WorldWideScience

Sample records for irradiation induced swelling

  1. Ion irradiation-induced swelling and hardening effect of Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, D.H.; Chen, H.C.; Lei, G.H.; Huang, H.F.; Zhang, W.; Wang, C.B. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Yan, L., E-mail: yanlong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Fu, D.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Tang, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-06-15

    The volumetric swelling and hardening effect of irradiated Hastelloy N alloy were investigated in this paper. 7 MeV and 1 MeV Xe ions irradiations were performed at room temperature (RT) with irradiation dose ranging from 0.5 to 27 dpa. The volumetric swelling increases with increasing irradiation dose, and reaches up to 3.2% at 27 dpa. And the irradiation induced lattice expansion is also observed. The irradiation induced hardening initiates at low ion dose (≤1dpa) then saturates with higher ion dose. The irradiation induced volumetric swelling may be ascribed to excess atomic volume of defects. The irradiation induced hardening may be explained by the pinning effect where the defects can act as obstacles for the free movement of dislocation lines. And the evolution of the defects' size and number density could be responsible for the saturation of hardness. - Highlights: •Irradiation Swelling: The irradiation induced volumetric swelling increases with ion dose. •Irradiation Hardening: The irradiation hardening initiates below 1 dpa, then saturates with higher ion dose (1–10 dpa). •Irradiation Mechanism: The irradiation phenomena are ascribed to the microstructural evolution of the irradiation defects.

  2. Relationship between equivalent chromium content and irradiation-induced swelling in 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.; Guthrie, G.L.

    1974-12-01

    A correlation is noted between equivalent chromium content and resistance to irradiation induced swelling in various 316 stainless steel specimens which have slightly different chemical compositions. Several examples are cited where an increased concentration of an α-stabilizing minor constituent results in decreased swelling. It is shown that the relative swelling resistance of alloys having the same carbon and equivalent nickel contents is higher for those alloys with the higher equivalent chromium content

  3. Modeling of cavity swelling-induced embrittlement in irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Han, X.

    2012-01-01

    During long-time neutron irradiation occurred in Pressurized Water Reactors (PWRs), significant changes of the mechanical behavior of materials used in reactor core internals (made of 300 series austenitic stainless steels) are observed, including irradiation induced hardening and softening, loss of ductility and toughness. So far, much effect has been made to identify radiation effects on material microstructure evolution (dislocations, Frank loops, cavities, segregation, etc.). The irradiation-induced cavity swelling, considered as a potential factor limiting the reactor lifetime, could change the mechanical properties of materials (plasticity, toughness, etc.), even lead to a structure distortion because of the dimensional modifications between different components. The principal aim of the present PhD work is to study qualitatively the influence of cavity swelling on the mechanical behaviors of irradiated materials. A micromechanical constitutive model based on dislocation and irradiation defect (Frank loops) density evolution has been developed and implemented into ZeBuLoN and Cast3M finite element codes to adapt the large deformation framework. 3D FE analysis is performed to compute the mechanical properties of a polycrystalline aggregate. Furthermore, homogenization technique is applied to develop a Gurson-type model. Unit cell simulations are used to study the mechanical behavior of porous single crystals, by accounting for various effects of stress triaxiality, of void volume fraction and of crystallographic orientation, in order to study void effect on the irradiated material plasticity and roughness at polycrystalline scale. (author) [fr

  4. Effects of point defect trapping and solute segregation on irradiation-induced swelling and creep

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1978-01-01

    The theory of irradiation swelling and creep, generalized to include impurity trapping of point defects and impurity-induced changes in sink efficiencies for point defects, is reviewed. The mathematical framework is developed and significant results are described. These include the relation between vacancy and interstitial trapping and the effectiveness of trapping as compared to segregation-induced changes in sink efficiencies in modifying void nucleation, void growth, and creep. Current understanding is critically assessed. Several areas requiring further development are identified. In particular those given special attention are the treatment of nondilute solutions and the consequences of current uncertainties in fundamental materials properties whose importance has been identified using the theory

  5. Effects of tensile and compressive stresses on irradiation-induced swelling in AISI 316

    International Nuclear Information System (INIS)

    Lauritzen, T.; Bell, W.L.; Konze, G.M.; Rosa, J.M.; Vaidyanathan, S.; Garner, F.A.

    1985-05-01

    The results of two recent experiments indicate that the current perception of stress-affected swelling needs revision. It appears that compressive stresses do not delay swelling as previously modeled but actually accelerate swelling at a rate comparable to that induced by tensile stresses

  6. Continuous in-situ measurements of fission fragment irradiation induced void swelling in Ni

    International Nuclear Information System (INIS)

    Lefakis, H.

    1980-01-01

    A novel simulation technique has been developed to study the early stages of irradiation induced void formation in metals. The technique makes use of fission fragment irradiation produced by doping with 235 U and irradiating in a thermal neutron flux under highly controlled irradiation-environmental conditions. Employment of a computer and a high temperature radiation resistant LVDT resulted in a high volumetric sensitivity and the production of continuous, in-situ void swelling data for bulk specimens. Results for Ni, used as a test-metal served to corroborate the technique in a number of ways including comparisons with (a) reactor data, (b) direct post-irradiation specimen length measurements and (c) TEM examinations of irradiated samples. The technique has several unique advantages and, in conjunction with other conventional methods, it offers the possibility of detailed evaluation of void nucleation and growth theories. In view of the present results no definitive answer may be given on the issue of the incubation period while checks with two theoretical models have yielded an order-of-magnitude agreement

  7. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  8. Effects of impurity trapping on irradiation-induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L. K.; Yoo, M. H.

    1977-12-01

    A general theory of the effects of point defect trapping on radiation-induced swelling and creep deformation rates is developed. The effects on the fraction of defects recombining, and on void nucleation, void growth and creep due to the separate processes of dislocation climb-glide and dislocation climb (the so-called SIPA mechanism) are studied. Trapping of vacancies or interstitials increases total recombination and decreases the rates of deformation processes. For fixed trapping parameters, the reduction is largest for void nucleation, less for void growth and creep due to dislocation climb-glide, and least for creep due to dislocation climb. With this formation, the effects of trapping at multiple vacancy and interstitial traps and of spatial and temporal variation in trap concentrations may be determined. Alternative pictures for viewing point defect trapping in terms of effective recombination and diffusion coefficients are derived. It is shown that previous derivations of these coefficients are incorrect. A rigorous explanation is given of the well-known numerical result that interstitial trapping is significant only if the binding energy exceeds the difference between the vacancy and interstitial migration energies, while vacancy trapping is significant even at small binding energies. Corrections which become necessary at solute concentrations above about 0.1% are described. Numerical results for a wide range of material and irradiation parameters are presented.

  9. Report on fundamental modeling of irradiation-induced swelling and creep in FeCrAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kohnert, Aaron A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dasgupta, Dwaipayan [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-23

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, the material response must be demonstrated to provide suitable radiation stability, in order to ensure that there will not be significant dimensional changes (e.g., swelling), as well as quantifying the radiation hardening and radiation creep behavior. In this report, we describe the use of cluster dynamics modeling to evaluate the defect physics and damage accumulation behavior of FeCrAl alloys subjected to neutron irradiation, with a particular focus on irradiation-induced swelling and defect fluxes to dislocations that are required to model irradiation creep behavior.

  10. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  11. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  12. Radiation-induced creep and swelling

    International Nuclear Information System (INIS)

    Heald, P.T.

    1977-01-01

    The physical basis for radiation induced creep and swelling is reviewed. The interactions between the point defects and dislocations are recalled since these interactions are ultimately responsible for the observable deformation phenomena. Both the size misfit interaction and the induced inhomogeneity interaction are considered since the former gives rise to irradiation swelling while the latter, which depends on both internal and external stresses, results in irradiation creep. The defect kinetics leading to the deformation processes are discussed in terms of chemical rate theory. The rate equations for the spatially averaged interstitial and vacancy concentrations are expressed in terms of the microstructural sink strengths and the solution of these equations leads to general expressions for the deformation rates

  13. The study of the ion beam induced swelling in crystalline germanium irradiated by a 30 keV Ga+ focused ion beam

    International Nuclear Information System (INIS)

    Rubanov, S.; Munroe, P.R.; Stevens-Kalceff, M.

    2005-01-01

    The effect of swelling of crystalline Ge irradiated at room temperature with 30 keV Ga + focused ion beam (FIB) was studied by means of in situ FIB imaging, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The swelling occurred in the surface region of amorphous damage layer which was formed during ion irradiation. The degree of swelling reaches values up to 10 times for an implantation dose of ∼10 17 ions/cm 2 . Cross-secitonal TEM examination showed that the swelling is due to formation of a porous layer with a honeycomb structure. (author). 8 refs., 4 figs

  14. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  15. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  16. Irradiation swelling in self-ion irradiated niobium

    International Nuclear Information System (INIS)

    Bajaj, R.; Shiels, S.A.; Hall, B.O.; Fenske, G.R.

    1987-01-01

    This paper presents initial results of an investigation of swelling mechanisms in a model body centered cubic (bcc) metal, niobium, irradiated at elevated temperatures (0.3 T/sub m/ to 0.6 T/sub m/) where T/sub m/ = melting point in K. The objective of this work is to achieve an understanding of the elevated temperature swelling in bcc metals, which are the prime candidate alloys and composite matrix materials for space reactor applications. Niobium was irradiated with 5.3 MeV Nb ++ ions, at temperatures ranging from 700 0 C to 1300 0 C, to a nominal dose of 50 dpa at a dose rate of 6 x 10 -3 dpas. Swelling was observed over a temperature range of 700 0 C to 1200 0 C, with a peak swelling of 7% at 900 0 C. The microstructural data, obtained from transmission electron microscopy, were compared to the predictions of the theoretical model developed during this program. A reasonable agreement was obtained between the experimental measurements of swelling and theoretical predictions by adjusting both the niobium-oxygen binding energy and the incubation dose for swelling to realistic values

  17. Critical parameters controlling irradiation swelling in beryllium

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1995-01-01

    Radiation effects in beryllium can hardly be explained within a framework of the conventional theory based on the bias concept due to elastic interaction difference (EID) between vacancies and self-interstitial atoms (SIAs) since beryllium belongs to hexagonal close-packed metals where diffusion has been shown to be anisotropic. Diffusional anisotropy difference (DAD) between point defects changes the cavity bias for their absorption and leads to dependence of the dislocation bias on the distribution of dislocations over crystallographic directions. On the other hand, the elastic interaction between point defects and cavities gives rise to the size and gas pressure dependencies of the cavity bias, resulting in new critical quantities for bubble-void transition effects at low temperature irradiation. In the present paper, we develop the concept of the critical parameters controlling irradiation swelling with account of both DAD and EID, and take care of thermal effects as well since they are of major importance for beryllium which has an anomalously low self-diffusion activation energy. Experimental data on beryllium swelling are analyzed on the basis of the present theory. (orig.)

  18. Effect of gamma irradiation on nylon 6 films : swelling study

    International Nuclear Information System (INIS)

    Singh, L.P.; Chaudhuri, N.K.

    1980-01-01

    This paper reports on swelling studies of γ-irradiated nylon 6 films undertaken to investigate the effects of γ-irradiation in finer details. Benzyl alcohol has been used as the swelling agent. The kinetics of weight swelling of γ-irradiated nylon 6 films in benzyl alcohol was studied at different irradiation doses in the range 0 - 28.8 Mrad. It is observed that with increasing irradiation dose upto 14.4 Mrad the swelling, and hence the diffusion process are retarded; moreover, the sigmoidal nature of the percentage weight swelling vs (time)sup(1/2) plot is augmented. Above this critical dose the swelling and diffusion processes are accelerated. Besides, the sigmoidal behaviour recedes and is converted into linear behaviour at 28.8 Mrad. This behaviour indicates that a relaxation-controlled non-Fickian diffusion process is at work below 28.8 Mrad while at 28.8 Mrad a Fickian process is established. A significant effect on the equilibrium swelling in benzyl alcohol is observed. The plot of equilibrium weight swelling vs irradiation dose at 23deg C shows an initial decrease of swelling upto 3.6 Mrad at which swelling starts decreasing at accelerated rate in the dose range 3.6 - 7.6 Mrad. The rate slows down appreciably between 7.00 and 14.4 Mrad, above which there is a rapid fall. The results are correlated with scission and crosslinking processes through relative viscosity determination of formic acid solutions of the irradiated samples. It is established by combining viscosity data with kinetics and equilibrium swelling data that, besides scission, crosslinking processes are also at work in nylon 6 in the irradiation dose range 0 - 3.6 Mrad. It has been possible to bring out this point because the swelling technique seems to be preferentially sensitive towards crosslinking. (author)

  19. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  20. Fission induced swelling of U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Uljoo-gun, Ulsan 689-798 (Korea, Republic of); Park, J.M. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-10-15

    Fission-induced swelling of U–Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U–Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U–Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U–Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U–Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  1. Stress-enhanced swelling of metal during irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.; Porter, D.L.

    1980-04-01

    Data are available which show that stress plays a major role in the development of radiation-induced void growth in AISI 316 and many other alloys. Earlier experiments came to the opposite conclusion and are shown to have investigated stress levels which inadvertantly cold-worked the material. Stress-affected swelling spans the entire temperature range in fast reactor irradiations and accelerates with increasing irradiatin temperature. It also appears to operate in all alloy starting conditions investigated. Two major microstructural mechanisms appear to be causing the enhancement of swelling, which for tensile stresses is manifested primarily as a decrease in the incubation period. These mechanisms are stress-induced changes in the interstitial capture efficiency of voids and stress-induced changes in the vacancy emission rate of various microstructural components. There also appears to be an enhancement of intermetallic phase formation with applied stress and this is shown to increase swelling by accelerating the microchemical evolution that precedes void growth at high temperature. This latter consideration complicates the extrapolation of these data to compressive stress states

  2. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  3. Study of 316 stainless steel swelling due to neutron irradiation

    International Nuclear Information System (INIS)

    Furutani, Gen; Konishi, Takao

    2000-01-01

    Large stresses will be generated in the austenitic stainless steel core internals of pressurized water reactors (PWRs) if excessive swelling occurs after long periods of operation. As a result, deformation or stress corrosion cracking (SCC) could occur in the core internals. However, data on the swelling of irradiated austenitic stainless steel in actual PWRs is limited. In this study, mechanical tests, measurement of produced helium amount and analysis using transmission electron microscopes were carried out on a cold-worked (CW) 316 stainless steel flux thimble tube irradiated up to approximately 35 dpa in a Japanese PWR. The swelling was evaluated to be approximately 0.02%. This level of swelling was much lower than the swelling of the more than several percent that has been observed in fast breeder reactors. (author)

  4. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  5. Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Subing [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Zhanbing, E-mail: yangzhanbing@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Hui [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Watanabe, Seiichi; Shibayama, Tamaki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2017-05-15

    Large amounts of void swelling still limit the application of austenitic stainless steels in nuclear reactors due to radiation-induced lattice point defects. In this study, laser and/or beam irradiation was conducted in a temperature range of 573–773 K to explore the suppression of void swelling. The results show that during sequential laser-electron beam irradiation, the void nucleation is enhanced because of the vacancy clusters and void nuclei formed under pre-laser irradiation, causing greater void swelling than single electron beam irradiation. However, simultaneous laser-electron dual-beam irradiation exhibits an obvious suppression effect on void swelling due to the enhanced recombination between interstitials and vacancies in the temperature range of 573–773 K; especially at 723 K, the swelling under simultaneous dual-beam irradiation is 0.031% which is only 22% of the swelling under electron beam irradiation (0.137%). These results provide new insight into the suppression of void swelling during irradiation. - Highlights: •The temperature dependence of void swelling under simultaneous laser-electron dual-beam irradiation has been investigated. •Pre-laser irradiation enhances void nucleation at temperatures from 573 K to 773 K. •Simultaneous laser-electron dual-beam irradiation suppresses void swelling in the temperature range of 573–773 K.

  6. Swelling and microstructure of neutrons irradiated 316 Ti SS

    International Nuclear Information System (INIS)

    Seran, J.L.; Le Naour, L.; Grosjean, P.; Hugon, M.P.; Carteret, Y.; Maillard, A.

    1984-06-01

    The analysis of the behaviour of fuel pins irradiated in the same RAPSODIE subassembly, shows that titanium has a marked beneficial effect on the swelling resistance of CW 316 SS in a large range of temperature. This effect is particularly visible at high temperature since CW 316 Ti SS does not swell above 550 0 C up to a dose of 100 French dpa. The results obtained on samples irradiated in a RAPSODIE experimental rig give us confirmation of the good behaviour of CW 316 Ti SS which swells less and at smaller temperature than the other steels of the 316 series such as SA 316 Ti or aged SA 316 Ti. The swelling differences between some of these materials can be associated to different microstructures which are also very different from the ones obtained on the irradiated steels aged in the same time and temperature conditions

  7. Interaction of irradiation creep and swelling in the creep disappearance regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1992-01-01

    The objective of this effort is to determine the relationship between applied stresses and irradiation-induced dimensional changes in structural metals for fusion applications. Reanalysis of an earlier data set derived from irradiation of long creep tubes in EBR-II at 550 C has shown that the creep-swelling coupling coefficient is relatively independent of temperature at ∼0.6 x 10 -2 MPa -1 , but falls with increases in the swelling rate, especially at high stress levels. The action of stress-affected swelling and carbide precipitation exert different influences on the derivation of this coefficient

  8. PREVENTION OF PHOSPHATE - INDUCED MITOCHONDRIAL SWELLING

    Science.gov (United States)

    Kroll, Arnold J.; Kuwabara, Toichiro

    1962-01-01

    The prevention of phosphate-induced mitochondrial swelling in the whole retina of the rabbit was studied with the electron microscope. It was found that a mixture of ATP, Mg++, and bovine serum albumin protected the mitochondria in vitro. This finding confirmed the results obtained spectrophotometrically with isolated rat liver mitochondria by Lehninger. PMID:13927020

  9. Swelling of spinel after low-dose neutron irradiation

    International Nuclear Information System (INIS)

    Coghlan, W.A.; Clinard, F.W. Jr.; Itoh, N.; Greenwood, L.R.

    1986-01-01

    Swelling was determined in samples of single-crystal MgAl 2 O 4 spinel, irradiated to doses as high as 8 x 10 22 n/m 2 (E > 0.1 MeV) at approx. =50 0 C in the Omega West Reactor. Swelling effectively saturated at approx. =2 x 10 22 n/m 2 which corresponds to a damage level of only approx. =2 x 10 -3 dpa. In addition subsequent measurements after irradiation have revealed that the samples continued swelling for several weeks. These results imply that irradiation defects begin to interact by recombination and aggregation at low damage levels in this material at 50 0 C and perhaps continue to cluster at room temperature after irradiation. Rate equations have been employed to determine defect concentrations at saturation. Results to date show that the observed swelling is consistent with the number of surviving defects if swelling per Frenkel defect pair is taken to be one atomic volume

  10. Swelling and fracturing of borides under neutron irradiation

    International Nuclear Information System (INIS)

    Krainy, A.G.; Ogorodnikov, V.V.; Grinik, E.U.; Chirko, L.I.; Shinakov, A.A.

    1994-01-01

    The neutron irradiation of high temperature borides, which are included in boron-containing reactor materials, results in high internal stresses, leading to considerable swelling and micro- and macro-fracturing. Experimental results over a large range of temperature and fluences, show a change of damage mechanism for borides within 400-530 C: the macro-cracking with formation of annular and radial cracks is observed below this temperature zone. The accumulation of micro-fractures and the process of gas swelling take place at irradiation temperatures above 530 C. The effect of the high internal stresses is compared to external pressure. 12 refs., 4 figs

  11. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    Leister, K.H.

    1983-05-01

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.) [de

  12. Swelling in neutron irradiated nickel-base alloys

    International Nuclear Information System (INIS)

    Brager, H.R.; Bell, W.L.

    1972-01-01

    Inconel 625, Incoloy 800 and Hastelloy X were neutron irradiated at 500 to 700 0 C. It was found that of the three alloys investigated, Inconel 625 offers the greatest swelling resistance. The superior swelling resistance of Inconel 625 relative to that of Hastelloy-X is probably related to differences in the concentrations of the minor rather than major alloy constituents, and can involve (a) enhanced recombination of defects in the Inconel 625 and (b) preferential attraction of vacancies to incoherent precipitates. (U.S.)

  13. Impurities effect on the swelling of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-01-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found

  14. Effect of vacancy loops on swelling of metals under irradiation

    International Nuclear Information System (INIS)

    Golubov, S.I.

    1981-01-01

    Subsequent analysis of vacancy loops formation in metals under irradiation is carried out and effect of vacancy loops on vacancy porosity is studied. Expression for quasistationary function of vacancy loops distribution according to sizes taking into consideration two mechanisms of their initiation-cascade and fluctuational ones - is obtained. It is shown that rate of vacancy absorption and interstitials by vacancy loops in quasiequilibrium state is similar and depends only on summary length of loops, for its calculations the self-coordinated procedure is formulated. For the rate of metal swelling under irradiation obtained is the expression taking into consideration the presence of vacancy loops [ru

  15. A brief review of cavity swelling and hardening in irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1990-01-01

    The literature on radiation-induced swelling and hardening in copper and its alloy is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550 degree C, with peak swelling occurring at ∼320 degree C for irradiation at a damage rate of 2 x 10 -7 dpa/s. The post-transient swelling rate has been measured to be ∼0.5%/dpa at temperatures near 400 degree C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure. Irradiation of copper at temperatures below 400 degree C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of α ∼ 0.2. The radiation hardening apparently saturates for fluences greater than ∼10 24 n/m 2 during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation- modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300 degree C

  16. Swelling and irradiation creep of neutron irradiated 316Ti and 15-15Ti steels

    International Nuclear Information System (INIS)

    Maillard, A.; Touron, H.; Seran, J.L.; Chalony, A.

    1992-01-01

    The global behavior, the swelling and irradiation creep resistances of cold worked 316Ti and 15-15Ti, two variants of austenitic steels in use as core component materials of the French fast reactors, are compared. The 15-15Ti leads to a significant improvement due to an increase in the incubation dose swelling. The same phenomena observed on 316Ti are found on 15-15Ti. All species without fuel like samples, wrappers or empty clad swell and creep less than fuel pin cladding irradiated in the same conditions. To explain the swelling difference, as for 316Ti, thermal gradient is also invoked but the irradiation creep difference is not yet clearly understood. To predict the behavior of clads it is indispensable to study the species themselves and to use specific rules. All results confirm the good behavior of 15-15Ti, the best behavior being obtained with the 1% Si doped version irradiated up to 115 dpa

  17. Effects of dual-ion irradiation on the swelling of SiC/SiC composites

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kohyama, Akira; Ozawa, Kazumi; Kondo, Sosuke

    2005-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibers is a candidate structural material of fusion gas-cooled blanket system. From the viewpoint of material designs, it is important to investigate the swelling by irradiation, which results from the accumulation of displacement damages. In the fusion environment, (n, α) nuclear reactions are considered to produce helium gas in SiC. For the microstructural evolution, a dual-ion irradiation method is able to simulate the effects of helium. In the present research, 1.7 MeV tandem and 1 MeV single-end accelerators were used for Si self-ion irradiation and helium implantation, respectively. The average helium over displacement per atom (dpa) ratio in SiC was adjusted to 60 appm/dpa. The irradiation temperature ranged from room temperature to 1400degC. The irradiation-induced swelling was measured by the step height method. Helium that was implanted simultaneously with displacement damages in dual-ion irradiated SiC increased the swelling that was larger than that by single-ion irradiated SiC below 800degC. Since this increase was not observed above 1000degC, the interaction of helium and displacement damages was considered to change above 800degC. In this paper, the microstructural behavior and dimensional stability of SiC materials under the fusion relevant environment are discussed. (author)

  18. Counterion-induced swelling of ionic microgels

    Science.gov (United States)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  19. Development and validation of constitutive equation of HBS irradiation swelling considering hydrostatic pressure

    International Nuclear Information System (INIS)

    Gao Lijun; Jiang Shengyao; Yu Jiyang; Chen Bingde; Xiao Zhong

    2014-01-01

    The mechanism of hydrostatic pressure affecting the irradiation swelling of UO_2 high burnup structure was analyzed. Three basic assumptions used to develop the constitutive equation of irradiation swelling were made accordingly. It is concluded that hydrostatic pressure imposes an important impact on irradiation swelling mainly through compressing the UO_2 high burnup structure pores. Based on the already developed correlation of the irradiation swelling of UO_2 high burnup structure, pore shrinkage due to the application of hydrostatic pressure and thus the reduction of irradiation swelling of UO_2 high burnup structure were determined quantitatively, and the constitutive equation of irradiation swelling of UO_2 high burnup structure considering the hydrostatic pressure was constructed successfully. The constitutive equation is validated using available irradiation swelling data of UO_2 high burnup structure, which demonstrates its reasonability. (authors)

  20. Role of Defects in Swelling and Creep of Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Voyles, Paul [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-16

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  1. Role of Defects in Swelling and Creep of Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Voyles, Paul; Sridharan, Kumar; Katoh, Yutai

    2016-01-01

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  2. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  3. Comparison of swelling for structural materials on neutron and ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.

    1986-03-01

    The swelling of V-base alloys, Type 316 stainless steel, Fe-25Ni-15Cr alloys, ferritic steels, Cu, Ni, Nb-1% Zr, and Mo on neutron irradiation is compared with the swelling for these materials on ion irradiation. The results of this comparison show that utilization of the ion-irradiation technique provides for a discriminative assessment of the potential for swelling of candidate materials for fusion reactors.

  4. Study on the irradiation swelling of U3Si2-Al dispersion fuel

    International Nuclear Information System (INIS)

    Xing Zhonghu; Ying Shihao

    2001-01-01

    The dominant modeling mechanisms on irradiation swelling of U 3 Si 2 -Al dispersion fuel are introduced. The core of dispersion fuel is looked to as micro-fuel elements of continuous matrix. The formation processes of gas bubbles in the fuel phase are described through the behavior mechanisms of fission gases. The swelling in the fuel phase causes the interaction between fuel particles and metal matrix, and the metal matrix can restrain the irradiation swelling of fuel particles. The developed code can predict irradiation-swelling values according to the parameters of fuel elements and irradiation conditions, and the predicted values are in agreement with the measured results

  5. Helium-induced blistering and volume swelling in nickel

    International Nuclear Information System (INIS)

    Fenske, G.R.

    1980-01-01

    The results of an experimental investigation of helium-induced blistering are presented. The goal of the research was to examine the mechanisms involved in blistering by observing the microstructure of the implanted region using transmission electron microscopy (TEM). In particular, the volume swelling was measured as a function of the implant depth, and compared to experimental skin thicknesses in order to determine if the skin separated at the maximum volume swelling, or at the end of the swelling profile

  6. Ion irradiation studies on the void swelling behavior of a titanium modified D9 alloy

    Science.gov (United States)

    Balaji, S.; Mohan, Sruthi; Amirthapandian, S.; Chinnathambi, S.; David, C.; Panigrahi, B. K.

    2015-12-01

    The sensitivity of Positron Annihilation Spectroscopy (PAS) for probing vacancy defects and their environment is well known. Its applicability in determination of swelling and the peak swelling temperature was put to test in our earlier work on ion irradiated D9 alloys [1]. Upon comparison with the peak swelling temperature determined by conventional step height measurements it was found that the peak swelling temperature determined using PAS was 50 K higher. It was conjectured that the positrons trapping in the irradiation induced TiC precipitation could have caused the shift. In the present work, D9 alloys have been implanted with 100 appm helium ions and subsequently implanted with 2.5 MeV Ni ions up to peak damage of 100 dpa. The nickel implantations have been carried out through a range of temperatures between 450 °C and 650 °C. The evolution of cavities and TiC precipitates at various temperatures has been followed by TEM and this report provides an experimental verification of the conjecture.

  7. Experimental study of swelling of irradiated solid methane during annealing

    International Nuclear Information System (INIS)

    Shabalin, E.; Fedorov, A.; Kulagin, E.; Kulikov, S.; Melikhov, V.; Shabalin, D.

    2008-01-01

    Solid methane, notwithstanding its poor radiation properties, is still widely in use at pulsed neutron sources. One of the specific problems is radiolytic hydrogen gas pressure on the walls of a methane chamber during annealing of methane. Results of experimental study of this phenomenon under fast neutron irradiation with the help of a specially made low temperature irradiation rig at the IBR-2 pulsed reactor are presented. Peak pressure on the wall of the experimental capsule during heating of a sample irradiated at 23-35 K appeared to have a maximum of 27 bar at the absorbed dose 20 MGy, and then falls down with higher doses. Pressure always reached its peak value within the temperature range 72-79 K. Generally, three phases of methane swelling during heating can be distinguished, each characterized by proper rate and intensity. Results of this study were accounted for in design of the solid methane moderator of the second target station of the ISIS facility (England)

  8. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Sohn, Dong Seong; Kim, Yeon Soo

    2014-01-01

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model

  9. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonne (United States)

    2014-05-15

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model.

  10. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  11. Swelling and outgassing of heavily-irradiated lithium hydride

    International Nuclear Information System (INIS)

    Souers, P.C.; Ackerman, F.J.; Biel, T.J.; Bigwood, J.; Brite, V.; Christensen, L.D.; Folkers, C.L.; Gede, V.; Griffith, C.M.; Huss, E.B.; Lindahl, R.; McCreary, T.; Otsuki, H.H.; Pond, R.L.; Snider, G.D.; Stanhope, C.; Stump, R.K.; Vanderhoofven, F.; Tsugawa, R.T.; Anderson, J.L.; Carstens, D.W.H.; Drumhiller, W.L.; Lewis, W.B.; Nasise, J.E.; Pretzel, F.E.; Szklarz, E.G.; Vier, D.T.; Bowman, R.C. Jr.; Attalla, A.

    1988-01-01

    Twenty-two years worth of data on lithium deuteride-tritide (Li(D, T)) from three national laboratories is presented. The percent linear swelling and the outgassing of hydrogen isotopes and 3 He for samples stored at 243 to 438 K are presented in summary tables. In some cases, up to a full half-life of tritium (12 years) has been spent in the study. Initial tritium concentrations range from 2 to 98 at%. The precision of the swelling is considered, and the evidence is ambiguous as to whether temperature cycling and handling affects swelling. The early outgassing is all hydrogen, but it turns to helium at long lines. The outgassing levels out for each sample but the amount outgassed varies wildly from sample to sample. At linear swellings beyond 11%, behavior becomes erratic. A maximum linear swelling of 23% is seen for one sample at 5000 days. (orig.)

  12. Reirradiation in FFTF of swelling-resistant Path A alloys previously irradiated in HFIR

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1985-01-01

    Disks of Path A Prime Candidate Alloys (in several pretreatment conditions) and several heats of cold-worked (CW) type 316 and D9 type austenitic stainless steels have been irradiated in HFIR at 300, 500, and 600 0 C to fluences producing about 10 to 44 dpa and 450 to 3600 at. ppm He. These samples are being reirradiated in the Materials Open Test Assembly (MOTA) in FFTF at 500 and 600 0 C, together (side by side) with previously unirradiated disks of exactly the same materials, to greater than 100 dpa. These samples many of which have either very fine helium cluster or helium bubble distributions after HFIR irradiation, are intended to test the possibility and magnitude of a helium-induced extension of the initial low-swelling transient regime relative to the void swelling behavior normally found during FFTF irradiation. Further, these samples will reveal the microstructural stability or evolution differences that correlate with such helium effects. 17 references, 4 tables

  13. A SIPA-based theory of irradiation creep in the low swelling rate regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Woo, C.H.

    1991-11-01

    A model is presented which describes the major facets of the relationships between irradiation creep, void swelling and applied stress. The increasing degree of anisotropy in distribution of dislocation Burger's vectors with stress level plays a major role in this model. Although bcc metals are known to creep and swell at lower rates than fcc metals, it is predicted that the creep-swelling coupling coefficient is actually larger

  14. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    Science.gov (United States)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  15. The temperature dependence of void swelling of fast reactor irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bramman, J.I.; Brown, C.

    The swelling versus temperature profile for cold-worked M316 stainless steel irradiated in DFR to fluences around 6.5 x 10 22 n.cm -2 (E > 0.1 MeV) is singly-peaked with maximum swelling at just below 600 0 C. The underlying microstructural features are discussed

  16. Effect of helium on swelling and microstructural evolution in ion-irradiated V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Gerber, S.B.; Ayrault, G.

    1986-03-01

    An investigation was made on the effects of implanted helium on the swelling and microstructural evolution that results from energetic single- and dual-ion irradiation of the V-15Cr-5Ti alloy. Single-ion irradiations were utilized for a simulated production of the irradiation damage that might be expected from neutron irradiation of the alloy in a reactor with a fast neutron energy spectrum (E > 0.1 MeV). Dual-ion irradiations were utilized for a simulated production of the simultaneous creation of helium atoms and irradiation damage in the alloy in the MFR environment. Experimental results are also presented on the radiation-induced segregation of the constituent atoms in the single- and dual-ion irradiated alloy

  17. Helium-induced blistering and volume swelling in nickel

    International Nuclear Information System (INIS)

    Fenske, G.R.

    1979-01-01

    The results of an experimental investigation of He-induced blistering are presented. The mechanisms involved in blistering were examined by observing the microstructure of the implanted region using TEM. The volume swelling was measured as a function of the implant depth. The investigation revealed factors important in understanding the mechanisms involved in blister formation. First, a direct comparison of measured skin-thicknesses with the location of the maximum volume swelling demonstrated that the skin separates at the peak swelling depth, not at the end of the swelling profile. Second, an examination of the assumptions that have been used to predict skin-thicknesses revealed that the differences between predicted and measured skin thicknesses at low energies can be attributed to: failure to account for volume swelling in the skin, using a Gaussian approximation to the range profile, or one generated with a Monte-Carlo code, and uncertainties in the electronic stopping powers. Beyond a certain dose, the density of cavities in the peak-swelling region decreased with increasing dose; indicating that cavity coalescence does occur. A calculation of the He concentration required to fracture the load-bearing cross section between the cavities revealed that a sufficient quantity of He was available to generate the required gas pressures. These observations indicate that models based on coalescence followed by gas-driven deformation provide an accurate description of the mechanisms involved in blistering; and they can accurately predict skin thicknesses at low energies

  18. Effect of irradiation damage and helium on the swelling and structure of vanadium-base alloys

    International Nuclear Information System (INIS)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1993-12-01

    Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420--600C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti 5 Si 3 promotes good resistance to swelling of the Ti-containing alloys and it was concluded that Ti of >3 wt.% and 400--1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. V-20Ti doped with B exhibited somewhat higher swelling because of He generation. Lithium atoms, generated from transmutation of 10 B, formed γ-LiV 2 O 5 precipitates and did not seem to produce undesirable effects on mechanical properties

  19. Calcium in the Mechanism of Ammonia-Induced Astrocyte Swelling

    Science.gov (United States)

    Jayakumar, A.R.; Rao, K.V. Rama; Tong, X.Y; Norenberg, M.D.

    2016-01-01

    Brain edema, due largely to astrocyte swelling, is an important clinical problem in patients with acute liver failure. While mechanisms underlying astrocyte swelling in this condition are not fully understood, ammonia and associated oxidative/nitrosative stress (ONS) appear to be involved. Mechanisms responsible for the increase in reactive oxygen/nitrogen species (RONS) and their role in ammonia-induced astrocyte swelling, however, are poorly understood. Recent studies have demonstrated a transient increase in intracellular Ca2+ in cultured astrocytes exposed to ammonia. As Ca2+ is a known inducer of RONS, we investigated potential mechanisms by which Ca2+ may be responsible for the production of RONS and cell swelling in cultured astrocytes after treatment with ammonia. Exposure of cultured astrocytes to ammonia (5 mM) increased the formation of free radicals, including nitric oxide, and such increase was significantly diminished by treatment with the Ca2+ chelator BAPTA-AM. We then examined the activity of Ca2+-dependent enzymes that are known to generate RONS and found that ammonia significantly increased the activities of NADPH oxidase (NOX), constitutive nitric oxide synthase (cNOS) and phospholipase A2 (PLA2) and such increases in activity were significantly diminished by BAPTA. Pretreatment of cultures with 7-nitroindazole, apocyanin and quinacrine, respective inhibitors of cNOS, NOX and PLA2, all significantly diminished RONS production. Additionally, treatment of cultures with BAPTA or with inhibitors of cNOS, NOX and PLA2 reduced ammonia-induced astrocyte swelling. These studies suggest that the ammonia-induced rise in intracellular Ca2+ activates free radical producing enzymes that ultimately contribute to the mechanism of astrocyte swelling. PMID:19393035

  20. Swelling behavior of γ-ray irradiated elastomers in boiling spray solution

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Kusama, Yasuo; Ito, Masayuki; Okada, Sohei; Yoshikawa, Masahito; Yoshida, Kenzo

    1983-05-01

    Elastomers swelled significantly by water sorption during a simulated LOCA test, and this phenomenon could cause the deterioration of their mechanical and electrical properties. Many factors like as radiation, heat, the composition of spray solution, types of elastomers and their formulation, related to the phenomenon. A relationship between swelling properties of the formulation-known various elastomers and the pre-aging conditions such as radiation dose and thermal aging period was studied by measuring their swelling behaviors in boiling spray solution (water and chemical solution). All eight elastomers tested showed remarkable swelling with an increase of radiation dose when they irradiated in air. A swelling in boiling water was about twice of in chemical solution. Some types of Neoprene and Hypalons had an optimum swelling dose where they showed the maxima. Over this dose, the swelling ratio decreased with dose. When irradiated under vacuum, its swelling ratio became significantly lower than that of exposed in air. This attributed the swelling phenomena closely related to radiation oxidation degradation. (author)

  1. Alloys of nickel-iron and nickel-silicon do not swell under fast neutron irradiation

    International Nuclear Information System (INIS)

    Silvestre, G.; Silvent, A.; Regnard, C.; Sainfort, G.

    1975-01-01

    This research is concerned with the effect of fast-neutron irradiation on the swelling of nickel and nickel alloys. Ni-Fe (0-60at%Fe) and Ni-Si (0-8at%Si) were studied, and the fluences were in the range 10 20 -4.3x10 22 n/cm 2 . In dilute alloys, the added elements are dissolved and reduce swelling, silicon being particularly effective. In more concentrated alloys, irradiation of Ni-Fe and Ni-Si alloys brings about the formation of plate-shaped precipitates of Ni 3 X and these alloys do not swell. (Auth.)

  2. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Six microstructural variants of Prime Candidate Alloy (PCA) were evaluated for swelling resistance during HFIR irradiation, together with several heats of type 316 stainless steel (316). Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variability among alloys at 400 0 C, but again 25%-cold-worked PCA was the best. Microstructurally, swelling resistance correlated with development of fine, stable bubbles whereas high swelling was due to coarser distributions of bubbles becoming unstable and converting to voids (bias-driven cavities)

  3. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  4. Scrotal Swelling as a Complication of Hydrochlorothiazide Induced Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Ivan Nikiforov

    2015-01-01

    Full Text Available Background. Scrotal swelling is a rare complication of acute pancreatitis with few reported cases in the literature. In this case report, we present a 59-year-old male with hydrochlorothiazide induced pancreatitis who developed scrotal swelling. Case Presentation. A 59-year-old male presented to the emergency department with sharp epigastric abdominal pain that radiated to the back and chest. On physical examination, he had abdominal tenderness and distention with hypoactive bowel sounds. Computed tomography (CT scan of the abdomen showed acute pancreatitis. The patient’s condition deteriorated and he was admitted to the intensive care unit (ICU. After he improved and was transferred out of the ICU, the patient developed swelling of the scrotum and penis. Ultrasound (US of the scrotum showed large hydrocele bilaterally with no varicoceles or testicular masses. Good blood flow was observed for both testicles. The swelling diminished over the next eight days with the addition of Lasix and the patient was discharged home in stable condition. Conclusion. Scrotal swelling is a rare complication of acute pancreatitis. It usually resolves spontaneously with conservative medical management such as diuretics and elevation of the legs.

  5. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  6. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Neustroev, V.S. [FSUE ' SSC RF Research Institute of Atomic Reactors' , Dimitrovgrad (Russian Federation)], E-mail: neustroev@niiar.ru; Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2009-04-30

    Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as 'quasi-embrittlement' which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation.

  7. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingguo, E-mail: qwang@qust.edu.cn [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042 (China); Zhou, Xue; Zeng, Jinxia; Wang, Jizeng [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the −C=O group at 1701 cm{sup −1}, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  8. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Toloczko, M.B. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-10-01

    In order to use data from surrogate neutron spectra for fusion applications, it is necessary to analyze the impact of environmental differences on property development. This is of particular importance in the study of irradiation creep and its interactions with void swelling, especially with respect to the difficulty of separation of creep strains from various non-creep strains. As part of an on-going creep data rescue and analysis effort, the current study focuses on comparative irradiations conducted on identical gas-pressurized tubes produced and constructed in the United States from austenitic steels (20% CW 316 and 20% CW D9), but irradiated in either the Prototype Fast Reactor (PFR) in the United Kingdom or the Fast Flux Test Facility in the United States. In PFR, Demountable Subassemblies (DMSA) serving as heat pipes were used without active temperature control. In FFTF the specimens were irradiated with active ({+-}{degrees}5C) temperature control. Whereas the FFTF irradiations involved a series of successive side-by-side irradiation, measurement and reinsertion of the same series of tubes, the PFR experiment utilized simultaneous irradiation at two axial positions in the heat pipe to achieve different fluences at different flux levels. The smaller size of the DMSA also necessitated a separation of the tubes at a given flux level into two groups (low-stress and high-stress) at slightly different axial positions, where the flux between the two groups varied {le}10%. Of particular interest in this study was the potential impact of the two types of separation on the derivation of creep coefficients.

  9. Structural evaluation of fast reactor core restraint with irradiation creep-swelling opposition effects

    International Nuclear Information System (INIS)

    Kalinowski, J.E.

    1979-01-01

    Irradiation creep and swelling correlations are derived from primary loading in-reactor experiments in which irradiation creep and swelling act in the same direction. When correlation uncertainty bands are applied in core restraint evaluations, significant variability in sub-assembly behavior is predicted. For example, sub-assemblies in the outer core region where neutron flux and duct temperature gradients are significant exhibit bowing responses ranging from a creep dominated outward bow to a swelling dominated inward bow. Furthermore, solutions based on upper bound and lower bound correlation uncertainty combinations are observed to cross-over indicating that such combinations are physically unrealistic in the assessment of creep-swelling opposition effects. In order to obtain realistic upper and lower bound sub-assembly responses, judgement must be applied in the selection of creep-swelling equation uncertainty combinations. Experimental programs have been defined which will provide the needed basic as well as prototypic creep-swelling opposition data for reference and advanced sub-assembly duct alloys. The first of these is an irradiation of cylindrical capsules subjected to a through-wall temperature gradient. This test which is presently underway in the EBR-II reactor will provide the data needed to refine irradiation creep and swelling correlations and their associated uncertainties when applied to core restraint evaluations. Restrained pin and duct bowing experiments in FFTF have also been defined. These will provide the prototypic data necessary to verify irradiated duct bowing methodology. The results of this experimental program are expected to reduce creep and swelling uncertainties and permit better definition of the design window for load plane gaps. (orig.)

  10. Development of advanced austenitic stainless steels resistant to void swelling under irradiation

    International Nuclear Information System (INIS)

    Rouxel, Baptiste

    2016-01-01

    In the framework of studies about Sodium Fast Reactors (SFR) of generation IV, the CEA is developing new austenitic steel grades for the fuel cladding. These steels demonstrate very good mechanical properties but their use is limited because of the void swelling under irradiation. Beyond a high irradiation dose, cavities appear in the alloys and weaken the material. The reference material in France is a 15Cr/15Ni steel, named AIM1, stabilized with titanium. This study try to understand the role played by various chemical elements and microstructural parameters on the formation of the cavities under irradiation, and contribute to the development of a new grade AIM2 more resistant to swelling. In an analytical approach, model materials were elaborated with various chemical compositions and microstructures. Ten grades were cast with chemical variations in Ti, Nb, Ni and P. Four specific microstructures for each alloy highlighted the effect of dislocations, solutes or nano-precipitates on the void swelling. These materials were characterized using TEM and SANS, before irradiation with Fe"2"+ (2 MeV) ions in the order to simulate the damages caused by neutrons. Comparing the irradiated microstructures, it is demonstrated that the solutes have a dominating effect on the formation of cavities. Specifically titanium in solid solution reduces the swelling whereas niobium does not show this effect. Finally, a matrix enriched by 15% to 25% of nickel is still favorable to limit swelling in these advanced austenitic stainless steels. (author) [fr

  11. Influence of nickel and beryllium content on swelling behavior of copper irradiated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Garner, F.A.; Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Evans, J.H.

    1996-10-01

    In the 1970`s, the effects of nickel content on the evolution of dislocation microstructures and the formation and growth of voids in Cu-Ni alloys were studied using 1 MeV electrons in a high voltage electron microscope. The swelling rate was found to decrease rapidly with increasing nickel content. The decrease in the swelling rate was associated with a decreasing void growth rate with increasing nickel content at irradiation temperatures up to 450{degrees}C. At 500{degrees}C, both void size and swelling rate were found to peak at 1 and 2% Ni, respectively, and then to decrease rapidly with increasing nickel content. However, recent work has demonstrated that the swelling behavior of Cu-5%Ni irradiated with fission neutrons is very similar for that of pure copper. The present experiments were designed to investigate this apparent discrepancy.

  12. Study of the Effect of Swelling on Irradiation Assisted Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the methodology used to study the effect of swelling on the crack growth rate of an irradiation-assisted stress corrosion crack that is propagating in highly irradiated stainless steel 304 material irradiated to 33 dpa in the Experimental Breeder Reactor-II. The material selection, specimens design, experimental apparatus and processes are described. The results of the current test are presented.

  13. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...

  14. Structure and radiation induced swelling of steels and alloys

    International Nuclear Information System (INIS)

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  15. Influence of Silicon on Swelling and Microstructure in Russian Austenitic Stainless Steels Irradiated to High Neutron Doses

    International Nuclear Information System (INIS)

    Porollo, S.I.; Shulepin, S.V.; Konobeev, Y.V.; Garner, F.

    2007-01-01

    Full text of publication follows: For some applications in fusion devices austenitic stainless steels are still considered to be candidates for use as structural components, but high neutron exposures must be endured by the steels. Operational experience of fast reactors in Western Europe, USA and Japan provides evidence of the possible use of austenitic steels up to ∼ 150 dpa. Studies aimed at improvement of existing Russian austenitic steels are being carried out in Russia. For improvement of irradiation resistance of Russian steels it is necessary to understand the basic mechanisms responsible for deterioration of steel properties. This understanding can be achieved by continuing detailed investigations of the microstructure of cladding steels after irradiation to high doses. By investigating the evolution of radiation-induced microstructure in neutron irradiated steels of different chemical composition one can study the effect of chemical variations on steel properties. Silicon is one of the most important chemical elements that strongly influence the behavior of austenitic steel properties under irradiation. In this paper results are presented of investigations of the effect of silicon additions on void swelling and microstructure of base austenitic stainless steel EI-847 (0.06C-16Cr-15Ni- 3Mo-Nb) irradiated as fuel pin cladding of both regular and experimental assemblies in the BOR-60, BN-350 and BN-600 fast reactors to neutron doses up to 49 dpa. The possible mechanisms of silicon's effect on void swelling in austenitic stainless steels are presented and analyzed. (authors)

  16. Void swelling of proton-irradiated stainless steel at large displacement levels

    International Nuclear Information System (INIS)

    Kumar, A.; Garner, F.A.

    1982-01-01

    The purpose of this study is to determine whether saturation of void swelling in AISI 316 stainless steel can be made to occur at any level relevant to engineering design and to decide whether saturation is sensitive to irradiation variables such as helium/dpa ratio or simulation artifacts such as injected interstitials

  17. Modeling injected interstitial effects on void swelling in self-ion irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Short, M.P., E-mail: hereiam@mit.edu [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Gaston, D.R. [Idaho National Laboratory (United States); Jin, M. [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Shao, L. [Dept. of Nuclear Engineering, Texas A& M University (United States); Garner, F.A. [Radiation Effects Consulting, LLC (United States)

    2016-04-01

    Heavy ion irradiations at high dose rates are often used to simulate slow and expensive neutron irradiation experiments. However, many differences in the resultant modes of damage arise due to unique aspects of heavy ion irradiation. One such difference was recently shown in pure iron to manifest itself as a double peak in void swelling, with both peaks located away from the region of highest displacement damage. In other cases involving a variety of ferritic alloys there is often only a single peak in swelling vs. depth that is located very near the ion-incident surface. We show that these behaviors arise due to a combination of two separate effects: 1) suppression of void swelling due to injected interstitials, and 2) preferential sinking of interstitials to the ion-incident surface, which are very sensitive to the irradiation temperature and displacement rate. Care should therefore be used in collection and interpretation of data from the depth range outside the Bragg peak of ion irradiation experiments, as it is shown to be more complex than previously envisioned. - Highlights: • A model of the spatially dependent point defect kinetics equations with injected interstitials has been implemented. • The results predict a double peak in the void nucleation rate, helping to explain a recent experiment. • The double peak is predicted to be evident within a narrow (+/− 30 °C) temperature window for self-irradiation of pure iron. • The ballistic damage profile may not match the resultant void swelling profile from ion irradiation experiments.

  18. Thermal/hydraulic bowing stability analysis of grid-supported multi-pin bundles with differential swelling and irradiation creep

    International Nuclear Information System (INIS)

    McAreavey, G.

    1977-01-01

    Azimuthal variations of clad temperature in fuel pin bundles leads to pin bowing by differential thermal expansion. During irradiation in a fast flux further possibly more severe bowing is caused by differential neutron induced voidage swelling, which, being temperature sensitive, will also vary azimuthally. The problem of pin bowing in a fuel element cluster involves consideration of the thermal/hydraulic behaviour, allowing for both inherent and induced clad temperature non-uniformities, coupled with the restrained bowing behaviour, including differential thermal expansion, differential swelling, and irradiation creep. All pins must be considered simultaneously. In the temperature and stress ranges of interest thermal creep may be neglected. An existing computer code, IAMBIC solves the zero time thermal bowing problem for a cluster of up to 61 pins on hexagonal pitch, with up to 21 supports at arbitrary axial spacing. The present paper describes the basis of TRIAMBIC, a time dependent code which analyses the irradiation induced effects in fuel pin bunbles due to fast neutrons. (Auth.)

  19. Irradiation creep due to SIPA-induced growth

    International Nuclear Information System (INIS)

    Woo, C.H.

    1980-01-01

    An additional contribution to irradiation creep resulting from the stress-induced preferred adsorption (SIPA) effect is described - SIPA-induced growth (SIG). The mechanism of SIG is discussed and an expression for its contribution to irradiation creep developed. It is shown that SIG is very significant in comparison with SIPA. Enhancement of creep by swelling may also occur. (U.K.)

  20. Swelling in cold-worked 316 stainless steels irradiated in a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Fukuya, Koji; Fujii, Katsuhiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Swelling behavior in a cold-worked 316 stainless steel irradiated up to 53 dpa in a PWR at 290-320degC was examined using high resolution transmission electron microscopy. Small cavities with the average diameter of 1 nm were observed in the samples irradiated to doses above 3 dpa. The average diameter did not increase with increasing in dose. The maximum swelling was as low as 0.042%. The measured helium content and the cavity morphology led to the conclusion that the cavities were helium bubbles. A comparison of the observed cavity microstructure with data from FBR, HFIR and ATR irradiation showed that the cavity structure in PWR at 320degC or less was similar to those in HFIR and ATR irradiation but quite different from those in FBR condition. From a calculation based on the cavity data and kinetic models the incubation dose of swelling was estimated to be higher than 80dpa in the present irradiation condition. (author)

  1. Swelling in several commercial alloys irradiated to very high neutron fluence

    International Nuclear Information System (INIS)

    Gelles, D.S.; Pintler, J.S.

    1984-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10 23 n/cm 2 (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650 0 C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys

  2. Stress relaxation analysis and irradiation creep and swelling in pressure tubes

    International Nuclear Information System (INIS)

    Beeston, J.M.; Burr, T.K.

    1979-01-01

    An analysis is presented of slit width test information on two pressure tubes that had been irradiated in test reactors. The analysis showed that differential swelling stresses and thermal stresses undergo relaxation. The mechanism responsible for the stress relaxation at temperatures less than 700 K was irradiation creep. Irradiation creep in thermal test reactor pressure tubes is evidently greater than it would be at equivalent conditions in fast reactors. The residual stresses observed in the slit width tests varied between 30 and 257 MPa and would act to reduce the operating stresses, thus allowing for increased service life of the tubes as compared with no stress relaxation

  3. The effect of low dose rate irradiation on the swelling of 12% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Allen, T. R.

    1999-01-01

    In pressurized water reactors (PWRs), stainless steel components are irradiated at temperatures that may reach 400 C due to gamma heating. If large amounts of swelling (>10%) occur in these reactor internals, significant swelling related embrittlement may occur. Although fast reactor studies indicate that swelling should be insignificant at PWR temperatures, the low dose rate conditions experienced by PWR components may possibly lead to significant swelling. To address these issues, JNC and ANL have collaborated to analyze swelling in 316 stainless steel, irradiated in the EBR-II reactor at temperatures from 376-444 C, at dose rates between 4.9 x 10 -8 and 5.8 x 10 -7 dpa/s, and to doses of 56 dpa. For these irradiation conditions, the swelling decreases markedly at temperatures less than approximately 386 C, with the extrapolated swelling at 100 dpa being around 3%. For temperatures greater than 386 C, the swelling extrapolated to 100 dpa is around 9%. For a factor of two difference in dose rate, no statistically significant effect of dose rate on swelling was seen. For the range of dose rates analyzed, the swelling measurements do not support significant (>10%) swelling of 316 stainless steel in PWRs

  4. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  5. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  6. Methodology for determining void swelling at very high damage under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Getto, E., E-mail: embecket@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, K. [Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Taller, S.; Monterrosa, A.M.; Jiao, Z. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-08-15

    At very high damage levels in ion irradiated samples, the decrease in effective density of the irradiated material due to void swelling can lead to errors in quantifying swelling. HT9 was pre-implanted with 10 appm He and subjected to a raster-scanned beam with a damage rate of ∼1 × 10{sup −3} dpa/s at 460{sup o}C. Voids were characterized from 0 to 1300 nm. Fixed damage rate and fixed depth methods were developed to account for damage-dependent porosity increase and resulting dependence on depth. The fixed depth method was more appropriate as it limits undue effects from the injected interstitial while maintaining a usable void distribution. By keeping the depth fixed and accounting for the change in damage rate due to reduced density, the steady state swelling rate was 10% higher than calculation of swelling from raw data. This method is easily translatable to other materials, ion types and energies and limits the impact of the injected interstitial.

  7. Effect of grain size on void swelling in irradiated materials: A phase-field approach

    International Nuclear Information System (INIS)

    Chang, Kunok; Lee, Gyeonggeun; Kwon, Junhyun

    2014-01-01

    The progress of swelling is retarded as the average grain diameter increases in a pure copper case. Within the framework of the production bias model (PBM), their experimental results were quantitatively explained. The phase-field method has already been used to investigate the void/bubble behavior in the irradiated materials. In particular, Millett et al. already incorporated the interaction between the point defect and the grain boundary in their study. Therefore, they described the void denuded zones and void peaked zones adjacent to the grain boundaries, which are already observed in the experimental investigations. We performed the phase-field simulation in order to verify the role of the grain diameter on the void swelling in the cascade damage condition. In addition, our results will be compared with the experimental observations or the theoretical works, such as PBM. Two-dimensional phase-field simulations were performed to investigate the void swelling process in the irradiated materials. We clearly observed the void denuded and void peaked zones, which were already observed in formal experimental and computational approaches. We also found that the progress of swelling was retarded as the average grain diameter increased. The triple junctions, which are believed to be a critical factor t affecting the fracture, are the main cites for the void nucleation and growth in our simulations

  8. Irradiation behavior of bonded structures: impact of stress-enhanced swelling on irradiation creep and elastic properties

    International Nuclear Information System (INIS)

    Hassan, M.H.; Blanchard, J.P.; Kulcinski, G.L.

    1992-01-01

    The objective of this work is to understand the factors that govern the adhesion of coatings on fusion reactor first walls which are subjected to neutron irradiation. Radiation damage will be a major key point in the design of the many duplex components in fusion reactors. There is a substantial amount of available data showing that stress plays a major role in the onset, and possibly the rate, of void growth in austenitic stainless steels. There is also strong support models which predict a coupling of swelling and creep through the stress environment. A parametric study for evidence to stress-enhanced swelling and its connection to creep is conducted for a typical fusion power demonstration reactor. Since microstructural changes are known to affect elastic moduli, the impact of stress enhanced swelling on these moduli are also evaluated

  9. Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states

    NARCIS (Netherlands)

    Tambach, T.J.; Bolhuis, P.G.; Hensen, E.J.M.; Smit, B.

    2006-01-01

    We perform grand-canonical molecular simulations to study the molecular mechanism of clay swelling hysteresis as a function of the relative humidity. In particular, we focus on the transition from the one- to the two-layer hydrate and the influence of three types of counterions (Li+, Na+, and K+).

  10. Swelling behavior detection of irradiated U-10Zr alloy fuel using indirect neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong; Huo, He-yong; Wu, Yang [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Li, Jiangbo [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Zhou, Wei; Guo, Hai-bing [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Li, Hang, E-mail: lihang32@gmail.com [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China); Cao, Chao; Yin, Wei; Wang, Sheng; Liu, Bin; Feng, Qi-jie; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2016-11-21

    It is hopeful that fusion-fission hybrid energy system will become an effective approach to achieve long-term sustainable development of fission energy. U-10Zr alloy (which means the mass ratio of Zr is 10%) fuel is the key material of subcritical blanket for fusion-fission hybrid energy system which the irradiation performance need to be considered. Indirect neutron radiography is used to detect the irradiated U-10Zr alloy because of the high residual dose in this paper. Different burnup samples (0.1%, 0.3%, 0.5% and 0.7%) have been tested with a special indirect neutron radiography device at CMRR (China Mianyang Research Reactor). The resolution of the device is better than 50 µm and the quantitative analysis of swelling behaviors was carried out. The results show that the swelling behaviors relate well to burnup character which can be detected accurately by indirect neutron radiography.

  11. Swelling analysis of austenitic stainless steels by means of ion irradiation and kinetic modeling

    International Nuclear Information System (INIS)

    Kohyama, Akira; Donomae, Takako

    1999-03-01

    The influences of irradiation environment on the swelling behavior of austenitic stainless steel has been studied, to aid understanding the origin of the difference in swelling response of PNC316 stainless steel in fuel-pin environment and in materials irradiation capsules, in terms of irradiation conditions, damage mechanism and material conditions. This work focused on the theoretical investigation of the influence of temperature variation on microstructural development of austenitic stainless steels during irradiation, using a kinetic rate theory model. A modeling and calculation on non-steady irradiation effects were first carried out. A fully dynamic model of point defect evolution and extended defect development, which accounts for cascade damage, was developed and successfully applied to simulate the interstitial loop evolution in low temperature regimes. The influence of cascade interstitial clustering on dislocation loop formation has also been assessed. The establishment of a basis for general assessment of non-steady irradiation effects in austenitic stainless steels was advanced. The developed model was applied to evaluate the influences of temperature variation in formerly carried out CMIR and FFTF/MFA-1 FBR irradiation experiments. The results suggested the gradual approach of microstructural features to equilibrium states in all the temperature variation conditions and no sign of anomalous behavior was noted. On the other hand, there is the influence of temperature variation on microstructural development under the neutron irradiation, like CMIR. So there are some possibilities of the work of mechanism which is not taken care on this model, for example the effect of the precipitate behavior which is sensitive to irradiation temperature. (author)

  12. Differential Response of Neural Cells to Trauma-Induced Swelling In Vitro.

    Science.gov (United States)

    Jayakumar, A R; Taherian, M; Panickar, K S; Shamaladevi, N; Rodriguez, M E; Price, B G; Norenberg, M D

    2018-02-01

    Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na-K-Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.

  13. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  14. Ethanol-induced swelling in neonatal rat primary astrocyte cultures.

    Science.gov (United States)

    Aschner, M; Allen, J W; Mutkus, L A; Cao, C

    2001-05-11

    We tested the hypothesis that astrocytes swell in response to ethanol (EtOH) exposure. The experimental approach consisted of an electrical impedance method designed to measure cell volume. In chronic experiments, EtOH (100 mM) was added to the culture media for 1, 3, or 7 days. The cells were subsequently exposed for 15 min to isotonic buffer (122 mM NaCl) also containing 100 mM EtOH. Subsequently, the cells were washed and exposed to hypotonic buffer (112 mM NaCl) containing 100 mM mannitol. Chronic exposure to EtOH led to a marked increase in cell volume compared with control cells. Specific anion cotransport blockers, such as SITS, DIDS, furosemide, or bumetanide, when simultaneously added with EtOH to hyponatremic buffer, failed to reverse the EtOH-induced effect on swelling. In acute experiments, confluent neonatal rat primary astrocyte cultures were exposed to isotonic media (122 mM NaCl) for 15 min, followed by 45-min exposure to hypotonic media (112 mM NaCl, mimicking in vivo hyponatremic conditions associated with EtOH withdrawal) in the presence of 0-100 mM EtOH. This exposure led to a concentration-dependent increase in cell volume. Combined, these studies suggest that astrocytes exposed to EtOH accumulate compensatory organic solutes to maintain cell volume, and that in response to hyponatremia and EtOH withdrawal their volume increases to a greater extent than in cells exposed to hyponatremia alone. Furthermore, the changes associated with EtOH are osmotic in nature, and they are not reversed by anion cotransport blockers.

  15. Swelling of austenitic iron-nickelchromium ternary alloys during fast neutron irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1984-01-01

    Swelling data are now available for 15 iron-nickel-chromium ternary alloys irradiated to exposures as high as 110 displacements per atom (dpa) in Experimental Breeder Reactor-II (EBR-II) between 400 and 650 0 C. These data confirm trends observed at lower exposure levels and extend the generality of earlier conclusions to cover a broader range of composition and temperature. It appears that all austenitic iron-nickel-chromium ternary alloys eventually approach an intrinsic swelling rate of about1%/dpa over a range of temperature even wider than studied in this experiment. The duration of the transient regime that precedes the attainment of this rate is quite sensitive to nickel and chromium content, however. At nickel and chromium levels typical of 300 series steels, swelling does not saturate at engineering-relevant levels. However, there appears to be a tendency toward saturation that increases with declining temperature, increasing nickel and decreasing chromium levels. Comparisons of these results are made with those of similar studies conducted with charged particles. Conclusions are then drawn concerning the validity of charged particle simulation studies to determine the compositional and temperature dependence of swelling

  16. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10 26 neutrons/m 2 (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs

  17. Effect of phosphorus on the swelling and precipitation behavior of austenitic stainless steels during irradiation

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.; Rowcliffe, A.F.

    1983-01-01

    It has been observed that increasing the volume fraction of the needle-shaped iron phosphide phase in austenitic stainless steels tends to inhibit void swelling during neutron irradiation. An earlier analysis showed that this effect could not be accounted for in terms of enhanced point defect recombination at particle-matrix interfaces. The behavior of the iron phosphide phase has been further examined using dual ion beam irradiations. It was found that the particle-matrix interface serves as a site for the nucleation of a very fine dispersion of helium bubbles. It is thought that since a high number density of cavities lowers the number of helium atoms per cavity, the irradiation time for the cavities to accumulate the critical number of gas atoms for bias-driven growth is correspondingly increased. Although the phosphide phase nucleates rapidly, it eventually undergoes dissolution if either the G or Laves phase develops with increasing dose

  18. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  19. Clozapine- induced recurrent and transient parotid gland swelling

    African Journals Online (AJOL)

    effect of clozapine, may sometimes cause salivary gland swelling. Rarely, the ... side effect of clozapine to the attention of clinicians is to discuss its pathogenesis. Informed ... selective muscarinic M4 receptor agonist. Eur J Pharmacol 1994;.

  20. Void swelling and phase stability in different heats of cold-drawn type 1.4970 stainless steel after heavy-ion irradiation

    International Nuclear Information System (INIS)

    Vaidya, W.V.; Knoblauch, G.; Ehrlich, K.

    1982-01-01

    The present investigations were undertaken with the aim to understand, to what extent variations of the tube fabrication parameters and slight modifications in the chemical composition might influence the swelling behaviour of Type 1.4970 stainless steel. The parameters varied were: Variations in the manufacturing parameters for coldworked tubes (type and degree of drawing, solution-annealing temperature and thermomechanical treatments), and variations in minor elements (C, Ti, Mo) within the specified range of chemical composition. In addition, the Si-content and the Ti/C ratio - the so-called stabilization - were changed within a broader range. The samples were irradiated with 46 MeV-Ni-ions to 64 dpa at 575 0 C and swelling as well as austenite stability, formation of precipitates and other microstructural changes were investigated by TEM. Though the austenite was stable under irradiation with respect to ferrite/martensite-transformation, the cold-drawn alloys showed a tendency to recrystallize during irradiation and exhibited lean precipitation. With respect to swelling, the only parameter that substantially reduced it, was the high Si addition; otherwise the alloys were practically insensitive to changes in the investigated parameters. These results are discussed in terms of the radiation-induced recrystallization and the high Si-effect, both of which are found to be beneficial in reducing swelling. (orig.)

  1. Void swelling and phase stability in different heats of cold-drawn type 1.4970 stainless steel after heavy-ion irradiation

    International Nuclear Information System (INIS)

    Vaidya, W.V.; Knoblauch, G.; Ehrlich, K.

    1982-01-01

    The present investigations were undertaken with the aim to understand, to what extent variations of the tube fabrication parameters and slight modifications in the chemical composition might influence the swelling behavior of Type 1.4970 stainless steel. The parameters varied were: variations in the manufacturing parameters for cold-worked tubes (type and degree of drawing, solution-annealing temperature and thermomechanical treatments), and variations in minor elements (C, Ti, Mo) within the specified range of chemical composition. In addition, the Si-content and the Ti/C ratio - the so-called stabilization - were changed within a broader range. The samples were irradiated with 46 MeV-Ni-ions to 64 dpa at 575 0 C and swelling as well as austenite stability, formation of precipitates and other microstructural changes were investigated by TEM. Though the austenite was stable under irradiation with respect to ferrite/martensite-transformation, the cold-drawn alloys showed a tendency to recrystallize during irradiation and exhibited lean precipitation. With respect to swelling, the only parameter that substantially reduced it, was the high Si addition; otherwise the alloys were practically insensitive to changes in the investigated parameters. These results are discussed in terms of the radiation-induced recrystallization and the high-Si-effect, both of which are found to be beneficial in reducing swelling

  2. Influence of the austenitic stainless steel microstructure on the void swelling under ion irradiation

    Directory of Open Access Journals (Sweden)

    Rouxel Baptiste

    2016-01-01

    Full Text Available To understand the role of different metallurgical parameters on the void formation mechanisms, various austenitic stainless steels were elaborated and irradiated with heavy ions. Two alloys, in several metallurgical conditions (15Cr/15Ni–Ti and 15Cr/25Ni–Ti, were irradiated in the JANNUS-Saclay facility at 600 °C with 2 MeV Fe2+ ions up to 150 dpa. Resulting microstructures were observed by Transmission Electron Microscopy (TEM. Different effects on void swelling are highlighted. Only the pre-aged samples, which were consequently solute and especially titanium depleted, show cavities. The nickel-enriched matrix shows more voids with a smaller size. Finally, the presence of nano-precipitates combined with a dense dislocation network decreases strongly the number of cavities.

  3. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  4. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    Science.gov (United States)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  5. Effect of Ge, Sn, Sb on the resistance to swelling of austenitic alloys irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Dubuisson, P.; Levy, V.; Seran, J.L.

    1987-01-01

    The effect of new solute elements namely Ge, Sn and Sb on the void swelling resistance of austenitic alloys irradiated with 1 MeV electrons has been studied. Except for tin in Ti-modified 316, all solute improve the swelling resistance of base alloys. Tin addition shifts the swelling peak of 316 S.S. to high temperature. In fact, these solute additions have the same qualitative effect on the swelling components: they enhance the void density and decrease strongly void growth rate. This effect is opposite to the one of usual swelling inhibitors such as Si or Ti which decrease the void density. We have explained this influence on the void nucleation and void growth by introducing a strong interaction between vacancies and solute atoms in a void growth model

  6. Swelling and microstructural development in path A PCA and type 316 stainless steel irradiated in HFIR to about 22 dpa

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Irradiation of several microstructural variants of PCA and 20%-cold-worked N-lot type 316 stainess steel (CW 316) in HFIR to about 10 dpa produced no visible cavities at 300 0 C, bubbles at 400 0 C, and varying distributions of bubbles and voids at 500 and 600 0 C. The PCA-B1 swells the most and CW 316 (N-lot) the least at 600 0 C. Irradiations have been extended to about 22 dpa. The PCA-Al swells 0.06%/dpa at 600 0 C but at a much lower rate at 500 0 C. The PCA-A3 shows the lowest swelling at 600 0 C, about the half the swelling rate of type 316 stainless steel

  7. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B., E-mail: mychailo.toloczko@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2014-10-15

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr{sup +} ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  8. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  9. Comparison of compression properties and swelling of beryllium irradiated at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Beeston, J.M.; Miller, L.G.; Wood, E.L. Jr.; Moir, R.W.

    1983-01-01

    A beryllium cylinder irradiated in Experimental Breeder Reactor (EBR-II) for four years at 700 to 760 K to a neutron fluence of 8.13 x 10/sup 22/ n/cm/sup 2/ (total) or 1 x 10/sup 22/ n/cm/sup 2/ (E > 1 MeV) was cut into samples and tested. Yield strength and plastic strain was determined in compression tests at 300, 723, 823 K and after annealing at 1173 K for one hour. The immersion density and helium content were measured on samples. An equation for swelling was derived from the data by regression analysis. The microstructure showed agglomeration of helium in voids or bubbles at the grain boundaries.

  10. Irradiation creep and void swelling of two LMR heats of HT9 at ∝400 C and 165 dpa

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1996-01-01

    Two nominally identical heats of HT9 ferritic-martensitic steel were produced, fabricated into pressurized tubes, and then irradiated in FFTF, using identical procedures. After reaching 165 dpa at ∝400 C, small differences in strains associated with both phase-related changes in lattice parameter and void swelling were observed in comparing the two heats. The creep strains, while different, exhibited the same functional dependence on swelling behavior. The derived creep coefficients, the one associated with creep in the absence of swelling and the one directly responsive to swelling, were essentially identical for the two heats. Even more significantly, the creep coefficients for this bcc ferritic-martensitic steel appear to be very similar and possibly identical to those routinely derived from creep experiments on fcc austenitic steels. (orig.)

  11. Irradiation creep and void swelling of two LMR heat of HT9 at ∼400 degrees C and 165 dpa

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1996-01-01

    Two nominally identical heats of HT9 ferritic-martensitic steel were produced, fabricated into pressurized tubes, and then irradiated in FFTF, using identical procedures. After reaching 165 dpa at ∼400C, small differences in strains associated with both phase-related change in lattice parameter and void swelling were observed in comparing the two heats. The creep strains, while different, exhibited the same functional relationship to the swelling behavior. The derived creep coefficients, the one associated with creep in the absence of swelling and the one directly responsive to swelling, were essentially identical for the two heats. Even more significantly, the creep coefficients for this bcc ferritic-martensitic steel appear to be very similar and possibly identical to those routinely derived from creep experiments on fcc austenitic steels

  12. Void swelling and phase stability in different heats of cold-drawn Type 1.4970 stainless steel after heavy-ion irradiation

    International Nuclear Information System (INIS)

    Vaidya, W.V.; Knoblauch, G.; Ehrlich, K.

    1982-01-01

    The parameters varied were: variations in the manufacturing parameters for cold-worked tubes (type and degree of drawing, solution-annealing temperature and thermomechanical treatments), and variations in minor elements (C, Ti, Mo) within the specified range of chemical composition. In addition, the Si-content and the Ti/C ratio - the so-called stabilization - were changed within a broader range. The samples were irradiated with 46 MeV-Ni-ions to 64 dpa at 575 0 C and swelling as well as austenite stability, formation of precipitates and other microstructural changes were investigated by TEM. Though the austenite was stable under irradiation with respect to ferrite/martensite-transformation, the cold-drawn alloys showed a tendency to recrystallize during irradiation and exhibited lean precipitation. With respect to swelling, the only parameter that substantially reduced it, was the high Si addition; otherwise the alloys were practically insensitive to changes in the investigated parameters. These results are discussed in terms of the radiation-induced recrystallization and the high Si-effect, both of which are found to be beneficial in reducing swelling

  13. Relationship between swelling and irradiation creep in cold worked PCA stainless steel to 178 DPA at∼400 degrees C

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1993-01-01

    At 178 dpa and ∼400 degrees C, the irradiation creep behavior of 20% cold-worked PCA has become dominated by the creep disappearance phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however

  14. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  15. Experimental evidence for stress enhanced swelling

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1976-01-01

    Experimental evidence is presented which shows that the application of a biaxial stress during irradiation can increase the magnitude of irradiation-induced swelling observed in tubular specimens. It is shown that this increase in swelling is linear below the proportional elastic limit of the material and decreases above this value of stress. In the linear region a relationship is found between total swelling and stress free swelling. The phenomenon of reduced swelling is evaluated on the basis of increased cold work due to pre-irradiation straining. This analysis yields a relationship of dislocation density proportional to stress to the 3.82 power. Additional analyses using dislocation density proportional to sigma 2 (sigma = hoop stress) yield a similar but sharper decrease in swelling after the proportional elastic limit is reached. (Auth.)

  16. The prevention of curcumin against rat liver mitochondrial swelling induced by tert-butylhydroperoxide

    Directory of Open Access Journals (Sweden)

    S. Susilowati

    2006-09-01

    Full Text Available Liver diseases have been a medical problem which is difficult to manage. Some of the problems in the treatment of these diseases lie in the lack of reliable drug available. Curcumin, an active ingredient of the rhizomes of plant Curcuma has been investigated in the treatment of various disorders incuding liver diseases. The therapeutic effects of curcumin on liver diseases have been thought to be associated to its antioxidative properties. In the present study, we investigated the effects of curcumin on mitochondrial swelling in vitro induced by tert-butylhydroperoxide (t-BuOOH. Liver mitochondria were homogeneously isolated from Sprague-Dawley rats (the relative specific activity of succinate dehydrogenase was 35.73 ± 2.78. Addition of 90 µM of t-BuOOH caused a typical 2-phase swelling of the mitochondria. The pattern of swelling was influenced by various factors such as buffer composition, concentrations of t-BuOOH, amount of isolation buffer and mitochondrial proteins and incubation temperature.The swelling could be reduced by as much as 85 ± 3% by 2.50 µM of curcumin. At lower (1.25 µM or higher (5.00 µM concentrations, the protection against swelling by curcumin were less effective (respectively were 41 ± 3% and 77 ± 6%. Swelling might occur due to the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. The inhibition of t-BuOOH-induced mitochondrial swelling by curcumin might be because of the antioxidant effects of the compound. (Med J Indones 2006; 15:131-6 Keywords: mitochondria, swelling, tert-butylhydroperoxide, curcumin

  17. Measurement of kernel swelling and buffer densification in irradiated UCO-TRISO particles

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Gordon R., E-mail: bowegr@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Ploger, Scott A.; Demkowicz, Paul A. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Hunn, John D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37830-6093 (United States)

    2017-04-01

    Radiation-induced volume changes in the fuel kernels and buffer layers of UCO-TRISO particles irradiated to an average burnup of 16.1% FIMA have been determined. Measurements of particle dimensions were made on polished cross-sections of 56 irradiated particles at several different polish planes. The data were then analyzed to compute the equivalent spherical diameters of the kernels and the various coating layers, and these were compared to the average as-fabricated values to determine changes due to irradiation. The kernel volume was found to have increased by an average of 26 ± 6%. Buffer volume decreased by an average of 39 ± 2% due to densification.

  18. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results

  19. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  20. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    Science.gov (United States)

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  1. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1984-01-01

    Swelling evaluation of PCA variants and 20%-cold-worked (N-Lot) type 316 stainless steel (CW 316) at 300 to 600 0 C was extended to 44 dpa. Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variation among alloys at 400 0 C, but again 25%-cold-worked PCA was the best

  2. Toward a comprehensive theory of radiation-induced swelling and creep - the point defect concentrations

    International Nuclear Information System (INIS)

    Mansur, L.K.; Yoo, M.H.

    1979-01-01

    The theory of void swelling and irradiation creep is now fairly comprehensive. A unifying concept on which most of this understanding rests is that of the rate theory point defect concentrations. Several basic aspects of this unifying conept are reviewed. These relate to local fluctuations in point defect concentrations produced by cascades, the effects of thermal and radiation-produced divacancies, and the effects of point defect trapping

  3. Measurement of void swelling in thick non-uniformly irradiated 304 stainless steel blocks using nondestructive ultrasonic techniques

    International Nuclear Information System (INIS)

    Garner, F.A.; Okita, T.; Isobe, Y.; Etoh, J.; Sagisaka, M.; Matsunaga, T.; Freyer, P.D.; Huang, Y.; Wiezorek, J.M.K.; Porter, D.L.

    2015-01-01

    Void swelling is of potential importance in PWR austenitic internals, especially in components that will see higher doses during plant lives beyond 40 years. Proactive surveillance of void swelling is required to identify its emergence before swelling reaches levels that cause high levels of embrittlement and distortion. Non-destructive measurements of ultrasonic velocity can measure swelling at fractions of a percent. To demonstrate the feasibility of this technique for PWR application we have investigated five blocks of 304 stainless steel that were irradiated in the EBR-II fast reactor. These blocks were of hexagonal cross-section, with thickness of about 50 mm and lengths of about 218-245 mm. They were subjected to significant axial and radial gradients in gamma heating, temperature and dpa rate, producing complex internal distributions of swelling, reaching about 3.5% maximum at an off-center mid-core position. Swelling decreases both the density and the elastic moduli, thereby impacting the ultrasonic velocity. Concurrently, carbide precipitates form, producing increases in density and decreases in elastic moduli. Using blocks from both low and high dpa levels it was possible to separate the ultrasonic contributions of voids and carbides. Time-of-flight ultrasonic measurements were used to non-destructively measure the internal distribution of void swelling. These distributions were confirmed using non-destructive profilometry followed by destructive cutting to provide density change and electron microscopy data. It was demonstrated that the four measurement types produce remarkably consistent results. Therefore ultrasonic measurements offer great promise for in-situ surveillance of voids in PWR core internals. (authors)

  4. Helium influence on the microstructure and swelling of 9%Cr ferritic steel after neutron irradiation to 16.3 dpa

    International Nuclear Information System (INIS)

    Klimenkov, M.; Möslang, A.; Materna-Morris, E.

    2014-01-01

    Specially fabricated samples of the European reference 9Cr-WTaV steel EUROFER 97 alloyed with 0.081 mass% natural B and 0.081 and 0.114 mass% pure isotope 10 B were neutron-irradiated with about 16.3 dpa at temperatures in the range from 523 K to 723 K to study the influence of helium produced by 10 B(n,α) 7 Li transmutation reaction on microstructure, swelling and hardness. The spatial and size distributions of helium bubbles or cavities after irradiation at different temperatures were investigated by transmission electron microscopy. Vickers microhardness HV0.1 tests were performed on the as received specimens and specimens after irradiation. The influence of irradiation temperature and helium concentration on the size and density of the bubbles or cavities was analyzed and correlations with the hardness, tensile properties, and the fracture surface were discussed

  5. Assessment of helium effects on swelling by reirradiation in FFTF of Path A alloys previously irradiated in HFIR

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Garner, F.A.; Brager, H.R.

    1985-01-01

    Specimens of the Path A Prime Candidate Alloys and of N-lot SS 316 were irradiated in HFIR at 400 to 600 0 C to fluences producing approximately 10 to 44 dpa and 500 to 3600 at. ppm He, in both the solution annealed and 20 to 25% cold-worked conditions. The cavity swelling and total microstructural evolution of most samples were observed via transmission electron microscopy on identical disks irradiated side by side in HFIR, and immersion densities were also measured prior to insertion into FFTF/MOTA (Materials Open Test Assembly of the Fast Flux Test Facility). These disks are being irradiated in the FFTF/MOTA (cycles 5 and 6), side by side with disks of the same materials which were not previously irradiated in HFIR. These specimens have been divided into two subsets for discharges after 30 and 60 dpa. 4 references, 1 table

  6. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    Science.gov (United States)

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, Poctanol preconditioning significantly attenuated the cell swelling [(113∓6)%, Poctanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, Poctanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  7. Effect of Guci powder on toe swelling induced by egg white in rats

    Science.gov (United States)

    Xie, Guoqi; Hao, Shaojun; Shen, Huiling; Ma, Zhenzhen; Zhang, Xuehui; Zhang, Zhengchen

    2018-04-01

    To observe the effect of Guci Powder on foot swelling induced by egg white in rats. 50 male rats were randomly divided into normal saline group (n=10), white vinegar group (n=10) and Guning lotion group (n=10). There were 10 rats in the high-dose group and 10 in the low-dose group. The rats in each group were treated with the drug on the left and right feet of the rats. 0.5 hours after the last administration, the rats in each group were inflamed. The left hindsole plantar volume was measured respectively, so that the difference of the posterior toe volume before inflammation was taken as the swelling degree, and the swelling degree of each group was calculated. Compared with physiological saline group, the rats' egg white toe swelling (Pegg white toe in rats was inhibited at 0.5˜2h (Pegg white in rats, and the external application of bone spur powder has anti-inflammatory and swelling effect.

  8. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    International Nuclear Information System (INIS)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A.

    1989-01-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by 86 Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes

  9. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A. (Mount Desert Island Biological Laboratory, Salsbury Cove, ME (USA))

    1989-08-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by {sup 86}Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes.

  10. Effect of Ti additions on the swelling of electron irradiated austenitic steels and Ni alloys

    International Nuclear Information System (INIS)

    Gilbon, D.; Didout, G.; Le Naour, L.; Levy, V.

    1979-01-01

    It has been shown that titanium is a beneficial additive for the swelling of austenitic steels. The amplitude of the effects observed depends much on the nature and concentration of the other additives in the austenitic matrix [fr

  11. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  12. Relationship between swelling and elastic properties in neutron-irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.

    1976-04-01

    The results encompass elastic property measurements on several alloys, which differ in silicon, molybdenum and phosphorus contents but have a nominal 316 stainless steel composition. It is shown that there is a good correlation between the initial shear modulus of the material and the resultant swelling rate of that material. It is also shown that the bias factor concept does not satisfactorily account for the observed compositional sensitivity of swelling in the alloys investigated. 6 fig

  13. Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation

    International Nuclear Information System (INIS)

    Tomic, S.Lj.; Micic, M.M.; Filipovic, J.M.; Suljovrujic, E.H.

    2007-01-01

    The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks

  14. Heat treatments of irradiated uranium oxide in a pressurised water reactor (P.W.R.): swelling and fission gas release

    International Nuclear Information System (INIS)

    Zacharie, I.

    1997-01-01

    In order to keep pressurised water reactors at a top level of safety, it is necessary to understand the chemical and mechanical interaction between the cladding and the fuel pellet due to a temperature increase during a rapid change in reactor. In this process, the swelling of uranium oxide plays an important role. It comes from a bubble precipitation of fission gases which are released when they are in contact with the outside. Therefore, the aim of this thesis consists in acquiring a better understanding of the mechanisms which come into play. Uranium oxide samples, from a two cycles irradiated fuel, first have been thermal treated between 1000 deg C and 1700 deg C for 5 minutes to ten hours. The gas release amount related to time has been measured for each treatment. The comparison of the experimental results with a numerical model has proved satisfactory: it seems that the gases release, after the formation of intergranular tunnels, is controlled by the diffusion phenomena. Afterwards, the swelling was measured on the samples. The microscopic examination shows that the bubbles are located in the grain boundaries and have a lenticular shape. The swelling can be explained by the bubbles coalescence and a model was developed based on this observation. An equation allows to calculate the intergranular swelling in function of time and temperature. The study gives the opportunity to predict the fission gases behaviour during a fuel temperature increase. (author)

  15. Fission induced swelling and creep of U–Mo alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cheon, J.S. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-06-15

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  16. Relationship between swelling and irradiation creep in cold-worked PCA stainless steel irradiated to ∼178 dpa at ∼400 degrees C

    International Nuclear Information System (INIS)

    Toloczko, M.B.

    1993-09-01

    The eighth and final irradiation segment for pressurized tubes constructed from the fusion Prime Candidate Alloy (PCA) has been completed in FFTF. At 178 dpa and ∼400 degrees C, the irradiation creep of 20% cold-worked PCA has become dominated by the open-quotes creep disappearanceclose quotes phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels employed in this test. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however, requiring the use of several non-traditional techniques to extract the creep coefficients. No failures occurred in these tubes, even though the swelling ranged from ∼20 to ∼40%

  17. Relationship between swelling and irradiation creep in cold-worked PCA stainless steel irradiated to similar 178 dpa at similar 400 C

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Garner, F.A.

    1994-01-01

    The eighth and final irradiation segment for pressurized tubes constructed from the fusion Prime Candidate Alloy (PCA) has been completed in FFTF. At 178 dpa and similar 400 C, the irradiation creep of 20% cold-worked PCA has become dominated by the ''creep disappearance'' phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels employed in this test. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however, requiring the use of several non-traditional techniques to extract the creep coefficients. No failures occurred in these tubes, even though the swelling ranged from similar 20 to 40%. ((orig.))

  18. Relationship between swelling and irradiation creep in cold-worked PCA stainless steel irradiated to similar 178 dpa at similar 400 C

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B. (Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, CA 93106 (United States)); Garner, F.A. (Pacific Northwest Laboratory, Richland, WA 99352 (United States))

    1994-09-01

    The eighth and final irradiation segment for pressurized tubes constructed from the fusion Prime Candidate Alloy (PCA) has been completed in FFTF. At 178 dpa and similar 400 C, the irradiation creep of 20% cold-worked PCA has become dominated by the creep disappearance'' phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels employed in this test. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however, requiring the use of several non-traditional techniques to extract the creep coefficients. No failures occurred in these tubes, even though the swelling ranged from similar 20 to 40%. ((orig.))

  19. Swelling of pure copper and copper alloys after high fluence irradiation in FFTF [Fast Flux Test Facility] at approximately 4500C

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-03-01

    The swelling of pure copper and various copper-base alloys has been determined at 47.2 dpa after irradiation in FFTF-MOTA at ∼450 0 C. Data are also becoming available at 63.3 dpa. The alloys tend to fall into two broad categories, those that swell appreciably, sometimes with an S-shaped behavior, and those that resist swelling to very high neutron exposures. It appears that copper may have an intrinsic swelling rate of ∼1%/dpa that is often not reached due to its tendency toward saturation of swelling. The most swelling-resistant alloys examined to date are CuAl25, MZC and Cu-2.0Be

  20. Swelling of uranium dioxide and deformation behavior of the fuel element at high temperature irradiation

    International Nuclear Information System (INIS)

    Gontar, A.S.; Gutnik, V.S.; Nelidov, M.V.; Nikolaev, Yu.V.

    1993-01-01

    As post-reactor investigations showed, significant difference of swelling rates is connected with the fact that swelling of UO 2 with the equiaxial structure is mainly the result of fission gas bubbles accumulation along grain boundaries, and, in the case of the column structure, with formation of fine bubbles inside grains. The data given testify to usefulness of such investigations to predict TFE lifetime. As proven in this study one can see rates of radial deformation of fuel element cladding of a multi-cell TFE as a result of UO 2 swelling. They were calculated using the code SDS. Typical sizes were taken for calculation: cladding diameter--20 mm, cladding temperature at the central section of the fuel element--1,900 K, energy generation rate--145 W/cm 3 . These parameters provide output electric power of the TFE 600 W at the active zone length--400 mm

  1. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  2. Swelling, ion uptake and biodegradation studies of PE film modified through radiation induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Inderjeet, E-mail: ij_kaur@hotmail.com [Department Chemistry, HPU Shimla 171005 (India); Gupta, Nitika; Kumari, Vandna [Department Chemistry, HPU Shimla 171005 (India)

    2011-09-15

    An attempt to develop biodegradable polyethylene film grafting of mixture of hydrophilic monomers methacrylic acid (MAAc) and acrylamide (AAm) onto PE film has been carried out by preirradiation method using benzoyl peroxide as the radical initiator. Since ether linkages are susceptible to easy cleavage during degradation process, PE film was irradiated before the grafting reactions by {gamma}-rays to introduce peroxidic linkages (PE-OO-PE) that offer sites for grafting. The effect of irradiation dose, monomer concentration, initiator concentration, temperature, time and amount of water on the grafting percent was determined. Maximum percentage of grafting of binary mixture (MAAc+AAm), (1792%) was obtained at a total concentration of binary monomer mixture=204.6x10{sup -2} mol/L ([MAAc]=176.5x10{sup -2} mol/L, [AAm]=28.1x10{sup -2} mol/L), [BPO]=8.3x10{sup -2} mol/L at 100 deg. C in 70 min. The grafted PE film was characterized by the Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopic (SEM) methods. Some selective properties of grafted films such as swelling studies, ion uptake and biodegradation studies have been investigated. The grafted films show good swelling in water, ion uptake studies shows promising results for desalination of brackish water and the soil burial test shows that PE film grafted with binary monomer mixture degrades up to 47% within 50 days. - Highlights: > Binary mixture of methacrylic acid (MAAc) and acrylamide (AAm) onto PE film by preirradiation method was carried out. > Graft copolymers of MAAc+AAm and PE film were characterized by FTIR, TGA and SEM studies and was found to be thermally stable. > Grafting of MAAc+AAm improved swelling behavior giving maximum swelling (485.71%) in water as against PE with 0% swelling. > The grafted PE-g-poly (MAAc-co-AAm) behaves as an excellent material for ion separation. > Biodegradation studies by soil burial test showed 47.19% of

  3. Genistein inhibited ammonia induced astrocyte swelling by inhibiting NF-κB activation-mediated nitric oxide formation.

    Science.gov (United States)

    Dai, Hongliang; Jia, Guizhi; Wang, Wei; Liang, Chunguang; Han, Siyu; Chu, Minghui; Mei, Xifan

    2017-06-01

    Our previous study has indicated the involvement of epidermal growth factor receptor (EGFR) transactivation in ammonia-induced astrocyte swelling, which represents a major pathogenesis of brain edema in hepatic encephalopathy. In this study, we examined the effect of genistein, a naturally occurred broad-spectrum protein tyrosine kinase (PTK) inhibitor, on ammonia-induced cell swelling. We found that genistein pretreatment significantly prevented ammonia-induced astrocyte swelling. Mechanistically, ammonia triggered EGFR/extracellular signal-regulated kinase (ERK) association and subsequent ERK phosphorylation were alleviated by genistein pretreatment. Moreover, ammonia-induced NF-κB nuclear location, iNOS expression, and consequent NO production were all prevented by AG1478 and genistein pretreatment. This study suggested that genistein could alleviate ammonia-induced astrocyte swelling, which may be, at least partly, related to its PTK-inhibiting activity and repression of NF-κB mediated iNOS-derived NO accumulation.

  4. Irradiation Creep and Swelling of Russian Ferritic-Martensitic Steels Irradiated to Very High Exposures in the BN-350 Fast Reactor at 305-335 degrees C

    International Nuclear Information System (INIS)

    Konobeev, Yury V.; Dvoriashin, Alexander M.; Porollo, S.I.; Shulepin, S.V.; Budylkin, N.I.; Mironova, Elena G.; Garner, Francis A.

    2003-01-01

    Russian ferritic/martensitic (F/M) steels EP-450, EP-852 and EP-823 were irradiated in the BN-350 fast reactor in the form of gas-pressurized creep tubes. The first steel is used in Russia for hexagonal wrappers in fast reactors. The other steels were developed for compatibility with Pb-Bi coolants and serve to enhance our understanding of the general behavior of this class of steels. In an earlier paper we published data on irradiation creep of EP-450 and EP-823 at temperatures between 390 and 520C, with dpa levels ranging from 20 to 60 dpa. In the current paper new data on the irradiation creep and swelling of EP-450 and EP-852 at temperatures between 305 and 335C and doses ranging from 61 to 89 dpa are presented. Where comparisons are possible, it appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures <420C, but may be camouflaged somewhat by precipitation-related densification. These irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels.

  5. Comparison of immersion density and improved microstructural characterization methods for measuring swelling in small irradiated disk specimens

    International Nuclear Information System (INIS)

    Sawai, T.; Suzuki, M.; Hishinuma, A.; Maziasz, P.J.

    1992-01-01

    The procedure of obtaining microstructural data from reactor-irradiated specimens has been carefully checked for accuracy by comparison of swelling data obtained from transmission electron microscopy (TEM) observations of cavities with density-change data measured using the Precision Densitometer at Oak Ridge National Laboratory (ORNL). Comparison of data measured by both methods on duplicate or, in some cases, on the same specimen has shown some appreciable discrepancies for US/Japan collaborative experiments irradiated in the High Flux Isotope Reactor (HFIR). The contamination spot separation (CSS) method was used in the past to determine the thickness of a TEM foil. Recent work has revealed an appreciable error in this method that can result in an overestimation of the foil thickness. This error causes lower swelling values to be measured by TEM microstructural observation relative to the Precision Densitometer. An improved method is proposed for determining the foil thickness by the CSS method, which includes a correction for the systematic overestimation of foil thickness. (orig.)

  6. Cascade-induced fluctuations and the transition from the stable to the critical cavity radius for swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1985-01-01

    Recently, a cascade diffusion theory was developed to understand cacade-induced fluctuations in point defect flux during irradiation. Application of the theory revealed that such fluctuations give rise to a mechanism of cascade-induced creep that is predicted to be of significant magnitude. Here we extend the investigation to the formation of cavities. Specifically, we explore the possible importance of cascade-induced cavity growth excursions in triggering a transition from the gas-content-dictated stable radius to the critical radius for bias-driven growth. Two methods of analysis are employed. The first uses the variance of fluctuations to assess the average effect of fluctuations. The second is based on the fact that in a large ensemble of cavities, a small fraction will experience larger than average excursions. This prospect is assessed by estimating upper limits to the processes. For the conditions considered, it is concluded that cascade-induced fluctuations are of minor importance in triggering the onset of swelling in a population of stable gas-containing cavities

  7. Influence of cold work to increase swelling of pure iron irradiated in the BR-10 reactor to ∼6 and ∼25 dpa at ∼400 deg. C

    International Nuclear Information System (INIS)

    Dvoriashin, A.M.; Porollo, S.I.; Konobeev, Yu.V.; Garner, F.A.

    2000-01-01

    Irradiation of pure iron in several starting conditions at 400 deg. C has been conducted in the BR-10 fast reactor. Contrary to expectations, cold working appears to significantly accelerate the onset of void swelling. When compared to a similar experiment conducted in this reactor at the same time, it appears that iron experiences a rather long transient duration before the onset of steady-state swelling. The transient appears to be shortened by both cold-working and lower atomic displacement rates

  8. NEUTRON-INDUCED SWELLING OF Fe-Cr BINARY ALLOYS IN FFTF AT ∼400 DEGREES C

    International Nuclear Information System (INIS)

    Garner, Francis A.; Greenwood, Lawrence R.; Okita, Taira; Sekimura, Naoto; Wolfer, W. G.

    2002-01-01

    The purpose of this effort is to determine the influence of dpa rate, He/dpa ratio and composition on the void swelling of simple binary Fe-Cr alloys. Contrary to the behavior of swelling of model fcc Fe-Cr-Ni alloys irradiated in the same FFTF-MOTA experiment, model bcc Fe-Cr alloys do not exhibit a dependence of swelling on dpa rate at approximately 400 degrees C. This is surprising in that an apparent flux-sensitivity was observed in an earlier comparative irradiation of Fe-Cr binaries conducted in EBR-II and FFTF. The difference in behavior is ascribed to the higher helium generation rates of Fe-Cr alloys in EBR-II compared to that of FFTF, and also the fact that lower dpa rates in FFTF are accompanied by progressively lower helium generation rates.

  9. Swelling and functional disorders of isolated liver mitochondria induced by ultraviolet light exposure

    International Nuclear Information System (INIS)

    Sayanagi, Hideaki

    1977-01-01

    Biochemical and morphological disruption of liver mitochondria exposed to ultraviolet light were discussed. The mitochondria was prepared from rat liver, and the suspension was exposed to a broad spectrum ultraviolet light. The ultraviolet exposure of isolated rat liver mitochondria prepared from group 1 (regular laboratory chow), caused the great acceleration of swelling of mitochondria and the loss of the ability to couple the phosphorylation with respiration chain. The irradiated mitochondria produced an increase of lipid peroxide which was proportional to the dose of ultraviolet energy. By the use of a difference spectra technic, the absorption bands of cytochrome b, c (c 1 ), and flavoprotein were found to decrease in absorption after ultraviolet exposure. However, mitochondrial suspension prepared from rat in group 2 (regular chow supplemented with 3 mg% riboflavin free form), 3 (with 3 mg% riboflavin tetrabutyrate), 4 (with 5 mg% glutathione (GSH)), provided some degree of protection against the above deleterious effects of ultraviolet radiation. The irradiation effects could be reduced in the irradiated mitochondrial suspension which was incubated with riboflavin and GSH respectively after exposure. Riboflavin B 2 tetrabutyrate was found to show the significant effect of anti-oxidation. Riboflavin free-form was also active in this respect but to a lesser extent. (auth.)

  10. Comparison of the irradiation effects on swelling and microstructure in commercial alloy A-286 and a simple Fe--25 Ni--15Cr gamma prime hardened alloy

    International Nuclear Information System (INIS)

    Chickering, R.W.; Bajaj, R.; Lally, J.S.

    1977-01-01

    The irradiation behaviors of alloy A-286 as well as experimental gamma prime hardened alloys are being studied in the National Alloy Development Program for application of gamma prime hardened alloys in the liquid metal fast breeder reactor. The principal direction of the studies concerns the high temperature strength and swelling resistance of the alloys. Minor element compositions may affect the phase stability and void swelling. A high Ti to Al ratio indicates a tendency for the gamma prime Ni 3 (Ti,Al) to transform into eta phase (Ni 3 Ti) after long term thermal aging and irradiation enhances the tendency for transformation. Another minor element, Si, as a constituent of G-phase, and irradiation may enhance G-phase formation. The Ti, Al, and Si contents affect the swelling of Fe-Cr-Ni alloys. The swelling resistance generally increases with increasing amounts of these three elements in the matrix. In the study the effects of Ti to Al ratio, Ti content, Al content, and Si content on swelling and phase stability were analyzed after Ni-ion irradiation

  11. Density crosslink study of gamma irradiated LDPE predicted by gel-fraction, swelling and glass transition temperature characterization

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Moraes, Guilherme F.; Ono, Lilian S.; Parra, D.F.; Lugao, Ademar B.

    2011-01-01

    Experimental results showed that the crosslink density of polymeric stocks may be predicted from values of gel content based on the reactive portion of the stocks, that is, exclusive of plasticizers and fillers. Where entanglements may be neglected, the crosslink density is directly proportional to functions of the gel and sol contents. In order to predict the behavior of carbon-chain polymers exposed to ionizing radiation, an empirical rule can be used. According to this rule, polymers containing a hydrogen atom at each carbon atom predominantly undergo crosslinking. During irradiation, chain scission occurs simultaneously and competitively with crosslinking, the end result being determined by the ratio of the yields of the two reactions. The ratio of crosslinking to scission depends basically on factors including total irradiation dose, dose rate and the presence of oxygen. The glass transition temperature (Tg), temperature below which the polymer segments do not have sufficient energy to move past one another, marks the onset of segmental mobility for a polymer. Properties such as melt index, melt strength, crystallinity, glass transition, gel fraction, swelling ratio and elasticity modulus were assessed in LDPE (2.6 g.10 min -1 melt index) gamma irradiated within a 10, 15, 20 and 30 kGy and results obtained were further discussed prior conclusion. (author)

  12. Effect of irradiation-induced defects on fusion reactor ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Structural, thermal, and electrical properties critical to performance of ceramics in a fusion environment can be profoundly altered by irradiation effects. Neutron damage may cause swelling, reduction of thermal conductivity, increase in dielectric loss, and either reduction or enhancement of strength depending on the crystal structure and defect content of the material. Absorption of ionizing energy inevitably leads to degradation of insulating properties, but these changes can be reduced by alterations in structural or compositional makeup. Assessment of the irradiation response of candidate ceramics Al 2 O 3 , MgAl 2 O 4 , SiC and Si 3 N 4 shows that each may find use in advanced fusion devices. The present understanding of irradiation-induced defects in ceramics, while far from complete, nevertheless points the way to methods for developing improved materials for fusion applications

  13. Effects of heat and pressure on the swelling of irradiated uranium. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Churcman, A. T.; Barnes, R. S.; Cottrell, A. H.

    1956-09-15

    Small pieces of a natural uranium fuel bar from the NRX reactor which had been irradiated to 0.3 - 0.4% burn up have been heat treated either in vacuo or at high pressure and changes in their density measured.

  14. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels. 3 figures, 3 tables

  15. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1979-01-01

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels

  16. Theoretical evaluation of a mechanism of precipitate-enhanced cavity swelling during irradiation

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1981-03-01

    It is often observed experimentally in complex alloys such as the austenitic stainless steels that the largest cavities produced during irradiation are attached to second phase precipitate particles. One hypothesis that such observations suggest is that the precipitate-matrix interface may assist in the collection of irradiation-produced point defects which are channelled to the attached cavities. A theoretical analysis is developed to evaluate this mechanism. It is found that the growth of cavities attached to precipitates is increased compared to the growth of cavities in the matrix. The relative growth rates of the two types of cavities are also affected by differences in bias and differences in sink strength. The relationships required to evaluate these effects are developed and the consequences of enhanced point defect collection are explored in some detail

  17. Irradiation induced effects in zirconium (A review)

    International Nuclear Information System (INIS)

    Madden, P.K.

    1975-06-01

    Irradiation creep in zirconium and its alloys is comprehensively discussed. The main theories are outlined and the gaps between them and the observed creep behaviour, indicated. Although irradiation induced point defects play an important role, effects due to irradiation induced dislocation loops seem insignificant. The experimental results suggest that microstructural variations due to prior cold-working or hydrogen injection perturb the irradiation growth and the irradiation creep of zircaloy. Further investigations into these areas are required. One disadvantage of creep experiments lies in their duration. The possibility of accelerated experiments using ion implantation or electron irradiation is examined in the final section, and its possible advantages and disadvantages are outlined. (author)

  18. Effect of microstructure on radiation induced segregation and depletion in ion irradiated SS316 steel

    International Nuclear Information System (INIS)

    Jin, Hyung Ha; Kwon, Sang Chul; Kwon, Jun Hyun

    2011-01-01

    Irradiation assisted stress corrosion cracking (IASCC), void swelling and irradiation induced hardening are caused by change of characteristics of material by neutron irradiation, stress state of material and environmental situation. It has been known that chemical compositions varies at grain boundary (GB) significantly with fluence level and the depletion of Cr element at GB has been considered as one of important factors causing material degradation, especially, IASCC in austenitic stainless steel. However, experimental results of IASCC under PWR condition were directly not connected with Cr depletion phenomenon by neutron irradiation. Because the mechanism of IASCC under PWR has not yet been clearly understood in spite of many energetic researches, fundamental researches about radiation induced segregation and depletion in irradiated austenitic stainless steels have been attracted again. In this work, an effect of residual microstructure on radiation induced segregation and depletion of alloy elements at GB was investigated in ion irradiated SS316 steel using transmission electron microscope (TEM) with energy dispersive spectrometer (EDS)

  19. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Energy Technology Data Exchange (ETDEWEB)

    Leenaers, A., E-mail: aleenaer@sckcen.be [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van den Berghe, S.; Koonen, E.; Kuzminov, V. [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Detavernier, C. [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium)

    2015-03-15

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK• CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% {sup 235}U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL–matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium–Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)–matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  20. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Science.gov (United States)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.

    2015-03-01

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  1. Irradiation creep and stress-enhanced swelling of Fe-16Cr-15Ni-Nb austenitic stainless steel in BN-350

    Energy Technology Data Exchange (ETDEWEB)

    Vorobjev, A.N.; Porollo, S.I.; Konobeev, Yu.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)] [and others

    1997-04-01

    Irradiation creep and void swelling will be important damage processes for stainless steels when subjected to fusion neutron irradiation at elevated temperatures. The absence of an irradiation device with fusion-relevant neutron spectra requires that data on these processes be collected in surrogate devices such as fast reactors. This paper presents the response of an annealed austenitic steel when exposed to 60 dpa at 480{degrees}C and to 20 dpa at 520{degrees}C. This material was irradiated as thin-walled argon-pressurized tubes in the BN-350 reactor located in Kazakhstan. These tubes were irradiated at hoop stresses ranging from 0 to 200 MPa. After irradiation both destructive and non-destructive examination was conducted.

  2. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  3. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    International Nuclear Information System (INIS)

    Hu, Wenhui; Guo, Liping; Chen, Jihong; Luo, Fengfeng; Li, Tiecheng; Ren, Yaoyao; Suo, Jinping; Yang, Feng

    2014-01-01

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He + beam and sequential He + and H + beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C

  4. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    International Nuclear Information System (INIS)

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken

  5. On the analogy between thermally and irradiation induced creep

    International Nuclear Information System (INIS)

    Cozzarelli, F.A.; Huang, S.

    1977-01-01

    Employing an analogy between thermally induced and irradiation induced creep, physical arguments are used first to deduce a one-dimensional constitutive relation for metals under stress in a high temperature and high neutron flux field. This constitutive relation contains modified superposition integrals in which the temperature and flux dependence of the material parameters is included via the use of two reduced time scales; linear elastic, thermal expansion and swelling terms are also included. A systematic development based on thermodynamics, with the stress, temperature increment and defect density increment as independent variables in the Gibbs free energy, is then employed to obtain general three-dimensional memory integrals for strain; the entropy and coupled energy equation are also obtained. Modified superposition integrals similar to those previously obtained by physical argument are then obtained by substituting special functions into the results of the thermodynamic analysis, and the special case of an isotropic stress power law is examined in detail. (Auth.)

  6. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation – Non-destructive analysis of the AFIP-1 fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M., E-mail: daniel.wachs@inl.gov [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Robinson, A.B.; Rice, F.J. [Idaho National Laboratory, Characterization and Advanced PIE Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Kraft, N.C.; Taylor, S.C. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lillo, M. [Idaho National Laboratory, Nuclear Systems Design and Analysis Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Woolstenhulme, N.; Roth, G.A. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008–2009. The irradiation conditions were: ∼250 W/cm{sup 2} peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm{sup 3} peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  7. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons.

    Science.gov (United States)

    Mattei, César; Molgó, Jordi; Benoit, Evelyne

    2014-10-01

    Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Early age sealing of buffer-rock gap by artificial wetting to induce bentonite swelling

    International Nuclear Information System (INIS)

    Holt, Erika; Marjavaara, Pieti

    2012-01-01

    400% of the buffer. The area near the top of the sample often had a higher water content, attributed to the concentration of material and upward swelling. Two weeks after wetting, the dry density of the gap area with plain water filling or pellets is on the order of 1000 kg/m 3 . The small-scale artificial wetting laboratory test program has provided the basis for some aspects of the First Phase Test of Bentonite Buffer. This test was started in autumn 2011 in Onkalo, Finland at the depth of 140 m below surface. The test is scaled 40% from the current repository hole dimensions, having two separate holes of 800 mm in diameter and three meters depth, both holes have heaters. The 35 mm gap between the rock and bentonite buffer was filled with custom-made roller-compacted MX- 80 pellets. Both the buffer and pellets were made from the same material and had a water content of 17%. In this field demonstration, one hole was artificially wetted and the other was left to dry only exposed to the natural water coming from host rock. The start of the test showed that it was possible to artificially wet the buffer-pellet system as the buffer was confined with a lid. The tests are on-going in ONKALO at the moment and it is planned for them to run for least of two years but it can be continued longer if necessary. The planning of the second phase, full-scale test to be done at the level 420 m below ground in ONKALO has started. Overall, this initial 2009-10 experimental research project showed that it was possible to uniformly wet the buffer to induce a high level of swelling within the first days, which would provide a higher level of safety with respect to thermal, mechanical and chemical stability during the waste deposition construction phase. The uncertainties that remain were the up-scaling of results to full-size deposition scale, especially with respect to the level of buffer uplift

  9. Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eid, M. [National Center For Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo 11731 (Egypt)], E-mail: mona_eid2000@yahoo.com; Abdel-Ghaffar, M.A. [National Research Center, Dokki, Cairo (Egypt); Dessouki, A.M. [National Center For Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo 11731 (Egypt)

    2009-01-15

    The highly swelling Poly (acrylamide/maleic acid/gelatin) P(AAm/MA/G) hydrogels were prepared by gamma-irradiation at low dose rate (0.94 kGy/h) and moderate dose rate (3.84 kGy/h). The hydrogels were confirmed by FTIR. The effect of copolymer composition, dose and dose rate on the swelling behaviour was discussed. Increasing of MA content and G in the initial mixture leads to an increase in the amount of MA and G in the gel system and decrease in the gelation %. The swelling behaviours of the hydrogel prepared at moderate dose rate increased with increasing MA mole content in the gel system but, there is no systematic dependence of swelling on MA content was observed for the hydrogels obtained at low dose rate. Pore structure of the hydrogels was monitored by using scanning electron microscopy. Thermogravimetric analysis (TGA) and the rate of the thermal decomposition of P(AAm/MA/G) hydrogels has been evaluated to give a better understanding of the thermal stability of polymers, The X-ray data of P(AAm/MA/G) hydrogels was discussed to investigate some features namely the degree of ordering and crystallite size.

  10. Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385?400$deg;C

    Science.gov (United States)

    Garner, F. A.; Porter, D. L.

    1988-07-01

    The creep and swelling of AISI 316 stainless steel have been studied at 385 to 400°C in EBR-II to doses of 130 dpa. Most creep capsules were operated at constant stress and temperature but mid-life changes in these variables were also made. This paper concentrates on the behavior of the 20% cold-worked condition but five other conditions were also studied. Swelling at ⩽ 400° C was found to lose the sensitivity to stress exhibited at higher temperatures while the creep rate was found to retain linear dependencies on both stress and swelling rate. The creep coefficients extracted at 400°C agree with those found in other experiments conducted at higher temperatures. In the temperature range of ⩽ 400° C, swelling is in the recombinationdominated regime and the swelling rate falls strongly away from the ~1%/dpa rate observed at higher temperatures. These lower rates of creep and swelling, coupled with the attainment of high damage levels without failure, encourage the use of AISI 316 in the construction of water-cooled fusion first walls operating at temperatures below 400°C.

  11. Bending of fuel fast reactor fuel elements under action of non-uniform temperature gradients and radiation-induced swelling

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.; Karasik, E.A.

    1984-01-01

    The bending of rod fuel elements in gas-cooled fast reactors under the action of temperature gradients radiation-induced swelling non-uniform over the perimeter of fuel cans is evaluated. It is pointed out that the radiation-induced swelling gives the main contribution to the bending of fuel elements. Calculated data on the bending of the corner fuel element in the assembly of the fast reactor with dissociating gas coolant are given. With the growth of temperature difference over the perimeter, the bending moment and deformation increase, resulting in the increase of axial stresses. The obtained data give the basis for accounting the stresses connected with thermal and radiation bending when estimating serviceability of fuel elements in gas cooled fast reactors. Fuel element bending must be also taken into account when estimating the thermal hydrualic properties

  12. Effect of Maleic Acid Content on the Thermal Stability, Swelling Behaviour and Network Structure of Gelatin -Based Hydrogels Prepared by Gamma Irradiation

    International Nuclear Information System (INIS)

    Eid, M.; Dessouki, A.M.; Abdel-Ghaffar, M.A.

    2005-01-01

    The preparation of highly swelling hydrogels containing diprotic acid and gelatin carried out by gamma-irradiation of acrylamide/maleic acid/gelatine/water mixture at ambient temperature. Poly (acrylamide/maleic acid/gelatin) p(AAm/MA/G) hydrogels were prepared in different MA and G contents at low dose rate (0.94 kGy/h), and moderate dose rate (3.84 kGy/h). The prepared hydrogels were confirmed by FT1R . The effect of copolymer composition, dose and dose rate on the swelling behaviour and the type of water diffusion in the network structure of the hydrogels was discussed. Increasing of MA content and G in the initial mixture leads to an increase in the amount of MA and G in the gel system and decrease in the gelation percent. The swelling behaviours of the hydrogel prepared at moderate dose rate increased with increasing MA mole content in the gel system. On the other hand, no systematic dependence of swelling on MA content was observed for the hydrogels obtained at low dose rate. Pore structure of the hydrogels was monitored by using scanning electron microscopy. Systematic swelling of P(AAm/MA/G) hydrogels prepared at moderate dose rates can be explained by the homogeneous pore size distribution of network. Thermogravimetric analysis (TGA) was employed to study the effect of network structure formation on the thermal behavior of the copolymer. To give a better understanding of the thermal stability of polymers, the rate of the thermal decomposition of P(AAm/MA/G) hydrogels has been evaluated

  13. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture.

    NARCIS (Netherlands)

    Sinke, A.P.; Jayakumar, A.R.; Panickar, K.S.; Moriyama, M.; Reddy, P.V.; Norenberg, M.D.

    2008-01-01

    Astrocyte swelling and brain edema are major neuropathological findings in the acute form of hepatic encephalopathy (fulminant hepatic failure), and substantial evidence supports the view that elevated brain ammonia level is an important etiological factor in this condition. Although the mechanism

  14. Relaxation induced optical anisotropy during dynamic overshoot swelling of zwitterionic polymer films

    NARCIS (Netherlands)

    Ogieglo, Wojciech; de Grooth, Joris; Wormeester, Herbert; Wessling, Matthias; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2013-01-01

    In-situ spectroscopic ellipsometry was used to investigate the swelling behavior of thin supported zwitterionic polymers based on sulfobetaine methacrylate and n-butylacrylate. This material represents an interesting class of zwitterionic polymers, with large potential in reduction of biofouling of

  15. Relation between the swelling and the disordering in ionic crystals irradiated by fast heavy ions; Relation entre le gonflement et la creation de defauts dans les cristaux ioniques irradies par des ions lourds rapides

    Energy Technology Data Exchange (ETDEWEB)

    Boccanfuso, M

    2001-12-01

    When fast heavy ions penetrate in matter, they slow down essentially by depositing their energy on the electrons. This can lead to strong electronic excitation densities in the solid and then to structural modifications. In this work, calcium fluoride (CaF{sub 2}) was used to look further into the damage induced by irradiation with fast heavy ions in ionic crystals. Four techniques were mainly employed to characterise this damage. These techniques of analysis are wide angle X-ray diffraction, surface profilometry, Rutherford backscattering spectrometry and UV-visible optical absorption spectroscopy. The results of this work show that CaF{sub 2} answers in a multiple way to the electronic excitations. For stopping powers higher than approximately 5 keV/nm, a polygonization seems to occur. This causes a structural disorder, a swelling of 0.27 % and the formation of fractures in the material. A second damage mechanism is caused above approximately 13 keV/nm and results in a loss of the initial crystalline structure. However, optical centres appear whatever the ion stopping power, which indicates that these defects cannot be the cause of the two above mentioned damage mechanisms. According to a thermal spike model, the two thresholds can be linked to melting and sublimation energy of the material, respectively. (author)

  16. Free radicals induced archive paper by irradiation

    International Nuclear Information System (INIS)

    Cutrubinis, M.; Moise, I.V.; Negut, C.D.; Georgescu, R.; Suvaila, R.; Virgolici, M.; Manea, M.M.

    2011-01-01

    Complete text of publication follows. Irradiation of archive paper (document archives of institutions, companies etc. and library or museum collections of books and documents) can solve the problems related to the bio-deterioration and bio-contamination of paper and sometimes save valuable cultural heritage paper items. For valuable paper items care should be taken to the degradation induced instantly by the ionising radiation to the cellulosic support and also to the long term post-irradiation effects. The free radicals formed due to the irradiation treatment could contribute to instant degradation of paper. Part of them are also trapped for months and years after irradiation and they could be related to the post-irradiation effects in paper items. In this study, different sorts of cellulosic support samples (soft wood and hard wood cellulose, contemporary paper, paper from archives and from collections etc.) have been irradiated with dosis up to 100 kGy and the radiation induced free radicals have been measured by ESR spectrometry. The ESR signals have shown the type and quantity of radiation induced free radicals. Their study can be used for a realistic estimation of the degradative effect of the ionising radiation treatment of archive paper.

  17. Analysis of radicals induced in irradiated foods

    International Nuclear Information System (INIS)

    Kishida, Keigo; Kaimori, Yoshihiko; Kawamura, Shoei; Sakamoto, Yuhki; Nakamura, Hideo; Ukai, Mitsuko; Kikuchi, Masahiro; Shimoyama, Yuhei; Kobayashi, Yasuhiko

    2012-01-01

    By electron spin resonance (ESR) spectroscopy, we revealed free radicals in γ-ray irradiated foods; black pepper, green coffee bean and ginseng. We also analyzed the decay behavior of radiation induced free radicals during storage of irradiated foods. The ESR spectrum of experimental irradiated foods consists of a sextet signal centered at g=2.0 and a singlet signal at the same g-value position and a singlet signal at g=4.0. The singlet signal at g=2.0 is originated from organic free radicals and its peak intensity showed the dependence of γ-ray irradiation dose levels. The signal intensity was decreased during storage. Only after 3 hours of radiation treatment the peak intensity was decreased fast and after that the intensity was decreased slowly. The relaxation times, T 1 and T 2 , of radiation induced free radicals showed the variations before and after irradiation. During long time storage period it was shown that T 1 was increased and T 2 was decreased. By analysis of decay process using the simulation methods based on the theory of reaction speed, it is considered that at least two kinds of radicals were induced in irradiated foods during long time storage. (author)

  18. Surface depression of glass and surface swelling of ceramics induced by ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Saitoh, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Tanemura, Seita; Miyagawa, Yoshiko; Miyagawa, Souji

    1994-01-01

    By the measurement of the change of the surface shapes of the glass and ceramics in which ion implantation was performed, it was clarified that glass surface was depressed, and ceramic surface swelled. These depression and swelling changed according to the kinds of ions, energy and the amount to be implanted and the temperature of samples. It became clear that the depression of glass surface was nearly proportional to the range of flight of the implanted ions, and the swelling of ceramic surface showed different state in the silicon nitride with strong covalent bond and the alumina and sapphire with strong ionic bond. For the improvement of the mechanical characteristics of solid materials such as hardness, strength, toughness, wear resistance, oxidation resistance and so on, attention has been paid to the surface reforming by high energy ion implantation at MeV level. The change of shapes of base materials due to ion implantation is not always negligible. The experiment was carried out on sintered silicon nitride and alumina, polished sapphire single crystals and quartz glass. The experimental method and the results are reported. (K.I.)

  19. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect II: Effects of variations of the fuel particle diameters

    International Nuclear Information System (INIS)

    Ding Shurong; Wang Qiming; Huo Yongzhong

    2010-01-01

    In order to predict the irradiation mechanical behaviors of plate-type dispersion nuclear fuel elements, the total burnup is divided into two stages: the initial stage and the increasing stage. At the initial stage, the thermal effects induced by the high temperature differences between the operation temperatures and the room temperature are mainly considered; and at the increasing stage, the intense mechanical interactions between the fuel particles and the matrix due to the irradiation swelling of fuel particles are focused on. The large-deformation thermo-elasto-plasticity finite element analysis is performed to evaluate the effects of particle diameters on the in-pile mechanical behaviors of fuel elements. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the fuel particle diameters; the effects of particle diameters on the maximum first principal stresses vary with burnup, and the considered case with the largest particle diameter holds the maximum values all along; (2) at the cladding near the interface between the fuel meat and the cladding, the Mises stresses and the first principal stresses undergo major changes with increasing burnup, and different variations exist for different particle diameter cases; (3) the maximum Mises stresses at the fuel particles rise with the particle diameters.

  20. New insights on the mechanisms controlling the nickel dependence of swelling in irradiated Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Hoyt, J.J.; Garner, F.A.

    1990-01-01

    In a previous report the interstitial and vacancy biases for an edge dislocation in a binary alloy were examined, assuming the existence of an equilibrium Cottrel atmosphere around the line defect. The Larche' and Cahn treatment of stress relaxation due to a solute atmosphere was employed with the Wolfer and Ashkin formulation for the bias of an edge dislocation to compute the bias as a function of nickel concentration in the Fe-Ni system. Using the minimum critical void radius concept, the concentration-dependent bias was shown to offer a plausible explanation for the minimum in swelling observed at intermediate nickel levels and the gradual increase in swelling at higher nickel levels. In this report, a more realistic description of the composition dependence of vacancy diffusion has also been included, an addition which improves the model substantially. 18 refs., 8 figs

  1. Irradiation-induced amorphization process in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-04-01

    Effects of the element process of irradiation damage on irradiation-induced amorphization processes of graphite was studied. High orientation thermal decomposed graphite was cut about 100 nm width and used as samples. The irradiation experiments are carried out under the conditions of electronic energy of 100-400 KeV, ion energy of 200-600 KeV, ionic species Xe, Ar, Ne, C and He and the irradiation temperature at from room temperature to 900 K. The critical dose ({phi}a) increases exponentially with increasing irradiation temperature. The displacement threshold energy of graphite on c-axis direction was 27 eV and {phi}a{sup e} = 0.5 dpa. dpa is the average number of displacement to atom. The critical dose of ion irradiation ({phi}a{sup i}) was 0.2 dpa at room temperature, and amorphous graphite was produced by less than half of dose of electronic irradiation. Amorphization of graphite depending upon temperature is discussed. (S.Y.)

  2. Increase of volume swelling by a temperature gradient

    International Nuclear Information System (INIS)

    Herschbach, K.; Schneider, W.; Stober, T.

    1996-11-01

    The temperature gradient in the cladding of a Fast Reactor fuel pin leads to increased dilatation compared to material irradiations. Investigations of a specially designed fuel pin reached the conclusion that the cause is enhanced volume swelling. It is induced by He-bubbles, which migrate upwards the temperature gradient and coalesce. The critical size of nuclei for void swelling is thus reached much faster. Consequently, the p in deformation is larger than expected from materials irradiations, in the present case (DIN 1.4981 sa) by about 50%. (orig.) [de

  3. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    International Nuclear Information System (INIS)

    Broglie, I. de; Beck, C.E.; Liu, W.; Hofmann, F.

    2015-01-01

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. These findings are discussed in terms of the evolution of helium-ion-implantation-induced defects

  4. Phase stability, swelling, microstructure and strength of Ti{sub 3}SiC{sub 2}-TiC ceramics after low dose neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen, E-mail: angck@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Zinkle, Steven [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Shih, Chunghao; Silva, Chinthaka; Cetiner, Nesrin; Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2017-01-15

    M{sub n+1}AX{sub n} (MAX) phase Ti{sub 3}SiC{sub 2} materials were neutron irradiated at ∼400, ∼630, and 700 °C to a fluence of ∼2 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). After irradiation at ∼400 °C, anisotropic c-axis dilation of ∼1.5% was observed. Room temperature strength was reduced from 445 ± 29 MPa to 315 ± 33 MPa and the fracture surfaces showed flat facets and transgranular cracks instead of typical kink-band deformation and bridging ligaments. XRD phase analysis indicated an increase of 10–15 wt% TiC. After irradiation at ∼700 °C there were no lattice parameter changes, ∼5 wt% decomposition to TiC occurred, and strength was 391 ± 71 MPa and 378 ± 31 MPa. The fracture surfaces indicated kink-band based deformation but with lesser extent of delamination than as-received samples. Ti{sub 3}SiC{sub 2} appears to be radiation tolerant at ∼400 °C, and increasingly radiation resistant at ∼630–700 °C, but a higher temperature may be necessary for full recovery. - Highlights: • Ti{sub 3}SiC{sub 2} candidate nuclear material for intrinsic toughness. • Neutron irradiation to 2 dpa complete (∼equivalent to a few months in LWR core). • First reported fracture strengths of Ti{sub 3}SiC{sub 2} after irradiation. • All toughening mechanisms in Ti{sub 3}SiC{sub 2} observed to be operational during irradiation at 700 °C. • Swelling recovery dominated by threshold migration in TiC (or TiC{sub 6}).

  5. Compensatory role of the NBCn1 sodium/bicarbonate cotransporter on Ca2+-induced mitochondrial swelling in hypertrophic hearts.

    Science.gov (United States)

    Vargas, Lorena A; Velasquez, Fernanda Carrizo; Alvarez, Bernardo V

    2017-03-01

    NBC Na + /HCO 3 - cotransporter (NBCn1) and NHE1 Na + /H + exchanger have been associated with cardiac disorders and recently located in coronary endothelial cells (CEC) and cardiomyocytes mitochondria, respectively. Mitochondrial NHE1 blockade delays permeability transition pore (MPTP) opening and reduces superoxide levels, two critical events exacerbated in cells of diseased hearts. Conversely, activation of NBCn1 prevented apoptosis in CEC subjected to ischemic stress. We characterized the role of the NHE1 and NBCn1 transporters in heart mitochondria from hypertrophic (SHR) and control (Wistar) rats. Expression of NHE1 was analyzed in left ventricular mitochondrial lysates (LVML), by immunoblots. NHE1 expression increased by ~40% in SHR compared to control (P < 0.05, n = 4). To examine NHE1-mediated Na + /H + exchange activity in cardiac hypertrophy, mitochondria were loaded with BCECF-AM dye and the maximal rate of pHm change measured after the addition of 50 mM NaCl. SHR mitochondria had greater changes in pHm compared to Wistar, 0.10 ± 0.01 vs. 0.06 ± 0.01, respectively (P < 0.05, n = 5). In addition, mitochondrial suspensions from SHR and control myocardium were exposed to 200 μM CaCl 2 to induce MPTP opening (light-scattering decrease, LSD) and swelling. Surprisingly, SHR rats showed smaller LSD and a reduction in mitochondrial swelling, 67 ± 10% (n = 15), compared to control, 100 ± 8% (n = 13). NBC inhibition with S0859 (1 μM) significantly increased swelling in both control 139 ± 10% (n = 8) and SHR 115 ± 10% (n = 4). Finally, NBCn1 Na + /HCO 3 - cotransporter increased by twofold its expression in SHR LVML, compared to normal (P < 0.05, n = 5). We conclude that increased NBCn1 activity may play a compensatory role in hypertrophic hearts, protecting mitochondria from Ca 2+ -induced MPTP opening and swelling.

  6. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  7. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  8. Correlation of yield strength with irradiation-induced microstructure in AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Simons, R.L.; Hulbert, L.A.

    1985-10-01

    Improvements in the correlation of radiation-induced change in yield strength in AISI 316 stainless steel with microstructure were made by re-examining the role of short-range obstacles. Effects due to the size of the obstacles relative to their spacing and shape of the obstacles were applied. The concept of shearing the precipitates instead of bowing around them was used to explain the effects of precipitate hardening. It is concluded that large changes in yield strength may be produced in high swelling materials. Voids will dominate the hardening at high dpa. The increase in hardening will depend on the diameter of the voids even though the swelling in the material is the same. Precipitate hardening at high fluence (>15 dpa) make a significant contribution for irradiation temperatures above 500 0 C

  9. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Heuser, Brent; Hosemann, Peter; Liu, Xiang

    2018-04-24

    segregation (RIS) of Ni and Si was observed in both A709 and 316H in all irradiated conditions and was found at various sinks: line dislocations, dislocation loops, void surfaces, carbide-matrix interfaces, etc. Radiation also induced the formation of Ni,Si-rich precipitates. As suggested in a previous study on neutron-irradiated 316 stainless steel, one possible consequence of the significant RIS of Si is that the enrichment at defect sinks depletes the silicon in the matrix, which can lead to enhanced void nucleation rate. The enrichment of Ni and Si is accompanied by the depletion of Cr at defect sinks, which could also affect the corrosion resistance. Radiation-induced change in the orientation relationship of pre-existing MX precipitates was observed at 600°. It is believed that this change is associated with the network dislocations formed under irradiation. The underlying mechanism is still not well understood. This change could be a positive indication that the MX precipitates can survive high density network dislocations. It would be helpful if neutron irradiation at similar dose conditions could be carried out to verify that this effect is not unique for ion irradiation. Intragranular Cr-rich carbides with a core-shell structure, i.e. Cr-rich carbide core and Ni,Si-rich shell was found at 500° and 600° in the highest dose (150 peak dpa) specimens. Coarse voids (30 nm in diameter) were only commonly found at 500° in the 50 and 150 peak dpa specimens in regions less than 750 nm in depth. The highest swelling for A709 irradiated to 50 and 150 peak dpa at 500° is about 0.44% and 0.37%, respectively. Due to the choice of 100 degree temperature intervals, this study did not attempt to precisely identify peak void swelling conditions, merely the range of irradiation temperatures where this could be a concern. It is known high-dose ion irradiation can significantly suppress void nucleation. Future neutron irradiation in the 500–600° range (without considering the

  10. Characterization of fuel swelling in helium-bonded carbide fuel pins

    International Nuclear Information System (INIS)

    Louie, D.L.Y.

    1987-08-01

    This work is not only the first attempt at characterizing the swelling of (U,Pu)C fuel pellets, but it also represents the only detailed examinations on carbide fuel swelling at high fuel burnups (4 to 16 at. %). This characterization includes the contributions of fission gases, cracks and solid fission products to fuel swelling. Significantly, the contributions of fission gases and cracks were determined by using the image analysis technique (IAT) which allows researchers to take areal measurements of the irradiated fuel porosity and cracks from the photographs of metallographic fuel samples. However, because areal measurements for varying depths in the fuel pellet could not be obtained, the crack areal measurements could not be converted into volumetric quantities. Consequently, in this situation, an areal fuel swelling analysis was used. The macroscopic fission-gas induced fuel swelling (MAS) caused by fission-gas bubbles and pores > 1 μm was determined using the measured irradiated fuel porosity because the measuring range of IAT is limited to bubbles and pores >1 μm. Conversely, for fuel swelling induced by fission-gas bubbles < 1 μm, the microscopic fission-gas induced fuel swelling (MIS) was estimated using an areal fuel swelling model

  11. Mechanisms affecting swelling in alloys with precipitates

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites; and preciwill come from waste wood available locally requiring minimal energy for recovery and transportation to the site. The applicant is strongly considering the use of a solar preheating unit anium southward as well as to deeper dened al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  12. Finite element analysis of irradiation-induced dilation of the fuel subassembly duct in LMFBR

    International Nuclear Information System (INIS)

    Gao Fuhai; Fu Hao; Li Nan; Yang Kongli; Wang Mingzhen

    2013-01-01

    Background: The calculation of irradiation-induced dilation of the fuel subassembly duct in LMFBR is important for fast reactor core design.. Purpose: To investigate how to calculate the dilation by using finite element method (FEM). Methods: First, irradiation-induced creep and swelling material models are introduced. Then, a theoretical solution based on a simplified bending plate model is briefly given. Finally, a stress update scheme for the adopted material models is presented and furthermore embedded into ABAQUS user interface UMAT to conduct finite element analysis. Both solutions are compared and discussed. Results: FEM successfully predicts the duct dilation and its solution agrees well with theoretical one in small deformation. Conclusions: The proposed stress update scheme is effective, The accuracy of the theory solution declines when dilation becomes larger. The maximum stress occurs at the duct corner point, and the location has stress relaxation effect. (authors)

  13. Relationship between phase development and swelling of AISI 316 during temperature changes

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Garner, F.A.

    1982-04-01

    The effect of temperature changes on radiation-induced swelling and phase development of AISI 316 has been examined for specimens irradiated in two different experiments. The formation of radiation-stable phases at low temperature appears to precede swelling but these phases tend to dissolve when subsequently subjected to higher temperature. Phases which develop at high temperature persist when the temperature is subsequently lowered. Once nucleated at low temperatures, voids tend to persist without reduction in density at higher temperatures. However, a new round of void nucleation occurs when the temperature is decreased during irradiation. If the swelling has entered the steady-state swelling regime prior to the temperature change, there is no effect on the subsequent swelling rate. For temperature changes that occur before the end of the transient swelling regime, substantial changes can occur in the swelling behavior, particularly if the changes occur in the range around 500 0 . The isothermal swelling behavior of AISI 316 is much less sensitive to irradiation temperature than previously envisioned

  14. Immunization against Leishmania major infection using LACK- and IL-12-expressing Lactococcus lactis induces delay in footpad swelling.

    Directory of Open Access Journals (Sweden)

    Felix Hugentobler

    Full Text Available BACKGROUND: Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. METHODOLOGY/PRINCIPAL FINDINGS: We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional T(H1 CD4(+ and CD8(+ T cells and a systemic LACK-specific T(H1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific T(H1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective T(H1 response. CONCLUSIONS/SIGNIFICANCE: This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania.

  15. Immunization against Leishmania major Infection Using LACK- and IL-12-Expressing Lactococcus lactis Induces Delay in Footpad Swelling

    Science.gov (United States)

    Hugentobler, Felix; Yam, Karen K.; Gillard, Joshua; Mahbuba, Raya; Olivier, Martin; Cousineau, Benoit

    2012-01-01

    Background Leishmania is a mammalian parasite affecting over 12 million individuals worldwide. Current treatments are expensive, cause severe side effects, and emerging drug resistance has been reported. Vaccination is the most cost-effective means to control infectious disease but currently there is no vaccine available against Leishmaniasis. Lactococcus lactis is a non-pathogenic, non-colonizing Gram-positive lactic acid bacterium commonly used in the dairy industry. Recently, L. lactis was used to express biologically active molecules including vaccine antigens and cytokines. Methodology/Principal findings We report the generation of L. lactis strains expressing the protective Leishmania antigen, LACK, in the cytoplasm, secreted or anchored to the bacterial cell wall. L. lactis was also engineered to secrete biologically active single chain mouse IL-12. Subcutaneous immunization with live L. lactis expressing LACK anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad swelling in Leishmania major infected BALB/c mice. The delay in footpad swelling correlated with a significant reduction of parasite burden in immunized animals compared to control groups. Immunization with these two L. lactis strains induced antigen-specific multifunctional TH1 CD4+ and CD8+ T cells and a systemic LACK-specific TH1 immune response. Further, protection in immunized animals correlated with a Leishmania-specific TH1 immune response post-challenge. L. lactis secreting mouse IL-12 was essential for directing immune responses to LACK towards a protective TH1 response. Conclusions/Significance This report demonstrates the use of L. lactis as a live vaccine against L. major infection in BALB/c mice. The strains generated in this study provide the basis for the development of an inexpensive and safe vaccine against the human parasite Leishmania. PMID:22348031

  16. Irradiated fuel behavior under accident heating conditions and correlation with fission gas release and swelling model (Chicago)

    International Nuclear Information System (INIS)

    Kryger, B.; Ducamp, F.; Combette, P.

    1981-08-01

    We analyse the mixed oxide fast fuel response to off normal conditions obtained by means of an out-of-pile transient simulation apparatus designed to provide direct observations (temperature, pressure, fuel motion) of fuel fission gas phenomena that might occur during the transients. The results are concerning fast transient tests (0,1 to 1 second) obtained with high gas concentration irradiated fuel (4 to 7 at % burn up, 0,4 cm 3 Xe + Kr /g.UPuO 2 ). The kinetics of fission gas release during the transients have been directly measured and then compared with the calculated results issued of the Chicago model. This model agrees, quite well, with other experiments done in the silene prompt reactor. Other gases than xenon and krypton (such as hydrogen and carbon monoxide) do not play any role in fuel behavior, since they have been completely ruled out

  17. Gamma Irradiation Induced Degradation of Orange Peels

    Directory of Open Access Journals (Sweden)

    Jaime Saucedo Luna

    2012-08-01

    Full Text Available In this study, gamma irradiation induced degradation of orange peels (OP was investigated. The lignocellulosic biomass degradation was carried out at doses of 0 (control, 600, 1800 and 3500 kGy using a Co-60 gamma radiation source. The samples were tested for total and reducing sugars. The concentrations of total sugars ranged from 0.530 g∙g−1 in control sample to 0.382 g∙g−1 of dry weight in the sample which received the highest radiation dose. The reducing sugars content varying from 0.018 to 0.184 g∙g−1 of dry weight with the largest rise occurring in the sample irradiated at 3500 kGy. The concentrations of sucrose, glucose and fructose were determined. The changes generated in physico-chemical properties were determined by Fourier Transform Infrared Spectroscopy (FTIR and termogravimetric analysis (TG-DTG. The results show that OP was affected, but not significantly, which suggests that lignocellulose and sugars profiles were partially degraded after gamma irradiation.

  18. Irradiation induced precipitation: a thermodynamical approach

    International Nuclear Information System (INIS)

    Bocquet, J.-L.; Martin, Georges.

    1979-02-01

    A binary alloy (A, B) under steady state irradiation is considered as a ternary alloy (A, B, defects) in constrained equilibrium (the constraint represented by the irradiation consists in maintaining a given supersaturation of point defects). All possible two-body interactions (attractive, repulsive) have been checked between the solvent A, the solute B, and the defects C. The conditions of an irradiation corresponds to a low point-defect concentration; the only cases of interest are those where such a low concentration makes new phases precipitate, which are richer in solute than the initial solid-solution. Radiation induced precipitation is expected to occur under the following necessary conditions: - when the binary alloy (A, B) shows ordering or is ideal, a necessary condition is that the binary solute-defects must show ordering. - when the binary alloy (A, B) shows clustering, a necessary condition is that the temperature must be close to the critical mixing temperature Tsub(AB)sup(D). The physical significance of these conditions is discussed [fr

  19. Mutation induced with ion beam irradiation in rose

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. E-mail: yhiroya@nias.affrc.go.jp; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  20. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  1. The secondary stress analyses in the fuel pin cladding due to the swelling gradient across the wall thickness

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2002-01-01

    Irradiation deformation analyses of FBR fuel cladding were made by using the finite element method. In these analyses the history of the stress occurred in the cladding was evaluated paying attention to the secondary stress induced by the swelling difference across the wall thickness. It was revealed that the difference of the swelling incubation dose in the direction of the thickness and the irradiation creep deformation play an important role in the history of the secondary stress. The effect of the stress-enhanced swelling was also analyzed in this study

  2. X-irradiation-induced emesis in Suncus murinus

    International Nuclear Information System (INIS)

    Torii, Yoshifumi; Saito, Hiroshi; Matsuki, Norio; Shikita, Mikio.

    1993-01-01

    X-irradiation-induced emesis was investigated in Suncus murinus, a house musk shrew. Whole body X-irradiation caused emesis, and the calculated ED 50 value that induced emesis in 50% of animals was 429 cGy. At the irradiation dose of 800 cGy all the animals vomited 10.0±2.4 times with a latency of 20.0±2.9 min. The emetogenic effect of X-irradiation was dependent on the part of the body exposed. Abdominal X-irradiation at 1000 cGy caused emesis in all animals studied, whereas the same dose to the head had no emetogenic effect. We investigated several prophylactic methods against X-irradiation-induced emesis. Surgical vagotomy completely inhibited the emesis induced by 800 cGy X-irradiation. Emesis was also prevented by the subcutaneous administration of tropisetron (ICS 205-930, a selective serotonergic 5-HT 3 receptor antagonist) with an ID 50 value of 29 μg/kg. These results suggest that (1) suncus is a useful experimental animal for the study of radiation-induced emesis and the development of prophylactic drugs, (2) serotonin plays an important role in X-irradiation-induced emesis, and (3) X-irradiation-induced emesis is very similar to that caused by cancer chemotherapeutic agents. (author)

  3. Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer.

    Science.gov (United States)

    Rodilla, Ananda M; Korrodi-Gregório, Luís; Hernando, Elsa; Manuel-Manresa, Pilar; Quesada, Roberto; Pérez-Tomás, Ricardo; Soto-Cerrato, Vanessa

    2017-02-15

    Current pharmacological treatments for lung cancer show very poor clinical outcomes, therefore, the development of novel anticancer agents with innovative mechanisms of action is urgently needed. Cancer cells have a reversed pH gradient compared to normal cells, which favours cancer progression by promoting proliferation, metabolic adaptation and evasion of apoptosis. In this regard, the use of ionophores to modulate intracellular pH appears as a promising new therapeutic strategy. Indeed, there is a growing body of evidence supporting ionophores as novel antitumour drugs. Despite this, little is known about the implications of pH deregulation and homeostasis imbalance triggered by ionophores at the cellular level. In this work, we deeply analyse for the first time the anticancer effects of tambjamine analogues, a group of highly effective anion selective ionophores, at the cellular and molecular levels. First, their effects on cell viability were determined in several lung cancer cell lines and patient-derived cancer stem cells, demonstrating their potent cytotoxic effects. Then, we have characterized the induced lysosomal deacidification, as well as, the massive cytoplasmic vacuolization observed after treatment with these compounds, which is consistent with mitochondrial swelling. Finally, the activation of several proteins involved in stress response, autophagy and apoptosis was also detected, although they were not significantly responsible for the cell death induced. Altogether, these evidences suggest that tambjamine analogues provoke an imbalance in cellular ion homeostasis that triggers mitochondrial dysfunction and lysosomal deacidification leading to a potent cytotoxic effect through necrosis in lung cancer cell lines and cancer stem cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Irreversible thermodynamics models and constitutive equations of the irradiation induced deformation and damage accumulating processes

    International Nuclear Information System (INIS)

    Wassilew, C.

    1989-11-01

    This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)

  5. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    Science.gov (United States)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  6. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8–12% Cr ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kupriiyanova, Y.E., E-mail: fomenkoj@kipt.kharkov.ua [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Bryk, V.V.; Borodin, O.V.; Kalchenko, A.S.; Voyevodin, V.N.; Tolstolutskaya, G.D. [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States)

    2016-01-15

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe–Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr{sup +3}, 40 keV He{sup +}, and 20 keV H{sup +}. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  7. Heavy ion irradiation induces autophagy in irradiated C2C12 myoblasts and their bystander cells

    International Nuclear Information System (INIS)

    Hino, Mizuki; Tajika, Yuki; Hamada, Nobuyuki

    2010-01-01

    Autophagy is one of the major processes involved in the degradation of intracellular materials. Here, we examined the potential impact of heavy ion irradiation on the induction of autophagy in irradiated C2C12 mouse myoblasts and their non-targeted bystander cells. In irradiated cells, ultrastructural analysis revealed the accumulation of autophagic structures at various stages of autophagy (id est (i.e.) phagophores, autophagosomes and autolysosomes) within 20 min after irradiation. Multivesicular bodies (MVBs) and autolysosomes containing MVBs (amphisomes) were also observed. Heavy ion irradiation increased the staining of microtubule-associated protein 1 light chain 3 and LysoTracker Red (LTR). Such enhanced staining was suppressed by an autophagy inhibitor 3-methyladenine. In addition to irradiated cells, bystander cells were also positive with LTR staining. Altogether, these results suggest that heavy ion irradiation induces autophagy not only in irradiated myoblasts but also in their bystander cells. (author)

  8. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    International Nuclear Information System (INIS)

    Rappaport, D.S.; Casarett, G.W.

    1979-01-01

    This study was conducted to determine what influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. EAG was induced in female Sprague-Dawley rats by immunization with Bordetella pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Progressive arteriolonephrosclerosis (ANS) was observed in right (irradiated) kidneys following unilateral renal irradiation (1500 rad). Rats were either immunized, sham-immunized, irradiated, sham-irradiated, or both immunized and irradiated. Light and immunofluorescent microscopic observation, urine protein content, and kidney weights were evaluated. In immunized-irradiated animals the effects of irradiation and immunization were largely additive. Immunization did not considerably influence the development and course of ANS and irradiation did not considerably influence the development and course of EAG

  9. Radiation-induced segregation and void formation in C+ ion-irradiated vanadium-carbon alloys

    International Nuclear Information System (INIS)

    Takeyama, T.; Ohnuki, S.; Takahashi, H.; Sato, Y.; Mochizuki, S.

    1982-01-01

    To clarify the effect of interstitial elements on radiation-induced segregation and void formation in V and V-C alloys irradiated by 200 keV C + ions to a dose of 48 dpa at 973 K, the microstructural observation and the measurement of C segregation to the surfaces were carried out by TEM and XPS. Voids, dislocations and precipitates were produced in all of the specimens during irradiation. The addition of C in V led to a reduction of void size and to increase in void number density, consequently the void swelling was suppressed strongly. Radiation-induced segregation of C was observed clearly on and near the irradiated surfaces of V-C alloys and as a result of the enrichment of C atoms, carbides precipitated on the surfaces. It is the first evidence of the radiation-induced segregation of interstitial elements on the surfaces. Also, quasi-carbides were observed on the (210) habit plaints near large voids and dislocations in V. The phenomena show that C atoms, which was insolved and/or implanted, interact strongly with vacancies rather than self-interstitial atoms and migrate with vacancies toward defect sinks, such as surfaces, voids, and dislocations. The segregated zones of C reduced the sink efficiency of the defects, and showed the effect of the suppression on void in V-C alloys. (author)

  10. An ESR study of radicals induced in irradiated fresh mango

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Hussain, Mohammed S.; Morishita, Norio; Kobayashi, Yasuhiko; Ukai, Mitsuko; Shimoyama, Yuhei

    2009-01-01

    An electron spin resonance (ESR) spectroscopic study was performed on the radicals induced irradiated fresh mangoes. Fresh Philippine mangoes were irradiated by the γ-rays, lyophilized and powdered. The ESR spectrum of the dry specimen showed a strong main peak at g=2.004 and a pair of peaks at both magnetic fields of the main peak. The main peak detected from flesh and skin specimens faded away in a few days after the irradiation. On the other hand, the side peaks showed a well-defined dose response even 9 days after the irradiation. The side-peak is a useful mean to define the irradiation on fresh mangoes. (author)

  11. Study of swelling by simulation

    International Nuclear Information System (INIS)

    Gilbon, D.; Le Naour, L.; Didout, G.

    1983-06-01

    Fuel cans and hexagonal tubes containing the pins must withstand high irradiation doses (220 or even 275 dpa) with a low swelling. Qualification of a new alloy for claddings requires several years of irradiation on a reactor. For a fast first selection simulation by 1MeV electron or heavy ions enhance radiation damages. Principles of these techniques are recalled and some examples mainly with steel 316 are given. Results are compared with results obtained in reactor to determine simulation limits. The method is not valid in the case of a structural instability of the irradiated material in a reactor [fr

  12. On the diffusion process of irradiation-induced point defects in the stress field of a moving dislocation

    International Nuclear Information System (INIS)

    Steinbach, E.

    1987-01-01

    The cellular model of a dislocation is used for an investigation of the time-dependent diffusion process of irradiation-induced point defects interacting with the stress field of a moving dislocation. An analytic solution is given taking into account the elastic interaction due to the first-order size effect and the stress-induced interaction, the kinematic interaction due to the dislocation motion as well as the presence of secondary neutral sinks. The results for the space and time-dependent point defect concentration, represented in terms of Mathieu-Bessel and Mathieu-Hankel functions, emphasize the influence of the parameters which have been taken into consideration. Proceeding from these solutions, formulae for the diffusion flux reaching unit length of the dislocation, which plays an important role with regard to void swelling and irradiation-induced creep, are derived

  13. Irradiation-enhanced and-induced mass transport

    International Nuclear Information System (INIS)

    Rehn, L.E.

    1989-01-01

    Irradiation can be used to enhance diffusion, that is, to increase the rate at which equilibrium is attained, as well as to induce nonequilibrium changes. The main factors influencing whether irradiation will drive a material toward or away from equilibrium are the initial specimen microstructure and geometry, irradiation temperature, and primary recoil spectrum. This paper summarizes known effects of irradiation temperature and primary recoil spectrum on mass transport during irradiation. In comparison to either electron or heavy-ion irradiation, it is concluded that relatively low-energy, light-ion bombardment at intermediate temperatures offers the greatest potential to enhance the rate at which equilibrium is attained. The greatest departures from equilibrium can be expected from irradiation with similar particles at very low temperatures

  14. Irradiation creep induced anisotropy in a/2 dislocation populations

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    The contribution of anisotropy in Burgers vector distribution to irradiation creep behavior has been largely ignored in irradiation creep models. However, findings on Frank loops suggest that it may be very important. Procedures are defined to identify the orientations of a/2 Burgers vectors for dislocations in face-centered cubic crystals. By means of these procedures the anisotropy in Burgers vector populations was determined for three Nimonic PE16 pressurized tube specimens irradiated under stress. Considerable anisotropy in Burgers vector population develops during irradiation creep. It is inferred that dislocation motion during irradiation creep is restricted primarily to a climb of a/2 dislocations on 100 planes. Effect of these results on irradiation creep modeling and deformation induced irradiation growth is considered

  15. Synthesis of poly (acrylamide-co-metacrylic acid) hydrogels By means of gamma irradiation techniques: influence of Absorbed dose on the swelling process

    International Nuclear Information System (INIS)

    Rapado, Manuel; Altanes, Sonia; Sainz, Dianelys; Prado, Stalina

    1999-01-01

    In this report gamma radiation techniques were performed a double function of proceeding the processes of polymerization and crosslinking with the advantage of avoid the uses of chemicals crosslinks. The influence of absorbed dose on the swelling ratio as a function of pH have been presented. For these hydrogels, swelling studies indicated that swelling decrease with the increase of the absorbed dose from 10 to 50 kGy. It was confirmed that at the firsts stages (100-150 min) the diffusion studies were in accordance with Fickian behavior and the diffusion coefficients were obtained, whereas the latest stages were in good agreement with second-order diffusion kinetics proposed by Schott 1 .These news hydrogels exhibit a higher degree of swelling, a factor that, a priori, assures high biocompatibility because it increases the similarity with living tissues

  16. Swelling pressure induced phase-volume transition in hybrid biopolymer gels caused by unfolding of folded crosslinks: A model

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková, Miroslava; Ilavský, Michal; Steward, R.; Kopeček, J.

    2003-01-01

    Roč. 4, č. 6 (2003), s. 1818-1826 ISSN 1525-7797 R&D Projects: GA AV ČR KSK4050111 Keywords : thermodynamic model * swelling transitions * hybrid gels Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.824, year: 2003

  17. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    Science.gov (United States)

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  18. Effect of temperature changes on swelling and creep of AISI 316

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.; Gelles, D.S.; Foster, J.P.

    1980-04-01

    A number of previous publications have shown that the swelling of cold-worked AISI 316 is quite sensitive to changes in temperature which occur during irradiation. In this report those data are expanded and reanalyzed to show that the concurrent irradiation creep is also quite sensitive to changes in irradiation temperature. An explanation is advanced to explain this behavior in terms of the sensitivity to temperture history of the radiation-induced microchemical evolution of this steel. In particular, the sensitivity to temperature history of the radiation-stabilized gamma prime phase is invoked to explain the enhanced creep and swelling behavior of AISI 316 components which experienced either gradual or abrupt decreases in temperature. The phase development observed in this steel in response to temperature changes during irradiation is also compared to the similar behavior found in aged specimens subjected to isothermal irradiation

  19. Effect of metallurgical variables on void swelling

    International Nuclear Information System (INIS)

    Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.

    1976-01-01

    The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment

  20. Bilateral streptococcal corneoscleritis complicating β irradiation induced scleral necrosis

    International Nuclear Information System (INIS)

    Moriarty, A.P.; Crawford, G.J.; McAllister, I.L.; Constable, I.J.

    1993-01-01

    Bacterial corneoscleritis may complicate scleral necrosis induced by β irradiation following pterygium removal. Previous cases have been unilateral. The authors report a case of severe bilateral corneoscleritis caused by Streptococcus pneumoniae. (author)

  1. Pathogenesis of irradiation-induced cognitive dysfunction

    International Nuclear Information System (INIS)

    Abayomi, O.K.

    1996-01-01

    Neurocognitive dysfunction is a common sequela of cranial irradiation that is especially severe in young children. The underlying mechanisms of this disorder have not been described. The present review describes the role of the hippocampus and the anatomically related cortex in memory function and its marked susceptibility to ischemic and hypoxic injury. Based on studies of animal models of human amnesia and histopathological findings in the irradiated brain, the neurocognitive sequela of cranial irradiation can be seen to be mediated through vascular injury, resulting in ischemia and hypoxia in the hippocampal region. Recognition of the site and mechanisms of this injury may lead to the development of techniques to minimize the risks. (orig.)

  2. Pathogenesis of irradiation-induced cognitive dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Abayomi, O.K. [Howard Univ. Hospital, Washington, DC (United States). Dept. of Radiation Oncology

    1996-12-31

    Neurocognitive dysfunction is a common sequela of cranial irradiation that is especially severe in young children. The underlying mechanisms of this disorder have not been described. The present review describes the role of the hippocampus and the anatomically related cortex in memory function and its marked susceptibility to ischemic and hypoxic injury. Based on studies of animal models of human amnesia and histopathological findings in the irradiated brain, the neurocognitive sequela of cranial irradiation can be seen to be mediated through vascular injury, resulting in ischemia and hypoxia in the hippocampal region. Recognition of the site and mechanisms of this injury may lead to the development of techniques to minimize the risks. (orig.).

  3. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  4. Polymerization of sodium methacrylate induced by irradiation

    International Nuclear Information System (INIS)

    Galvan S, A.

    1998-01-01

    This work has two objectives, first: it is pretended to localize the lines of carbon links in its IR spectra, and second: following the polymerization of sodium methacrylate according to that it is irradiated with gamma rays. (Author)

  5. Structural changes induced by electron irradiation

    International Nuclear Information System (INIS)

    Koike, J.; Pedraza, D.F.

    1993-01-01

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300 kV electrons. Transmission electron microscopy and electron energy loss spectroscopy were employed to study the structural changes produced by irradiation. The occurrence of a continuous ring intensity in the selected area diffraction (SAD) pattern obtained on a specimen irradiated with the electron beam parallel to the c-crystallographic axis indicated that microstructural changes had occurred. However, from the SAD pattern obtained for the specimens tilted relative to the irradiation direction, it was found that up to a fluence of 1.1x10 27 e/m 2 graphite remained crystalline. An SAD pattern of a specimen irradiated with the electron beam perpendicular to the c-axis confirmed the persistence of crystalline order. High resolution electron microscopy showed that ordering along the c-axis direction remained. A density reduction of 8.9% due to irradiation was determined from the plasmon frequency shift. A qualitative model is proposed to explain these observations. A new determination of the threshold displacement energy, Ed, of carbon atoms in graphite was done by examining the appearance of a continuous ring in the SAD pattern at various electron energies. A value of 30 eV was obtained whether the incident electron beam was parallel or perpendicular to the c-axis, demonstrating that Ed is independent of the displacement direction

  6. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    International Nuclear Information System (INIS)

    Rappaport, D.S.

    1977-01-01

    This study was conducted to determine what, if any, influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. The EAG was induced by immunization with B. pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Rats were either immunized, sham-immunized, irradiated (1500 R to right kidney temporarily exteriorized), sham-irradiated, or both immunized and irradiated. Immunized-irradiated animals were irradiated either 4 or 2 weeks prior to, concurrently with, or 1 or 2 weeks after immunization, and were sacrificed at 2, 4, 6, 10, or 14 weeks post-immunization. Immunized-only and sham-immunized-only animals were sacrificed at corresponding post-immunization times, and irradiated-only and sham-irradiated-only animals were sacrificed at corresponding post-irradiation times. Progressive arteriolonephrosclerosis (ANA) was observed in right (irradiated) kidneys following x irradiation. The experimental autoallergic glomerulonephritis (EAG) was observed in both kidneys following immunization. The histopathological changes associated with EAG were distinct from those associated with ANS

  7. Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration

    Science.gov (United States)

    Longo, Gabriel S.; Olvera de la Cruz, Monica; Szleifer, I.

    2014-09-01

    We use a molecular theory to study the thermodynamics of a weak-polyacid hydrogel film that is chemically grafted to a solid surface. We investigate the response of the material to changes in the pH and salt concentration of the buffer solution. Our results show that the pH-triggered swelling of the hydrogel film has a non-monotonic dependence on the acidity of the bath solution. At most salt concentrations, the thickness of the hydrogel film presents a maximum when the pH of the solution is increased from acidic values. The quantitative details of such swelling behavior, which is not observed when the film is physically deposited on the surface, depend on the molecular architecture of the polymer network. This swelling-deswelling transition is the consequence of the complex interplay between the chemical free energy (acid-base equilibrium), the electrostatic repulsions between charged monomers, which are both modulated by the absorption of ions, and the ability of the polymer network to regulate charge and control its volume (molecular organization). In the absence of such competition, for example, for high salt concentrations, the film swells monotonically with increasing pH. A deswelling-swelling transition is similarly predicted as a function of the salt concentration at intermediate pH values. This reentrant behavior, which is due to the coupling between charge regulation and the two opposing effects triggered by salt concentration (screening electrostatic interactions and charging/discharging the acid groups), is similar to that found in end-grafted weak polyelectrolyte layers. Understanding how to control the response of the material to different stimuli, in terms of its molecular structure and local chemical composition, can help the targeted design of applications with extended functionality. We describe the response of the material to an applied pressure and an electric potential. We present profiles that outline the local chemical composition of the

  8. Electron irradiation-induced defects in {beta}-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro [Osaka Prefectural Univ., Sakai (Japan). Reseach Inst. for Advanced Science and Technology

    1996-04-01

    To add information of point defects in cubic crystal SiC, polycrystal {beta}-SiC on the market was used as sample and irradiated by neutron and electron. In situ observation of neutron and electron irradiation-induced defects in {beta}-SiC were carried out by ultra high-voltage electronic microscope (UHVEM) and ordinary electronic microscope. The obtained results show that the electron irradiation-induced secondary defects are micro defects less than 20 nm at about 1273K, the density of defects is from 2x10{sup 17} to 1x10{sup 18}/cc, the secondary defects may be hole type at high temperature and the preexistant defects control nuclear formation of irradiation-induced defects, effective sink. (S.Y.)

  9. Estimation of γ irradiation induced genetic damage by Ames test

    International Nuclear Information System (INIS)

    Hosoda, Eiko

    1999-01-01

    Mutation by 60 Co γ irradiation was studied in five different histidine-requiring auxotrophs of Salmonella typhimurium. The strains TA98 (sensitive to frameshift) and TA100 (sensitive to base-pair substitution) were irradiated (10-84 Gy and 45-317 Gy, respectively) and revertants were counted. TA98 exhibited radiation-induced revertants, 2.8 fold of spontaneous revertants, although no significant increase was detected in TA100. Then, three other frameshift-sensitive strains TA1537, TA1538 and TA94 were irradiated in a dose of 61-167 Gy. Only in TA94, revertants increased 3.5 fold. Since spontaneous revertants are known to be independent of cell density, a decrease of bacterial number by γ irradiation was confirmed not to affect the induced revertants by dilution test. Thus the standard Ames Salmonella assay identified γ irradiation was confirmed not to affect the induced revertants by dilution test. Thus the standard Ames Salmonella assay identified γ irradiation as a mutagenetic agent. The mutagenicity of dinitropyrene, a mutagen widely existing in food, and dismutagenicity of boiling water insoluble fraction of Hizikia fusiforme, edible marine alga, were tested on γ induced revertant formation in TA98 and TA94. Dinitropyrene synergistically increased γ induced revertants and Hizikia insoluble fraction reduced the synergistic effect of dinitropyrene dependently on the concentration. (author)

  10. Survivin and chromosome instability induced by X-irradiation

    International Nuclear Information System (INIS)

    Shen Bo; Ju Guizhi; Liu Yang

    2006-01-01

    Objective: To explore the biological effect of survivin on chromosome instability induced by X-ray irradiation. Methods: Immunocytochemistry was used to detect the expression of sutvivin in HeLa cells. Carrier pSUPER-SVV was transfected into HeLa cells to interfere the expression of survivin. Flow cytometry assay was applied to detect the occurrence of polyploid at 0 h, 4 h, 12 h, and 48 h after the HeLa cells transfected with pSUPER-SVV and irradiated with 4 Gy X-rays irradiation, and compared with the group irradiated with 4 Gy X-rays but no transfection. Results: The expression of survivin was down-regulated by transfecting with small hair RNA, its depression rate was estimated to be about 32.16% at 48 h after transfection. The occurrence of polyploid giant cells was higher in the 4 Gy X-ray irradiated group at 48 h after the irradiation than the control groups (P<0.001). Being expression of survivin interfered, the occurrence at 12 h or 48 h after irradiation, however, was about two times higher than that in the control group. Conclusion: X-ray irradiation can induce chromosome instability in HeLa cells and the effect could be enhanced by interfering the expression of surviving. It was suggested that survivin plays an important role in maintaining the stability of chromosome. (authors)

  11. Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Inui, Shoki; Minami, Kazumasa; Ito, Emiko; Imaizumi, Hiromasa; Mori, Seiji; Koizumi, Masahiko; Fukushima, Satsuki; Miyagawa, Shigeru; Sawa, Yoshiki; Matsuura, Nariaki

    2017-01-01

    Induced pluripotent stem (iPS) cells have demonstrated they can undergo self-renewal, attain pluripotency, and differentiate into various types of functional cells. In clinical transplantation of iPS cells, however, a major problem is the prevention of tumorigenesis. We speculated that tumor formation could be inhibited by means of irradiation. Since the main purpose of this study was to explore the prevention of tumor formation in human iPS (hiPS) cells, we tested the effects of irradiation on tumor-associated factors such as radiosensitivity, pluripotency and cell death in hiPS cells. The irradiated hiPS cells showed much higher radiosensitivity, because the survival fraction of hiPS cells irradiated with 2 Gy was < 10%, and there was no change of pluripotency. Irradiation with 2 and 4 Gy caused substantial cell death, which was mostly the result of apoptosis. Irradiation with 2 Gy was detrimental enough to cause loss of proliferation capability and trigger substantial cell death in vitro. The hiPS cells irradiated with 2 Gy were injected into NOG mice (NOD/Shi-scid, IL-2 Rγnull) for the analysis of tumor formation. The group of mice into which hiPS cells irradiated with 2 Gy was transplanted showed significant suppression of tumor formation in comparison with that of the group into which non-irradiated hiPS cells were transplanted. It can be presumed that this diminished rate of tumor formation was due to loss of proliferation and cell death caused by irradiation. Our findings suggest that tumor formation following cell therapy or organ transplantation induced by hiPS cells may be prevented by irradiation.

  12. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Cui Fengmei; Zhao Jingyong; Hong Chengjiao; Lao Qinhua; Wang Liuyi; Yang Shuqin

    2004-01-01

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  13. Comparison of 4.2 MeV Fe+ and 46.5 MeV Ni6+ ion irradiation for the study of void swelling

    International Nuclear Information System (INIS)

    Blamires, N.G.; Worth, J.H.

    1975-11-01

    Void formation in pure nickel and 316 steel containing 10 ppm He has been studied using 4.2 MeV Fe+ ions from the Harwell Van de Graaff accelerator. The dose dependence of swelling in nickel at 525degC and the dose and temperature dependence of swelling in 316 steel is reported. The results are compared with those of other workers, especially those sup(13,14) using 46.5 MeV Ni 6+ ions. In general, there is good agment, except for a marked decrease in swelling of 316 steel at 650degC and 700degC compared with the Ni 6+ bombardment. The reason for this is thought to result from the restricted width of the damaged region in the low energy case which at the high temperatures is comparable with the inter-void spacing. Anomalous void distributions adjacent to grain boundaries are reported and are probably caused by grain boundary movement. Denuded zones at grain boundaries in 316 steel vary in width from approximatly 1300A at 450degC to approximatly 8800A at 700degC. The region adjacent to the surface of the nickel specimens exhibits an abnormally high swelling. Possible explanations are suggested

  14. The spreading of focal brain edema induced by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ferszt, R.; Neu, S.; Cervos-Navarro, J.; Sperner, J.

    1978-01-01

    Focal brain edema limited to one cerebral hemisphere was produced by ultraviolet irradiation of the exposed cortex. Tissue water content was determined by the gravimetric method which allows microsampling. Therefore, the spread of edema around the small necrotic area be mapped more precisely than by determination of dry weight which calls for larger samples. As early as 30 min after irradiation, hyperemia and swelling of the brain are observed under the operating microscope. This correlates with venous stasis, hyperemia, and broadened perivascular spaces around venules and large capillaries accompanied by a marked rise in the specific weigth of the tissue. After 4h an edema front can be observed spreading from the perinerotic zone in which there is a marked rise in endothelial cell vesicular activity. Edema reaches maximum levels in the deep white matter at 48h post irradiation with normalisation of the tissue water content after 96h. The velocity at which the edema front spreads from the cortex to the periventricular area lies in the range of 0.25mm/h. Edema reabsorption coincides with signs of retrograde micropinocytosis in endothelial cells. (orig./AJ) [de

  15. Gamma irradiation induced effects of butyl rubber based damping material

    Science.gov (United States)

    Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong

    2018-04-01

    The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.

  16. Spreading of focal brain edema induced by ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferszt, R; Neu, S; Cervos-Navarro, J; Sperner, J [Freie Univ. Berlin (Germany, F.R.). Inst. fuer Neuropathologie

    1978-01-01

    Focal brain edema limited to one cerebral hemisphere was produced by ultraviolet irradiation of the exposed cortex. Tissue water content was determined by the gravimetric method which allows microsampling. Therefore, the spread of edema around the small necrotic area be mapped more precisely than by determination of dry weight which calls for larger samples. As early as 30 min after irradiation, hyperemia and swelling of the brain are observed under the operating microscope. This correlates with venous stasis, hyperemia, and broadened perivascular spaces around venules and large capillaries accompanied by a marked rise in the specific weigth of the tissue. After 4h an edema front can be observed spreading from the perinerotic zone in which there is a marked rise in endothelial cell vesicular activity. Edema reaches maximum levels in the deep white matter at 48h post irradiation with normalisation of the tissue water content after 96h. The velocity at which the edema front spreads from the cortex to the periventricular area lies in the range of 0.25mm/h. Edema reabsorption coincides with signs of retrograde micropinocytosis in endothelial cells.

  17. Pregnancy complicating irradiation-induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Bakri, Younes N.; Martan, Ahmed; Amri, Aladin (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Obstetrics and Gynecology); Amri, M. (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Cardiovascular Diseases)

    1992-01-01

    A case is reported of a 24 year-old primigravida who had severe effusive constrictive pericarditis secondary to mediastinal irradiation following chemotherapy for Hodgkins disease. Pregnancy was threatened by serious maternal cardiovascular complications and a non-viable fetus was born spontaneously and prematurely. Patient was completely asymptomatic before pregnancy. (au).

  18. Reassessment of the swelling behavior of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Porter, D.L.

    1982-03-01

    Published swelling data derived from EBR-II irradiations of AISI 304 and 304L have been reanalyzed in light of insights gained from irradiation of AISI 316 and Fe-15Cr-25Ni. The primary influence of temperature, displacement rate and compositional variations in the 300 series stainless steels lies in the duration of the transient regime of swelling and not in the steady-state or constant swelling rate regime

  19. Characterization of irradiation induced deep and shallow impurities

    Science.gov (United States)

    Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-12-01

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.

  20. Characterization of irradiation induced deep and shallow impurities

    Energy Technology Data Exchange (ETDEWEB)

    Treberspurg, Wolfgang, E-mail: wolfgang.treberspurg@oeaw.ac.at; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-12-21

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.

  1. Characterization of irradiation induced deep and shallow impurities

    International Nuclear Information System (INIS)

    Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-01-01

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other

  2. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  3. Effect of irradiation on analgesia induced by morphine and endorphin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Lee, Byoung Hun; Hyun, Soung Hee; Chung, Ki Myung [KAERI, Daejeon (Korea, Republic of)

    2003-07-01

    Morphine and endorphin administered intracerebroventricularly (i.c.v.) produce analgesia by activating different descending pain inhibitory systems. Gamma irradiation attenuates the acute analgesic action of i.c.v. injected morphine in mice. This study was done to investigate the effect of-irradiation on the analgesia produced by i.c.v. injected morphine and endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a {sup 60}Co source and the analgesic effects were tested 5, 30, 60, 90 and 180 min after irradiation using the acetic acid-induced writhing test. The analgesic effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for analgesia produced by i.c.v. administration of morphine or endorphin. Irradiation significantly potentiated the analgesia produced by endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results support the hypothesis that morphine and endorphin administered supraspinally produce antinocieception by different neuronal mechanisms.

  4. Effect of irradiation on analgesia induced by morphine and endorphin

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Byoung Hun; Hyun, Soung Hee; Chung, Ki Myung

    2003-01-01

    Morphine and endorphin administered intracerebroventricularly (i.c.v.) produce analgesia by activating different descending pain inhibitory systems. Gamma irradiation attenuates the acute analgesic action of i.c.v. injected morphine in mice. This study was done to investigate the effect of-irradiation on the analgesia produced by i.c.v. injected morphine and endorphin in male ICR mice. In one group, mice were exposed to whole-body irradiation at a dose of 5 Gy from a 60 Co source and the analgesic effects were tested 5, 30, 60, 90 and 180 min after irradiation using the acetic acid-induced writhing test. The analgesic effect was produced time-dependently and reached its maximum at 90 min after irradiation. Thus, time was fixed in the following studies. In another group, mice were irradiated with 5 Gy and tested 90 minutes later for analgesia produced by i.c.v. administration of morphine or endorphin. Irradiation significantly potentiated the analgesia produced by endorphin. However, the antinociception produced by morphine was not affected by irradiation. These results support the hypothesis that morphine and endorphin administered supraspinally produce antinocieception by different neuronal mechanisms

  5. Radiation-induced aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1993-02-01

    The experimental program is designed to reveal details of the metamict (amorphization, or crystal-to-glass) transformation in irradiated ceramics (silica compounds, less-connected lead phosphates). The silica compounds were amorphized using electrons, neutrons, and ions, while the phosphates were amorphized using ions (primarily) and neutrons. Energy-filtered electron microdiffraction, high-resoltuion transmission electron microscopy, and high-performance liquid-phase chromatography are being used

  6. Study of irradiation induced defects in silicon

    International Nuclear Information System (INIS)

    Pal, Gayatri; Sebastian, K.C.; Somayajulu, D.R.S.; Chintalapudi, S.N.

    2000-01-01

    Pure high resistivity (6000 ohm-cm) silicon wafers were recoil implanted with 1.8 MeV 111 In ions. As-irradiated wafers showed a 13 MHz quadrupole interaction frequency, which was not observed earlier. The annealing behaviour of these defects in the implanted wafers was studied between room temperature and 1073 K. At different annealing temperatures two more interaction frequencies corresponding to defect complexes D2 and D3 are observed. Even though the experimental conditions were different, these are identical to the earlier reported ones. Based on an empirical point charge model calculation, an attempt is made to identify the configuration of these defect complexes. (author)

  7. Gamma irradiation induced variabilities in Canavalia virosa

    International Nuclear Information System (INIS)

    Rodrigues, B.F.

    1993-01-01

    Dry seeds of Canavalia virosa were treated with seven different doses viz., 4,8,12,16,24,32 and 36 Krad of gamma irradiation. Percent germination increased in 4 and 8 Krad treatment, while, a gradual decrease was observed from 12 to 32 Krad treatments. Seedling measurements taken at the end of 15 days showed increase in 4 and 8 Krad over control, while 12 to 32 Krad treatments showed gradual decrease, plants treated with 4 Krad showed maximum survival percentage at maturity, while a gradual decrease was observed in 12 to 32 Krad treated plants. The treatment of 36 Krad was lethal. (author). 6 refs., 2 tabs

  8. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  9. A history of study on safety of irradiated foods (3). Induced radioactivity in irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto

    2006-01-01

    Food irradiation can induce a small amount of radioactivity in the foods. The principal mechanisms of the nuclear reactions are (n, γ), (γ, n), (γ, γ'). The resulting nuclear products were found in irradiated foods were Na-24, P-32, Ca-45, C-11, N-13, and O-15 in the food irradiated by 24 MeV electron beam. The total radioactivity is less than 1/1000 of those of K-40 in the case of electron beams below 10 MeV or X rays below 5 MeV. Package materials affected neutron flux in the foods and enhanced the radioactivity. Electron beam machine produces neutrons and increases the flux in food. IAEA recommend to reduce neutron production in the facility. The safety of irradiated food in the radioactivity field still needs more progress. (author)

  10. Branch formation induced by microbeam irradiation of Adiantum protonemata

    International Nuclear Information System (INIS)

    Wada, M.

    1998-01-01

    Branches were induced in centrifuged Adiantum protonemal cells by partial irradiation with polarized red light. Nuclear behavior and microtubule pattern change during branch formation were investigated. A branch formed at any part where a red microbeam was focused along a long apical cell. The nucleus moved towards the irradiated area and remained there until a branch developed. The pattern of microtubules changed from parallel to oblique at the irradiated area and then a transverse arrangement of microtubules appeared on both sides of the area. It appeared as if the nucleus was suspended between two microtubule rings. This nuclear behavior and the changes in microtubule pattern were different from those observed during branch formation under whole cell irradiation. From the results of this work we suggest that there is an importance for precise control of experimental conditions

  11. Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Mohammed Mohammed; Möbus, Günter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2016-03-15

    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.

  12. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  13. Irradiation deformation due to SIPA induced dislocation anisotropy

    International Nuclear Information System (INIS)

    Woo, CH.

    1980-02-01

    A contribution to irradiation deformation resulting from the stress-induced preferred adsorption (SIPA) effect is considered. SIPA causes a variation of the growth rates of irradiation-generated dislocation loops, according to the alignment of their Burgers vectors with respect to the applied stress. A prolinged period under an applied stress then creates an anisotropic dislocation structure in which the majority of dislocations have their Burgers vectors in alignment with the stress. In the presence of 'neutral' sinks, the resulting anisotropic dislocation structure causes plastic deformation similar to the way in which irradiation growth occurs in zirconium. This mechanism is called SIPA-induced growth (SIG). We have shown that SIG is very significant in comparison to SIPA, except when little or no loop growth has occurred during the period the stress is applied. This report contains the detailed formulation and derivation of the formulae for the evaluation of the contribution due to SIG. (auth)

  14. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  15. Irradiation-induced tumours of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Aanesen, J P; Olofsson, J [Linkoepings Hoegskola (Sweden)

    1979-09-01

    Though irradiation-induced tumours are uncommon, they represent a well defined entity. At this Hospital, 14 irradiation-induced head and neck tumours were encountered in 11 patients over a 10-year period. The irradiation had been given for tuberculous lymphadenitis in 6 of the patients, for lupus vulgaris in one, and thyrotoxicosis in another; the other 3 patients had received radiotherapy for malignant tumours. The interval between the treatment and the diagnosis of the tumour disease ranged from 9 to 48 years (mean 32). Three of the patients had multiple tumours. In view of the risk of cancer-albeit a small one-associated with radiological diagnosis and radiotherapy, these should be performed only on strict indications, expecially in young patients.

  16. Gastroprotective effect of kefir on ulcer induced in irradiated rats.

    Science.gov (United States)

    Fahmy, Hanan A; Ismail, Amel F M

    2015-03-01

    The current study was designed to investigate the protective effect of kefir milk on ethanol-induced gastric ulcers in γ-irradiated rats. The results of the present study revealed that treatment with γ-irradiation and/or ethanol showed a significant increase in ulcers number, total acidity, peptic, H(+)K(+)ATPase, MMP-2 and MMP-9 activities and MDA level, which were accompanied by a significant decrease in the mucus content, the stomach GSH level, the GSH-Px activity and DNA damage. Pre-treatment with kefir milk exert significant improvement in all the tested parameters. Kefir milk exerts comparable effect to that of the antiulcer drug ranitidine. In conclusion, the present study revealed that oral administration of kefir milk prevents ethanol-induced gastric ulcer in γ-irradiated rats that could attribute to its antioxidant, anti-apoptotic and radio-protective activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Vulcanization of polybutadiene latex induced by 60Co γ-rays irradiation

    International Nuclear Information System (INIS)

    Liu Yuguang; Huang Yudong; Hou Jing; Gao Deyu; Zhang Xuequan

    2007-01-01

    Fully vulcanized polybutadiene rubber particles (FVBR) were prepared by polybutadiene latex (PBL) vulcanization induced by 60 Co γ-rays irradiation, and the effect of absorbed dose on crosslinking behavior was studied. Mean diameter, diameter distribution and morphology of the particles in the PBL irradiated at different doses as well as in the FVBR were characterized by laser particle analyzer and AFM. The crosslinking effect on the mechanical properties of the films, by casting from PBL at different doses correspondingly, was evaluated by mechanical and dynamic mechanical analysis (DMA) respectively. The results showed that the diameter and swelling property decreased with absorbed dose, while crosslink density and gel fraction increased. Moreover, the decrease of the tensile strength and elongation at break, the increase of the hardness in shore A and young's modulus (E), and the increase of storage modulus (E') and narrowing of loss tangent peak (Tan 8) were all accounted for the increment of crosslinking. The Charlesby-Pinner equation fits well with the PBL vulcanization in the range of absorbed doses from 0 to 200kGy. (authors)

  18. Five cases of squamous cell carcinoma induced by irradiation

    International Nuclear Information System (INIS)

    Omoto, Kayo; Tani, Tasaburo; Nagata, Hiroyuki; Kohda, Mamoru; Ueki, Hiroaki

    1985-01-01

    Five cases of squamous cell carcinoma (skin) induced by irradiation are reported. Three cases had been given radiotherapy for benign skin disorders, tinea pedis, lichen Vidal, and dermatitis papillaris capillitis. The other two cases were medical doctors who had developed carcinoma as the result of advanced radiodermatitis. (author)

  19. The Effect of Irradiation on the Structure of Vasculature Experimentally Induced Rat Salivary Gland Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyo Shick [Dept. of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1990-02-15

    The aim of this study is to evaluate the microvascular alterations in salivary gland carcinoma after irradiations. Salivary gland carcinoma was induced in rats by inoculation of several amount of 7,12-dimethylbenzan thracene powder 2.5 mg, 5.0 mg and 7.5 mg respectively into rat submandibular gland. Microangiography was performed by taking soft x-ray with barium infusions, and by indian ink perfusion technique. The tumors were given a single dose of 20 Gy (to obtain comparatively low grade irradiation dose for isoeffect of dry desquamation of skin to enable the observation of the vascular changes of the tumor 39) using LINAC 4 MeV Mitsubishi unit with field size of 3 X 3 cm at 80 SSD. The dose rate was 2.5 Gy per minute. The microangiography was performed prior to irradiation and at one, two, and weeks after irradiation. The results are as follows: 1. The carcinoma was produced in all rats (100%) between 7 to 11 weeks, the amount of carcinogen was not always in proportion to the development of carcinogenesis, and the most appropriate group for the experiment was 5.0 mg inoculated one. 2. The course of the experimental carcinogensis was initiated by ductal proliferation and squamous metaplasia of ductal epithelium which was later transformed into keratocyst, and finally turned into squamous cell carcinoma. 3. Before irradiation, the basic vasculature consisted of peripheral vascular pattern with central penetrating vessels. The peripheral vascular pattern was always richer than that of the center. Irregular and tortuous vessels stretched from the periphery into the center of the tumor mass. 4. In an early stage following irradiation, an increase in the number of smaller, tortuous vessels and decreased intervascular distances were observed in the central portions of tumor nest mass. 5. Later changes of microvasculature after irradiation are increase in tortuousity, irregularity, narrowing, abrupt tapering, fragmentation, and extravasation. These findings progressed

  20. The Effect of Irradiation on the Structure of Vasculature Experimentally Induced Rat Salivary Gland Carcinoma

    International Nuclear Information System (INIS)

    Kang, Hyo Shick

    1990-01-01

    The aim of this study is to evaluate the microvascular alterations in salivary gland carcinoma after irradiations. Salivary gland carcinoma was induced in rats by inoculation of several amount of 7,12-dimethylbenzan thracene powder 2.5 mg, 5.0 mg and 7.5 mg respectively into rat submandibular gland. Microangiography was performed by taking soft x-ray with barium infusions, and by indian ink perfusion technique. The tumors were given a single dose of 20 Gy (to obtain comparatively low grade irradiation dose for isoeffect of dry desquamation of skin to enable the observation of the vascular changes of the tumor 39) using LINAC 4 MeV Mitsubishi unit with field size of 3 X 3 cm at 80 SSD. The dose rate was 2.5 Gy per minute. The microangiography was performed prior to irradiation and at one, two, and weeks after irradiation. The results are as follows: 1. The carcinoma was produced in all rats (100%) between 7 to 11 weeks, the amount of carcinogen was not always in proportion to the development of carcinogenesis, and the most appropriate group for the experiment was 5.0 mg inoculated one. 2. The course of the experimental carcinogensis was initiated by ductal proliferation and squamous metaplasia of ductal epithelium which was later transformed into keratocyst, and finally turned into squamous cell carcinoma. 3. Before irradiation, the basic vasculature consisted of peripheral vascular pattern with central penetrating vessels. The peripheral vascular pattern was always richer than that of the center. Irregular and tortuous vessels stretched from the periphery into the center of the tumor mass. 4. In an early stage following irradiation, an increase in the number of smaller, tortuous vessels and decreased intervascular distances were observed in the central portions of tumor nest mass. 5. Later changes of microvasculature after irradiation are increase in tortuousity, irregularity, narrowing, abrupt tapering, fragmentation, and extravasation. These findings progressed

  1. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    International Nuclear Information System (INIS)

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  2. Ca2+-mediated potentiation of the swelling-induced taurine efflux from HeLa cells: On the role of calmodulin and novel protein kinase C isoforms

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Lambert, Ian H.

    2004-01-01

    The present work sets out to investigate how Ca2+ regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca2+-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation...... of the release pathway. The accelerated inactivation is not observed in hypotonic Ca2+-free or high-K+ media. Addition of Ca2+-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca2+-activated K+ channels. The taurine release from control cells and cells...... exposed to Ca2+ agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca2+-augmented taurine release. Exposure to Ca2+-mobilizing agonists prior to a hypotonic challenge also augments...

  3. Damage induced in semiconductors by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Levalois, M.; Marie, P.

    1999-01-01

    The behaviour of semiconductors under swift heavy ion irradiation is different from that of metals or insulators: no spectacular effect induced by the inelastic energy loss has been reported in these materials. We present here a review of irradiation effects in the usual semiconductors (silicon, germanium and gallium arsenide). The damage is investigated by means of electrical measurements. The usual mechanisms of point defect creation can account for the experimental results. Besides, some results obtained on the wide gap semiconductor silicon carbide are reported. Concerning the irradiation effects induced by heavy ions in particle detectors, based on silicon substrate, we show that the deterioration of the detector performances can be explained from the knowledge of the substrate properties which are strongly perturbed after high doses of irradiation. Finally, some future ways of investigation are proposed. The silicon substrate is a good example to compare the irradiation effects with different particles such as electrons, neutrons and heavy ions. It is then necessary to use parameters which account for the local energy deposition, in order to describe the damage in the material

  4. Irradiation induced precipitation in tungsten based, W-Re alloys

    Science.gov (United States)

    Williams, R. K.; Wiffen, F. W.; Bentley, J.; Stiegler, J. O.

    1983-03-01

    Tungsten-base alloys containing 5, 11, and 25 pct Re were irradiated in the EBR-II reactor. Irradiation temperatures ranged from 600 to 1500 °C. All compositions were irradiated to fluences in the range 4.3 to 6.1 X 1025 n/m2 (E > 0.1 MeV), and three 25 pct Re samples were also irradiated to 3.7 X 1026 n/m2 at temperatures 700 to 900 °C. Postirradiation examination included measurement of electrical resistivity at room temperature and lower temperatures, X-ray diffraction, optical metallography, microprobe analysis, and transmission electron microscopy. Irradiation induced resistivity decreases observed in most of the samples suggested second-phase precipitation. Complete results confirmed the precipitate formation in all samples, in disagreement with existing phase diagrams for the W-Re system. Electron diffraction showed the precipitates to be consistent with the cubic, Re-rich X-phase and inconsistent with the σ-phase. Large variations in precipitate morphology and distribution were observed between the different compositions and irradiation conditions. For the 5 and 11 pct Re-alloys, spherically symmetric strain fields surrounded the equiaxed precipitate particles, and were observed even where no particles were visible. These strain fields are believed to arise from local Re enrichment. Thermoelectric data show that the precipitation can lead to decalibration of W/Re thermocouples.

  5. Investigations of Atomic Transport Induced by Heavy Ion Irradiation

    Science.gov (United States)

    Banwell, Thomas Clyde

    The mechanisms of atomic transport induced by ion irradiation generally fall into the categories of anisotropic or isotropic processes. Typical examples of these are recoil implantation and cascade mixing, respectively. We have measured the interaction of these processes in the mixing of Ti/SiO(,2)/Si, Cr/SiO(,2)/Si and Ni/SiO(,2)/Si multi-layers irradiated with Xe at fluences of 0.01 - 10 x 10('15)cm('-2). The fluence dependence of net metal transport into the underlying layers was measured with different thicknesses of SiO(,2) and different sample temperatures during irradiation (-196 to 500C). There is a linear dependence at low fluences. At high fluences, a square-root behavior predominates. For thin SiO(,2) layers (primary recoils is quite pronounced since the gross mixing is small. A significant correlation exists between the mixing and the energy deposited through elastic collisions F(,D ). Several models are examined in an attempt to describe the transport process in Ni/SiO(,2). It is likely that injection of Ni by secondary recoil implantation is primarily responsible for getting Ni into the SiO(,2). Secondary recoil injection is thought to scale with F(,D). Trends in the mixing rates indicate that the dominant mechanism for Ti and Cr could be the same as for Ni. The processes of atomic transport and phase formation clearly fail to be separable at higher temperatures. A positive correlation with chemical reactivity emerges at higher irradiation temperatures. The temperature at which rapid mixing occurs is not much below that for spontaneous thermal reaction. Less Ni is retained in the SiO(,2) at high irradiation temperatures. Ni incorporated in the SiO(,2) by low temperature irradiation is not expelled during a consecutive high temperature irradiation. The Ni remains trapped within larger clusters during a sequential 500C irradiation. (Abstract shortened with permission of author.).

  6. Analysis of radicals induced in irradiated cereal flour using ESR

    International Nuclear Information System (INIS)

    Kawamura, Shoei; Kishita, Keigo; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko

    2013-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed radicals induced in cereal flour irradiated with gamma-ray or electron beam. Sample was wheat and rice. We detected a broad singlet signal at g = 2.0. It consists of a singlet signal and a triplet signal. It suggested that the singlet signal is originated from organic free radicals and the triplet signal is from 14 N. There were no differences of ESR spectra between irradiated wheat flour and rice flour. The signal intensity of radiation induced radical was tend to increase following with the increase of radiation dose level. After radiation treatment, relaxation time of radiation induced radical was changed during storage. T 1 was decreased and T 2 was increased. In this study, the relaxation time is calculated using the parameters obtained from the ESR signal. It is necessary to analyze the relaxation time directly with pulsed ESR spectroscopy in future. (author)

  7. SHI induced irradiation effect on Mo/Si interface

    International Nuclear Information System (INIS)

    Agarwal, Garima; Agarwal, Shivani; Jain, Rajkumar; Lal, Chhagan; Jain, I.P.; Kabiraj, D.; Pandey, Akhilesh

    2006-01-01

    Present parametric study investigates the characteristics of SHI induced mixed molybdenum silicide film with various ion fluences. The deposition of molybdenum thin films onto the Silicon substrate was performed using e-beam evaporation, while the heavy Au ion irradiation with energy 120 MeV was subsequently applied to form molybdenum silicide. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) for the identification of phase formation at the interface. Formation of t-Mo 5 Si 3 mixed molybdenum silicide was observed on increasing the ion irradiation fluences. (author)

  8. Side Effects: Edema (Swelling)

    Science.gov (United States)

    Edema is a condition in which fluid builds up in your body’s tissues. The swelling may be caused by chemotherapy, cancer, and conditions not related to cancer. Learn about signs of edema, including swelling in your feet, ankles, and legs.

  9. Radiation swelling diagram of chromium-nickel austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gol' tsev, V.P.; Bulyga, V.V.

    1983-01-01

    The diagram of radiation swelling of the gas-cooled reactor core materials is presented. The swelling diagram is built on the basis of the relationships existing between the damaging dose and maximum swelling and takes an account of the temperature corresponding to maximum swelling. The analysis of the estimated data on swelling show that for the same temperatures especially with damaging dose above 30 displ./at., large scattering of swelling absolute values obtained during utilization of different empirical expressions, is observed. The scattering of material swelling values of the fuel elements irradiated under identical conditions results from a variety of gas content in the material of cans in the process of void formation. The displacement of swelling temperature maximum finds explanation in various rates of damaging dose attainment, the temperature swelling maximum being displaced to the side of large values during the increase of the velocity of atomic displacement upon irradiation (displ./atx sec). The suggested characteristic of steel swelling gives the idea about the behaviour of materisls upon neutron irradiation and can be useful for developing of the core elements of the gas-cooled reactors.

  10. The sink effect of the second-phase particle on the cavity swelling in RAFM steel under Ar-ion irradiation at 773 K

    International Nuclear Information System (INIS)

    Shen, T.L.; Wang, Z.G.; Yao, C.F.; Sun, J.R.; Li, Y.F.; Wei, K.F.; Zhu, Y.B.; Pang, L.L.; Cui, M.H.; Wang, J.; Zhu, H.P.

    2013-01-01

    The microstructures of the Chinese RAFM steel irradiated at 773 K with 792 MeV Ar-ions to fluences of 2.3 × 10 20 and 4.6 × 10 20 ions/m 2 , respectively, were investigated by using a transmission electron microscope with the cross-sectional specimen technique. Preferential nucleation and enhanced growth of the cavities at the interface between the second-phase particles and the matrix were observed in the irradiated specimen. The observation of the cavity-particle complex at lower dose indicated that the dose threshold for a cavity formation at the interface between MC particle and matrix was lower than that in matrix. With increasing irradiation dose, it was found that the second-phase particles changing their shape by attached cavities occurred. Furthermore, the role of the particle–matrix interface on nucleation and growth of the attached cavity with an increase of the dose were discussed in this work

  11. Heat treatments of irradiated uranium oxide in a pressurised water reactor (P.W.R.): swelling and fission gas release; Traitements thermiques de l`oxyde d`uranium irradie dans un reacteur a eau pressurisee (R.E.P.): gonflement et relachement des gaz de fission

    Energy Technology Data Exchange (ETDEWEB)

    Zacharie, I

    1997-03-27

    In order to keep pressurised water reactors at a top level of safety, it is necessary to understand the chemical and mechanical interaction between the cladding and the fuel pellet due to a temperature increase during a rapid change in reactor. In this process, the swelling of uranium oxide plays an important role. It comes from a bubble precipitation of fission gases which are released when they are in contact with the outside. Therefore, the aim of this thesis consists in acquiring a better understanding of the mechanisms which come into play. Uranium oxide samples, from a two cycles irradiated fuel, first have been thermal treated between 1000 deg C and 1700 deg C for 5 minutes to ten hours. The gas release amount related to time has been measured for each treatment. The comparison of the experimental results with a numerical model has proved satisfactory: it seems that the gases release, after the formation of intergranular tunnels, is controlled by the diffusion phenomena. Afterwards, the swelling was measured on the samples. The microscopic examination shows that the bubbles are located in the grain boundaries and have a lenticular shape. The swelling can be explained by the bubbles coalescence and a model was developed based on this observation. An equation allows to calculate the intergranular swelling in function of time and temperature. The study gives the opportunity to predict the fission gases behaviour during a fuel temperature increase. (author) 56 refs.

  12. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver

    Directory of Open Access Journals (Sweden)

    Jarrar Bashir M

    2011-09-01

    Full Text Available Abstract Background Nanoparticles (NPs can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. The aim of the present study was to investigate the particle-size, dose and exposure duration effects of gold nanoparticles (GNPs on the hepatic tissue in an attempt to cover and understand the toxicity and their potential therapeutic and diagnostic use. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days to investigate particle-size, dose and exposure duration effects of GNPs on the hepatic tissue. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. Conclusions The hepatocytes swelling might be exhibited as a result of disturbances of membranes function that lead to massive influx of water and Na+ due to GNPs effects accompanied by leakage of lysosomal hydrolytic enzymes that lead to cytoplasmic degeneration and macromolecular crowding. Hydropic degeneration is a result of ion and fluid homestasis that lead to an increase of intracellular water. The vacuolated swelling of the cytoplasm of the hepatocytes of the GNPs treated rats might indicate acute and subacute liver injury induced by the GNPs. Binucleation represents a consequence of cell injury and is a sort of chromosomes hyperplasia which is usually seen in regenerating cells. The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal

  13. Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials

    Science.gov (United States)

    Shao, Lin; Gigax, Jonathan; Chen, Di; Kim, Hyosim; Garner, Frank A.; Wang, Jing; Toloczko, Mychailo B.

    2017-10-01

    Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.

  14. Effect of gas atoms on swelling of austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.; Eguchi, N.; Nishibe, E.; Naito, A.

    1994-01-01

    There have been many studies on the effect of He on swelling, however not so many on the effect of nitrogen on swelling. In this study the effect of nitrogen on swelling of 316 steel was investigated under HVEM irradiation for establishing a model of swelling. The nitrogen content was changed from 0.083 to 0.002 wt%, and for the comparison 321 steel containing Ti was used. Irradiation was performed by HVEM at 500 C under 2x10 -3 dpa/s. The dislocation loop number density in the early stage was nearly equal to the cavity number density formed later and both increased with nitrogen content. The swelling increased and decreased through the maximum as the nitrogen content increased. The result was explained by the model of swelling. As for 321 steel, no cavities were found under HVEM until 6 dpa at 500 C. This suggests the effect of scavenging of nitrogen by Ti. ((orig.))

  15. Gamma irradiation-induced variation in carrots (Daucus carota L.)

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Simon, P.W.

    1996-01-01

    Carrot tissue cultures, germinating seed, and dry seed were exposed to gamma radiation. Irradiation accelerated germination of carrot seed in the M1 generation at low doses (0.5 and 1 krad), whereas higher doses delayed germination. A high negative correlation was observed between dose and survival of plants after seed irradiation. Plant size and root weight were 20% to 35% greater than control plants after seeds, but not tissue cultures, were exposed to low doses of gamma irradiation. Higher doses reduced M1 plant size by 50% in germinating seed and tissue culture treatments but less for the dry seed treatment. Seed production decreased while phenotypic variation of M1 plants increased with increasing gamma ray dosage. Root weight and total dissolved solids were highly variable in M2 families. Less variation was observed in total carotene content and none was seen in sugar type (reducing vs. non reducing sugars). Induced variation in root color and root shape was also observed. Irradiation of germinating seed and tissue cultures yielded more M2 variation than irradiation of dry seed. Putative point mutations were not observed. Unirradiated carrot tissue cultures did not yield significant M2 somaclonal variation. Average root weight of M2 plants increased with increasing gamma ray dosage, especially for the dry seed treatment

  16. Gamma irradiation induced variation in carrots (Daucus Carota L.)

    International Nuclear Information System (INIS)

    Al-Safady, B.; Simon, P.W.

    1999-01-01

    Carrot tissue cultures, germinating seed, and dry seed were exposed to gamma radiation. Irradiation accelerated germination of carrot seed in the M 1 generation at low doses (0.5 and 1 krad), whereas higher doses delayed germination. A high negative correlation was observed between dose and survival of plants after seed irradiation. Plant size and root weight were 20% to 35% greater than control plants after seeds, but not tissue culture, were exposed to low doses of gamma irradiation. Higher doses reduced M 1 plant size by > 50% in germinating seed and tissue culture treatments but less for the dry seed treatment. Seed production decreased while phenotypic variation of M 1 plants increased with increasing gamma ray dosage. Root weight and total dissolved solids were highly variable in M 2 families. Less variation was observed in total carotene content and none was seen in sugar type [reducing vs. non reducing sugars]. Induced variation in root color and rot shape was also observed. Irradiation of germinating seed and tissue cultures yielded more M 2 variation than irradiation of dry seed. Putative point mutations were not observed. Unirradiated carrot tissue cultures did not yield significant M 2 somaclonal variation. Average root weight of M 2 plants increased with increasing gamma ray dosage, especially for the dry seed treatment (Author)

  17. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Olive, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I.

    1995-01-01

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  18. Elemental process of amorphization induced by electron irradiation in Si

    International Nuclear Information System (INIS)

    Yamasaki, Jun; Takeda, Seiji; Tsuda, Kenji

    2002-01-01

    We recently found that amorphization is induced in Si by electron irradiation. Examining the amorphization systematically, we have established the diagram of steady states under electron irradiation, either amorphous Si (a-Si) or crystalline Si (c-Si) as a function of incident electron energy, electron dose, and irradiation temperature. Utilizing transmission electron microscopy, electron energy filtered diffraction and electron energy-loss spectroscopy, we have characterized the atomic structure, the electronic structure, and the thermal stability of a-Si induced by electron irradiation. Based on the experimental data, we have also concluded that the amorphization is caused by the accumulation of not point defects but small cascade damages. Analyzing the change in the intensity of halo diffraction rings during amorphization, we have clarified that the smallest cascade damage that contributes to amorphization includes only about four Si atoms. This presumably supports the amorphization mechanism that four self-interstitial atoms form the quasistable structure I4 in c-Si and it becomes an amorphous embryo

  19. Erlotinib-induced rash spares previously irradiated skin

    International Nuclear Information System (INIS)

    Lips, Irene M.; Vonk, Ernest J.A.; Koster, Mariska E.Y.; Houwing, Ronald H.

    2011-01-01

    Erlotinib is an epidermal growth factor receptor inhibitor prescribed to patients with locally advanced or metastasized non-small cell lung carcinoma after failure of at least one earlier chemotherapy treatment. Approximately 75% of the patients treated with erlotinib develop acneiform skin rashes. A patient treated with erlotinib 3 months after finishing concomitant treatment with chemotherapy and radiotherapy for non-small cell lung cancer is presented. Unexpectedly, the part of the skin that had been included in his previously radiotherapy field was completely spared from the erlotinib-induced acneiform skin rash. The exact mechanism of erlotinib-induced rash sparing in previously irradiated skin is unclear. The underlying mechanism of this phenomenon needs to be explored further, because the number of patients being treated with a combination of both therapeutic modalities is increasing. The therapeutic effect of erlotinib in the area of the previously irradiated lesion should be assessed. (orig.)

  20. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  1. The swelling hadrons

    International Nuclear Information System (INIS)

    Rho, M.

    1992-01-01

    The notion of a 'swelled world' for strong interactions is introduced, followed by a discussion on some phenomenological consequences of the 'dropping' meson and baryon masses in dense and/or hot nuclear matter. (author) 26 refs

  2. Deuterium ion irradiation induced precipitation in Fe–Cr alloy: Characterization and effects on irradiation behavior

    International Nuclear Information System (INIS)

    Liu, P.P.; Yu, R.; Zhu, Y.M.; Zhao, M.Z.; Bai, J.W.; Wan, F.R.; Zhan, Q.

    2015-01-01

    Highlights: • A new phase precipitated in Fe–Cr alloy after deuterium ion irradiation at 773 K. • B2 structure was proposed for the Cr-rich new phase. • Strain fields around the precipitate have been measured by GPA. • The precipitate decrease growth rate of dislocation loop under electron irradiation. - Abstract: A new phase was found to precipitate in a Fe–Cr model alloy after 58 keV deuterium ion irradiation at 773 K. The nanoscale radiation-induced precipitate was studied systematically using high resolution transmission electron microscopy (HRTEM), image simulation and in-situ ultrahigh voltage transmission electron microscopy (HVEM). B2 structure is proposed for the new Cr-rich phase, which adopts a cube-on-cube orientation relationship with regard to the Fe matrix. Geometric phase analysis (GPA) was employed to measure the strain fields around the precipitate and this was used to explain its characteristic 1-dimensional elongation along the 〈1 0 0〉 Fe direction. The precipitate was stable under subsequent electron irradiation at different temperatures. We suggest that the precipitate with a high interface-to-volume ratio enhances the radiation resistance of the material. The reason for this is the presence of a large number of interfaces between the precipitate and the matrix, which may greatly reduce the concentration of point defects around the dislocation loops. This leads to a significant decrease in the growth rate

  3. Irradiation-induced creep in 316 and 304L stainless steels

    International Nuclear Information System (INIS)

    Walters, L.C.; McVay, G.L.; Hudman, G.D.

    1977-01-01

    Recent results are presented from the in-reactor creep experiments that are being conducted by Argonne National Laboratory. The experiments consist of four subassemblies that contain helium-pressurized as well as unstressed capsules of 316 and 304L stainless steels in several metallurgical conditions. Experiments are being irradiated in row 7 of the EBR-II sodium-cooled fast breeder reactor. Three of the subassemblies are being irradiated at temperatures near 400 0 C, and the fourth subassembly is being irradiated at a temperature of 550 0 C. Creep and swelling strains were determined by profilometer measurements on the full length of the capsules after each irradiation cycle. The accumulated neutron dose on the 304L capsules at 385 0 C was 45 dpa; on the 316 capsules at 400 0 C, 40 dpa; and on the 316 capsules at 550 0 C, 25 dpa. It was found that the in-reactor creep rates were linearly dependent on hoop stress, with the exception being capsules of 316 stainless steel that had been given long-term carbide aging treatment and then irradiated at 550 0 C. Those capsules exhibited much higher creep and swelling rates than their unaged counterparts. For the metallurgical conditions where significant swelling was observed (solution-annealed 304L and aged 316 stainless steels), it was found that the in-reactor creep rates were readily fit to a model that related the creep rates to accumulated swelling. Additionally, it was found that the stress-normalized creep rate for 20%-cold-worked 316 stainless steel at a temperature of 550 0 C was 1.6 times that observed at 400 0 C

  4. Irradiation-induced patterning in dilute Cu–Fe alloys

    International Nuclear Information System (INIS)

    Stumphy, B.; Chee, S.W.; Vo, N.Q.; Averback, R.S.; Bellon, P.; Ghafari, M.

    2014-01-01

    Compositional patterning in dilute Cu 1−x Fe x (x ≈ 12%) induced by 1.8 MeV Kr + irradiation was studied as a function of temperature using atom probe tomography. Irradiation near room temperature led to homogenization of the sample, whereas irradiation at 300 °C and above led to precipitation and macroscopic coarsening. Between these two temperatures the irradiated alloys formed steady state patterns of composition where precipitates grew to a fixed size. The size in this regime increased somewhat with temperature. It was also observed that the steady state concentrations of Fe in Cu matrix and Cu in the Fe precipitates both greatly exceeded their equilibrium solubilities, with the degree of supersaturation in each phase decreasing with increasing temperature. In the macroscopic coarsening regime, the Fe-rich precipitates showed indications of a “cherry-pit” structure, with Cu precipitates forming within the Fe precipitates. In the patterning regime, interfaces between Fe-rich precipitates and the Cu-rich matrix were irregular and diffuse

  5. Irradiation induced creep in whiskers of NaCl

    International Nuclear Information System (INIS)

    Khan, J.A.A.

    1977-09-01

    Whiskers of NaCl have been grown and irradiated under flexion by X-rays (approximately 2x10 7 R/h) at room temperature and the residual curvature measured. Complete recovery of the initial form of the whisker within an hour's annealing at 400 0 C proves clearly that the observed deformation (creep) is due to the presence of dislocation loops. The choice of NaCl extremely simplifies the experiment and its interpretation since X-rays create point defects one by one. Moreover, this mode of irradiation, at room temperature, produces a very simple situation: perfect interstitial dislocation loops and immobile point defects which are little influenced by the applied stress. The flexion leads to a stress system which hardly differs from an uniaxial stress. One can study separately the preferential nucleation of dislocation loops and their differential growth by carrying out an irradiation under stress followed by an irradiation without stress and vice versa. It is shown that the induced creep is mostly due to the preferential nucleation of dislocation loops and is little affected by the differential growth of these loops. The nucleation period of the loops is very short: a dose of approximately 10 -5 d.p.a. is largely sufficient for the quasi completion of dislocation loops in a crystal having an impurity concentration of approximately 10 -3 [fr

  6. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    International Nuclear Information System (INIS)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S.; Sofferman, D. L.; Beskin, I.

    2013-01-01

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport

  7. Effects of stress on swelling in reactor fuel cladding

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1977-01-01

    The purpose of this report is to describe the effect of stress on swelling in both annealed and 20% cold worked 316 stainless steel. An effect of stress on swelling in irradiated metals has been postulated for some time. Low fluence data confirmed that indeed a tensile stress can increase swelling in irradiated annealed 316 stainless steel and that the maximum swelling occurs at an intermediate stress level which is approximately equal to the proportional elastic limit of the material. The specimens discussed above were examined by transmission electron microscopy and an effect of stress on the microstructure of the annealed and 20% cold worked 316 specimens has been observed. Howver, as yet, copious swelling had not occurred in the 20% cold worked material. Specimens of 20% cold worked 316 fabricated from the same heat of material as those described above have now been irradiated to sufficiently high neutron fluences that swelling has occurred in both the annealed and cold worked conditions. Swelling increases linearly with stress for both materials. However, for solution annealed 316, swelling reaches a maximum at approximately 136 MPa, whereupon further increases in stress result in reduced swelling. It is felt that this reduction in swelling is related to the onset of plastic yielding in the material. The swelling observed in the 20% CW 316 and the solution annealed 316 below the maximum swelling stress can be adequately described by an equation of the form: S = S 0 (1 + Psigma). No strong effect of stress on changing the incubation period associated with void nucleation was found. (Auth.)

  8. Partial characterization of bacteriocin induced by irradiated and non-irradiated strain of yersinia enterocolitical

    International Nuclear Information System (INIS)

    Awny, N.M.

    1991-01-01

    Twenty isolates of yersinia enterocolitica were tested for the inhibition of the growth of different strains of yersinia. The screening tests revealed three possible bacteriocinogenic strains. One of them was selected for additional studies after it was shown that its inhibitory substances differed in their activity spectra. The gamma irradiated strain lost the ability to produce bacteriocin at 0.6 kGy level. Crude preparation of bacteriocin obtained from the wild strain were not affected by chloroform or other organic solvents but inactivated by trypsin and heating at 80 C for 45 min. Bacteriocin induced by irradiated strain was easily inactivated by thermal treatment. Exposure of agar fragments containing the inhibitory active component to a pH value ranging between 2 to 11 did not affect bactericidal activity.4 tab

  9. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  10. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofman, G.L.; Ryu, Woo-Seog.

    1989-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs

  11. Irradiation-induced segregation in multi-component alloys

    International Nuclear Information System (INIS)

    Chen, I.W.

    1983-01-01

    A unified analysis of irradiation-induced segregation in multi-component alloys is developed using the formulation of irreversible thermodynamics. Three distinct mechanisms for segregation, namely the inverse Kirkendall effect, the vacancy-wind effect, and the solute drag of interstitials, are identified. In particular, the inverse Kirkendall effect due to interstitials arises only if a solute-interstitial interaction or a mutual conversion among interstitials via lattice atom intermediaries operates simultaneously. In the limit of fast conversion a para-equilibrium state may be reached between interstitials and lattice atoms, and the interstitial mechanism becomes formally analogous to the vacancy mechanism. Although the past treatment of rate phenomena in this field was apparently limited to the latter case, the importance of the consideration of separate chemical potentials for interstitials of different species, in segregation and other irradiation effects, is emphasized. (orig.)

  12. Ion irradiation-induced precipitation of Cr23C6 at dislocation loops in austenitic steel

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Guo, Liping; Luo, Fengfeng; Yao, Zhongwen; Ma, Shuli; Tang, Rui

    2013-01-01

    The irradiation-induced precipitates in argon ion-irradiated austenitic stainless steel at 550 °C were examined via transmission electron microscopy. The selected-area electron diffraction patterns of precipitates indicated unambiguously that the precipitates were Cr 23 C 6 carbides. It was observed directly for the first time that irradiation-induced Cr 23 C 6 precipitates formed at dislocation loops in austenitic stainless steel, and coarsened with increasing irradiation dose.

  13. Study of cancer-specific chimeric promoters induced by irradiation

    International Nuclear Information System (INIS)

    Xiong Jie; Zhou Yunfeng; Sun Wenjie; Wang Weifeng; Liao Zhengkai; Zhou Fuxiang; Xie Conghua

    2010-01-01

    Objective: To combine the radio-inducible CArG element with cancer-specific human telomerase reverse transcriptase (hTERT) gene promoter, and to construct the novel chimeric promoters. Methods: The synthetic hTERT promoters containing different number of radio-inducible CArG elements were constructed, and the activities of the promoters in the cancer cells (HeLa, A549, and MHCC97 cells) and nomal cells (hEL cells) were detected by using luciferase-reporter assays after the treatment of irradiation (a single or fractionated irradiation dose). Results: Synthetic promoter containing 6 repeated CArG units was better in radio-inducibility than any other promoters containing different number of CArG units, and nearly maximum levels obtained at 4-6 Gy. The very low activities of the chimeric promoters could be detected in normal hEL cells. A similar level of reporter gene expression was observed after 3 fractionated doses of 2 Gy compared with a single dose of 6 Gy in cancer cells. Conclusions: The cancer-specific chimeric promoter containing 6 CArG elements showes the best radio-response, and the chimeric promoter system has the potential in cancer gene therapy. (authors)

  14. Preliminary examination of induced radioactivity in pepper by 10 MeV electron irradiation

    International Nuclear Information System (INIS)

    Katayama, Tadashi; Furuta, Masakazu; Sibata, Setsuko; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Toratani, Hirokazu; Takeda, Atsuhiko.

    1991-01-01

    β-ray measurement was performed on 10 MeV electron-irradiated black pepper and white pepper with liquid scintillation counter in order to reconfirm the wholesomeness of irradiated foods and present unambiguous data to general consumers concerning about the induced radioactivity in the irradiated foods. In irradiated black pepper no radioactivity other than from natural source, un-irradiated one, was detected. But in irradiated white pepper, it was suggested that induced radioactivity might be detected if the detection method was more improved. (author)

  15. Irradiation response in titanium modified austenitic stainless steels prepared by rapid solidification processing. Pt. 3

    International Nuclear Information System (INIS)

    Imeson, D.; Tong, C.H.; Parker, C.A.; Vander Sande, J.B.; Grant, N.J.; Harling, O.K.; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    Titanium carbide precipitation on dislocations during irradiation and recoil-induced particle dissolution are considered. The outline analysis given indicates that complete swelling suppression may occur in favorable conditions due to a counterbalancing of the effective dislocation interstitial bias. The behavior is, however, not stable against a return to normal swelling levels for type 316 steels. A model is presented which may serve as a basis for the interpretation of some aspects of the irradiation response in this system. (orig.)

  16. Preliminary examination of induced radio activity in pepper by 10 MeV electron irradiation

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Katayama, Tadashi; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Toratani, Hirokazu; Takeda, Atsuhiko

    1989-01-01

    β-ray measurement was performed on 10 MeV electron-irradiated black pepper and white pepper in order to reconfirm the wholesomeness of irradiated food and present unambiguous data to general consumers concerning about the induced radioactivity in the irradiated foods. From elemental composition of the samples and investigation of photonuclear reactions, several β-emmitters were listed up. But no radioactivity other than from natural sources was detected in the irradiated sample by β-ray counting with 2 π gass flow counter, suggesting that the induced β-emmitters in the irradiated sample was below the detection limit of its induced radioactivity. (author)

  17. Surgical treatment of 2 cases of irradiation induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, Hiroshi; Takahashi, Wataru; Yoshii, Shinpei [Yamanashi Medical Univ., Tamaho (Japan)] (and others)

    1999-11-01

    A 72-years-old man underwent radiation therapy (62 Gy) for esophageal carcinoma. Twelve months later, symptoms of heart failure such as syncope, cough and hepatomegaly manifested. On catheter study, a dip and plateau pattern of right ventricular pressure curve was evident. Pericardiectomy without extracorporeal circulation was performed. Operative findings and pathological results were compatible with radiation-induced constrictive pericarditis. He recovered from the heart failure, and has been doing well 3 months after the surgery. A 54-years-old man underwent thymectomy for malignant thymoma. He underwent a radiation therapy (52 Gy) postoperatively. After 12 months from the irradiation, syncope and dyspnea manifested. On catheter study, a dip and plateau pattern of right ventricular pressure curve was observed. Pericardiectomy with extracorporeal circulation was performed. He recovered from the heart failure after pericardiectomy, however he died of radiation-induced pneumonitis 6 months later. (author)

  18. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  19. Deuterium ion irradiation induced blister formation and destruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Nam-Kyun; Kim, Hyun-Su; Jin, Younggil; Roh, Ki-Baek; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-11-01

    Highlights: • The areal number density of blisters on the grain with (1 1 1) plane orientation increased with increasing ion fluence. • No more blisters were created above the temperature about 900 K due to high thermal mobility of ions and inactivity of traps. • The destruction of blister at the boundary induced by sputtering is proposed. • The blisters were destructed at the position about the boundary by high sputtering yield of oblique incident ions and thin thickness due to plastic deformation at the boundary. - Abstract: The blisters formation and destruction induced by the deuterium ions on a polycrystalline tungsten were investigated with varying irradiation deuterium ion fluence from 3.04 × 10{sup 23} to 1.84 × 10{sup 25} D m{sup −2} s{sup −1} and an fixed irradiated ion energy of 100 eV in an electron cyclotron resonance plasma source, which was similar to the far-scrape off layer region in the nuclear fusion reactors. Target temperature was monitored during the irradiation. Most of blisters formed easily on the grain with (1 1 1) plane orientation which had about 250 nm in diameter. In addition, the areal number density of blisters increased with increasing the ion fluence under the surface temperature reaching to about 900 K. When the fluence exceeded 4.6 × 10{sup 24} D m{sup −2}, the areal number density of the blister decreased. It could be explained that the destruction of the blister was initiated by erosion at the boundary region where the thickness of blister lid was thin and the sputtering yield was high by oblique incident ions, resulting in remaining the lid open, e.g., un-eroded center dome. It is possible to work as a tungsten dust formation from the plasma facing divertor material at far-SOL region of fusion reactor.

  20. A case of dysphagia induced by irradiation to the neck

    International Nuclear Information System (INIS)

    Ito, Hiroyuki; Kubota, Akira; Moriyama, Hiroshi.

    1995-01-01

    This report deals with a case of dysphagia induced by the irradiation of a malignant lymphoma of the neck. The patient was a 55-year-old male with dysphagia who had undergone irradiation to the neck for a malignant lymphoma ten years previously. The dysphagia that had gradually worsened in ten years made him enable to eat and drink orally. He often contracted by pneumonia. On first examination, atrophic changes were observed in the soft palates, and the epiglottis, and the improvement of the tongue was bilaterally impaired. These findings were diagnosed as the causes of the dysphagia. A barium study showed that the movement of the tongue and the pharynx were impaired. The barium was aspirated. A plain X-ray film of the mandible showed ostitis. The impairment of the tongue movement was due to bilateral hypopharyngeal nerve palsies induced by the irradiation. Laryngeal suspension and cricopharyngeal myotomy were not suitable because they could have aggravated the radiation necrosis of the thyroid cartilage which will be expected in the future. A total laryngectomy, which sacrifies the phonation, was out of the question, because the patient's dysarthria was not so hard to understand. He was instructed in the self-insertion of a feeding tube to get enough nutrition, the physical therapy of the lung with the aid of his wife to prevent aspiration pneumonia. The loss of phonation lowers the QOL of such patients. In the cases with dysphagia which do not recover with surgical treatments, rehabilitation should mainly stress the conservation of phonation and the prevention of pneumonia to maintain the higher QOL of patients. (author)

  1. Beam-induced temperature changes in HVEM irradiations

    International Nuclear Information System (INIS)

    Garner, F.A.; Thomas, L.E.; Gelles, D.S.

    1975-01-01

    The peak value of the temperature distribution induced by energy loss of 1.0 MeV electrons in traversing a typical HVEM irradiation specimen can be very substantial. The origin and various features of this distribution were analyzed for a variety of specimen geometries. The major parametric dependencies are shown to be relatively independent of specimen geometry, however, and allow the definition of a scaling relationship that can be employed to predict temperature rises in materials that cannot be measured directly. The use of this scaling relationship requires that the experimenter minimize perturbations of the heat flow due to proximity of the central hole in the specimen. An experimental method of determining directly the magnitude and distribution of beam-induced temperature profiles was developed which utilizes the order-disorder transformation in Fe 3 Al and Cu 3 Au. Scaling of experimentally determined temperature changes leads to more realistic estimates of the total temperature rise than are currently available in various literature tabulations. The factors which determine the optimum selection of irradiation parameters for a given experiment are also discussed

  2. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  3. Hotspot swells revisited

    Science.gov (United States)

    King, Scott D.; Adam, Claudia

    2014-10-01

    The first attempts to quantify the width and height of hotspot swells were made more than 30 years ago. Since that time, topography, ocean-floor age, and sediment thickness datasets have improved considerably. Swell heights and widths have been used to estimate the heat flow from the core-mantle boundary, constrain numerical models of plumes, and as an indicator of the origin of hotspots. In this paper, we repeat the analysis of swell geometry and buoyancy flux for 54 hotspots, including the 37 considered by Sleep (1990) and the 49 considered by Courtillot et al. (2003), using the latest and most accurate data. We are able to calculate swell geometry for a number of hotspots that Sleep was only able to estimate by comparison with other swells. We find that in spite of the increased resolution in global bathymetry models there is significant uncertainty in our calculation of buoyancy fluxes due to differences in our measurement of the swells’ width and height, the integration method (volume integration or cross-sectional area), and the variations of the plate velocities between HS2-Nuvel1a (Gripp and Gordon, 1990) and HS3-Nuvel1a (Gripp and Gordon, 2002). We also note that the buoyancy flux for Pacific hotspots is in general larger than for Eurasian, North American, African and Antarctic hotspots. Considering that buoyancy flux is linearly related to plate velocity, we speculate that either the calculation of buoyancy flux using plate velocity over-estimates the actual vertical flow of material from the deep mantle or that convection in the Pacific hemisphere is more vigorous than the Atlantic hemisphere.

  4. γIrradiation induced formation of PCB-solvent adducts in aliphatic solvents

    International Nuclear Information System (INIS)

    Lepine, F.; Milot, S.; Gagne, N.

    1990-01-01

    γIrradiation induced formation of PCB-solvent adducts was investigated as a model for PCB residues in irradiated food. Formation of cyclohexyl adducts of PCBs was found to be significant when pure PCB congeners and Aroclor mixture were irradiated in cyclohexane and cyclohexene. Reaction pathways were investigated, and the effects of oxygen and electron scavenger were studied

  5. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renault Laborne, Alexandra, E-mail: alexandra.renault@cea.fr [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Gavoille, Pierre [CEA, DEN, SEMI, F-91191 Gif-sur-Yvette (France); Malaplate, Joël [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Pokor, Cédric [EDF R& D, MMC, Site des Renardières, F-77818 Morêt-sur-Loing cedex (France); Tanguy, Benoît [CEA, DEN, SEMI, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M{sub 6}C and M{sub 23}C{sub 6}-type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  6. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Science.gov (United States)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-05-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  7. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    International Nuclear Information System (INIS)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-01-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M 6 C and M 23 C 6 -type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power

  8. Influence of applied stress on swelling behavior in Type 304 stainless steel

    International Nuclear Information System (INIS)

    Igata, N.; Fujihira, T.; Kohno, Y.; Tsunakawa, M.

    1984-01-01

    The swelling behavior of Type 304 stainless steel during stress application was investigated by means of electron irradiation using a high-voltage electron microscope (HVEM). The dose dependence of swelling under stress is similar to the linearafter-incubation swelling scheme of other electron irradiation studies. The effect of applied stress on the swelling characteristics appeared through the control of incubation regime of swelling rather than of the swelling rate. The incubation dose first increases, then decreases, and increases again with increasing applied stress. The prominent finding in this study, based on the advantage of HVEM in situ observation, is that the saturated void density is equal to the number density of interstitial dislocation loops observed in the early stage of irradiation. Essentially, applied stress affects the loop nucleation process. The dislocation loop density then affects the incubation dose of swelling through its control of dislocation behavior and the saturation dose of dislocation density

  9. Radiation-induced organogenesis: effects of irradiated medium and its components on tobacco tissue culture

    International Nuclear Information System (INIS)

    Degani, N.

    1975-01-01

    Gamma irradiated medium induces the formation of buds in non-irradiated dark growth tobacco callus (Nicotiana tabacum Var. Wisconsin No.38). Experiments were conducted to determine the component(s) of the medium that is effective in this radiation-induced organogenesis. Fraction of medium were irradiated singly and in combination, then combined with non-irradiated fractions to form the complete growth medium. The results showed that irradiated indoleacetic acid (IAA) was not the effective component in the induction of organogensis. Omission of IAA from the medium resulted in the formation of buds, as expected. Irradiated myo-inositol induced organogenesis more consistently than the other irradiated components. The age of the inoculum tissue and its passage number from the tobacco stem affected the potency of the tobacco callus to organise. (author)

  10. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    ); the irradiation experiments were carried out at 250 degree C. The irradiated specimens were examined by transmission electron microscopy. At both doses, the irradiation-induced structure was found to be highly segregated; the dislocation loops and segments were present in the form of irregular walls and the voids...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....

  11. Structural changes and tribological performance of thermosetting polyimide induced by proton and electron irradiation

    International Nuclear Information System (INIS)

    Lv, Mei; Wang, Yanming; Wang, Qihua; Wang, Tingmei; Liang, Yongmin

    2015-01-01

    The structural changes and tribological performance of thermosetting polyimide were investigated by electron, proton or both combined irradiations at 25 keV in a ground-based simulation facility. Three forms of irradiations could lead to the formation of the carbonized layer on the polymer surface that could increase the hardness and adhesive force of the material. Proton irradiation induced more extensive changes in structure and friction behavior than electron irradiation by reason of the higher linear energy transfer value, and combined irradiation resulted in the largest impact, but which was less than the sum of the radiation effects of electron and proton. Moreover, the experimental results indicated that the changes in friction behavior are closely related with the carbonized layer, which was easily worn out in friction process and could introduce a shift from adhesion wear to three-body abrasive wear that reduced the wear rate and the friction coefficient. The friction process of irradiated samples could be divided into the initial stage and the steady stage. Three forms of irradiations all induced the high friction coefficient in the initial stage and the low friction coefficient in the steady stage, and the wear rate of the irradiated samples decreased in the order: electron irradiation>proton irradiation>combined irradiation. - Highlights: • Proton irradiation induced more extensive changes in structure and friction behavior than electron irradiation. • The effect of combined irradiation was less than that of the sum of electron and proton irradiation. • Three forms of irradiations all induced the high initial friction coefficient and the low steady-stage friction coefficient. • The initial friction stage means a fast-wearing adhesive process while the steady-state of the system is a three-body abrasion

  12. Glucidic and lipidic metabolic changes in rats induced by irradiation and the effect of adrenalectomy

    Energy Technology Data Exchange (ETDEWEB)

    Groza, P; Ghizari, E; Butculescu, I; Ciontescu, L; Ciuntu, L

    1975-01-01

    In experiments on X-irradiated rats (1000 R) the hepatic glycogen, total lipids, phospholipids content, and plasma glucose, cholesterol and beta-lipoprotein concentration were determined in intact and adrenalectomized animals. It was confirmed that irradiation produces a hepatic glycogen and blood glucose increased concentration. The glucidic metabolic response on irradiation is diminished by adrenalectomy. The adrenalectomy-induced modifications in the lipid metabolism of irradiated rats are more inconstant, which corresponds with its relative independence from glucocorticoid hormones.

  13. Fatigue behavior of Type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially in the first wall and blanket. There has been limited work on fatigue in irradiated alloys but none on irradiated materials containing significant amounts of irradiation-induced helium. To provide scoping data and to study the effects of irradiation on fatigue behavior, 20%-cold-worked type 316 stainless steel from the MFE reference heat was studied

  14. CR-39 as induced track detector in reactor: irradiation effect

    International Nuclear Information System (INIS)

    Zylberberg, H.

    1989-07-01

    A systematic study about reactor's neutrons radiation effect and gamma radiation effect on the properties of CR-39 that are significant for its use as induced fission track detector is showed. The following studies deserved attention: kinetics of the fission track chemical development; efficiency to register and to develop fission track; losses of developable tracks; variation in the number of developable tracks and variation in the visible and ultraviolet radiation spectrum. The dissertation is organized in seven specific chapters: solid state nuclear tracks (SSNT); CR-39 as SSNT; objectives and problems presentation; preparation and characterization of CR-39 as SSNT; gamma irradiation effect on the properties of CR-39 as SSNT; reactor neutron irradiation effect on the properties of CR-39 as SSNT and, results discussions and conclusions. The main work contributions are the use of CR-39 in the determination of fissionable nuclide as thorium and uranium in solid and liquid samples; gamma radiation damage on CR-39 as well as the reactor's neutron damage on CR-39. (B.C.A.) 62 refs, 53 figs, 21 tabs

  15. Irradiation-induced dimensional changes of poorly crystalline carbons

    International Nuclear Information System (INIS)

    Bullock, R.E.

    1979-01-01

    Data are presented on irradiation-induced changes of poorly crystalline carbons at high temperatures(>900 0 C). The materials surveyed include: (1) carbon fibers, (2) glassy carbons, (3) carbonaceous matrix materials for HTGR fuel rods and (4) pyrocarbons. The materials are listed in order of increasing stability, with maximum strains ranging from more than 50% for fibers to less than 10% for pyrocarbons. Dimensional changes of highly anisotropic carbon fibers appear to be sensitive to irradiation temperature, as slightly anisotropic pyrocarbons are, whereas temperature seems to have little influence on the behavior of isotropic glassy carbons over the range from 600 to 1350 0 C. Dimensional changes for graphite-filled matrix materials were roughly isotropic on the average and did not seem to be strongly temperature dependent for the lower fluences investigated. Increased graphite filler lowered volumetric dimensional changes of the matrix in agreement with a rule-of-mixtures relationship between change components for the filler and the less-stable binder phases. Instabilities of all of the poorly crystalline materials were generally greater than those for more crystalline carbons under the same conditions, including highly orientated graphites that approximate single-crystal behavior. (author)

  16. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    Science.gov (United States)

    Takahashi, H.; Garner, F. A.

    1992-10-01

    Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.

  17. Calculations of void swelling in Type 316 stainless steel after a temperature change using the VS8 code

    International Nuclear Information System (INIS)

    Windsor, M.E.; Matthews, J.R.

    1985-06-01

    The report compares measurements made by Norris and Buswell of void swelling in irradiated Type 316 steel after a temperature change from 475 to 575 C, and vice versa, with calculated swelling using the VS8 FACSIMILE code. (author)

  18. Clustered DNA damage induced by proton and heavy ion irradiation

    International Nuclear Information System (INIS)

    Davidkova, M.; Pachnerova Brabcova, K; Stepan, V.; Vysin, L.; Sihver, L.; Incerti, S.

    2014-01-01

    Ionizing radiation induces in DNA strand breaks, damaged bases and modified sugars, which accumulate with increasing density of ionizations in charged particle tracks. Compared to isolated DNA damage sites, the biological toxicity of damage clusters can be for living cells more severe. We investigated the clustered DNA damage induced by protons (30 MeV) and high LET radiation (C 290 MeV/u and Fe 500 MeV/u) in pBR322 plasmid DNA. To distinguish between direct and indirect pathways of radiation damage, the plasmid was irradiated in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The goal of the contribution is the analysis of determined types of DNA damage in dependence on radiation quality and related contribution of direct and indirect radiation effects. The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers. (authors)

  19. Heart malformation induced by ionizing irradiation in rat embryo

    International Nuclear Information System (INIS)

    Higo, Hiromi; Satow, Yukio; Lee, Juing-Yi; Higo, Ken-ichi

    1986-01-01

    Proteins were extracted from morphologically abnormal heart induced by gamma-irradiation, and fractionated into the soluble and the insoluble (''muscle structural proteins'') fractions. Protein compositions of these fractions were examined by O'Farrell's two-dimensional polyacrylamide gel electrophoresis, and also by non-equilibrium pH gradient electrophoresis. The protein patterns thus obtained were then compared with those of the normal heart. Among about 450 major protein species observed, no significant difference was detected between normal and abnormal hearts as to the intensity and the location of the protein spots. Several minor protein species were found varying among the samples examined, but their relevance to the heart malformation are not clear at present. (author)

  20. Irradiation-induced creep in graphite: a review

    International Nuclear Information System (INIS)

    Price, R.J.

    1981-08-01

    Data on irradiation-induced creep in graphite published since 1972 are reviewed. Sources include restrained shrinkage tests conducted at Petten, the Netherlands, tensile creep experiments with continuous strain registration at Petten and Grenoble, France, and controlled load tests with out-of-reactor strain measurement performed at Oak Ridge National Laboratory, Petten, and in the United Kingdom. The data provide reasonable confirmation of the linear viscoelastic creep model with a recoverable transient strain component followed by a steady-state strain component, except that the steady-state creep coefficient must be treated as a function of neutron fluence and is higher for tensile loading than for compressive loading. The total transient creep strain is approximately equal to the preceding elastic strain. No temperature dependence of the transient creep parameters has been demonstrated. The initial steady-state creep coefficient is inversely proportional to the unirradiated Young modulus

  1. Studies on the graphite rupture under irradiation induced strains

    International Nuclear Information System (INIS)

    Jouquet, G.; Berthion, Y.; L'Homme, A.

    1980-01-01

    Following the RMG experiments (failure of graphite by mechanical effect, i.e. under very high temperature gradient) an experimental program called RWG (Failure of Graphite by WIGNER effect) was initiated in 75 at C.E.A. 3 experiments have been already performed in the OSIRIS reactor at Saclay: RWG 01, 02 and 03. A 4th one, RWG04, is scheduled for the end of 79, may be in collaboration with GERMANY. The aim of the RWG experiments is to induce internal stresses in graphite blocks by irradiation at high temperature which would lead or not to their failure so one could bracket, as tightly as possible, the critical value for failure onset in given experimental conditions

  2. Swelling behavior of titanium-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.; Puigh, R.J.

    1984-01-01

    It appears that titanium additions to stainless steels covering a wide compositional range around the specifications of AISI 316 result only in an increased delay period before neutron-induced void swelling proceeds. Once swelling is initiated the post transient behavior of both annealed and cold-worked titanium-modified steels is quite consistent with that of AISI 316, approaching a relatively temperature-independent swelling rate of approx. 1% per dpa

  3. Effect of irradiation on the dental pulp tissues in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Kang, Ho Duk; Hwang, Eui Hwan; Lee, Sang Rae

    2005-01-01

    To observe the histological changes in the pulp tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups : control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, capillary dilatation was observed. However, there was no obvious morphologic alteration of the odontoblasts. In the irradiation group, generalized necrosis of the dental pulp tissues was observed. Vacuolation of the odontoblasts and dilatation of the capillaries were noted in the early experimental phases. In the diabetes-irradiation group, generalized degeneration of the dental pulp tissues was observed. Vacuolation of the dental pulp cells and the odontoblasts was noted in the late experimental phases. This experiment suggest that dilatation of the capillaries in the dental pulp tissue is induced by diabetic state, and generalized degeneration of the dental pulp tissues is induced by irradiation of the diabetic group.

  4. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Poulsen, Kristian Arild; Lambert, Ian H.

    2006-01-01

    Osmotic swelling of NIH3T3 mouse fibroblasts activates a bromoenol lactone (BEL)-sensitive taurine efflux, pointing to the involvement of a Ca2+-independent phospholipase A2 (iPLA2) (Lambert IH. J Membr Biol 192: 19-32, 2003). We report that taurine efflux from NIH3T3 cells was not only increased...... by cell swelling but also decreased by cell shrinkage. Arachidonic acid release to the cell exterior was similarly decreased by shrinkage yet not detectably increased by swelling. NIH3T3 cells were found to express cytosolic calcium-dependent cPLA2-IVA, cPLA2-IVB, cPLA2-IVC, iPLA2-VIA, iPLA2-VIB......, and secretory sPLA2-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA2-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA2-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA2...

  5. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-01-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  6. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  7. In situ transmission electron microscope studies of ion irradiation-induced and irradiation-enhanced phase changes

    International Nuclear Information System (INIS)

    Allen, C.W.

    1992-01-01

    Motivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing transmission electron microscopes (TEM) have been performed for several decades, involving irradiation-induced and irradiation-enhanced microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact; the development of TEM specimen holder sin which specimen temperature can be controlled in the range 10-2200 K and the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes and presents two case studies involving in situ experiments performed in an HVEM to illustrate the strategies of such an approach of the materials research of irradiation effects

  8. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  9. Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate-co-itaconic acid-co-oligo(ethylene glycol) acrylate) copolymeric hydrogels

    International Nuclear Information System (INIS)

    Micic, M.; Suljovrujic, E.

    2011-01-01

    Complete text of publication follows. Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers it is possible to prepare P(HEMA-co-IA-co-OEGA) hydrogels with duel (pH and thermo) responsiveness, the main purpose of this paper is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of obtained hydrogels. For that reason, a series of copolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesized by gamma radiation. The obtained hydrogels were characterized by swelling studies in the wide pH (2.2-9.0) and temperature range (25-70 deg C), confirming dual (pH and thermo) responsiveness and a large variation in swelling capability. It was observed that the equilibrium swelling of P(HEMA-co-IA-co-OEGA) hydrogels, for a constant amount of IA, increases progressively with increasing in OEGA share. On the other hand, the dissociation of carboxyl (-COOH) groups from IA occurs at pH > 4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterization of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of the P(HEMA-co-IA-co-OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained copolymeric hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, nucleic acids, peptides, and proteins.

  10. Specimen Machining for the Study of the Effect of Swelling on CGR in PWR Environment.

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    This report describes the preparation of ten specimens to be used for the study of the effect of swelling on the propagation of irradiation assisted stress corrosion cracking cracks. Four compact tension specimens, four microscopy plates and two tensile specimens were machined from a AISI 304 material that was irradiated up to 33 dpa. The specimens had been machined such as to represent the behavior of materials with 3.7%swelling and <2% swelling.

  11. Temperature annealing of tracks induced by ion irradiation of graphite

    International Nuclear Information System (INIS)

    Liu, J.; Yao, H.J.; Sun, Y.M.; Duan, J.L.; Hou, M.D.; Mo, D.; Wang, Z.G.; Jin, Y.F.; Abe, H.; Li, Z.C.; Sekimura, N.

    2006-01-01

    Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing

  12. Irradiation creep models - an overview

    International Nuclear Information System (INIS)

    Matthews, J.R.; Finnis, M.W.

    1988-01-01

    The modelling of irradiation creep is now highly developed but many of the basic processes underlying the models are poorly understood. A brief introduction is given to the theory of cascade interactions, point defect clustering and dislocation climb. The range of simple irradiation creep models is reviewed including: preferred nucleation of interstitial loops; preferred absorption of point defects by dislocations favourably orientated to an applied stress; various climb-enhanced glide and recovery mechanisms, and creep driven by internal stresses produced by irradiation growth. A range of special topics is discussed including: cascade effects; creep transients; structural and induced anisotropy; and the effect of impurities. The interplay between swelling and growth with thermal and irradiation creep is emphasized. A discussion is given on how irradiation creep theory should best be developed to assist the interpretation of irradiation creep observations and the requirements of reactor designers. (orig.)

  13. Edaravone protects human peripheral blood lymphocytes from γ-irradiation-induced apoptosis and DNA damage.

    Science.gov (United States)

    Chen, Liming; Liu, Yinghui; Dong, Liangliang; Chu, Xiaoxia

    2015-03-01

    Radiation-induced cellular injury is attributed primarily to the harmful effects of free radicals, which play a key role in irradiation-induced apoptosis. In this study, we investigated the radioprotective efficacy of edaravone, a licensed clinical drug and a powerful free radical scavenger that has been tested against γ-irradiation-induced cellular damage in cultured human peripheral blood lymphocytes in studies of various diseases. Edaravone was pre-incubated with lymphocytes for 2 h prior to γ-irradiation. It was found that pretreatment with edaravone increased cell viability and inhibited generation of γ-radiation-induced reactive oxygen species (ROS) in lymphocytes exposed to 3 Gy γ-radiation. In addition, γ-radiation decreased antioxidant enzymatic activity, such as superoxide dismutase and glutathione peroxidase, as well as the level of reduced glutathione. Conversely, treatment with 100 μM edaravone prior to irradiation improved antioxidant enzyme activity and increased reduced glutathione levels in irradiated lymphocytes. Importantly, we also report that edaravone reduced γ-irradiation-induced apoptosis through downregulation of Bax, upregulation of Bcl-2, and consequent reduction of the Bax:Bcl-2 ratio. The current study shows edaravone to be an effective radioprotector against γ-irradiation-induced cellular damage in lymphocytes in vitro. Finally, edaravone pretreatment significantly reduced DNA damage in γ-irradiated lymphocytes, as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment) (p edaravone offers protection from radiation-induced cytogenetic alterations.

  14. Correlation of simulated TEM images with irradiation induced damage

    International Nuclear Information System (INIS)

    Schaeublin, R.; Almeida, P. de; Almazouzi, A.; Victoria, M.

    2000-01-01

    Crystal damage induced by irradiation is investigated using transmission electron microscopy (TEM) coupled to molecular dynamics (MD) calculations. The displacement cascades are simulated for energies ranging from 10 to 50 keV in Al, Ni and Cu and for times of up to a few tens of picoseconds. Samples are then used to perform simulations of the TEM images that one could observe experimentally. Diffraction contrast is simulated using a method based on the multislice technique. It appears that the cascade induced damage in Al imaged in weak beam exhibits little contrast, which is too low to be experimentally visible, while in Ni and Cu a good contrast is observed. The number of visible clusters is always lower than the actual one. Conversely, high resolution TEM (HRTEM) imaging allows most of the defects contained in the sample to be observed, although experimental difficulties arise due to the low contrast intensity of the smallest defects. Single point defects give rise in HTREM to a contrast that is similar to that of cavities. TEM imaging of the defects is discussed in relation to the actual size of the defects and to the number of clusters deduced from MD simulations

  15. Efficiency of borage seeds oil against gamma irradiation-induced ...

    African Journals Online (AJOL)

    Sixty rats were divided into five groups (12 rats each): Control, irradiated; rats were exposed to (6.5 Gy) of whole body γ-radiation, BO (50 mg/kg b.wt), irradiated BO post-treated and irradiated BO prepost-treated. Six rats from each group were sacrificed at two time intervals 7 and 15 days post-irradiation. Serum aspartate ...

  16. Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate/itaconic acid/oligo (ethylene glycol) acrylate) terpolymeric hydrogels

    International Nuclear Information System (INIS)

    Micic, M.; Stamenic, D.; Suljovrujic, E.

    2012-01-01

    Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers, it is possible to prepare P(HEMA/IA/OEGA) hydrogels with dual (pH and thermo) responsiveness, the main purpose of our study is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of the obtained hydrogels. For that reason, a series of terpolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesised by gamma radiation. The obtained hydrogels were characterised by swelling studies in the wide pH (2.2–9.0) and temperature range (20–70 °C), confirming dual (pH and thermo) responsiveness and a large variation in the swelling capability. It was observed that the equilibrium swelling of P(HEMA/IA/OEGA) hydrogels, for a constant amount of IA, increased progressively with an increase in OEGA share. On the other hand, the dissociation of carboxyl groups from IA occurs at pH>4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterisation of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of P(HEMA/IA/OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, peptides, proteins, etc. - Highlights: ► pH- and thermo-sensitive P(HEMA/IA/OEGA) hydrogels were synthesised by γ radiation. ► OEGA units have a large hydrophilic potential. ► Swelling capacity increases with the OEGA content. ► Variation in composition of hydrogels can give

  17. Swelling behavior of manganese-bearing AISI 216 steel

    International Nuclear Information System (INIS)

    Gelles, D.S.; Garner, F.A.

    1984-01-01

    The inclusion of 8.5 wt % manganese in AISI 216 does not appear to alter the swelling behavior from that found to be typical of austenitic alloys with comparable levels of other austentite-stabilizing elements. The swelling in AISI 216 in EBR-II is quite insensitive to irradiation temperature in the range 400-650 0 C. Microscopy reveals that this may arise from the low level of precipitation that occurs in the alloy

  18. Stress-affected microstructural development and creep-swelling interrelationship

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.; Gilbert, E.R.; Flinn, J.E.; Wolfer, W.G.

    1977-05-01

    Macroscopic measurement of the deformations arising from swelling and creep during neutron irradiation indicate that both processes are dependent on the magnitude and possibly the sign of the applied stress state. Current modeling efforts also indicate that a strong interaction exists between swelling and creep through the stress state. Because the macroscopic distortions arise from the integrated microscopic strains associated with specific microstructural elements, the effect of applied stress on microstructural development has been studied

  19. Effects of irradiation on four solid breeder materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1984-01-01

    The tritium breeding material with the highest lithium atom density, Li 2 O has been observed to incur significant swelling (>4%) under fast reactor irradiation. Such swelling, if unrestrained leads to either unacceptable, induced-strains in adjacent structural material or undesirable design compromises. Fortunately, however, Li 2 O deforms at low temperatures so that swelling strains may be internally accommodated. Laboratory dilational creep experiments were conducted on unirraciated Li 2 O between 500 and 700 0 C in order to provide data for structural analysis of in-reactor experiments and blanket design studies. A densification model agreed with most of the available data. 15 refs

  20. Morphing of geometric composites via residual swelling.

    Science.gov (United States)

    Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P

    2015-08-07

    Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.

  1. Swelling of structural materials in fast neutron reactors

    International Nuclear Information System (INIS)

    Seran, J.L.

    1983-06-01

    The physical origin of swelling in irradiated materials and the main parameters acting on swelling of SS 316 are examined: temperature, neutron dose, dose rate, chemical composition, strain hardening. Results obtained, in Rapsodie and Phenix reactors, with fuel cans and with the hexagonal tube containing the fuel pins are analyzed and compared with results found in litterature. In conclusion hot swelling of SS 316 is too important at high doses and is will be replaced by austenitic steels stabilized by Ti and ferritic steels or high nickel steels with structural hardening [fr

  2. Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver

    Directory of Open Access Journals (Sweden)

    Damian Jozef Flis

    2016-01-01

    Full Text Available The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1 plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.

  3. Initial decay process of radicals induced in irradiated food

    International Nuclear Information System (INIS)

    Kaimori, Yoshihiko; Sakamoto, Yuki; Nakamura, Hideo; Ukai, Mitsuko; Kikuchi, Masahiro; Shimoyama, Yuhei; Kobayashi, Yasuhiko; Kameya, Hiromi

    2011-01-01

    In order to determine radial decay behaviors of γ-irradiated food, we analyzed radicals in the food using ESR. We detected the ESR signal of specimens just several minutes after irradiation. The singlet signal intensity at g=2.0, originated from organic free radicals was increased as followed by the increasing radiation dose. Singlet signal intensity that increased by γ-irradiation was decreased with time. The phenomena of decay of the ESR singlet signal showed two phase that are rapid decay and slow decay. It was suggested that those two phase decay is due to at least the two radical species. Also we concluded that after three hours of radiation treatment long life radical as ESR signal intensity was detected in irradiated specimen; black pepper, green coffee bean and ginseng, showed the same decay phenomena. But the signal intensity of irradiated black pepper was three times larger than that of irradiated green coffee bean and irradiated ginseng. (author)

  4. Impact of the injected interstitial on the correlation of charged-particle and neutron-induced radiation damage

    International Nuclear Information System (INIS)

    Garner, F.A.

    1983-01-01

    The successful conclusion of an intercorrelation program developed in the U.S. Breeder program has provided significant insight on the factors governing the swelling that develops in ion-bombardment studies and its relationship to the swelling that occurs during neutron irradiation. It appears that the injected interstitial or a related phenomenon exerts a pronounced influence on ion-induced swelling. This conclusion has ramifications with respect to the conduct and interpretation of ion irradiation experiments employed to study the effect of helium or composition on swelling

  5. Identification of irradiation treatment in processed food. Pt. 2. Evaluation of a SPE-method for analyzing irradiation induced hydrocarbons

    International Nuclear Information System (INIS)

    Hartmann, M.; Ammon, J.; Berg, H.

    1996-01-01

    This paper deals with a solid phase extraction (SPE) method for the isolation of irradiation induced hydrocarbons which can replace the column chromatography described in the paragraph 35 LMBG (German Food Law) procedure L06.00-37. Using this new method, only a tenth of solvents and column material is necessary. The SPE method was a good as LC-LC-GC/FID or LC-LC-GC/MS in analyzing new or complex matrices like paprika or salmon. Additionally, it is fast, cheap and easy to perform. As far as we know, the detection of irradiation traetment in paprika powder by analyzing irradiation induced hydrocarbons has not been described before. The new method is a good alternative for the commonly used thermoluminescence procedure. (orig.) [de

  6. Effect of irradiation on the acinar cells of submandibular gland in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To observe the histologic changes and clusterin expression in the acinar cells of the submandibular gland in streptozotocin-induced diabetic rat following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the Sprague-Dawley rats by injecting streptozotocin, while the control rats were injected with citrate buffer only. After 5 days, rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histologic and immunohistochemical methods. Morphologic change of acinar cells was remarkable in the diabetic group, but was not observed in the diabetic-irradiated group. Necrotic tissues were observed in the diabetic-irradiated group. Coloring of toluidine blue stain was most increased at 14 days in the diabetic group, however there were no significant change throughout the period of the experiment in the diabetic-irradiated group. Expression of clusterin was most significant at 14 days in the diabetic group, but gradually decreased with time after 7 days in the diabetic-irradiated group. Degeneration of clusterin was observed in the diabetic-irradiated group. This experiment suggests that the acinar cells of submandibular gland in rats are physiologically apoptosis by the induction of diabetes, but that the apoptosis is inhibited and the acinar cells necrotized after irradiation.

  7. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K., E-mail: fujiik@inss.co.jp; Fukuya, K.

    2016-02-15

    Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni–Si or Ni–Si–Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni–Si clusters (3–4 nm in diameter), and large Ni–Si and Ni–Si–Mn clusters (8–10 nm in diameter). The total cluster number density was 7.7 × 10{sup 23} m{sup −3}. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni–Si clusters correspond to γ′ phase precipitates while the Ni–Si–Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.

  8. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Fujii, K.; Fukuya, K.

    2016-01-01

    Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni–Si or Ni–Si–Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni–Si clusters (3–4 nm in diameter), and large Ni–Si and Ni–Si–Mn clusters (8–10 nm in diameter). The total cluster number density was 7.7 × 10"2"3 m"−"3. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni–Si clusters correspond to γ′ phase precipitates while the Ni–Si–Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.

  9. Irradiation response in titanium modified austenitic stainless steels prepared by rapid solidification processing. Pt. 3. A model for the effect of titanium addition

    Energy Technology Data Exchange (ETDEWEB)

    Imeson, D.; Tong, C.H.; Parker, C.A.; Vander Sande, J.B.; Grant, N.J.; Harling, O.K. (Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering; Massachusetts Inst. of Tech., Cambridge (USA). Nuclear Reactor Lab.)

    1984-05-01

    Titanium carbide precipitation on dislocations during irradiation and recoil-induced particle dissolution are considered. The outline analysis given indicates that complete swelling suppression may occur in favorable conditions due to a counterbalancing of the effective dislocation interstitial bias. The behavior is, however, not stable against a return to normal swelling levels for type 316 steels. A model is presented which may serve as a basis for the interpretation of some aspects of the irradiation response in this system.

  10. Study on cellular survival adaptive response induced by low dose irradiation of 153Sm

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Xiao Dong

    1999-01-01

    The present study engages in determining whether low dose irradiation of 153 Sm could cut down the responsiveness of cellular survival to subsequent high dose exposure of 153 Sm so as to make an inquiry into approach the protective action of adaptive response by second irradiation of 153 Sm. Experimental results indicate that for inductive low dose of radionuclide 153 Sm 3.7 kBq/ml irradiated beforehand to cells has obvious resistant effect in succession after high dose irradiation of 153 Sm 3.7 x 10 2 kBq/ml was observed. Cells exposed to low dose irradiation of 153 Sm become adapted and therefore the subsequent cellular survival rate induced by high dose of 153 Sm is sufficiently higher than high dose of 153 Sm merely. It is evident that cellular survival adaptive response could be induced by pure low dose irradiation of 153 Sm only

  11. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Joo [Department of Biobased Materials, College of Agriculture and Life Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Shin, Soo-Jeong [Department of Wood and Paper Science, College of Agriculture and Life Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2011-07-15

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using {sup 1}H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: {yields} The more severe degradation of structural components induced by higher irradiation. {yields} Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. {yields} Xylan was more sensitive to electron beam irradiation than cellulose.

  12. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    Sung, Yong Joo; Shin, Soo-Jeong

    2011-01-01

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1 H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  13. Relaxation behavior and dose dependence of radiation induced radicals in irradiated mango

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kakita, Daisuke; Kaimori, Yoshihiko; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    Mangoes are imported to Japan after treated with hot water. Recently, irradiated mangoes imported to U. S. are widely used. This paper reports on the ESR method for analyzing the radiation induced radicals of irradiated mangoes. Upon the γ ray irradiation, a strong single peak in the flesh and skin of mangoes was observed at g=2.004. This singlet peak may be attributed to organic free radicals. The ESR spectra of the flesh and skin of mangoes showed the radiation induced radicals due to cellulose by irradiation over 12 kGy. The relaxation times (T 1 and T 2 ) of the singlet signal were calculated. T 2 showed dose response according to increasing the irradiation dose levels, while T 1 was almost constant. The value of (T 1 T 2 ) 1/2 showed the dependence of irradiation dose level. (author)

  14. Gaseous swelling of B4C and UO2 fuel: similarities and differences

    International Nuclear Information System (INIS)

    Evdokimov, I.; Khoruzhii, O.; Kourtchatov, S.; Likhanskii, V.; Matweev, L.

    2001-01-01

    A major factor limiting the resource of control rods (CRs) for WWER-1000 reactors is their radiation damage. Radiation induced embrittlement of the CRs cladding, core swelling and gaseous internal pressure in CRs result in mechanical core-cladding interaction. This work is devoted to the physical analysis of processes that control the structural changes in neutron absorber elements with B 4 C under irradiation in water reactors. Particularly, the analysis of mechanisms of the helium porosity formation in B 4 C is undertaken. In view of the deficiency of experimental data on the subject, a fruitful approach to the problem is a comparative analysis of the swelling mechanisms in B 4 C absorber and UO 2 fuel. Using this similarity a phenomenological model of fission gas behavior in boron carbide is proposed. The model predictions for radial profile of 10 B burnup under influence of thermal and epithermal neutrons are compared with experimental results. The main results show that despite the external similarity of the process of fission gas accumulation in UO 2 and in B 4 C, phenomenology of gaseous swelling is much different for the fuel and the CR core. The reason for that difference is the distinction of physical conditions in irradiated fuel and CR core

  15. Study on silk yellowing induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Tsukada, Masuhiro; Aoki, Akira

    1985-01-01

    The changes in the yellow color of silk threads with total dose of irradiation applied were described and studied by a colorimetric method and by monochrome photography. The change into a yellow color of the specimen in the course of irradiation was clearly detected in photographs using filters, 2B and SC 56 under light conditions at the wavelength of 366 nm. The b/L value measured by colorimetry in undegummed and degummed silk fibers sharply increased in the early stage of irradiation. Yellow color indices (b/L) of the specimen subjected to gamma-irradiation continued to increase and the yellow color of the silk threads became more pronounced above a total dose of irradiation of 21 Mrad. The b/L value of the undegummed silk fiber which had deen irradiated was about 2 times that of the degummed silk fiber. (author)

  16. Effect of irradiation on unscheduled DNA synthesis induced by 4-nitroquinoline in tracheal epithelium of rats

    International Nuclear Information System (INIS)

    Hahn, F.F.; Kennedy, R.; Brooks, A.L.

    1986-01-01

    Unscheduled DNA synthesis (UDS) was determined in rat epithelium by autoradiographic techniques to determine the influence of prior irradiation on the ability of the cells to repair mutagenic damage induced by 4-nitroquionoline (4NQO). UDS was stimulated by in vitro exposure to 4NPO. However, prior whole-body irradiation of rats with either 50 or 300 rad did not alter the UDS induced by 4NQO. The results of this study do not support the hypothesis that irradiation can induce DNA repair enzymes in respiratory tract epithelium. 5 references, 3 figures

  17. Effect of melatonin and time of administration on irradiation-induced damage to rat testes

    Directory of Open Access Journals (Sweden)

    G. Take

    2009-07-01

    Full Text Available The effect of ionizing irradiation on testes and the protective effects of melatonin were investigated by immunohistochemical and electron microscopic methods. Eighty-two adult male Wistar rats were divided into 10 groups. The rats in the irradiated groups were exposed to a sublethal irradiation dose of 8 Gy, either to the total body or abdominopelvic region using a 60Co source at a focus of 80 cm away from the skin in the morning or evening together with vehicle (20% ethanol or melatonin administered 24 h before (10 mg/kg, immediately before (20 mg/kg and 24 h after irradiation (10 mg/kg, all ip. Caspace-3 immunoreactivity was increased in the irradiated group compared to control (P < 0.05. Melatonin-treated groups showed less apoptosis as indicated by a considerable decrease in caspace-3 immunoreactivity (P < 0.05. Electron microscopic examination showed that all spermatogenic cells, especially primary spermatocytes, displayed prominent degeneration in the groups submitted to total body and abdominopelvic irradiation. However, melatonin administration considerably inhibited these degenerative changes, especially in rats who received abdominopelvic irradiation. Total body and abdominopelvic irradiation induced identical apoptosis and testicular damage. Chronobiological assessment revealed that biologic rhythm does not alter the inductive effect of irradiation. These data indicate that melatonin protects against total body and abdominopelvic irradiation. Melatonin was more effective in the evening abdominopelvic irradiation and melatonin-treated group than in the total body irradiation and melatonin-treated group.

  18. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  19. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  20. Degradation mechanism of polyurethane foam induced by electron beam irradiation

    International Nuclear Information System (INIS)

    Huang Wei; Fu Yibei; Bian Zhishang; He Meiying

    2002-01-01

    The degradation mechanism of irradiated polyurethane foam has been studied in detail. The changes of chemical structure and micro-phase separation have been determined by DTG. The gas products from irradiated samples are analyzed quantitatively and qualitatively by GC. The degradation mechanism of irradiated polyurethane foam has been deduced according to the experimental results. It provides some basis of the application on the polyurethane in the radiation field

  1. Induced effect of irradiated exogenous DNA on wheat

    International Nuclear Information System (INIS)

    Li Zhongjie; Sun Guangzu; Wang Guangjin

    1996-01-01

    Irradiated exogenous DNA introduced into wheat can give rise to break of DNA-chain and damage of part of alkali radicals. Introducing exogenous DNA irradiated by γ rays could increase Do fructification rate and decrease seed size and plumpness. These tendencies became obvious with dose increase. In comparison with control DNA, introducing DNA irradiated could raise evidently mutagenic effect of pollen tube pathway technique

  2. Gamma irradiation induced ultrastructural changes in Paracoccidioides brasiliensis yeast cells

    International Nuclear Information System (INIS)

    Demicheli, Marina C.; Andrade, Antero S.R.; Goes, Alfredo Miranda

    2007-01-01

    Paracoccidioides brasiliensis is a thermally dimorphic fungus agent of paracoccidioidomycosis, a deep-seated systemic infection of humans with high prevalence in Latin America. Up to the moment no vaccine has still been reported. Ionizing radiation can be used to attenuate pathogens for vaccine development and we have successfully attenuated yeast cells of P. brasiliensis by gamma irradiation. The aim of the present study was to examine at ultrastructural level the effects of gamma irradiation attenuation on the morphology of P. brasiliensis yeast cells. P. brasiliensis (strain Pb-18) cultures were irradiated with a dose of 6.5 kGy. The irradiated cells were examined by scanning and also transmission electron microscopy. When examined two hours after the irradiation by scanning electron microscopy the 6.5 kGy irradiated cells presented deep folds or were collapsed. These lesions were reversible since examined 48 hours after irradiation the yeast have recovered the usual morphology. The transmission electron microscopy showed that the irradiated cells plasma membrane and cell wall were intact and preserved. Remarkable changes were found in the nucleus that was frequently in a very electrodense form. A extensive DNA fragmentation was produced by the gamma irradiation treatment. (author)

  3. Brain anomalies induced by gamma irradiation in prenatal period

    International Nuclear Information System (INIS)

    Schmidt, S.L.

    1992-01-01

    Gamma irradiation has been utilized in order to produce cortical and callosal abnormalities. We have also checked for the presence of the aberrant longitudinal bundle in the brains of mice born acallosal due to prenatal irradiation is also checked. Pregnant mice were exposed to gamma irradiation from a 6 0 Co source at 16, 17 and 19 days of gestational age (E 16, E 17 and E 19) with total doses of 2 Gy and 3 Gy. At 60 days postnatal the offspring of irradiated animals were intra cardiac perfused, the brains were removed from the cranio and cut into coronal or para sagittal sections. (author)

  4. Radiation effect and response of DNA synthesis in lymphocytes induced by low dose irradiation

    International Nuclear Information System (INIS)

    Zhao Yujie; Su Liaoyuan; Zou Huawei; Kong Xiangrong

    1999-01-01

    The ability of DNA synthesis in lymphocytes were measured by using 3 H-TdR incorporation method. This method was used to observe the damage of lymphocytes irradiated by several challenge doses (0.5-0.8 Gy) and adaptive response induced by previous low dose irradiation. The results show that DNA synthesis was inhibited by challenge dose of radiation and was adapted by previous 0.048 Gy irradiation

  5. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  6. Effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in mice.

    Science.gov (United States)

    Satoh, T; Murata, M; Iwabuchi, N; Odamaki, T; Wakabayashi, H; Yamauchi, K; Abe, F; Xiao, J Z

    2015-01-01

    Probiotics have been shown to have a preventative effect on skin photoaging induced by short term UV irradiation, however, the underlying mechanisms and the effect of probiotics on skin photoaging induced by chronic UV irradiation remain unclear. In this study, we investigated the effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in hairless mice. Mice were irradiated with UVB three times weekly and orally administered B. breve B-3 (2×10(9) cfu/mouse /day) for 7 weeks. Nonirradiated mice and UVB-irradiated mice without probiotic treatment were used as controls. B. breve B-3 significantly suppressed the changes of transepidermal water loss, skin hydration, epidermal thickening and attenuated the damage to the tight junction structure and basement membrane induced by chronic UVB irradiation. Administration of B. breve B-3 tended to suppress the UV-induced interleukin-1β production in skin (P=0.09). These results suggest that B. breve B-3 could potentially be used to prevent photoaging induced by chronic UV irradiation.

  7. Swelling variability of reference steels in HVEM studies

    International Nuclear Information System (INIS)

    Garner, F.A.; Mastel, B.

    1975-09-01

    A series of low-fluence electron irradiation experiments (0-15 dpa) were conducted on 316 stainless steels to explore the effects of the following variables: heat variations, FTR duct vs tubes, fabrication, annealing, Si content. Conclusions: the swelling rate became constant (max 1.3 percent/dpa) in all irradiations after an incubation period, which is variable. There is no difference in the steady-state swelling rate between various FTR heats, for annealing temperature variations, or for variation of Si content from 0.4 to 2 percent

  8. The selective and non-selective cyclooxygenase inhibitors valdecoxib and piroxicam induce the same postoperative analgesia and control of trismus and swelling after lower third molar removal

    Directory of Open Access Journals (Sweden)

    V. Benetello

    2007-08-01

    Full Text Available We compared the clinical efficacy of orally administered valdecoxib and piroxicam for the prevention of pain, trismus and swelling after removal of horizontally and totally intrabony impacted lower third molars. Twenty-five patients were scheduled to undergo removal of symmetrically positioned lower third molars in two separate appointments. Valdecoxib (40 mg or piroxicam (20 mg was administered in a double-blind, randomized and crossed manner for 4 days after the surgical procedures. Objective and subjective parameters were recorded for comparison of postoperative courses. Both agents were effective for postoperative pain relief (N = 19. There was a similar mouth opening at suture removal compared with the preoperative values (86.14 ± 4.36 and 93.12 ± 3.70% of the initial measure for valdecoxib and piroxicam, respectively; ANOVA. There was no significant difference regarding the total amount of rescue medication taken by the patients treated with valdecoxib or piroxicam (173.08 ± 91.21 and 461.54 ± 199.85 mg, respectively; Wilcoxon test. There were no significant differences concerning the swelling observed on the second postoperative day compared to baseline measures (6.15 ± 1.84 and 8.46 ± 2.04 mm for valdecoxib and piroxicam, respectively; ANOVA or on the seventh postoperative day (1.69 ± 1.61 and 2.23 ± 2.09 mm for valdecoxib and piroxicam, respectively; ANOVA. The cyclooxygenase-2 selective inhibitor valdecoxib is as effective as the non-selective cyclooxygenase inhibitor piroxicam for pain, trismus and swelling control after removal of horizontally and totally intrabony impacted lower third molars.

  9. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis In 't Veld, A.J.

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a

  10. Irradiation-induced growth of zircaloy and its effects on the mechanical design of fuel assemblies

    International Nuclear Information System (INIS)

    Yao Pu

    1991-01-01

    Zircaloy growth could be induced due to irradiation. The ammount of growth is described as a function of texture, irradiation temperature, fast neutron fluence and the reduction of cold work, and it should be given great attention in the mechanical design of fuel assemblies

  11. Influence of irradiation upon neonative tolerance state induced in rabbit

    International Nuclear Information System (INIS)

    Servant, P.; Marquer, C.

    An attempt was made to determine the effect of whole-body irradiation on the establishment of a state of tolerance in new-born rabbits by the intraperitoneal injection of 1mg of human serum albumin. Simultaneous irradiation (doses of 200, 150, 100 rads) and antigen injections inhibited the establishment of this tolerance [fr

  12. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  13. Effect of irradiation on the periodontal tissues in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Park, Dong Sin; Hwang, Eui Hwan; Lee, Sang Rae

    2005-01-01

    To observe the histopathological changes in the periodontal tissues of mandibular molars in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250 gm were divided into four groups; control, diabetes, irradiation, and diabetes - irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control and irradiation groups were injected with citrate buffer only. After 5 days, the head and neck region of the rats in irradiation and diabetes - irradiation groups were irradiated with a single absorbed dose of 10 Gy. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the mandibular molars were sectioned and observed using a histopathological method. In the diabetes group, osteoclastic activity was observed in the alveolar bone and the root throughout the period of experiment. Also, osteoblastic and fibroblastic activities were markedly decreased. In the irradiation group, the osteoclasts were observed in the alveolar bone and the dilated capillaries were increased in the early experimental phases. However, vigorous osteoblastic activity was noted in the late experimental phases. In the diabetes- irradiation group, osteoblastic activity in the alveolar bone and the root was observed in the early experimental phases. However, there were no resorption and osteoblastic activity in the alveolar bone and the root in the late experimental phases, and obvious atrophic change of fibrous tissues was noted. This experiment suggests that osteoblastic activity was caused by irradiation in the late experimental phases, but atrophic change of the periodontal ligament tissues was induced after irradiation in diabetic state.

  14. Field- and irradiation-induced phenomena in memristive nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylov, A.N.; Gryaznov, E.G.; Belov, A.I.; Korolev, D.S.; Sharapov, A.N.; Guseinov, D.V.; Tetelbaum, D.I.; Tikhov, S.V.; Malekhonova, N.V.; Bobrov, A.I.; Pavlov, D.A.; Gerasimova, S.A.; Kazantsev, V.B.; Agudov, N.V.; Dubkov, A.A. [Lobachevsky University, Nizhny Novgorod (Russian Federation); Rosario, C.M.M.; Sobolev, N.A. [Departamento de Fisica and I3N, Universidade de Aveiro (Portugal); Spagnolo, B. [Dipartimento di Fisica e Chimica, Universita di Palermo, Group of Interdisciplinary Theoretical Physics (Italy); CNISM, Unita di Palermo (Italy)

    2016-12-15

    The breakthrough in electronics and information technology is anticipated by the development of emerging memory and logic devices, artificial neural networks and brain-inspired systems on the basis of memristive nanomaterials represented, in a particular case, by a simple 'metal-insulator-metal' (MIM) thin-film structure. The present article is focused on the comparative analysis of MIM devices based on oxides with dominating ionic (ZrO{sub x}, HfO{sub x}) and covalent (SiO{sub x}, GeO{sub x}) bonding of various composition and geometry deposited by magnetron sputtering. The studied memristive devices demonstrate reproducible change in their resistance (resistive switching - RS) originated from the formation and rupture of conductive pathways (filaments) in oxide films due to the electric-field-driven migration of oxygen vacancies and / or mobile oxygen ions. It is shown that, for both ionic and covalent oxides under study, the RS behaviour depends only weakly on the oxide film composition and thickness, device geometry (down to a device size of about 20 x 20 μm{sup 2}). The devices under study are found to be tolerant to ion irradiation that reproduces the effect of extreme fluences of high-energy protons and fast neutrons. This common behaviour of RS is explained by the localized nature of the redox processes in a nanoscale switching oxide volume. Adaptive (synaptic) change of resistive states of memristive devices is demonstrated under the action of single or repeated electrical pulses, as well as in a simple model of coupled (synchronized) neuron-like generators. It is concluded that the noise-induced phenomena cannot be neglected in the consideration of a memristive device as a nonlinear system. The dynamic response of a memristive device to periodic signals of complex waveform can be predicted and tailored from the viewpoint of stochastic resonance concept. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Field- and irradiation-induced phenomena in memristive nanomaterials

    International Nuclear Information System (INIS)

    Mikhaylov, A.N.; Gryaznov, E.G.; Belov, A.I.; Korolev, D.S.; Sharapov, A.N.; Guseinov, D.V.; Tetelbaum, D.I.; Tikhov, S.V.; Malekhonova, N.V.; Bobrov, A.I.; Pavlov, D.A.; Gerasimova, S.A.; Kazantsev, V.B.; Agudov, N.V.; Dubkov, A.A.; Rosario, C.M.M.; Sobolev, N.A.; Spagnolo, B.

    2016-01-01

    The breakthrough in electronics and information technology is anticipated by the development of emerging memory and logic devices, artificial neural networks and brain-inspired systems on the basis of memristive nanomaterials represented, in a particular case, by a simple 'metal-insulator-metal' (MIM) thin-film structure. The present article is focused on the comparative analysis of MIM devices based on oxides with dominating ionic (ZrO_x, HfO_x) and covalent (SiO_x, GeO_x) bonding of various composition and geometry deposited by magnetron sputtering. The studied memristive devices demonstrate reproducible change in their resistance (resistive switching - RS) originated from the formation and rupture of conductive pathways (filaments) in oxide films due to the electric-field-driven migration of oxygen vacancies and / or mobile oxygen ions. It is shown that, for both ionic and covalent oxides under study, the RS behaviour depends only weakly on the oxide film composition and thickness, device geometry (down to a device size of about 20 x 20 μm"2). The devices under study are found to be tolerant to ion irradiation that reproduces the effect of extreme fluences of high-energy protons and fast neutrons. This common behaviour of RS is explained by the localized nature of the redox processes in a nanoscale switching oxide volume. Adaptive (synaptic) change of resistive states of memristive devices is demonstrated under the action of single or repeated electrical pulses, as well as in a simple model of coupled (synchronized) neuron-like generators. It is concluded that the noise-induced phenomena cannot be neglected in the consideration of a memristive device as a nonlinear system. The dynamic response of a memristive device to periodic signals of complex waveform can be predicted and tailored from the viewpoint of stochastic resonance concept. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Influence of Magnolol on the bystander effect induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W.; Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, the influence of Magnolol on the bystander effect in alpha-particle irradiated Chinese hamster ovary (CHO) cells was examined. The bystander effect was studied through medium transfer experiments. Cytokinesis-block micronucleus (CBMN) assay was performed to quantify the chromosome damage induced by alpha-particle irradiation. Our results showed that the alpha-particle induced micronuclei (MN) frequencies were suppressed with the presence of Magnolol.

  17. Inhomogeneous strain induced by fast neutron irradiation in NaKSO/sub 4/ crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-11-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO/sub 4/ crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO/sub 4/, as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses.

  18. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Kassem, M.E.; El-Khatib, A.; El-Gamal, M.A.; El-Wahidy, E.F.

    1987-01-01

    The paper reports the effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals in the temperature range 400-475 K. Results are presented for the thermal expansion, tensile strain and specific heat of NaKSO 4 , as a function of neutron irradiation dose. All these results revealed an inhomogeneous strain induced by the radiation. It is suggested that this induced inhomogeneous strain could be used to detect neutron exposure doses. (UK)

  19. Swelling characteristics of buffer material

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Fujita, Tomoo

    1999-12-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanism, infiltration of groundwater from the surrounding rock into the EBS, generation of swelling pressure in the buffer due to water infiltration and the stress imposed by the overburden pressure. These phenomena are not all independent, but can be strongly influenced by, and coupled with, each other. Evaluating these coupled thermo-hydro-mechanical phenomena is important in order to clarify the initial transient behavior of the engineered barrier system within the near-field. This report describes the results on measurement of swelling amount and stress at boundary built up under restraint condition with water uptake. The following results are identified. (1) The swelling stress of buffer material at saturated condition tends to be independent of effects of pore water pressure and synthetic sea water, and to decrease with increasing temperature. The swelling stress can be explained by the effective dry density. (2) The strain due to swelling estimated from the results of the swelling amount of buffer material is proportional to swelling stress. (3) The swelling stress and strain under unsaturated condition increase with water uptake. (author)

  20. Thermal Effects Induced by Laser Irradiation of Solids

    International Nuclear Information System (INIS)

    Galovic, S.

    2004-01-01

    A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation

  1. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  2. Polymerization of calcium caseinates solutions induced by gamma irradiation

    International Nuclear Information System (INIS)

    Lacroix, M.; Jobin, M.; Mezgheni, E.; Srour, M.; Boileau, S.

    1998-01-01

    Solutions of calcium caseinate (5%) combined with propylene glycol (PG) or triethylene glycol(TEG) (0, 2.5% and 5%) and used for the development of edible films and coatings, were irradiated at doses between 0 to 128 kGy. Solutions were chromatographed through toyopearl HW 55F resin to observe the effect of irradiation on cross-link reactions. In unirradiated calcium caseinate solutions, two peaks could be observed (fractions 30 and 37) while samples irradiated at 64 kGy and 128 kGy showed one shifted peak at fraction 32 and 29 respectively. No effect of the plasticizers was observed. According to proteins standards of knowed molecular weights, the molecular weight of calcium caseinate increased approximately 10 times when irradiated at 128 kGy and 5 times when irradiated at 64 kGy. The physico-chemical properties of bio-films prepared with the irradiated solutions, demonstrated that tensile strength at break increased with increase of irradiation dose. A maximum dose was obtained at 16 kGy

  3. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  4. Intestinal metaplasia induced by x-irradiation in rat

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Terada, Yoritaka; Fujii, Isao; Yamamoto, Yukiko; Takizawa, Shoichi

    1978-01-01

    Total 400 rad of x-ray was given in 100 or 150 rad doses to the whole body of rats at intervals of one week, and one year and a half later, rats were killed. Disaccharidase was formed in most of animals, intestinal metaplasia only with goblet cells occurred in 65% of animals, and that with intestinal type of lacuna occurred in 36% of them. When 500 rad of x-ray was irradiated to each part of stomach day after day up to the total dose of 3,000 rad, biochemical intestinal metaplasia already occurred one week after the irradiation, and intestinal type lacuna occurred 2 months after the irradiation. Intestinal type lacuna was recognized in all animals killed 499 days after the irradiation, and intestinal metaplasia with Paneth's cells occurred in 6 out of 11 cases (56%). When a dose of 1,000 rad was irradiated to stomach three times at intervals of 2 days up to the total of 3,000 rad, much intestinal type lacuna was recognized 2 months after the irradiation, gastric adenoid cancerous changes appeared 4 months after, and gastric adenoid cancer occurred 6 months after. The above-mentioned results clarified that even if x-ray of a small dose was irradiated, intestinal metaplasia occurred, and that the period from the irradiation to occurrence of intestinal metaplasia was shortened by increasing a dose of x-ray. It was also clarified that not only intestinal metaplasia but also gastric adenoic cancer occurred due to a great amount of x-ray irradiation. (Ueda, J.)

  5. Intestinal metaplasia induced by x-irradiation in rat

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H; Terada, Y; Fujii, I; Yamamoto, Y; Takizawa, S [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1978-04-01

    Total 400 rad of x-ray was given in 100 or 150 rad doses to the whole body of rats at intervals of one week, and one year and a half later, rats were killed. Disaccharidase was formed in most of animals, intestinal metaplasia only with goblet cells occurred in 65% of animals, and that with intestinal type of lacuna occurred in 36% of them. When 500 rad of x-ray was irradiated to each part of stomach day after day up to the total dose of 3,000 rad, biochemical intestinal metaplasia already occurred one week after the irradiation, and intestinal type lacuna occurred 2 months after the irradiation. Intestinal type lacuna was recognized in all animals killed 499 days after the irradiation, and intestinal metaplasia with Paneth's cells occurred in 6 out of 11 cases (56%). When a dose of 1,000 rad was irradiated to stomach three times at intervals of 2 days up to the total of 3,000 rad, much intestinal type lacuna was recognized 2 months after the irradiation, gastric adenoid cancerous changes appeared 4 months after, and gastric adenoid cancer occurred 6 months after. The above-mentioned results clarified that even if x-ray of a small dose was irradiated, intestinal metaplasia occurred, and that the period from the irradiation to occurrence of intestinal metaplasia was shortened by increasing a dose of x-ray. It was also clarified that not only intestinal metaplasia but also gastric adenoic cancer occurred due to a great amount of x-ray irradiation.

  6. Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Hyde, J.M.; Ray, P.H.N.; Vatter, I.A.

    1999-01-01

    Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200 C/0.5h heat treated (HT) and heat treated and 450 C/2000h aged (HTA) conditions. The HT condition was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209 C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the program. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425--475 C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA

  7. Contribution of caspase-3 differs by p53 status in apoptosis induced by X-irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Tokino, Takashi; Watanabe, Naoki

    2001-01-01

    We investigated the effect of p53 status on involvement of caspase-3 activation in cell death induced by X-irradiation, using rat embryonic fibroblasts (REFs) transduced with a temperature-sensitive mutant (mt) p53 gene. Cells with wild-type (wt) p53 showed greater resistance to X-irradiation than cells with mt p53. In cells with wt p53, X-irradiation-induced apoptosis was not inhibited by the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspartyl-aldehyde (Ac-DMQD-CHO) and caspase-3 activity was not elevated following X-irradiation, although induction of p53 and p21/WAF-1 protein was observed. In contrast, irradiated cells with mt p53 showed 89% inhibition of cell death with Ac-DMQD-CHO and 98% inhibition with the antioxidant N-acetyl-L-cysteine (NAC). In cells with mt p53, caspase-3 activity was increased approximately 5 times beyond baseline activity at 24 h after irradiation. This increase was almost completely inhibited by NAC. However, inhibition of caspase-3 by Ac-DMQD-CHO failed to decrease production of reactive oxygen species by cells with mt p53. Differential involvement of caspase-3 is a reason for differences in sensitivity to X-irradiation in cells with different p53 status. Caspase-3 activation appears to occur downstream from generation of reactive oxygen species occurring independently of wt p53 during X-irradiation-induced cell death. (author)

  8. Protection from radiation induced changes in liver and serum transaminase of whole body gamma irradiated rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Roushdy, H.M.; Saada, H.N.; Abdelsamie, M.

    1986-01-01

    Whole body gamma irradiation of rats with a dose of 5.5 Gy induced significant changes in the activity of liver and serum transaminase. The results indicated that this radiation dose caused a significant increase in the activity of serum Got and GPT on the third and seventh days after irradiation. This was followed by significant decreases on the fourteenth post-irradiation day. The activity of Got returned to is control activity, while the activity of GPT was significantly above the control on the twenty ones post-irradiation day. The activity of Got, in the liver of irradiated rats was elevated during the post-irradiation days, but on the twenty one day activity was about the normal value. The activity of liver GPT firstly decreased and then increased very much but attained the control level on the fourteenth after irradiation. The intraperitoneal injection of testosterone-vitamin E mixture 10 days before whole body gamma irradiation caused complete recovery for the activity of liver and serum Got. No indication of remarkable recovery in the case of GPT activity was recorded either in liver or in serum of irradiated rats. The applied mixture could protect against radiation induced changes in Got activity of liver and serum but could not protect or ameliorate the changes which occurred in the activity of GPT of the two tissues. 2 tab

  9. Effects of irradiation on ferritic alloys and implications for fusion reactor applications

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-07-01

    This paper reviews the ADIP irradiation effects data base on ferritic (martensitic) alloys to provide reactor teams with an understanding of how such alloys will behave for fusion reactor first wall applications. Irradiation affects dimensional stability, strength and toughness. Dimensional stability is altered by precipitation and void swelling. Swelling as high as 25% may occur in some ferritic alloys at 500 dpa. Irradiation alters strength both during and following irradiation. Irradiation at low temperatures leads to hardening whereas at higher temperatures and high exposures, precipitate coarsening can result in softening. Toughness can also be adversely affected by irradiation. Failure can occur in ferritic in a brittle manner and irradiation induced hardening causes brittle failure at higher temperatures. Even at high test temperatures, toughness is reduced due to reduced failure initiation stresses. 39 refs

  10. Swift heavy ion irradiation induced modification of structure and ...

    Indian Academy of Sciences (India)

    1Department of Physics, Salipur College, Salipur 754 103, India. 2Department of ... Ion irradiation; nanoparticles; atomic force microscopy; BiFeO3. 1. Introduction .... and to understand their possible origin, a study on power spectral density ...

  11. Irradiation effects on fuels for space reactors

    International Nuclear Information System (INIS)

    Ranken, W.A.; Cronenberg, A.W.

    1984-01-01

    A review of irradiation-induced swelling and gas release experience is presented here for the three principal fuels UO 2 , UC, and UN. The primary advantage of UC and UN over UO 2 is higher thermal conductivity and attendant lower fuel temperature at equivalent pellet diameter and power density, while UO 2 offers the distinct benefit of well-known irradiation performance. Irradiation test results indicate that at equivalent burnup, temperature, and porosity conditions, UC experiences higher swelling than UO 2 or UN. Fission gas swelling becomes important at fuel temperatures above 1320 K for UC, and at somewhat higher temperatures for UO 2 and UN. Evidence exists that at equivalent fuel temperatures and burnups, high density UO 2 and UN experience comparable swelling behavior; however, differences in thermal conductivity influence overall irradiation performance. The low conductivity of UO 2 results in higher thermal gradients which contribute to fuel microcracking and gas release. As a result UO 2 exhibits higher fractional gas release than UN, at least or burnups up to about 3%

  12. Induced disease resistance of satsuma mandarings against penicillium digitatum by gamma irradiation

    International Nuclear Information System (INIS)

    Jeong, Rae Dong

    2017-01-01

    Gamma irradiation, which is a type of ionizing radiation, can be used as a fruit inducible factor. In the present study, the effects of gamma irradiation on the resistance of mandarin fruits against Penicillium digitatum, the causal agent of postharvest green mold disease, were investigated. Pretreatment of a low dose of gamma irradiation effectively reduced the disease incidence and lesion diameter of mandarin fruits inoculated with P. digatatum during storage for 14 d. Interestingly, exposed to 400 Gy of gamma irradiation significantly maintained firmness and stimulated the synthesis of defense-related enzymes, (e.g., β-1,3-glucanase, phenylalanine, peroxidase, and polyphenol oxidase) and pathogenesis-related (PR) genes (e.g., PR-1 and PR-2). Therefore, the gamma irradiation-induced resistance against P. digatatum involves both changes of phenolic compounds and the induction of expression of defense-related genes. In addition, scanning electron microscopy analysis revealed that induced disease resistance by gamma irradiation signifcantly inhibits the growth of P. digatatum in mandarin fruits. These results suggest that the exposure of gamma irradiation is a potential methods for inducing the disease resistance of fruit to postharvest fungal pathogens and for extending the postharvest life of mandarin fruit

  13. Induced disease resistance of satsuma mandarings against penicillium digitatum by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Rae Dong [Dept. of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju (Korea, Republic of)

    2017-06-15

    Gamma irradiation, which is a type of ionizing radiation, can be used as a fruit inducible factor. In the present study, the effects of gamma irradiation on the resistance of mandarin fruits against Penicillium digitatum, the causal agent of postharvest green mold disease, were investigated. Pretreatment of a low dose of gamma irradiation effectively reduced the disease incidence and lesion diameter of mandarin fruits inoculated with P. digatatum during storage for 14 d. Interestingly, exposed to 400 Gy of gamma irradiation significantly maintained firmness and stimulated the synthesis of defense-related enzymes, (e.g., β-1,3-glucanase, phenylalanine, peroxidase, and polyphenol oxidase) and pathogenesis-related (PR) genes (e.g., PR-1 and PR-2). Therefore, the gamma irradiation-induced resistance against P. digatatum involves both changes of phenolic compounds and the induction of expression of defense-related genes. In addition, scanning electron microscopy analysis revealed that induced disease resistance by gamma irradiation signifcantly inhibits the growth of P. digatatum in mandarin fruits. These results suggest that the exposure of gamma irradiation is a potential methods for inducing the disease resistance of fruit to postharvest fungal pathogens and for extending the postharvest life of mandarin fruit.

  14. γ-Irradiation-induced radiolysis of inulin in aqueous solutions

    International Nuclear Information System (INIS)

    Tsyba, I.A.; Revina, A.A.; Shostenko, A.G.

    1997-01-01

    Radiochemical transformations of inulin in aqueous solutions, in air, in the presence of inert gases, helium, nitrogen and in nitrous oxide exposed to various doses of 60 Co γ-irradiation were investigated. It was shown that interactions in inulin with OH radicals are principally responsible for radiolytic decomposition of inulin. The data on radiolysis of more simple model systems were used to make available decomposition spectra of γ-irradiated aerated aqueous solution of inulin. 9 refs., 6 figs

  15. Irradiation-induced precipitation in Ni--Si alloys

    International Nuclear Information System (INIS)

    Barbu, A.; Ardell, A.J.

    1975-07-01

    The microstructures of Ni + ion-irradiated Ni--Si solid-solution alloys, containing 2, 4, 6 and 8 at. percent Si were investigated as a function of dose, dose-rate, and temperature. Results of transmission electron microscopy and other data show the precipitation of γ' (Ni 3 Si) in all samples irradiated at 500 0 C. Characteristics of the precipitates are described and a mechanism for their formation is suggested. (U.S.)

  16. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-01-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  17. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  18. Heavy-ion irradiation induced diamond formation in carbonaceous materials

    International Nuclear Information System (INIS)

    Daulton, T. L.

    1999-01-01

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond

  19. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  20. Spontaneous and x-irradiation induced carcinomas of small intestine in Wistar-Furth rats

    Energy Technology Data Exchange (ETDEWEB)

    Maeura, Y; Kosaki, G; Kitamura, H [Osaka Univ. (Japan). Faculty of Medicine; Nagatomo, T

    1980-04-01

    Spontaneous carcinoma of the small intestine in Wistar-Furth (WF) rats and carcinoma of the small intestine induced by local x-ray irradiation to the abdomen of WF rats without carcinoma were observed, and x-ray sensitivity of the small intestine mucosa was reported. Out of 19 rats with spontaneous carcinoma of the small intestine, 18 also had carcinoma of the colon, and 4 also had gastric cancer. They already had spontaneous carcinoma of the small intestine within 2 weeks after their birth, and the ratio of female and male was 13 : 6. Histological type of this carcinoma in all 19 rats was highly differentiated adenocarcinoma, and small intestine epithelium around carcinoma presented atypical epithelium. As to mice without carcinoma, x-ray, 1,000 R, 1,500 R, and 2,000 R, was irradiated to the abdomen of Sprague-Dawley (SD) and WF rats. In the irradiation with 1,000 R, carcinogenesis was not found in rats of both strains. In the irradiation with 1,500 R, carcinogenesis was hardly found, but in the irradiation with 2,000 R, carcinoma of small intestine occurred in 5 of 17 rats 15 weeks after the irradiation, 9 of 19 rats 25 weeks after the irradiation, and 9 of 14 rats 35 weeks after the irradiation. Histological type of carcinoma in irradiated rats was highly differentiated adenocarcinoma. The incidence of carcinoma in irradiated rats was higher in WF rats than SD rats through the course after the irradiation, which suggested that x-ray sensitivity of WF rats was higher than that of SD rats. Therefore, carcinoma of the small intestine in irradiated mice seemed to be induced by x-ray.

  1. Evaluation of induced radioactivity in 10 MeV-electron irradiated spices, (1)

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Katayama, Tadashi; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Shibata, Setsuko; Toratani, Hirokazu; Takeda, Atsuhiko.

    1994-01-01

    Black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electrons from a linear accelerator to a dose of 100 kGy and radioactivity was measured in order to estimate induced radioactivity in the irradiated foods. Induced radioactivity could not be detected significantly by γ-ray spectrometry in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list of photonuclear reactions which could produce radioactivity below 10 MeV. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H 50 according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from 40 K contained in the samples. (author)

  2. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    International Nuclear Information System (INIS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-01-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  3. A small angle neutron study of irradiation induced microstructures in Cr-Mo-V WWER steels

    International Nuclear Information System (INIS)

    Levit, Vladimir I.; Santos, Ari S.; Louzada, Ana R.R.; Silveira, Cristina M.; Vaniel, Ana Paula H.; Odette, George R.; Mader, Eric

    2000-01-01

    Small angle neutron scattering (SANS) has proven to be a very effective technique for characterizing the ultrafine (∼1 nm) irradiation induced microstructures which are responsible for hardening and the concomitant embrittlement of reactor pressure vessel steels. SANS measurement were carried out on three irradiated and unirradiated weld materials of WWER- type on 8 m instrument at the National Institute of Standards and Technology, Washington, USA. Small (r m < 1 nm) irradiation induced features were found for all three materials. Were found volume fractions, number densities and ratios of magnetic to nuclear scattering. Some analyses of the irradiation induced precipitation nature and possible chemical composition were made by comparison of the results with other reactor materials SANS and Atom Probe Field Ion Microscopy data. (author)

  4. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Terentyev, Dmitry, E-mail: dterenty@SCKCEN.BE [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Yu, Long; Song, Dingkun [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China)

    2015-11-15

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  5. The irradiation induced creep of graphite under accelerated damage produced by boron doping

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.

    1975-01-01

    The presence of boron enhances fast neutron irradiation damage in graphite by providing nucleation sites for interstitial loop formation. Doping with 11 B casues an increase in the irradiation induced macroscopic dimensional changes, which have been shown to result from an acceleration in the differential crystal growth rate for a given carbon atom displacement rate. Models of irradiation induced creep in graphite have centred around those in which creep is induced by internal stresses due to the anisotopic crystal growth, and those in which creep is activated by atomic displacements. A creep test on boron doped graphite has been performed in an attempt to establish which of these mechanisms is the determining factor. An isotropic nuclear graphite was doped to a 11 B concentration of 0.27 wt.%. The irradiation induced volume shrinkage rate at 750 0 C increased by a factor of 3 over that of the virgin graphite, in agreement with predictions from the earlier work, but the total creep strains were comparable in both doped and virgin samples. This observation supports the view that irradiation induced creep is dependent only on the carbon atom displacement rate and not on the internal stress level determined by the differential crystal growth rate. The implications of this result on the irradiation behaviour of graphite containing significant concentrations of boron are briefly discussed. (author)

  6. Search for the lowest irradiation dose from literatures on radiation-induced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Kusama, T [Tokyo Univ. (Japan). Faculty of Medicine

    1975-12-01

    A survey of past case reports concerning radiation-induced breast cancer was carried out in order to find the lowest irradiation dose. The search of literature published since 1951 revealed 10 cases of radiation-induced breast cancer. Only 5 cases had precise descriptions of the irradiation dose. The lowest irradiation dose was estimated at 1470 rads in the case of external X-ray irradiation for tuberous angioma. All of cases of radiation-induced breast cancer had received radiation for the treatment of nonmalignant tumors, such as pulmonary tuberculosis, mastitis, and tuberous angioma. There also were three statistical studies. The first concerned atomic bomb survivors, the second, pulmoanry tuberculous patients subjected to frequent fluoroscopies, and the third, patients of acute post partum mastitis. These statistical studies had revealed a significant increase in the incidence of breast cancer in the irradiated group, but there was little information about the lowest irradiation dose. It was noticed that radiation-induced breast cancer was more numerous in the upper inner quadrant of the breast. Most histopathological findings of radiation-induced breast cancer involved duct cell carcinoma. The latent period was about 15 years.

  7. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V., E-mail: fedorov@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Til, S. van; Stijkel, M.P. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Nakamichi, M. [Japan Atomic Energy Agency, Rokkasho (Japan); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2016-01-15

    Titanium beryllides are considered as advanced candidate material for neutron multiplier for the helium cooled pebble bed (HCPB) and/or the water cooled ceramic breeder (WCCB) breeder blankets. In the HIDOBE-01 (HIgh DOse irradiation of BEryllium) experiment, beryllium and beryllide pellets with 5 at% and 7 at% Ti are irradiated at four different target temperatures (T{sub irr}): 425 °C, 525 °C, 650 °C and 750 °C up to the dose corresponding to 3000 appm He production in beryllium. The pellets were supplied by JAEA. During post irradiation examinations the critical properties of volumetric swelling and tritium retention were studied. Both titanium beryllide grades show significantly less swelling than the beryllium grade, with the difference increasing with the irradiation temperature. The irradiation induced swelling was studied by using direct dimensions. Both beryllide grades showed much less swelling as compare to the reference beryllium grade. Densities of the grades were studied by Archimedean immersion and by He-pycnometry, giving indications of porosity formation. While both beryllide grades show no significant reduction in density at all irradiation temperatures, the beryllium density falls steeply at higher T{sub irr}. Finally, the tritium release and retention were studied by temperature programmed desorption (TPD). Beryllium shows the same strong tritium retention as earlier observed in studies on beryllium pebbles, while the tritium inventory of the beryllides is significantly less, already at the lowest T{sub irr} of 425 °C.

  8. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  9. Development of a swelling equation for 20%-CW 316 in a fusion device

    International Nuclear Information System (INIS)

    1980-01-01

    The difficulties involved in the development of swelling correlations for AISI 316 in fusion environments are discussed. A set of void and bubble-swelling correlations has been developed which incorporates the limited available data from EBR-II and HFIR irradiations. It appears that at high fluences helium may play a minor role in the determination of total swelling over a considerable temperature range

  10. Pathological study about two autopsy cases of bilateral irradiation pneumonitis induced by unilateral irradiation

    International Nuclear Information System (INIS)

    Yamauchi, Noriko; Tajima, Yo; Iio, Masaaki; Oshima, Takeo; Iino, Koichi.

    1978-01-01

    The first case is a 73-year-old man with left lung cancer. Seven days after completion of radiotherapy 7,000 rad, a chest roentgenogram showed diffuse bilateral pneumonia. The second case is a 61-year-old woman with right lung cancer and about one month after completion of radiotherapy 2,600 rad, a chest roentgenogram showed bilateral pneumonia. Pathological findings, all lobes of both lungs of these cases showed acute interstitial pneumonitis. The pathogenesis of irradiation pneumonitis is poorly understood. Several investigators thought that the pathogenesis of irradiation pneumonitis was caused by autoimmune mechanism, they carried out sero-pathological studies and demonstrated the bilateral pneumonia caused by unilateral irradiation. (author)

  11. Gamma ray irradiation to roots of tea-plants and induced mutant system

    International Nuclear Information System (INIS)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa

    1990-01-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.)

  12. Gamma ray irradiation to roots of tea-plants and induced mutant system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa (National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan))

    1990-11-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.).

  13. Martensitic transformation induced by irradiation and deformation in stainless steels

    International Nuclear Information System (INIS)

    Maksimkin, O.P.

    1997-01-01

    In the present work the peculiarities of martensite γ → α , (γ → ε → α , ) transformation in the steels with a low stacking fault energy (12Cr18Ni10T, Cr15AG14) irradiated by neutrons, α-particles and electrons (pulse and stationary) and then deformed with the various strain rates in the temperature range - 20 - 1000 C are considered. It is established by the electron-microscope research that the phase γ → α ' transition in irradiated and deformed steels is observed on the definite stage of evolution of the dislocation structure (after the cell formation) and the martensite formation preferentially occurs on a stacking fault aggregation. The regularities of the irradiation by high energy particles effect on the formation parameters and martensite α , -phase accumulation kinetics ones and also their role in forming of the strength and ductile properties in steels are analysed. (A.A.D.)

  14. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  15. The relaxation phenomena of radicals induced in irradiated fresh mangoes

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Morishita, Norio; Kobayashi, Yasuhiko; Ogawa, Hideyuki; Shimoyama, Yuhei; Ukai, Mitsuko

    2009-01-01

    Using the γ-irradiated fresh mangoes followed by freeze-drying and powderization, electron spin resonance spectrometry of specimens was performed. As a result, a strong single peak in the flesh, the pericarp and the seed was observed at g=2.004 and attributed to organic free radicals. When relaxation times of the peak was calculated using the method of Lund et al., T 2 showed dose responses according to increasing doses while T 1 was almost constant. Dose responsibility of the relaxation time T 2 obtained from flesh specimens of the mangoes could be measured regardless of the preservation period of 1 to 9 days following γ-irradiation. Therefore, there might be possible to detect the irradiation treatment of fresh mangoes using relaxation time T 2 . (author)

  16. Sub-micron indent induced plastic deformation in copper and irradiated steel

    International Nuclear Information System (INIS)

    Robertson, Ch.

    1998-09-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu [001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg C -600 deg C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  17. Void formation and growth in copper-nickel alloys during irradiation in the high voltage electron microscope

    International Nuclear Information System (INIS)

    Leffers, T.; Singh, B.N.; Barlow, P.

    1977-05-01

    The formation and growth of voids during irradiation in a high-voltage electron microscope were studied in copper and Cu-Ni alloys. For each composition, the range of irradiation temperatures from 250 deg C to 550 deg C was covered. The development of the irradiation-induced dislocation structure was also studied. At irradiation temperatures up to 450 deg C, the void swelling decreased rapidly with increasing Ni content and became practically zero for Cu-10%Ni. The decrease in swelling was produced mainly by decreased void growth (and not by decreased void number density). At 550 deg C the void swelling increased with increasing Ni content up to 5%, whereas for Cu-10%Ni the swelling became practically zero; again the changes in swelling with Ni content were mainly determined by changes in void growth. The reduction in void swelling and growth due to alloying is ascribed to vacancy or interstitial trapping at submicroscopic Ni precipitates, i.e. to the precipitates acting as recombination centres. The increase in void swelling and growth with increasing Ni content, on the other hand, is ascribed to dislocation climb sources that emit loops, and hence produce a fairly high dislocation density at a temperature where there are only few dislocations in pure copper or Cu-Ni with lower Ni content. (author)

  18. Irradiation Microstructure of Austenitic Steels and Cast Steels Irradiated in the BOR-60 Reactor at 320°C

    Science.gov (United States)

    Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula

    Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.

  19. Vacancies supersaturation induced by fast neutron irradiation in FeNi alloys

    International Nuclear Information System (INIS)

    Lucki, G.; Chambron, W.; Watanabe, S.; Verdone, J.

    1975-01-01

    The void formation in metals and alloys during irradiation with high-energy particles is a problem of interest in physics and of paramount importance in nuclear technology. Voids are formed as a consequence of vacancy supersaturation and result in swelling as well as in changes of mechanical, electrical and magnetic properties of materials used in power reactors. Isothermal annealings were performed between 400 and 500 0 C with and without fast-neutron (1 MeV) irradiation. Pure Fe--Ni (50--50 at. percent) was irradiated in the Melousine reactor in Grenoble, and Fe--Ni(Mo) (50--50 at. percent + 50 ppM), in the IEAR-1 reactor at the Instituto de Energia Atomica in Sao Paulo. The toroidal-shaped specimens were fabricated from Johnson Mathey zone-refined ingots, and were initially annealed at 800 0 C during 1 h in hydrogen atmosphere and then slowly cooled (4 h) inside the furnace. Magnetic After Effect measurements (MAE) permitted the evaluation of activation energies during fast-neutron irradiation (1.54 eV) and without irradiation (3.14 eV) for pure Fe--Ni and respectively (1.36 eV) and (2.32 eV) for Fe--Ni(Mo). Since the time constants of the relaxation process are inversely proportional to the vacancy concentration, a quantitative evaluation of vacancy supersaturation was made; it decreases from the value 700 at 410 0 C to the value 40 at 490 0 C for pure Fe--Ni and from 765 to 121 for Fe--Ni(Mo) in the same temperature range. 3 figures, 5 tables

  20. Irradiation-induced motor disorder of the oesophagus

    International Nuclear Information System (INIS)

    Thorpe, J.A.C.; Oakland, C.; Adams, I.P.; Matthews, H.R.

    1982-01-01

    This case report describes the late development of an achalasia-like disturbance of oesophageal motility following irradiation to the neck for a pharyngeal lymphosarcoma. The radiological, manometric and endoscopic findings are recorded as well as laboratory investigations showing evidence of complete vagal denervation. (author)

  1. Irradiation-induced amorphization in split-dislocation cores

    International Nuclear Information System (INIS)

    Ovid'ko, I.A.; Rejzis, A.B.

    1999-01-01

    The model describing special splitting of lattice and grain-boundary dislocations as one of the micromechanisms of solid-phase amorphization in irradiated crystals is proposed. Calculation of energy characteristics of the process of dislocations special splitting is carried out [ru

  2. Swift heavy ion irradiation induced modification of structure

    Indian Academy of Sciences (India)

    AFM analysis indicated that the pristine film consists of agglomerated grains with diffuse grain boundary. Irradiation led to reduced agglomeration of the grains with the formation of sharper grain boundaries. The rms roughness (rms) estimated from AFM analysis increased from 6.2 in pristine film to 12.7 nm when the film ...

  3. Irradiation-induced motor disorder of the oesophagus

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, J.A.C.; Oakland, C.; Adams, I.P.; Matthews, H.R. (East Birmingham Hospital (UK); Birmingham General Hospital (UK))

    1982-08-01

    This case report describes the late development of an achalasia-like disturbance of oesophageal motility following irradiation to the neck for a pharyngeal lymphosarcoma. The radiological, manometric and endoscopic findings are recorded as well as laboratory investigations showing evidence of complete vagal denervation.

  4. Breeding value of wheat mutants induced by gamma irradiation

    International Nuclear Information System (INIS)

    Szilagyi, Gy.

    1979-01-01

    The combined use of the irradiation techniques available in Hungary and a number of other breeding methods has resulted in the production at Martonvasar of a new wheat variety, Martonvasari 8. It has valuable agronomic characteristics for commercial production and it will no doubt be of good service in the coming years in the development of Hungarian agricultural production. (author)

  5. Irradiation-induced microstructural changes in alloy X-750

    International Nuclear Information System (INIS)

    Kenik, E.A.

    1997-01-01

    Alloy X-750 is a nickel base alloy that is often used in nuclear power systems for it's excellent corrosion resistance and mechanical properties. The present study examines the microstructure and composition profiles in a heat of Alloy X-750 before and after neutron irradiation

  6. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    In vitro studies with human cell lines have demonstrated that the death receptor Fas plays a role in ultraviolet (UV)-induced apoptosis. The purpose of the present study was to investigate the relation between Fas expression and apoptosis as well as clustering of Fas in human epidermis after...... a single dose of UVB irradiation. Normal healthy individuals were irradiated with three minimal erythema doses (MED) of UVB on forearm or buttock skin. Suction blisters from unirradiated and irradiated skin were raised, and Fas, FasL, and apoptosis of epidermal cells quantified by flow cytometry....... Clustering of Fas was from skin biopsied. Soluble FasL in suction blister fluid was quantified by ELISA. Flow cytometric analysis demonstrated increased expression intensity of Fas after irradiation, with 1.6-,2.2- and 2.7-fold increased median expression at 24, 48 and 72 h after irradiation, respectively (n...

  7. Irradiation-induced mutation experiments with eiploid and tetraploid tomato plants

    International Nuclear Information System (INIS)

    Boda, J.

    1979-01-01

    Tomato mutation experiments are described. The tomatoes used in the experiment were the diploid Reziszta and its autotetraploid variety. The experimental plants were exposed to an irradiation of 5000 rsd for 1-2 days, and after transplantation into the gamma field, to chronic irradiation during the whole growing season. The chronic treatment heavily reduced fertility in the generations of tetraploid tomato plants. Recurrent treatment of tetraploid led to further deterioration in fertility. Several berries were formed with few seeds or with no seeds at all. After three irradiations, the chlorophyll mutation frequency increased in the diploid and tetraploid tomato plants. For diploids, treatment applied at the seedling stage gave a lower chlorophyll mutation frequency. With tetraploids the same treatment induced similar chlorophyll mutation frequency. As regards to phenotypic variability of quantitative characteristics in diploid and tetraploid tomatoes, the single and repeated chronic irradiation induced no increase in the variability of properties like flowering time, weight, height etc. (author)

  8. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Lu Dong; Li Wenjian; Wu Xin; Wang Jufang; Ma Shuang; Liu Qingfang; He Jinyu; Jing Xigang; Ding Nan; Dai Zhongying; Zhou Jianping

    2010-01-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20 Ne 10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  9. Evaluation of induced radioactivity in 10 MeV-Electron irradiated spices, (2)

    International Nuclear Information System (INIS)

    Katayama, Tadashi; Furuta, Masakazu; Shibata, Setsuko; Matsunami, Tadao; Ito, Norio; Mizohata, Akira; Toratani, Hirokazu; Takeda, Atsuhiko.

    1994-01-01

    In order to check radioactivity of beta-emmitters produced by (γ, n) reactions which could occur at energies up to 10 MeV, black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electron from a linear accelerator to a dose of 100 kGy. Beta-rays were counted using a 2π gas flow counter and a liquid scintillation counter. Any induced radioactivity could not be detected in irradiated samples. When inorganic compounds containing the nuclides in the list were artificially added in the samples and were irradiated, the β-activities were detected. From the amount of observed radioactivities of β-emmitters produced in the compounds as photonuclear products, it is concluded that the induced radioactivity in natural samples by 10 MeV-electron irradiation were far smaller than natural radioactivity from 40 K contained in the samples and, hence, its biological effects should be negligible. (author)

  10. Protective effects of nelumbo nucifera against {gamma}-irradiation-induced lipid peroxidation in mice urine

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Caang Hyun; Choi, Dae Seong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Hyo Jung [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2009-12-15

    The radioprotective effect of isoquercitrin-abundant fraction (IAF) of N. nucifera Gaertn. Ieaf extract against {gamma}-irradiation-induced oxidative stress was evaluated by the lipid peroxidation-derived aldehydes (LPDAs) as a marker for oxidative risk in mice urine, and the DNA damage using comet assay in RAW 264.7 cells. Mice that were treated with IAF (50 mg/kg) and {gamma}-irradiation showed considerably decreased LPDA levels relative to those that had received {gamma}-irradiation alone. Furthermore, pretreatment with IAF resulted in a significant decrease in the amount of DNA damage in cells. It is demonstrated that pretreatment with IAF of N. nucifera Gaertn. gives protection against irradiation-induced cellular damage.

  11. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    Science.gov (United States)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  12. Irradiation-induced permeability in pyrocarbon coatings. Final report of work conducted under PWS FD-12

    International Nuclear Information System (INIS)

    Kania, M.J.; Thiele, B.A.; Homan, F.J.

    1982-10-01

    Two US irradiation experiments were planned to provide information to supplement data from the German program on irradiation-induced permeability in pyrocarbon coatings. Hopefully, the data from both programs could be combined to define the onset of neutron-induced permeability in a variety of Biso coatings produced with different process variables (coating temperature, coating gases, and coating rates). The effort was not successful. None of the preirradiation characterization procedures were able to adequately predict irradiation performance. A large amount of within-batch scatter was observed in the fission gas and cesium release data along with significant within-batch variation in coating properties. Additional preirradiation characterization might result in a procedure that could successfully predict irradiation performance, but little can be done about the within-batch variation in coating properties. This variation is probably the result of random movement of particles within the coating furnace during pyrocarbon deposition. 19 figures, 4 tables

  13. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-06-15

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  14. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  15. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    International Nuclear Information System (INIS)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae

    2004-01-01

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  16. Irradiation-induced creep in metallic nanolaminates characterized by In situ TEM pillar nanocompression

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Shen J., E-mail: sdillon@illinois.edu [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Bufford, Daniel C. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Jawaharram, Gowtham S.; Liu, Xuying; Lear, Calvin [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Hattar, Khalid [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Averback, Robert S. [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States)

    2017-07-15

    This work reports on irradiation-induced creep (IIC) measured on nanolaminate (Cu-W and Ni-Ag) and nanocrystalline alloys (Cu-W) at room temperature using a combination of heavy ion irradiation and nanopillar compression performed concurrently in situ in a transmission electron microscope. Appreciable IIC is observed in multilayers with 50 nm layer thicknesses at high stress, ≈½ the yield strength, but not in multilayers with only 5 nm layer thicknesses.

  17. The genetic effects induced by an irradiation in low doses at Drosophila melanogaster

    International Nuclear Information System (INIS)

    Zajnullin, V.G.; Taskaev, A.I.; Moskalev, A.A.; Shaposhnikov, M.V.

    2006-01-01

    The review generalizes the results obtained in researches of genetic radiation effects for Drosophila melanogaster from contamination regions near the Chernobylsk NPP. The results of laboratory investigations of low dose irradiation effects on genotype variability and lifetime of Drosophila are presented too. It supposed that the main effect of low dose irradiation is caused by the induced genetic instability against the background of which the realization of different-directed radiobiological reactions is possible [ru

  18. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; El Gamal, M.A.; El Khatib, A.; El Wahidy, E.F.

    1987-06-01

    The effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals was studied around the phase transition temperature T c =453 K. The thermal expansion coefficient as well as the phase transition temperature were found to be dependent upon the irradiation dose. The specific heat, C p , showed multiple peaks in the phase transition temperature region. An explanation of this behaviour was based on the induced inhomogeneous strain in the crystal casued by the neutron irradiation process. (author). 10 refs, 3 figs

  19. Caffeine-induced hematological changes after whole-body irradiation in rat

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Ji Hyang; Yoon Yong Dal [Hanyang University, Seoul (Korea, Republic of)

    2004-07-01

    Recent research indicated dietary antioxidants were useful radioprotectors to protect organisms against radiation-induced tissue lethality and other deleterious effects. Radioprotective effects of vitamin C have been demonstrated in certain cells and animals, which would result from scavenging free radicals. Moreover, the previous studies indicated that caffeine had been shown to potently act the radioprotector in irradiated mice. However it is not clear exactly about effects of caffeine treatments chronically after irradiation. So the present studies were designed to identify the hematological effect of caffeine treatments chronically one month after whole-body gamma irradiation.

  20. Influence of catechins on bystander responses in CHO cells induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L.; Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, we studied alpha-particle induced and medium-mediated bystander effects in Chinese hamster ovary (CHO) cells through micronucleus (MN) assay. We showed that signal transduction from irradiated cells to bystander cells occur within a short time after irradiation. We then studied the effects of ROS (reactive oxygen species)-scavenging catechins in the medium before irradiation. We observed decreases in the percentage of bystander cells with MN formation and thus proved the protection effect of catechins on bystander cells from radiation.

  1. Decrease of glucose-induced insulin secretion of rat pancreatic islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic); Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic). Radiologische Klinik)

    1983-01-01

    In vitro irradiation of rat pancreatic islets up to a dose of 2.5 Gy did neither alter glucose- nor isobutylmethyl xanthine (IBMX)-induced insulin secretion. Insulin as well as glucagon content of irradiated islets corresponded to that of the control tissue. So it was in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. There was no indication of an enhanced hormone output in the radiation medium and it is to be suggested that higher radiation doses affect the insulin release of pancreatic islets in vitro. This must be taken into consideration for radioimmunosuppression experiments.

  2. Use of pressurized eccentric tubes to study the effect of hydrostatic stress on swelling

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Reiley, T.C.

    1977-05-01

    A technique for measuring the effect of hydrostatic stress on radiation-induced swelling is presented. This technique is based on the nonuniform hydrostatic stress that arises when an eccentric tube (a tube with inner and outer surfaces having dissimilar centers of revolution) is internally pressurized. The elastic analyses of the thin- and thick-walled eccentric tube are given. The elastic stress state is allowed to relax plastically, based on a constitutive law for deformation during neutron irradiation. In this case, the constitutive law contains a linearly stress-dependent deviatoric strain rate and a dilatation rate that is linearly dependent on hydrostatic stress. Emphasis is placed on the specimen design and experimental procedure for in-reactor experiments in which the coefficient relating hydrostatic stress and swelling is sought. It is shown that, for the 316L stainless steel specimens placed in EBR-II, we may expect that any appreciable effect of hydrostatic stress on swelling will be observable through changes in specimen curvature

  3. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: ljw@ipp.ac.cn

    2007-11-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of {gamma}-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1 h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0 g/L did not significantly increase the frequency of {gamma}-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8 g/L). However, with 0.2 cGy {alpha}-particle irradiation, the induced fraction of {gamma}-H2AX foci-positive cells and the number of induced {gamma}-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2 cGy {alpha}-particle irradiation also increased with the elevated NaCl concentrations. With N{sup G}-methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy {alpha}-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose {alpha}-particle irradiation and nitric oxide generated by irradiation was also very important in this process.

  4. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    Science.gov (United States)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  5. A phase field model for segregation and precipitation induced by irradiation in alloys

    Science.gov (United States)

    Badillo, A.; Bellon, P.; Averback, R. S.

    2015-04-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.

  6. A phase field model for segregation and precipitation induced by irradiation in alloys

    International Nuclear Information System (INIS)

    Badillo, A; Bellon, P; Averback, R S

    2015-01-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni–Si and Al–Zn undersaturated solid solutions subjected to irradiation. (paper)

  7. The protective effect of Sambucus ebulus against lung toxicity induced by gamma irradiation in mice

    Directory of Open Access Journals (Sweden)

    Mohammad Karami

    2015-01-01

    Full Text Available The aim of present study was to investigate the potential antioxidant and lung protective activities of Sambucus ebulus (SE against toxicity induced by gamma irradiation. Hydroalcoholic extract of SE (20, 50 and 100 mg/kg was studied for its lung protective activity. Phenol and flavonoid contents of SE were determined. Male C57 mice were divided into ten groups with five mice per group. Only the first and second groups (as negative control received intraperitoneally normal saline fluid. Groups 3 to 5 received only SE extract at doses of 20 mg/kg, 50 mg/kg and 100 mg/kg intraperitoneally; three groups were repeatedly injected for 15 days as chronic group. Groups 6 to 8 received a single-dose of gamma irradiation just 2 hours before irradiation as acute group. The ninth and tenth groups (as positive control received only gamma rays. Animal was exposed whole-body to 6 Gy gamma radiation. After irradiation, tissue sections of lung parenchyma were examined by light microscope for any histopathologic changes. SE at doses 50 and 100 mg/kg improved markedly histopathological changes induced by gamma irradiation in lung. Lung protective effect of SE could be due to attention of lipid peroxidation. Our study demonstrated that SE as a natural product has a protective effect against lung toxicity induced by   gamma irradiation in animal.

  8. Roles of acid sphingomyelinase activation in neuronal cells apoptosis induced by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Lei; Xu Shangcheng; Zhang Guangbin; Yu Zhengping

    2009-01-01

    The present study is to examine the effect of microwave on acid sphingomyelinase (ASM) activity and expression, and to explore the role of ASM activation in neuronal cells apoptosis induced by microwave irradiation. Primary cultured hippocampal neurons were irradiated by 30 W/cm 2 microwave for 10 min, and ASM activity assay was used to investigate ASM activity alteration. RT-PCR and western blot were used to detect ASM mRNA and protein expression respectively. Apoptosis was observed by Hoechst 33342 fluorescence staining. ASM specific inhibitor imipramine was applied to inhibit ASM activation. It has been found that apoptosis rate of primary cultured hippocampal neurons increased significantly after microwave irradiation. ASM was activated while ASM mRNA and protein expression were upregulated in neurons after microwave irradiation. Pretreatment with imipramine could reverse neuronal apoptosis induced by microwave irradiation. Results show that microwave irradiation causes increment of ASM activation and expression and ASM activation is involved in microwave induced neuronal apoptosis. (authors)

  9. Effect of interaction between irradiation-induced defects and intrinsic defects in the pinning improvement of neutron irradiated YBaCuO sample

    International Nuclear Information System (INIS)

    Topal, Ugur; Sozeri, Huseyin; Yavuz, Hasbi

    2004-01-01

    Interaction between the intrinsic (native) defects and the irradiation-induced defects created by neutron irradiation was examined for the YBCO sample. For this purpose, non-superconducting Y-211 phase was included to the Y-123 samples at different contents as a source of large pinning center. The critical current density enhancement with the irradiation for these samples were analysed and then the role of defects on pinning improvement was discussed

  10. Effect of interaction between irradiation-induced defects and intrinsic defects in the pinning improvement of neutron irradiated YBaCuO sample

    Energy Technology Data Exchange (ETDEWEB)

    Topal, Ugur; Sozeri, Huseyin; Yavuz, Hasbi

    2004-08-01

    Interaction between the intrinsic (native) defects and the irradiation-induced defects created by neutron irradiation was examined for the YBCO sample. For this purpose, non-superconducting Y-211 phase was included to the Y-123 samples at different contents as a source of large pinning center. The critical current density enhancement with the irradiation for these samples were analysed and then the role of defects on pinning improvement was discussed.

  11. Electron-irradiation-induced crystallization of amorphous orthophosphates

    International Nuclear Information System (INIS)

    Meldrum, A.; Ewing, R.C.; Boatner, L.A.

    1996-12-01

    Amorphous LaPO 4 , EuPO 4 , GdPO 4 , ScPO 4 , and fluorapatite [Ca 5 (PO 4 ) 3 F] were irradiated by electron beam in a TEM. Irradiations were done at -150 to 300 C, 80 to 200 keV, and current densities from 0.3 to 16 A/cm 2 . In all cases, the materials crystallized to form a randomly oriented polycrystalline assemblage. Crystallization is driven dominantly by inelastic processes, although ballistic collisions with target nuclei can be important above 175 keV, particularly in apatite. Using a high current density, crystallization is so fast that continuous lines of crystallites can be ''drawn'' on the amorphous matrix

  12. Ion-irradiation-induced defects in bundles of carbon nanotubes

    International Nuclear Information System (INIS)

    Salonen, E.; Krasheninnikov, A.V.; Nordlund, K.

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions

  13. Radiation induced coloring of glasses measured during and after electron irradiation

    International Nuclear Information System (INIS)

    Swyler, K.J.; Hardy, W.H. II; Levy, P.W.

    1975-01-01

    The growth of color centers during irradiation, and the decay after irradiation, were studied in two glasses using recently developed equipment for making optical absorption and luminescence measurements during and after electron irradiation. The glasses studied were NBS 710, a soda-lime silicate glass, and NBS 711, a lead silicate glass. Both glasses exhibit similar coloring characteristics. The radiation-induced absorption spectra consists of a weak gaussian shaped band in the visible, a stronger gaussian band in the ultraviolet, and a band edge ''shift'' which may be accurately approximated by a third gaussian band. For all absorption bands, the color center vs dose (or irradiation time) curves can be accurately resolved into two saturating exponential and one linear component. The decay curves obtained after the irradiation is terminated can be accurately expressed by three exponential components. Coloring and decay curves made at different dose rates indicate that the processes responsible for decay after irradiation and electron hole recombination during irradiation play important roles in determining the rate and extent of coloring. Results are qualitatively in agreement with some very simple kinetic treatments for color center formation. In some, but not all, respects the quantitative agreement is also good. Lastly, the results indicate that it is necessary to make measurements during irradiation to establish the formation kinetics of color centers that are unstable at the bombardment temperature. (U.S.)

  14. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  15. Osmotic de-swelling and swelling of latex dispersions

    International Nuclear Information System (INIS)

    Bonnet-Gonnet, Cecile

    1993-01-01

    This research thesis reports the comparison of, on the one hand, direct measurements of de-swelling resistance of latex dispersions obtained by osmotic pressure with, on the other hand, predictions made by models of electrostatic interactions. This resistance is explained in the case of sulphate-stabilised polystyrene particles (direct repulsion between charged particles), and in the case of copolymer (ps-pba) particles covered by an amphiphilic polymer (interactions between surface macromolecules and polymers). The study of de-swelling and swelling cycles highlights the existence of thresholds beyond which the concentrated dispersion has some cohesion. This irreversibility can be modelled by a Van der Waals attraction. The role of hydrophobic forces in latex destabilisation is studied [fr

  16. Structural and defects induced phenomena in γ-rays irradiated 6H-SiC

    International Nuclear Information System (INIS)

    Sibuyi, P.; Ngom, B.D.; Kotsedi, L.

    2016-01-01

    Damages and/or defects induced by γ-rays irradiation on 6H-SiC single crystals in channeled configuration towards 〈006〉/〈0012〉 crystallographic directions are reported in the range of 0–1200 kGy. Atomic force microscopy, X-rays diffraction, Raman and photoluminescence investigations were used to obtain a comprehensive set of informations on the nature and population distribution of the induced defects. Primarily, there was no carbon clusterization upon γ-rays irradiation and hence no formation of others SiC polytypes. In contrast, the γ-rays irradiation has induced an increase of the surface roughness at higher doses, which indicates a structural degradation. Larger doses induced an emergence of deeper shallow traps at energies greater than 350 meV below the bandgap. - Highlights: • No formation of others SiC polytypes. • The gamma rays irradiation has induced a slight surface amorphization. • A re-crystallization at lower and higher doses is noticed. • Larger doses induced a substantial internal stress.

  17. Apoptosis of nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation

    International Nuclear Information System (INIS)

    Liang Ke; He Shaoqin; Feng Yan; Tang Jinhua; Feng Qinfu; Shen Yu; Yin Weibo; Xu Guozhen; Liu Xinfan; Wang Luhua; Gao Li

    1999-01-01

    Objective: To study the apoptotic response of the nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation. Methods: CNE-2 cells were cultured as usual. Using the techniques of DNA agarose gel electrophoresis and DNA special fluorescent staining, the status of apoptosis in CNE-2 cells after neutron irradiation was detected. Results: It was shown that the apoptosis can be induced in CNE-2 cell after neutron radiation. Six hrs, after different doses of neutron (0/0.667/1.333/2.000/2.667/3.333 Gy) and X-ray 0/2/4/6/8/10 Gy) irradiation the apoptotic rates were 2.4%, 6.3%, 7.1%, 9.5%, 13.5%, 14.6% and 2.4%, 3.8%, 5.7%, 7.8%, 10.4%, 11.7%, respectively; at 48 hrs they were 18.3%, 21.5%, 22.8%, 29.3%, 34.2% and 13.7%, 17.6%, 21.3%, 25.6%, 28.9%, respectively. At 10 hrs after neutron irradiation the DNA ladder of apoptosis could be detected between 0.667-3.333 Gy doses in CNE-2 cells by DNA agarose gel electrophoresis. Conclusion: Neutron radiation can induce apoptosis in tumor cells. Compared with the X-ray, neutron induces apoptosis in larger extent than X-ray in the same condition; meanwhile, apoptosis after irradiation is dose and time dependent

  18. The effect of swelling in Inconel 600 on the performance of FFTF [Fast Flux Test Facility] reflector assemblies

    International Nuclear Information System (INIS)

    Makenas, B.J.; Trenchard, R.G.; Hecht, S.L.; McCarthy, J.M.; Garner, F.A.

    1986-02-01

    The Fast Flux Test Facility (FFTF) is designed with non-fueled outer row assemblies, each of which consists of a stack of Inconel 600 blocks penetrated by 316 stainless steel (SS) coolant tubes. These assemblies act as a radial neutron reflector and as a straight but flexible core boundary. During an FFTF refueling outage it was observed that the degree of difficulty in withdrawing an outer row driver fuel assembly was a function of the peak fast fluence of neighboring reflector assemblies. It was subsequently determined through various postirradiation examinations that the reflector assemblies were both bowed and stiff. Measurements of the individual Inconel 600 blocks indicated that the blocks had distorted into a trapezoidal cross section due to differential swelling of Inconel 600 in a steep radial flux gradient. Immersion density results indicate greater irradiation induced volumetric swelling than any previously reported data or correlation for Inconel 600 at equivalent fast fluence. The Inconel 600 swelled approximately the same amount as the SA 316 SS reflector components. Transmission electron microscopy studies on the Inconel blocks and swelling measurements on related materials have been performed and these data have been related to the performance of the reflector materials

  19. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  20. Detection of radiation-induced hydrocarbons in baked sponge cake prepared with irradiated liquid egg

    International Nuclear Information System (INIS)

    Schulzki, G.; Spiegelberg, A.; Boegl, K.W.; Schreiber, G.A.

    1995-01-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg. (Author)

  1. Detection of radiation-induced hydrocarbons in baked sponged cake prepared with irradiated liquid egg

    Science.gov (United States)

    Schulzki, G.; Spiegelberg, A.; Bögl, K. W.; Schreiber, G. A.

    1995-02-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg.

  2. Cyclophosphamide-induced cardiomyopathy in a patient with seminoma and a history of mediastinal irradiation

    International Nuclear Information System (INIS)

    Kamezaki, Kenjirou; Fukuda, Takahiro; Makino, Shigeyoshi; Harada, Mine

    2005-01-01

    A 17-year-old man with mediastinal seminoma was treated with chemotherapy and mediastinal irradiation therapy. Then he received high-dose chemotherapy containing cyclophosphamide (CY) followed by autologous peripheral blood stem cell transplantation. He suffered from CY-induced cardiomyopathy beginning six days after the administration of high-dose CY. The predictable factors associated with the onset of CY-induced cardiomyopathy are not precisely known. It is suggested that the history of mediastinal irradiation was responsible for the onset of cardiomyopathy. (author)

  3. Radiation-induced cancer of the esophagus after postoperative irradiation for breast cancer

    International Nuclear Information System (INIS)

    Ito, Ichiro; Miyaishi, Kazuo; Mitsuhashi, Norio; Ito, Jun; Inoue, Tomio

    1978-01-01

    Two cases of radiation-induced cancer of the esophagus after postoperative irradiation for breast cancer were reported. Latent period of case 1 (cervical esophagus) was 12 years, and case 2 (middle thoracic esophagus) was 16 years. Radiographically the lesions were both serrated, and histologically, case 1 was ''poorly differentiated'' and case 2 was ''moderately differentiated'' squamous cell carcinoma. Histological types of basic breast cancer were both papillotubular carcinomas. Previous irradiation doses were 4180 rads for case 1 and 1860 rads for case 2. The esophageal cancers were remarkably improved by radiation therapy. It should be emphasized that radiation therapy is useful for the radiation-induced cancer of the esophagus. (author)

  4. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo

    2005-01-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  5. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo [National Hospital Organization Osaka Minami Medical Center, Kawachinagano (Japan)

    2005-03-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  6. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  7. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio

    International Nuclear Information System (INIS)

    Gagnaire, B.; Cavalié, I.; Pereira, S.; Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C.

    2015-01-01

    Highlights: • The present study aimed to evaluate the effects of gamma rays on zebrafish larvae. • Different techniques were used: gene expression, biochemistry, microscopy and macroscopical observations. • The results showed that gamma irradiation can alter embryo-larval development at several levels of organization. - Abstract: In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.

  8. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Gagnaire, B., E-mail: beatrice.gagnaire@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Cavalié, I. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Pereira, S. [Neolys Diagnostics, Lyon 69373 (France); Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France)

    2015-12-15

    Highlights: • The present study aimed to evaluate the effects of gamma rays on zebrafish larvae. • Different techniques were used: gene expression, biochemistry, microscopy and macroscopical observations. • The results showed that gamma irradiation can alter embryo-larval development at several levels of organization. - Abstract: In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.

  9. Time-effect relationship of immunological adaptive response induced by low dose X-irradiation in mice

    International Nuclear Information System (INIS)

    Zhao Yong; Gong Shouliang; Liu Shuzheng

    1995-01-01

    Kunming mice irradiated with whole-body X-rays were used to observe time-effect relationship of immunological adaptive response induced by ionizing radiation. The results showed that pre-irradiation dose of 75 mGy X-rays with the intervals of 6-48 h between pre-irradiation and challenge irradiation could induce immunological adaptive response in the spontaneous proliferation of thymocytes and the responses of splenocytes to Con A and LPS in mice at 18-24 h after challenge irradiation with 1.5-2.0 Gy X-rays

  10. Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: jing.wang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Texas A& M University, College Station, TX 77843 (United States); Toloczko, Mychailo B. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Bailey, Nathan [University of California, Berkeley, CA 94720 (United States); Garner, Frank A.; Gigax, Jonathan; Shao, Lin [Texas A& M University, College Station, TX 77843 (United States)

    2016-11-15

    In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected ion profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter-induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected ion profiles based on these phenomenon and without regard to diffusion is presented along with examples of differences between SRIM-calculated values and corrected values over a range of typical ion energies. The intent is to provide the reader with a convenient tool for more accurately calculating dose and injected ion profiles for heavy-ion irradiations.

  11. Protective effect of Hippophae rhamnoides leaf extract on gamma irradiation induced clastogenecity in mice

    International Nuclear Information System (INIS)

    Tyagi, Anuradha; Prasad, Jagdish; Bala, Madhu

    2012-01-01

    Hippophae rhamnoides (sea buckthorn) is a plant belonging to Elaeagnaceae family and is distributed worldwide. It has variety of uses from nutritional food to pharmacological application. The study was aimed to analyse the extract from Hippophae rhamnoides leaves for their possible protective effects against the whole body 60 Co-a-irradiation. The study was performed on six groups of male mice i.e. untreated group, H. rhamnoides extract group, irradiated (2Gy), irradiated (3Gy), H. rhamnoides and irradiated (2Gy) and H. rhamnoides and irradiated (3Gy). In each group micronucleus test was performed utilising bone marrow and peripheral blood. The mice were sacrificed 30 hrs after treatment and analysed for the presence of micronuclei. In the present study, there was no significant increase in the frequency of either micronucleated polychromatic erythrocytes (MNPCEs) or normochromatic erythrocytes (NCE) in H. rhamnoides extract treated group over the negative control group of animals, indicating its non-clastogenic and non-toxic activity in the erythropoietic system. H. rhamnoides extract showed good anti-clastogenic activity against the a-irradiation induced clastogenecity in both the tissues i.e. bone marrow and peripheral blood by reducing the frequency of micronuclei. Also the administration of H. rhamnoides extract along with irradiation was slightly able to increase the frequency of PCE in bone marrow as well as in peripheral blood in comparison to the irradiated group (2Gy and 3Gy) indicating its ability to reduce the toxicity caused by irradiation in the erythropoietic system. Thus the results indicate the non-clastogenic effect of H. rhamnoides leaf extract and significant protective activity against 60 Co-a-irradiation suggesting its pharmacological significance for development of radioprotector. (author)

  12. Carbon nanotubes polymerization induced by self-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Cassio Stein [Faculdade de Fisica, Pontificia Univ. Catolica do Rio Grande do Sul (PUCRS), Porto Alegre (Brazil)

    2008-07-01

    Full text: We discuss our recent results on the formation of cross-links between neighboring carbon nanotubes within a bundle. Classical molecular dynamics was used to follow the evolution of the system when it is bombarded by low-energy carbon atoms. We show that it is possible to polymerize carbon nanotubes through irradiation and discuss the most common types of defects produced. Cross-links are created mainly in the direction perpendicular to the surface, and for higher energies, defects are created deeper in the rope. The final defects geometries may provide a realistic input to electronic density first principle calculations. (author)

  13. Carbon nanotubes polymerization induced by self-irradiation

    International Nuclear Information System (INIS)

    Moura, Cassio Stein

    2008-01-01

    Full text: We discuss our recent results on the formation of cross-links between neighboring carbon nanotubes within a bundle. Classical molecular dynamics was used to follow the evolution of the system when it is bombarded by low-energy carbon atoms. We show that it is possible to polymerize carbon nanotubes through irradiation and discuss the most common types of defects produced. Cross-links are created mainly in the direction perpendicular to the surface, and for higher energies, defects are created deeper in the rope. The final defects geometries may provide a realistic input to electronic density first principle calculations. (author)

  14. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation

    Science.gov (United States)

    Yuan, Ye; Amarouche, Teyri; Xu, Chi; Rushforth, Andrew; Böttger, Roman; Edmonds, Kevin; Campion, Richard; Gallagher, Bryan; Helm, Manfred; Jürgen von Bardeleben, Hans; Zhou, Shengqiang

    2018-04-01

    In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic resonance measurements, a rotation of the magnetic easy axis from out-of-plane [0 0 1] to in-plane [1 0 0] direction is achieved. From the application point of view, our work presents a novel avenue in modifying the uniaxial magnetic anisotropy in GaMnAsP with the possibility of lateral patterning by using lithography or focused ion beam.

  15. Activation of 45-MeV proton irradiation and proton-induced neutron irradiation in polymers

    International Nuclear Information System (INIS)

    Ra, Se-Jin; Kim, Kye-Ryung; Jung, Myung-Hwan; Yang, Tae-Keon

    2010-01-01

    During beam irradiation experiments with more than a few MeV energetic protons, the sample activation problem can be very severe because it causes many kinds of additional problems for the post-processing of the samples, such as time loss, inconvenience of sample handling, personal radiation safety, etc. The most serious problem is that immediate treatment of the sample is impossible in some experiments, such as nano-particle synthesizing. To solve these problems, we studied why the samples are activated and how the level of the activation can be reduced. It is known that the main reasons of activation are nuclear reactions with elements of the target material by primary protons and secondary produced neutrons. Even though the irradiation conditions are same, the level of the activation can be different depending on the target materials. For the nanoparticle synthesizing experiments, the target materials can be defined as the container and the sample itself. The reduction of the activation from the container is easier than the reduction from the sample. Therefore, we tried to reduce the activation level by changing the container materials. In this paper, the results are displayed for some candidate container materials, such as polymethyl methacrylate, polystyrene, Glass, etc., with 45-MeV and 10-nA proton beams. As a result, PS is the most suitable material for the container because of its relatively low level of the activation by protons. Also the contribution of secondary produced neutrons to the activation is negligible.

  16. Mechanism of swelling suppression in phosphorous-modified Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.

    1986-01-01

    Five simple alloys were ion irradiated at 948 0 K in an experiment designed to investigate the mechanism of swelling suppression associated with phosphorous additions. One of the alloys was the simple ternary Fe-15Ni-13Cr, another had 0.05% P added and the other three had further additions of the phosphide precipitate-forming elements Ti and/or Si. Ion irradiations were carried out with heavy ions only (Ni or Fe) or with heavy ions followed by dual heavy ions and helium. The ternary with and without P swelled readily early in dose with or without helium. The other three alloys only showed swelling in the presence of helium and exhibited a long delay in dose prior to the onset of swelling. These displayed fine distributions of Fe 2 P type phosphide precipitates enhanced by irradiation. The phosphide particles gave rise to very high concentrations of stable helium filled cavities at the precipitate matrix interfaces. The results were analyzed in terms of the theory of cavity swelling. The accumulation of the critical number of gas atoms in an individual cavity is required in the theory for point defect driven swelling to begin. It is concluded that the primary mechanism leading to swelling suppression is therefore the dilution of injected helium over a very large number of cavities. It is suggested that this mechanism may offer a key for alloy design for swelling resistance in high helium environments

  17. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Radioprotective effects of chlorogenic acid against mortality induced by gamma irradiation in mice

    International Nuclear Information System (INIS)

    Seyed Jalal Hosseinimehr; Amirhossein Ahmadi; Shahram Akhlaghpoor; Tehran University of Medical Sciences, Tehran

    2007-01-01

    Complete text of publication follows. The radioprotective effects of the naturally occurring compound chlorogenic acid has been investigated against mortality induced by gamma irradiation in mice. Chlorogenic acid administrated at single doses of 100, 200 and 400 mg/kg 1 and 24 h prior to lethal dose of gamma irradiation (8.5 Gy). At 30 days after treatment, the percentage of animal survival in each group was: control, 20%; 100 mg/kg, 20% and 15%; 200 mg/kg, 45% and 15%; 400 mg/kg, 25% and 35% for 1 h and 24 h treatment prior gamma irradiation, respectively. Percentage of survival increased in animal treated with this agent at 200 mg/kg at 1 h statistically compared with irradiated alone group. Other doses of chlorogenic acid have not showed any enhanced survival at 1 and 24 h before irradiation. Chlorogenic acid exhibited concentration-dependent activity on 1, 1-diphenyl 2-picrylhydrazyl free radical to show strong antioxidant activity. It appeared that chlorogenic acid with antioxidant activity reduced mortality induced by gamma irradiation.

  19. The Potential Therapeutic Effect of Curcumin on the Adjuvant-induced Arthritis in Irradiated Rats

    International Nuclear Information System (INIS)

    El-Ghazaly, M.A.; Nada, A.S.; Hegazy, M.E.; Kenawy, S.A.

    2010-01-01

    Naturalistic that provide medical or health benefits, including prevention and treatment of diseases. They may be advantageous in inflammation and exposure to radiation. The study was conducted to investigate curcumin potential to modulate, counteract or prevent the inflammatory response induced in arthritic irradiated and non-irradiated rats using the adjuvant-induced arthritis model. Diclofenac was used as a reference standard non-steroidal anti-inflammatory drug (NSAID). Results indicated that exposure of rats to single dose of gamma-radiation (6 Gy) before induction of inflammation increased production of prostaglandin E2 (PGE2), tumour necrosis factor-gamma (TNF-gamma) and malondialdehyde (MDA) levels in serum. Blood glutathione (GSH) was shown to be reduced in irradiated animals. Curcumin suppressed the elevated levels of TNF-gamma, PGE2 and MDA and was able to restore blood GSH level. Reduction in liver contents of copper (Cu), zinc (Zn), selenium (Se) and iron (Fe) was recorded in animals irradiated before induction of inflammation. In addition, curcumin restored the hepatic contents of these trace elements. The present results suggest that irradiation of rats caused marked changes in the inflammatory response, while curcumin suppressed the inflammatory response in both irradiated and normal rats

  20. X-irradiation-induced nuclear lesions in cultured mammaliam cells: an ultrastructural analysis

    International Nuclear Information System (INIS)

    Barham, S.S.; Walters, R.A.

    1978-01-01

    Electron-dense chromatin aggregates, hereafter referred to as lesions, have been characterized morphologically within interphase nuclei of Chinese hamster cells (line CHO) after a single acute exposure to 400, 800, 1200, or 2000 rad of x irradiation. At all doses studied, lesions were observed only after termination of radiation-induced division delay. Cell profiles were scored by electron microscopy for the presence or absence of nuclear lesions at various times after irradiation. The mitotic fraction from each irradiated population was also scored for each sample by light and electron microscopy. From these data and from simultaneous cell-density counts for each sample, it is apparent that postirradiation cell division is a prerequisite to formation of interphase nuclear lesions. Irradiated cell populations blocked in mitosis by Colcemid beyond the normal period of postirradiation division-delay failed to display nuclear lesions until after Colcemid was removed and cell division was completed. Enzyme digestions of isolated nuclei from irradiated cells with DNase I, RNase A, and Pronase suggest that the nuclear lesions are comprised primarily of chromatin. Nucleolar lesions, as well as various aberrant morphological forms of nucleoli, were also observed in cell populations after the onset of postirradiation cell division during the first 72 hr following exposure to irradiation. Delayed radiation-induced ultrastructural alterations of the nucleus included the formation of cytoplasmic invaginations into the nuclear space and inclusions of membranes within nuclei

  1. Possible radiation induced cancer of the thoracic esophagus after postoperative irradiation for the breast cancer

    International Nuclear Information System (INIS)

    Ueda, Mamoru; Matsubara, Toshiki; Kasumi, Fujio; Nishi, Mitsumasa; Kajitani, Tamaki

    1991-01-01

    We report 11 patients with cancer of the thoracic esophagus developing after postoperative irradiation therapy for breast cancer. Irradiation was done immediately after mastectomy in these patients and the irradiation field included the unilateral or bilateral parasternal region. They received a total dose ranging from 35 Gy to 60 Gy and the dose received to the thoracic esophagus was estimated from 10 Gy to 48 Gy. All cancer sites were involved in the irradiation field. The latent intervals of 10 patients from radiation to the manifest of cancer ranged from 10 to 19 years. Among 4777 women undergoing mastectomy for breast cancer between 1946 and 1980 in our hospital, 8 women (0.17%) developed cancer of the thoracic esophagus, whereas 5 (0.335%) out of 1534 women treated with mastectomy and radiotherapy with Linac between 1964 and 1980 developed cancer of the thoracic esophagus. Higher incidence of esophageal cancer in patients treated with surgery and radiation suggests that these cancers might be induced by radiation. Eight patients had esophagectomy and 4 patients of them received postoperative irradiation. They have survived from 9 months to 13 years. Two patients were controlled well by the irradiation alone. It is interesting that radiation therapy is sensitive to the possible radiation induced cancer of the thoracic esophagus. Follow up study should be directed to the possible development of second malignancy in patients who survive for a long time after radiation therapy. (author)

  2. Induced mutation In Nelumbo nucifera Gaertn. by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lama, Sainiya; Aeksomtramaet, Ladda; Kanchanapoom, Kamnoon [Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla (Thailand)

    2005-10-15

    Lotus (Nelumbo nucifera Gaertn.) seeds were exposed to different levels of Gamma irradiation at 0, 2, 4, 6, 8 and 10 Kilo rad. The exposed embryos were cultured on solid M S medium supplemented with 2 mg/l B A and overlaid with a liquid M S medium without growth regulators for 1 month. It was found that 50% growth reduction (GR50) was at 6 Kilo rad. The plant lets were subcultured twice every 2 months then they were transferred to solid M S medium supplemented with 4 mg/l NAA and overlaid with M S medium without growth regulators for root induction. The results revealed that plant lets in the control treatment (not exposed to Gamma irradiation) had the highest shoot growth and adventitious root formation. Plant lets at 2-Kilo rad treatment showed the second highest growth. The plant lets at 4-Kilo rad treatment did not exhibit adventitious root formation and had abnormal characteristics. Treatments at 6-10 Kilo rad inhibited the growth of the plant lets.

  3. Induced mutation In Nelumbo nucifera Gaertn. by gamma irradiation

    International Nuclear Information System (INIS)

    Lama, Sainiya; Aeksomtramaet, Ladda; Kanchanapoom, Kamnoon

    2005-10-01

    Lotus (Nelumbo nucifera Gaertn.) seeds were exposed to different levels of Gamma irradiation at 0, 2, 4, 6, 8 and 10 Kilo rad. The exposed embryos were cultured on solid M S medium supplemented with 2 mg/l B A and overlaid with a liquid M S medium without growth regulators for 1 month. It was found that 50% growth reduction (GR50) was at 6 Kilo rad. The plant lets were subcultured twice every 2 months then they were transferred to solid M S medium supplemented with 4 mg/l NAA and overlaid with M S medium without growth regulators for root induction. The results revealed that plant lets in the control treatment (not exposed to Gamma irradiation) had the highest shoot growth and adventitious root formation. Plant lets at 2-Kilo rad treatment showed the second highest growth. The plant lets at 4-Kilo rad treatment did not exhibit adventitious root formation and had abnormal characteristics. Treatments at 6-10 Kilo rad inhibited the growth of the plant lets

  4. Induced parthenocarpy with pollen irradiated with gamma rays

    International Nuclear Information System (INIS)

    Dryanovska, O.

    1975-01-01

    The results of serial experiments carried out during 1971-1974 using different vegetable crops for the purpose of obtaining parthenocarpous fruits with pollen irradiated with gamma rays are summed. Different varieties of tomatoes, cucumbers and sugar melons are used. The pollen was irradiated on the day on which it was collected with 1 to 500 kR (1500-1000 R/min) with immediate pollination of the respective flowers. The pollination of the flower was conducted with or without castration and with or without isolation depending on the varieties and the conditions of cultivating the plants. The fruits thus obtained were normal in size and shape and contained degenerated seed (flakes) witout cavities. Degustations in all cases established a fuller and richer taste in comparison with the control fruits. Biochemical indices for the same tomatoes varieties (sugars, vitamin C, acidity, dry substance determined refractometrically) show that the quality of the experimental fruits is better than the control ones. (A.B.)

  5. Characterization of color centers in quartz induced by gamma irradiation

    International Nuclear Information System (INIS)

    Guttler, Rainer A.S.

    2009-01-01

    The availability of gamma ray irradiators in Brazil increased the possibilities of treatments of gemstones for color enhancements. One of the minerals with a very high potential of these treatments is quartz, a very widespread mineral with much colored commercial varieties. Quartz occurs in Brazil mainly in two geological environments, called pegmatitic and hydrothermal. The detailed mechanism of color center formation of these two types of quartz will be investigated by spectroscopic and chemical analysis. Until yet, it can be shown that due to chemical differences of the nature of mineral forming fluids, the two types behave differently. All quartzes contain mainly traces of Iron, Aluminum, Lithium and some amounts of Water. The quartz of hydrothermal origin incorporated much structurally bound water, and despite some similarities with the chemical composition of pegmatitic quartz, this high water content is the reason for the formation of Silanol radicals, giving the green color to the quartz. The main difference in chemical composition of pegmatitic quartz is the presence of higher amounts of Al and Li , responsible for the brownish and yellowish colors formed by irradiation. Since each pegmatite is different, the quartz will behave differently. This explains the formation of the famous 'Green Gold' of quartz from Sao Jose da Safira , and the more yellowish, Citrine type, color of quartz from the Coluna deposit, near Itamarandiba, Minas Gerais. (author)

  6. Induced Mutation in Yellow Lotus by Gamma Irradiation

    International Nuclear Information System (INIS)

    Puripunyavanich, Vichai; Boonsirichai, Kanokporn

    2006-01-01

    Rhizomes of American yellow lotus were irradiated at eht dosed of 0, 10, 20 and 30 Gy, 10 rhizomes per treatment. They were planted in nursery pots. Unirradiated rhizomes gave out new shoots within 3-4 days. The survival rates of the 10, 20 and 30 Gy irradiated rhizomes at one month after transplanted were 80%, 30% and 10%, respectively. The radiation dose that resulted in a 50% death rate (LD 5 0) was approximately 17 Gy. The surviving plant lets were transplanted and grown in pots as the Agricultural Occupation Promotion and Development Center in Chiangmai and Chiangrai for three years. Normally, American yellow lotus does not flower in Thailand. However, a mutant was found to bear flower in Thailand. The mutant flower appeared a little different from the wild-type flower. The tip of its petals was more rounded than the pointy wild-type tip. The mutant will be propagated for clonal production or for use as a par net in breeding crosses with Thai white and pink lotuses

  7. Characterization of color centers in quartz induced by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Guttler, Rainer A.S., E-mail: rainersg@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias; Enokihara, Cyro T.; Rela, Paulo R., E-mail: prela@ipen.b, E-mail: cteiti@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The availability of gamma ray irradiators in Brazil increased the possibilities of treatments of gemstones for color enhancements. One of the minerals with a very high potential of these treatments is quartz, a very widespread mineral with much colored commercial varieties. Quartz occurs in Brazil mainly in two geological environments, called pegmatitic and hydrothermal. The detailed mechanism of color center formation of these two types of quartz will be investigated by spectroscopic and chemical analysis. Until yet, it can be shown that due to chemical differences of the nature of mineral forming fluids, the two types behave differently. All quartzes contain mainly traces of Iron, Aluminum, Lithium and some amounts of Water. The quartz of hydrothermal origin incorporated much structurally bound water, and despite some similarities with the chemical composition of pegmatitic quartz, this high water content is the reason for the formation of Silanol radicals, giving the green color to the quartz. The main difference in chemical composition of pegmatitic quartz is the presence of higher amounts of Al and Li , responsible for the brownish and yellowish colors formed by irradiation. Since each pegmatite is different, the quartz will behave differently. This explains the formation of the famous 'Green Gold' of quartz from Sao Jose da Safira , and the more yellowish, Citrine type, color of quartz from the Coluna deposit, near Itamarandiba, Minas Gerais. (author)

  8. Enlargement of induced variations by combined method of chronic irradiations with callus culture in sugarcane

    International Nuclear Information System (INIS)

    Nagatomi, Shigeki

    1993-01-01

    The present study was conducted to elucidate the effects of gamma ray irradiation and callus culture upon induced variation of the regeneratives. The populations regenerated from young leaf tissue of chronic irradiated plnats grown under a gamma field receiving a total dose of 300 and 100 Gy, showed rather wider variation on quantitative characters than plants from populations of the non-irradiated. This variation extended in both negative and positive directions. Analysis of variance also revealed that variation and heritability in broad sense of most agronomic characters increased significantly among the subclones as the irradiation done rose. Principal component analysis also indicated that the subclones from the irradiated population were more variable than the non-irradiated. Such variation with higher heritability could be transmitted to the following generations by clonal propagation and utilized as genetic sources in mutation breeding. The combined method with chronic irradiation followed by tissue culture is evaluated as an effective method of widening mutation spectrum and increasing mutation frequency in regenerated plants. In addition, this method is valid to improve any crop species which can regenerate plants through callus culture. (author)

  9. γ - irradiation induced effect on the optical parameters of Cu10 Se90 thin films

    International Nuclear Information System (INIS)

    Abu EL-Fadl, A.; Hafiz, M. M.; Aashour, A.S.; Wakaad, M.M.

    2007-01-01

    The optical constants of Cu 10 SE 90 Chalcogenide films successfully deposited by evaporation coating technique have been measured. The absorption coefficient (a) for the as-deposited or after being γ-irradiation at various doses have been computed in the spectral wavelength range 400-900 nm from the transmittance (T) and reflectance (R) measurements of normally-incident light. Both irradiated and as-prepared films showed direct transition. The direct optical band gaps of the films were found to decrease from 2.017 for as prepared to 1.941 eV for γ-irradiation at 190 kGy doses. The width of the tails of localized states E e were calculated and found to be increasing after γ-irradiation. The effects of the γ-irradiation on the refractive index n and extinction coefficient k were studied. Other optical parameters (ε I , ε 2 were calculated at different γ-irradiation doses the obtained values of both ε 1 and ε 2 were found to be incident light and γ-doses dependent. The effect of γ-irradiation on the high-frequency dielectric constant (ε ∞ ) and carrier concentration (N/m * ) is also studied. The change on the degree of disorder as will as the radiation-induced defect changes applied to explain the radiation effects on nature of optical properties Cu 10 SE 90 glasses

  10. Fission gas induced deformation model for FRAP-T6 and NSRR irradiated fuel test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Sasajima, Hideo; Fuketa, Toyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hosoyamada, Ryuji; Mori, Yukihide

    1996-11-01

    Pulse irradiation tests of irradiated fuels under simulated reactivity initiated accidents (RIAs) have been carried out at the Nuclear Safety Research Reactor (NSRR). Larger cladding diameter increase was observed in the irradiated fuel tests than in the previous fresh fuel tests. A fission gas induced cladding deformation model was developed and installed in a fuel behavior analysis code, FRAP-T6. The irradiated fuel tests were analyzed with the model in combination with modified material properties and fuel cracking models. In Test JM-4, where the cladding temperature rose to higher temperatures and grain boundary separation by the pulse irradiation was significant, the fission gas model described the cladding deformation reasonably well. The fuel had relatively flat radial power distribution and the grain boundary gas from the whole radius was calculated to contribute to the deformation. On the other hand, the power density in the irradiated LWR fuel rods in the pulse irradiation tests was remarkably higher at the fuel periphery than the center. A fuel thermal expansion model, GAPCON, which took account of the effect of fuel cracking by the temperature profile, was found to reproduce well the LWR fuel behavior with the fission gas deformation model. This report present details of the models and their NSRR test simulations. (author)

  11. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    Science.gov (United States)

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  12. Contribution to the investigation of phase transitions induced by irradiation in insulating crystalline ceramics

    International Nuclear Information System (INIS)

    Simeone, D.

    2003-01-01

    The author gives a rather detailed overview of his research activities on the behaviour of ceramics subjected to irradiations by charged or not-charged particles. He reports the development of a new application of low incidence X ray diffraction to assess the evolutions within irradiated solids. Coupling this technique with Raman spectroscopy studies enabled the monitoring of order parameter evolution in these solids. He shows that, in some oxides, irradiation effects entail order-disorder type transitions and, more surprisingly, displacive phase transitions. From this experimental work, he developed a modelling of these phase transitions induced by irradiation. Quantitative data obtained on the evolutions of order parameters enabled these phase transitions to be explained within the frame of the thermodynamics of off-equilibrium phenomena

  13. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  14. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  15. Modulatory Role of Aloe vera on Gamma Irradiation Induced Histological Changes in Different Tissues of Rats

    International Nuclear Information System (INIS)

    Rezk, R.G.

    2005-01-01

    Aloe Vera is known for its wide medicinal properties. This study was performed to evaluate the role of Aloe vera (Aloe barbadensis Miller) in the amelioration of the histological disorders that occurr in different tissues of albino rats exposed to 7 Gy whole body gamma irradiation, delivered as a single dose. Aloe vera (leaf juice filtrate) was supplemented daily to rats (0.25 ml/kg b wt/day) by gavage, 5 days before irradiation and 10 days after irradiation. Experimental investigations performed 7 and 10 days after exposure to radiation showed that Aloe vera treatment has significantly improved the radiation-induced inflammation, haemorrhage, widening and dilated blood vessela, necrosis, atrophy sloughing in liver, spleen and small intestine (jejenum) tissues of irradiated rats. It is concluded that the synergistic relationship between the elements found in the leaf of Aloe vera could be a useful adjunct for maintaining the integrity of histological architecture

  16. Method for determining correction factors induced by irradiation of ionization chamber cables in large radiation field

    International Nuclear Information System (INIS)

    Rodrigues, L.L.C.

    1988-01-01

    A simple method was developed to be suggested to hospital physicists in order to be followed during large radiation field dosimetry, to evaluate the effects of cables, connectors and extension cables irradiation and to determine correction factors for each system or geometry. All quality control tests were performed according to the International Electrotechnical Commission for three clinical dosimeters. Photon and electron irradiation effects for cables, connectors and extention cables were investigated under different experimental conditions by means of measurements of chamber sensitivity to a standard radiation source of 90 Sr. The radiation induced leakage current was also measured for cables, connectors and extension cables irradiated by photons and electrons. All measurements were performed at standard dosimetry conditions. Finally, measurements were performed in large fields. Cable factors and leakage factors were determined by the relation between chamber responses for irradiated and unirradiated cables. (author) [pt

  17. Decrease of glucose-induced insulin secretion of pancreatic rat islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J

    1983-01-01

    Irradiation of pancreatic rat islets up to a dose of 2.5 Gy did neither alter glucose-nor IBMX-induced insulin secretion studied in vitro. The insulin as well as glucagon content of irradiated islets were similar as in the control tissue. This was also true in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. Since we did not find indications of an enhanced hormone output in the radiation medium, we want to suggest that higher irradiation doses affect insulin release of pancreatic islets in vitro. This observation has to be taken into account for application of radioimmunosuppression for transplantation.

  18. Reaction mechanism of hydroxymaleimide induced by γ-irradiation in alcohol solvents

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2010-01-01

    Methanol and 2-propanol solutions of hydroxymaleimide were irradiated with γ-ray and mechanism of its γ-irradiation-induced reactions was investigated through final-product analyses using high performance liquid chromatography (HPLC) coupled with mass spectroscopy. An addition reaction of a solvent radical toward hydroxymaleimide was dominant among its oxygen-free γ-irradiation-induced reactions in its alcohol solutions while it is known that electron attachment toward hydroxyphthalimide or hydroxysuccinimide is dominant among their γ-irradiation-induced reactions. The radical adduct abstracts hydrogen from solvent molecule to re-produce a solvent radical. Therefore, the degradation efficiency of hydroxymaleimide was more than ten times larger than that of hydroxyphthalimide and hydroxysuccinimide. Dimer was also produced through electron attachment process in the solutions of hydroxymaleimide. In addition, it was found that the degradation efficiency increased with decrease in dose rate. An additional reaction of a solvent radical toward hydroxymaleimide competes with a radical-radical recombination. The latter was reduced, with the former leading to efficient degradation of hydroxymaleimide increased by irradiation at lower dose rate. On the contrary, the production yield of the adduct radical as well as the degradation efficiency of hydroxymaleimide was inhibited in the presence of oxygen.

  19. Reaction mechanism of hydroxymaleimide induced by γ-irradiation in alcohol solvents

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2010-01-01

    Methanol and 2-propanol solutions of hydroxymaleimide were irradiated with γ-ray and mechanism of its γ-irradiation-induced reactions was investigated through final-product analyses using high performance liquid chromatography (HPLC) coupled with mass spectroscopy. An addition reaction of a solvent radical toward hydroxymaleimide was dominant among its oxygen-free γ-irradiation-induced reactions in its alcohol solutions while it is known that electron attachment toward hydroxyphthalimide or hydroxysuccinimide is dominant among their γ-irradiation-induced reactions. The radical adduct abstracts hydrogen from solvent molecule to re-produce a solvent radical. Therefore, the degradation efficiency of hydroxymaleimide was more than 10 times larger than that of hydroxyphthalimide and hydroxysuccinimide. Dimer was also produced through electron attachment process in the solutions of hydroxymaleimide. In addition, it was found that the degradation efficiency increased with decreasing the dose rate. An addition reaction of a solvent radical toward hydroxymaleimide competes with a radical-radical recombination. The latter was reduced and the former leading to efficient degradation of hydroxymaleimide increased by irradiation at lower dose rate. On the contrary, the production yield of the adduct radical as well as the degradation efficiency of hydroxymaleimide was inhibited in the presence of oxygen.

  20. Structural and optical properties improvements of PVP/gelatin blends induced by neutron irradiation

    Science.gov (United States)

    Basha, Mohammad Ahmad-Fouad; Hassan, Mohamed Ahmed

    2018-05-01

    Blends of polyvinylpyrrolidone and gelatin were prepared in three different concentrations to study the modifications in their structural and optical properties induced by neutron irradiations with different neutron fluence values from 108 up to 1011 neutron/cm2. X-ray spectroscopy revealed that the irradiation has induced a recrystallization phenomenon in the studied blends and the crystallinity index increased by increasing the neutron fluence due to the breaking of the crystallites. Fourier-transform infrared spectroscopy came to confirm the existence of interactions between interchain groups and a higher compatibility for the irradiated blends. The irradiation induced defects inside the material were responsible for the change in their optical and structural properties. The creation of free radicals or ions inside the conduction bands has led to the increase in the number of carriers on localized states; this has caused the increase in optical conductivity of the irradiated blends as a result of decreasing the energy gaps by increasing the neutron fluence. Results may widen the applications of the gelatin based blends to include optoelectronic devices, organic light emitting devices, solar selective and anti-reflectance bio-coatings, optical organic glass and lenses.