrays for the IASI spectrometer which consist of HgCdTe de- tectors. SAT has to develop the Engineering Model, Qualification Model and Fight Models of detectors, each having 4 pixels and AR-coated microlenses in a dedicated space housing equipped with a flexible line and a connector. An array is composed of HgCdTe photoconductive detectors. For this long wavelength the array is sensitive from 8.26 micrometers to 15.5 micrometers . The detectors, with sensitive areas of 900 x 900 micrometers 2, are 100 K operating with passive cooling. High quality HgCdTe material is a key feature for the manufacturing of high performance photoconductive detectors. Therefore epitaxial HgCdTe layers are used in this project. These epilayers are grown at CEA/LETI on lattice matched CdZnTe substrates, by Te-rich liquid phase epitaxy, based on a slider technique. The Cd content in the layer is carefully adjusted to meet the required cut off wavelength on the devices. After growth of the epilayers, the samples are annealed under Hg pressure in order to convert them into N type mate- rials. The electrical transport properties of the liquid phase epitaxied wafers are, at 100 K, mobility (mu) over 150,000 cm2/V.s and electrical concentration N of 1.5 1015 cm-3, the residual doping level being 1014 cm-3 at low temperature. On these materials the feasibility study of long wavelength HgCdTe photoconductors has been achieved with the following results: the responsivity is 330 V/W. The bias voltage is Vp=300 mV for a 4 mW limitation of power for each element. The

  9. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  10. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  11. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  12. The detectability of cracks using sonic IR

    Science.gov (United States)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  13. Irène Jacob visits CERN

    CERN Document Server

    CERN Bulletin

    2010-01-01

    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  14. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Martin Johann

    2013-07-19

    This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was

  15. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    International Nuclear Information System (INIS)

    Muehlbauer, Martin Johann

    2013-01-01

    This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was

  16. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  17. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  18. Selective C--C coupling of ir-ethene and ir-carbenoid radicals

    NARCIS (Netherlands)

    Dzik, W.I.; Reek, J.N.H.; de Bruin, B.

    2008-01-01

    The reactivity of the paramagnetic iridium(II) complex [IrII(ethene)(Me3tpa)]2+ (1) (Me3tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective CC bond

  19. Improvenments in environmental trace analysis by GC-IR and LC-IR.

    NARCIS (Netherlands)

    Visser, T.; Vredenbregt, M.J.; Jong, A.P.J.M.; Somsen, G.W.; Hankemeier, T.; Velthorst, N.H.; Gooijer, C.; Brinkman, U.A.T.

    1997-01-01

    Research has been carried out to enlarge the potential of infrared (IR) spectrometry as a detector in gas and liquid chromatography (GC and LC). The study has been directed to applications in environmental analysis. Examples of recently obtained results are presented. The analyte detectability of

  20. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  1. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    International Nuclear Information System (INIS)

    Shaikh, M.; Shaygi, B.; Asadi, H.; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M.

    2016-01-01

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  2. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M. [Bradford Royal Infirmary, Department of Radiology, Bradford Teaching Hospital Foundation Trust (United Kingdom); Shaygi, B. [Royal Devon and Exeter Hospital, Interventional Radiology Department (United Kingdom); Asadi, H., E-mail: asadi.hamed@gmail.com; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M., E-mail: mlee@rcsi.ie [Beaumont Hospital, Interventional Radiology Service, Department of Radiology (Ireland)

    2016-04-15

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  3. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  4. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  5. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  6. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  7. Method for estimating the atmospheric content of sub-micrometer aerosol using direct-sun photometric data

    Science.gov (United States)

    Stefan, S.; Filip, L.

    2009-04-01

    It is well known that the aerosol generated by human activity falls in the sub-micrometer rage [1]. The rapid increase of such emissions led to massive accumulations in the planetary boundary layer. Aerosol pollutants influence the quality of life on the Earth in at least two ways: by direct physiological effects following their penetration into living organisms and by the indirect implications on the overall energy balance of the Earth-atmosphere system. For these reasons monitoring the sub-micrometer aerosol on a global scale, become a stringent necessity in protecting the environment. The sun-photometry proved a very efficient way for such monitoring activities, mainly when vast networks of instruments (like AERONET [2]) are used. The size distribution of aerosols is currently a product of AERONET obtained through an inversion algorithm of sky-photometry data [3, 4]. Alternatively, various methods of investigating the aerosol size distribution have been developed through the use of direct-sun photometric data, with the advantages of simpler computation algorithms and a more convenient use [5, 6]. Our research aims to formulate a new simpler way to retrieve aerosol fine and coarse mode volume concentrations, as well as dimensional information, from direct-sun data. As in other works from the literature [3-6], the main hypothesis is that of a bi-modal shape of the size distribution of aerosols that can be reproduced rather satisfactorily by a linear combination of two lognormal functions. Essentially, the method followed in this paper relies on aerosol size information retrieval through fitting theoretical computations to measured aerosol optical depth (AOD) and related data. To this purpose, the experimental spectral dependence of AOD is interpolated and differentiated numerically to obtain the Ǻngström parameter. The reduced (i.e. normalized to the corresponding columnar volumetric content) contributions of the fine and coarse modes to the AOD have also been

  8. Reading handprinted addresses on IRS tax forms

    Science.gov (United States)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.

    1996-03-01

    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  9. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  10. Camouflage in thermal IR: spectral design

    Science.gov (United States)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman

    2016-10-01

    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  11. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)

    2001-02-01

    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  12. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    Science.gov (United States)

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  13. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    Science.gov (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  14. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  15. Study on IR Properties of Reduced Graphene Oxide

    Science.gov (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun

    2018-01-01

    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  16. Endurance test on IR rig for RI production

    International Nuclear Information System (INIS)

    Chung, Heung June; Youn, Y. J.; Han, H. S.; Hong, S. B.; Cho, Y. G.; Ryu, J. S.

    2000-12-01

    This report presents the pressure drop, vibration and endurance test results for IR rig for RI production which were desigened and fabricated by KAERI. From the pressure drop test results, it is noted that the flow rate through the IR rig corresponding to the pressure drop of 200 kPa is measured to be about 3.12 kg/sec. Vibration frequency for the IR rig ranges from 13 to 17 Hz. RMS(Root Mean Square) displacement for the IR rig is less than 30 μm, and the maximum displacement is less than 110μm. These experimental results show that the design criteria of IR rig meet the HANARO limit conditions. Endurance test results show that the appreciable fretting wear for the IR rig does not occur, however tiny trace of wear between contact points is observed

  17. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  18. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  19. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  20. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  1. Įvairialyčiai lantano ir mangano oksido ir multiferoinio bismuto ferito heterodariniai

    Directory of Open Access Journals (Sweden)

    Bonifacas VENGALIS

    2011-11-01

    Full Text Available Pastaruoju metu naujų elektronikos prietaisų gamyboje buvo pasiekta didelė pažanga auginant, tyrinėjant ir pritaikant plonasluoksnes struktūras, sudarytas iš įvairių daugiakomponenčių funkcinių oksidų. Šiai oksidų grupei priklauso superlaidieji kupratai, mangano oksidai (manganitai, pasižymintys magnetovaržos reiškiniu, taip pat kiti feromagnetiniai, feroelektriniai, multiferoiniai oksidai. Manganitams (jų bendra formulė Ln1-xAxMnO3, kur Ln = La, Nd,..., o A - dvivalentis katijonas, toks kaip Ba, Sr ar Ca skiriama daug dėmesio dėl jų įdomių elektrinių savybių bei tinkamumo įvairiems spintronikos prietaisams kurti. Multiferoikai  (feroelektriniai feromagnetai pasižymi magnetoelektriniu efektu, duodančiu unikalią galimybę elektrinėms ir magnetinėms medžiagos savybėms valdyti panaudoti elektrinius ir magnetinius laukus. Bismuto feritas BiFeO3 (BFO, turintis romboedriškai deformuotą perovskito struktūrą, šiuo metu yra vienas labiausiai tyrinėjamų šios klasės junginių. Organiniai puslaidininkiai (OP taip pat atveria daug naujų galimybių elektronikai. Jų pranašumas yra didelė organinių junginių įvairovė ir palyginti paprasta ir pigi plonų sluoksnių gamybos technologija. Be to, OP pasižymi neįprastai didelėmis sukinių relaksacijos laiko vertėmis, todėl ateityje jie gali būti naudojami naujiems spintronikos prietaisams gaminti. Šiame straipsnyje apžvelgiami pastarųjų metų darbo autorių ir jų kolegų atlikti anksčiau minėtų medžiagų tyrimai. Daugiausia dėmesio skiriama magnetovaržinėmis savybėmis pasižyminčių lantano ir mangano oksidų (manganitų bei multiferoinio  BiFeO3 (BFO junginio plonųjų sluoksnių ir heterodarinių auginimui, tarpfazinių ribų tarp minėtų oksidų, laidžiojo SrTiO3 ir organinio puslaidininkio (Alq3 sudarymui, taip pat elektrinėms heterodarinių savybėms. Plonieji La2/3A1/3MnO3 (A = Ca, Sr, Ba, Ce sluoksniai, kurių storis d

  2. Role of IRS-2 in insulin and cytokine signalling.

    Science.gov (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  3. Medicare Modernization Act (MMA) IRS Medicare Part D

    Data.gov (United States)

    Social Security Administration — SSA uses the Internal Revenue Service (IRS) information in determing the eligibility of Medicare recipients to receive subsidy payments for Medicare premiums. SSA...

  4. Case study of chondrule alteration with IR spectroscopy in NWA 2086 CV3 meteorite

    Science.gov (United States)

    Kereszturi, A.; Gyollai, I.; Szabó, M.

    2015-02-01

    Analyzing the alteration in an olivine chondrule of the NWA 2086 CV3 meteorite, infrared spectral, electron microprobe and optical microscopic observations were correlated to each other. The intensity and wavelength positions of olivine peaks changed characteristically with the progression of alteration and related Fe/Mg substitution inward of the chondrule. Moderate to good correlations were identified between Fo% composition and positions of 830 and 860 cm-1 IR peaks. The disappearance of 1020 cm-1 peak by structural change happens already at a low level alteration without changing the optical appearance of the mineral. The existence of the 980 cm-1 peak is found to be an indicator of the intact phase of olivine. While profiles perpendicular to the chondrule's perimeter showed that the alteration progressed 15-20 μm distance inward without observable fractures (probablly by some diffusion related process), the "alteration distance" from various obvious fractures inside the chondrule was only 3-5 μm distance. These observations suggest that the substitution was more effective close to the matrix, and also related to some fluids that although were able to circulate along the large internal fractures too, did not produce such strong substitution there, like what happened close to the matrix. It was also demonstrated that the poorly exploited contact mode observations with ATR based reflection method in infrared spectroscopy provide a useful tool to analyze the alteration at micrometer scale without much sample preparation, and enable identifying alterations already at such a low level where the olivines still look optically intact.

  5. Effect of the small accessary laser spots on the harmonic emission stimulated by self-focusing of a 10-micrometer scale laser spot

    International Nuclear Information System (INIS)

    Lin Zunqi; Zhang Huihuang; He Xingfa

    1992-01-01

    A novel group of experiments has shown that single 10-micrometer-radius-scale laser spot is not able to produce the 90 deg side emitted three half harmonic efficiently in a preformed laser plasmas. However, with the help of one or two accessory laser spots with the size similar to the main one, the side emitted three half can easily built up when some position and angle conditions for the accessory spots are fulfilled. The origin of these phenomena have been analyzed in terms of the two plasmon decay theory and dynamic self-focusing model

  6. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome - Brazilian Metabolic Syndrome Study (BRAMS)

    OpenAIRE

    Geloneze, B; Vasques, ACJ; Stabe, CFC; Pareja, JC; Rosado, LEFPD; de Queiroz, EC; Tambascia, MA

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 9011 percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  8. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  9. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  10. 12 CFR 5.35 - Bank service companies.

    Science.gov (United States)

    2010-01-01

    .... (d) Definitions—(1) Bank service company means a corporation or limited liability company organized... liability company. (2) Limited liability company means any non-corporate company, partnership, trust, or..., obligation, or liability of the company solely by reason of being, or acting as, a member or manager of such...

  11. Technical specification for IR rig manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Han Hyon Soo; Cho, W. K.; Kim, S. D.; Park, U. J.; Hong, S. B.; Yoo, K. M

    2000-10-01

    IR Rig is one of the equipments are required in HANARO core for a radioisotope target. The various conditions like high radiation, high heat, rapid flow and vibration may cause swelling, Brittleness and acceleration of corrosion in HANARO core. These specific problems can be prevented and the safety of such equipment are prerequisite as well as durableness and surveillance. Therefore, the selection of material has to be made on the basis of small cross-section area, low energy emission by the gamma ray due to the absorption of neutron and short half life. The body is consist of aluminum and Inconel-750 was used for the internal spring(coil) which is known to be durable. The whole production process including the purchase of accessory, mechanical processing, welding and assembly was carried out according to the standard procedure to meet the requirement. A design, manufacture, utilization of reactor core and the other relevant uses were fit to class ''T'' to certify the whole process as general. And design, fabrication, analytical test, materials and accessory were carried out based on the ASME, ASTM, ANSI, AWS, JIS and KS standard.

  12. Characterization of Hydrogen Bonds by IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vojta, D.

    2012-05-01

    Full Text Available In the identification and quantification of hydrogen bond, as one of the most abundant non-covalent interactions in phenomena like self-assembly and molecular recognition, IR spectrosopy has been employed as the most sensitive method. The performance of the high dilution method enables determination of the stability constant of hydrogen-bonded complex as one of the most important thermodynamic quantities used in their characterization. However, the alleged experimental simplicity of the mentioned method is loaded with errors originating not only from researcher intervention but also independent from it. The second source of error is particularly emphasized and elaborated in this paper, which is designed as the recipe for the successful characterization of hydrogen bonds. Besides the enumeration of all steps in the determination of hydrogen-bonded stability constants, the reader can be acquainted with the most important ex perimental conditions that should be fulfilled in order to minimize the naturally occurring errors in this type of investigation. In the spectral analysis, the application of both uni- and multivariate approach has been discussed. Some computer packages, considering the latter, are mentioned, described, and recommended. KUI -10/2012Received August 1, 2011Accepted October 24, 2011

  13. The nature of OH/IR stars

    International Nuclear Information System (INIS)

    Herman, J.

    1983-01-01

    In this work masers in evolved stars are studied, in particular the emission from the OH radical. The time variability of the OH masers was measured over a period of five years with the Dwingeloo Radio Telescope. These single-dish observations proved that most of the underlying stars are very long period variables, apparently a kind of extension of the well-known long period Mira variables. The mean OH fluxes and epochs were obtained as well as a confirmation of the radiative coupling between the maser and the star (by comparison with infrared data provided by other observers), the degree of saturation, and, most important of all, a determination of the linear dimensions of the circumstellar shells. Multi-element interferometer observations were made in order to study the spatial structure of OH masers. By combining the phase lag measurements and the spatial extent distances to individual stars could be determined with a high, unprecedented accuracy. Infrared broad-band photometry was done in the wavelength region from 3 μm to 20 μm, where most of the energy of these objects is radiated. The space density and galactic distribution of OH/IR stars are discussed and compared with the appearance of OH masers in the solar neighbourhood. (Auth.)

  14. Operational experience - Lessons learned from IRS-reports in Germany

    International Nuclear Information System (INIS)

    Wetzel, N.; Maqua, M.

    2005-01-01

    The international Incident Reporting System (IRS), jointly operated by IAEA and OECD-NEA, is a main source of safety significant findings and lessons learned of nuclear operating experience. GRS (Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH) is a scientific-technical expert and research organisation. On Behalf of the Federal Minister of Environment, Nature Conservation and Reactor Safety (BMU), GRS provides the IRS officer. The evaluation of IRS-Reports and the dissemination of the main findings including the assessment of the relevance for German NPPs is task of GRS. The value of IRS is among experts undoubted. But nevertheless, the reporting to IRS decreases since some years. This presentation is aimed to show the support of IRS in strengthening the safety of German NPPs. The evaluation of IRS-Reports at GRS is three-fold. It comprises initial screening, quarterly and yearly reporting and the development of specific German Information Notices on safety significant events with direct applicability to German NPPs. Some examples of lessons learned from recent international events are discussed below. These examples shall demonstrate that the use of the IRS enhances significantly the knowledge on operational events. (author)

  15. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  16. NaIrO3-A pentavalent post-perovskite

    International Nuclear Information System (INIS)

    Bremholm, M.; Dutton, S.E.; Stephens, P.W.; Cava, R.J.

    2011-01-01

    Sodium iridium (V) oxide, NaIrO 3, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO 3 , the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO 3 . Among the oxide post-perovskites, NaIrO 3 is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO 6 octahedra separated by layers of NaO 8 bicapped trigonal prisms. NaIrO 3 shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides. -- Graphical abstract: Sodium iridium(V) oxide, NaIrO 3 , synthesized by a high pressure solid state method and recovered to ambient conditions is found to crystallize as the post-perovskite structure and is the first example of a pentavalent ABO 3 post-perovskite. Research highlights: → NaIrO 3 post-perovskite stabilized by pressure. → First example of a pentavalent oxide post-perovskite. → Non-metallic and non-magnetic behavior of NaIrO 3 .

  17. The Synergistic Effect of Leukocyte Platelet-Rich Fibrin and Micrometer/Nanometer Surface Texturing on Bone Healing around Immediately Placed Implants: An Experimental Study in Dogs

    Science.gov (United States)

    Neiva, Rodrigo F.; Gil, Luiz Fernando; Tovar, Nick; Janal, Malvin N.; Marao, Heloisa Fonseca; Pinto, Nelson; Coelho, Paulo G.

    2016-01-01

    Aims. This study evaluated the effects of L-PRF presence and implant surface texture on bone healing around immediately placed implants. Methods. The first mandibular molars of 8 beagle dogs were bilaterally extracted, and implants (Blossom™, Intra-Lock International, Boca Raton, FL) were placed in the mesial or distal extraction sockets in an interpolated fashion per animal. Two implant surfaces were distributed per sockets: (1) dual acid-etched (DAE, micrometer scale textured) and (2) micrometer/nanometer scale textured (Ossean™ surface). L-PRF (Intraspin system, Intra-Lock International) was placed in a split-mouth design to fill the macrogap between implant and socket walls on one side of the mandible. The contralateral side received implants without L-PRF. A mixed-model ANOVA (at α = 0.05) evaluated the effect of implant surface, presence of L-PRF, and socket position (mesial or distal), individually or in combination on bone area fraction occupancy (BAFO). Results. BAFO values were significantly higher for the Ossean relative to the DAE surface on the larger mesial socket. The presence of L-PRF resulted in higher BAFO. The Ossean surface and L-PRF presence resulted in significantly higher BAFO. Conclusion. L-PRF and the micro-/nanometer scale textured surface resulted in increased bone formation around immediately placed implants. PMID:28042577

  18. The Synergistic Effect of Leukocyte Platelet-Rich Fibrin and Micrometer/Nanometer Surface Texturing on Bone Healing around Immediately Placed Implants: An Experimental Study in Dogs

    Directory of Open Access Journals (Sweden)

    Rodrigo F. Neiva

    2016-01-01

    Full Text Available Aims. This study evaluated the effects of L-PRF presence and implant surface texture on bone healing around immediately placed implants. Methods. The first mandibular molars of 8 beagle dogs were bilaterally extracted, and implants (Blossom™, Intra-Lock International, Boca Raton, FL were placed in the mesial or distal extraction sockets in an interpolated fashion per animal. Two implant surfaces were distributed per sockets: (1 dual acid-etched (DAE, micrometer scale textured and (2 micrometer/nanometer scale textured (Ossean™ surface. L-PRF (Intraspin system, Intra-Lock International was placed in a split-mouth design to fill the macrogap between implant and socket walls on one side of the mandible. The contralateral side received implants without L-PRF. A mixed-model ANOVA (at α=0.05 evaluated the effect of implant surface, presence of L-PRF, and socket position (mesial or distal, individually or in combination on bone area fraction occupancy (BAFO. Results. BAFO values were significantly higher for the Ossean relative to the DAE surface on the larger mesial socket. The presence of L-PRF resulted in higher BAFO. The Ossean surface and L-PRF presence resulted in significantly higher BAFO. Conclusion. L-PRF and the micro-/nanometer scale textured surface resulted in increased bone formation around immediately placed implants.

  19. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  20. General report IRS-literature 1965-1976

    International Nuclear Information System (INIS)

    Schulz, W.

    1976-12-01

    The Institut fuer Reaktorsicherheit der TUeV e.V. (IRS) is of central importance in matters of licensing. It was jointly founded in 1965 by the eleven TUeVs of the Federal Republic of Germany and West-Berlin, by the Germanischer Lloyd and the then Federal Ministry for Scientific Research. After 12 sucsessful years the IRS will terminate its activities on December 31st, 1976, and together with the Laboratorium fuer Reaktorregelung und Anlagensicherung (LRA) at the TU Munich, Garching, it will be from January 1st, 1977 onwards part of the Gesellschaft fuer Reaktorsicherheit (GRS) mbH, a newly founded corporation. The activities of IRS and LRA will be continued by the GRS starting from January 1st, 1977. All IRS' report series and information services listed in this report are thus running out. The new corporation will build up its publications on the basis of the experience gained by IRS and LRA. (orig.) [de

  1. Crystal growth and characterization of Ir-Te compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhals, Philipp; Weber, Frank; Zocco, Diego; Adelmann, Peter; Merz, Michael; Wolf, Thomas; Kuntz, Sebastian; Grube, Kai [Karlsruhe Institute of Technology, Institute for Solid State Physics, Karlsruhe (Germany)

    2016-07-01

    IrTe{sub 2} is distinguished by a structural phase transition whose origin is not understood up to the present day. We grew crystals using the self-flux method starting from the reagents iridium and tellurium and got specimen with varying amounts of IrTe{sub 2} and Ir{sub 3}Te{sub 8}, analyzed by x-ray powder diffraction. We studied the transition near T = 280 K in magnetization measurements down to T = 1.8 K probing also for superconductivity, which was reported for intercalated samples. Results indicate that the structural transition happens over an extended range in temperature and superconductivity is absent in our samples. Ir{sub 3}Te{sub 8} is not studied to such an extent as IrTe{sub 2}. In previous publications a structural phase transition is reported. We characterized the transition by performing magnetization measurements and X-ray diffraction.

  2. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Science.gov (United States)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.

    2011-01-01

    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  3. The effect of test dose and first IR stimulation temperature on post-IR IRSL measurements of rock slices

    DEFF Research Database (Denmark)

    Liu, Jinfeng; Murray, Andrew; Sohbati, Reza

    2016-01-01

    lies close to the laboratory saturation levels only for higher first IR stimulation temperatures e.g. 200°C or 250°C. Our data confirm earlier suggestions based on sand-grain measurements that, for older sam-ples, accurate measurements close to saturation require that a higher first IR temperature...

  4. Image registration of naval IR images

    Science.gov (United States)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  5. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  6. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  7. Patient Safety in Interventional Radiology: A CIRSE IR Checklist.

    LENUS (Irish Health Repository)

    2012-02-01

    Interventional radiology (IR) is an invasive speciality with the potential for complications as with other invasive specialities. The World Health Organization (WHO) produced a surgical safety checklist to decrease the morbidity and mortality associated with surgery. The Cardiovascular and Interventional Society of Europe (CIRSE) set up a task force to produce a checklist for IR. Use of the checklist will, we hope, reduce the incidence of complications after IR procedures. It has been modified from the WHO surgical safety checklist and the RAD PASS from Holland.

  8. Solubility and IR studies of gamma-irradiated arabinoxylan

    International Nuclear Information System (INIS)

    Ebringerova, A.; Kacurakova, M.; Hromadkova, Z.; Pruzinec, J.

    1989-01-01

    The structural and solubility changes of a water-insoluble arabinoxylan with a low degree of branching was studied after γ-irradiation by IR spectroscopy and chemical analysis of the polysaccharide and its polymeric fractions. New functional groups like hydroperoxidic, carbonylic and endiolic ones were found after irradiation. The IR spectra shows that the structural changes involved by radiolytic treatment are reflected in the shape of the IR spectra of both polymeric fractions. The ratio of absorbance of the peaks at 1725 and 2920 cm -1 increased with radiation dose. (author) 17 refs.; 2 figs.; 2 tabs

  9. Chlorination of (PheboxIr(mesityl(OAc by Thionyl Chloride

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2015-06-01

    Full Text Available Pincer (PheboxIr(mesityl(OAc (2 (Phebox = 3,5-dimethylphenyl-2,6-bis(oxazolinyl complex, formed by benzylic C-H activation of mesitylene (1,3,5-trimethylbenzene using (PheboxIr(OAc2OH2 (1, was treated with thionyl chloride to rapidly form 1-(chloromethyl-3,5-dimethylbenzene in 50% yield at 23 °C. A green species was obtained at the end of reaction, which decomposed during flash column chromatography to form (PheboxIrCl2OH2 in 87% yield.

  10. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  11. Ion beam synthesis of IrSi3 by implantation of 2 MeV Ir ions

    International Nuclear Information System (INIS)

    Sjoreen, T.P.; Chisholm, M.F.; Hinneberg, H.J.

    1992-11-01

    Formation of a buried IrSi 3 layer in (111) oriented Si by ion implantation and annealing has been studied at an implantation energy of 2 MeV for substrate temperatures of 450--550C. Rutherford backscattering (RBS), ion channeling and cross-sectional transmission electron microscopy showed that a buried epitaxial IrSi 3 layer is produced at 550C by implanting ≥ 3.4 x 10 17 Ir/cm 2 and subsequently annealing for 1 h at 1000C plus 5 h at 1100C. At a dose of 3.4 x 10 17 Ir/cm 2 , the thickness of the layer varied between 120 and 190 nm and many large IrSi 3 precipitates were present above and below the film. Increasing the dose to 4.4 x 10 17 Ir/cm 2 improved the layer uniformity at the expense of increased lattice damage in the overlying Si. RBS analysis of layer formation as a function of substrate temperature revealed the competition between the mechanisms for optimizing surface crystallinity vs. IrSi 3 layer formation. Little apparent substrate temperature dependence was evident in the as-implanted state but after annealing the crystallinity of the top Si layer was observed to deteriorate with increasing substrate temperature while the precipitate coarsening and coalescence improved

  12. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    Science.gov (United States)

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  13. Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range.

    Science.gov (United States)

    Shamsi, Javad; Dang, Zhiya; Bianchini, Paolo; Canale, Claudio; Stasio, Francesco Di; Brescia, Rosaria; Prato, Mirko; Manna, Liberato

    2016-06-15

    We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine). The lateral size is tunable by varying the ratio of shorter ligands over longer ligands, while the thickness is mainly unaffected by this parameter and stays practically constant at 3 nm in all the syntheses conducted at short-to-long ligands volumetric ratio below 0.67. Beyond this ratio, control over the thickness is lost and a multimodal thickness distribution is observed.

  14. IR wireless cluster synapses of HYDRA very large neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  15. Broilerienos paklausa ir pasiūla Lietuvoje

    OpenAIRE

    Paškauskienė, Kristina

    2008-01-01

    Labai svarbu ir savalaikiškai ištirti vartotojų poreikį broilerienai, aktualu nustatyti vartotojų požiūrį į Lietuvoje užauginamą produkciją bei importuotą. ir kokia yra priklausomybė vyrų bei moterų tarpe, ir nuo gaunamo atlyginimo. Vartotojų tyrimai rodo, kad auga paklausa lengvai virškinamiems, greitai paruošiamiems, aukštos maistinės kokybės gyvulininkystės produktams. Darbo tikslas - Išsiaiškinti broilerienos paklausą ir pasiūlą Lietuvoje, įvertinti broilerienos suvartojimo tendencija...

  16. Transparent Yttria for IR Windows and Domes - Past and Present

    National Research Council Canada - National Science Library

    Hogan, Patrick; Stefanik, Todd; Willingham, Charles; Gentilman, Richard

    2004-01-01

    ...) atmospheric transmission band at both ambient and elevated temperatures. Current state-of-the-art yttria's thermomechanical properties are adequate for a number of IR window and dome applications, but only marginal for the most demanding missions...

  17. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  18. Analysis of effect of cable degradation on SPND IR calculation

    International Nuclear Information System (INIS)

    Tamboli, P.K.; Sharma, A.; Prasad, A.D.; Singh, Nita; Antony, J.; Kelkar, M.G.; Kaurav, Reetesh; Pramanik, M.

    2013-01-01

    Neutron flux is the most vital parameter in the nuclear reactor safety against Neutronic over power. The modern days Indian PHWRs with large core size are loosely coupled reactors and hence In-core Self Power Neutron Detectors (SPNDs) are most suitable for monitoring local neutron power for generating Regional Overpower Trip. However the SPNDs and its Mineral Insulation Cable are prone to IR loss due to use of ceramic insulation which are highly hygroscopic. The present paper covers the online analysis of IR f degraded cable as per the surveillance requirement of monitoring the IR to assess the healthiness of SPNDs which are part of SSC/SSE for Reactor Protection Systems. The paper also proposes an alternative method for monitoring IR for startup//low power range when SPND signals are yet to pick up and Reactor Control and Protection are based on out of core Ionization Chambers. (author)

  19. US-LHC IR magnet error analysis and compensation

    International Nuclear Information System (INIS)

    Wei, J.; Ptitsin, V.; Pilat, F.; Tepikian, S.; Gelfand, N.; Wan, W.; Holt, J.

    1998-01-01

    This paper studies the impact of the insertion-region (IR) magnet field errors on LHC collision performance. Compensation schemes including magnet orientation optimization, body-end compensation, tuning shims, and local nonlinear correction are shown to be highly effective

  20. IR fixed points in SU(3 gauge theories

    Directory of Open Access Journals (Sweden)

    K.-I. Ishikawa

    2015-09-01

    Full Text Available We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the SU(3 gauge theories with Nf fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cutoff, which we cannot remove in the conformal field theories in sharp contrast to the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for Nf=16,12,8 and Nf=7 and indeed identify the location of the IR fixed points in all cases.

  1. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer

    2015-01-01

    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  2. Ammonia IR Absorbance Measurements with an Equilibrium Vapor Cell

    National Research Council Canada - National Science Library

    Field, Paul

    2004-01-01

    Infrared (IR) absorbance spectra were acquired for 18 ammonia vapor pressures. The vapor pressures were generated with 15 gravimetrically prepared aqueous solutions and three commercial aqueous solutions using a dynamic method I.E...

  3. Fleet Protection Using a Small UAV Based IR Sensor

    National Research Council Canada - National Science Library

    Buss, James R; Ax, Jr, George R

    2005-01-01

    A study was performed to define candidate electro-optical and infrared (EO/IR) sensor configurations and assess their potential utility as small UAV-based sensors surveilling a perimeter around surface fleet assets...

  4. Patient Safety in Interventional Radiology: A CIRSE IR Checklist

    NARCIS (Netherlands)

    Lee, M. J.; Fanelli, F.; Haage, P.; Hausegger, K.; van Lienden, K. P.

    2012-01-01

    Interventional radiology (IR) is an invasive speciality with the potential for complications as with other invasive specialities. The World Health Organization (WHO) produced a surgical safety checklist to decrease the morbidity and mortality associated with surgery. The Cardiovascular and

  5. Calibration of {sup 192}Ir high dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M H [Instituto de Radioprotecao e Dozimetria, Rio de Jainero (Brazil); Almeida, C.E. de [Laboratorio de Ciencias Radiologicas, UERL, Rio de Janeiro (Brazil); Sibata, C H [Roswell Park Cancer Inst., Buffalo, NY (United States)

    1996-08-01

    A method for calibration of high dose rate sources used in afterloading brachytherapy systems is described. The calibration for {sup 192}Ir is determined by interpolating {sup 60}Co gamma-rays and 250 kV x-rays calibration factors. All measurements were done using the same build up caps as described by Goetsch et al and recommended by AAPM. The attenuation correction factors were determined to be 0.9903, 0.9928 and 0.9993 for {sup 192}Ir, {sup 60}Co and 250 kV x-ray, respectively. A wall + cap thickness of 0.421 g.cm{sup -2} is recommended for all measurements to ensure electronic equilibrium for {sup 60}Co and {sup 192}Ir gamma-ray beams. A mathematical formalism is described for determination of (N{sub x}){sub Ir}. (author). 5 refs, 1 fig.

  6. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  7. Characterization of Momordica charantia Ussing FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Attila Keseru

    2016-11-01

    In this paper, because earlier claim shows that the plant used as stomachic, carminative, tonic, antipyretic, antidiabetic, in rheumatoid arthritis and gout, the present investigation was carried to characterized a principal components of plant using FT-IR technique

  8. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  9. Fibre-Optic IR-Spectroscopy for Biomedical Diagnostics

    OpenAIRE

    Bindig, Uwe; Gersonde, Ingo; Meinke, Martina; Becker, Yukiyo; Müller, Gerhard

    2003-01-01

    The use of microscopy is a valuable means of gaining vital information for medical diagnostics. Due to a number of recent technological developments advances have been made in IR microscopy and in particular, rapid detection methods. Microscopic examination methods usually involve sampling followed by a method of sample purification or preparation. The advantages of the IR analytical method are that it is based on a direct, non‒destructive measurement of sample material and that the resulting...

  10. Optical and IR light curves of VV Puppis

    International Nuclear Information System (INIS)

    Szkody, P.; Bailey, J.A.; Hough, J.H.

    1983-01-01

    We present optical (0.36 to 0.6 μm) light curves with time resolutions of seconds and infrared (IR) (1.25 to 2.2 μm) light curves with time resolutions of minutes for VV Puppis during a high state. The optical light curves show a single hump with largest amplitude in the V filter, while the IR light curves show a double hump sinusoidal variation. Flickering is evident in both the optical and IR light curves, with the largest amplitude in optical B light. Through subtraction of the low state fluxes from our high state values, we obtain a flux distribution of the accretion column which peaks at 0.55 μm and becomes #betta# 2 in the IR, consistent with current cyclotron models. Comparison of the observed IR variations throughout the orbit with the expected variations due to an M4 star heated by an accretion column at an inclination of 66 0 suggests that the IR light is a combination of the secondary star plus contributions from two emitting poles. (author)

  11. Use of HOMA-IR in hepatitis C.

    Science.gov (United States)

    Eslam, M; Kawaguchi, T; Del Campo, J A; Sata, M; Khattab, M Abo-Elneen; Romero-Gomez, M

    2011-10-01

    Chronic infection with hepatitis C virus (HCV) can induce insulin resistance (IR) in a genotype-dependent manner and contributes to steatosis, progression of fibrosis and resistance to interferon plus ribavirin therapy. Our understanding of HCV-induced IR has improved considerably over the years, but certain aspects concerning its evaluation still remain elusive to clinical researchers. One of the most important issues is elucidating the ideal method for assessment of IR in the setting of hepatitis C. The hyperinsulinaemic euglycaemic clamp is the gold standard method for determining insulin sensitivity, but is impractical as it is labour intensive and time-consuming. To date, all human studies except for four where IR was evaluated in the HCV setting, an estimation of IR has been used rather than direct measurements of insulin-mediated glucose uptake. The most commonly used estimation in the HCV population is the homeostasis model assessment of insulin resistance (HOMA-IR) which is calculated from a single measurement of fasting insulin and glucose. In this article, we review the use and reporting of HOMA in the literature and provide guidance on its appropriate as well as inappropriate use in the hepatitis setting. © 2011 Blackwell Publishing Ltd.

  12. IR spectroscopy at the ITO-organic interface

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Milan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Shazada, Ahmad [Max-Planck Institut fuer Polymerforschung, Mainz (Germany); Tamanai, Akemi; Trollmann, Jens; Glaser, Tobias; Beck, Sebastian; Tengeler, Sven; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany)

    2012-07-01

    Thin films of P3HT have been prepared by spin coating and electrooxidative polymerization on platinum- and ITO-coated substrates. Additionally, P3HT-films on silicon substrates have been prepared by spin coating only. The measured IR spectra of the spin coated films allowed for an elaboration of a detailed optical model for P3HT, which has been used to simulate IR reflection-absorption spectra on ITO and Pt substrates. Comparison of simulated spectra with measurements revealed no substrate influence on the IR spectra for the spincoated films. In case of spincoated P3HT-films on ITO-substrate, the obtained IR spectra correspond to simulation data very well up to 6000 wavenumbers. In the electropolymerized P3HT films we have identified residuals of the electrolyte ionic liquid, acting as dopand for P3HT. While IR spectra of the electropolymerized P3HT films on Pt substrate could be explained reasonably well as a superposition of chemically doped P3HT and the ionic electrolyte, the IR spectra of electropolymerized P3HT films on ITO substrates showed strongly deposition-time dependent deviations. These were most likely related to varying properties of the ITO surface between reference and sample measurement due to an interaction of ITO and the electrolyte at the film-substrate interface.

  13. Ar ir CO2 plazma modifikuota aktyvintoji anglis acetono ir cikloheksano adsorbcijai

    Directory of Open Access Journals (Sweden)

    Piotr PIETROWSKI

    2012-06-01

    Full Text Available Žemos temperatūros plazmos poveikis, leidžiantis valdyti daugelio rūšių medžiagų, pvz., polimerų, metalų, anglies, paviršiaus savybes, šiuo metu yra tiriamas daugelyje mokslo sričių. Aktyvintoji  anglis (AC dėl savo fizikinių ir cheminių savybių naudojama kaip struktūrinis elementas dujų filtruose, kurie adsorbuodami daugelį skirtingų garų iš užteršto oro apsaugo kvėpavimo takus. Gerai žinoma, kad įvairios AC paviršiaus funkcinės grupės lemia jų hidrofobinę / hidrofilinę elgseną. Šame straipsnyje pristatomi pirminiai tyrimai, susiję su žemos temperatūros plazmos poveikiu komercinei aktyvintajai angliai. Aktyvintoji anglis buvo granuliuojama ir dedama į žemos temperatūros plazmos  rotacinę bandymų kamerą. Kamera buvo užpildoma atitinkamomis reaktyviosiomis dujomis. Plazmos poveikis buvo tiriamas nustatant aktyvintosios anglies paviršiaus dviejų pasirinktų rūšių organinių garų adsorbcijos izotermas, taip pat stebint šių garų adsorbcijos dinamiką ant dujų filtro, pagaminto iš plazma aktyvintos anglies. Remiantis gautais rezultatais, galima daryti išvadą, kad žemos temperatūros plazmos technologija gali būti taikoma aktyvintosios anglies savybėms pagerinti užtikrinant geresnę žemos temperatūros organinių garų adsorbciją.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1919

  14. Density functional study of the L10-αIrV transition in IrV and RhV

    International Nuclear Information System (INIS)

    Mehl, Michael J.; Hart, Gus L.W.; Curtarolo, Stefano

    2011-01-01

    Research highlights: → The computational determination of the ground state of a material can be a difficult task, particularly if the ground state is uncommon and so not found in usual databases. In this paper we consider the alpha-IrV structure, a low temperature structure found only in two compounds, IrV and RhV. In both cases this structure can be considered as a distorted tetragonal structure, and the tetragonal 'L1 0 ' structure is the high temperature structure for both compounds. We show, however, that the logical path for the transition from the L1 0 to the alpha-IrV structure is energetically forbidden, and find a series of unstable and metastable structures which have a lower energy than the L1 0 phase, but are higher in energy than the alpha-IrV phase. We also consider the possibility of the alpha-IrV structure appearing in neighboring compounds. We find that both IrTi and RhTi are candidates. - Abstract: Both IrV and RhV crystallize in the αIrV structure, with a transition to the higher symmetry L1 0 structure at high temperature, or with the addition of excess Ir or Rh. Here we present evidence that this transition is driven by the lowering of the electronic density of states at the Fermi level of the αIrV structure. The transition has long been thought to be second order, with a simple doubling of the L1 0 unit cell due to an unstable phonon at the R point (0 1/2 1/2). We use first-principles calculations to show that all phonons at the R point are, in fact, stable, but do find a region of reciprocal space where the L1 0 structure has unstable (imaginary frequency) phonons. We use the frozen phonon method to examine two of these modes, relaxing the structures associated with the unstable phonon modes to obtain new structures which are lower in energy than L1 0 but still above αIrV. We examine the phonon spectra of these structures as well, looking for instabilities, and find further instabilities, and more relaxed structures, all of which have

  15. Pamokslo ir eseistikos sąveika Juliaus Sasnausko ir Giedrės Kazlauskaitės eseistikoje

    OpenAIRE

    Skirmantienė, Daiva

    2010-01-01

    Jaunosios kartos rašytojų kunigo pamokslininko Juliaus Sasnausko ir pasaulietės Giedrės Kazlauskaitės kūrybos semantinį ir įdėjinį lauką padeda suprasti teologinės literatūros ir literatūrinės teologijos sąveika. Teologinių prasmių paieška jų tekstuose atliepia šiuolaikinio žmogaus pastangas per literatūrą, skelbiančią gyvenamojo laikotarpio aktualijas, rasti kelią į tam tikras krikščioniškąsias tiesas ir bandyti reflektuoti savo tikėjimą bei analizuoti išganymo istoriją. Autorių kūryo...

  16. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...

  17. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    Science.gov (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  18. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  19. The phase system Fe-Ir-S at 1100, 1000 and 800 degree C

    DEFF Research Database (Denmark)

    Makovicky, Emil; Karup-Møller, Sven

    1999-01-01

    Phase relations in the dry condensed Fe-Ir-S system were determined at 1100, 1000 and 800 degrees C. Orientational runs were performed at 500 degrees C. Between 1100 and 800 degrees C, the system comprises five sulphides and an uninterrupted field of gamma(Fe, Ir). Fe1-xS dissolves 5.8 at.% Ir...... at 1100 degrees C, 3.4 at.% Ir at 1000 degrees C and 1.0 at.% Ir at 800 degrees C. The solubility of Fe in Ir2S3, IrS2 and IrSsimilar to 3 increases with decreasing temperature, reaching 2.5 at.% in the latter two sulphides at 800 degrees C. Thiospinel 'FeIr2S4' is nonstoichiometric, from Fe22.3Ir19.8S58...

  20. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    Science.gov (United States)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  1. Mid-IR and far-IR investigation of AgI-doped silver diborate glasses

    International Nuclear Information System (INIS)

    Hudgens, J.J.; Martin, S.W.

    1996-01-01

    The structures of xAgI+(1-x)Ag 2 O·2B 2 O 3 glasses, where 0.2≤x≤0.6, have been investigated using mid- and far-infrared spectroscopy. The mid-IR spectra revealed that in those glasses prepared using AgNO 3 as the starting material for Ag 2 O, the BO 4 - /BO 3 ratio is constant with increasing amounts of AgI as would be expected form the proposed behavior of AgI in these glasses. However, a survey of the literature revealed those glasses prepared from pure Ag 2 O show a strong linear dependence of the BO 4 - /BO 3 ratio on AgI content. Most probably, in those glasses prepared with Ag 2 O the Ag 2 O/B 2 O 3 ratio changes with AgI content due to the decomposition of Ag 2 O during melting. This different behavior is associated with AgNO 3 decomposing to Ag 2 O with heating followed by incorporation into the glassy network. For Ag 2 O used directly, it is proposed that it decomposes to Ag metal and O 2 (gas) with heating before it can be incorporated into the borate network. This latter behavior decreases with increasing AgI in the batch composition because AgI lowers the liquidus temperature of the melt considerably. The far-IR analysis of the AgI-doped silver diborate glasses suggests that there are three coordination environments for the Ag + ions; one with iodide anions and the other two with oxygen ions. It is proposed that the separate oxygen coordination environments for the Ag + ions arise from one with bridging oxygens of BO 4 - units, and the other with nonbridging oxygens on BO 3 - units. Furthermore, it is proposed that the Ag + ions in the iodide-ion environments progressively agglomerate into disordered regions of AgI, but do not form structures similar to α-AgI. (Abstract Truncated)

  2. PENDIDIKAN AKHLAK MUSLIMAT MELALUISYA’IR : ANALISIS GENDER ATAS AJARAN SYI’IR MUSLIMAT KARYA NYAI WANIFAH KUDUS

    Directory of Open Access Journals (Sweden)

    Nur Said

    2016-03-01

    Full Text Available Penelitian ini difokuskan pada tiga hal: (1 Apakah karakteristik lingkup isi Syi’ir Muslimat?, (2 Bagai-manakah kondisi sosial budaya pada saat naskah ditulis oleh penulis?, (3 Apa nilai-nilai pendidikan moral bagi perempuan Muslim di isi Syi’ir Muslimat dalam perspektif gender?. Penelitian ini menggunakan pendekatan filologi dengan meningkatkan penggunaan analisis gender. Hasil dari penelitian ini adalah: Pertama, Syi’ir Muslimat ditulis oleh Nyai Wanifah, seorang wanita yang hidup pada zaman kolonial Belanda dipesantren tradisi di Kudus, Jawa Tengah. Kedua, beberapa nilai pendidikan moral di Syi’ir Muslimatantara lain: (1 Pentingnya pendidikan moral, (2 Bahaya perempuan bodoh; (3 Pentingnya belajar bagi perempuan di usia dini, (4 Etika menghias diri; (5 Bahaya materialisme, (6 Etika hubungan keluarga; (7 Dari rumah untuk mencapai surga; (8 Berhati-hatilah dengan tipu iblis; (9 Hindari perzinahan; (10 yang penting dari penutupan aurot; (11 yang ditujukan kepada orang tua. Ketiga, meskipun ada beberapa senyawa yang bias gender dalam Syi’ir Muslimat misalnya: (a Ada penjelasan yang menunjukkan bahwa perempuan lebih rendah dibandingkan laki-laki dalam derajat, (2 Pernyataan bahwa wanita bicara dibandingkan laki-laki, (3 wanita hanya cocok di wilayah domestik; Namun secara umum nasihat di syi’ir masih sangat relafen dalam konteks sekarang, terutama untuk memberikan solusi alternatif dalam merespon krisis moral bangsa terutama pada wanita generasi muda. Kata kunci: Syi’ir Muslimat, Pendidikan Karakter, Analisis Gender. This study focused on three things: (1 What is the characteristics of the scope of contents of Syi’ir Muslimat?, (2 What is the socio-cultural conditions at the time the manuscript was written by the author?, (3 What are the moral education values for Muslim women in the content of Syi’ir Muslimat in the perspective of gender?. This research uses a philological approach with enhanced use of gender analysis. The

  3. Characterization and identification of microorganisms by FT-IR microspectrometry

    Science.gov (United States)

    Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.

    2003-12-01

    We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.

  4. [HOMA-IR in patients with chronic hepatitis C].

    Science.gov (United States)

    Botshorishvili, T; Vashakidze, E

    2012-02-01

    The aim of investigation was to study the frequency of IR in type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. 130 patients were investigated: 20 with acute hepatitis C; 38 with chronic hepatitis C; 72 with cirrhosis: among them 10 with Stage A, 14 with Stage B and 48 with Stage C. Also we used 30 healthy people as the controls. The study demonstrates significant changes of insulin, glucose, HOMA-IR type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. In patients with liver cirrhosis levels of HOMA-IR is higher than in patients with chronic hepatitis C. In patients with acute hepatitis C levels of HOMA-IR was normal as in the control group. The results showed that various types of chronic viral hepatitis C and stages of cirrhosis set to increase HOMA-IR versus the controls., which were the most prominent in cases of severe hepatic lesion, which indicates that insulin resistance is a frequent companion of CHC.

  5. IR emission and UV extinction in two open clusters

    International Nuclear Information System (INIS)

    Hackwell, J.A.; Hecht, J.H.

    1989-01-01

    Recent models of interstellar extinction have shown the importance of understanding both the UV and IR properties of interstellar dust grains. IRAS data have shown variations in 60 and 100 micron emissions presumably due to the presence of IR cirrus, while recent observations in the UV by Fitzpatrick and Massa have identified components in the UV extinction curve which vary in different star regions. A Draine and Anderson model connects these results by proposing that different size variations in interstellar grains would cause distinct changes in both the IR emission and the UV extinction. In order to test this model it is necessary to make observations in well defined locations away from peculiar extinction regions. In the infrared this means looking away from the galactic plane so as to limit non-local sources of IR radiation. Two open clusters that are out of the galactic plane and which contain a number of late B and early A stars suitable for UV extinction studies, and whose IRAS data show variations in the 60/100 micron ratio were studied. Based on the Drain and Anderson model, variations were expected in their UV extinction curves that correlate with the IR cirrus emission

  6. Mid-Infrared Spectral Properties of IR QSOs

    International Nuclear Information System (INIS)

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-01-01

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from ∼5 to 30 μm, including the spectral slopes, 6.2 μm PAH emission strengths and [NeII] 12.81 μm luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 μm) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  7. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  8. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  9. Geophysical Modelling and Multi-Scale Studies in the Arctic Seiland Igneous Province: Millimeter to Micrometer Scale Mapping of the Magnetic Sources by High Resolution Magnetic Microscopy

    Science.gov (United States)

    Pastore, Z.; Church, N. S.; McEnroe, S. A.; Oda, H.; ter Maat, G. W.

    2017-12-01

    Rocks samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. These influence the magnetic anomalies from the micro to the global scale making the study of the magnetic properties of interest for multiple applications. Later geological processes such as serpentinization can significantly influence these properties and change the nature of the magnetic anomalies. Particularly, magnetic properties such as remanent magnetization and magnetic susceptibility are directly linked to the magnetic mineralogy composition and grain size and can provide useful information about the geological history of the source. Scanning magnetic microscopy is a highly sensitive and high-resolution magnetometric technique for mapping the magnetic field over a planar surface of a rock sample. The device measures the vertical component of the field above the thin sections and the technique offers a spatial resolution down to tens of micrometers and thus can be used to investigate discrete magnetic mineral grains or magnetic textures and structures, and the magnetic history of the sample. This technique allows a direct correlation between the mineral chemistry (through both electron and optical microscopy) and the magnetic properties. We present as case-study three thin section magnetic scans of two dunite samples from the Reinfjord Ultramafic complex, in northern Norway. The selected thin sections show different magnetic properties which reflect the magnetic petrology. One of the thin sections is from a pristine dunite sample; the other two are highly serpentinized with newly formed magnetite found in multiple, few micrometer thick, veins. We present the preliminary results obtained applying a forward modelling approach on the magnetic anomaly maps acquired over the thin sections. Modelling consists of uniformly-magnetized polygonal bodies whose geometry is constrained by the thickness of the thin section

  10. Third-generation intelligent IR focal plane arrays

    Science.gov (United States)

    Caulfield, H. John; Jack, Michael D.; Pettijohn, Kevin L.; Schlesselmann, John D.; Norworth, Joe

    1998-03-01

    SBRC is at the forefront of industry in developing IR focal plane arrays including multi-spectral technology and '3rd generation' functions that mimic the human eye. 3rd generation devices conduct advanced processing on or near the FPA that serve to reduce bandwidth while performing needed functions such as automatic target recognition, uniformity correction and dynamic range enhancement. These devices represent a solution for processing the exorbitantly high bandwidth coming off large area FPAs without sacrificing systems sensitivity. SBRC's two-color approach leverages the company's HgCdTe technology to provide simultaneous multiband coverage, from short through long wave IR, with near theoretical performance. IR systems that are sensitive to different spectral bands achieve enhanced capabilities for target identification and advanced discrimination. This paper will provide a summary of the issues, the technology and the benefits of SBRC's third generation smart and two-color FPAs.

  11. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  12. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  13. Teledetección de Gases mediante Sensores Infrarrojo (IR)

    OpenAIRE

    López Martínez, Fernando

    2008-01-01

    El LIR- UC3M, Laboratorio de Sensores IR de la Universidad Carlos III, ha desarrollado técnicas de análisis multi e hiperespectral IR para la teledetección de gases. Ofrece el diseño de sensores específicos para determinar la presencia de gases y su concentración. La práctica totalidad de los gases (CO2, CO, NO2, O3, HC o NH, etc.) implicados en la seguridad industrial, ambiental o militar pueden ser detectados. Se busca empresas o centros interesados en el uso de sensores de aplicación e...

  14. High field Moessbauer study of dilute Ir-(Fe) alloys

    International Nuclear Information System (INIS)

    Takabatake, Toshiro; Mazaki, Hiromasa; Shinjo, Teruya.

    1981-01-01

    The magnetic behavior of very dilute Fe impurities in Ir has been studied by means of Moessbauer measurement in external fields up to 80 kOe at 4.2 K. The saturation hyperfine field increases in proportion to the external field up to the maximum magnetic field available. This means that for a localized spin fluctuation system IrFe, the effective magnetic moment associated with Fe impurities is induced in proportion to the external field. No anomalous spectrum was observed with a very dilute sample (--10 ppm 57 Co), indicating that the interaction between impurities is responsible for the anomalous spectrum previously observed with a less homogeneous sample. (author)

  15. UV, visible and IR laser interaction with gelatine

    International Nuclear Information System (INIS)

    Oujja, M; Rebollar, E; Abrusci, C; Amo, A Del; Catalina, F; Castillejo, M

    2007-01-01

    In this work we investigate the effects on gelatine films of nanosecond pulsed laser irradiation at different laser wavelengths from the UV to the IR at 248, 266, 355, 532 and 1064 nm. We compared gelatines differing in gel strength values (Bloom 75 and 225) and in crosslinking degree. Formation of bubbles at the wavelengths in the UV (248 and 266 nm), melting and resolidification at 355 nm, and formation of craters by ablation in the VIS and IR (532 and 1064 nm) are the observed morphological changes. On the other hand, changes of the fluorescence behaviour of the films upon UV irradiation reveal chemical modifications of photolabile chromophores

  16. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  17. Electrochemical detection of volatile organic compounds using a Na{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}/Bi{sub 2}Cu{sub 0.1}V{sub 0.9}O{sub 5.35} heterojunction device

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Tetsuya, E-mail: kida@mm.kyushu-u.ac.jp [Department of Energy and Material Sciences, Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Morinaga, Naoki; Kishi, Shotaro [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga-Koen 6-1, Kasuga, Fukuoka 816-8580 (Japan); An, Ki-Mun; Sim, Kyoung-Won; Chae, Bu-Young [Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Kim, Jung-kwan [Education Center for Green Industry-friendly Fusion Technology (GIFT), Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Ryu, Bong-Ki [Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Shimanoe, Kengo [Department of Energy and Material Sciences, Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2011-09-01

    Highlights: > A device combining a sodium ion conductor of NASICON (Na{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}) with an oxygen ion conductor of BiCuVOx (Bi{sub 2}Cu{sub 0.1}V{sub 0.9}O{sub 5.35}) was fabricated. > The device can electrochemically detect volatile organic compounds (VOCs). > The electrochemical oxidation of VOCs with oxide ions occurred as the sensing reaction. > The formation of an oxygen ion-conductive layer at the interface between NASICON and BiCuVOx was suggested. - Abstract: A fast sodium ion conductor, NASICON (Na{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}), has been widely used for gas sensor applications. In this study, we demonstrate that a device combining NASICON with an oxygen-ion conductor of BiCuVOx (Bi{sub 2}Cu{sub 0.1}V{sub 0.9}O{sub 5.35}) can electrochemically detect volatile organic compounds (VOCs), such as ethanol, formaldehyde, and toluene. The sensing electrode made of BiCuVOx was attached onto a sintered NASICON disk at high temperature to produce an interfacial layer that had a different morphology and composition from those of NASICON and BiCuVOx, as observed by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. The device in which NASICON was fitted with the BiCuVOx-based electrode was found to efficiently detect VOCs in ppm concentrations. The sensor signal (electromotive force) exceeded 100 mV in response to 10 ppm HCOH at 400 deg. C, demonstrating the high sensitivity of the device. It also exhibited a relatively quick response, reproducible and stable sensor signals, and high selectivity to VOCs. The sensor responses followed behavior typical for mixed-potential-type gas sensors based on oxygen-ion conductors. It was thus suggested that the electrochemical oxidation of VOCs with oxide ions took place at the interfacial oxygen ion-conductive layer that was formed by the reaction of NASICON with BiCuVOx.

  18. Micrometer and nanometer scale photopatterning of proteins on glass surfaces by photo-degradation of films formed from oligo(ethylene glycol) terminated silanes.

    Science.gov (United States)

    Tizazu, Getachew; el Zubir, Osama; Patole, Samson; McLaren, Anna; Vasilev, Cvetelin; Mothersole, David J; Adawi, Ali; Hunter, C Neil; Lidzey, David G; Lopez, Gabriel P; Leggett, Graham J

    2012-12-01

    Exposure of films formed by the adsorption of oligo(ethylene glycol) (OEG) functionalized trichlorosilanes on glass to UV light from a frequency-doubled argon ion laser (244 nm) causes photodegradation of the OEG chain. Although the rate of degradation is substantially slower than for monolayers of OEG terminated thiolates on gold, it is nevertheless possible to form micrometer-scale patterns by elective adsorption of streptavidin to exposed regions. A low density of aldehyde functional groups is produced, and this enables derivatization with nitrilotriacetic acid via an amine linker. Complexation with nickel enables the site-specific immobilization of histidine-tagged yellow and green fluorescent proteins. Nanometer-scale patterns may be fabricated using a Lloyd's mirror interferometer, with a sample and mirror set at right angles to each other. At low exposures, partial degradation of the OEG chains does not remove the protein-resistance of the surface, even though friction force microscopy reveals the formation of patterns. At an exposure of ca. 18 J cm(-2), the modified regions became adhesive to proteins in a narrow region ca. 30 nm (λ/8) wide. As the exposure is increased further the lines quickly broaden to ca. 90 nm. Adjustment of the angle between the sample and mirror enables the fabrication of lines of His-tagged green fluorescent protein at a period of 340 nm that could be resolved using a confocal microscope.

  19. Organic Field-Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer-Sized Devices

    KAUST Repository

    Li, Haoyuan

    2017-01-16

    The electrical properties of organic field-effect transistors (OFETs) are usually characterized by applying models initially developed for inorganic-based devices, which often implies the use of approximations that might be inappropriate for organic semiconductors. These approximations have brought limitations to the understanding of the device physics associated with organic materials. A strategy to overcome this issue is to establish straightforward connections between the macroscopic current characteristics and microscopic charge transport in OFETs. Here, a 3D kinetic Monte Carlo model is developed that goes beyond both the conventional assumption of zero channel thickness and the gradual channel approximation to simulate carrier transport and current. Using parallel computing and a new algorithm that significantly improves the evaluation of electric potential within the device, this methodology allows the simulation of micrometer-sized OFETs. The current characteristics of representative OFET devices are well reproduced, which provides insight into the validity of the gradual channel approximation in the case of OFETs, the impact of the channel thickness, and the nature of microscopic charge transport.

  20. Organic Field-Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer-Sized Devices

    KAUST Repository

    Li, Haoyuan; Li, Yuan; Li, Hong; Bredas, Jean-Luc

    2017-01-01

    The electrical properties of organic field-effect transistors (OFETs) are usually characterized by applying models initially developed for inorganic-based devices, which often implies the use of approximations that might be inappropriate for organic semiconductors. These approximations have brought limitations to the understanding of the device physics associated with organic materials. A strategy to overcome this issue is to establish straightforward connections between the macroscopic current characteristics and microscopic charge transport in OFETs. Here, a 3D kinetic Monte Carlo model is developed that goes beyond both the conventional assumption of zero channel thickness and the gradual channel approximation to simulate carrier transport and current. Using parallel computing and a new algorithm that significantly improves the evaluation of electric potential within the device, this methodology allows the simulation of micrometer-sized OFETs. The current characteristics of representative OFET devices are well reproduced, which provides insight into the validity of the gradual channel approximation in the case of OFETs, the impact of the channel thickness, and the nature of microscopic charge transport.

  1. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    Science.gov (United States)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  2. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    Science.gov (United States)

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  3. Influence of size and shape of sub-micrometer light scattering centers in ZnO-assisted TiO2 photoanode for dye-sensitized solar cells

    Science.gov (United States)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2018-03-01

    Sub-micrometer cavities have been incorporated in the TiO2 photoanode of dye-sensitized solar cell to enhance its optical property with light scattering effect. These are large pores of several hundred nanometers in size and scatter incident light due to the difference refraction index between the scattering center and the surrounding materials, according to Mie theory. The pores are created using polystyrene (PS) or zinc oxide (ZnO) templates reported previously which resulted in ellipsoidal and spherical shapes, respectively. The effect of size and shape of scattering center was modeled using a numerical analysis finite-difference time-domain (FDTD). The scattering cross-section was not affected significantly with different shapes if the total displacement volume of the scattering center is comparable. Experiments were carried out to evaluate the optical property with varying size of ZnO templates. Photovoltaic effect of dye-sensitized solar cells made from these ZnO-assisted films were investigated with incident-photon-to-current efficiency to understand the effect of scattering center size on the enhancement of absorption. With 380 nm macropores incorporated, the power conversion efficiency has increased by 11% mostly thanks to the improved current density, while 170 nm and 500 nm macropores samples did not have increment in sufficiently wide range of absorbing wavelengths.

  4. Highly Dispersed PVP Supported Ir-Ni Bimetallic Nanoparticles as ...

    Indian Academy of Sciences (India)

    8

    comparison to Ir-Ni (1:2) due to their small size and high stability for the oxidation of ... reason, but also because many dyes and their breakdown products are toxic to ..... which may be due to the involvement of same type of interaction amongst ...

  5. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...

  6. Historical Materialism and the Postcolonial Challenge to IR

    DEFF Research Database (Denmark)

    Ougaard, Morten

    This paper addresses one of the “exemplary questions” listed by the panel conveners, namely: “How does the postcolonial perspective enable/disable the rethinking of theories and concepts considered central to critical IR?” This requires an explication of how I see the several parts of the exempla...

  7. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  8. PERIODIC ACCRETION INSTABILITIES IN THE PROTOSTAR L1634 IRS 7

    Energy Technology Data Exchange (ETDEWEB)

    Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Chini, Rolf, E-mail: hodapp@ifa.hawaii.edu, E-mail: rolf.chini@astro.ruhr-uni-bochum.de [Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum (Germany)

    2015-11-10

    The small molecular cloud Lynds 1634 contains at least three outflow sources. We found one of these, IRS 7, to be variable with a period of 37.14 ± 0.04 days and an amplitude of approximately 2 mag in the K{sub s} band. The light curve consists of a quiescent phase with little or no variation, and a rapid outburst phase. During the outburst phase, the rapid variation in brightness generates light echoes that propagate into the surrounding molecular cloud, allowing a measurement of the distance to IRS 7 of 404 pc ± 35 pc. We observed only a marginally significant change in the H − K color during the outburst phase. The K-band spectrum of IRS 7 shows CO bandhead emission but its equivalent width does not change significantly with the phase of the light curve. The H{sub 2} 1–0 S(1) line emission does not follow the variability of the continuum flux. We also used the imaging data for a proper motion study of the outflows originating from the IRS 7 and the far-infrared source IRAS 05173-0555, and confirm that these are indeed distinct outflows.

  9. Multi-scale Adaptive Gain Control of IR Images

    NARCIS (Netherlands)

    Schutte, K.

    1997-01-01

    IR imagery tends to have a higher dynamic range then typical display devices such as a CRT. Global methods such as stretching and histogram equalization improve the visibility of many images, but some information in the images stays hidden for a human operator. This paper reports about the

  10. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)

    Administrator

    IR study of Pb–Sr titanate borosilicate glasses. C R GAUTAM*, DEVENDRA KUMAR. † and OM PARKASH. †. Department of Physics, University of Lucknow, Lucknow 226 007, India. †. Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 3 January ...

  11. Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE)

    Science.gov (United States)

    2016-04-22

    biomaterials , and nanocomposites. Based on this base user group it is estimated that...Engineering; and Barbara Calcagno, Department of General Engineering) 5. The Role of Mechanical Stimulus on Collagen Expression During Bone Repair (Paul...Polymeric Biomaterials Laboratory Principal Investigator: Jorge Almodóvar, PhD - The IR spectra

  12. The IR-4 Program - how it can benefit nurseries

    Science.gov (United States)

    J. Ray Frank

    2002-01-01

    The Interregional Research Project 4 (IR-4) was initiated in 1963 to obtain national pesticide label regsitrations for use on food and fiber. This program has an emphasis on minor uses or specialty crops. In this arena in the United States today it includes 600 crops.

  13. 78 FR 913 - IRS Truncated Taxpayer Identification Numbers

    Science.gov (United States)

    2013-01-07

    ...). SUPPLEMENTARY INFORMATION: Background This document contains proposed amendments to the Income Tax Regulations... returns might hamper state income tax processing. Treasury and the IRS gave serious consideration to the... 301 are proposed to be amended as follows: PART 1--INCOME TAXES 0 Paragraph 1. The general authority...

  14. IR characteristic simulation of city scenes based on radiosity model

    Science.gov (United States)

    Xiong, Xixian; Zhou, Fugen; Bai, Xiangzhi; Yu, Xiyu

    2013-09-01

    Reliable modeling for thermal infrared (IR) signatures of real-world city scenes is required for signature management of civil and military platforms. Traditional modeling methods generally assume that scene objects are individual entities during the physical processes occurring in infrared range. However, in reality, the physical scene involves convective and conductive interactions between objects as well as the radiations interactions between objects. A method based on radiosity model describes these complex effects. It has been developed to enable an accurate simulation for the radiance distribution of the city scenes. Firstly, the physical processes affecting the IR characteristic of city scenes were described. Secondly, heat balance equations were formed on the basis of combining the atmospheric conditions, shadow maps and the geometry of scene. Finally, finite difference method was used to calculate the kinetic temperature of object surface. A radiosity model was introduced to describe the scattering effect of radiation between surface elements in the scene. By the synthesis of objects radiance distribution in infrared range, we could obtain the IR characteristic of scene. Real infrared images and model predictions were shown and compared. The results demonstrate that this method can realistically simulate the IR characteristic of city scenes. It effectively displays the infrared shadow effects and the radiation interactions between objects in city scenes.

  15. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [minerva...

  16. Iridium Sulfide and Ir Promoted Mo Based Catalysts.

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk

    2007-01-01

    Roč. 322, - (2007), s. 142-151 ISSN 0926-860X R&D Projects: GA ČR(CZ) GA104/06/0870 Institutional research plan: CEZ:AV0Z40720504 Keywords : iridium sulfide * IrMo catalyst * hydrodesulfurization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2007

  17. The Community College IR Shop and Accreditation: A Case Study

    Science.gov (United States)

    Johnston, George

    2011-01-01

    This article presents results of a study the author recently conducted on the role of traditional institutional research (IR) offices in support of accreditation activities and institutional effectiveness. The purpose of the study was to confirm or disconfirm the utility of a theoretical model developed by Brittingham, O'Brien, and Alig (2008) of…

  18. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  19. Compressibility of Ir-Os alloys under high pressure

    International Nuclear Information System (INIS)

    Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim; Gromilov, Sergey A.; Kurnosov, Alexander V.; Prescher, Clemens; Prakapenka, Vitali B.; Hanfland, Michael; Smaalen, Sander van; Margadonna, Serena; Dubrovinsky, Leonid S.

    2015-01-01

    Highlights: • fcc- and hcp-Ir-Os alloys were prepared from single-source precursors. • Their atomic volumes measured at ambient conditions using powder X-ray diffraction follow nearly linear dependence. • Compressibility of alloys have been studied up to 30 GPa at room temperature in diamond anvil cells. • Their bulk moduli increase with increasing osmium content. - Abstract: Several fcc- and hcp-structured Ir-Os alloys were prepared from single-source precursors in hydrogen atmosphere at 873 K. Their atomic volumes measured at ambient conditions using powder X-ray diffraction follow nearly linear dependence as a function of composition. Alloys have been studied up to 30 GPa at room temperature by means of synchrotron-based X-ray powder diffraction in diamond anvil cells. Their bulk moduli increase with increasing osmium content and show a deviation from linearity. Bulk modulus of hcp-Ir 0.20 Os 0.80 is identical to that of pure Os (411 GPa) within experimental errors. Peculiarities on fcc-Ir 0.80 Os 0.20 compressibility curve indicate possible changes of its electronic properties at ∼20 GPa

  20. Least-mean-square spatial filter for IR sensors.

    Science.gov (United States)

    Takken, E H; Friedman, D; Milton, A F; Nitzberg, R

    1979-12-15

    A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.

  1. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  2. Mock Target Window OTR and IR Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-19

    In order to fully verify temperature measurements made on the target window using infrared (IR) optical non-contact methods, actual comparative measurements are made with a real beam distribution as the heat source using Argonne National Laboratory’s (ANL) 35 MeV electron accelerator. Using Monte Carlo N-Particle (MCNP) simulations and thermal Finite Element Analysis (FEA), a cooled mock target window with thermocouple implants is designed to be used in such a test to achieve window temperatures up to 700°C. An uncoated and blackcoated mock window is designed to enhance the IR temperature measurements and verify optical transmitted radiation (OTR) imagery. This allows us to fully verify and characterize our temperature accuracy with our current IR camera method and any future method we may wish to explore using actual production conditions. This test also provides us with valuable conclusions/concerns regarding the calibration method we developed using our IR test stand at TA-53 in MPF-14.

  3. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  4. Mord studies in IR region by new dispersion relation

    International Nuclear Information System (INIS)

    Murthy, V.R.; Kumar, R. Jeevan

    1994-01-01

    This is the continuation of the series reporting MORD studies to typical problem in Chemistry and Polymer Science. In our earlier papers the MORDsup1.2 studied only in visible region. In this present investigation we extended the application of the New Dispersion Relation in IR region to determine the MORD and tested to some simple systems

  5. Readability of Online Patient Education Materials Related to IR.

    Science.gov (United States)

    McEnteggart, Gregory E; Naeem, Muhammad; Skierkowski, Dorothy; Baird, Grayson L; Ahn, Sun H; Soares, Gregory

    2015-08-01

    To assess the readability of online patient education materials (OPEM) related to common diseases treated by and procedures performed by interventional radiology (IR). The following websites were chosen based on their average Google search return for each IR OPEM content area examined in this study: Society of Interventional Radiology (SIR), Cardiovascular and Interventional Radiological Society of Europe (CIRSE), National Library of Medicine, RadiologyInfo, Mayo Clinic, WebMD, and Wikipedia. IR OPEM content area was assessed for the following: peripheral arterial disease, central venous catheter, varicocele, uterine artery embolization, vertebroplasty, transjugular intrahepatic portosystemic shunt, and deep vein thrombosis. The following algorithms were used to estimate and compare readability levels: Flesch-Kincaid Grade Formula, Flesch Reading Ease Score, Gunning Frequency of Gobbledygook, Simple Measure of Gobbledygook, and Coleman-Liau Index. Data were analyzed using general mixed modeling. On average, online sources that required beyond high school grade-level readability were Wikipedia (15.0), SIR (14.2), and RadiologyInfo (12.4); sources that required high school grade-level readability were CIRSE (11.3), Mayo Clinic (11.0), WebMD (10.6), and National Library of Medicine (9.0). On average, OPEM on uterine artery embolization, vertebroplasty, varicocele, and peripheral arterial disease required the highest level of readability (12.5, 12.3, 12.3, and 12.2, respectively). The IR OPEM assessed in this study were written above the recommended sixth-grade reading level and the health literacy level of the average American adult. Many patients in the general public may not have the ability to read and understand health information in IR OPEM. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  6. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  7. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  8. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  9. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  10. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    Science.gov (United States)

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  11. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  12. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    Science.gov (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  13. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  14. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Llera, María [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Codnia, Jorge [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF-CONICET, Buenos Aires (Argentina); Jorge, Guillermo A., E-mail: gjorge@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina)

    2015-06-15

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized.

  15. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    International Nuclear Information System (INIS)

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-01-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized

  16. The 0.5-2.22 micrometer Scattered Light Spectrum of the Disk around TW Hya: Detection of a Partially Filled Disk Gap at 80 AU*

    Science.gov (United States)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn

    2013-01-01

    We present a 0.5-2.2 micrometer scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances greater than 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at approximately 80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady a-disk with an ad hoc gap structure. The thermal properties of the disk are selfconsistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 solar mass.

  17. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  18. Assessment of COTS IR image simulation tools for ATR development

    Science.gov (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  19. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  20. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  1. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  2. IR and UV spectroscopic analysis of TBP complexes

    International Nuclear Information System (INIS)

    Azzouz, A.; Berrak, A.; Seridi, L.; Attou, M.

    1985-06-01

    The complexity of TBP molecule and the limited number of references stimulated the elaboration of this report. The spectroscopic of TBP and its complexes in the IR and UV fields permitted to elucidate or to confirm certain aspects concerning the solvation phenomenum. In IR spectroscopy, the stretching band of the P→O bond only is characteristic of the complex formed. The position of this band gives sufficient information about the kind and the stability of a complex. The TBP electronic spectra are characterized by two bands (200-220 nm) 1 and (268-290 nm) 2 whose intensity ratio (2/1) is about 0,13. The solvent nature seems to influence the positions of these bands and that of the inflexion point. The band 2 disappears when the TBP is complexed and the position and the intensity of the band 1 depend upon the complex nature

  3. (Ir)reconcilable differences? The debate concerning nursing and technology.

    Science.gov (United States)

    Sandelowski, M

    1997-01-01

    To review and critique the debate concerning nursing and technology. Technology has been considered both at one and at odds with nursing. Mitcham's (1994) concepts of technological optimism and romanticism. Nursing literature since 1960. Historical analysis. Technological optimists in nursing have viewed technology as an extension of and as readily assimilable into humanistic nursing practice, and nursing as socially advantaged by technology. Technological romantics have viewed technology as irreconcilable with nursing culture, as an expression of masculine culture, and as recirculating existing gender and social inequalities. Both optimists and romantics essentialize technology and nursing, treating the two as singular and fixed entities. The (ir)reconcilability of nursing and technology may be a function of how devices are used by people in different contexts, or of the (ir)reconcilability of views of technology in nursing.

  4. IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION

    International Nuclear Information System (INIS)

    LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

    2005-01-01

    A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics

  5. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  6. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Sharma, S.D.; Palaniselvam, T.; Vandana, S.; Bhatt, B.C.; Vinatha, S.; Patki, V.S.; Pendse, A.M.; Kannan, V.

    2004-01-01

    A HDR 1000 PLUS well type ionization chamber, procured from Standard Imaging, USA, and maintained by medical Physics and Safety Section (MPSS), Bhabha Atomic Research Centre (BARC), India, as a reference well chamber 1 (RWCH1), was traceably calibrated against the primary standard established by Radiological Standards Laboratory (RSL), BARC for 192 Ir HDR source, in terms of air kerma strength (AKS). An indigenously developed well-type ionization chamber, reference well chamber 2 (RWCH2) and electrometer system, fabricated by CD High Tech (CDHT) Instruments Private Ltd., Bangalore, India, was in turn calibrated against RWCH1. The CDHT system (i.e. RWCH2 and CDHT electrometer system) was taken to several hospitals, in different regions of the country, to check the calibration status of 192 Ir HDR sources. The result of this calibration audit work is reported here. (author)

  7. Clusterin: an IR-inducible protein determining life and death

    International Nuclear Information System (INIS)

    DAVID A. BOOTHMAN

    2006-01-01

    The roles of ionizing radiation (IR)-inducible genes/proteins are now being elucidated and the research team will focus on the functions of the clusterin (CLU) proteins after low dose IR exposures. With funding from the DOE, we discovered that x-ray-inducible transcript/protein No.8 (xip8) bound to the Ku70 DNA double strand break repair protein using various molecular biology techniques. We showed that translation of the CLU/xip8 transcript was complicated, leading to two classes of proteins separated by their intracellular processing. One set of CLU proteins (a secreted and precursor protein, sCLU and psCLU, respectively) were induced by very low doses of IR (>2.0 cGy) and subsequently secreted from the cell. The functions of sCLU, particularly in bystander effects, are not known; sCLU does not bind Ku70, but can interact with the TGF-? II receptor. Another intracellular class of CLU proteins was targeted to the cytoplasm and existed in a dormant precursor nuclear form (pnCLU). After higher IR doses (>1.0 Gy), pnCLU was activated via post-translational modification, and translocated to the nucleus, where nuclear CLU (nCLU) interacted with Ku70/Ku80, and signaled cell death. The mechanism(s) of how cells die following nCLU accumulation are unknown. Recent data from our lab indicate that CLU gene transcription is also complicated. Thus far, the data suggest that: (a) p53 is a negative regulator of CLU transcription, however, the mechanisms by which it exerts this negative pressure are not known; and (b) IR induces transcription of the CLU promoter, independent of p53, at regulatory elements that lie between -1403 and -325 bps 5'-from the TATAA box. In this renewal, the research team will investigate three separate, but interrelated hypotheses: (1) p53 negatively regulates the CLU promoter via distinct head to tail p53 half sites, and induction is mediated by the combination of retinoblatoma control elements (RCEs) and NF-?B sites; (2) sCLU is cytoprotective and

  8. From UV/IR mixing to closed strings

    International Nuclear Information System (INIS)

    Lopez, Esperanza

    2003-01-01

    It was shown in [1] that the leading UV/IR mixing effects in noncommutative gauge theories on D-branes are able to capture information about the closed string spectrum of the parent string theory. The analysis was carried out for D-branes on nonsupersymmetric C 3 /Z N orbifolds of Type IIB. In this paper we consider D-branes on twisted circles compactifications of Type II string theory. We find that the signs of the leading UV/IR mixing effects know about the (mass) 2 gap between the lowest modes in NSNS and RR closed string towers. Moreover, the relevant piece of the field theory effective action can be reproduced purely in the language of closed strings. Remarkably, this approach unifies in a single structure, that of a closed string exchange between D-branes, both the leading planar and nonplanar effects associated to the absence of supersymmetry. (author)

  9. Applications of FT-IR spectrophotometry in cancer diagnostics.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  10. Clusterin: an IR-inducible protein determining life and death

    Energy Technology Data Exchange (ETDEWEB)

    DAVID A. BOOTHMAN, Ph.D.

    2006-07-11

    The roles of ionizing radiation (IR)-inducible genes/proteins are now being elucidated and the research team will focus on the functions of the clusterin (CLU) proteins after low dose IR exposures. With funding from the DOE, we discovered that x-ray-inducible transcript/protein #8 (xip8) bound to the Ku70 DNA double strand break repair protein using various molecular biology techniques. We showed that translation of the CLU/xip8 transcript was complicated, leading to two classes of proteins separated by their intracellular processing. One set of CLU proteins (a secreted and precursor protein, sCLU and psCLU, respectively) were induced by very low doses of IR (>2.0 cGy) and subsequently secreted from the cell. The functions of sCLU, particularly in bystander effects, are not known; sCLU does not bind Ku70, but can interact with the TGF-ß II receptor. Another intracellular class of CLU proteins was targeted to the cytoplasm and existed in a dormant precursor nuclear form (pnCLU). After higher IR doses (>1.0 Gy), pnCLU was activated via post-translational modification, and translocated to the nucleus, where nuclear CLU (nCLU) interacted with Ku70/Ku80, and signaled cell death. The mechanism(s) of how cells die following nCLU accumulation are unknown. Recent data from our lab indicate that CLU gene transcription is also complicated. Thus far, the data suggest that: (a) p53 is a negative regulator of CLU transcription, however, the mechanisms by which it exerts this negative pressure are not known; and (b) IR induces transcription of the CLU promoter, independent of p53, at regulatory elements that lie between -1403 and -325 bps 5'-from the TATAA box. In this renewal, the research team will investigate three separate, but interrelated hypotheses: (1) p53 negatively regulates the CLU promoter via distinct head to tail p53 half sites, and induction is mediated by the combination of retinoblatoma control elements (RCEs) and NF-∫B sites; (2) sCLU is cytoprotective

  11. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation

    Science.gov (United States)

    Miao, Bei; Wu, Zhipeng; Xu, Han; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-11-01

    Current catalysts used for ethanol oxidation reaction (EOR) cannot effectively prevent CH3COOH formation, and thus become a major hindrance for direct ethanol fuel cell applications. We report an Ir catalyst that shows great promise for a complete EOR based on density functional theory calculations using PBE functional. The reaction barrier on Ir(1 0 0) was found to be 2.10 eV for CH3COOH formation, which is much higher than currently used Pd and Pt, and 0.57 eV for Csbnd C bond cleavage in CHCO species, which are comparable to Pd and Pt. The result suggests future directions for studying optimal complete EOR catalysts.

  12. Mid-IR laser system for advanced neurosurgery

    Science.gov (United States)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  13. Thermal IR exitance model of a plant canopy

    Science.gov (United States)

    Kimes, D. S.; Smith, J. A.; Link, L. E.

    1981-01-01

    A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.

  14. Laser welding parameters for manufacturing iridium-192 (Ir-192) source

    International Nuclear Information System (INIS)

    Anung Pujiyanto; Moch Subechi; Hotman Lubis; Diandono KY

    2013-01-01

    Number of cervical cancer patients in Indonesia is growing every year. One of cervical cancer treatment was fairly effective use brachytherapy treatment with radioisotope sources of iridium-192. Manufacturing of iridium sources for brachytherapy can be done by incorporating the iridium-192 into stainless steel microcapsules then welding using laser welder which the quality of the welding of iridium source (Ir-192) was determined by the welding parameters such as full power, energy frequency, average power and speed. Based on the result of leakage test using pressure -20 inch Hg and tensile test 2.5 bar showed the welding parameters III and IV did not have leakage and damaged. So that parameters III and IV are recommended to be applied to Ir-192 HDR's source. (author)

  15. Obstacle-avoiding robot with IR and PIR motion sensors

    Science.gov (United States)

    Ismail, R.; Omar, Z.; Suaibun, S.

    2016-10-01

    Obstacle avoiding robot was designed, constructed and programmed which may be potentially used for educational and research purposes. The developed robot will move in a particular direction once the infrared (IR) and the PIR passive infrared (PIR) sensors sense a signal while avoiding the obstacles in its path. The robot can also perform desired tasks in unstructured environments without continuous human guidance. The hardware was integrated in one application board as embedded system design. The software was developed using C++ and compiled by Arduino IDE 1.6.5. The main objective of this project is to provide simple guidelines to the polytechnic students and beginners who are interested in this type of research. It is hoped that this robot could benefit students who wish to carry out research on IR and PIR sensors.

  16. FT-IR spectroscopy of lipoproteins—A comparative study

    Science.gov (United States)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  17. Divertor IR thermography on Alcator C-Moda)

    Science.gov (United States)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  18. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  19. Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation

    Science.gov (United States)

    Chen, Long; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2016-01-01

    Insulin receptor substrate (IRS) proteins play important roles by acting as a platform in transducing signals from transmembrane receptors upon growth factor stimulation. Although tyrosine phosphorylation on IRS proteins plays critical roles in signal transduction, phosphorylation of IRS proteins on serine/threonine residues are believed to play various regulatory roles on IRS protein function. However, studies on serine/threonine phosphorylation of IRS proteins are very limited, especially for insulin receptor substrate 2 (IRS2), one member of the IRS protein family. In this study, we identify Polo-like kinase 1 (Plk1) as the responsible kinase for phosphorylation of IRS2 on two serine residues, Ser 556 and Ser 1098. Phosphorylation of IRS2 on these two serine residues by Plk1 prevents the activation of the PI3K pathway upon growth factor stimulation by inhibiting the binding between IRS2 and the PI3K pathway components and increasing IRS2 protein degradation. Of significance, we show that IRS2 phosphorylation is cell cycle regulated and that Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation. PMID:25830382

  20. English-Chinese Cross-Language IR Using Bilingual Dictionaries

    Science.gov (United States)

    2006-01-01

    specialized dictionaries together contain about two million entries [6]. 4 Monolingual Experiment The Chinese documents and the Chinese translations of... monolingual performance. The main performance-limiting factor is the limited coverage of the dictionary used in query translation. Some of the key con...English-Chinese Cross-Language IR using Bilingual Dictionaries Aitao Chen , Hailing Jiang , and Fredric Gey School of Information Management

  1. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  2. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  3. Image quality testing of assembled IR camera modules

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  4. Neo-Poulantzian Perspectives in IR and the Current Crisis

    OpenAIRE

    Ougaard, Morten

    2013-01-01

    This paper is about Poulantzas, historical materialism, international relations, and the current crisis. My purpose is to discuss how some Poulantzian theoretical contributions can be applied to the study of subject matters that are the focus of academic fields such as International Relations (IR), International Political Economy (IPE), International Politics, World Politics and others. I deliberately abstain from singling out any of these disciplines or fields or labels and fr...

  5. Completely automated open-path FT-IR spectrometry.

    Science.gov (United States)

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  6. IR Camera Report for the 7 Day Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-22

    The following report gives a summary of the IR camera performance results and data for the 7 day production run that occurred from 10 Sep 2015 thru 16 Sep 2015. During this production run our goal was to see how well the camera performed its task of monitoring the target window temperature with our improved alignment procedure and emissivity measurements. We also wanted to see if the increased shielding would be effective in protecting the camera from damage and failure.

  7. Espectroscopía Espacial en el IR-Lejano

    Science.gov (United States)

    Goicoechea, Javier R.; Cernicharo, J.

    Debido a la opacidad atmosférica, el dominio IR--lejano del espectro electromagnético ha sido la última ventana en ser utilizada por la Astrofísica Molecular. El potencial que supone abrir este nuevo rango de frecuencias a través de la espectroscopía molecular ha comenzado a ser explotado con el Infrared Space Observatory (ISO). La sensibilidad de la instrumentación embarcada en dicho satélite no tiene comparación alguna con las escasas misiones espaciales, o a bordo de aviones, realizadas con anterioridad a su lanzamiento. En particular, casi todo el rango operativo de ISO en el IR--lejano no había sido explorado. El espectro IR--lejano de las fuentes más representativas de la galaxia era desconocido y los principales emisores de radiación, las moléculas, estaban por identificar. Las observaciones en el IR--lejano están especialmente indicadas para el estudio del gas caliente en las nubes moleculares del medio interestelar y en el interior de las envolturas circunestelares alrededor de estrellas evolucionadas. Algunas de estas fuentes; Sgr B2 en el Centro Galáctico y las Proto--Nebulosas Planetarias, constituyen uno de los objetos más paradigmáticos en nuestra comprensión de la complejidad química de La Galaxia. En esta contribución se presentan los resultados espectroscópicos más importantes de algunas de estas fuentes astronómicas.

  8. Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    C. Wang

    2014-11-01

    Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.

  9. Industrial radiography with Ir-192 using computed radiographic technique

    International Nuclear Information System (INIS)

    Ngernvijit, Narippawaj; Punnachaiya, Suvit; Chankow, Nares; Sukbumperng, Ampai; Thong-Aram, Decho

    2003-01-01

    The aim of this research is to study the utilization of a low activity Ir-192 gamma source for industrial radiographic testing using the Computed Radiography (CR) system. Due to a photo-salbutamol Imaging Plate (I P) using in CR is much more radiation sensitive than a type II film with lead foil intensifying screen, the exposure time with CR can be significantly reduced. For short-lived gamma-ray source like Ir-192 source, the exposure time must be proportionally increased until it is not practical particularly for thick specimens. Generally, when the source decays to an activity of about 5 Ci or less, it will be returned to the manufacturer as a radioactive waste. In this research, the optimum conditions for radiography of a 20 mm thick welded steel sample with 2.4 Ci Ir-192 was investigated using the CR system with high resolution image plate, i.e. type Bas-SR of the Fuji Film Co. Ltd. The I P was sandwiched by a pair of 0.25 mm thick Pb intensifying sere en. Low energy scattered radiations was filtered by placing another Pb sheet with a thickness of 3 mm under the cassette. It was found that the CR image could give a contrast sensitivity of 2.5 % using only 3-minute exposure time which was comparable to the image taken by the type II film with Pb intensifying screen using the exposure time of 45 minutes

  10. The IR Sector – Opening new horizons for CERN

    CERN Multimedia

    2016-01-01

    Last week saw the CERN family grow by one, as we welcomed Cyprus as an Associate Member in the pre-stage to Membership. This gives me a good opportunity, three months into the job, to share the vision for the new International Relations (IR) Sector. CERN is and always has been an incredible example of successful, inclusive international collaboration and exchange in the pursuit of common goals. The IR Sector continues and builds on that tradition and spirit.   In the 60-plus years of CERN’s existence, our world has been transformed at all levels. And over the last decade or so, the world of particle physics has evolved beyond recognition. CERN is now a global lab, with a European core, and particle physics is a field that is increasingly planned and coordinated around the world. It is for these reasons that CERN needs to develop its International Relations so we can respond to and navigate these changes. The establishment by the Director-General of the IR Sector is a sign of her commitm...

  11. Revenue Potential for Inpatient IR Consultation Services: A Financial Model.

    Science.gov (United States)

    Misono, Alexander S; Mueller, Peter R; Hirsch, Joshua A; Sheridan, Robert M; Siddiqi, Assad U; Liu, Raymond W

    2016-05-01

    Interventional radiology (IR) has historically failed to fully capture the value of evaluation and management services in the inpatient setting. Understanding financial benefits of a formally incorporated billing discipline may yield meaningful insights for interventional practices. A revenue modeling tool was created deploying standard financial modeling techniques, including sensitivity and scenario analyses. Sensitivity analysis calculates revenue fluctuation related to dynamic adjustment of discrete variables. In scenario analysis, possible future scenarios as well as revenue potential of different-size clinical practices are modeled. Assuming a hypothetical inpatient IR consultation service with a daily patient census of 35 patients and two new consults per day, the model estimates annual charges of $2.3 million and collected revenue of $390,000. Revenues are most sensitive to provider billing documentation rates and patient volume. A range of realistic scenarios-from cautious to optimistic-results in a range of annual charges of $1.8 million to $2.7 million and a collected revenue range of $241,000 to $601,000. Even a small practice with a daily patient census of 5 and 0.20 new consults per day may expect annual charges of $320,000 and collected revenue of $55,000. A financial revenue modeling tool is a powerful adjunct in understanding economics of an inpatient IR consultation service. Sensitivity and scenario analyses demonstrate a wide range of revenue potential and uncover levers for financial optimization. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  12. IR imaging of blood circulation of patients with vascular disease

    Science.gov (United States)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  13. Structure and linear spectroscopic properties of near IR polymethine dyes

    International Nuclear Information System (INIS)

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  14. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  15. Tax Administration: Information on Selected IRS Tax Enforcement and Collection Efforts

    National Research Council Canada - National Science Library

    2001-01-01

    ...) in enforcing the nation's tax laws. These two topics will be discussed: (1) the relationship between IRS audits of taxpayers and other programs IRS uses to ensure that taxpayers returns are accurate, and (2...

  16. Tax Administration: IRS's Innocent Spouse Program Performance Improved; Balanced Performance Measures Needed

    National Research Council Canada - National Science Library

    2002-01-01

    .... Under the Internal Revenue Services (IRS) Innocent Spouse Program, IRS can relieve taxpayers of tax debts on the basis of equity considerations, such as not knowing that their spouse failed to pay taxes due...

  17. The use of IAEA-IRS information in Russia's nuclear power industry

    International Nuclear Information System (INIS)

    1996-01-01

    The use of IAEA-IRS information in Russia's nuclear power industry is described, including the following issues: organizational aspects; organization of the information process; assessment of information uses; examples of using IAEA-IRS information. Figs

  18. Evaluation of an industrial gas-fired IR dryer; Utvaerdering av en industriell gaseldad IR-straalare

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, S; Hermodsson, S

    1994-11-01

    The IR dryer is used in a paper making machine to dry the paper web after it has been coated with a surface layer. In part 1 of the project a mathematical model have been developed, capable of calculating the radiation intensity and other energy flows in the dryer. In part 2 of the project, measurements have been made on the IR radiator mounted in the paper making machine. The calculation model shows the efficiency of the radiator to 39% at full power and 35% at half power. The direct measurements were made at half power and gave an efficiency of 31% for new radiators and 28% for old ones. The conclusion is that the calculation model values corresponds very well compared with direct measurements.

  19. Optimization of grate combustion by means of an IR camera. Final report; Optimering af risteforbraending IR-kamera. Slut rapport

    Energy Technology Data Exchange (ETDEWEB)

    Didriksen, H.; Jensen, Joergen Peter; Hansen, Joergen (DONG Energy, Fredericia (Denmark)); Clausen, Soennik; Larsen, Henning (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2010-09-15

    The target of the project has been to improve the control and regulation of grate-fired straw boilers by involving measuring signals from a specially developed IR camera in a new regulation concept. The project was carried out with the straw boiler at the Avedoere power station. The conclusion has been that it is a very demanding task to develop an IR camera, including software, which must function as a process measuring device for continuous on-line measuring under very demanding conditions in a straw fired boiler. The result showed that this was not possible within the framework of this project. The developed camera has on the other hand proved to be very well suited for measuring campaigns, where the camera is ''manned''/continuously monitored. (Energy 11)

  20. Significado prognóstico das micrometástases nos linfonodos do carcinoma colorretal: detecção imunoistoquímica com anticorpos anticitoqueratina AE1/AE3

    Directory of Open Access Journals (Sweden)

    Rogério Tadeu Palma

    Full Text Available OBJETIVOS: Identificar por imunoistoquímica eventuais micrometástases nos linfonodos regionais previamente considerados livres pelo exame histopatológico convencional e avaliar a influência do comprometimento destes linfonodos na sobrevivência dos doentes com carcinoma colorretal extirpado com intenção curativa. MÉTODO: Foram estudados 51 doentes portadores de carcinoma colorretal nos estádios A (13 casos e B (38 casos, segundo a classificação de Dukes. Um total de 501 linfonodos previamente considerados livres pelo exame histopatológico convencional foi investigado por meio de técnica imunoistoquímica com anticorpos monoclonais anticitoqueratina AE1/AE3 para identificar células epiteliais. Cada bloco previamente fixado em formalina e embebido em parafina foi seccionado em três partes, obtendo-se de cada uma delas três cortes com espessura de 4 milimícron cada. RESULTADOS: Em seis doentes (11,7% no estádio B de Dukes, células neoplásicas foram identificadas em sete linfonodos do mesocolo (1,4% previamente considerados livres de neoplasia pelo exame histopatológico convencional. Em um enfermo, a micrometástase era representada por aglomerado celular, enquanto que nos outros cinco doentes as micrometástases eram constituídas por células isoladas. A sobrevivência dos enfermos com micrometástases linfonodais foi menor do que a dos doentes com linfonodos não comprometidos, porém sem atingir diferença significativa. CONCLUSÕES: O método imunoistoquímico pode ser empregado com sucesso na detecção de células neoplásicas em linfonodos previamente considerados livres pelo exame histopatológico convencional. O acometimento dos linfonodos regionais por micrometástases não influenciou a sobrevivência dos doentes com carcinoma colorretal extirpado.

  1. New infrared observations of IRS 1, IRS 3, and the adjacent nebula in the OMC-2 cluster

    International Nuclear Information System (INIS)

    Pendelton, Y.; Werner, M.; Dinerstein, H.

    1984-01-01

    Recent reports show that near infrared reflection nebulae are often observed around embedded protostellar objects. New observations are here reported of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2). It has been determined that the asymmetric distribution of the extended emission seen about IRS1 is in fact another infrared reflection nebula. Observations of near infrared polarimetry, photometry, and spectrophotometry were carried out at the NASA Infrared Telescope Facility October 1982 and January 1983. (author)

  2. IR-dust observations of Comet Tempel 2 with CRAF VIMS

    International Nuclear Information System (INIS)

    Combi, M.R.; McCord, T.B.; Bell, J.F.; Brown, R.H.; Clark, R.N.; Cruikshank, D.P.; Johnson, T.V.; Lebofsky, L.A.; Matson, D.L.

    1988-01-01

    Measurement strategies are now being planned for using the Visual and Infrared Mapping Spectrometer (VIMS) to observe the asteroid Hestia, and the nucleus, and the gas and dust in the coma of comet P/Tempel 2 as part of the Comet Rendezvous Asteroid Flyby (CRAF) mission. The spectral range of VIMS will cover wavelengths from 0.35 to 5.2 micrometers, with a spectral resolution of 11 nm from 0.35 to 2.4 micrometers and of 22 nm from 2.4 to 5.2 micrometers. The instantaneous field of view (IFOV) provided by the foreoptics is 0.5 milliradians, and the current design of the instrument provides for a scanning secondary mirror which will scan a swath of length 72 IFOVs. The CRAF high resolution scan platform motion will permit slewing VIMS in a direction perpendicular to the swath. This enables the building of a two dimensional image in any or all wavelength channels. Important measurements of the dust coma will include the onset of early coma activity, the mapping of gas and dust jets and correlations with active nucleus areas, observations of the dust coma from various scattering phase angles, coverage of the low wavelength portion of the thermal radiation, and the 3.4 micrometer hydrocarbon emission. A description of the VIMS instrument is presented

  3. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    Science.gov (United States)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  4. Carrier-free 194Ir from an 194Os/194Ir generator - a new candidate for radioimmunotherapy

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Rice, D.E.; Knapp, F.F. Jr.

    1992-01-01

    Iridium-194 (t 1/2 = 19.15 h) decays by beta-particle emission (E max = 2.236 MeV) and is a potential candidate for radioimmunotherapy. An important characteristic is availability of 194 Ir from decay of reactor-produced 194 Os (t 1/2 = 6y). We report the fabrication of the first 194 Os/ 194 Ir generator system using activated carbon. In addition, a novel gas thermochromatographic method was developed for the one step conversion of metallic Os to OsO 4 and subsequent separation and purification of OsO 4 . In this manner, the reactor irradiated enriched 192 Os target was converted to 194 OsO 4 , which was then converted to the K 2 OsCl 6 for generator loading. The yield and the elution profile of carrier-free 194 Ir, and 194 Os breakthrough were determined for a prototype generator which was evaluated over a 10-month period. (author)

  5. Effect of spin structure transition in IrMn on the CoPd/IrMn perpendicular exchange biased system

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Muhammad Bilal; Guentherodt, Gernot [II. Physikalisches Institut A, RWTH Aachen University, Aachen (Germany)

    2011-07-01

    The exchange bias (EB) phenomenon is studied in MBE grown Pd(10 nm)/CoPd(x=8,16,30 nm)/IrMn(15 nm)/Pd(4 nm) samples, which exhibit a perpendicular anisotropy of Co22Pd78. These samples are field cooled along the out-of-plane direction and hysteresis loops are measured along both the out-of-plane and in-plane directions. It is observed that there is a transition temperature where the out-of-plane EB becomes greater than the in-plane EB. This behavior of EB is an evidence of the change in the spin structure of the given system, which is also revealed by the magnetization versus temperature measurements of the exchange biased and of the sole IrMn samples. It is found that with increasing temperature there is a spin structure transition in Ir25Mn75 (15nm) related to the 2Q to 3Q transition in the bulk, which is responsible for the increase in out-of-plane EB. A vertical shift in the hysteresis loop is also observed in these exchange biased samples at low temperatures (T<50 K).

  6. Communication: IR spectroscopy of neutral transition metal clusters through thermionic emission

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Haertelt, M.; Meijer, G.; Fielicke, A.; Bakker, J. M.

    2013-01-01

    The resonant multiple photon excitation of neutral niobium clusters using tunable infrared (IR) radiation leads to thermionic emission. By measuring the mass-resolved ionization yield as a function of IR wavenumber species selective IR spectra are obtained for Nb-n (n = 5-20) over the 200-350 cm(-1)

  7. “Contrapuntal Reading” as a Method, an Ethos, and a Metaphor for Global IR

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    How to approach Global International Relations (IR)? This is a question asked by students of IR who recognize the limits of our field while expressing their concern that those who strive for a Global IR have been less-than-clear about the “how to?” question. In this article, I point to Edward W. ...

  8. Manual for IRS Coding. Joint IAEA/NEA International Reporting System for Operating Experience

    International Nuclear Information System (INIS)

    2011-01-01

    The International Reporting System for Operating Experience (IRS) is jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). In early 2010, the IAEA and OECD/NEA jointly issued the IRS Guidelines, which described the reporting system and process and gave users the necessary elements to enable them to produce IRS reports to a high standard of quality while retaining the effectiveness of the system expected by all Member States operating nuclear power plants. The purpose of the present Manual for IRS Coding is to provide supplementary guidance specifically on the coding element of IRS reports to ensure uniform coding of events that are reported through IRS. This Coding Manual does not supersede the IRS Guidelines, but rather, supports users and preparers in achieving a consistent and high level of quality in their IRS reports. Consistency and high quality in the IRS reports allow stakeholders to search and retrieve specific event information with ease. In addition, well-structured reports also enhance the efficient management of the IRS database. This Coding Manual will give specific guidance on the application of each section of the IRS codes, with examples where necessary, of when and how these codes are to be applied. As this reporting system is owned by the Member States, this manual has been developed and approved by the IRS National Coordinators with the assistance of the IAEA and NEA secretariats

  9. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Sloth, Martin Snoager

    2010-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to co...... with a sharp perturbative calculation of "missing information" in Hawking radiation....

  10. A Prospective Cohort Study on IRS Gene Polymorphisms in Type 2 ...

    African Journals Online (AJOL)

    Insulin resistance status was determined using the homeostatic model assessment for insulin resistance (HOMA-IR) index. Results: IRS1 polymorphisms were associated with increased insulin resistance (X2 = 5.09, p = 0.023) in T2DM patients with severe/acute hyperglycemia. IRS2 polymorphisms were not associated with ...

  11. Advantages of using 192Ir γ-ray flaw detector for some products

    International Nuclear Information System (INIS)

    Qin Xiqi

    1989-01-01

    This paper describes the advantages of 192 Ir γ-ray flaw detector made in China in welding seam testings. The authors made a comparison between 192 Ir γ-ray and X-ray machine. 192 Ir γ-ray machine showed many advantages, such as shorter working hours and less labour intensity

  12. Braškių 'Senga Sengana' prisitaikymas prie diferencijuoto ir kompleksinio UV-B spinduliuotės ir ozono poveikio

    OpenAIRE

    Brazaitytė, Aušra; Sakalauskaitė, Jurga; Duchovskis, Pavelas; Šikšnianienė, Jūratė Bronė; Samuolienė, Giedrė; Ulinskaitė, Raimonda; Baranauskis, Kęstutis; Urbonavičiūtė, Akvilė; Šabajevienė, Gintarė; Gelvonauskis, Bronislovas; Uselis, Nobertas; Vagusevičienė, Ilona

    2007-01-01

    2005 m. Lietuvos sodininkystės ir daržininkystės instituto fitotrono komplekse nustatytas diferencijuotas ir kompleksinis UV-B spinduliuotės bei ozono poveikis braškių augimui ir fotosintezės pigmentų pokyčiams bei jų prisitaikymo prie šių stresorių galimybės. Poveikis stresą sukeliančiais veiksniais buvo skirstomas į du laikotarpius: adaptacijos ir pagrindinį. Ozono koncentracija adaptacijos laikotarpiu buvo 80 µg m-3, o pagrindinio poveikio – 240 µg m-3. Tokia koncentracija buvo palaikoma 7...

  13. Jaunesnių ir vyresnių klasių mokinių konfliktų ir jų sprendimų ypatumai

    OpenAIRE

    Stočkutė, Jovita

    2012-01-01

    Tyrimo objektas – jaunesnių ir vyresnių klasių mokinių konfliktai ir jų sprendimų ypatumai. Tyrimo tikslas – išanalizuoti jaunesnių ir vyresnių klasių mokinių konfliktus ir jų sprendimų ypatumus. Hipotezės – keliame prielaidas, kad - vyresnių klasių mokiniai konfliktuoti pamokose linkę labiau, nei jaunesnių klasių mokiniai. - vyresnių klasių mokiniai naudoja įvairesnes konflikto sprendimo strategijas nei jaunesnių klasių mokiniai. Tyrimo uždaviniai: 1. Atskleisti jaune...

  14. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    Science.gov (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  15. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Asanova, Tatyana I., E-mail: nti@niic.nsc.ru; Asanov, Igor P. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation); Kim, Min-Gyu [Pohang University of Science and Technology, Beamline Research Division (Korea, Republic of); Gerasimov, Evgeny Yu. [Boreskov Institute of Catalysis SB RAS (Russian Federation); Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation)

    2013-10-15

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 Degree-Sign C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.Graphical Abstract.

  16. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-01-01

    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  17. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  18. Comparative study of potentially J{sub eff} = 0 ground state iridium(V) in SrLaNiIrO{sub 6}, SrLaMgIrO{sub 6}, and SrLaZnIrO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Klaus K.; Agrestini, Stefano; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Tanaka, Arata [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima (Japan); Jansen, Martin [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2017-12-13

    A series of polycrystalline double perovskites SrLaBIrO{sub 6} (B = Ni, Mg, Zn) containing Ir{sup 5+} (5d{sup 4}) was synthesized by solid state reactions, and structural, magnetic and electronic properties were investigated. The isotypic fully ordered double perovskites crystallize in space group P2{sub 1}/n and show semiconducting behavior with estimated bandgaps of approximately 0.2 eV for SrLaNiIrO{sub 6} and SrLaZnIrO{sub 6}, and 0.4 eV for SrLaMgIrO{sub 6}. SrLaNiIrO{sub 6} is an antiferromagnet with a Neel temperature of 74 K (μ{sub eff} = 3.3 μ{sub B}, θ{sub W} = -90 K), whereas SrLaMgIrO{sub 6} and SrLaZnIrO{sub 6} are weakly paramagnetic. All title compounds exhibit a temperature-independent contribution to the measured magnetic susceptibility, which supports the notion for a van-Vleck-type response originating from the Ir{sup 5+} (5d{sup 4}, J{sub eff} = 0) ions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Visible and Near-IR Reflectance Spectra of Smectite Acquired Under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Science.gov (United States)

    Morris, Richard V.; Achilles, Cherie N; Archer, Paul D.; Graff, Trevor G.; Agresti, David G.; Ming, Douglas W; Golden, Dadi C.; Mertzman, Stanley A.

    2011-01-01

    Visible and near-IR (VNIR) spectra from the MEx OMEGA and the MRO CRISM hyper-spectral imaging instruments have spectral features associated with the H2O molecule and M OH functional groups (M = Mg, Fe, Al, and Si). Mineralogical assignments of martian spectral features are made on the basis of laboratory VNIR spectra, which were often acquired under ambient (humid) conditions. Smectites like nontronite, saponite, and montmorillionite have interlayer H2O that is exchangeable with their environment, and we have acquired smectite reflectance spectra under dry environmental conditions for interpretation of martian surface mineralogy. We also obtained chemical, Moessbauer (MB), powder X-ray diffraction (XRD), and thermogravimetric (TG) data to understand variations in spectral properties. VNIR spectra were recorded in humid lab air at 25-35C, in a dynamic dry N2 atmosphere (50-150 ppmv H2O) after exposing the smectite samples (5 nontronites, 3 montmorillionites, and 1 saponite) to that atmosphere for up to approximately l000 hr each at 25-35C, approximately 105C, and approximately 215C, and after re-exposure to humid lab air. Heating at 105C and 215C for approximately 1000 hr is taken as a surrogate for geologic time scales at lower temperatures. Upon exposure to dry N2, the position and intensity of spectral features associated with M-OH were relatively insensitive to the dry environment, and the spectral features associated with H2O (e.g., approximately 1.90 micrometers) decreased in intensity and are sometimes not detectable by the end of the 215C heating step. The position and intensity of H2O spectral features recovered upon re-exposure to lab air. XRD data show interlayer collapse for the nontronites and Namontmorillionites, with the interlayer remaining collapsed for the latter after re-exposure to lab air. The interlayer did not collapse for the saponite and Ca-montmorillionite. TG data show that the concentration of H2O derived from structural OH was invariant

  20. NO Reactions Over Ir-Based Catalysts in the Presence of O2

    Directory of Open Access Journals (Sweden)

    Mingxin Guo

    2011-01-01

    Full Text Available The behaviour of a series of Ir-based catalysts supported on SiO2, ZSM-5 and γ-Al2O3 with various Ir loadings prepared by impregnation method was conducted by temperature programmed reaction (TPR technique. The result implies that NO is oxidized to NO2 while simultaneously being reduced to N2 or N2O in the NO reactions over iridium catalysts. The surface active phase over iridium catalysts that promote the NO reactions is IrO2. The catalytic activity increases with the increase of the Ir loading and support materials have a little effect on the catalytic activity. When the loading is less than 0.1%, the catalytic activity was found to be dependent on the nature of support materials and in order: Ir/ZSM-5>Ir/γ-Al2O3>Ir/SiO2. When the loading is higher than 0.1%, the catalytic activity for NO oxidation is in order: Ir/ZSM-5>Ir/SiO2>Ir/γ -Al2O3, which is correlated with Ir dispersion on the surface of support materials and the catalytic activity for NO reduction is in sequence: Ir/γ -Al2O3>Ir/SiO2>Ir/ZSM-5, which is attributed to the adsorbed-dissociation of NO2. Compared to Pt/γ-Al2O3, Ir/γ-Al2O3 catalyst is more benefit for the NO reduction.

  1. Study on seasonal IR signature change of a ship by considering seasonal marine environmental conditions

    Science.gov (United States)

    Kim, Do-Hwi; Han, Kuk-Il; Choi, Jun-Hyuk; Kim, Tae-Kuk

    2017-05-01

    Infrared (IR) signal emitted from objects over 0 degree Kelvin has been used to detect and recognize the characteristics of those objects. Recently more delicate IR sensors have been applied for various guided missiles and they affect a crucial influence on object's survivability. Especially, in marine environment it is more vulnerable to be attacked by IR guided missiles since there are nearly no objects for concealment. To increase the survivability of object, the IR signal of the object needs to be analyzed properly by considering various marine environments. IR signature of a naval ship consists of the emitted energy from ship surface and the reflected energy by external sources. Surface property such as the emissivity and the absorptivity on the naval ship varies with different paints applied on the surface and the reflected IR signal is also affected by the surface radiative property, the sensor's geometric position and various climatic conditions in marine environment. Since the direct measurement of IR signal using IR camera is costly and time consuming job, computer simulation methods are developing rapidly to replace those experimental tasks. In this study, we are demonstrate a way of analyzing the IR signal characteristics by using the measured background IR signals using an IR camera and the estimated target IR signals from the computer simulation to find the seasonal trends of IR threats of a naval ship. Through this process, measured weather data are used to analyze more accurate IR signal conditions for the naval ship. The seasonal change of IR signal contrast between the naval ship and the marine background shows that the highest contrast radiant intensity (CRI) value is appeared in early summer.

  2. High dose rate 192Ir calibration: Indonesia experiences

    International Nuclear Information System (INIS)

    Nasukha; Tjiptanto, D.; Darmasyah, R.; Kurniawan, B.

    2002-01-01

    Indonesia with a population of more than 200 Million people which spread on about 5000 islands, up to now only has 23 radiotherapy centers and some not active anymore. As mention by Parkin et al that Cervix/Utery and breast cancer are the most estimated numbers of new cases of cancers in women for developing countries, stomach and lung cancers in men. Indonesia as a developing country is likely similar to other developing countries on numbers of new cases of cancers in women. But quite different in men, in Indonesia the most common cancers are nasopharynx and thyroid cancers. The use of lr-192 sources in high dose-rate (HDR) remotely afterloaded brachytherapy treatments have greatly increased in recent years and variety of such sources are commercially available. Nine radiotherapy centers in Indonesia installed Nucletron microSelectron HDR remote afterloader. Based on the data of CiptoMangunkusurno Hospital, Jakarta that the most common cancers are the cervix, breast, nasopharynx and thyroid cancers which of percentage are about 31%, 25 %, 13%, and 6 % respectively. It means that the use of HDR 192 Ir brachytherapy has to be an effective tool in the treatments. Two methods have been studied and applied to calibrate HDR 192 Ir brachytherapy in Indonesia, especially for Nucletron microSelectron HDR 192 lr remote afterloader brachytherapy. Calibration of HDR 192 Ir brachytherapy source has been done by Cavity lonization Chamber and with Well Type lonization Chamber. First, 0.6 cc of NE Farmer type dosimeter that was calibrated to 60 Co and 250 kV of x-rays in air kerma was used in this experiment. Position of measurement (detector and source) at the center of the room and about 1 meter from the floor. Eight variation of distances from 10 cm to 40 cms have been carried out measurement as recommended by IAEA-TECDOC-1079. Correction have been given for scatters, non-uniformity, and attenuation. To solve the problem of scatter correction factor was used Matlab programming

  3. Persistence in the WFC3 IR Detector: Intrinsic Variability

    Science.gov (United States)

    Long, Knox S.; Baggett, Sylvia M.

    2018-03-01

    When the WFC3 IR detector is exposed to a bright source or sources, the sources can appear as afterimages in subsequent exposures, a phenomenon known as persistence. This can affect the science obtained with the IR channel. We have been involved in an effort to predict the brightness of the afterimages so that users can (at a minimum) flag the affected pixels and remove them from their analysis or (even better) subtract the afterimages from their science images to salvage the data. The ability of any model to remove afterimages depends on the degree to which persistence is the same for identical sets of exposures. We investigate possible time variability of persistence in the WFC3 detector using sets of (almost) identical visits comprised of single exposures of Omega Cen followed by a series of darks in which persistence is measured. We analyze 8 data sets, each consisting of two or three identical visits, with stimulus exposures between 49 and 1199 s, and find clear evidence of variability in several of the datasets in darks taken within 1000 s of the stimulus exposure. In most of the datasets, the difference in persistence for saturated pixels in the stimulus exposure is a power law decay; the visit with higher persistence has a higher power law amplitude. There was nothing unusual about the observing conditions preceding and during each of these visits that can explain the discrepancy in persistence levels. Variation in persistence implies that: (1) Unless and until the source of the variability is understood, any persistence model for the WFC3 array will be limited in its ability to predict persistence in a single observation, and, (2) as a consequence, users should always carefully inspect the results of any attempt to subtract persistence from WFC3 IR data based on a model prediction.

  4. The mid-IR silicon photonics sensor platform (Conference Presentation)

    Science.gov (United States)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.

    2017-02-01

    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in

  5. Critical Dispersion-Theory Tests of Silicon's IR Refractive Index

    Science.gov (United States)

    Karstens, William; Smith, D. Y.

    Silicon strongly absorbs both visible and UV light, but is highly transparent in the IR. Hence, it is a common choice for infrared windows and lenses. However, optical design is hindered by literature index values that disagree by up to 1%. In contrast optical-glass indices are known to 0.01% or better. The most widely available silicon IR indices are based on bulk measurements using either Snell's-Law refraction by a prism or channel-spectra interference of front- and backsurface reflections from a planar sample. To test the physical acceptability of these data, we have developed criteria based on a Taylor expansion of the Kramers-Kronig relation for the index at energies below strong inter-band transitions. These tests require that the coefficients of the series in powers of energy squared must be positive within the region of transparency. This is satisfied by essentially all prism measurements; their small scatter arises primarily from impurities and doping. In contrast, channel-spectra data fail in the second and third coefficients. A review of the experimental analysis indicates three problems besides purity: incorrect channel number arising from a channel-spectra model that neglects spectrum distortion by the weak lattice absorption; use of a series expansion of mixed parity in photon energy to describe the even-parity index; and use of an incorrect absorption energy in the Li-Sellmeier dispersion formula. Recommendations for IR index values for pure silicon will be discussed. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  6. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  7. Looking at Art in the IR and UV

    Science.gov (United States)

    Falco, Charles

    2013-03-01

    Starting with the very earliest cave paintings art has been created to be viewed by the unaided eye and, until very recently, it wasn't even possible to see it at wavelengths outside the visible spectrum. However, it is now possible to view paintings, sculptures, manuscripts, and other cultural artifacts at wavelengths from the x-ray, through the ultraviolet (UV), to well into the infrared (IR). Further, thanks to recent advances in technology, this is becoming possible with hand-held instruments that can be used in locations that were previously inaccessible to anything but laboratory-scale image capture equipment. But, what can be learned from such ``non-visible'' images? In this talk I will briefly describe the characteristics of high resolution UV and IR imaging systems I developed for this purpose by modifying high resolution digital cameras. The sensitivity of the IR camera makes it possible to obtain images of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. I also have used both it and the UV camera in remote locations with battery-powered illumination sources. I will illustrate their capabilities with images of various examples of Western, Asian, and Islamic art in museums on three continents, describing how these images have revealed important new information about the working practices of artists as famous as Jan van Eyck. I also will describe what will be possible for this type of work with new capabilities that could be developed within the next few years. This work is based on a collaboration with David Hockney, and benefitted from image analys research supported by ARO grant W911NF-06-1-0359-P00001.

  8. Using Fourier transform IR spectroscopy to analyze biological materials

    Science.gov (United States)

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  9. Mokinių laisvalaikio organizavimo edukaciniai ir socialiniai aspektai

    OpenAIRE

    Dulaitienė, Rasa

    2009-01-01

    Rekreacija – sudėtingas procesas, kuriame tiesiogiai dalyvauja žmogus, siekiantis atgauti fizines jėgas, psichologinę pusiausvyrą, dvasinę emocinę būseną, siekiantis jausti pasitenkinimą, tam tikslui tinkamoje, pritaikytoje, sukurtoje ar specialiai pasirinktoje aplinkoje. Rekreacija – tai ir asmenybės ugdymas. Rinkos pokyčiai, globalizacijos procesai sparčiai besivystančioje visuomenėje lemia, jog vaikui, jo interesų supratimui tenka vis mažiau dėmesio. Nors šeima yra esminis visuomenės e...

  10. Neo-Poulantzian Perspectives in IR and the Current Crisis

    DEFF Research Database (Denmark)

    Ougaard, Morten

    This paper is about Poulantzas, historical materialism, international relations, and the current crisis. My purpose is to discuss how some Poulantzian theoretical contributions can be applied to the study of subject matters that are the focus of academic fields such as International Relations (IR......), International Political Economy (IPE), International Politics, World Politics and others. I deliberately abstain from singling out any of these disciplines or fields or labels and from trying to define them precisely, because one of my arguments is that historical materialism (HM) is a research program2...

  11. Apie filosofijos ir meno sąsajas

    OpenAIRE

    Martinkus, Vytautas

    2008-01-01

    The article provides a review of Leonarda Jekentaitė’s book “De Profundis: Psichoanalitinės Filosofijos Žvilgsniu apie Mąstytojus ir Menininkus” (2007), written by V. Martinkus, according to whom, there are still few original art philosophy studies, published by Lithuanian authors in Lithuania. The review provides an analysis of the structure of the book, the style and main subjects are distinguished. The book provides the author’s articles, written during the period of thirty years. Most of ...

  12. Recovery of Ir-192 sources during emergency situations

    International Nuclear Information System (INIS)

    Quadros, C.L.; Conceicao, M.A. da

    1988-01-01

    During operations for the carrying out of services through the utilization of Ir-192 radio sources in radiographic tests of equipment, emergency situations may occur due to various causes and which bring radiologic accidents with doses exceeding the maximum alloewd. This work has the purpose to submit and analyze the major types of radiological accidents and its consequences for the installations and the procedures for the recuperation of sources during such situations. Another aspect to be mentioned shall be the interruption of services - such as production - and which is to be the lowest possible during the emergency. (author) [pt

  13. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  14. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  15. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  16. Ultra-broadband mid-wave-IR upconversion detection

    DEFF Research Database (Denmark)

    Barh, Ajanta; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2017-01-01

    In this Letter, we demonstrate efficient room temperature detection of ultra-broadband mid-wave-infrared (MWIR) light with an almost flat response over more than 1200 nm, exploiting an efficient nonlinear upconversion technique. Black-body radiation from a hot soldering iron rod is used as the IR...... test source. Placing a 20 mm long periodically poled lithium niobate crystal in a compact intra-cavity setup (> 20 WCW pump at 1064 nm), MWIR wavelengths ranging from 3.6 to 4.85 mu m are upconverted to near-infrared (NIR) wavelengths (820-870 nm). The NIR light is detected using a standard low...

  17. Improved Likelihood Function in Particle-based IR Eye Tracking

    DEFF Research Database (Denmark)

    Satria, R.; Sorensen, J.; Hammoud, R.

    2005-01-01

    In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model. Our...... enhanced tracker overcomes the issues of prior selection of static thresholds during the detection of feature observations in the bright-dark difference images. The auto-initialization process is performed using cascaded classifier trained using adaboost and adapted to IR eye images. Experiments show good...

  18. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  19. Mid-IR Observations of Mira Circumstellar Environment

    OpenAIRE

    Marengo, Massimo; Karovska, Margarita; Fazio, Giovanni G.; Hora, Joseph L.; Hoffmann, William F.; Dayal, Aditya; Deutsch, Lynne K.

    2001-01-01

    This paper presents results from high-angular resolution mid-IR imaging of the Mira AB circumbinary environment using the MIRAC3 camera at the NASA Infrared Telescope Facility (IRTF). We resolved the dusty circumstellar envelope at 9.8, 11.7 and 18 micron around Mira A (o Ceti), and measured the size of the extended emission. Strong deviations from spherical symmetry are detected in the images of Mira AB system, including possible dust clumps in the direction of the companion (Mira B). These ...

  20. Studies of Neutron Stars at Optical/IR Wavelengths

    OpenAIRE

    Mignani, R. P.; Bagnulo, S.; De Luca, A.; Israel, G. L.; Curto, G. Lo; Motch, C.; Perna, R.; Rea, N.; Turolla, R.; Zane, S.

    2006-01-01

    In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found f...

  1. Photothermal IR spectroscopy with perforated membrane micromechanical resonators

    DEFF Research Database (Denmark)

    Kurek, Maksymilian

    -IR method. In order to overcome them, string resonators were replaced by membranes. A reliable sampling technique was maintained by adding perforation to membranes and thereby essentially getting membrane porous filters. Membranes gave also access to fully integrated magnetic transduction that allowed...... for significant shrinkage and simplification of the system. An analytical model of a locally heated membrane was developed and confirmed through FEM simulations. Then, low stress silicon nitride perforated membranes were fabricated and characterized using two different experimental setups that employed optical...

  2. MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT z < 1.4

    International Nuclear Information System (INIS)

    Salim, Samir; Dickinson, Mark; Michael Rich, R.; Charlot, Stephane; Lee, Janice C.; Schiminovich, David; Perez-Gonzalez, Pablo G.; Ashby, Matthew L. N.; Noeske, Kai; Papovich, Casey; Weiner, Benjamin J.; Faber, S. M.; Ivison, Rob J.; Frayer, David T.; Walton, Josiah M.; Chary, Ranga-Ram; Bundy, Kevin; Koekemoer, Anton M.

    2009-01-01

    Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z 10 -10 12 L sun ). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z IR >10 11 L sun , yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ∼50% to the mid-IR luminosity, and we see no evidence for a large population of 'IR excess' galaxies.

  3. pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.

    Science.gov (United States)

    Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji

    2018-04-03

    A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.

  4. Effect of Ambient Particulate Matter 2.5 Micrometer (PM2.5 to Prevalence of Impaired Lung Function and Asthma in Tangerang and Makassar

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2016-06-01

    Full Text Available Particulate matter 2.5 micrometer (PM2.5 emission increased with increasing number of urban population as a result of increasing number of motor vehicles for their daily transportation. This study aimed to determine the level of impaired lung function and asthma and its relation to ambient levels of PM2.5 among migrant communities in Tangerang and Makassar and socioeconomic conditions. A cross-sectional design was implemented by involving 4,250 and 2,900 respondents in Tangerang and Makassar respectively on April to September 2010. Cluster sampling approach was applied. PM2.5 ambient measurements in each city were based on the coordinates of 40 global positioning system locations. The PM2.5 levels found higher in the morning than afternoon in both cities, with average about six folds of WHO guideline of 35 mg/m3. Asthma prevalence was found similar in both cities (1.3% and impaired lung function prevalence in Makassar was higher (24% than Tangerang (21%. Data showed there was no association between PM2.5 levels to the prevalence of asthma and impaired lung function in both cities. The study confirmed that exposure to PM2.5 is associated with prevalence of asthma and impaired lung function and provided evidence showed that the effect of air pollution was modified by certain living environment characteristics. These findings suggest the improvement of housing ventilations and larger space of living room for better oxygen circulation. AbstrakEmisi partikel debu 2,5 mikrometer (PM2.5 meningkat dengan bertambahnya jumlah penduduk kota akibat peningkatan angka kendaraan bermotor sebagai transportasi penduduk sehari-hari. Penelitian ini bertujuan untuk mengetahui tingkat gangguan fungsi paru dan asma serta hubungannya dengan kadar ambien PM2.5 pada masyarakat migran di Tangerang dan Makassar dan kondisi sosial ekonomi. Desain potong lintang digunakan dengan melibatkan 4.250 dan 2.900 responden di Tangerang dan Makassar pada bulan April sampai September

  5. Multiplexing of spatial modes in the mid-IR region

    Science.gov (United States)

    Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew

    2017-02-01

    Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.

  6. UV-IR mixing in nonassociative Snyder ϕ4 theory

    Science.gov (United States)

    Meljanac, Stjepan; Mignemi, Salvatore; Trampetic, Josip; You, Jiangyang

    2018-03-01

    Using a quantization of the nonassociative and noncommutative Snyder ϕ4 scalar field theory in a Hermitian realization, we present in this article analytical formulas for the momentum-conserving part of the one-loop two-point function of this theory in D -, 4-, and 3-dimensional Euclidean spaces, which are exact with respect to the noncommutative deformation parameter β . We prove that these integrals are regularized by the Snyder deformation. These results indicate that the Snyder deformation does partially regularize the UV divergences of the undeformed theory, as it was proposed decades ago. Furthermore, it is observed that different nonassociative ϕ4 products can generate different momentum-conserving integrals. Finally, most importantly, a logarithmic infrared divergence emerges in one of these interaction terms. We then analyze sample momentum nonconserving integral qualitatively and show that it could exhibit IR divergence too. Therefore, infrared divergences should exist, in general, in the Snyder ϕ4 theory. We consider infrared divergences at the limit p →0 as UV/IR mixings induced by nonassociativity, since they are associated to the matching UV divergence in the zero-momentum limit and appear in specific types of nonassociative ϕ4 products. We also discuss the extrapolation of the Snyder deformation parameter β to negative values as well as certain general properties of one-loop quantum corrections in Snyder ϕ4 theory at the zero-momentum limit.

  7. Crosstalk between adiponectin and IGF-IR in breast cancer

    Directory of Open Access Journals (Sweden)

    Loredana eMauro

    2015-07-01

    Full Text Available Obesity is a chronic and multifactorial disorder that is reaching epidemic proportions. It is characterized by an enlarged mass of adipose tissue caused by a combination of size increase of preexisting adipocytes (hypertrophy and de novo adipocyte differentiation (hyperplasia. Obesity is related to many metabolic disorders like hypertension, type 2 diabetes, metabolic syndrome, cardiovascular disease, and it is associated with an increased risk of cancer development in different tissues including breast. Adipose tissue is now regarded as not just a storage reservoir for excess energy, but rather as an endocrine organ, secreting a large number of bioactive molecules called adipokines. Among these, adiponectin represents the most abundant adipose tissue-excreted protein, which exhibits insulin-sensitizing, anti-inflammatory and antiatherogenic properties. The serum concentrations of adiponectin are inversely correlated with body mass index. Recently, low levels of plasma adiponectin have been associated with an increased risk for obesity-related cancers and development of more aggressive phenotype, concomitantly with alterations in the bioavailability of Insulin-like Growth Factor-I (IGF-I and IGF-I Receptor (IGF-IR signaling pathways. In this review we discuss the cross-talk between adiponectin/AdipoR1 and IGF-I/IGF-IR in breast cancer.

  8. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    Science.gov (United States)

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  9. IR Spectroscopy of Ethylene Glycol Solutions of Dimethylsulfoxide

    Science.gov (United States)

    Kononova, E. G.; Rodnikova, M. N.; Solonina, I. A.; Sirotkin, D. A.

    2018-07-01

    Features of ethylene glycol (EG) solutions of dimethylsulfoxide (DMSO) with low and moderate concentrations (from 2 to 50 mol % of DMSO) are studied by IR spectroscopy on a Bruker Tensor 37 FT-IR spectrometer in the wavenumber range of 400 to 4000 cm-1. The main monitored bands are the S=O stretching vibration band of DMSO (1057 cm-1) and the C-O (1086 and 1041 cm-1) and O-H (3350 cm-1) stretching vibration bands of EG. The obtained data show complex DMSO · 2EG to be present in all solutions with the studied concentrations due to formation of H-bonds between the S=O group of DMSO and the OH group of EG. In the concentration range of 6 to 25 mol % DMSO, the OH stretching vibration of EG is found to be broadened (by up to 70 cm-1), suggesting the strengthening of hydrogen bonds in the spatial network of the system due to the solvophobic effect of DMSO molecules and the formation of DMSO · 2EG. Starting from 25 mol % DMSO, narrowing of the OH stretching vibration is noted, and the bands of free DMSO appear along with the DMSO · 2EG complex, suggesting microseparation in the investigated system. At 50 mol % DMSO, the amounts of free and bound species in the system became comparable.

  10. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  11. Numerical method for IR background and clutter simulation

    Science.gov (United States)

    Quaranta, Carlo; Daniele, Gina; Balzarotti, Giorgio

    1997-06-01

    The paper describes a fast and accurate algorithm of IR background noise and clutter generation for application in scene simulations. The process is based on the hypothesis that background might be modeled as a statistical process where amplitude of signal obeys to the Gaussian distribution rule and zones of the same scene meet a correlation function with exponential form. The algorithm allows to provide an accurate mathematical approximation of the model and also an excellent fidelity with reality, that appears from a comparison with images from IR sensors. The proposed method shows advantages with respect to methods based on the filtering of white noise in time or frequency domain as it requires a limited number of computation and, furthermore, it is more accurate than the quasi random processes. The background generation starts from a reticule of few points and by means of growing rules the process is extended to the whole scene of required dimension and resolution. The statistical property of the model are properly maintained in the simulation process. The paper gives specific attention to the mathematical aspects of the algorithm and provides a number of simulations and comparisons with real scenes.

  12. Limewashed mural paintings as seen by VIS-IR reflectography

    Science.gov (United States)

    Fontana, R.; Striova, J.; Barucci, M.; Pampaloni, E.; Raffaelli, M.; Pezzati, L.; Mariotti, P.

    2015-06-01

    Near-Infrared (NIR) reflectography is a well-established technique for painting diagnostics, offering a fundamental contribution to the conservation of paintings. Since the '80s it has been routinely applied to study the execution technique of the author, as well as the presence of pentimenti, retouches, integrations or underdrawing. In the last decades IR reflectography has been extended to the visible (VIS) spectral range, providing information about the pigment composition. Up to now the multispectral analysis is still applied at an experimental level, as the processing of the image set is not straightforward. Rarely multispectral VIS-IR application has been applied to frescos, probably due to the lack, in most cases, of a scattering background. In this work we present the results provided by a multispectral scanning device based on single sensor acquisition, working in the 380-2500 nm spectral range, that is a laboratory prototype specifically built for research-grade imaging. The technique have been applied on a mock up simulating a mural painting substrate where an underdrawing, made of either carbon or iron-gall ink, was covered by different surface layers of limewash, the so-called scialbo.

  13. Low-energy levels calculation for 193Ir

    International Nuclear Information System (INIS)

    Zahn, Guilherme Soares; Zamboni, Cibele Bugno; Genezini, Frederico Antonio; Mesa-Hormaza, Joel; Cruz, Manoel Tiago Freitas da

    2006-01-01

    In this work, a model based on single particle plus pairing residual interaction was used to study the low-lying excited states of the 193 Ir nucleus. In this model, the deformation parameters in equilibrium were obtained by minimizing the total energy calculated by the Strutinsky prescription; the macroscopic contribution to the potential was taken from the Liquid Droplet Model, with the shell and paring corrections used as as microscopic contributions. The nuclear shape was described using the Cassinian ovoids as base figures; the single particle energy spectra and wave functions for protons and neutrons were calculated in a deformed Woods-Saxon potential, where the parameters for neutrons were obtained from the literature and the parameters for protons were adjusted in order to describe the main sequence of angular momentum and parity of the band heads, as well as the proton binding energy of 193 Ir. The residual pairing interaction was calculated using the BCS prescription with Lipkin-Nogami approximation. The results obtained for the first three band heads (the 3/2 + ground state, the 1/2 + excited state at E ∼ 73 keV and the the 11/2 - isomeric state at E ∼ 80 keV) showed a very good agreement, but the model so far greatly overestimated the energy of the next band head, a 7/2 - at E ∼ 299 keV. (author)

  14. Fast rise time IR detectors for lepton colliders

    International Nuclear Information System (INIS)

    Drago, A.; Bini, S.; Guidi, M. Cestelli; Marcelli, A.; Pace, E.

    2016-01-01

    Diagnostics is a fundamental issue for accelerators whose demands are continuously increasing. In particular bunch-by-bunch diagnostics is a key challenge for the latest generation of lepton colliders and storage rings. The Frascati Φ-factory, DAΦNE, colliding at 1.02 GeV in the centre of mass, hosts in the main rings few synchrotron radiation beamlines and two of them collect the synchrotron radiation infrared emission: SINBAD from the electron ring and 3+L from the positron ring. At DAΦNE each bucket is 2.7 ns long and particles are gathered in bunches emitting pulsed IR radiation, whose intensity in the long wavelength regime is directly proportional to the accumulated particles. Compact uncooled photoconductive HgCdTe detectors have been tested in both beamlines using dedicated optical layouts. Actually, the fast rise time of HgCdTe semiconductors give us the chance to test bunch-by-bunch devices for both longitudinal and transverse diagnostics. For the longitudinal case, single pixel detectors have been used, while for the transverse diagnostics, multi-pixel array detectors, with special custom design, are under test. This contribution will briefly describe the status of the research on fast IR detectors at DAΦNE, the results obtained and possible foreseen developments.

  15. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.

    Science.gov (United States)

    Zhang, Guoqiang; Rainville, Christophe; Salmon, Adrian; Takiguchi, Masato; Tateno, Kouta; Gotoh, Hideki

    2015-11-24

    This work presents a method that bridges the gap between the nanometer-scale bottom-up and micrometer-scale top-down approaches for site-defined nanostructures, which has long been a significant challenge for applications that require low-cost and high-throughput manufacturing processes. We realized the bridging by controlling the seed indium nanoparticle position through a self-assembly process. Site-defined InP nanowires were then grown from the indium-nanoparticle array in the vapor-liquid-solid mode through a "seed and grow" process. The nanometer-scale indium particles do not always occupy the same locations within the micrometer-scale open window of an InP exposed substrate due to the scale difference. We developed a technique for aligning the nanometer-scale indium particles on the same side of the micrometer-scale window by structuring the surface of a misoriented InP (111)B substrate. Finally, we demonstrated that the developed method can be used to grow a uniform InP/InAs axial-heterostructure nanowire array. The ability to form a heterostructure nanowire array with this method makes it possible to tune the emission wavelength over a wide range by employing the quantum confinement effect and thus expand the application of this technology to optoelectronic devices. Successfully pairing a controllable bottom-up growth technique with a top-down substrate preparation technique greatly improves the potential for the mass-production and widespread adoption of this technology.

  16. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    Science.gov (United States)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  17. IGF-IR internalizes with Caveolin-1 and PTRF/Cavin in HaCat cells.

    Directory of Open Access Journals (Sweden)

    Barbara Salani

    Full Text Available BACKGROUND: Insulin-like growth factor-I receptor (IGF-IR is a tyrosine kinase receptor (RTK associated with caveolae, invaginations of the plasma membrane that regulate vesicular transport, endocytosis and intracellular signaling. IGF-IR internalization represents a key mechanism of down-modulation of receptors number on plasma membrane. IGF-IR interacts directly with Caveolin-1 (Cav-1, the most relevant protein of caveolae. Recently it has been demonstrated that the Polymerase I and Transcript Release Factor I (PTRF/Cavin is required for caveolae biogenesis and function. The role of Cav-1 and PTRF/Cavin in IGF-IR internalization is still to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the interaction of IGF-IR with Cav-1 and PTRF/Cavin in the presence of IGF1in human Hacat cells. We show that IGF-IR internalization triggers Cav-1 and PTRF/Cavin translocation from plasma membrane to cytosol and increases IGF-IR interaction with these proteins. In fact, Cav-1 and PTRF/Cavin co-immunoprecipitate with IGF-IR during receptor internalization. We found a different time course of co-immunoprecipitation between IGF-IR and Cav-1 compared to IGF-IR and PTRF/Cavin. Cav-1 and PTRF/Cavin silencing by siRNA differently affect surface IGF-IR levels following IGF1 treatment: Cav-1 and PTRF/Cavin silencing significantly affect IGF-IR rate of internalization, while PTRF/Cavin silencing also decreases IGF-IR plasma membrane recovery. Since Cav-1 phosphorylation could have a role in IGF-IR internalization, the mutant Cav-1Y14F lacking Tyr14 was transfected. Cav-1Y14F transfected cells showed a reduced internalization of IGF-IR compared with cells expressing wild type Cav-1. Receptor internalization was not impaired by Clathrin silencing. These findings support a critical role of caveolae in IGF-IR intracellular traveling. CONCLUSIONS/SIGNIFICANCE: These data indicate that Caveolae play a role in IGF-IR internalization. Based on these findings

  18. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Bhatt, B.C.; Pendse, A.M.; Kannan, V.

    2002-01-01

    Presently, no primary standard exists for the standardization of remote afterloading 192 Ir HDR sources. These sources are, therefore, being standardized by a few Secondary Standard Dosimetry Laboratories (SSDLs), in terms of Air Kerma Strength (AKS) or Reference Air Kerma Rate (RAKR) using a 0.6 cc Farmer type chamber, set up as an Interim Standard. These SSDLs offer calibration to well type of ionization chambers that are normally used by the hospitals for calibrating the 192 lr HDR source. Presently, in many countries, including India, well chambers are not commercially available. Nor do these countries offer any calibration service for 192 lr HDR source. With the result users make use of well chambers imported from different countries with their calibration traceable to the country of origin. Since no intercomparisons between these countries have been reported, the measurement consistency between hospitals becomes questionable. The problem is compounded by the fact that these chambers are used for several years without re-calibration since no calibration service is locally available. For instance, in India, the chambers have been in use in hospitals, since 1994, without a second calibration. Not all hospitals use the well chamber for the calibration of the 192 lr HDR source. Many hospitals make use of 0.6 cc chambers, in air, at short source to chamber distances, for measuring the AKS of the source. The latter method is prone to much larger inaccuracy due to the use of very short source to chamber distances without proper calibration jigs, use of 60 Co calibration factor for 192 Ir HDR source calibrations, neglecting correction factors for room scatter, fluence non-uniformity, use of arbitrary buildup factors for the buildup cap of the chamber etc. A comparison of the procedures used at hospitals revealed that various arbitrary methods are in use at hospitals. An indigenously developed well chamber was calibrated against a Reference Standard traceable to the

  19. Moving the Plasmon of LaB₆ from IR to Near-IR via Eu-Doping.

    Science.gov (United States)

    Mattox, Tracy M; Coffman, D Keith; Roh, Inwhan; Sims, Christopher; Urban, Jeffrey J

    2018-02-01

    Lanthanum hexaboride (LaB₆) has become a material of intense interest in recent years due to its low work function, thermal stability and intriguing optical properties. LaB₆ is also a semiconductor plasmonic material with the ability to support strong plasmon modes. Some of these modes uniquely stretch into the infrared, allowing the material to absorb around 1000 nm, which is of great interest to the window industry. It is well known that the plasmon of LaB₆ can be tuned by controlling particle size and shape. In this work, we explore the options available to further tune the optical properties by describing how metal vacancies and Eu doping concentrations are additional knobs for tuning the absorbance from the near-IR to far-IR in La 1-x Eu x B₆ (x = 0, 0.2, 0.5, 0.8, and 1.0). We also report that there is a direct correlation between Eu concentration and metal vacancies within the Eu 1-x La x B₆.

  20. Moving the Plasmon of LaB6 from IR to Near-IR via Eu-Doping

    Directory of Open Access Journals (Sweden)

    Tracy M. Mattox

    2018-02-01

    Full Text Available Lanthanum hexaboride (LaB6 has become a material of intense interest in recent years due to its low work function, thermal stability and intriguing optical properties. LaB6 is also a semiconductor plasmonic material with the ability to support strong plasmon modes. Some of these modes uniquely stretch into the infrared, allowing the material to absorb around 1000 nm, which is of great interest to the window industry. It is well known that the plasmon of LaB6 can be tuned by controlling particle size and shape. In this work, we explore the options available to further tune the optical properties by describing how metal vacancies and Eu doping concentrations are additional knobs for tuning the absorbance from the near-IR to far-IR in La1−xEuxB6 (x = 0, 0.2, 0.5, 0.8, and 1.0. We also report that there is a direct correlation between Eu concentration and metal vacancies within the Eu1−xLaxB6.

  1. Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir)

    International Nuclear Information System (INIS)

    Yamabe-Mitarai, Y.; Hara, T.; Kitashima, T.; Miura, S.; Hosoda, H.

    2013-01-01

    Highlights: ► The partial isothemal section at 1523 K was determined in Ti–Pt–Ir. ► The high-temperature shape memory effect of Ti(Pt, Ir) was investigated. ► The shape recovery ratio was 72% in Ti–10Pt–32Ir after deformation at 1123 K. ► Ir addition to TiPt is effective to improve shape memory effect of TiPt. -- Abstract: The phase transformation and high-temperature shape memory effect of Ti(Pt, Ir) were investigated. First, the Ti-rich phase boundary of Ti(Pt, Ir) was investigated by phase composition analysis by secondary electron microscopy (SEM) using an electron probe X-ray micro analyzer (EPMA), X-ray diffraction analysis and transmission electron microscopy (TEM). Then, the three alloys Ti–35Pt–10Ir, Ti–22Pt–22Ir, and Ti–10Pt–32Ir (at%) close to the phase boundary but in the single phase of Ti(Pt, Ir) were prepared by the arc melting method. The shape memory effect and crystal structure were investigated by compression loading–unloading tests and high-temperature X-ray diffraction analysis, respectively

  2. OGTT results in obese adolescents with normal HOMA-IR values.

    Science.gov (United States)

    Sahin, Nursel Muratoglu; Kinik, Sibel Tulgar; Tekindal, Mustafa Agah

    2013-01-01

    To investigate insulin resistance (IR) with OGTT in obese adolescents who have normal fasting insulin and homeostasis model assessment for insulin resistance (HOMA-IR). A total of 97 obese adolescents who had values of HOMA-IR IR using an insulin peak of ≥150 μU/mL (1041.8 pmol/L) and/or ≥75 μU/mL (520.9 pmol/L) 120 min after glucose charge and the sum of insulin levels >2083.5 pmol/L (300 μU/mL) in OGTT. IR risk factors were defined as family history of diabetes mellitus, acanthosis nigricans (AN), and hepatic steatosis. IR was detected in 61 (62.9%) patients. The IR group had significantly more frequent AN (p=0.0001). As the number of risk factors increased, the frequency of IR also increased (p=0.01). We advise to perform OGTT in obese adolescents with normal HOMA-IR, if they have risk factors for IR.

  3. Underrepresentation of Women and Minorities in the United States IR Academic Physician Workforce.

    Science.gov (United States)

    Higgins, Mikhail C S S; Hwang, Wei-Ting; Richard, Chase; Chapman, Christina H; Laporte, Angelique; Both, Stefan; Thomas, Charles R; Deville, Curtiland

    2016-12-01

    To assess the United States interventional radiology (IR) academic physician workforce diversity and comparative specialties. Public registries were used to assess demographic differences among 2012 IR faculty and fellows, diagnostic radiology (DR) faculty and residents, DR subspecialty fellows (pediatric, abdominal, neuroradiology, and musculoskeletal), vascular surgery and interventional cardiology trainees, and 2010 US medical school graduates and US Census using binomial tests with .001 significance level (Bonferroni adjustment for multiple comparisons). Significant trends in IR physician representation were evaluated from 1992 to 2012. Women (15.4%), blacks (2.0%), and Hispanics (6.2%) were significantly underrepresented as IR fellows compared with the US population. Women were underrepresented as IR (7.3%) versus DR (27.8%) faculty and IR fellows (15.4%) versus medical school graduates (48.3%), DR residents (27.8%), pediatric radiology fellows (49.4%), and vascular surgery trainees (27.7%) (all P < .001). IR ranked last in female representation among radiologic subspecialty fellows. Blacks (1.8%, 2.1%, respectively, for IR faculty and fellows); Hispanics (1.8%, 6.2%); and combined American Indians, Alaska Natives, Native Hawaiians, and Pacific Islanders (1.8%, 0) showed no significant differences in representation as IR fellows compared with IR faculty, DR residents, other DR fellows, or interventional cardiology or vascular surgery trainees. Over 20 years, there was no significant increase in female or black representation as IR fellows or faculty. Women, blacks, and Hispanics are underrepresented in the IR academic physician workforce relative to the US population. Given prevalent health care disparities and an increasingly diverse society, research and training efforts should address IR physician workforce diversity. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  4. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  5. Ice contamination on satellite IR sensors: the MIPAS case

    Science.gov (United States)

    Niro, F.; Fehr, T.; Kleinert, A.; Laur, H.; Lecomte, P.; Perron, G.

    2009-04-01

    MIPAS on board the ENVISAT platform is a Michelson Interferometer measuring the atmospheric limb emission in the mid-infrared (IR), from 4.15 µm to 14.5 µm [1]. The calibrated MIPAS measurements are radiance spectra as a function of wavenumber. The radiometric and spectral calibrations of the raw data are part of the Level 1 processing in the Ground Segment [2]. The accuracy of the radiometric calibration is essential in order to ensure precise temperature and trace gas retrieval in the Level 2 processing. This calibration process requires a set of cold space measurements and a series of measurements of a black body source to determine the radiometric gain function and to correct for instrument self-emission. The deep space measurements are repeated every four limb scanning sequences with the purpose of compensating the variation of instrument's temperature along the orbit. The radiometric gain function is updated every week to correct for a degraded transmission at the detector due to ice contamination. The ice contamination leads to a decrease of the signal, mainly due to ice absorption of the incoming IR radiation. This paper presents an analysis of the effect of ice contamination during the MIPAS mission; in particular we will study its impact on the radiometric accuracy and on the Level 2 retrieval precision. We will highlight the importance of the ice monitoring for the MIPAS mission and we will show that this type of monitoring allows improving the stability and the overall performances of the MIPAS instrument. The effect of ice in other ENVISAT instruments will be also mentioned (e.g., AATSR). The lessons learned during the mission about ice contamination are very important, especially for IR sensors that are the most affected by this type of problem. These lessons will be useful in order to improve the in-flight operations of present and future satellite missions. [1] H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A

  6. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  7. Nb$_{3}$Sn quadrupole magnets for the LHC IR

    CERN Document Server

    Sabbi, G L; Chiesa, L; Coccoli, M; Dietderich, D R; Ferracin, P; Gourlay, S A; Hafalia, R R; Lietzke, A F; McInturff, A D; Scanlan, R M

    2003-01-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 * 10/sup 34/ cm/sup -2/s/sup -1/ at the Large Hadron Collider (LHC). At present, Nb/sub 3/Sn is the only practical conductor which can meet these requirements. Since Nb/sub 3/Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented. (25 refs).

  8. Nb3Sn Quadrupole Magnets for the LHC IR

    International Nuclear Information System (INIS)

    Sabbi, G.; Caspi, S.; Chiesa, L.; Coccoli, M.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Lietzke, A.F.; McInturff, A.D.; Scanlan, R.M.

    2001-01-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10 34 cm -2 s -1 at the Large Hadron Collider (LHC). At present, Nb 3 Sn is the only practical conductor which can meet these requirements. Since Nb 3 Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.

  9. Radioactivity measurements of metallic 192Ir sources by calorimetric methods

    International Nuclear Information System (INIS)

    Genka, Tsuguo; Iwamoto, Seikichi; Takeuchi, Norio

    1992-01-01

    The necessity of establishing the traceability of dose measurement in brachytherapy 192 Ir sources is realized by physicians and researchers in the medical field. Standard sources of various shapes such as open-quotes hairpin,close quotes open-quotes single pin,close quotes open-quotes thin wire,close quotes and open-quotes seedclose quotes for calibrating ionization chambers in hospitals are being demanded. Nominal activities of not only these source products but also the standard sources have been so far specified by open-quotes apparentclose quotes values. Determination of open-quotes absoluteclose quotes activity by an established means such as 4pi-beta-gamma coincidence counting is not practical because quantitative dissolution of metallic iridium is very difficult. We tried to determine the open-quotes absoluteclose quotes activity by a calorimetric method in a fully nondestructive way

  10. Diamagnetism in spinel compound CuIr2S4

    International Nuclear Information System (INIS)

    Yagasaki, K.; Nakama, T.

    2007-01-01

    The diamagnetic susceptibility in CuIr 2 S 4 is independent of temperature up to just below metal-insulator transition temperature. If activation of electrons to higher levels occurs with breaking dimer pairs, the residual electrons at the dimer position and the activated electrons to the anti-bonding orbital make localized free spins giving a Langevin paramagnetism. Assuming no magnetic interaction between the localized free spins, the susceptibility is calculated using the energy gap obtained from the conductivity assumed to be a conventional semiconductor. The calculated results cannot explain the temperature-independent diamagnetism. The real energy gap is too large for thermal electron activation, however, conduction is induced thermally over several orders of magnitude within insulating phase. From the above results, we claimed new conduction mechanism named traveling dimer conduction: dimer shifts its position by electron hopping to neighbor position without electron activation over the energy gap

  11. Influence of the 192Ir source decay on biological effect

    International Nuclear Information System (INIS)

    Wang Shunbao; Feng Ningyuan; Niu Wenzhe; Yang Yuhui; Guo Lei

    1994-01-01

    Biological effect of the 192 Ir high activity source on LA 795 tumor of mice and HCT-8 cells have been investigated when decay of the source power from 340.4 GBq to 81.4 GBq no marked difference was found between the two cell survival curves of HCT-8 cells and both of them compared with that of the X-ray irradiation the value of relative biological effect (0.1 survival) was 0.43. On the experiment of tumor LA 795 of mice, when the source power was 293.3 GBq and 96.2 GBq, no different biological effect can be seen between the two series of figures. The relative biological effect was 0.55-0.60 (tumor growth delay) comparing with those of X-ray irradiation

  12. Sm cluster superlattice on graphene/Ir(111)

    Science.gov (United States)

    Mousadakos, Dimitris; Pivetta, Marina; Brune, Harald; Rusponi, Stefano

    2017-12-01

    We report on the first example of a self-assembled rare earth cluster superlattice. As a template, we use the moiré pattern formed by graphene on Ir(111); its lattice constant of 2.52 nm defines the interparticle distance. The samarium cluster superlattice forms for substrate temperatures during deposition ranging from 80 to 110 K, and it is stable upon annealing to 140 K. By varying the samarium coverage, the mean cluster size can be increased up to 50 atoms, without affecting the long-range order. The spatial order and the width of the cluster size distribution match the best examples of metal cluster superlattices grown by atomic beam epitaxy on template surfaces.

  13. Study on an x-ray microcalorimeter using Ir superconductor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Zen, Nobuyuki; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2005-01-01

    We fabricated a ten-pixel Ir/Au-transition edge sensor (TES) microcalorimeter, and investigated its signal and noise-property. The device was successfully operated in electro-thermal feedback (ETF) mode. More than six position groups could be discrete by using pulse height and rise time parameters of observed x-ray signals. It seems that the separation groups reflect the pixel position of the TES. The best energy resolution was 18.8 eV (FWHM) for 5.9 keV. The noise spectrum showed that noise level of ten-pixel was larger than that of single pixel. A unexplained peak was observed in the plot of current noise for each bias point. (author)

  14. Study of the deuterated albumin by FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Stoenescu, Daniela; Sahini, V.E.

    2000-01-01

    The albumin is a protein from the soluble or corpuscular protein class, which exists in cells, in dissolved state or in form of a hydrated gel. Proteins are essential constituents beside water, inorganic salts, lipids, carbon hydrates, vitamins, enzymes. The albumin is also a protein soluble in water and in diluted electrolyte solutions (acids, bases and salts). The investigation of the vibration isotopic effect has a great importance both for the diatomic molecules and for the polyatomic molecules. This paper is the first from a series of works which are intended to study the physico-chemical properties of the deuterated albumin and of the albumin solutions in heavy water by an isotopic exchange method. To put in evidence H-D exchange, the FT-IR spectroscopy is used when the deuterated albumin has different layer thickness. It is also of interest to elucidate the isotopic exchange between the hydrogen and oxygen atoms in bovine serum albumin macromolecules. (authors)

  15. Solidify, An LLVM pass to compile LLVM IR into Solidity

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-12

    The software currently compiles LLVM IR into Solidity (Ethereum’s dominant programming language) using LLVM’s pass library. Specifically, his compiler allows us to convert an arbitrary DSL into Solidity. We focus specifically on converting Domain Specific Languages into Solidity due to their ease of use, and provable properties. By creating a toolchain to compile lightweight domain-specific languages into Ethereum's dominant language, Solidity, we allow non-specialists to effectively develop safe and useful smart contracts. For example lawyers from a certain firm can have a proprietary DSL that codifies basic laws safely converted to Solidity to be securely executed on the blockchain. In another example, a simple provenance tracking language can be compiled and securely executed on the blockchain.

  16. The Interaction between American and European IRS Interest Rates

    Directory of Open Access Journals (Sweden)

    Verga Giovanni

    2018-03-01

    Full Text Available European interest rates movements are affected by various internal and external factors. This paper studies the link between European and American short- and long-term interest rates. In particular, we consider the forward interest rates coming from euro and dollar IRS term structures. The econometric techniques employed are co-integration, Granger-causality, OLS and GMM. Our results indicate that European remote settlement forward and long-term interest rates are primarily driven by US rates and confirm that the causality acts mainly from the US to the Eurozone. This was true even during the recent periods of European Central Bank quantitative easing. These factors weaken the ECB’s ability to intervene. In fact, we found the impact of American monetary policy on long-term interest rates to be also relevant for European bonds.

  17. 192Ir high dose rate (HDR) interstitial brain implant: optimisation

    International Nuclear Information System (INIS)

    Tyagi, Anuj; Singh, Dinesh; Chitra, S.; Gupta, J.P.

    2001-01-01

    The new modality of stepping source dosimetry system (SSDs) illustrates a remarkable improvement in attaining the uniform and homogeneous dose distribution within the target volume. The technique enables the physicist to correct for a certain amount of misplacement or curvature of implant geometry. The short course of brachytherapy provides good palliation in terms of functional improvements with low and acceptable toxicity in high-grade glioma. With continual refinements of the technique, brachytherapy performed by a skilled brachytherapy team offers an opportunity to improve patient survival and quality of life. Since 1997, micro selectron HDR 192 Ir treatments are done including gynecological, oesophageal, breast, surface mould, soft tissue sarcoma (STS) and brain in our hospital. In this paper, procedure of interstitial brain implant in glioma as implant technique, simulation and treatment planning will be discussed

  18. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  19. IR and NMR spectroscopic correlation of enterobactin by DFT

    Science.gov (United States)

    Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.

    2018-06-01

    Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.

  20. A UV to mid-IR study of AGN selection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sun Mi; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Jannuzi, Buell T. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  1. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    International Nuclear Information System (INIS)

    Marchesi, S.; Civano, F.; Urry, C. M.; Elvis, M.; Salvato, M.; Brusa, M.; Lanzuisi, G.; Vignali, C.; Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N.; Hasinger, G.; Miyaji, T.; Treister, E.; Allevato, V.; Finoguenov, A.; Cardamone, C.; Griffiths, R. E.; Karim, A.

    2016-01-01

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg 2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction

  2. Calibration of carbon analyzer LECO type IR-212

    International Nuclear Information System (INIS)

    Lilis Windaryati; Pranjono; Galuh Sri Banawa

    2013-01-01

    Calibration of Carbon Analyzer LECO type IR-212 has been done. The aim of this research is to study the performance of the carbon analyzer LECO type IR-212 for its accuracy assurance. The experiment includes a series of performance adjustment using standard material traceable nationally/internationally. The standard material used for the calibration is standard carbon manufactured by LECO, which refers to National Institute of Standards and Technology (NIST) Standard Reference Materials (SRM) of traceable certificate. The method used is based on Application Bulletin Leco Corporation. The composition used for the experiment varies from 0,0097% to 0,8110% that is 0,0097 ± 0,0014%; 0,0348 ± 0,0013%; 0,1770 ± 0,003% and 0,8110 ± 0,007%. The analysis results for those varied composition are 0,0097 ± 0,000175%; 0,03474 ± 0,000152%; 0,1762 ± 0,00228% and 0,80982 ± 0,000958% for their mean value and standard deviation respectively. In the standard analysis, the results are close to the true value is the measurement of a standard sample with a content of 0.811% with a correction factor of 1.0015. The smallest standard deviation in measurements of 0,0348% sample gives the lowest standard deviation, i.e. 0,000152. The analysis results are considered sufficiently stable with linear calibration curve of y = 0.9984 x with correlation coefficient R 2 = 1. (author)

  3. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Brusa, M.; Lanzuisi, G.; Vignali, C. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Allevato, V.; Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Cardamone, C. [Department of Science, Wheelock College, Boston, MA 02215 (United States); Griffiths, R. E. [Physics and Astronomy Dept., Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Karim, A. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2016-01-20

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  4. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  5. Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley's indices in patients with hypertension and type II diabetes.

    Science.gov (United States)

    Sarafidis, P A; Lasaridis, A N; Nilsson, P M; Pikilidou, M I; Stafilas, P C; Kanaki, A; Kazakos, K; Yovos, J; Bakris, G L

    2007-09-01

    The aim of this study was to evaluate the validity and reliability of homeostasis model assessment-insulin resistance (HOMA-IR) index, its reciprocal (1/HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and McAuley's index in hypertensive diabetic patients. In 78 patients with hypertension and type II diabetes glucose, insulin and triglyceride levels were determined after a 12-h fast to calculate these indices, and insulin sensitivity (IS) was measured with the hyperinsulinemic euglycemic clamp technique. Two weeks later, subjects had again their glucose, insulin and triglycerides measured. Simple and multiple linear regression analysis were applied to assess the validity of these indices compared to clamp IS and coefficients of variation between the two visits were estimated to assess their reproducibility. HOMA-IR index was strongly and inversely correlated with the basic IS clamp index, the M-value (r=-0.572, PHOMA-IR and QUICKI indices were positively correlated with the M-value (r=0.342, PHOMA-IR was the best fit of clamp-derived IS. Coefficients of variation between the two visits were 23.5% for HOMA-IR, 19.2% for 1/HOMA-IR, 7.8% for QUICKI and 15.1% for McAuley's index. In conclusion, HOMA-IR, 1/HOMA-IR and QUICKI are valid estimates of clamp-derived IS in patients with hypertension and type II diabetes, whereas the validity of McAuley's index needs further evaluation. QUICKI displayed better reproducibility than the other indices.

  6. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    International Nuclear Information System (INIS)

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization

  7. Mokytojų darbe patiriamo streso sąsaja su fiziniu aktyvumu ir nutukimu

    OpenAIRE

    Kruoliūtė, Vitalija

    2014-01-01

    Darbo objektas: mokytojų darbe patiriamo streso sąsaja su nutukimu ir fiziniu aktyvumu. Tikslas:ištirti mokytojų darbe patiriamo streso, nutukimo ir fizinio aktyvumo sąsajas. Uždaviniai: 1. Palyginti kūno masės indeksą jaunesnių ir vyresnių mokytojų bei vyrų ir moterų grupėse. 2. Palyginti mokytojų fizinį aktyvumą turinčių ir neturinčių antsvorio grupėse. 3. Įvertinti mokytojų darbe patiriamo streso, nutukimo ir fizinio aktyvumo sąsajas. Tyrimo metodai: 1. Literatūros ap...

  8. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul; Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho [Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  9. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    Science.gov (United States)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  10. Relationship between HOMA-IR and serum vitamin D in Chinese children and adolescents.

    Science.gov (United States)

    Wang, Lingli; Wang, Huiyan; Wen, Huaikai; Tao, Hongqun; Zhao, Xiaowei

    2016-07-01

    The objective of this study was to examine the cross-sectional relationship between homeostasis model assessment for insulin resistance (HOMA-IR) and serum 25-hydroxyvitamin D (25-OHD) level in Chinese children and adolescents. Anthropometric indices, lipid metabolic profile, and serum levels of glucose, insulin and 25-OHD were determined among 278 healthy prepubertal and pubertal, normal and overweight/obese children and adolescents aged 8-18 years between March 2014 and February 2015. HOMA-IR was significantly different across vitamin D statuses (pHOMA-IR negatively correlated with serum 25-OHD level for all subjects (R2=0.148, pHOMA-IR and BMI and serum 25-OHD level (R2=0.654, pHOMA-IR. Our findings supported that lower vitamin D status is strongly associated with worse HOMA-IR.

  11. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  12. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    International Nuclear Information System (INIS)

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-01-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd 3 Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd 3 Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts

  13. VizieR Online Data Catalog: IR-bright MSX sources in the SMC with Spitzer/IRS (Kraemer+, 2017)

    Science.gov (United States)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-07-01

    Our original set of infrared spectra of MSX SMC sources was obtained in Spitzer Cycle 1 (Program ID 3277, P.I. M. Egan). This program included 35 targets from the MSX SMC catalog. 24 targets were discussed in previous papers; this paper examines the remaining 11 sources in the sample. We also selected 4 objects in the MSX SMC catalog with similar photometric characteristics in an effort to uncover additional sources with crystalline dust. We observed these targets in Spitzer Cycle 3 (Program ID 30355, P.I. J. Houck). See tables 1 and 2 for observation data and basic properties of the targets. Table 3 lists 20 additional MSX SMC sources that were observed by other Spitzer IRS programs. Overall, 59 MSX SMC sources were observed with the IRS. The spectra were observed using the low-resolution modules of the IRS, Short-Low (SL) and Long-Low (LL), which provided spectra in the 5-14 and 14-37um ranges, respectively, at a resolution between ~60 and 120. For 10 evolved stars with oxygen-rich dust in our Cycle 1 program, we obtained spectra from 0.45 to 1.03um with the Double-Beam Spectrograph at the 2.3m telescope of the Australian National University at Siding Spring Observatory. A 0.45-0.89um spectrum for one of the stars in program 30355 was also observed. These spectra have a resolution of 10Å. Tables 5-7: catalog based on the 243 sources detected in the MSX survey of the SMC, updated with positions and photometry from more recent space-based missions and ground-based surveys. See the Appendix section for more details. The SMC catalog from MSX consists of the 243 sources in the main MSX catalog (Egan+ 2003, see V/114) that lie within the region 7°

  14. Data fusion of Landsat TM and IRS images in forest classification

    Science.gov (United States)

    Guangxing Wang; Markus Holopainen; Eero Lukkarinen

    2000-01-01

    Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...

  15. Yo-Yo IR2 testing of elite and sub-elite soccer players

    DEFF Research Database (Denmark)

    Ingebrigtsen, Jørgen; Bendiksen, Mads; Randers, Morten Bredsgaard

    2012-01-01

    Abstract We examined performance, heart rate response and construct validity of the Yo-Yo IR2 test by testing 111 elite and 92 sub-elite soccer players from Norway and Denmark. VO(2)max, Yo-Yo IR1 and repeated sprint tests (RSA) (n = 51) and match-analyses (n = 39) were also performed. Yo-Yo IR2...

  16. Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials

    OpenAIRE

    Andersen, Alina Joukainen; Yamada, Shoko; Ek, Pramod Kumar; Andresen, Thomas Lars; Boisen, Anja; Schmid, Silvan

    2016-01-01

    The proliferated use of engineered nanomaterials (ENMs), e.g. in nanomedicine, calls for novel techniques allowing for fast and sensitive analysis of minute samples. Here we present nanomechanical IR spectroscopy (NAM-IR) for chemical analysis of picograms of ENMs. ENMs are nebulized directly from dispersion and efficiently collected on nanomechanical string resonators through a non-diffusion limited sampling method. Even very small amounts of sample can convert absorbed IR light into a measu...

  17. A detailed post-IR IRSL dating study of the Niuyangzigou loess site in northeastern China

    DEFF Research Database (Denmark)

    Yi, Shuangwen; Buylaert, Jan-Pieter; Murray, Andrew Sean

    2016-01-01

    In this study, we report standard quartz SAR OSL and post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) measurements made on sand-sized quartz and K-feldspar extracts from the loess-palaeosol sequence at Niuyangzigou in northeastern China. The quartz OSL characteristics...... temperature -pIRIR (MET-pIRIR) data. It appears that the low temperature MET-pIRIR data are strongly affected by poor dose recovery, but this is not the case for the pIRIR290 results. Natural signal measurements at the highest (first IR) stimulation temperature on a sample expected to be in field saturation...

  18. ESR studies of electron irradiated K3Ir(CN)6 in KCl single crystals

    International Nuclear Information System (INIS)

    Vugman, N.V.; Pinhal, N.M.

    1983-01-01

    ESR studies of KCl single crystals doped with small amounts of K 3 Ir(CN) 6 and submitted to a prolongued 2 MeV electron irradiation at room temperature reveal the presence of the [IR(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- new molecular species. Ligand spin densities and ligand field parameters are calculated from the experimental hyperfine and superhyperfine interactions and compared to previous data on the [Ir(CN) 5 ] 4- species. (Author) [pt

  19. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    Science.gov (United States)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  20. Structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7

    Science.gov (United States)

    Kumar, Harish; Chaurasia, Rachna; Kumari, Pratibha; Paramanik, A. K.

    2018-04-01

    We have studied the structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7. Structural investigation has been done using x-ray powder diffraction and Rietveld analysis. Pr2Ir2O7 crystallize in cubic crystallographic phase with Fd-3m space group. Temperature dependent magnetization data does not show magnetic bifurcation down to 2 K. Electrical resistivity data of Pr2Ir2O7 exhibits metallic behavior throughout temperature range. Below 50 K, a small rise in resistivity data of Pr2Ir2O7 is observed down to 12 K.

  1. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  2. Homa1-ir And Homa2-ir Indexes In Identifying Insulin Resistance And Metabolic Syndrome - Brazilian Metabolic Syndrome Study (brams) [Índices Homa1-ir E Homa2-ir Para Identificação De Resistência à Insulina E Síndrome Metabólica - Estudo Brasileiro De Síndrome Metabólica (brams)

    OpenAIRE

    Geloneze B.; Vasques A.C.J.; Stabe C.F.C.; Pareja J.C.; de Lima Rosado L.E.F.P.; de Queiroz E.C.; Tambascia M.A.

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  3. [Reliability of HOMA-IR for evaluation of insulin resistance during perioperative period].

    Science.gov (United States)

    Fujino, Hiroko; Itoda, Shoko; Sako, Saori; Matsuo, Kazuki; Sakamoto, Eiji; Yokoyama, Takeshi

    2013-02-01

    Hyperglycemia due to increase in insulin resistance (IR) is often observed after surgery in spite of normal insulin secretion. To evaluate the degree of IR, the golden standard method is the normoglycemic hyperinsulinemic clamp technique (glucose clamp: GC). The GC using the artificial pancreas, STG-22 (Nikkiso, Tokyo, Japan), was established as a more reliable method, since it was evaluated during steady-state period under constant insulin infusion. Homeostasis model assessment insulin resistance (HOMA-IR), however, is frequently employed in daily practice because of its convenience. We, therefore, investigated the reliability of HOMA-IR in comparison with the glucose clamp using the STG-22. Eight healthy patients undergoing maxillofacial surgery were employed in this study after obtaining written informed consent. Their insulin resistance was evaluated by HOMA-IR and the GC using the STG-22 before and after surgery. HOMA-IR increased from 0.81 +/- 0.48 to 1.17 +/- 0.50, although there were no significant differences between before and after surgery. On the other hand, M-value by GC significantly decreased after surgery from 8.82 +/- 2.49 mg x kg(-1) x min(-1) to 3.84 +/- 0.79 mg x kg(-1) x min(-1) (P = 0.0003). In addition, no significant correlation was found between the values of HOMA-IR and the M-value by GC. HOMA-IR may not be reliable to evaluate IR for perioperative period.

  4. Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Liu, Xing

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....

  5. Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers

    International Nuclear Information System (INIS)

    Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

    2000-01-01

    Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design

  6. Energy Efficient Clothes Dryer with IR Heating and Electrostatic Precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Stanton [GE Global Research, Niskayuna, NY (United States)

    2017-12-12

    The project goal was to develop a revolutionary energy saving technology for residential clothes drying. The team developed an IR (infrared) heating system and NESP (Nebulizer and Electro-Static Precipitator) for integration into a ventless clothes dryer. The proposed technology addresses two of the major inefficiencies in current electric vented dryers by providing effective energy transfer for the removal of the water and recapture of the vapor latent heat. The IR heaters operating in the mid wave (2.5-10um) are very efficient as they target the 3-micron peak absorption of the water molecule. This allows direct energy absorption, unlike conventional element heaters where heat is transferred by convection. The low power NESP removes water vapor from the exhausted stream and recaptures the latent heat in the ESP (Electro-Static Precipitator) exchanger section. This allows the warm dry air to be recirculated back into the drum for additional efficiency savings. The remaining majority of the dryer hardware stays the same. Summing the efficiency gain from the two subcomponents we anticipated the EF (Efficiency Factor) to exceed the goal of 4.04. EF is obtained by dividing the weight (lbs) of water removed by the energy (kWhr) used, where the test load size is 8.45 lbs of bone dry clothing wetted to 57.5% or 4.8lbs of water, and dried to a remaining moisture content of 2.5-5%. Additional benefits include not having to recondition (heat or cool) the large amounts of make-up air to replace the air exhausted by a vented dryer. It was anticipated that the NESP/heat exchanger would be the most challenging and highest risk element in the program. Therefore, the team focused their efforts during Phase 1 of the program on the design, construction, testing, and optimization of the NESP/heat exchanger. At the end Phase 1, the team compared the performance of the NESP/heat exchanger with the system level requirements and made a Go/No-Go decision on proceeding with the second

  7. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    Science.gov (United States)

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  8. Hyperfine structure of six low-lying fine structure levels of 191Ir and 193Ir and the 191Δs193 hyperfine anomaly

    International Nuclear Information System (INIS)

    Buettgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Traeber, F.

    1978-01-01

    The hyperfine interaction constants A and B of six low-lying metastable fine structure states of the two iridium isotopes 191 Ir and 193 Ir and the electronic g-factors of these levels have been measured using the atomic-beam magnetic-resonance method. From the values of the magnetic-dipole interaction constants A, corrected for off-diagonal perturbations, we extracted the hyperfine anomaly of a pure 6s-electron state: 191 Δs 193 = 0.64(7)%. Using nonrelativistic approximations for the effective radial parameters the nuclear electric-quadrupole moments were obtained: Q( 191 Ir) = 0.81(21)b, Q( 193 Ir) = 0.73(19)b (corrected for Sternheimer shielding effects). (orig.) [de

  9. Competing reaction channels in IR-laser-induced unimolecular reactions

    International Nuclear Information System (INIS)

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO 2 laser was used as the excitation source in all experiments. The dissociation of D 2 CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D 2 CO. MPD yield shows a near cubic dependence in pure D 2 CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 μm ir fluorescence from D 2 CO is proportional to the square of the D 2 CO pressure in pure D 2 CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D 2 CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm 2 at 946.0 cm -1 . The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D 2 CO. In H 2 CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF 4 - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel

  10. IL 6: 2D-IR spectroscopy: chemistry and biophysics in real time

    International Nuclear Information System (INIS)

    Bredenbeck, Jens

    2010-01-01

    Pulsed multidimensional experiments, daily business in the field of NMR spectroscopy, have been demonstrated only relatively recently in IR spectroscopy. Similar as nuclear spins in multidimensional NMR, molecular vibrations are employed in multidimensional IR experiments as probes of molecular structure and dynamics, albeit with femtosecond time resolution. Different types of multidimensional IR experiments have been implemented, resembling basic NMR experiments such as NOESY, COSY and EXSY. In contrast to one-dimensional linear spectroscopy, such multidimensional experiments reveal couplings and correlations of vibrations, which are closely linked to molecular structure and its change in time. The use of mixed IR/VIS pulse sequences further extends the potential of multidimensional IR spectroscopy, enabling studies of ultrafast non-equilibrium processes as well as surface specific, highly sensitive experiments. A UV/VIS pulse preceding the IR pulse sequence can be used to prepare the system under study in a non-equilibrium state. 2D-IR snapshots of the evolving non-equilibrium system are then taken, for example during a photochemical reaction or during the photo-cycle of a light sensitive protein. Preparing the system in a non-equilibrium state by UV/Vis excitation during the IR pulse sequence allows for correlating states of reactant and product of the light triggered process via their 2D-IR cross peaks - a technique that has been used to map the connectivity between different binding sites of a ligand as it migrates through a protein. Introduction of a non-resonant VIS pulse at the end of the IR part of the experiment allows to selectively up-convert the infrared signal of interfacial molecules to the visible spectral range by sum frequency generation. In this way, femtosecond interfacial 2D-IR spectroscopy can be implemented, achieving sub-monolayer sensitivity. (author)

  11. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    Science.gov (United States)

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis

    2010-01-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  13. Physical Limitations To Nonuniformity Correction In IR Focal Plane Arrays

    Science.gov (United States)

    Scribner, D. A.; Kruer, M. R.; Gridley, J. C.; Sarkady, K.

    1988-05-01

    Simple nonuniformity correction algorithms currently in use can be severely limited by nonlinear response characteristics of the individual pixels in an IR focal plane array. Although more complicated multi-point algorithms improve the correction process they too can be limited by nonlinearities. Furthermore, analysis of single pixel noise power spectrums usually show some level of 1 /f noise. This in turn causes pixel outputs to drift independent of each other thus causing the spatial noise (often called fixed pattern noise) of the array to increase as a function of time since the last calibration. Measurements are presented for two arrays (a HgCdTe hybrid and a Pt:Si CCD) describing pixel nonlinearities, 1/f noise, and residual spatial noise (after nonuniforming correction). Of particular emphasis is spatial noise as a function of the lapsed time since the last calibration and the calibration process selected. The resulting spatial noise is examined in terms of its effect on the NEAT performance of each array tested and comparisons are made. Finally, a discussion of implications for array developers is given.

  14. "Batch" kinetics in flow: online IR analysis and continuous control.

    Science.gov (United States)

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)

    2018-01-15

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)

  16. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mid-IR Spectra of Refractory Minerals Relevant to Comets

    Science.gov (United States)

    Jauhari, Shekeab

    2008-09-01

    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  18. Homogeneous Ir-192 afterloading-flab-irradiation of plane surfaces

    International Nuclear Information System (INIS)

    Bratengeier, K.; Krieger, T.

    2002-01-01

    Homogeneous irradiation of plane targets bt Ir-192 afterloading flabs made by a parallel series of linear applicators can be time-consuming even with modern planning systems. The aim of the present study was to develop an algorithm that supplies homogeneous dose distributions in an arbitrary given plane in parallel to the equipped plane of a flab. The edge and corner positions of the flab are of particular importance. The identity of the dose in the optimisation distance above the flab centre, corners, and middle of the flab edges, leads to a strict relation of the respective dwell weights. Formulas can be derived that allow the calculation of the dwell times. The dimensioning of the flab can be rapidly adapted to new conditions. A comparison with the results of Nucletron PLATO-BPS for applicator-applicator distances and step sizes of 1 cm at optimisation distances of 10, 20, 30, and 40 mm and various flab sizes (3 x 3, 9 x 9, and 15 x 15 cm 2 ) shows the following results: The standard deviation of the proposed algorithm is sometimes slightly higher than the results of the commercial planning system, whereas the underdosage at the flab edges is usually smaller. The effort for planning and preparation of the irradiation, for example using a Nucletron HDR, is below 5 minutes - a considerable reduction of planning time. (orig.) [de

  19. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  20. Synoptic Mid-IR Spectra ToO Novae

    Science.gov (United States)

    Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team

    2007-02-01

    Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.