WorldWideScience

Sample records for irradiated nanostructured ferritic

  1. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Univ. of Idaho, Moscow, ID (United States). Dept. of Chemical and Materials Engineering; Center for Advanced Energy Studies, Idaho Falls, ID (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States). Dept. of Chemical and Materials Engineering; Center for Advanced Energy Studies, Idaho Falls, ID (United States); Burns, Jatuporn [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Alsagabi, Sultan [Univ. of Idaho, Moscow, ID (United States). Dept. of Chemical and Materials Engineering; King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia). Atomic Energy Research Inst.; Butt, Darryl P. [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Cole, James I. [Center for Advanced Energy Studies, Idaho Falls, ID (United States); Idaho National Lab. (INL), Idaho Falls, ID (United States); Price, Lloyd M. [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Shao, Lin [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2015-07-01

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ≥50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  2. Effect of Cr content on the nanostructural evolution of irradiated ferritic/martensitic alloys: An object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d' Ascq Cedex (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d' Ascq Cedex (France)

    2015-10-15

    Self-interstitial cluster diffusivity in Fe–Cr alloys, model materials for high-Cr ferritic/martensitic steels, is known to be reduced in a non-monotonic way as a function of Cr concentration: it first decreases, then increases. This non-monotonic behaviour is caused by a relatively long-ranged attractive interaction between Cr atoms and crowdions and correlates well with the experimentally observed swelling in these alloys under neutron irradiation, also seen to first decrease and then increase with increasing Cr content, under comparable irradiation conditions. Moreover, recent studies reveal that C atoms dispersed in the Fe matrix form under irradiation complexes with vacancies which, in turn, act as trap for one-dimensionally migrating self-interstitial clusters. The mobility of one-dimensional migrating clusters is considered key to determine swelling susceptibility. However, no model has ever been built that quantitatively describes the dependence of swelling on Cr content, allowing for the presence of C in the matrix. In this work we developed physically-based sets of parameters for object kinetic Monte Carlo (OKMC) simulations intended to study the nanostructure evolution under irradiation in Fe–Cr–C alloys. The nanostructural evolution in Fe–C and in four Fe–Cr–C alloys (containing 2.5, 5, 9 and 12 wt.% Cr) neutron irradiated up to ∼0.6 dpa at 563 K was simulated according to the model and reference experiments were reproduced. Our model shows that the SIA cluster reduced mobility has a major influence on the nanostructural evolution: it increases the number of vacancy-SIA recombinations and thus leads to the suppression of voids formation. This provides a clear framework to interpret the non-monotonic dependence of swelling in Fe–Cr alloys versus Cr content. Our model also suggests that the amount of C in the matrix has an equally important role: high amounts of it may counteract the beneficial effect that Cr has in reducing swelling.

  3. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    John Jacob; M Abdul Khadar; Anil Lonappan; K T Mathew

    2008-11-01

    Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured nickel ferrite samples of three different average grain sizes and those of two sintered samples were studied. The parameters like dielectric constant, dielectric loss and heating coefficient of the nanoparticles samples are studied in the frequency range from 2.4 to 4 GHz. The values of these parameters are compared with those of sintered pellets of the same samples. All these parameters show size dependent variations.

  4. Annealing-induced Grain Refinement in a Nanostructured Ferritic Steel

    Institute of Scientific and Technical Information of China (English)

    Limin Wang; Zhenbo Wangt; Sheng Guo; Ke Lu

    2012-01-01

    A nanostructured surface layer with a mean ferrite grain size of -8 nm was produced on a Fe-gCr steel by means of surface mechanical attrition treatment. Upon annealing, ferrite grains coarsen with increasing temperature and their sizes increase to -40 nm at 973 K. Further increasing annealing temperature leads to an obvious reduction of ferrite grain sizes, to -14 nm at 1173 K. The annealing-induced grain refinement is analyzed in terms of phase transformations in the nanostructured steel.

  5. Irradiation embrittlement of neutron-irradiated ferritic steel

    Science.gov (United States)

    Kayano, H.; Narui, M.; Ohta, S.; Morozumi, S.

    1985-08-01

    In this study three kinds of Fe-Cr ferritic steels were examined by the instrumented Charpy test and tensile test before and after JMTR irradiation ( 2.2×10 23 f.n./m 2). In the unirradiated samples, 100%-martensite 5Cr-2Mo steel showed the highest adsorbed energy and the highest toughness at low temperatures, follewed by the 9Cr-2Mo steel, and the 20%-martensite 5Cr-2Mo steel showed the third highest toughness. In the irradiated samples, however, thoughness was low as a whole, especially in 20%-martensite 5Cr-2Mo steel. It was clarified that 100%-martensite 5Cr-2Mo steel had the lowest Ductile-to-Brittle Transition Temperature (DBTT) and the highest fracture toughness, and that its DBTT and fracture toughness changed a little upon irradiation, showing excellent irradiation characteristics. The general equations were considered for correlation among strength, ductillity, DBTT and fracture toughness ( J value)

  6. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours.

  7. Microstructural change on electron irradiated oxide dispersion strengthened ferritic steels

    Science.gov (United States)

    Kinoshita, H.; Akasaka, N.; Takahashi, H.; Shibahara, I.; Onose, S.

    1992-09-01

    Oxide dispersion strengthened (ODS) ferritic steels were irradiated in a high voltage electron microscope (HVEM) to study their response to irradiation. Fe-13Cr with 0.25 wt% Y2O3 as dispersed particles and containing additions of either 0.45% Nb, 0.45% V and 0.67% Zr were irradiated at 673 and 723 K up to 15 dpa. The Y2O3 particles in all specimens were stable under these irradiation conditions. During irradiation, two types of dislocations were formed but observable voids were not formed. Furthermore, plate-like and granular-like precipitates formed in both the irradiated and nonirradiated regions.

  8. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Science.gov (United States)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  9. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    Nanosized copper ferrite-type materials (Cu{sub x}Fe{sub 3–x}O{sub 4}, 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) showed an apparent pseudo-first-order rate constant 15.4 × 10{sup −3} min{sup −1} and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) with higher photocatalytic activity (15.4 × 10{sup −3} min{sup −1}) than that of the standard referent Degussa P25 (12 × 10

  10. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at significantly lower strength region. It appeared that at high temperatures ≥ 600 ºC the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. It is reviewed, however, that the NFAs has much stronger radiation resistance at high temperatures, such as lower radiation-induced swelling, finer helium bubble formation and lower irradiation creep rate.

  11. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    the size, morphology and composition of metallic nanostructures, the absorption of light can be maximized, resulting in a substantial temperature elevation in a nanoscopic volume. Applications of these nanoscopic sources of heat can be found in various contexts including localized cancer therapy, drug...... of particle temperatures by simple detection of the phase boundary located far away from the particle. Two types of nanostructures were investigated using this assay: colloidal gold nanoparticles (rods and spheres) and e-beam printed metallic composite nanostructures. Chapter 5 presents the quantifications......-beam composite nanostructures, these including discs, triangles, stars and a dimer. The highest surface temperature elevation occurs on the nanostructure with the highest absorption efficiency at the laser irradiation wavelength, regardless of the size or the morphology. We also demonstrate that substantial heat...

  12. Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation

    Science.gov (United States)

    Joshi, Hrushikesh M.; Lin, Yen Po; Aslam, Mohammed; Prasad, P. V.; Schultz-Sikma, Elise A.; Edelman, Robert; Meade, Thomas; Dravid, Vinayak P.

    2010-01-01

    Cobalt ferrite magnetic nanostructures were synthesized via a high temperature solution phase method. Spherical nanostructures of various sizes were synthesized with the help of seed mediated growth of the nanostructures in organic phase, while faceted irregular (FI) cobalt ferrite nanostructures were synthesized via the same method but in the presence of a magnetic field. Magnetic properties were characterized by SQUID magnetometry, relaxivity measurements and thermal activation under RF field, as a function of size and shape. The results show that the saturation magnetization of the nanostructures increases with an increase in size, and the FI nanostructures exhibit lower saturation magnetization than their spherical counterparts. The relaxivity coefficient of cobalt ferrite nanostructures increases with increase in size; while FI nanostructures show a higher relaxivity coefficient than spherical nanostructures with respect to their saturation magnetization. In the case of RF thermal activation, the specific absorption rate (SAR) of nanostructures increases with increase in the size. The contribution sheds light on the role of size and shape on important magnetic properties of the nanostructures in relation to their biomedical applications. PMID:21850276

  13. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Science.gov (United States)

    Miller, M. K.; Reinhard, D.; Larson, D. J.

    2015-07-01

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 1024 m-3 and 1.2 × 1024 m-3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti-Y-O- clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  14. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    Science.gov (United States)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-06-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe-9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (KJQ) at represented temperatures: 240-280 MPa √m at room temperature and 160-220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic-martensitic steels such as HT9 and NF616.

  15. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B. [Washington State Univ., WA (United States); Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Eiholzer, C.R. [Westinghouse Hanford Co., WA (United States)

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  16. Heat Generation by Irradiated Complex Composite Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan; Tian, Pengfei; Pello, Josselin;

    2014-01-01

    Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results ...... revealed that substantial heat is generated in the titanium adhesive layer between gold and glass. Even when the Ti layer is as thin as 2 nm it absorbs as much as a 30 nm Au layer and hence should not be ignored....

  17. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

    Science.gov (United States)

    Mondal, Shrabani; Kumari, Manisha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-07-01

    Present work elucidates the gas sensing and electrochemical sensing capabilities of sol-gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

  18. NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

    2013-01-31

    Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the

  19. Semiconductor to metallic transition and polaron conduction in nanostructured cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Atta ur; Rafiq, M A; Hasan, M M [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, PO Nilore, Islamabad, 45650 (Pakistan); Karim, S; Maaz, K; Siddique, M, E-mail: fac221@pieas.edu.pk [Physics Division, Pakistan Institute of Nuclear Science and Technology, PO Nilore, Islamabad, 45650 (Pakistan)

    2011-04-27

    In this paper we report semiconductor to metal transition and polaron conduction in nanostructured cobalt ferrite. The material was prepared by the coprecipitation technique. Average particle size was determined to be {approx}10 nm by x-ray diffraction and transmission electron microscope analysis. A detailed electrical characterization was performed in the frequency range 20 Hz-2 MHz and temperature range between 300 and 400 K. Nanostructured cobalt ferrite exhibits semiconductor behaviour from 300 to 330 K. From 330 to 400 K it has metallic behaviour. The change at {approx}330 K is attributed to a change in cation distribution as obtained from Moessbauer spectroscopy. The ac conductivity of cobalt ferrite followed {sigma}{sub ac} {approx} {omega}{sup s} dependence. The observed variation of the exponent 's' with temperature suggests that overlapping large polaron tunnelling is the dominant conduction mechanism from 300 to 400 K and in the frequency range 20 Hz-2 MHz.

  20. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert

    2017-02-01

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  1. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Science.gov (United States)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert

    2017-02-01

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 58Ni(nth,γ) 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  2. Irradiation creep of various ferritic alloys irradiated at ˜400°C in the PFR and FFTF reactors

    Science.gov (United States)

    Toloczko, M. B.; Garner, F. A.; Eiholzer, C. R.

    1998-10-01

    Irradiation creep of three ferritic alloys at ˜400 ∘C has been studied. Specimens were in the form of pressurized tubes. In a joint US/UK creep study, two identical sets of creep specimens constructed from one heat of HT9 were irradiated in fast reactors, one in the Prototypic Fast Reactor (PFR) and the other in the Fast Flux Test Facility (FFTF). The specimens in PFR were irradiated to a dose of ˜50 dpa, whereas the specimens in FFTF were irradiated to a dose of 165 dpa. The observed swelling and creep behavior were very different in the two reactors. Creep specimens constructed from D57, a developmental alloy ferritic alloy, were also irradiated in PFR to a dose of ˜50 dpa. Creep behavior typical of previous studies on ferritic alloys was observed. Finally, creep specimens constructed from MA957, a Y 2O 3 dispersion-hardened ferritic alloy, were irradiated in FFTF to a dose of ˜110 dpa. This alloy exhibited a large amount of densification, and the creep behavior was different than observed in more conventional ferritic or ferritic-martensitic alloys.

  3. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Laboratory, Materials Science and Technology Division, P.O. 2008 MS6138, Oak Ridge, TN 37831-6138 (United States)], E-mail: kluehrl@ornl.gov; Shiba, K. [Japan Atomic Energy Agency, Toki-Mura, Ibaraki (Japan); Sokolov, M.A. [Oak Ridge National Laboratory, Materials Science and Technology Division, P.O. 2008 MS6138, Oak Ridge, TN 37831-6138 (United States)

    2008-07-15

    Irradiation damage caused by neutron irradiation below 425-450 deg. C of 9-12% Cr ferritic/martensitic steels produces microstructural defects that cause an increase in yield stress. This irradiation hardening causes embrittlement observed in a Charpy impact test as an increase in the ductile-brittle transition temperature. Little or no change in strength is observed in steels irradiated above 425-450 deg. C. Therefore, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study, significant embrittlement was observed in F82H steel irradiated at 500 deg. C to 5 and 20 dpa without any change in strength. Earlier studies on several conventional steels also showed embrittlement effects above the irradiation-hardening temperature regime. Indications are that this embrittlement is caused by irradiation-accelerated or irradiation-induced precipitation. Observations of embrittlement in the absence of irradiation hardening that were previously reported in the literature have been examined and analyzed with computational thermodynamics calculations to illuminate and understand the effect.

  4. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...... place, when both steels after DPD are annealed. Both oriented nucleation and oriented growth of oriented lamellae are demonstrated to account for such an orientation dependence. The underlying mechanisms are discussed, including the differences in stored energy, structural variation, and recovery...

  5. High coercivity in nanostructured Co-ferrite thin films

    Indian Academy of Sciences (India)

    J H Yin; B H Liu; J Ding; Y C Wang

    2006-11-01

    Three methods including sol–gel, rf sputtering and pulsed laser deposition (PLD) have been used for the fabrication of high coercivity Co-ferrite thin films with a nanocrystalline structure. The PLD method is demonstrated to be a possible tool to achieve Co-ferrite films with high coercivity and small grain size at low deposition temperature. High coercivity, over 10 kOe, has been successfully achieved in Co-ferrite films with a thickness of ∼ 100 nm deposited using PLD with a substrate temperature at 550°C. The Co-ferrite films prepared by PLD at over 300°C on different substrates including amorphous glass, quartz and silicon exhibits an obvious (111) textured structure and possesses perpendicular anisotropy. Our study has also shown that the high coercivity is related with a large residual strain, which may induce an additional magnetic anisotropy (stress anisotropy) and at the same time serve as pinning centres, which can restrict the domain wall movement and therefore, increase the coercivity.

  6. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  7. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [IPTME, Loughborough University, Loughborough LE11 3U (United Kingdom)], E-mail: zheng.lu@lboro.ac.uk; Faulkner, R.G.; Morgan, T.S. [IPTME, Loughborough University, Loughborough LE11 3U (United Kingdom)

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 x 10{sup -6} dpa/s) at 400 deg. C and 28 dpa (1.7 x 10{sup -6} dpa/s) at 465 deg. C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided ({approx}15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  8. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: Neutron irradiation of 9-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects that cause an increase in yield stress and ultimate tensile strength. This irradiation hardening causes embrittlement, which is observed in Charpy impact and toughness tests as an increase in ductile-brittle transition temperature (DBTT). Based on observations that show little change in strength in these steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above this irradiation-hardening temperature regime. In a recent study of F82H steel irradiated at 300, 380, and 500 deg. C, irradiation hardening-an increase in yield stress-was observed in tensile specimens irradiated at the two lower temperatures, but no change was observed for the specimens irradiated at 500 deg. C. As expected, an increase in DBTT occurred for the Charpy specimens irradiated at 300 and 380 deg. C. However, there was an unexpected increase in the DBTT of the specimens irradiated at 500 deg. C. The observed embrittlement was attributed to the irradiation-accelerated precipitation of Laves phase. This conclusion was based on results from a detailed thermal aging study of F82H, in which tensile and Charpy specimens were aged at 500, 550, 600, and 650 deg. C to 30,000 h. These studies indicated that there was a decrease in yield stress at the two highest temperatures and essentially no change at the two lowest temperatures. Despite the strength decrease or no change, the DBTT increased for Charpy specimens irradiated at all four temperatures. Precipitates were extracted from thermally aged specimens, and the amount of precipitate was correlated with the increase in transition temperature. Laves phase was identified in the extracted precipitates by X-ray diffraction. Earlier studies on conventional elevated-temperature steels also showed embrittlement effects above the irradiation-hardening temperature

  9. XRD and TEM study of bainitic ferrite plate thickness in nanostructured, carbide free bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Yoozbashi, M.N., E-mail: n_yoozbashi@sut.ac.ir [University of Applied Science and Technology, Tabriz (Iran, Islamic Republic of); Yazdani, S., E-mail: yazdani@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-06-15

    It is well documented that much of the strength and hardness of nanostructured, carbide free bainitic steels come from the very small thickness of bainitic ferrite plates. In the current work, the Williamson–Hall method has been used to determine the bainitic ferrite plate thickness. The fitting of X-ray peaks to various functions showed good coefficient of determination values for Gaussian function compared to the Cauchy and Pseudo-Voigt functions. The thickness of bainitic ferrite plates was measured by distinguishing the contribution of very small plates on peak broadening from the lattice microstrain and instrumental effects. The results showed that by decreasing the transformation temperature the bainitic ferrite plate thickness decreases. The determined thicknesses were compared with that of measured from transmission electron microscope micrographs. There is a good qualitative and quantitative agreement between the thicknesses measured using both methods. - Highlights: • A Williamson–Hall technique is proposed for bainitic ferrite thickness measurement. • The technique relies on full width at half maximum of XRD peaks. • The measured sizes were compared with that of determined from TEM micrographs. • There is a good qualitative and quantitative agreement between both methods. • Austenite strength and nucleation driving force lead to microstructural refinement.

  10. Structure and magnetic properties of nanostructured Ni-ferrite

    Science.gov (United States)

    Albuquerque, A. S.; Ardisson, J. D.; Macedo, W. A. A.; López, J. L.; Paniago, R.; Persiano, A. I. C.

    2001-05-01

    The structural and magnetic properties of NiFe 2O 4 ultrafine powders synthesized by coprecipitation, a nonconventional method of preparation, were investigated. The samples were obtained by annealing at relatively low temperatures (300-600°C) and characterized by X-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometry. The average particle diameter ranges from 4 to 15 nm, as determined by X-ray diffraction. All nanometric powder samples presented strong superparamagnetic relaxation at room temperature and reduced magnetic hyperfine fields at -193°C. Magnetometry measurements indicated different magnetic behavior related with crystallinity of samples, coercivity as high as 168 Oe at 27°C, value that is nearly two times higher than coercivity of bulk Ni-ferrite.

  11. Structure and magnetic properties of nanostructured Ni-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, A.S. E-mail: asa@urano.cdtn.br; Ardisson, J.D.; Macedo, W.A.A.; Lopez, J.L.; Paniago, R.; Persiano, A.I.C

    2001-05-01

    The structural and magnetic properties of NiFe{sub 2}O{sub 4} ultrafine powders synthesized by coprecipitation, a nonconventional method of preparation, were investigated. The samples were obtained by annealing at relatively low temperatures (300-600 deg. C) and characterized by X-ray diffraction, Moessbauer spectroscopy, and vibrating sample magnetometry. The average particle diameter ranges from 4 to 15 nm, as determined by X-ray diffraction. All nanometric powder samples presented strong superparamagnetic relaxation at room temperature and reduced magnetic hyperfine fields at -193 deg. C. Magnetometry measurements indicated different magnetic behavior related with crystallinity of samples, coercivity as high as 168 Oe at 27 deg. C, value that is nearly two times higher than coercivity of bulk Ni-ferrite.

  12. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6139 (United States); Reinhard, D., E-mail: David.Reinhard@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States); Larson, D.J., E-mail: David.Larson@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-07-15

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 10{sup 24} m{sup −3}, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 10{sup 24} m{sup −3}, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 10{sup 24} m{sup −3} and 1.2 × 10{sup 24} m{sup −3}, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  13. Observation of dimension dependent magnetic ordering in bismuth ferrite particulate and fiber nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sakar, M.; Bharathkumar, S.; Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600 025 (India); Saravanan, P. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2015-06-24

    Nanoparticles and nanofibers of bismuth ferrite were fabricated by sol-gel and electrospinning methods respectively. The structural and morphological analysis was carried out by XRD and FESEM techniques respectively. The magnetic measurements were carried out by SQUID magnetometer. The BFO nanofibers showed an enhanced magnetic property compared to nanoparticles. The observed magnetic properties were found to be associated with their magnetic ordering in the system where the antiferromagnetic/ferromagnetic core/shell like nature and ‘canted’ spin structure ordering was found to be the magnetic origin in the particulate and fiber nanostructures respectively.

  14. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Eiholzer, C.R. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  15. Irradiation response of ODS ferritic steels to high-energy Ne ions at HIRFL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.H., E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Yang, Y.T.; Song, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Chen, J. [Paul Scherrer Institut, Villigen PSI (Switzerland); Zhang, L.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Jang, J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kimura, A. [Institute of Advanced Energy, Kyoto University, Kyoto (Japan)

    2014-12-15

    Two kinds of ODS high-Cr ferritic steels (commercial MA956 and an Al-free 16Cr–0.1Ti ODS ferritic steel) and one conventional ferritic/martensitic steel (T122) were irradiated at about 440 °C with high-energy {sup 20}Ne-ions in HIRFL. Successively increasing doses from 350 to 900 appm of Ne concentration, corresponding to atomic displacement levels from 0.7 to 1.8 dpa, were approached. A nearly uniform distribution of Ne concentration and atomic displacement damage was produced through the thickness of 60 μm of the specimens by using an energy degrader. Mechanical properties of the specimens were tested with the small-ball punch technique. The test at room temperature shows a less significant ductility loss in the ODS ferritic steel MA956 than in the T122 irradiated to the same dose of 350 appm Ne/0.7 dpa. The test at 500 °C shows that the Al-free 16Cr–0.1Ti ODS ferritic steel does not exhibit observable loss of ductility even to the highest dose level (900 appm Ne/1.8 dpa). An investigation with transmission electron microscopy (TEM) shows that voids with a diameter up to 70 nm were formed at grain boundaries in the conventional ferritic/martensitic steel T122 while only smaller bubbles were formed at the oxides/substrate interfaces in the ODS ferritic steel MA956. Mechanisms underlying the difference of irradiation response of the steels are discussed.

  16. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Science.gov (United States)

    Raghavan, Lisha; Joy, P. A.; Vijaykumar, B. Varma; Ramanujan, R. V.; Anantharaman, M. R.

    2017-04-01

    Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  17. Multiferroic properties of nanostructured barium doped bismuth ferrite

    Energy Technology Data Exchange (ETDEWEB)

    El–Desoky, M.M., E-mail: mmdesoky@suezuniv.edu.eg [Physics Department, Faculty of Science, Suez University, Suez (Egypt); Ayoua, M.S.; Mostafa, M.M. [Physics Department, Faculty of Science, Suez University, Suez (Egypt); Ahmed, M.A. [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2016-04-15

    Multiferroic nanoparticles of Bi{sub 1−x}Ba{sub x}FeO{sub 3} (x=0.10, 0.15, 0.20, 0.25 mol%) samples were prepared using conventional solid-state method. The nanostructural, multiferroic properties of the prepared samples was investigated. X-ray diffraction (XRD) patterns show the formation of BiBaFeO{sub 3} with single-phase rhombohedral-hexagonal structure. Spin canting or impurity phase could be a probable reason for the origin of ferromagnetism. At room temperature, remnant magnetization increased 18 times more than its initial value. A change in the magnetization is observed around 742–833 K. Néel temperature (T{sub N}) registers an increase of 30 times of Ba-doped BiFeO{sub 3} in comparison with undoped BiFeO{sub 3}. The dielectric properties were affected by the properties of the substitutional ions as well as the crystalline structure of the present samples. Substitution with Ba{sup 2+} ions also improved the ferroelectric polarization with remanent polarization of 89 μC/cm{sup 2}. The simultaneous occurrence of ferromagnetism and ferroelectric hysteresis loops in BiBaFeO{sub 3} multiferroic nanoparticles system at room temperature makes it a potential candidate for information storage and spintronics. - Highlights: • We prepared multiferroic nanoparticles of Bi{sub 1−x}Ba{sub x}FeO{sub 3}. • A change in the magnetization is observed around 742–833 K. • We conclude that this nanomaterial is suitable for information storage and spintronics.

  18. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhangbo; Lo, Wei-Yang [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States); Chen, Yiren [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Pakarinen, Janne [Belgian Nuclear Research Center (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, ID 83715 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Allen, Todd [Engineering Physics Department, University of Wisconsin, Madison, WI 53706 (United States); Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Yang, Yong, E-mail: yongyang@ufl.edu [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States)

    2015-11-15

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 10{sup 19} n/cm{sup 2}, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10{sup −9} dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  19. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    Science.gov (United States)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-11-01

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 1019 n/cm2, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  20. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.

    Science.gov (United States)

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-02-06

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments.

  1. Void and precipitate structure in ion- and electron-irradiated ferritic alloys

    Science.gov (United States)

    Ohnuki, Soumei; Takahashi, Heishichiro; Takeyama, Taro

    1984-05-01

    Void formation and precipitation were investigated in Fe10Cr and Fe13Cr base alloys by 200 keV C + ion and 1 MeV electron irradiation. The ferritic alloys exhibited significant resistance to void swelling. In FeCr and FeCr-Si alloys, ion-irradiation produced the precipitates of M 23C 6 type. In the FeCrTi alloy, Ti-rich precipitates were formed with high number density on {100} plane. During electron-irradiation Fe-10Cr alloy, complex dislocation loops were produced with high number density, of which Burgers vector was mostly . EDX analysis showed slightly enrichment of chromium on dislocation loops. These results suggested that the stability of type dislocation structure at high dose is an important factor on good swelling resistance in the ferritic alloys, moreover, titanium addition will intensify the stability of the doslocations through the fine precipitation on dislocations.

  2. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alexandreanu, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  3. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    Science.gov (United States)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  4. Radiation hardening and deformation behavior of irradiated ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.P.; Klueh, R.L.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States); Shiba, K. [Japan Atomic Energy Research Inst. (Japan)

    1998-03-01

    Tensile data from several 8--12% Cr alloys irradiated in the High Flux Isotope Reactor (HFIR) to doses up to 34 dpa at temperatures ranging from 90 to 600 C are discussed in this paper. One of the critical questions surrounding the use of ferritic-martensitic steels in a fusion environment concerns the loss of uniform elongation after irradiation at low temperatures. Irradiation and testing at temperatures below 200--300 C results in uniform elongations less than 1% and stress-strain curves in which plastic instability immediately follows yielding, implying dislocation channeling and flow localization. Reductions in area and total elongations, however, remain high.

  5. Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Gibson, L.T. [Oak Ridge National Laboratory, TN (United States); Jitsukawa, S.

    1996-04-01

    Six austenitic stainless steels and two ferritic alloys were irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor where an atomic displacement level of 7.4 dpa was achieved and was then transferred to the High Flux Isotope Reactor for the remainder of the irradiation to a total displacement level of 19 dpa. Temperatures of 60 and 330{degree}C are reported on. At 330{degree}C irradiation creep was found to be linear in stress and fluence with rates in the range of 1.7 - 5.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. Annealed and cold-worked materials exhibited similar creep rates. There is some indication that austenitic alloys with TiC or TiO precipitates had a slightly higher irradiation creep rate than those without. The ferritic alloys HT-9 and Fe-16Cr had irradiatoin creep rates about 0.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. No meaningful data could be obtained from the tubes irradiated at 60{degree}C because of damage to the tubes.

  6. Effect of heat treatment and irradiation temperature on impact behavior of irradiated reduced-activation ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Charpy tests were conducted on eight normalized-and-tempered reduced-activation ferritic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility at 393 C to {approx}14 dpa on steels with 2.25, 5, 9, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25 Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5 and 9% Cr steels, and martensite with {approx}25% {delta}-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5 Cr steel was affected by heat treatment. When the results at 393 C were compared with previous results at 365 C, all but a 5 Cr and a 9 Cr steel showed the expected decrease in the shift in DBTT with increasing temperature.

  7. Fracture behaviors of neutron-irradiated ferritic steels studied by the instrumented charpy impact test

    Science.gov (United States)

    Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.

    1989-12-01

    The instrumented Charpy impact test for quarter-size specimens was developed and applied to study fracture behavior of ferritic steels and a ferritic-martensitic steel (JFMS) before and after neutron irradiation. The load-deflection curves obtained for U- and V-notched specimens showed typical characteristics of fracture properties of these steels. The temperature dependence of the fracture energy ( Ef) and the failure deflection ( Df) clearly indicates ductile-brittle transition and the DBTT can be determined from the Ef and Df versus temperature curves. The V-notched specimens showed sharper transition at higher temperatures for the JFMS than the U-notched ones, where the former were sensitive to brittle fracture and the latter well demonstrated the behavior of crack propagation. For the ferritic steels the DBTTs showed low values at compositions containing approximate 8-10% Cr and the increase of the DBTT (Δ DBTT) due to irradiation also showed a similar tendency. The Δ DBTT appeared to be relatively larger for the JFMS than the ferritic steels.

  8. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    Thermo-plasmonics is an emerging field in photonics which aims at harnessing the kinetic energy of light to generate nanoscopic sources of heat. Localized surface plasmons (LSP) supported by metallic nanostructures greatly enhance the interactions of light with the structure. By engineering...... the size, morphology and composition of metallic nanostructures, the absorption of light can be maximized, resulting in a substantial temperature elevation in a nanoscopic volume. Applications of these nanoscopic sources of heat can be found in various contexts including localized cancer therapy, drug......-plasmonic simulations as well as the ImageJ program “Mosaic”, used for single particle tracking. Chapter 4 presents the experimental details of the lipid bilayer based temperature mapping technique based on a lipid bilayer containing fluorophores with a phase dependent partitioning. This assay allowed quantification...

  9. Void formation and microstructural development in oxide dispersion strengthened ferritic steels during electron-irradiation

    Science.gov (United States)

    Saito, J.; Suda, T.; Yamashita, S.; Ohnuki, S.; Takahashi, H.; Akasaka, N.; Nishida, M.; Ukai, S.

    1998-10-01

    ODS ferritic steels (13Cr-0.5Ti-0.2Y 2O 3) were prepared by the mechanical alloying method followed by the hot extrusion and several heat treatments including recrystallization. ODS steels with different heat treatment and a ferritic/martensitic (F/M) steel for the reference were irradiated to 12 dpa at 670-770 K in HVEM. After recrystallization, the dislocation density decreased with increasing grain size, however, the oxide particles did not show any obvious change in the size and the number density. During the electron-irradiation the microstructure was relatively stable, i.e. oxide particles showed good stability and the dislocation density remained almost constant. A limited void formation was observed in the specimens, and the suppressive effect due to dislocations with high number density was confirmed. From these results, the behavior of microstructure and the limited void formation in ODS steels have been discussed.

  10. Effect of boron on post irradiation tensile properties of reduced activation ferritic steel (F-82H) irradiated in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Kiyoyuki; Suzuki, Masahide; Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Dept. of Materials Science and Engineering; Pawel, J.E. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1994-12-31

    Reduced activation ferritic/martensitic steel, F-82H (Fe-8Cr-2W-V-Ta), was irradiated in the High Flux Isotope Reactor (HFIR) to doses between 11 and 34 dpa at 400 and 500 C. Post irradiation tensile tests were performed at the nominal irradiation temperature in vacuum. Some specimens included {sup 10}B or natural boron (nB) to estimate the helium effect on tensile properties. Tensile properties including the 0.2% offset yield stress, the ultimate tensile strength, the uniform elongation and the total elongation were measured. The tensile properties were not dependent on helium content in specimens irradiated to 34 dpa, however {sup 10}B-doped specimens with the highest levels of helium showed slightly higher yield strength and less ductility than boron-free specimens. Strength appears to go through a peak, and ductility through a trough at about 11 dpa. The irradiation to more than 21 dpa reduced the strength and increased the elongation to the unirradiated levels. Ferritic steels are one of the candidate alloys for nuclear fusion reactors because of their good thermophysical properties, their superior swelling resistance, and the low corrosion rate in contact with potential breeder and coolant materials.

  11. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  12. Superior Charpy impact properties of ODS ferritic steel irradiated in JOYO

    Science.gov (United States)

    Kuwabara, T.; Kurishita, H.; Ukai, S.; Narui, M.; Mizuta, S.; Yamazaki, M.; Kayano, H.

    1998-10-01

    The effect of neutron irradiation on Charpy impact properties of an ODS ferritic steel developed by PNC was studied. The miniaturized Charpy V-notch (MCVN) specimens (1.5 × 1.5 × 20 mm) of two orientations (longitudinal, called 1DS-L, and transverse, 1DS-T) were irradiated to fluence levels of (0.3-3.8) × 10 26 n/m 2 ( E n > 0.1 MeV) between 646 and 845 K in JOYO. MCVN specimens before and after the irradiation were subjected to instrumented Charpy impact tests. The test results and fracture surface observations showed that in the unirradiated state the steel showed no ductile-to-brittle transition behavior until 153 K regardless of orientation and the upper shelf energy of the steel was as high as that of a high-strength ferritic steel without dispersed oxide. Such excellent impact properties were essentially maintained after the irradiation although an appreciable decrease in absorbed energy occurred by higher temperature irradiations at and above 793 K.

  13. Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped Bismuth Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, A., E-mail: arkac123@gmail.com [Department of Applied Science, Haldia Institute of Technology, Dist.- Purba Medinipur, Haldia- 721657, West Bengal (India); Department of Condensed Matter Physics and Material Science, S.N. Bose National Center for Basic Sciences, Block JD, Salt Lake, Kolkata 700098 (India); Mandal, K. [Department of Applied Science, Haldia Institute of Technology, Dist.- Purba Medinipur, Haldia- 721657, West Bengal (India); Department of Condensed Matter Physics and Material Science, S.N. Bose National Center for Basic Sciences, Block JD, Salt Lake, Kolkata 700098 (India)

    2014-03-15

    Nanostructured multiferroic Bi{sub (1−x)}Ba{sub x}FeO{sub 3}x=0.0, 0.1, 0.2 were prepared by hydrothermal technique. All samples belonged to the rhombohedrally distorted perovskite structure. The morphology of the particles changed with the doping of barium. Effect of barium doping on the dielectric constant was studied over a wide frequency range of 1000 Hz–1 MHz. The activation energy due to relaxation and due to conduction was measured from the Cole Cole plot and the AC conductivity versus frequency plot respectively. The activation energy estimated from both the studies was close to each other. The activation energy also enhanced with the increase in the barium content. The magnetization at the highest available field (∼1.6 T) increased from 0.05 emu/g for the sample with x=0.0–12 emu/g for the sample with x=0.2. The magnetic measurements show a significant increase in magnetization around 400 °C. Remnant polarization for x=0.0 was negligible and it increased to 0.06 µC/cm{sup 2} for x=0.2. - Highlights: • Bismuth Ferrite nanostructures were synthesized by the hydrothermal technique. • Barium was doped in Bismuth site. • Morphology changed with doping. • Ferromagnetic, Ferroelectric and Dielectric properties enhanced with doping. • An unreported magnetic transition due to spin canting was observed near 550 °C.

  14. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  15. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  16. Views of TAGSI on the effects of gamma irradiation on the mechanical properties of irradiated ferritic steel reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Knott, J.F. [School of Engineering, Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); English, C.A. [Materials and Chemistry Consultancy, Nexia Solutions, 168 Harwell International Business Centre, Didcot, Oxon OX11 0QJ (United Kingdom); Weaver, D.R. [School of Physics, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lidbury, D.P.G. [Serco Assurance, Walton House, 404 The Quadrant, Birchwood Park, Warrington, Cheshire WA3 6AT (United Kingdom)

    2005-12-01

    The paper reviews and analyses the effects of gamma irradiation dose on the properties of ferritic steels used in reactor pressure vessels (RPVs). It explains factors that affect the embrittlement of a RPV steel induced by combinations of fast neutrons, thermal neutrons, and gamma irradiation. TAGSI were asked to consider the effects of gamma irradiation dose on the properties of steels used in reactor pressure vessels. TAGSI endorsed the use of the MCBEND code to calculate gamma fluxes and energetic gamma ray displacement cross-sections calculated using either Baumann or Alexander methods. TAGSI endorsed the calculation of the materials property changes due to an additional gamma dose using trend curves based on empirical correlation to neutron-induced damage (where k {sub {gamma}}{approx}1{+-}0.25)

  17. Modifications in structural, cation distribution and magnetic properties of {sup 60}Co gamma irradiated Li-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Mane, Maheshkumar L. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India); Dhage, Vinod N.; Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India)

    2011-09-15

    Highlights: {yields} Gamma irradiation induced defects in lithium ferrite. {yields} Modifications in structural and magnetic properties. {yields} Fe{sup 3+} changes to Fe{sup 2+} after gamma irradiation. - Abstract: Polycrystalline samples of Li{sub 0.5}Fe{sub 2.5}O{sub 4} ferrite precursor were prepared by conventional standard double sintering ceramic technique and then irradiated with three different doses of {sup 60}Co gamma rays. The crystal structure and phase orientation of the irradiated and unirradiated samples of Li{sub 0.5}Fe{sub 2.5}O{sub 4} ferrite was done by using X-ray diffraction technique at room temperature. The lattice parameter of the studied samples increased due to the formation of Fe{sup 2+} ions under the ionizing effect of gamma radiation. The strain in the materials due to the irradiation was calculated from XRD data. Scanning electron microscope (SEM) studies indicate that the irradiation causes amorphization, especially at the grain boundaries. The cation distribution was calculated from XRD data analysis. By using cation distribution structural parameters such as theoretical lattice constant, ionic radii of available sites and the oxygen parameter 'u' have been calculated. The estimated cation distribution and other structural parameters shows strong influence of gamma rays on polycrystalline Li-ferrite. The magnetic properties of irradiated and unirradiated lithium ferrite were performed by using pulse field hysteresis loop technique at room temperature. Electrical properties such as diffusion coefficient and dielectric properties were carried out with the influence of gamma irradiation. Activation energy of diffusion process decreased after irradiation. The increase of diffusion coefficient with increasing dose rate of gamma irradiation was reinforced by the increase of Fe{sup 2+} ions and the displacement of metal ions from its original sites under the effect of gamma irradiation.

  18. Mechanical properties and microstructure of advanced ferritic-martensitic steels used under high dose neutron irradiation

    Science.gov (United States)

    Shamardin, V. K.; Golovanov, V. N.; Bulanova, T. M.; Povstianko, A. V.; Fedoseev, A. E.; Goncharenko, Yu. D.; Ostrovsky, Z. E.

    Some results of the study of mechanical properties and structure of ferritic-martensitic chromium steels with 13% and 9% chromium, irradiated in the BOR-60 reactor up to different damage doses are presented in this report. Results concerning the behaviour of commercial steels, containing to molybdenum, vanadium and niobium, and developed for the use in fusion reactors, are compared to low-activation steels in which W and Ta replaced Mo and Nb. It is shown that after irradiation to the dose of ˜10 dpa at 400°C 0.1C-9Cr-1W, V, Ta steels are prone to lower embrittlement as deduced from fracture surface observations of tensile specimens. Peculiarities of fine structure and fracture mode, composition and precipitation reactions in steels during irradiation are discussed.

  19. Microstructure property analysis of HFIR-irradiated reduced-activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H. E-mail: tanigawa@popsvr.tokai.jaeri.go.jp; Hashimoto, N.; Sakasegawa, H.; Klueh, R.L.; Sokolov, M.A.; Shiba, K.; Jitsukawa, S.; Kohyama, A

    2004-08-01

    The effects of irradiation on the Charpy impact properties of reduced-activation ferritic/martensitic steels were investigated on a microstructural basis. It was previously reported that the ductile-brittle transition temperature (DBTT) of F82H-IEA and its heat treatment variant increased by about 130 K after irradiation at 573 K up to 5 dpa. Moreover, the shifts in ORNL9Cr-2WVTa and JLF-1 steels were much smaller, and the differences could not be interpreted as an effect of irradiation hardening. The precipitation behavior of the irradiated steels was examined by weight analysis and X-ray diffraction analysis on extraction residues, and SEM/EDS analysis was performed on extraction replica samples and fracture surfaces. These analyses suggested that the difference in the extent of DBTT shift could be explained by (1) smaller irradiation hardening at low test temperatures caused by irradiation-induced lath structure recovery (in JLF-1), and (2) the fracture stress increase caused by the irradiation-induced over-solution of Ta (in ORNL9Cr-2WVTa)

  20. Analysis of stress-induced Burgers vector anisotropy in pressurized tube specimens of irradiated ferritic-martensitic steel: JLF-1

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Shibayama, T. [Univ. of Hokkaido, Oarai, Ibaraki (Japan). Inst. for Materials Research

    1998-09-01

    A procedure for determining the Burgers vector anisotropy in irradiated ferritic steels allowing identification of all a<100> and all a/2<111> dislocations in a region of interest is applied to a pressurized tube specimen of JLF-1 irradiated at 430 C to 14.3 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV) or 61 dpa. Analysis of micrographs indicates large anisotropy in Burgers vector populations develop during irradiation creep.

  1. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Science.gov (United States)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  2. Microstructural analysis of ferritic-martensitic steels irradiated at low temperature in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, N.; Robertson, J.P.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States); Wakai, E. [Japan Atomic Energy Research Inst. (Japan)

    1998-09-01

    Disk specimens of ferritic-martensitic steel, HT9 and F82H, irradiated to damage levels of {approximately}3 dpa at irradiation temperatures of either {approximately}90 C or {approximately}250 C have been investigated by using transmission electron microscopy. Before irradiation, tempered HT9 contained only M{sub 23}C{sub 6} carbide. Irradiation at 90 C and 250 C induced a dislocation loop density of 1 {times} 10{sup 22} m{sup {minus}3} and 8 {times} 10{sup 21} m{sup {minus}3}, respectively. in the HT9 irradiated at 250 C, a radiation-induced phase, tentatively identified as {alpha}{prime}, was observed with a number density of less than 1 {times} 10{sup 20} m{sup {minus}3}. On the other hand, the tempered F82H contained M{sub 23}C{sub 6} and a few MC carbides; irradiation at 250 C to 3 dpa caused minor changes in these precipitates and induced a dislocation loop density of 2 {times} 10{sup 22} m{sup {minus}3}. Difference in the radiation-induced phase and the loop microstructure may be related to differences in the post-yield deformation behavior of the two steels.

  3. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raut, Anil V., E-mail: nano9993@gmail.com [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Kurmude, D.V. [Milind College of Science, Aurangabad 431004, (M.S.) India (India); Shengule, D.R. [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, (M.S.) India (India)

    2015-03-15

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n{sub B} were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co{sup 60} γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n{sub B}) etc. magnetic parameters were increased after irradiation.

  4. Magnetic properties of nanostructured spinel ferrites and nanocomposite Nd2Fe14B/-Fe permanent magnets

    Indian Academy of Sciences (India)

    A Narayanaswamy

    2005-11-01

    This paper presents some of the important magnetic properties of the nano-structured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and Mn0.67Zn0.33Fe2O4 and also that of the nanocomposite Nd2Fe14B/-Fe permanent magnetic material. The increase in the magnetic transition temperature of Ni-Zn ferrite from 538 K in the bulk state to 592 K when the grain size is reduced to 16 nm is correlated to the enhancement in the AB super-exchange interaction strength because of an increase in the magnetic ion concentration in the A-site on milling, as shown by the EXAFS and in-field Mössbauer studies. The particle size has been tailor-made by varying the concentration of the oxidant in the case of Mn-Zn ferrite. The critical particle size for the superparamagnetic limit has been found to be 25 nm with an effective magnetic anisotropy constant of 7.78 kJ m-3 which is about an order of magnitude higher than that of the bulk ferrite. The exchange coupling is found to be strengthened in the nanocomposite magnet Nd2Fe14B/-Fe, when the grain boundary anisotropy is removed by thermal annealing and thus facilitating the enhancement of the energy product.

  5. Magnetic properties of ferrite-titanate nanostructured composites synthesized by the polyol method and consolidated by spark plasma sintering

    Science.gov (United States)

    Acevedo, Ulises; Gaudisson, Thomas; Ortega-Zempoalteca, Raul; Nowak, Sophie; Ammar, Souad; Valenzuela, Raul

    2013-05-01

    Multiferroic systems formed by a mixing of a ferroelectric phase and a ferrimagnetic phase are receiving significant attention because of their wide possibilities for tailoring properties. In this work, the magnetic properties of the cobalt ferrite-barium titanate system were investigated on samples prepared by an original combination of synthesis methods. Cobalt ferrite and barium titanate nanoparticles were synthesized separately by hydrolysis of the metal acetates in a polyol method. Both materials were mixed in a 1:1 ratio and consolidated by spark plasma sintering at 500 °C for 5 min. A high density nanostructured ceramic was obtained with grains smaller than 100 nm and a density about 80% of the theoretical value. Magnetic hysteresis loops showed a hard magnet behavior, with a coercive field larger than cobalt ferrite alone prepared under the same conditions. δM reversible magnetization plots exhibited dipolar interactions with a maximum at the coercive field. These results are interpreted in terms of an efficient mixing of the components, which strongly decreases the magnetic percolation in the composite by separating ferrite grains by titanate grains.

  6. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    Science.gov (United States)

    Chernov, I. I.; Kalashnikov, A. N.; Kalin, B. A.; Binyukova, S. Yu

    2003-12-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe-C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion irradiation up to a fluence of 5 × 10 20 m -2 at the temperature of 920 K. It was shown that helium-ion irradiation at high temperature resulted in formation of bubbles with a greater size and a smaller density in Fe and ferritic-martensitic steels than those in nickel and austenitic steels. Large gaseous bubbles in ferritic component are uniformly distributed in grains body in Fe-C alloys as well as in ferritic-martensitic steels. The bubbles with a higher density and a smaller size than those in ferritic component are formed in martensitic grains of steels and Fe-C alloys with a high carbon content ( NC>0.01 wt%), which leads to a small level of swelling of martensite in comparison with that of ferrite. In addition, the bubbles in martensitic grains have a tendency to ordered distribution.

  7. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, I.I. E-mail: chernov@phm.mephi.ru; Kalashnikov, A.N.; Kalin, B.A.; Binyukova, S.Yu

    2003-12-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe-C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion irradiation up to a fluence of 5 x 10{sup 20} m{sup -2} at the temperature of 920 K. It was shown that helium-ion irradiation at high temperature resulted in formation of bubbles with a greater size and a smaller density in Fe and ferritic-martensitic steels than those in nickel and austenitic steels. Large gaseous bubbles in ferritic component are uniformly distributed in grains body in Fe-C alloys as well as in ferritic-martensitic steels. The bubbles with a higher density and a smaller size than those in ferritic component are formed in martensitic grains of steels and Fe-C alloys with a high carbon content (N{sub C}>0.01 wt%), which leads to a small level of swelling of martensite in comparison with that of ferrite. In addition, the bubbles in martensitic grains have a tendency to ordered distribution.

  8. Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); China Institute of Atomic Energy, Beijing 102413 (China); Long, B. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Dai, Y. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)], E-mail: yong.dai@psi.ch

    2008-06-30

    In this work metallography investigations and microhardness measurements have been performed on 15 ferritic/martensitic (FM) steels and 6 weld metals irradiated in the SINQ Target Irradiation Program (STIP). The results demonstrate that all the steels have quite similar martensite lath structures. However, the sizes of the prior austenite grain (PAG) of these steels are quite different and vary from 10 to 86 {mu}m. The microstructure in the fusion zones (FZ) of electron-beam welds (EBWs) of 5 steels (T91, EM10, MANET-II, F82H and Optifer-IX) is similar in respect to the martensite lath structure and PAG size. The FZ of the inert-gas-tungsten weld (TIGW) of the T91 steel shows a duplex structure of large ferrite gains and martensite laths. The microhardness measurements indicate that the normalized and tempered FM steels have rather close hardness values. The unusual high hardness values of the EBW and TIGW of the T91 steel were detected, which suggests that these materials are without proper tempering or post-welding heat treatment.

  9. Nanostructure evolution in ODS steels under ion irradiation

    Directory of Open Access Journals (Sweden)

    S. Rogozhkin

    2016-12-01

    In this work, we carried out atom probe tomography (APT and transmission electron microscopy (TEM studies of three different ODS steels produced by mechanical alloying: ODS Eurofer, 13.5Cr ODS and 13.5Cr-0.3Ti ODS. These materials were investigated after irradiation with Fe (5.6MeV or Ti (4.8MeV ions up to 1015ion/cm2 and part of them up to 3×1015ion/cm2. In all cases, areas for TEM investigation were cut at a depth of ∼ 1.3µm from the irradiated surface corresponding to the peak of the radiation damage dose. It was shown that after irradiation at RT and at 300°С the number density of oxide particles in all the samples grew up. Meanwhile, the fraction of small particles in the size distribution has increased. APT revealed an essential increase in nanoclusters number and a change of their chemical composition at the same depth. The nanostructure was the most stable in 13.5Cr-0.3Ti ODS irradiated at 300°С: the increase of the fraction of small oxides was minimal and no change of nanocluster chemical composition was detected.

  10. Characterization and Modeling of Grain Boundary Chemistry Evolution in Ferritic Steels under Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-03-28

    Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering, and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to dislocations and

  11. Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation

    Science.gov (United States)

    Tan, L.; Katoh, Y.; Snead, L. L.

    2014-02-01

    The stability of MX-type precipitates is critical to retain mechanical properties of both reduced activation ferritic-martensitic (RAFM) and conventional FM steels at elevated temperatures. Radiation resistance of TaC, TaN, and VN nanoprecipitates irradiated up to ∼49 dpa at 500 °C using Fe2+ is investigated in this work. Transmission electron microscopy (TEM) utilized in standard and scanning mode (STEM) reveals the non-stoichiometric nature of the nanoprecipitates. Irradiation did not alter their crystalline nature. The radiation resistance of these precipitates, in an order of reduced resistance, is TaC, VN, and TaN. Particle dissolution, growth, and reprecipitation were the modes of irradiation-induced instability. Irradiation also facilitated formation of Fe2W type Laves phase limited to the VN and TaN bearing alloys. This result suggests that nitrogen level should be controlled to a minimal level in alloys to gain greater radiation resistance of the MX-type precipitates at similar temperatures as well as postpone the formation and subsequent coarsening of Laves phase.

  12. Structural and magnetic properties of zinc ferrite thin films irradiated by 90 keV neon ions

    Energy Technology Data Exchange (ETDEWEB)

    Gafton, E.V., E-mail: elena.gafton@insp.jussieu.fr [Alexandru Ioan Cuza University, Faculty of Physics, 11 Carol I Blv., Iasi 700506 (Romania); Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Bulai, G., E-mail: georgiana.bulai@yahoo.com [Alexandru Ioan Cuza University, Faculty of Physics, 11 Carol I Blv., Iasi 700506 (Romania); Caltun, O.F., E-mail: caltun@uaic.ro [Alexandru Ioan Cuza University, Faculty of Physics, 11 Carol I Blv., Iasi 700506 (Romania); Cervera, S., E-mail: sophie.cervera@insp.jussieu.fr [Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Macé, S., E-mail: stephane.mace@insp.jussieu.fr [Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Trassinelli, M., E-mail: martino.trassinelli@insp.jussieu.fr [Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Steydli, S., E-mail: sebastien.steydli@insp.jussieu.fr [Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Vernhet, D., E-mail: dominique.vernhet@insp.jussieu.fr [Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France)

    2016-08-30

    Highlights: • Effect of different ion beam fluences on zinc ferrite thin films structure was investigated. • First reported results on zinc ferrite thin films irradiated with slow highly charged ions. • Increased magnetization was observed for samples irradiated even at low fluence. • Measurements of blocking temperature of thin films before and after irradiation. - Abstract: The effects of 90 keV neon beam irradiation on the structure and magnetic properties of zinc ferrite thin films have been investigated through several methods, namely, X-ray diffraction technique, Vibrating Sample and SQUID magnetometers. Beforehand, the pristine have also been characterized using profilometry and microscopy techniques. In particular single-phase formation of the thin films deposited on monocrystalline Si (111) substrate by pulsed laser deposition technique was confirmed. Crystal lattice, coercivity, saturation magnetization have been studied for the first time, as a function of ion penetration depth and irradiation fluence. The chemical composition and the crystallinity of the films are not affected with the ion impact acting as a mechanical stress relief. On the contrary, both magnetization and coercivity are sensitive to Ne{sup q+} ion irradiation and exhibit different behaviours depending on the ion fluence range.

  13. Influence of mechanical milling and thermal annealing on electrical and magnetic properties of nanostructured Ni–Zn and cobalt ferrites

    Indian Academy of Sciences (India)

    A Narayanasamy; N Sivakumar

    2008-06-01

    The present article reports some of the interesting and important electrical and magnetic properties of nanostructured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and CoFe2O4. In the case of Ni0.5Zn0.5Fe2O4, d.c. electrical conductivity increases upon milling, and it is attributed to oxygen vacancies created by high energy mechanical milling. The real part of dielectric constant (') for the milled sample is found to be about an order of magnitude smaller than that of the bulk nickel zinc ferrite. The increase in Néel temperature from 538 K in the bulk state to 611 K on the reduction of grain size upon milling has been explained based on the change in the cation distribution. The dielectric constant is smaller by an order of magnitude and the dielectric loss is three orders of magnitude smaller for the milled sample compared to that of the bulk. In the case of cobalt ferrite, the observed decrease in conductivity, when the grain size is increased from 8–92 nm upon thermal annealing is clearly due to the predominant effect of migration of some of the Fe3+ ions from octahedral to tetrahedral sites, as is evident from in-field Mössbauer and EXAFS measurements. The dielectric loss (tan ) is an order of magnitude smaller for the nano sized particles compared to that of the bulk counterpart.

  14. Morphological investigation and magnetic properties of nickel zinc ferrite 1D nanostructures synthesized via thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, Said M., E-mail: selsheikh2001@gmail.com; Rashad, Mohamed M.; Harraz, Farid A. [Central Metallurgical Research and Development Institute (CMRDI), Advanced Materials Technology Department (Egypt)

    2013-10-15

    Spinel nickel zinc ferrite nanowires were successfully prepared in mesoporous silica SBA-15 as a host matrix. The powder was annealed at a range of temperatures (500-900 Degree-Sign C) with heating rate 0.5 Degree-Sign C/min. The required NiZnFe{sub 2}O{sub 4} phase was obtained at 700 Degree-Sign C. The specific surface area S{sub BET} data revealed that the surface area of the mesoporous silica after annealing was decreased from 821 to 90 m{sup 2}/g which indicated that the spinal ferrite fills the channels of mesoporous materials. The one-dimensional spinel nanostructures were characterized by X-ray diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy before and after a selective removal of the silica template in aqueous solution of NaOH or HF. The presence of SBA-15 lowers the formation temperature of nickel zinc ferrite nanowires compared to the corresponding bulk material. The magnetic properties revealed a high saturation magnetization level ({approx}43 emu/g) for the Ni-Zn nanowires at 900 Degree-Sign C.

  15. Microstructure evolution of selected ferritic-martensitic steels under dual-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wanderka, N.; Camus, E.; Wollenberger, H. [Hahn-Meitner-Inst. Berlin GmbH (Germany)

    1997-11-01

    The authors present experimental results on the microstructure evolution of dual-beam irradiated (300 keV heavy ions plus 15 keV helium ions) ferritic-martensitic steels (Manet, DIN 1.4926, F82H mod). The helium bubble morphology as well as microchemistry of the alloys are investigated by means of transmission electron microscopy and field-ion microscopy with atom probe. The alloys were irradiated to fluences up to 50 dpa and implanted with helium up to a concentration of 1 at.% at the temperatures of 723 K and 773 K. The damage and implantation rates varied from 2.5 {center_dot} 10{sup {minus}3} dpa/s to 2.5 {center_dot} 10{sup {minus}2} dpa/s and from 0.5 appm/s to 5 appm/s, respectively. Size and number density of helium bubbles is found to be rate dependent. Smaller implantation rates produce larger helium bubbles and smaller bubble number densities. Regions of local enrichment of alloy elements, typically 5 nm in size, containing chromium (up to 40 at.%), silicon, and nickel are detected. Number densities of helium bubbles and of regions of chromium enrichments are comparable and lie between 10{sup 23}/m{sup 3} and 10{sup 24}/m{sup 3}. Possible extrapolation of the present ion irradiations to spallation source and fusion reactor conditions is shortly addressed.

  16. Chromium redistribution in thermally aged and irradiated ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Camus, E.; Wanderka, N.; Welzel, S.; Wollenberger, H. [Hahn-Meitner-Institut Berlin GmbH (Germany); Materna-Morris, E. [Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)

    1998-07-15

    Ferritic-martensitic steels containing 8-12 at.% chromium are considered as structural materials for spallation sources and fusion reactors. Materials will be subjected to intense damage rates, e.g. 50-100 dpa per year at full power. Therefore, the behavior under irradiation of these steels must be investigated. Our earlier dual-beam irradiation results on the DIN 1.4914 steel showed a decomposition into chromium-enriched and chromium-depleted regions. The mean concentration of the chromium-depleted regions was found to be 5.19{+-}0.32 at.% after irradiation at 500 C to a fluence of 50 dpa, as measured by atom probe field-ion microscopy. The chromium distribution in the matrix of the DIN 1.4914 steel after thermal ageing at temperatures between 400 and 600 C has been investigated for times up to 17000 h. The carbides were characterized by means of transmission electron microscopy and extraction replicas. The concentrations of the constituents of the matrix were measured by means of atom probe. The mean chromium concentrations in the matrix are found to be 8.66{+-}0.32, 4.5{+-}0.3, and 7.2{+-}0.4 at.%, after ageing at 400, 500, and 600 C, respectively. The matrix contains virtually no carbon. The results are discussed in terms of phase decomposition and species segregation. (orig.) 15 refs.

  17. Modification of magnetic anisotropy induced by swift heavy ion irradiation in cobalt ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nongjai, Razia [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Khan, Shakeel, E-mail: skhanapad@gmail.com [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Ahmed, Hilal; Khan, Imran [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Annapoorni, S. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gautam, Sanjeev [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Lin, Hong-Ji; Chang, Fan-Hsiu [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Hwa Chae, Keun [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Asokan, K. [Material Science Division, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-11-15

    The present study demonstrates the modification of magnetic anisotropy in cobalt ferrite (CoFe{sub 2}O{sub 4}) thin films induced by swift heavy ion irradiations of 200 MeV Ag-ion beams. The study reveals that both magnetizations and coercive field are sensitive to Ag-ions irradiation and to the fluences. The magnetic anisotropy enhanced at low fluence of Ag-ions due to domain wall pinning at defect sites created by ion bombardment and at high fluence, this magnetic anisotropy ceases and changes to isotropic behavior which is explained based on the significant structural and morphological changes. An X-ray absorption and x-ray magnetic circular dichroism studies confirms the inverse spinel structure of these compounds. - Highlights: • CoFe{sub 2}O{sub 4} thin films have been deposited on Silicon substrate by pulsed laser deposition technique. • Swift heavy ion irradiation of thin films at three different fluences. • Studied the structural and magnetic properties of the samples. • XRD and Raman studies indicate strain in the films. • Observed perpendicular magnetic anisotropy.

  18. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    Science.gov (United States)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  19. Influence of the interface on the magnetic properties of NiZn ferrite thin films treated by proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, X.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Guo, D.W. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Zhang, C.H., E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fan, X.L.; Chai, G.Z. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Xue, D.S., E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-09-01

    In order to systematically investigate the influence of the interface on the magnetic properties, polycrystalline NiZn ferrite thin films were irradiated with 60 keV proton in the dose range from 5 × 10{sup 12} to 5 × 10{sup 16} ions/cm{sup 2}. A non-destructive approach by proton irradiation was found to finely adjust the magnetic properties of polycrystalline NiZn ferrite thin films such as coercivity, perpendicular magnetic anisotropy as well as the effective g value. The coercivity is about 725 Oe for high proton dose ferrite, which is twice larger than the unirradiated one. The ferromagnetic resonance measurements indicated that perpendicular magnetic anisotropy and the effective g value increase with the irradiation dose. Our finding indicates that all modifications of these magnetic properties were associated with the change of interface due to the diffusion and the stress induced by proton irradiation. The change of the effective g value is a result of lattice expansion and the decrease of the magnetic dipole interaction between the columnar grains. This work provides a feasible way to tailor the magnetic properties of thin films by ion irradiation and promotes investigations for the stability of magnetic thin film devices in space or unclear radiation environments.

  20. Nanostructure growth by helium plasma irradiation to tungsten in sputtering regime

    Energy Technology Data Exchange (ETDEWEB)

    Noiri, Y., E-mail: noiri-yasuyuki13@ees.nagoya-u.ac.jp [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kajita, S., E-mail: kajita@ees.nagoya-u.ac.jp [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2015-08-15

    The formation of nanostructure on tungsten (W) surface due to Helium (He) plasma irradiation can be harmful for fusion reactors. Up to now, W nanostructure growth was investigated mainly without sputtering. Under sputtering regime, nanostructure growth competes with erosion due to sputtering. In this study, the nanostructure growth was investigated in the linear divertor simulator NAGDIS-II at incident ion energy range of 200–500 eV. The growth of nanostructures was investigated by experiments and calculations under the sputtering regime. With increasing incident ion energy, the thickness of nanostructured W layer saturated rapidly at a lower He fluence, resulting in thinner W nanostructured layer. The erosion rate of the top of the W nanostructured layer was obtained from the comparison with the numerical calculation.

  1. Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation

    Science.gov (United States)

    Topbasi, Cem

    Ferritic-martensitic steels are primary candidate materials for fuel cladding and internal applications in the Sodium Fast Reactor, as well as first-wall and blanket materials in future fusion concepts because of their favorable mechanical properties and resistance to radiation damage. Since microstructure evolution under irradiation is amongst the key issues for these materials in these applications, developing a fundamental understanding of the irradiation-induced microstructure in these alloys is crucial in modeling and designing new alloys with improved properties. The goal of this project was to investigate the evolution of microstructure of two commercial ferritic-martensitic steels, NF616 and HCM12A, under heavy ion irradiation at a broad temperature range. An in situ heavy ion irradiation technique was used to create irradiation damage in the alloy; while it was being examined in a transmission electron microscope. Electron-transparent samples of NF616 and HCM12A were irradiated in situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with 1 MeV Kr ions to ˜10 dpa at temperatures ranging from 20 to 773 K. The microstructure evolution of NF616 and HCM12A was followed in situ by systematically recording micrographs and diffraction patterns as well as capturing videos during irradiation. In these irradiations, there was a period during which no changes are visible in the microstructure. After a threshold dose (˜0.1 dpa between 20 and 573 K, and ˜2.5 dpa at 673 K) black dots started to become visible under the ion beam. These black dots appeared suddenly (from one frame to the next) and are thought to be small defect clusters (2-5 nm in diameter), possibly small dislocation loops with Burgers vectors of either ½ or . The overall density of these defect clusters increased with dose and saturated around 6 dpa. At saturation, a steady-state is reached in which defects are eliminated and created at the same rates so that the

  2. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  3. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    Science.gov (United States)

    Saravanan, M.; T. C., Sabari Girisun

    2017-01-01

    Nonlinear absorption and optical limiting properties of ZnFe2O4-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe2O4 decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe2O4. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10-10 m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe2O4-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp3) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe2O4 upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe2O4 along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable properties which are exceedingly required in both optoelectronics and photothermal therapy applications.

  4. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix; Stabilite sous irradiation de particules d'oxydes finement dispersees dans des alliages ferritiques

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, I

    1999-07-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO{sub 2}+Y{sub 2}O{sub 3}) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide (< 20 nm) disappear, the modification of oxide composition, and a halo of fine oxides appear around the larger oxides. The use of such a material requires a study of oxide stability under irradiation, since the oxide particles provide the desired mechanical properties. The study is based on two types of alloys, the DY and four ferritic steels Fe-9Cr-1Mo reinforced by Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, MgO or MgAl{sub 2}O{sub 4}. These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel

  5. Nb2O5 Nanostructure Evolution on Nb Surfaces via Low-Energy He(+) Ion Irradiation.

    Science.gov (United States)

    Novakowski, Theodore Joseph; Tripathi, Jitendra Kumar; Hassanein, Ahmed

    2016-12-21

    We propose low-energy, broad-beam He(+) ion irradiation as a novel processing technique for the generation of Nb2O5 surface nanostructures due to its relative simplicity and scalability in a commercial setting. Since there have been relatively few studies involving the interaction of high-fluence, low-energy He(+) ion irradiation and Nb (or its oxidized states), this systematic study explores both effects of fluence and sample temperature during irradiation on resulting surface morphology. Detailed normal and cross-sectional scanning electron microscopy (SEM) studies reveal subsurface He bubble formation and elucidate potential driving mechanisms for nanostructure evolution. A combination of specular optical reflectivity and X-ray photoelectron spectroscopy (XPS) is also used to gain additional information on roughness and stoichiometry of irradiated surfaces. Our investigations show significant surface modification for all tested irradiation conditions; the resulting surface structure size and geometry have a strong dependence on both sample temperature during irradiation and total ion fluence. Optical reflectivity measurements on irradiated surfaces demonstrate increased surface roughening with increasing ion fluence, and XPS shows higher oxidation levels for samples irradiated at lower temperatures, suggesting larger surface roughness and porosity. Overall, it was found that low-energy He(+) ion irradiation is an efficient processing technique for nanostructure formation, and surface structures are highly tunable by adjusting ion fluence and Nb2O5 sample temperature during irradiation. These findings may have excellent potential applications for solar energy conversion through improved efficiency due to effective light absorption.

  6. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    Science.gov (United States)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  7. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Science.gov (United States)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-03-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain ( 100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe66Co34) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe2O4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  8. Radiation induced segregation and precipitation behavior in self-ion irradiated Ferritic/Martensitic HT9 steel

    Science.gov (United States)

    Zheng, Ce; Auger, Maria A.; Moody, Michael P.; Kaoumi, Djamel

    2017-08-01

    In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470 °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α‧ phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.

  9. Growth of ZnO nanostructures by femtosecond laser irradiation of polycrystalline targets

    Science.gov (United States)

    Escalante, G.; Ryu, Y. K.; de la Cruz, A. Ruíz; Puerto, D.; Solís, J.; Fernández, P.

    2015-11-01

    The formation of LIPSS upon irradiation with ultrashort laser pulses on the surface of polycrystalline ZnO samples and the potential use of irradiated areas as growth patterns for the production of highly ordered nanostructures upon redeposition have been studied. For this purpose, we have performed different sets of irradiation experiments including static irradiation experiments at low and high repetition rates, as well as scanned beam experiments at high repetition rate, this later in order to generate relatively large template regions for nanostructure growth by redeposition. In all cases, LIPSS formation has been achieved in the ZnO polycrystalline surface. Under appropriate irradiation conditions, the material is redeposited rendering a high density of nanostructures with high aspect ratios and good crystal quality. Given the special luminescent properties and applications of ZnO, particular attention has been paid to the luminescence properties after irradiation and after post-irradiation thermal treatments. The observed evolution has been correlated with evolution of point defects in the treated surfaces. Thermal treatments cause significant changes in both the topography and the cathodoluminescent emission, such as the development of laminar structures, the emergence of nucleation centers and the recovery of ultraviolet emission previously quenched as a consequence of irradiation. Interestingly, LIPSS remain after the luminescent recovery by thermal annealing, opening the possibility to control both luminescence properties and grain size while maintaining an ordered structure with a high effective surface area.

  10. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Science.gov (United States)

    Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.

    2017-01-01

    The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  11. Structural and magnetic properties of zinc ferrite thin films irradiated by 90 keV neon ions

    Science.gov (United States)

    Gafton, E. V.; Bulai, G.; Caltun, O. F.; Cervera, S.; Macé, S.; Trassinelli, M.; Steydli, S.; Vernhet, D.

    2016-08-01

    The effects of 90 keV neon beam irradiation on the structure and magnetic properties of zinc ferrite thin films have been investigated through several methods, namely, X-ray diffraction technique, Vibrating Sample and SQUID magnetometers. Beforehand, the pristine have also been characterized using profilometry and microscopy techniques. In particular single-phase formation of the thin films deposited on monocrystalline Si (111) substrate by pulsed laser deposition technique was confirmed. Crystal lattice, coercivity, saturation magnetization have been studied for the first time, as a function of ion penetration depth and irradiation fluence. The chemical composition and the crystallinity of the films are not affected with the ion impact acting as a mechanical stress relief. On the contrary, both magnetization and coercivity are sensitive to Neq+ ion irradiation and exhibit different behaviours depending on the ion fluence range.

  12. Photocatalytic Degradation of Isopropanol Over PbSnO3Nanostructures Under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Chen Di

    2009-01-01

    Full Text Available Abstract Nanostructured PbSnO3photocatalysts with particulate and tubular morphologies have been synthesized from a simple hydrothermal process. As-prepared samples were characterized by X-ray diffraction, Brunauer–Emmet–Teller surface area, transmission electron microscopy, and diffraction spectroscopy. The photoactivities of the PbSnO3nanostructures for isopropanol (IPA degradation under visible light irradiation were investigated systematically, and the results revealed that these nanostructures show much higher photocatalytic properties than bulk PbSnO3material. The possible growth mechanism of tubular PbSnO3catalyst was also investigated briefly.

  13. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  14. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Schubert, L.E. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  15. Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.; Gelles, D.S.

    1993-08-01

    Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry.

  16. Ab Initio Investigation of He Bubbles at the Y2Ti2O7-Fe Interface in Nanostructured Ferritic Alloys

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys are promising materials candidates for the next generation of nuclear reactors due to their ability to withstand high temperatures, high pressures, high neutron flux and especially, the presence of high concentrations of transmutation product helium. As helium diffuses through the matrix, large number densities of complex oxide nanoclusters, namely Y2Ti2O7, Y2O3 and Y2TiO5, act as trapping sites for individual helium atoms and helium clusters. Consequently, there is a significant decrease in the amount of helium that reaches grain boundaries, mitigating the threat of pressurized bubble formation and embrittlement. In order to understand the helium trapping mechanisms of the oxides at a fundamental level, the interface between the nanoclusters and the iron matrix must be modeled. We present results obtained using density functional theory on the Y2Ti2O7-Fe interface where the structure has been modeled based on experimental observations. Helium has been added along the interface in order to investigate the influence of helium on the structure and to obtain thermodynamic and kinetic parameters of helium along the interface.

  17. Structural – Electrical property correlation in defect induced nanostructured off-stoichiometric bismuth ferrite: A defect analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, R.K. [Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida, U. P. 201307 (India); Jha, Pardeep K., E-mail: pardeepjha.jiit@gmail.com [Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida, U. P. 201307 (India); Jha, Priyanka A. [Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida, U. P. 201307 (India); Department of Applied Sciences, HMR Institute of Technology and Management, GGSIPU, New Delhi 110036 (India); Kumar, Pawan [School of Basic and Applied Sciences, K. R. Mangalam University, Sohna Road, Gurgaon, Haryana 122103 (India); Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-08-15

    In order to increase magnetization, an attempt has been made to synthesize nanostructured bismuth ferrite using high energy planetary ball milling (HEPBM). In this process local heating in HEPBM and Bi-volatility has eventually led to the formation of BiFe{sub 5}O{sub 12} (off stoichiometric bismuth iron garnet (BIG)). Electrical characterization has been done in order to identify the nature of defects and diffusion mechanism which has been supported by high resolution transmission electron microscopy and selected area electron diffraction images. The simultaneous analysis of current density-applied voltage (J–V) and current density-frequency (J–ν) curves gives insight mechanism for defect formation and how surface charge density depends on relaxation time and frequency of field applied. - Highlights: • Dielectric analysis has been carried out to analyse the defect mechanism. • RBS and EdX study confirm the elemental constituents. • Correlation between observed J-V-f behaviour and defects has been established. • HRTEM, SAED pattern and impedance analysis supports the defect analysis.

  18. Simulation of nanostructural evolution under irradiation in Fe-9%CrC alloys: An object kinetic Monte Carlo study of the effect of temperature and dose-rate

    Directory of Open Access Journals (Sweden)

    M. Chiapetto

    2016-12-01

    Full Text Available This work explores the effects of both temperature and dose-rate on the nanostructural evolution under irradiation of the Fe-9%CrC alloy, model material for high-Cr ferritic/martensitic steels. Starting from an object kinetic Monte Carlo model validated at 563K, we investigate here the accumulation of radiation damage as a function of temperature and dose-rate, attempting to highlight its connection with low-temperature radiation-induced hardening. The results show that the defect cluster mobility becomes high enough to partially counteract the material hardening process only above ∼290°C, while high fluxes are responsible for higher densities of defects, so that an increase of the hardening process with increasing dose-rates may be expected.

  19. Green Formation of Spherical and Dendritic Silver Nanostructures under Microwave Irradiation without Reducing Agent

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    2012-06-01

    Full Text Available The rapid and green formation of spherical and dendritic silver nanostructures based on microwave irradiation time was investigated. Silver nanoparticles were successfully fabricated by reduction of Ag+ in a water medium and using polyvinylpyrrolidone (PVP as the stabilizing agent and without the use of any other reducing agent, and were compared with those synthesized by conventional heating method. UV–vis absorption spectrometry, transmission electron microscopy (TEM, atomic absorption spectroscopy (AAS and photon correlation spectroscopy (PCS measurements, indicated that increasing the irradiation time enhanced the concentration of silver nanoparticles and slightly increased the particle size. There was a lack of large silver nanoparticles at a high concentration, but interestingly, the formation and growth of silver dendrite nanostructures appeared. Compared to conventional heating methods, the silver nanoparticle suspension produced by irradiated microwaves was more stable over a six-month period in aqueous solution without any signs of precipitation.

  20. Spectroscopy investigation of nanostructured nickel–zinc ferrite obtained by mechanochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazarević, Zorica Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Milutinović, Aleksandra N. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Jovalekić, Čedomir D. [The Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade (Serbia); Ivanovski, Valentin N. [Institute of Nuclear Sciences Vinča, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Daneu, Nina [Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana (Slovenia); Mađarević, Ivan [Institute of Nuclear Sciences Vinča, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Romčević, Nebojša Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia)

    2015-03-15

    Highlights: • Nano powder of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} prepared by a soft mechanochemicaly after 10 h milling. • Phase formation controlled by XRD, Raman and IR spectroscopy. • Spectroscopy measurements indicate that the prepared samples have spinel structure. • The average particles size are found to be around 20 nm. • The degree of inversion is δ = 0.36 for NZF obtained from hydroxides for 10 h. - Abstract: Nano crystalline samples of nickel–zinc ferrite, Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} were prepared by mechanochemical route in a planetary ball mill starting from two mixtures of the appropriate quantities of the powders: case (1) oxide powders: NiO, ZnO and α-Fe{sub 2}O{sub 3} in one case, and in the second case (2) hydroxide powders: Ni(OH){sub 2}, Zn(OH){sub 2} and Fe(OH){sub 3}. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, IR and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

  1. Embrittlement of reduced-activation ferritic/martensitic steels irradiated in HFIR at 300 deg. C and 400 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. E-mail: ku2@ornl.gov; Sokolov, M.A.; Shiba, K.; Miwa, Y.; Robertson, J.P

    2000-12-01

    Miniature tensile and Charpy specimens of four ferritic/martensitic steels were irradiated at 300 deg. C and 400 deg. C in the high flux isotope reactor (HFIR) to a maximum dose of {approx}12 dpa. The steels were standard F82H (F82H-Std), a modified F82H (F82H-Mod), ORNL 9Cr-2WVTa, and 9Cr-2WVTa-2Ni, the 9Cr-2WVTa containing 2% Ni to produce helium by (n,{alpha}) reactions with thermal neutrons. More helium was produced in the F82H-Std than the F82H-Mod because of the presence of boron. Irradiation embrittlement in the form of an increase in the ductile-brittle transition temperature ({delta}DBTT) and a decrease in the upper-shelf energy (USE) occurred for all the steels. The two F82H steels had similar {delta}DBTTs after irradiation at 300 deg. C, but after irradiation at 400 deg. C, the {delta}DBTT for F82H-Std was less than for F82H-Mod. Under these irradiation conditions, little effect of the extra helium in the F82H-Std could be discerned. Less embrittlement was observed for 9Cr-2WVTa steel irradiated at 400 deg. C than for the two F82H steels. The 9Cr-2WVTa-2Ni steel with {approx}115 appm He had a larger {delta}DBTT than the 9Cr-2WVTa with {approx}5 appm He, indicating a possible helium effect.

  2. Evolution of the mechanical properties and microstructure of ferritic-martensitic steels irradiated in the BOR-60 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shamardin, V.K. E-mail: fae@niiar.ru; Golovanov, V.N.; Bulanova, T.M.; Povstyanko, A.V.; Fedoseev, A.E.; Ostrovsky, Z.E.; Goncharenko, Yu.D

    2002-12-01

    The effect of neutron irradiation on mechanical properties of low-activation ferritic-martensitic (FM) steels 0.1C-9Cr-1W, V, Ta, B and 0.1C-12Cr-2W, V, Ti, B is studied under tension at temperatures of 330-540 deg. C and doses of 50 dpa. Steel 0.1C-13Cr-Mo, V, Nb, B was chosen for comparison. At irradiation temperatures of 330-340 deg. C, the radiation hardening of steel with 9%Cr achieves saturation at a dose of 10 dpa. In this case as compared to steels with 12%Cr, the fracture surface is characterized as ductile without cleavage traces. At irradiation temperatures higher than 420 deg. C, there is no difference in the behavior of the materials under investigation. The data on radiation creep obtained by direct measurement and from the profilometry data satisfy a model {epsilon}-bar/{sigma}-bar=B{sub 0}+DS, when B{sub 0} and D have the values typical for steels of FM type.

  3. Evolution of the mechanical properties and microstructure of ferritic-martensitic steels irradiated in the BOR-60 reactor

    Science.gov (United States)

    Shamardin, V. K.; Golovanov, V. N.; Bulanova, T. M.; Povstyanko, A. V.; Fedoseev, A. E.; Ostrovsky, Z. E.; Goncharenko, Yu. D.

    2002-12-01

    The effect of neutron irradiation on mechanical properties of low-activation ferritic-martensitic (FM) steels 0.1C-9Cr-1W, V, Ta, B and 0.1C-12Cr-2W, V, Ti, B is studied under tension at temperatures of 330-540 °C and doses of 50 dpa. Steel 0.1C-13Cr-Mo, V, Nb, B was chosen for comparison. At irradiation temperatures of 330-340 °C, the radiation hardening of steel with 9%Cr achieves saturation at a dose of 10 dpa. In this case as compared to steels with 12%Cr, the fracture surface is characterized as ductile without cleavage traces. At irradiation temperatures higher than 420 °C, there is no difference in the behavior of the materials under investigation. The data on radiation creep obtained by direct measurement and from the profilometry data satisfy a model ɛ¯/ σ¯=B 0+D Ṡ, when B0 and D have the values typical for steels of FM type.

  4. Nanostructure and magnetic properties of magnesium ferrite thin films deposited on glass substrate by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, H., E-mail: arabi-h@um.ac.ir [Magnetism and Superconducting Research Laboratory, Department of Physics, Faculty of Science, University of Birjand, Birjand (Iran, Islamic Republic of); Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Khalili Moghadam, N. [Magnetism and Superconducting Research Laboratory, Department of Physics, Faculty of Science, University of Birjand, Birjand (Iran, Islamic Republic of)

    2013-06-15

    The spinel MgFe{sub 2}O{sub 4} thin films were prepared on the glass substrates at T{sub S}=400 °C by the spray pyrolysis deposition method. Structural and magnetic properties of the calcinated thin films at different temperatures were also investigated. By changing the calcination temperature from 400 to 600 °C, the crystallite size increased from 10 to 15 nm and the crystallinity of the films improved slightly. Thickness of the films calcinated at 400 and 600 °C were 0.648 and 1.473 μm respectively. However, the surface morphology of the films did not change considerably. Magnetic measurements, when the applied magnetic field was in parallel and perpendicular directions, showed the isotropic magnetic nature of the prepared films and their magnetic properties increased with the increment of calcination temperature. The H{sub c} value of thin films calcinated at 400 °C was about 168 Oe. - Highlights: ► Thin films of MgFe{sub 2}O{sub 4} are prepared via spray pyrolysis. ► All of the MgFe{sub 2}O{sub 4} films have nanostructure and the special magnetic properties. ► The surface morphology of films in different calcination temperatures is similar. ► The H{sub c} values of our films are independent of the applied field direction. ► The M{sub s} values in the plan and perpendicular directions are not the same.

  5. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

    2014-10-01

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

  6. Light Irradiation through Small Particles and Its Applications for Surface Nanostructuring in Near Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; HONG Ming-Hui; FUH Ying-Hsi Jerry; LU Li; TAN Leng Seow; Luk(y)anchuk B S

    2007-01-01

    We investigate the light scattering through small particles and its applications in nanostructuring, such as nanobumping, nanopatterning and dry laser cleaning. The theoretical calculation based on Mie theory provides an exact solution for sphere cavity resonance and plasmon resonance, which are two mechanisms for dielectric and metallic particles assisted surface nanostructuring in near field. The experimental results indicate that nanobumps on glass surface and subwavelength holes array on silicon surface can be formed without cracks with the self-assembly of 1 μm silica particle mask under laser irradiation. It is also found that the scattering wave by 40 nm gold particles can propagate 200 times away in terms of particle radius as recorded by photoresist under the UV light irradiation. Meanwhile, dry laser cleaning of 40 nm gold particle on silicon wafer is demonstrated at plasmonic resonance frequency. The total cleaning efficiency is estimated to be 80%.

  7. Thermoluminescence properties of -irradiated Bi doped BaS nanostructures

    Indian Academy of Sciences (India)

    Surender Singh; Ankush Vij; S P Lochab; Ravi Kumar; Nafa Singh

    2011-07-01

    Bismuth doped barium sulphide nanocrystallities were prepared and characterized by XRD. Thermoluminescence (TL) studies of these samples after exposure to gamma radiation were carried out. The TL glow curve of the phosphors have two peaks at 403 K and 658 K while in their bulk counterparts these peaks were reported at 486 K and 570 K (Rao 1986). We noted that TL intensity increases with gamma exposure time in the range 30 min – 41 h which may be explained on the basis of track interaction model (TIM) and a high surface to volume ratio for the nanostructures. The kinetic parameters at various heating rates namely activation energy (E), order of kinetics (b) and frequency factor (s) of BaS : Bi (0.4 mol%) sample was determined using Chen’s method. The deconvolution of curve was done using the GCD function suggested by Kitis. The effect of different heating rates and different amount of dose has also been discussed.

  8. Surface nanostructuring of TiO{sub 2} thin films by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gomez, P. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain); Palmero, A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain)], E-mail: alberto.palmero@icmse.csic.es; Yubero, F. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain); Vinnichenko, M.; Kolitsch, A. [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain)

    2009-04-15

    This work reports a procedure to modify the surface nanostructure of TiO{sub 2} anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N{sup +} ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S{sup +}) and lighter (B{sup +}) ions under similar conditions.

  9. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  10. Novel bismuth tri-iodide nanostructures obtained by the hydrothermal method and electron beam irradiation

    Science.gov (United States)

    Aguiar, Ivana; Olivera, Alvaro; Mombrú, Maia; Bentos Pereira, Heinkel; Fornaro, Laura

    2017-01-01

    Bismuth tri-iodide is a layered compound semiconductor which has suitable properties as material for ionizing radiation detection devices. Monocrystals and polycrystalline thin films have been studied for this application, but only recently, the development of nanostructures of this compound has emerged as an interesting alternative for using such nanostructures in new types of radiation detectors or for including them in other applications. Considering this, we present in this work BiI3 nanoparticles successfully synthesized by the hydrothermal method, using a Teflon-lined stainless steel autoclave, at a temperature of 180 °C during 8-20 h, with BiCl3 and NaI as source materials. We characterized the nanoparticles by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS). We obtained small rounded or hexagonal particles (10-20 nm in size) and larger structures. The maximum orientation of the nanostructures is along the (0 0 l) family planes and occurs after 16 h of synthesis, which arises as the best condition for obtaining BiI3 oriented nanostructures. When a 100 kV TEM electron beam was converged on the larger structures, we obtained highly oriented BiI3 hexagonal and rod shaped nanostructures. We found that particles' shape does not depend on the synthesis time. In addition, results were compared with the ones obtained for nanoparticles synthesized from solution. The present work is an advance in the synthesis of BiI3 nanostructures by the hydrothermal method, and is also the first step on seeking the amenable control of morphology and size of such structures using electron beam irradiation. This last process may be particularly appropriate for producing nanostructures for future applications in new devices.

  11. Effects of irradiation on chromium's behavior in ferritic/martensitic FeCr alloy

    Institute of Scientific and Technical Information of China (English)

    Xinfu HE; Wen YANG; Zhehao QU; Sheng FAN

    2009-01-01

    The effects of irradiation on chromium performance under different temperatures in Fe-20at%Cr were modeled by modified Marlowe code. Chromium precipitation was observed in FeCr alloy after irradiation; interstitial Chromium atoms are the preferred formation of mixed FeCr dumbbells in the direction ofand; interstitial chromium atoms congregated on {111} and {110} plane. The results are compared with experiment observations and are useful to understanding the irradiation performances of FeCr alloy.

  12. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sarkar, Apu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Miller, Brandon [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Burns, Jatuporn [Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Squires, Leah; Porter, Douglas; Cole, James I. [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2014-10-06

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) have been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.37 dpa. Atom probe tomography revealed manganese and silicon-enriched clusters in both UFG and CG steel after neutron irradiation. Mechanical properties were characterized using microhardness and tensile tests, and irradiation of UFG carbon steel revealed minute radiation effects in contrast to the distinct radiation hardening and reduction of ductility in its CG counterpart. After irradiation, micro hardness indicated increases of around 9% for UFG versus 62% for CG steel. Similarly, tensile strength revealed increases of 8% and 94% respectively for UFG and CG steels while corresponding decreases in ductility were 56% versus 82%. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation while no significant change was observed in UFG steel, revealing better radiation tolerance. Quantitative correlations between experimental results and modeling were demonstrated based on irradiation induced precipitate strengthening and dislocation forest hardening mechanisms.

  13. Nanostructure fabrication using electron beam irradiation of organometallic compounds

    CERN Document Server

    Bedson, T R

    2001-01-01

    Nanoelectronics- the quest to fabricate quantum devices- is the motivation for this thesis. The place of nanolithography is discussed amongst conventional microfabrication methods, together with the materials currently employed in lithography. The experimental methods, equipment and new resist materials (films of nanoparticles) are then explored in the work described. A summary of the results obtained by the research is presented, followed by the detailed results in the form of a series of published and submitted papers. A systematic study of the response of ferrocene adsorbed onto graphite at 160K to low energy electron beams, that results in varying behaviour depending on the energy of irradiation, is first described. Following are studies of the characteristics of passivated gold nanoclusters when used as a monolayer negative tone resist in direct electron beam writing. Fabrication of lines with widths as narrow as 26 nm has been achieved. Measurements of the linewidth as a function of electron dose allow ...

  14. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  15. Versatility of electrospinning in the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities.

    Science.gov (United States)

    Bharathkumar, S; Sakar, M; K, Rohith Vinod; Balakumar, S

    2015-07-21

    This study demonstrates the fabrication of electrospun bismuth ferrite (BiFeO3/BFO) fiber mat and fibrous mesh nanostructures consisting of aligned and random fibers respectively. The formation of these one dimensional (1D) nanostructures was mediated by the drum and plate collectors in the electrospinning process that yielded aligned and random nanofibers of BFO respectively. The single phase and rhombohedral crystal structure of the fabricated 1D BFO nanostructures are confirmed through X-ray diffraction (XRD) studies. X-ray photoelectron spectroscopy (XPS) studies indicated that the fabricated fibers are stoichiometric BFO with native oxidation states +3. The surface texture and morphology are analyzed using the field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) techniques. The average size of fibers in mat and mesh nanostructures is found to be 200 nm and 150 nm respectively. The band gap energy of BFO mat and mesh deduced from their UV diffuse reflectance spectra (UV-DRS) was found to be 2.44 eV and 2.39 eV, respectively, which evidenced the improved visible light receptivity of BFO mesh compared to that of the mat. Magnetization studies using a super conducting quantum interference device (SQUID) magnetometer revealed the weak ferromagnetic properties of BFO mesh and mat nanostructures that could emerge due to the dimension induced suppression of cycloidal spin structures. The photocatalytic degradation properties of the fibrous mesh are found to be enhanced compared to that of the mat. This could be attributed to the reduced band gap energy and an improved semiconductor band-bending phenomenon in the mesh that favoured the transportation of excited charge carriers to the photocatalyst-dye interfaces and the production of more number of reactive species that lead to the effective degradation of the dye molecules.

  16. Ultrasonic irradiation effects on electrochemical synthesis of ZnO nanostructures.

    Science.gov (United States)

    Hajnorouzi, Abazar; Afzalzadeh, Reza; Ghanati, Faezeh

    2014-07-01

    In the present article, electrochemical synthesis of ZnO nanostructures in presence of ultrasonic irradiation is investigated. The ultrasonic bath use for synthesis is calibrated using hydrophone method so that its frequency and acoustic power were obtained. From the results of the experimentation the role of ultrasonic irradiation in synthesis of ZnO nanoparticles is discussed. Diameter of the ZnO nanoparticles produced in the electrolyte was compared and investigated in absence and presence of the ultrasonic irradiation utilizing UV-visible photo-spectrometer. Then electrodeposited ZnO layer on the ITO glass as cathode's surface in absence and presence of the ultrasonic irradiation were studied by UV-visible photo-spectrometer and field emission scanning electron microscopy (FE-SEM) and the results were compared. FE-SEM micrographs show, higher growth of nanosheets on the cathode electrode in presence of ultrasonic irradiation. Experiment shows synthesis of ZnO nanoparticles in presence of the ultrasonic irradiation happen 10 times faster.

  17. Optical and magnetic properties of monophasic cadmium ferrite (CdFe{sub 2}O{sub 4}) nanostructure prepared by thermal treatment method

    Energy Technology Data Exchange (ETDEWEB)

    Naseri, Mahmoud, E-mail: mahmoud.naseri55@gmail.com

    2015-10-15

    This paper reports optical and magnetic properties of CdFe{sub 2}O{sub 4} nanostructure which was prepared by a simple thermal treatment method. Calcination was conducted at temperatures between 673 and 773 K, and final products had different crystallite sizes ranging from 47 to 138 nm. The influence of calcination temperature on the degree of crystallinity, microstructure, and phase composition was investigated by different characterization techniques, i.e., X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and Fourier transform infrared spectroscopy (FT-IR), respectively. The compositions of the samples were determined by Energy dispersive X-ray analysis (EDXA). The effect of calcination temperature on band gap energy was studied by UV–vis absorption spectra. The formed nanostructures exhibited ferromagnetic behaviors with unpaired electrons spins, which was confirmed by using vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR) spectroscopy. - Highlights: • Metal nitrates were added into an aqueous solution of PVA and the mixed solution was heated at 373 K. • The effect of calcination temperature on morphology of cadmium ferrite nanostructures was characterized. • Elemental composition, phase composition and others properties were investigated.

  18. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  19. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  20. Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels

    Science.gov (United States)

    Getto, E.; Sun, K.; Monterrosa, A. M.; Jiao, Z.; Hackett, M. J.; Was, G. S.

    2016-11-01

    The void swelling and microstructure evolution of ferritic-martensitic alloys HT9, T91 and T92 were characterized following irradiation with Fe++ ions at 460 °C to damage levels of 75-650 displacements per atom with 10 atom parts per million pre-implanted helium. Steady state swelling rate of 0.033%/ dpa was determined for HT9, the least swelling resistant alloy, and 0.007%/ dpa in T91. In T91, resistance was due to suppression of void nucleation. Swelling resistance was greatest in T92, with a low density (∼1 × 1020 m-3) of small voids that had not grown appreciably, indicating suppression of nucleation and growth. Additional heats of T91 indicated that alloy composition was not the determining factor of swelling resistance. Carbon and chromium-rich M2X precipitates formed at 250 dpa and were correlated with decreased nucleation in T91 and T92, but did not affect void growth in HT9. Dislocation and G-phase microstructure evolution was analyzed up to 650 dpa in HT9.

  1. Views of TAGSI on effects of neutron irradiation on ductile tearing in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Knott, J.F. [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lidbury, D.P.G. [Serco Technical and Assurance Services, Walton House, 404 Faraday Street, Birchwood Park, Warrington WA3 6GA (United Kingdom)], E-mail: david.lidbury@serco.com

    2009-07-15

    The paper reviews information pertaining to effects of neutron irradiation on 'upper-shelf' Charpy impact behaviour and on elastic/plastic fracture mechanics characterising parameters, again for 'upper shelf' conditions, in which the initiation and early growth of a crack involve ductile tearing. The hardening and associated reduction in strain-hardening capacity induced by irradiation gives rise to a decrease in Charpy upper shelf energy. Effects on J-based parameters are more complicated. The material resistance parameters tend to increase for low dose, but decrease at high dose, when the decrease in crack-tip ductility outweighs the effect of hardening. High doses can produce 'fast shear' fracture, which propagates rapidly and is therefore more likely to induce brittle cleavage fracture. The situation is exacerbated if the irradiation also promotes inter-granular segregation and fracture, hence reducing the local brittle fracture stress. For the levels of irradiation experienced by the types of UK civil reactors in operation, no fracture instability is expected to arise as a result of ductile fracture mechanisms alone.

  2. Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing

    Science.gov (United States)

    Miller, M. K.; Chernobaeva, A. A.; Shtrombakh, Y. I.; Russell, K. F.; Nanstad, R. K.; Erak, D. Y.; Zabusov, O. O.

    2009-04-01

    A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 × 10 23 m -2 ( E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 × 10 23 m -2 ( E > 0.5 MeV). High number densities of ˜2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the ΔT 41 J ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiation anneal of 2 h at 450 °C, but had dissolved into the matrix after 24 h at 450 °C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.

  3. Controlled synthesis and morphology-dependent electromagnetic properties of nickel nanostructures by γ-ray irradiation technique

    Science.gov (United States)

    Hongtao, Zhao; Xijiang, Han; Lifang, Zhang; Gangyi, Wang; Chao, Wang; Xueai, Li; Ping, Xu

    2011-03-01

    We report the morphology-dependent magnetic and electromagnetic absorption properties of various nickel nanostructures prepared by a γ-ray irradiation technique. By changing the applied surfactants during the irradiation, sting-like, agglomerated, and chain-like nickel nanostructures are obtained when using polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and sodium dodecyl benzene sulfonate (SDBS) as the surfactants. It is determined that the excellent electromagnetic absorption ability of sting-like nickel arises from point discharge effect, while chain-like nickel shows the best absorption property due to the geometrical effect. We think that the preparation of nickel nanostructures with various morphologies by this facile γ-ray irradiation technique can be a general route for other metals.

  4. Effect of Nanostructure Changes on Stress Corrosion Cracking of Proton Irradiated Nuclear Energy Structural Materials

    Directory of Open Access Journals (Sweden)

    M.N. Lunika

    2011-01-01

    Full Text Available Austenitic stainless alloys are used extensively as structural materials in the internal components of light water reactor (LWR pressure vessels because of their relatively high strength, ductility, and fracture toughness. Irradiation-assisted stress corrosion cracking (IASCC is main degradation process that affects LWR internal components exposed to radiation. The existing data on proton irradiated austenitic alloys were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose on IASCC susceptibility of these materials in LWR environments. The significance of deformation nanostructure and stacking fault energy (SFE changes in the material on IASCC susceptibility is also discussed. Results show that the IASCC susceptibility of the alloys increases with increasing irradiation dose and decreasing stacking fault energy. IASCC tends to initiate at locations where slip dislocation channels intersect grain boundaries. Localized deformation in the form of grain boundary sliding due to the interaction of slip channels and grain boundaries is likely the primary cause of the observed cracking initiation. It may play a key role in the underlying mechanism of IASCC in light water reactor core components.

  5. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.

    2014-08-11

    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  6. Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS CNR-IMM, via S. Sofia 64, I-95123 Catania (Italy); Pugliara, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); Carria, E.; Romano, L. [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS CNR-IMM, via S. Sofia 64, I-95123 Catania (Italy); Bongiorno, C. [Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi (CNR-IMM) VIII Strada 5, 95121 Catania (Italy); Fisicaro, G. [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi (CNR-IMM) VIII Strada 5, 95121 Catania (Italy); La Magna, A.; Spinella, C. [Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi (CNR-IMM) VIII Strada 5, 95121 Catania (Italy); Grimaldi, M.G. [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS CNR-IMM, via S. Sofia 64, I-95123 Catania (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Au nanoclusters are produced by nanosecond laser irradiations of thin Au film on Si. Black-Right-Pointing-Pointer The shape, size, and surface density of the Au nanoclusters are tunable by laser fluence. Black-Right-Pointing-Pointer The formation dynamic of the Au nanoclusters under nanosecond laser irradiation is analyzed. - Abstract: In this work, we study the nanostructuring effects of nanosecond laser irradiations on 5 nm thick Au film sputter-deposited on Si. After deposition of Au on Si substrate, nanosecond laser irradiations were performed increasing the laser fluence from 750 to 1500 mJ/cm{sup 2}. Several analyses techniques, such as Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy were crossed to study the morphological evolution of the Au film as a function of laser fluence. In particular, the formation of Au nanoparticles was observed. The analyses allowed a quantitative evaluation of the evolution of the nanoparticles size, surface density, and shape as a function of the laser fluence. Therefore, a control the structural properties of the Au nanoparticles is reached, for example, for applications in Si nanowires growth or plasmonics.

  7. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Science.gov (United States)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni-Cu-Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power Pdiss=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10-25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite.

  8. Swift heavy ion irradiated spinel ferrite: A cheap radiation resistant material

    Energy Technology Data Exchange (ETDEWEB)

    Satalkar, M. [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Kane, S.N., E-mail: kane_sn@yahoo.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Kulriya, P.K. [Inter-University Acclerator Centre, P.O. Box No. 10502, Aruna Asaf Ali Marg, New Delhi 110067 (India); Avasthi, D.K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Effect of (80 MeV) {sup 16}O 6{sup +} ion irradiation on the structural properties and cation distribution of the as-burnt samples (i.e. the samples are without any thermal/sintering treatment) with the following compositions: MnFe{sub 2}O{sub 4}, Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} prepared by sol–gel auto-combustion technique have been studied through in-situ and ex-situ X-ray diffraction (XRD) technique. Well characterized single phase MnFe{sub 2}O{sub 4} and Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples were irradiated at fluence 1 × 10{sup 11}, 1 × 10{sup 12}, 1 × 10{sup 13} and 1 × 10{sup 14} ions/cm{sup 2} to see the effect of the electronic energy loss induced changes in the structural properties and in cation distribution monitored through ex-situ XRD. ZnFe{sub 2}O{sub 4} samples were irradiated with ion fluence values ranging between 1 × 10{sup 11} − 2 × 10{sup 14} ions/cm{sup 2} to observe the effect of in-situ XRD on structural properties and cation distribution. Results very clearly depict the redistribution of cations in the samples, which show noticeable changes in: ionic radii of A-site (r{sub A}) and B-site (r{sub B}), experimental and theoretical lattice parameter (a{sub exp.,}a{sub th.}), unit cell volume (V), Scherrer’s Grain diameter (D), oxygen positional parameter (u), tetrahedral and octahedral bond length (R{sub A}, R{sub B}), shared tetrahedral and octahedral edge (d{sub AE,}d{sub BE}) and bond angles (θ{sub 1}, θ{sub 2}, θ{sub 3}, θ{sub 4}, θ{sub 5}). Results are interpreted in terms of irradiation induced changes in the above mentioned parameters.

  9. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  10. Tailoring molybdenum nanostructure evolution by low-energy He+ ion irradiation

    Science.gov (United States)

    Tripathi, J. K.; Novakowski, T. J.; Hassanein, A.

    2015-10-01

    Mirror-finished polished molybdenum (Mo) samples were irradiated with 100 eV He+ ions as a function of ion fluence (using a constant flux of 7.2 × 1020 ions m-2 s-1) at normal incidence and at 923 K. Mo surface deterioration and nanoscopic fiber-form filament ("Mo fuzz") growth evolution were monitored by using field emission (FE) scanning electron (SEM) and atomic force (AFM) microscopy studies. Those studies confirm a reasonably clean and flat surface, up to several micrometer scales along with a few mechanical-polishing-induced scratches. However, He+ ion irradiation deteriorates the surface significantly even at 2.1 × 1023 ions m-2 fluence (about 5 min. irradiation time) and leads to evolution of homogeneously populated ∼75-nm-long Mo nanograins having ∼8 nm intergrain width. The primary stages of Mo fuzz growth, i.e., elongated half-cylindrical ∼70 nm nanoplatelets, and encapsulated bubbles of 20-45 nm in diameter and preferably within the grain boundaries of sub-micron-sized grains, were observed after 1.3 × 1024 ions m-2 fluence irradiation. Additionally, a sequential enhancement in the sharpness, density, and protrusions of Mo fuzz at the surface with ion fluence was also observed. Fluence- and flux-dependent studies have also been performed at 1223 K target temperature (beyond the temperature window for Mo fuzz formation). At a constant fluence of 2.6 × 1024 ions m-2, 7.2 × 1020 ions m-2 s-1 flux generates a homogeneous layered and stacked nanodiscs of ∼70 nm diameter. On the other hand, 1.2 × 1021 ions m-2 s-1 flux generates a combination of randomly patched netlike nanomatrix networked structure, mostly with ∼105 nm nanostructure wall width, various-shaped pores, and self-organized nano arrays. While the observed netlike nanomatrix network structures for 8.6 × 1024 ions m-2 fluence (at a constant flux of 1.2 × 1021 ions m-2 s-1) is quite similar to those for 2.6 × 1024 ions m-2 fluence, the nanostructure wall width extends up to ∼45

  11. Tailoring molybdenum nanostructure evolution by low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2015-10-30

    Mirror-finished polished molybdenum (Mo) samples were irradiated with 100 eV He{sup +} ions as a function of ion fluence (using a constant flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1}) at normal incidence and at 923 K. Mo surface deterioration and nanoscopic fiber-form filament (“Mo fuzz”) growth evolution were monitored by using field emission (FE) scanning electron (SEM) and atomic force (AFM) microscopy studies. Those studies confirm a reasonably clean and flat surface, up to several micrometer scales along with a few mechanical-polishing-induced scratches. However, He{sup +} ion irradiation deteriorates the surface significantly even at 2.1 × 10{sup 23} ions m{sup −2} fluence (about 5 min. irradiation time) and leads to evolution of homogeneously populated ∼75-nm-long Mo nanograins having ∼8 nm intergrain width. The primary stages of Mo fuzz growth, i.e., elongated half-cylindrical ∼70 nm nanoplatelets, and encapsulated bubbles of 20–45 nm in diameter and preferably within the grain boundaries of sub-micron-sized grains, were observed after 1.3 × 10{sup 24} ions m{sup −2} fluence irradiation. Additionally, a sequential enhancement in the sharpness, density, and protrusions of Mo fuzz at the surface with ion fluence was also observed. Fluence- and flux-dependent studies have also been performed at 1223 K target temperature (beyond the temperature window for Mo fuzz formation). At a constant fluence of 2.6 × 10{sup 24} ions m{sup −2}, 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} flux generates a homogeneous layered and stacked nanodiscs of ∼70 nm diameter. On the other hand, 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} flux generates a combination of randomly patched netlike nanomatrix networked structure, mostly with ∼105 nm nanostructure wall width, various-shaped pores, and self-organized nano arrays. While the observed netlike nanomatrix network structures for 8.6 × 10{sup 24} ions m{sup −2} fluence (at a constant

  12. Structural and magnetic Properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Department of Electronics, University of York, York YO10 5DD (United Kingdom); Islam, M.U., E-mail: dr.misbahulislam@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Xu, Yongbing [Department of Electronics, University of York, York YO10 5DD (United Kingdom); Nanjing–York International Centre of Spintronics and Nano-Engineering, Nanjing University, Nanjing 210093 (China); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); National University of Science and Technology, College of E and ME, Islamabad (Pakistan); Ali, Irshad [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2014-03-15

    Highlights: • Tb–Zn substituted Ca{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19} samples exhibit single magnetoplumbite phase. • Lattice parameters a and c have increasing values. • Coercivity can be tuned at lower substitution level • Crystallites size was found in the range 18–25 nm by TEM and by Scherrer formula. • These hexa-ferrites are suitable for microwave devices and magnetic recording media. -- Abstract: Effect of TbZn substitution on the structural and magnetic properties of Ca{sub 0.5}Ba{sub 0.5−x}Tb{sub x}Zn{sub y}Fe{sub 12−y}O{sub 19}, (x = 0.00–0.10; y = 0.00–1.00) ferrites prepared by sol–gel auto combustion is reported. The synthesized samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Vibrating Sample magnetometery. The X-ray diffraction analysis confirmed single phase M-type hexa-ferrite structure. The lattice parameters were found to increase as TbZn contents increases, which is attributed to the ionic sizes of the implicated cations. The TbZn seems to be completely soluble in the lattice. The results of scanning electron microscopy and transmission electron microscopy shows that the grain size decreases with increase of TbZn substitution. The coercivity values (1277–2025 Oe) of all samples lies in the range of M-type hexa-ferrite and indicate that an increase of anisotropy was achieved by substitution of TbZn, while the size of nanoparticles was drastically reduced between 18 and 25 nm. The increased anisotropy and fine particle size are useful for many applications, such as improving signal noise ratio of recording devices.

  13. Characterization of Nano-Structured Nickel-Cobalt Ferrites Synthesized By Citrate-Gel Auto Combustion Method

    Directory of Open Access Journals (Sweden)

    Abdul Gaffoor

    2014-04-01

    Full Text Available Nano-ferrites of the composition Ni1-xCoxFe2O4(where x=0.0,0.2,0.4,0.6,0.80 and 1.0 were synthesized at a very low temperature (180°C by Citrate-gel auto combustion method The synthesized powders were sintered at 5000C for four hours in an air and were characterized by X-ray diffraction (XRD which confirmed the formation of cubic spinel structure of ferrites. The crystallite size was in the range of 20nm to 31 nm. Such low nano sized ferrites are desirable for variety of applications like, in magnetic data storage and in etc. Morphological studies by Scanning Electron Microscopy (SEM revealed formation of largely agglomerated, well defined nano particles of the sample. Elemental composition characterizations of the prepared samples were performed by Energy Dispersive Spectroscopy (EDS which shows the presence of Ni, CO, Fe and O without precipitating cations.

  14. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation

    Directory of Open Access Journals (Sweden)

    Valentin S. Teodorescu

    2015-04-01

    Full Text Available Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10–30 mJ/cm2. The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm2 and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the

  15. Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Suneel Kumar

    2016-11-01

    Full Text Available Photocatalytic activity of semiconductor nanostructures is gaining much importance in recent years in both energy and environmental applications. However, several parameters play a crucial role in enhancing or suppressing the photocatalytic activity through, for example, modifying the band gap energy positions, influencing the generation and transport of charge carriers and altering the recombination rate. In this regard, physical parameters such as the support material and the irradiation source can also have significant effect on the activity of the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO support and the irradiation source on mixed metal chalcogenide semiconductor (CdS–ZnO nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly characterized using different spectroscopic and microscopic techniques. The photocatalytic activity was evaluated by studying the degradation of a model dye (methyl orange, MO under visible light (only irradiation and under natural sunlight. The results reveal that the RGO-supported CdS–ZnO photocatalyst performs considerably better than the unsupported CdS–ZnO nanostructures. In addition, both the catalysts perform significantly better under natural sunlight than under visible light (only irradiation. In essence, this work paves way for tailoring the photocatalytic activity of semiconductor nanostructures.

  16. Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

    Science.gov (United States)

    Kumar, Suneel; Sharma, Rahul; Sharma, Vipul; Harith, Gurunarayanan; Sivakumar, Vaidyanathan

    2016-01-01

    Summary Photocatalytic activity of semiconductor nanostructures is gaining much importance in recent years in both energy and environmental applications. However, several parameters play a crucial role in enhancing or suppressing the photocatalytic activity through, for example, modifying the band gap energy positions, influencing the generation and transport of charge carriers and altering the recombination rate. In this regard, physical parameters such as the support material and the irradiation source can also have significant effect on the activity of the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO) support and the irradiation source on mixed metal chalcogenide semiconductor (CdS–ZnO) nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly characterized using different spectroscopic and microscopic techniques. The photocatalytic activity was evaluated by studying the degradation of a model dye (methyl orange, MO) under visible light (only) irradiation and under natural sunlight. The results reveal that the RGO-supported CdS–ZnO photocatalyst performs considerably better than the unsupported CdS–ZnO nanostructures. In addition, both the catalysts perform significantly better under natural sunlight than under visible light (only) irradiation. In essence, this work paves way for tailoring the photocatalytic activity of semiconductor nanostructures. PMID:28144518

  17. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  18. Effect of γ-rays irradiation on the structural, magnetic, and electrical properties of Mg-Cu-Zn and Ni-Cu-Zn ferrites

    Science.gov (United States)

    Assar, S. T.; Abosheiasha, H. F.; El Sayed, A. R.

    2017-01-01

    Nanoparticles of Ni0.35Cu0.15Zn0.5Fe2O4 and Mg0.35Cu0.15Zn0.5Fe2O4, have been synthesized by citrate precursor method. Then some of the prepared samples have been irradiated by γ-rays of 60Co radioactive source at room temperature with doses of 1 Mrad and 2 Mrad, at a dose rate of 0.1 Mrad/h to study the effect of γ-rays irradiation on some structural, magnetic and electrical properties of the samples. The X-ray diffraction analysis (XRD), transmission electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer measurements have been used to investigate the samples. The XRD results show that the irradiation has caused a decrease in the crystallite size and the measured density and an increase in the porosity, specific surface area, and microstrain in the case of Ni-Cu-Zn ferrite whereas in the case of Mg-Cu-Zn ferrite the reverse trend has been noticed. The lattice constant of the investigated samples has been increased with the increase of irradiation due to the conversion of Fe3+ (0.67 Å) to Fe2+ (0.76 Å). The magnetization results show an increase in saturation and remnant magnetizations for the two prepared ferrites after γ-rays irradiation. The main reason of this behavior is most probably due to the redistribution of the cations between A and B sites. The cation distribution has been proposed such that the values of theoretical and experimental magnetic moment are identical and increase as the magnetization increases. Moreover, a theoretical estimation of the lattice constant has been calculated on the basis of the proposed cation distribution for each sample and compared with the corresponding experimental values obtained by XRD analysis; where they have been found in a good agreement with each other. This can be considered as another confirmation of the validity of the cation distribution. Moreover, the cation distribution is thought to play an important role in increasing the values of dc conductivity of all samples

  19. Nanostructured targets irradiation by ns-laser for nuclear astrophysics applications: first results

    Science.gov (United States)

    Muoio, A.; Altana, C.; Frassetto, M.; Lanzalone, G.; Malferrari, L.; Mascali, D.; Odorici, F.; Tudisco, S.

    2017-03-01

    The studies discussed in this work are related to a scientific program that aims to reproduce astrophysical-plasmas in laboratory in order to better understand the nuclear processes involved in the stellar burning. An experimental campaign aiming to investigate the effects of innovative nanostructured targets based on Ni, Fe and Co nanowires on laser energy absorption in the ns time domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Nanowires structures are tuned to increase the light absorption in the visible and infrared range due possibly to plasmonic excitation driven by the incoming photons. Different diagnostics techniques permit to monitor the plasma and to determine its reproducibility. Targets were then irradiated by Nd:YAG 2J, 6 ns infrared laser (λ = 1064 nm) at different pumping energies. Some preliminary results will be illustrated.

  20. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    Science.gov (United States)

    Fukuda, Y.; Faenov, A. Ya.; Pikuz, T.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.

    2008-03-01

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800nm ) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%.

  1. Preparation of nickel ferrite/carbon nanotubes composite by microwave irradiation technique for use as catalyst in photo-fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Foletto, E.L.; Rigo, C.; Severo, E.C.; Mazutti, M.A.; Dotto, G.L.; Jahn, S.L.; Sales, J.C. [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Chiavone-Filho, O. [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil); Gundel, A.; Lucchese, M. [Universidade Federal do Pampa (UNIPAMPA), Bage, RS (Brazil)

    2016-07-01

    Full text: Nickel ferrite/multi-walled carbon nanotubes (NiFe2O4/MWCNTs) composite has been rapidly synthesized via microwave irradiation technique. The structural properties of the formed product was investigated by X-ray diffraction (XRD), N2 adsorption/desorption isotherms, thermogravimetric analysis (TGA), Raman spectroscopy and, scanning electron microscopy (SEM). The catalytic behavior of composite material was evaluated by the degradation of Amaranth dye in the photo-Fenton reaction under visible light irradiation. The overall results showed that the prepared composite was successfully synthesized, demonstrating good performance in the dye degradation, with higher degradation rate compared to the NiFe2O4. The high efficiency in dye degradation can be attributed to synergism between NiFe2O4 and MWCNTs. Therefore, NiFe2O4/MWCNTs composite can be used as promising photo-Fenton catalyst to degrade Amaranth dye from aqueous solutions. (author)

  2. Laser-induced nanostructures on a polymer irradiated through a contact mask

    Energy Technology Data Exchange (ETDEWEB)

    Neděla, O. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Malý, J.; Štofík, M. [Department of Biology, Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-12-01

    Highlights: • The unique nanopatterning method of PEN was proposed. • Laser treatment through micrometer slit was utilized. • Dimensions of nanostructures can be precisely controlled. • Laser treatment changes the PEN surface chemistry and morphology (sensor applications). - Abstract: The nanopatterning method applied through micrometer slit for polyethylene naphthalate (PEN) substrate was proposed in this paper. Surface roughness, formation of nanoscale ripple-like structures and the dependence of their dimensions on the value of laser fluence was determined by atomic force and laser confocal microscopy, and compared with values obtained from samples irradiated directly (without a contact mask) under similar conditions. The morphology of the unirradiated surface of the substrate in between the slits is also studied, as well as the morphology of the transitional area between the irradiated and unirradiated surface. Thin layer of gold was deposited on selected samples. Chemical composition of the surface was determined from XPS spectra. The potential application of this research can be found predominantly in the field of selective sensor applications, where the designated area for the consecutive grafting procedures is of great importance.

  3. Influence of Annealing and UV Irradiation on Hydrophilicity of Ag-TiO Nanostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Fanming Meng

    2012-01-01

    Full Text Available Ag-TiO2 nanostructured thin films with silver content of 5 vol% have been deposited on silicon, glass, and quartz substrates by RF magnetron sputtering and annealed in ambient air at 900°C for 15, 30, 60, 90, and 120 min. Their crystal structure, surface morphology, and hydrophilicity have been characterized by X-ray diffractometer, atomic force microscope, and water contact angle apparatus, respectively. The influence of annealing time and UV irradiation time on hydrophilic property of Ag-TiO2 thin films have been studied in detail. It is shown that annealing time influences crystal structure of Ag-TiO2 thin films. The unannealed film is amorphous and shows poor hydrophilicity. With the increase of annealing time from 15 to 120 min, the grain-size slowly increases and tends to uniformity. A suitable annealing time can significantly enhance the hydrophilic behavior of Ag-TiO2 films. Water contact angle decreases with the increase of irradiation time. The mechanism of hydrophilicity has been proposed and can be attributed to the increase of oxygen anion radicals O2− and reactive center of surface Ti3+.

  4. Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, V.V., E-mail: uglov@bsu.by [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Tomsk Polytechnic University, 2a Lenina Ave., Tomsk 634028 (Russian Federation); Abadias, G. [Institut P’, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, F86962 Chasseneuil-Futuroscope (France); Zlotski, S.V.; Saladukhin, I.A. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Skuratov, V.A. [FLNR, JINR, Joliot-Curie Str., 6, Moscow Region, Dubna 141980 (Russian Federation); Leshkevich, S.S. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Petrovich, S. [VINCA Institute of Nuclear Sciences, Belgrade University, Tudentski trg 1, Belgrade 11000 (Serbia)

    2015-07-01

    Highlights: • Phase formation upon Si addition in TiZrN films at the deposition temperature of 600 °C is considered. • The formation of ‘double-layer’ system and diffusion of titanium atoms under irradiation was revealed. • The formation of a secondary ZrN phase takes place. • The irradiation by helium ions leads to decomposition of the cubic TiZrN crystallites. - Abstract: The phase stability, upon vacuum annealing up to 1000 °C, of nanostructured (Ti,Zr){sub 1−x}Si{sub x}N thin films is investigated by X-ray diffraction analysis as a function of Si content (0.13 ⩽ x ⩽ 0.25) and prior irradiation with He ions (40 kV). The quaternary TiZrSiN thin films were deposited by reactive magnetron sputtering from elemental targets at the substrate temperature of 600 °C. It was found that the increase in Si content, x, results in the transformation of structure from nanocrystalline (x = 0.13, grain size of 11 nm) to nanocomposite state (0.19 < x ⩽ 0.25, grain size of 5 nm). The phase composition of the films changes from single-phase, cubic c-(Ti,Zr)N columns with (1 1 1) preferred orientation to dual-phase system consisting of c-(Ti,Zr)N crystallites and amorphous SiN{sub y}. Irradiation with He ions at the doses of 2 × 10{sup 16} and 5 × 10{sup 16} cm{sup −2} does change the phase composition of the films. It is found that the onset temperature for phase decomposition decreases from 1000 °C to 800 °C with increasing Si content for unirradiated films. The formation of a secondary ZrN phase is observed concomitantly with increased broadening of the (2 0 0) c-(Ti,Zr)N diffraction peak. For irradiated films, the subsequent annealing at 1000 °C leads to decomposition of the c-(Ti,Zr)N solid solution into TiN- and ZrN-rich phases as well as crystallization of hexagonal Si{sub 3}N{sub 4} phase.

  5. Nanostructure evolution under irradiation in FeMnNi alloys: A “grey alloy” object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France)

    2015-07-15

    This work extends the object kinetic Monte Carlo model for neutron irradiation-induced nanostructure evolution in Fe–C binary alloys developed in [1], introducing the effects of substitutional solutes like Mn and Ni. The objective is to develop a model able to describe the nanostructural evolution of both vacancy and self-interstitial atom (SIA) defect cluster populations in Fe(C)MnNi neutron-irradiated model alloys at the operational temperature of light water reactors (∼300 °C), by simulating specific reference irradiation experiments. To do this, the effects of the substitutional solutes of interest are introduced, under simplifying assumptions, using a “grey alloy” scheme. Mn and Ni solute atoms are not explicitly introduced in the model, which therefore cannot describe their redistribution under irradiation, but their effect is introduced by modifying the parameters that govern the mobility of both SIA and vacancy clusters. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proved to be key to explain the experimentally observed disappearance of detectable defect clusters with increasing solute content. Solute concentration is explicitly taken into account in the model as a variable determining the slowing down of self-interstitial clusters; small vacancy clusters, on the other hand, are assumed to be significantly slowed down by the presence of solutes, while for clusters bigger than 10 vacancies their complete immobility is postulated. The model, which is fully based on physical considerations and only uses a few parameters for calibration, is found to be capable of reproducing the experimental trends in terms of density and size distribution of the irradiation-induced defect populations with dose, as compared to the reference experiment, thereby providing insight into the physical mechanisms that influence the nanostructural evolution undergone by this material during irradiation.

  6. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    NARCIS (Netherlands)

    Chernov, [No Value; Kalashnikov, AN; Kahn, BA; Binyukova, SY

    2003-01-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion it. radiation up to a fluence of 5 x 10(20) m(-2) at the temperature of 920 K. It

  7. Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa)

    Energy Technology Data Exchange (ETDEWEB)

    Kaoumi, D., E-mail: djamelkaoumi@gmail.com [University of South Carolina, 300 Main St., Columbia, SC 29208 (United States); Adamson, J. [University of South Carolina, 300 Main St., Columbia, SC 29208 (United States); Kirk, M., E-mail: kirk@anl.gov [Argonne National Laboratory, Bldg 212, IL 60439 (United States)

    2014-02-01

    Ferritic/martensitic steels are candidate materials for structural and cladding components designed for Generation IV reactors because of their superior resistance to radiation damage at the high operating temperatures envisioned in these reactors. To enable the development and optimization of such advanced alloys for in-reactor use, a fundamental understanding of radiation damage accumulation in materials is required. In this work, two model F/M steels (12Cr model alloy and 9Cr model alloy) were irradiated with 1 MeV Kr ions at 50 K, 180 K, 298 K, 473 K and 573 K in situ in a TEM. The microstructure evolution under irradiation was followed and characterized at successive doses in terms of irradiation-induced defect formation and evolution, defect density, size distribution and interaction with the as-fabricated microstructure (e.g. dislocation networks, lath boundaries) using weak-beam dark-field imaging. The effect of the irradiation temperature on the defect kinetics is assessed at doses up to 2 dpa.

  8. Effect of laser irradiation on - characteristics of electrodeposited Ag/Tl-2223/CdSe hetero-nanostructures

    Indian Academy of Sciences (India)

    P M Shirage; D D Shivagan; S H Pawar

    2002-05-01

    One of the innovative technological directions for the high-temperature superconductors has been persued by fabricating the heteroepitaxial multilayer structures such as superconductor–semiconductor heterostructures. In the present investigation, metal/superconductor/semiconductor (Ag/Tl-2223/CdSe) hetero-nanostructures have successfully been fabricated using dc electrodeposition technique and were characterized by X-ray diffraction (XRD), full-width at half-maximum (FWHM) and scanning electron microscopy (SEM) studies. The measurement of junction capacitance as a function of biasing voltage was used for the estimation of junction built-in-potential (D) and to study the charge distribution in a heterojunction. The Mott–Schottky plots were measured for each junction in dark and under the photo-irradiation. The effect of laser irradiation on - characteristics of hetero-nanostructure has been studied.

  9. Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples

    Energy Technology Data Exchange (ETDEWEB)

    Assar, S.T., E-mail: soha_talaat@yahoo.com; Abosheiasha, H.F.

    2015-01-15

    Nanoparticles of Ni{sub 1−x}Ca{sub x}Fe{sub 2}O{sub 4} (x=0.0, 0.02, 0.04, 0.06 and 0.10) were prepared by citrate precursor method. A part of these samples was sintered at 600 °C for 2 h in order to keep the particles within the nano-size while the other part was sintered at 1000 °C to let the particles to grow to the bulk size. The effect of Ca{sup 2+} ion substitution in nickel ferrite on some structural, magnetic, electrical and thermal properties was investigated. All samples were characterized by using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). A two probe method was used to measure the dc electrical conductivity whereas the photoacoustic (PA) technique was used to determine the thermal diffusivity of the samples. To interpret different experimental results for nano and bulk samples some cation distributions were assumed based on the VSM and XRD data. These suggested cation distributions give logical explanations for other experimental results such as the observed values of the absorption bands in FTIR spectra and the dc conductivity results. Finally, in the thermal measurements it was found that increasing the Ca{sup 2+} ion content causes a decrease in the thermal diffusivity of both nano and bulk samples. The explanation of this behavior is ascribed to the phonon-phonon scattering. - Highlights: • The physical properties of both nano and bulk samples of Ni-Ca ferrites were investigated. • Cation distribution plays a vital role in tailoring the physical properties of all the samples. • The dc conductivity of the nanosamples is higher than their bulk counterparts. • Increasing Ca{sup 2+} content enhances M{sub s}, M{sub r}, and σ{sub dc} of the bulk samples over their nanocounterparts. • The behavior of thermal diffusivity of the samples attributed to the phonon-phonon scattering.

  10. Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies

    Science.gov (United States)

    Shkir, Mohd.; Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Muhammad, Shabbir

    2016-04-01

    Lead iodide (PbI2) nanostructures have been synthesized by co-precipitation, hydrothermal and rapidly by microwave irradiation techniques. SEM analysis indicated the formation of well aligned nanocrystals and nanorods of average diameter between 100 nm and 400 nm. The powder X-ray diffraction and FT-Raman spectroscopic analysis confirms the formation of a 2H-PbI2 polytypic predominantly. These studies also show that there is no extra phase due to impurity in the synthesized nanostructures. The optical energy band gap of nanostructures prepared by co-precipitation, hydrothermal and microwave irradiation techniques were found to be 2.283, 2.493, 2.542 eV and 2.331. 2.350, 2.375 eV calculated from UV-Vis absorption and diffuse reflectance data, respectively, which shows a clear blue shift in the wavelength due to confinement effect. Photoluminescence spectrum was recorded at different excitation wavelengths and shows clear blue shift in the emission peak which is due to the recombination of free excitons with band to band type transition and also may be due to confinement effect. Further the dielectric studies have been performed and a good enhancement in the dielectric constant has been observed due to small size of the fabricated nanostructures in comparison to bulk material.

  11. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions.

    Science.gov (United States)

    Zedan, Abdallah F; Moussa, Sherif; Terner, James; Atkinson, Garrett; El-Shall, M Samy

    2013-01-22

    In this work we demonstrate the coupling of the photothermal effects of gold nanostructures of controlled size and shape with graphene oxide nanosheets dispersed in water. The enhanced photothermal effects can be tuned by controlling the shape and size of the gold nanostructures, which result in a remarkable increase in the heating efficiency of the laser-induced size reduction of gold nanostructures. The Raman spectra of the Au-graphene nanosheets provide direct evidence for the presence of more structural defects in the graphene lattice induced by laser irradiation of graphene oxide nanosheets in the presence of Au nanostructures. The large surface areas of the laser-reduced graphene oxide nanosheets with multiple defect sites and vacancies provide efficient nucleation sites for the ultrasmall gold nanoparticles with diameters of 2-4 nm to be anchored to the graphene surface. This defect filling mechanism decreases the mobility of the ultrasmall gold nanoparticles and, thus, stabilizes the particles against the Ostwald ripening process, which leads to a broad size distribution of the laser-size-reduced gold nanoparticles. The Au nanostructures/graphene oxide solutions and the ultrasmall gold-graphene nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal, thermochemical, and thermomechanical applications.

  12. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation

    OpenAIRE

    Ralf Dillert; Dereje H. Taffa; Michael Wark; Thomas Bredow; Detlef W. Bahnemann

    2015-01-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe2O4 and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochem...

  13. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Science.gov (United States)

    Chiapetto, M.; Becquart, C. S.; Domain, C.; Malerba, L.

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a "grey alloy" approach that extends the already existing OKMC model for neutron irradiated Fe-C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe-C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  14. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4 under visible light irradiation

    Directory of Open Access Journals (Sweden)

    Ralf Dillert

    2015-10-01

    Full Text Available The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe2O4 and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  15. Improved photovoltaic performance of multiple carbon-doped ZnO nanostructures under UV and visible light irradiation.

    Science.gov (United States)

    Liu, Xianbin; Du, Hejun; Sun, Xiao Wei; Zhan, Zhaoyao; Sun, Gengzhi; Li, Fengji; Zheng, Lianxi; Zhang, Sam

    2014-09-01

    We report synthesis of multiple carbon-doped ZnO nanostructures by using carbon cloth as substrates to obtain multiple hollow ZnO microtube-nanowire structures. X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy analysis clearly show that carbon is doped into ZnO through substitution of carbon for oxygen in the growth and annealing processes. Upon exposure to 633-nm red laser, a distinct photoresponse can be observed, which indicates that carbon doping in ZnO can well extend its light harvesting to visible light region. Furthermore, a prototype of photovoltaic cell was fabricated to demonstrate the photovoltaic performance of multiple carbon-doped ZnO nanostructures under UV and visible light irradiation. This result shows that carbon-doped ZnO can act as effective photoactive materials for photoelectric components.

  16. Effect of PdS on Photocatalytic Hydrogen Evolution of Nanostructured CdS under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Qingyun Chen

    2013-01-01

    Full Text Available To investigate the effect of PdS as a cocatalyst for photocatalytic hydrogen evolution, nanostructured PdS/CdS were prepared by an in situ coprecipitation and hydrothermal method, respectively. The as-prepared photocatalysts were characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD, UV-visible absorption spectra, and photoluminescence spectra (PL. With PdS highly dispersed in the CdS nanostructures, the photoactivity was evaluated by hydrogen evolution from aqueous solution containing Na2S/Na2SO3 as sacrificial reagents under visible light irradiation. When the concentration of PdS was 1% by weight, PdS/CdS, prepared by the in situ coprecipitation, showed the highest photocatalytic activity, while that prepared by hydrothermal method showed the most stability for hydrogen evolution. The effect of highly dispersed PdS on the photoactivity was discussed.

  17. Irradiation response in weldment and HIP joint of reduced activation ferritic/martensitic steel, F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori [Japan Atomic Energy Agency (JAEA); Sokolov, Mikhail A [ORNL; Ando, M. [Japan Atomic Energy Agency (JAEA); Tanigawa, H. [Japan Atomic Energy Agency (JAEA); Shiba, K. [Japan Atomic Energy Agency (JAEA); Stoller, Roger E [ORNL; Odette, G.R. [University of California, Santa Barbara

    2013-11-01

    This work investigates irradiation response in the joints of F82H employed for a fusion breeding blanket. The joints, which were prepared using welding and diffusion welding, were irradiated up to 6 dpa in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. Post-irradiation tests revealed hardening in weldment (WM) and base metal (BM) greater than 300 MPa. However, the heat affected zones (HAZ) exhibit about half that of WM and BM. Therefore, neutron irradiation decreased the strength of the HAZ, leaving it in danger of local deformation in this region. Further the hardening in WM made with an electron beam was larger than that in WM made with tungsten inert gas welding. However the mechanical properties of the diffusion-welded joint were very similar to those of BM even after the irradiation.

  18. Irradiation response in weldment and HIP joint of reduced activation ferritic/martensitic steel, F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T., E-mail: hirose.takanori@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Sokolov, M.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Ando, M.; Tanigawa, H.; Shiba, K. [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Stoller, R.E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Odette, G.R. [University of California Santa Barbara, Santa Barbara, CA (United States)

    2013-11-15

    This work investigates irradiation response in the joints of F82H employed for a fusion breeding blanket. The joints, which were prepared using welding and diffusion welding, were irradiated up to 6 dpa in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. Post-irradiation tests revealed hardening in weldment (WM) and base metal (BM) greater than 300 MPa. However, the heat affected zones (HAZ) exhibit about half that of WM and BM. Therefore, neutron irradiation decreased the strength of the HAZ, leaving it in danger of local deformation in this region. Further the hardening in WM made with an electron beam was larger than that in WM made with tungsten inert gas welding. However the mechanical properties of the diffusion-welded joint were very similar to those of BM even after the irradiation.

  19. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  20. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Science.gov (United States)

    Ito, Atsushi M.; Takayama, Arimichi; Oda, Yasuhiro; Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji; Ohno, Noriyasu; Kajita, Shin; Yajima, Miyuki; Noiri, Yasuyuki; Yoshimoto, Yoshihide; Saito, Seiki; Takamura, Shuichi; Murashima, Takahiro; Miyamoto, Mitsutaka; Nakamura, Hiroaki

    2015-08-01

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  1. Kinetic Monte Carlo simulation of nanostructural evolution under post-irradiation annealing in dilute FeMnNi

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M. [SCK-CEN, Nuclear Materials Science Institute, Mol (Belgium); Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Becquart, C.S. [Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Laboratoire commun EDF-CNRS, Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France); Domain, C. [EDF R and D, Departement Materiaux et Mecanique des Composants, Les Renardieres, Moret sur Loing (France); Laboratoire commun EDF-CNRS, Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Mol (Belgium)

    2015-01-01

    Post-irradiation annealing experiments are often used to obtain clearer information on the nature of defects produced by irradiation. However, their interpretation is not always straightforward without the support of physical models. We apply here a physically-based set of parameters for object kinetic Monte Carlo (OKMC) simulations of the nanostructural evolution of FeMnNi alloys under irradiation to the simulation of their post-irradiation isochronal annealing, from 290 to 600 C. The model adopts a ''grey alloy'' scheme, i.e. the solute atoms are not introduced explicitly, only their effect on the properties of point-defect clusters is. Namely, it is assumed that both vacancy and SIA clusters are significantly slowed down by the solutes. The slowing down increases with size until the clusters become immobile. Specifically, the slowing down of SIA clusters by Mn and Ni can be justified in terms of the interaction between these atoms and crowdions in Fe. The results of the model compare quantitatively well with post-irradiation isochronal annealing experimental data, providing clear insight into the mechanisms that determine the disappearance or re-arrangement of defects as functions of annealing time and temperature. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Crack growth tests on a ferritic reactor pressure vessel steel under the simultaneous influence of simulated BWR coolant and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H. [VGB PowerTech e.V., Essen (Germany); Huettner, F. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany); Ilg, U. [EnBW Kraftwerke AG, Philippsburg (Germany); Wachter, O. [E.ON Kernkraft GmbH, Hannover(Germany); Widera, M. [RWE Power AG, Essen (Germany); Brozova, A.; Ernestova, M.; Kysela, J.; Vsolak, R. [Nuclear Research Institute Rez plc (Czech Republic)

    2004-07-01

    Crack growth tests under constant load with initial in-situ cycling were performed on the low alloy reactor pressure vessel (RPV) steel 22 NiMoCr 3 7 (A 508 Cl. 2) with the goal to determine crack growth rates of irradiated and non-irradiated steel under the simultaneous influence of simulated BWR coolant and irradiation. The tests were performed under conditions as near as possible to operational conditions in a commercial BWR reactor. The research results are summarized and are compared with international data. (orig.)

  3. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  4. Creep behavior of reduced activation ferritic/martensitic steels irradiated at 573 and 773 K up to 5 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Ando, M. [Fusion Structural Materials Development Group, Directorates of Fusion Energy Technology, Fusion Research and Development Directorate, Japan Atomic Energy Agency (JAEA) (Japan)]. E-mail: ando.masami@jaea.go.jp; Li, M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Tanigawa, H. [Fusion Structural Materials Development Group, Directorates of Fusion Energy Technology, Fusion Research and Development Directorate, Japan Atomic Energy Agency (JAEA) (Japan); Grossbeck, M.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996-2300 (United States); Kim, S. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sawai, T. [Fusion Structural Materials Development Group, Directorates of Fusion Energy Technology, Fusion Research and Development Directorate, Japan Atomic Energy Agency (JAEA) (Japan); Shiba, K. [Fusion Structural Materials Development Group, Directorates of Fusion Energy Technology, Fusion Research and Development Directorate, Japan Atomic Energy Agency (JAEA) (Japan); Kohno, Y. [Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2007-08-01

    The irradiation creep behavior of F82H and several variants of JLF-1 steel has been measured at 573 and 773 K up to 5 dpa using helium-pressurized creep tubes irradiated in HFIR. These tubes were pressurized with helium to hoop stress levels of 0-400 MPa at the irradiation temperature. The results for F82H and JLF-1 with a 400 MPa hoop stress showed small creep strains (<0.25%) after irradiation at 573 K. The irradiation creep strain at 573 K in these steels is linearly dependent on the applied stress at stress levels below 250 MPa. However, at higher hoop stress levels, the creep strain becomes nonlinear. At 773 K, the irradiation creep strain of F82H is linearly dependent on the applied stress level below 100 MPa. At higher stress levels, the creep strain increased strongly. The creep compliance coefficients for F82H and JLF-1 are consistent with the values obtained for other steels. These data contribute to the materials database for ITER test blanket design work.

  5. Effects of UV-Vis Irradiation on Vanadium Etioporphyrins Extracted from Crude Oil and the Role of Nanostructured Titania

    Directory of Open Access Journals (Sweden)

    Debra Jene Kirkconnell Reyes

    2014-01-01

    Full Text Available The role of UV-irradiation on oil and its derivatives is particularly important for analyzing the degradability of specific oil compounds. Also, nanostructured-TiO2 is one of the most promising photocatalysts so it is expected to be useful in their degradation. However the complexity of crude oil, as well as that of the reactions involved, is such that the effect of the presence of TiO2 under illumination is not well understood. In this paper, the influence of UV-Vis irradiation on vanadium etioporphyrins, extracted from crude oil from Dos Bocas, Tabasco, Mexico, is studied using UV-Vis spectrophotometry in the absence and presence of nanostructured TiO2 or nitrogen-doped TiO2 modified with copper (N-TiO2/Cu. It is shown that the addition of water shortens the time to start photodegradation. However, once this process has initiated, the system enters a second stage, that is very similar for samples with or without water. It is also shown that the use of N-TiO2/Cu induces an important delay in the initiation of the porphyrins’ photodegradation process. Additionally, it has been found that the presence of TiO2 in samples extracted with water induces a small reduction in the photodegradation duration and, hence, that TiO2 can catalyze the degradation of petroporphyrins.

  6. Ion-irradiation effects on dissimilar friction stir welded joints between ODS alloy and ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-L., E-mail: chunliang@mail.ndhu.edu.tw [Department of Materials Science and Engineering, National Dong-Hwa University, Hualien 97401, Taiwan (China); Richter, A. [Department of Engineering, Technical University of Applied Sciences Wildau, Bahnhofstrasse 1, 15745 Wildau (Germany); Kögler, R. [Institute of Ion Beam Physics and Materials Research, Helmholtz Center Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden (Germany); Griepentrog, M.; Reinstädt, P. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)

    2014-12-05

    Highlights: • FSSW has successfully been used in the welding of dissimilar materials. • The irradiation causes different degrees of hardening in the welding zones. • The formation of He bubbles at precipitates was found in the dissimilar joints. • The hardening effect is due to formation of He-filled vacancies. - Abstract: Friction stir spot welding (FSSW) is an advanced technique for the joining of materials to prevent agglomeration of fine oxide particles, grain coarsening, and stress corrosion cracking etc. In this study, the dissimilar FSSW joint of stainless steel 430/ODS was irradiated with a Fe{sup +}/He{sup +} dual ion beam. Irradiation damage can cause deterioration in the mechanical properties especially in the welding zones. The joint quality therefore plays a decisive role in the life expectancy of nuclear reactors. The effect of irradiation on different zones in the joint (the thermo-mechanically affected zone, the heat affected zone and the base material) was investigated by TEM and nanoindentation. Irradiation causes a hardness increase in all welding zones with a characteristic hardness maximum. The relative hardness increase and the related microstructure are discussed. The formation of He bubbles at chromium carbide precipitates and the homogeneous distribution of He filled vacancies in the mixture region of the 430/ODS FSSW joints was observed.

  7. Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe{sup 2+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov; Katoh, Y.; Snead, L.L.

    2014-02-01

    The stability of MX-type precipitates is critical to retain mechanical properties of both reduced activation ferritic–martensitic (RAFM) and conventional FM steels at elevated temperatures. Radiation resistance of TaC, TaN, and VN nanoprecipitates irradiated up to ∼49 dpa at 500 °C using Fe{sup 2+} is investigated in this work. Transmission electron microscopy (TEM) utilized in standard and scanning mode (STEM) reveals the non-stoichiometric nature of the nanoprecipitates. Irradiation did not alter their crystalline nature. The radiation resistance of these precipitates, in an order of reduced resistance, is TaC, VN, and TaN. Particle dissolution, growth, and reprecipitation were the modes of irradiation-induced instability. Irradiation also facilitated formation of Fe{sub 2}W type Laves phase limited to the VN and TaN bearing alloys. This result suggests that nitrogen level should be controlled to a minimal level in alloys to gain greater radiation resistance of the MX-type precipitates at similar temperatures as well as postpone the formation and subsequent coarsening of Laves phase.

  8. Effects of ion and nanosecond-pulsed laser co-irradiation on the surface nanostructure of Au thin films on SiO{sub 2} glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ruixuan; Meng, Xuan; Takayanagi, Shinya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Shibayama, Tamaki, E-mail: shiba@qe.eng.hokudai.ac.jp; Yatsu, Shigeo; Ishioka, Junya; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials Science, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2014-04-14

    Ion irradiation and short-pulsed laser irradiation can be used to form nanostructures on the surfaces of substrates. This work investigates the synergistic effects of ion and nanosecond-pulsed laser co-irradiation on surface nanostructuring of Au thin films deposited under vacuum on SiO{sub 2} glass substrates. Gold nanoparticles are randomly formed on the surface of the substrate after nanosecond-pulsed laser irradiation under vacuum at a wavelength of 532 nm with a repetition rate of 10 Hz and laser energy density of 0.124 kJ/m{sup 2}. Gold nanoparticles are also randomly formed on the substrate after 100-keV Ar{sup +} ion irradiation at doses of up to 3.8 × 10{sup 15} ions/cm{sup 2}, and nearly all of these nanoparticles are fully embedded in the substrate. With increasing ion irradiation dose (number of incident laser pulses), the mean diameter of the Au nanoparticles decreases (increases). However, Au nanoparticles are only formed in a periodic surface arrangement after co-irradiation with 6000 laser pulses and 3.8 × 10{sup 15} ions/cm{sup 2}. The periodic distance is ∼540 nm, which is close to the wavelength of the nanosecond-pulsed laser, and the mean diameter of the Au nanoparticles remains at ∼20 nm with a relatively narrow distribution. The photoabsorption peaks of the ion- or nanosecond-pulsed laser-irradiated samples clearly correspond to the mean diameter of Au nanoparticles. Conversely, the photoabsorption peaks for the co-irradiated samples do not depend on the mean nanoparticle diameter. This lack of dependence is likely caused by the periodic nanostructure formed on the surface by the synergistic effects of co-irradiation.

  9. Study of the Structure, Composition, and Stability of Yttrium-Ti-Oxygen nm-Scale Features in Nano-Structured Ferritic Alloys

    Science.gov (United States)

    Cunningham, Nicholas John

    This work advances the understanding of the Y-Ti-O nanofeatures (NFs) in nanostructured ferritic alloys (NFAs); a class of high temperature, oxide dispersion strengthened iron alloys with applications in both advanced fission and fusion reactors. NFAs exhibit high creep strength up to 800ºC and a remarkable radiation damage tolerance and He management. However, the NFs, which are responsible for these properties, are not fully understood. This work addresses key questions including: a) what is the NF structure and composition and how are they affected by alloy composition and processing; b) what is the NFA long-term thermal stability; c) and what alternative processing paths are available to reduce costs and produce more uniform NF distributions? A detailed study using small angle neutron scattering (SANS), transmission electron microscopy (TEM-group member Y. Wu), and atom probe tomography (APT) evaluated the NF average size (), number density (N), volume fraction (f), composition, and structure in two heats of the commercial NFA MA957. The and N were ≈2.6 nm and ≈5x1023 m-3 , respectively, for both heats, with TEM indicating the NF are Y 2Ti2O7. However, SANS indicates a mixture of NF compositions or atomic densities with a difference between the heats, while APT shows compositions with ≈ 10% Cr and a Y/Ti ratio long times at temperatures up to 900ºC. Notably, Ti in the matrix and some from the NFs migrates to large, Ti-rich phases. Aging at higher temperatures up to 1000ºC for 19.5 kh produced modest coarsening for ≈ 3.8 nm and ≈30% increase in grain size for a corresponding 13% reduction in microhardness. A coarsening model shows no significant NF coarsening will occur at temperatures less than 900ºC. A number of 14YWT NFAs with different Y, Ti, and O content showed that increases in Y and Ti produce higher N and f, but the and the compositions are fairly insensitive. The O content has a more dramatic affect with low O (0.065 wt.%) producing low

  10. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  11. Tailoring of fuzzy nanostructures on porous tungsten skeleton by helium plasma irradiation

    Science.gov (United States)

    Kajita, Shin; Tanaka, Hirohiko; Ohno, Noriyasu

    2017-03-01

    Porous tungsten skeleton, which was fabricated by sintering of tungsten powder, was exposed to helium plasmas, and the fuzzy nanostructures were tailored on the surface. The hemispherical optical reflectance of the samples was measured at the wavelength of 633 nm. It was shown that the optical reflectance of the porous tungsten skeleton was lower than that of flat tungsten samples. The minimum reflectance was ∼0.4%, suggesting that the darkest metallic material was fabricated. The advantage of the porous tungsten skeleton with nanostructures for optical application is discussed.

  12. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    Science.gov (United States)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  13. Analysis of irradiation induced defects on carbon nanostructures and their influences on nanomechanical and morphological properties using molecular dynamics simulation

    Science.gov (United States)

    Pregler, Sharon Kay

    Mechanisms such as nanomechanics, changes in chemical structure, and van der Waals interactions are difficult to observe on the atomic scale by experimental methods. It is important to understand the fundamentals of these processes on a small scale to reach conclusions of results that are observed on a larger scale. Computational methods may be readily applied to investigate these mechanisms on models a few nanometers in dimension and the results can give insights to processes that occur during real time experiments. The classical molecular dynamics simulations here utilize the reactive empirical bond-order (REBO) or adaptive intermolecular REBO (AIREBO) potentials, to model short range behavior, coupled with the Lennard Jones potential (and torsion for AIREBO), to model long range interactions of carbon nanostructures and hydrocarbons. The bond order term in the REBO/AIREBO potential allows for the realistic treatment of these materials as it correctly describes carbon (and silicon and germanium) hybridizations, and allows for bond breaking and reformation unlike basic molecular mechanics. This is a key feature for simulating irradiation and pullout mechanics on graphite and carbon nanotube and their composites. The irradiation simulations on graphite, with the same conditions as the experimental irradiation of highly pyrolythic graphite, provide insight to the types of defects that were observed on a larger scale by Scanning Transmission Microscopy (STM) images. Experimental characterization from collaborators mapped out the surface of irradiated graphite while computational theory further described the defects and observed the evolution of the defects during the irradiation procedure. Multi walled carbon nanotubes (MWNT) were irradiated with different particles to compare the effect that incident species have on the nanotubes' surfaces as well as the crosslink distribution of the radial cross sections. Irradiation is a common technique to modify the interfacial

  14. Local nanostructuring of gold thin films through dewetting induced by Ga{sup +} irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lo Savio, R., E-mail: roberto.lo.savio@edu.unige.it [Physics Department and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Repetto, L. [Physics Department and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Šetina Batič, B. [Inštitut Za Kovinske Materiale in Tehnologije, Lepi pot 11, 1000 Ljubljana (Slovenia); Firpo, G.; Valbusa, U. [Physics Department and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-07-01

    Dewetting of ion-irradiated metal films is a consequence of the local melting occurring during the irradiation. In this study we present the dewetting evolution of Au thin films bombarded with Ga{sup +} ions in a focused ion beam system, pointing out the different surface patterns observed in films having different starting thickness and morphology. In fact, in ion-irradiated films thicker than 2 nm the typical features of dewetted liquids appear, i.e. enlarging dry holes surrounded by metal interconnections. On the other side, a different behavior is observed in thinner discontinuous films, where a dense distribution of circular nanoparticles is formed upon irradiation. We studied the dependence of Au nanoparticles distribution obtained for different ion energies and fluences, determining that a maximum fluence of ∼2 × 10{sup 14} Ga/cm{sup 2} can be used to achieve a monomodal distribution of nanoparticles with regular shape, before detrimental effects of sputtering occur.

  15. Silica supported TiO{sub 2} nanostructures for highly efficient photocatalytic application under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, A.; Jana, T.K.; Chatterjee, K., E-mail: kuntal2k@gmail.com

    2016-04-15

    Highlights: • Synthesis of silica–titania nanocomposite by simple and facile chemical route and characterization of the materials. • Excellent catalytic activity on organic pollutant methylene blue under the visible light irradiation. • Photocatalytic rate is much higher than commercial P25 TiO{sub 2} catalyst powder. • The higher activity is attributed to the special structure and synergistic effect of the materials which has immense application potential. - Abstract: Titanium dioxide decorated silica nanospheres have been synthesized by a simple wet chemical approach. X-ray diffraction, electron microscopy and energy dispersive X-ray analysis revealed that anatase phase of TiO{sub 2} nanostructures, with exposed {0 0 1} and {1 0 1} facets, are anchored onto the amorphous silica spheres of ∼60 nm diameter. The photocatalytic activity of the sample under visible light irradiation was examined. It is found that photocatalytic efficiency of the material is better than commercial P25 TiO{sub 2} photocatalyst and the result is attributed to the unique synergistic effect of SiO{sub 2}–TiO{sub 2} nanocomposite structure resulting enhanced charge separation and charge transfer.

  16. Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation.

    Science.gov (United States)

    Lee, Chia-Hua; Liao, Shih-Chieh; Lin, Tzy-Rong; Wang, Shing-Hoa; Lai, Dong-Yan; Chiu, Po-Kai; Lee, Jyh-Wei; Wu, Wen-Fa

    2016-08-08

    Photoresist and electron beam lithography techniques were used to fabricate embedded Ag bowtie and diabolo nanostructures with various apex angles on the surface of a TiO2 film. The reinforced localized surface plasmon resonance (LSPR) and electric field generated at both the Ag/TiO2 and air/TiO2 interfaces enabled high light absorbance in the TiO2 nanostructure. Results for both the bowtie and diabolo nanostructures showed that a reduction in the apex angle enhances both LSPR and Raman intensity. The maximum electric current density observed at the apex indicates that the strongest SPR confines at the tip gap of the bowtie and corners of the diabolo. In a long-wavelength region, as the apex angle increases, the resonant peak wavelength of the standing wave matches the increased length of the prism edges of the bowtie and diabolo to create a redshift. In a short-wavelength region, as the apex angle increases, the blueshift of the resonant peak wavelength is presumably attributable to the increase in the effective index of the local surface plasmon polariton standing wave mainly residing along both the bowtie and diabolo axes. The redshift and blueshift trend in the simulation results for the resonant peak wavelength agrees well with the experimental results. The fastest photocatalytic rate was obtained by placing the Ag/TiO2 bowtie at an apex angle of 30° in the methylene blue solution, revealing that the plasmonic photocatalysis causes the highest degradation efficiency. This is because the Schottky junction and LSPR can stimulate many valid radicals for the environmental improvement.

  17. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol-gel method

    Science.gov (United States)

    Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.

    2016-11-01

    A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.

  18. Effects of nanosecond-pulsed laser irradiation on nanostructure formation on the surface of thin Au films on SiO{sub 2} glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ruixuan [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Shibayama, Tamaki, E-mail: shiba@ufml.caret.hokudai.ac.jp [Center for Advanced Research of Energy and Materials Science, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Meng, Xuan; Takayanagi, Shinya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Yoshida, Yutaka; Yatsu, Shigeo; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials Science, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2014-01-15

    In this study, we investigated nanostructure formations on the surface of Au thin films deposited on SiO{sub 2} glass substrates after nanosecond-pulsed laser irradiation, also the correlation between the nanostructures parameters and the photoabsorption peak. Spherical Au nanoparticle/SiO{sub 2} glass nanocomposites were formed on the surface of the Au thin films deposited on the SiO{sub 2} glass substrates after nanosecond-pulsed laser irradiation in air with a wavelength of 532 nm at a repetition rate of 2 Hz and a laser energy density of 0.7 kJ/m{sup 2}. Au nanoparticles were periodically arranged on the substrates under laser irradiation perpendicular to the direction of the electrical field vector of the laser light, the average diameter of Au nanoparticles was increased from 59.3 to 67.4 nm and the average distance of the laser induced periodical structure was decreased from 1.3 to 1.0 μm as the number of laser pulses increased from 1000 to 1500. After 2000 pulses irradiation, an additional laser irradiation induced periodical structure was formed in the direction parallel to the electrical field vector of the laser. The average periodicity of this nanostructure perpendicular to the initial nanostructure was 560 nm, which is close to the wavelength of the nanosecond-pulsed laser used in this study. The average diameter of these Au nanoparticles is 41.9 nm which is smaller than that of the Au nanoparticles formed after 1000 pulses irradiation. Au nanoparticles were generally dispersed on the surface while some were embedded in the substrate. After 1500 pulses irradiation, the diameter of the Au nanoparticles on the Au(30 nm)/SiO{sub 2}(0.8 mm) is relatively larger than that of the Au nanoparticles on the Au(20 nm)/SiO{sub 2}(0.1 mm). Each of laser irradiated sample showed an own photoabsorption peak clearly in this study. Furthermore, effects of the average diameter of the Au nanoparticles on the photoabsorption peak are discussed.

  19. Nanostructures formed in pure quartz glass under irradiation in the reactor core

    Science.gov (United States)

    Ibragimova, E. M.; Mussaeva, M. A.; Kalanov, M. U.

    2014-04-01

    Optical spectroscopy and X-ray diffraction techniques were used for studying nanoscale particles grown in pure SiO2 glass under irradiation with fast neutron fluencies within 6×1016-5·1019 cm-2 and gamma-quanta ~1.8×1020 cm-2 in the reactor core in water. The neutron irradiation results in destroying of the initial α- and β-quartz mesoscopic order of 1.7 and 1.2 nm sizes and growing of cristobalite and tridymite nanocrystals of 16 and 8 nm sizes in the thermal peaks of displacements reapectively. The point defects (oxygen deficient E‧s, E'1, E'2 and non-bridging oxygen centers) induced by the γ-irradiation are accumulated in the nanocrystals shell of 0.65-0.85 nm thickness. Interaction of close point defects at the nanocrystal-glass interface causes the splitting of optical absorption bands into the intensive (D~2-4) resonances characteristic for local interband electron transitions, having the width of 10-15 nm close to the nanocrystals' sizes and the energy depending on their structure.

  20. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    EijiIwamura; MasanoriYamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process, graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  1. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    Eiji Iwamura; Masanori Yamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process,graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  2. Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model

    Science.gov (United States)

    Chiapetto, M.; Messina, L.; Becquart, C. S.; Olsson, P.; Malerba, L.

    2017-02-01

    This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (∼300 °C). Within a "grey-alloy" approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.

  3. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices.

    Science.gov (United States)

    Das, Suprem R; Nian, Qiong; Cargill, Allison A; Hondred, John A; Ding, Shaowei; Saei, Mojib; Cheng, Gary J; Claussen, Jonathan C

    2016-09-21

    Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene-leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet∼0.7 kΩ□(-1)) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics-ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 μA mM(-1) and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices.

  4. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y 2O 3

    Science.gov (United States)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.; Odette, G. R.; Yamamoto, T.; Gragg, D.

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 20 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  5. Formation of sub-200 nm nanostructure on Fe film irradiated by femtosecond laser

    Science.gov (United States)

    Liu, Kaijun; Li, Xiaohong; Xie, Changxin; Wang, Kai; Zhou, Qiang; Qiu, Rong

    2017-09-01

    In this article, we report the formation of two kinds of laser induced periodic surface structures (LIPSSs) with direction perpendicular to laser polarization on the Fe films irradiated by 800 nm femtosecond laser pulses. High-spatial frequency LIPSSs (HSFLs) with periods of 150-230 nm are observed with small laser pulse number less than 100. Low-spatial frequency LIPSSs (LSFLs) with periods of 500-640 nm appear abruptly when increasing the pulse number to a specific pulse number varied with laser fluence, and the periods of LSFLs have a tendency to decrease when the pulse number exceeds some specific values varied for different laser fluences. The formation of high- and low-spatial frequency periodic structures may be related to the surface plasmon polaritons excited by laser on surface iron oxides film or iron film.

  6. Periodic nanostructures self-formed on silicon and silicon carbide by femtosecond laser irradiation

    Science.gov (United States)

    Gemini, Laura; Hashida, Masaki; Shimizu, Masahiro; Miyasaka, Yasuhiro; Inoue, Shunsuke; Tokita, Shigeki; Limpouch, Jiri; Mocek, Tomas; Sakabe, Shuji

    2014-10-01

    Laser-induced periodic surface structures (LIPSS) were formed on Si and SiC surfaces by irradiations with femtosecond laser pulses in air. Different kinds of self-organized structures appeared on Si and SiC at laser fluences slightly higher than the damage threshold, which was measured by confocal laser scanning microscope. The characteristic spatial periodicity of every observed structure was estimated reading the peak values of the 2D Fourier transform power spectra obtained from SEM images. The evolution of the spatial periodicity was finally studied with respect to both the laser fluence and the number of laser pulses. As already observed for metals, the behavior of the spatial periodicity on laser fluence can be related to the parametric decay of laser light into surface plasma waves. Our results suggest a wide applicability of the parametric decay model on different materials, making the model a useful tool in view of different applications of LIPSS.

  7. Formation of nanostructures on HOPG surface in presence of surfactant atom during low energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, M., E-mail: ranjanm@ipr.res.in; Joshi, P.; Mukherjee, S.

    2016-07-15

    Low energy ions beam often develop periodic patterns on surfaces under normal or off-normal incidence. Formation of such periodic patterns depends on the substrate material, the ion beam parameters, and the processing conditions. Processing conditions introduce unwanted contaminant atoms, which also play strong role in pattern formation by changing the effective sputtering yield of the material. In this work we have analysed the effect of Cu, Fe and Al impurities introduced during low energy Ar{sup +} ion irradiation on HOPG substrate. It is observed that by changing the species of foreign atoms the surface topography changes drastically. The observed surface topography is co-related with the modified sputtering yield of HOPG. Presence of Cu and Fe amplify the effective sputtering yield of HOPG, so that the required threshold for the pattern formation is achieved with the given fluence, whereas Al does not lead to any significant change in the effective yield and hence no pattern formation occurs.

  8. Ferrites – what is new?

    Indian Academy of Sciences (India)

    R Ranganathan; Anindita Ray

    2002-05-01

    Ferrites, combining insulating and ferrimagnetic properties, have long been used in technology. The aim of this paper is to focus on new features in these materials. In the classical theory of ferrimagnets, Neel had predicted the unusual thermal variation of the spontaneous magnetization, such as, the disappearance of the magnetization at a temperature which was not the Curie temperature but at a point where there was compensation of the spontaneous magnetization of the two sublattices. We show experimentally that temperature (K) in spinel oxide is different under the ZFC and FC magnetization method. To our knowledge, only limited attempt has been made to study K as very few systems exhibit such behavior. In general, some of the ferrites have specific semiconducting properties, e.g., a very low carrier mobility. We discuss the anomalies of the magneto-resistance in ferrites that occur at order–disorder and order–order magnetic phase transition along with our ac and dc conductivity data near the spin compensation temperature. Another notable feature of the ferrites is that, upon irradiation of heavy ions, one can tune the magnetic ordering on bulk sample without destructive effects, i.e., irradiation-induced magnetization. It is interesting to note that spinel ferrite (nano) particle is an ideal small particle magnetic system as the crystal chemistry issue can be controlled, unlike pure metal particle systems where the crystal chemistry issues are basically fixed. In relevance to this, we will also discuss the future prospects, namely, the effect of irradiation on small particle magnetism, as, so far, only a limited attempt has been made in this field.

  9. Magnetic and Electrical Characteristics of Bismuth Ferrite, Depending on the Impurities, Method of Preparation and Size of the Nanoparticles

    Directory of Open Access Journals (Sweden)

    V.M. Sarnatsky

    2016-10-01

    Full Text Available The prospect of application of the multiferroics in devices and spintronics devices is shown. A comparative analysis of magnetic and dielectric properties of nanostructures based on bismuth ferrite which were synthesized by various ways was made. The results of studies of the structure and properties of the nanostructured bismuth ferrite powder, synthesized by combustion of nitrate - organic precursors, are presented.

  10. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation.

    Science.gov (United States)

    Dědková, Kateřina; Lang, Jaroslav; Matějová, Kateřina; Peikertová, Pavlína; Holešinský, Jan; Vodárek, Vlastimil; Kukutschová, Jana

    2015-08-01

    The paper addresses laboratory preparation, characterization and in vitro evaluation of antibacterial activity of graphite/TiO2 nanocomposites. Composites graphite/TiO2 with various ratio of TiO2 nanoparticles (30wt.%, and 50wt.%) to graphite were prepared using a thermal hydrolysis of titanylsulfate in the presence of graphite particles, and subsequently dried at 80°C. X-ray powder diffraction, transmission electron microscopy and Raman microspectroscopy served as phase-analytical methods distinguishing anatase and rutile phases in the prepared composites. Scanning and transmission electron microscopy techniques were used for characterization of morphology of the prepared samples. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity, using four common human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa). Antibacterial activity of the graphite/TiO2 nanocomposites could be based mainly on photocatalytic reaction with subsequent potential interaction of reactive oxygen species with bacterial cells. During the antibacterial activity experiments, the graphite/TiO2 nanocomposites exhibited antibacterial activity, where differences in the onset of activity and activity against bacterial strains were observed. The highest antibacterial activity evaluated as minimum inhibitory concentration was observed against P. aeruginosa after 180min of irradiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment; Developpement d'une nouvelle nuance martensitique ODS pour utilisation sous rayonnement a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lambard, V

    2000-07-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  12. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mahdi [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Abdollahifar, Mozaffar [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  13. Compatibility of reduced activation ferritic/martensitic steel specimens with liquid Na and NaK in irradiation rig of IFMIF

    OpenAIRE

    2005-01-01

    In the high flux region of the International Fusion Materials Irradiation Facility (IFMIF), the neutron irradiation damage for iron-based alloys will exceed 20 dpa/ year. An accurate specimen temperature measurement under a large amount of nuclear heating is a key issue but the change of heat transfer of gap between irradiation specimens and specimen holder during irradiation test is inevitable, if gap is filled with an inert gas and temperature is monitored by a thermocouple buried in the sp...

  14. Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe{sub 2}O{sub 4}) under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dillert, Ralf [Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium für Nano- und Quantenengineering, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover (Germany); Taffa, Dereje H.; Wark, Michael [Institut für Chemie, Technische Chemie, Carl-von-Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg (Germany); Bredow, Thomas [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn (Germany); Bahnemann, Detlef W. [Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratory for Nanocomposite Materials, Department of Photonics, Faculty of Physics, Saint-Petersburg State University, Ulianovskaia Str. 3, Peterhof, Saint-Petersburg 198504 (Russian Federation)

    2015-10-01

    The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFe{sub 2}O{sub 4} and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

  15. Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures.

    Science.gov (United States)

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2015-03-01

    In this study, the influence of surface morphology, reagent ions and surface restructuring effects on atmospheric pressure laser desorption/ionization (LDI) for small molecules after laser irradiation of palladium self-assembled nanoparticular (Pd-NP) structures has been systematically studied. The dominant role of surface morphology during the LDI process, which was previously shown for silicon-based substrates, has not been investigated for metal-based substrates before. In our experiments, we demonstrated that both the presence of reagent ions and surface reorganization effects--in particular, melting--during laser irradiation was required for LDI activity of the substrate. The synthesized Pd nanostructures with diameters ranging from 60 to 180 nm started to melt at similar temperatures, viz. 890-898 K. These materials exhibited different LDI efficiencies, however, with Pd-NP materials being the most effective surface in our experiments. Pd nanostructures of diameters >400-800 nm started to melt at higher temperatures, >1000 K, making such targets more resistant to laser irradiation, with subsequent loss of LDI activity. Our data demonstrated that both melting of the surface structures and the presence of reagent ions were essential for efficient LDI of the investigated low molecular weight compounds. This dependence of LDI on melting points was exploited further to improve the performance of Pd-NP-based sampling targets. For example, adding sodium hypophosphite as reducing agent to Pd electrolyte solutions during synthesis lowered the melting points of the Pd-NP materials and subsequently gave reduced laser fluence requirements for LDI.

  16. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  17. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  18. Shape induced (spherical, sheets and rods) optical and magnetic properties of CdS nanostructures with enhanced photocatalytic activity for photodegradation of methylene blue dye under ultra-violet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Bilal; Kumar, Sachin; Kumar, Sumeet; Ojha, Animesh K., E-mail: animesh@mnnit.ac.in

    2016-09-15

    CdS nanostructures of different shapes such as, nanoparticles (NPs), nanosheets (NS) and nanorods (NRs) have been synthesized by one step chemical solvothermal method. The synthesized samples were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, UV–visible (UV-VIS) spectroscopy, Raman spectroscopy (RS) and vibrating sample magnetometer (VSM) techniques. The effect of shape on optical and magnetic properties of CdS nanostructures was studied. The optical band gap and emission spectra are found to be shape dependent. CdS NRs were found to have high saturation (Ms) magnetization than that of CdS NPs and NS. The role of shape on photocatalytic performance of CdS NPs, NS and NRs was investigated by monitoring the photodegradation of methylene blue (MB) dye under the UV irradiation of wavelength 365 nm. The lower recombination rate of electron-hole pairs and larger surface area as reactive facets for adsorption of MB dye molecules in CdS NS are mainly lead to the better photocatalytic performance of CdS NS compared to NPs and NRs. - Highlights: • Synthesis of CdS nanostructures with different shapes (spherical, rod and sheet) by easy and low cost solvothermal method. • Shape induced optical and magnetic properties of CdS nanostructures have been investigated. • The shapes of nanostructures play an important role for photocatalytic performance of CdS nanostructures.

  19. Synthesis of lithium ferrites from polymetallic carboxylates

    Directory of Open Access Journals (Sweden)

    STEFANIA STOLERIU

    2008-10-01

    Full Text Available Lithium ferrite was prepared by the thermal decomposition of three polynuclear complex compounds containing as ligands the anions of malic, tartaric and gluconic acid: (NH42[Fe2.5Li0.5(C4H4O53(OH4(H2O2]×4H2O (I, (NH46[Fe2.5Li0.5(C4H4O63(OH8]×2H2O (II and (NH42[Fe2.5Li0.5(C6H11O73(OH7] (III. The polynuclear complex precursors were characterized by chemical analysis, IR and UV–Vis spectra, magnetic measurements and thermal analysis. The obtained lithium ferrites were characterized by XRD, scanning electron microscopy, IR spectra and magnetic measurements. The single α-Li0.5Fe2.5O4 phase was obtained by thermal decomposition of the tartarate complex annealed at 700 °C for 1 h. The magnetization value ≈ 50 emu g-1 is lower than that obtained for the bulk lithium ferrite due to the nanostructural character of the ferrite. The particle size was smaller than 100 nm.

  20. Evolution of weld metals nanostructure and properties under irradiation and recovery annealing of VVER-type reactors

    Science.gov (United States)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Zabusov, O.; Prikhodko, K.; Zhurko, D.

    2013-03-01

    The results of VVER-440 steel Sv-10KhMFT and VVER-1000 steel SV-10KhGNMAA investigations by transmission electron microscopy, scanning electron microscopy, Auger-electron spectroscopy and mechanical tests are presented in this paper. The both types of weld metals with different content of impurities and alloying elements were studied after irradiations to fast neutron (E > 0.5 MeV) fluences in the wide range below and beyond the design values, after recovery annealing procedures and after re-irradiation following the annealing. The distinctive features of embrittlement kinetics of VVER-440 and VVER-1000 RPV weld metals conditioned by their chemical composition differences were investigated. It is shown that the main contribution into radiation strengthening within the design fluence can be attributed to radiation-induced precipitates, on reaching the design or beyond design values of fast neutron fluencies the main contribution into VVER-440 welds strengthening is made by radiation-induced dislocation loops, and in case of VVER-1000 welds - radiation-induced precipitates and grain-boundary phosphorous segregations. Recovery annealing of VVER-440 welds at 475 °C during 100 h causes irradiation-induced defects disappearance, transformation of copper enriched precipitates into bigger copper-rich precipitates with lower number density and leads to almost full recovery of mechanical properties followed by comparatively slow re-embrittlement rate. The recovery annealing temperature of VVER-1000 welds was higher - 565 °C during 100 h - to avoid temper brittleness. The annealing of VVER-1000 welds leads to almost full recovery of mechanical properties due to irradiation-induced defects disappearance and decrease in precipitates number density and grain-boundary segregation of phosphorus. The re-embrittlement rate of VVER-1000 weld during subsequent re-irradiation is at least not higher than the initial rate.

  1. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework

    Science.gov (United States)

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2016-01-01

    The photocatalytic activity of bismuth ferrite (BiFeO3: BFO) nanostructures on the degradation of methyl violet 2B (MV) is demonstrated for the first time under sunlight irradiation with the efficiency of 97.6 %. The photocatalytic BFO nanostructures have been successfully synthesized through hydrothermal method. Initial characterization of BFO nanostructures such as structural, functional, morphological, optical, and magnetic properties has been performed. From the X-ray diffraction analysis, the synthesized nanostructures are found to have rhombohedral structure with R3c space group confirmed by Rietveld analysis. The formation of perovskite structure is confirmed through FTIR analysis. Nanostructures were found to have rod-like morphology with the length between 15 and 20 nm and diameter of about 2-3 nm measured through HR-TEM. The surface area and N2 adsorption-desorption isotherms have been preformed through BET analysis. The optical band gap investigation shows that the E g value of BFO is about 2.1 eV. The magnetization measurements revealed a weak ferromagnetic behavior at room temperature, and the same has been confirmed through ABK plot. The photocatalytic activity of BFO is tested on the degradation of harmful MV dye under the irradiation of direct sunlight, influences of oxygen, and hydrogen peroxide. The photodecomposition kinetics of MV has been described through Langmuir-Hinshelwood model. The stability and recyclability of catalyst have also been studied.

  2. Atomically flat ultrathin cobalt ferrite islands.

    Science.gov (United States)

    Martín-García, Laura; Quesada, Adrián; Munuera, Carmen; Fernández, Jose F; García-Hernández, Mar; Foerster, Michael; Aballe, Lucía; de la Figuera, Juan

    2015-10-21

    A route for fabricating structurally perfect cobalt ferrite magnetic nanostructures is demonstrated. Ultrathin islands of up to 100 μm(2) with atomically flat surfaces and free from antiphase boundaries are developed. The extremely low defect concentration leads to a robust magnetic order, even for thicknesses below 1 nm, and exceptionally large magnetic domains. This approach allows the evaluation of the influence of specific extrinsic effects on domain wall pinning. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation

    Science.gov (United States)

    García-Pérez, U. M.; Sepúlveda-Guzmán, S.; Martínez-de la Cruz, A.

    2012-03-01

    Nanostructured BiVO4 photocatalysts were synthesized by a coprecipitation process in the presence of sodium carboxymethylcellulose (CMC), which acts as a steric stabilizer during the formation and growth of the BiVO4 nanoparticles. Samples with different contents of CMC were prepared in order to study the effect of the polymer on the final morphology of the oxide. The synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and adsorption-desorption isotherms (BET). The presence of CMC during the first stage of BiVO4 synthesis, promoted the formation of granular particles controlling its morphology and favoring its dispersion. The BiVO4 monoclinic polymorph (m-BiVO4) was obtained free of the tetragonal crystalline form (t-BiVO4) by annealing at different temperatures, which were influenced by CMC content: 400 °C (0.5 wt %), 450 °C (3.0 wt %), and 350 °C (6.0 and 9.0 wt %). BiVO4 nanoparticles showed photocatalytic activity, as they bleached an aqueous solution of rhodamine B (rhB) under visible-light irradiation. The photocatalytic activity of the BiVO4 samples was directly correlated with the amount of CMC added during the synthesis process.

  4. Nanostructuring of high-T{sub C} superconductors via masked ion irradiation for efficient ordered vortex pinning

    Energy Technology Data Exchange (ETDEWEB)

    Trastoy, J. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Rouco, V. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, E-08193 Bellaterra (Spain); Ulysse, C. [CNRS, Phynano Team, Laboratoire de Photonique et de Nanostructures, route de Nozay, 91460 Marcoussis (France); Bernard, R. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Faini, G. [CNRS, Phynano Team, Laboratoire de Photonique et de Nanostructures, route de Nozay, 91460 Marcoussis (France); Lesueur, J. [LPEM, CNRS-ESPCI, 10 rue Vauquelin, 75231 Paris (France); Briatico, J. [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France); Villegas, J.E., E-mail: javier.villegas@thalesgroup.com [Unité Mixte de Physique CNRS/Thales, 1 avenue A. Fresnel, 91767 Palaiseau (France); Université Paris Sud, 91405 Orsay (France)

    2014-11-15

    Highlights: • Study of magneto-transport in YBCO films with a periodic pinning array. • Commensurability effects investigated as a function of vortex velocity. • At low temperatures, the periodic pinning is more efficient for low vortex velocities. • At high temperatures, the periodic pinning becomes stronger with increasing vortex velocity. - Abstract: We studied vortex dynamics in a YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin film with two different sources of pinning: intrinsic random defects and an artificial square array of defects created by masked ion irradiation. We study commensurability effects between the vortex lattice and the pinning array as a function of the vortex velocity v and the temperature. We find that at low temperatures the commensurability effects (magneto-resistance drop at the matching fields) are stronger at low velocities, in contrast with the behavior previously observed in low-critical-temperature superconductors.

  5. Microstructural stability of ODS Fe–14Cr (–2W–0.3Ti steels after simultaneous triple irradiation

    Directory of Open Access Journals (Sweden)

    M. Šćepanović

    2016-12-01

    Full Text Available Simultaneous triple-ion beam irradiation experiments with Fe5+, He+ and H+ ions were performed to simulate fusion damage on two nanostructured ferritic alloys with nominal composition Fe–14Cr–0.3Y2O3 and Fe–14Cr–2W–0.3Ti–0.3Y2O3. Samples were irradiated at 600°C to an estimated dose of ∼ 30dpa, 600appm He, 1500appm H, and the effects on the microstructure of these alloys investigated by analytical transmission electron microscopy. The results reveal the development of nanovoids, or small bubbles, undetected in the unirradiated samples, and a virtual compositional stability of the dispersion. Nevertheless, upon irradiation the measured size distribution indicates a slight growth of those dispersoids having the smaller sizes.

  6. Modern Ferrite Technology

    CERN Document Server

    Goldman, Alex

    2006-01-01

    Modern Ferrite Technology, 2nd Ed. offers the readers an expert overview of the latest ferrite advances as well as their applications in electronic components. This volume develops the interplay among material properties, component specification and device requirements using ferrites. Throughout, emphasis is placed on practical technological concerns as opposed to mathematical and physical aspects of the subject. The book traces the origin of the magnetic effect in ferrites from the level of the simplest particle and then increases the scope to include larger hierarchies. From the desired magnetic properties, the author deduces the physical and chemical material parameters, taking into consideration major chemistry, impurity levels, ceramic microstructures and grain boundary effects. He then discusses the processing conditions and associated conditions required for implementation. In addition to conventional ceramic techniques, he describes non-conventional methods such as co-precipitation, co-spray roasting ...

  7. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  8. Synthesis and characterization of novel CoFe{sub 2}O{sub 4}-BaTiO{sub 3} multiferroic core-shell-type nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Corral-Flores, V., E-mail: vcorral@ciqa.mx [Centro de Investigacion en Quimica Aplicada, Enrique Reyna 140, Saltillo, Coah 25253 (Mexico); Bueno-Baques, D.; Ziolo, R.F. [Centro de Investigacion en Quimica Aplicada, Enrique Reyna 140, Saltillo, Coah 25253 (Mexico)

    2010-02-15

    Novel multiferroic nanostructures of cobalt ferrite-barium titanate were synthesized by a two-step wet chemical procedure, combining co-precipitation and sol-gel techniques. The fraction of cobalt ferrite in the nanostructures was varied from 20 to 60 wt.%. X-ray diffraction confirmed the presence of both the spinel and the perovskite phases, with average crystallite sizes in the range of 15-28 nm. Both the degree of tetragonality of barium titanate and the lattice parameter of cobalt ferrite significantly increased with the content of ferrite in the nanostructures, revealing a crystallographic distortion related to the shell thickness. Transmission electron microscopy data showed two-phase composite nanostructures consisting of a cobalt ferrite core surrounded by a barium titanate shell-like coating. Magnetization data showed expected ferromagnetic behavior. The multiferroic nanostructures are proposed as building blocks for higher-order multiferroic inorganic and hybrid inorganic-organic nanocomposites.

  9. Ductility of Nanostructured Bainite

    Directory of Open Access Journals (Sweden)

    Lucia Morales-Rivas

    2016-12-01

    Full Text Available Nanostructured bainite is a novel ultra-high-strength steel-concept under intensive current research, in which the optimization of its mechanical properties can only come from a clear understanding of the parameters that control its ductility. This work reviews first the nature of this composite-like material as a product of heat treatment conditions. Subsequently, the premises of ductility behavior are presented, taking as a reference related microstructures: conventional bainitic steels, and TRIP-aided steels. The ductility of nanostructured bainite is then discussed in terms of work-hardening and fracture mechanisms, leading to an analysis of the three-fold correlation between ductility, mechanically-induced martensitic transformation, and mechanical partitioning between the phases. Results suggest that a highly stable/hard retained austenite, with mechanical properties close to the matrix of bainitic ferrite, is advantageous in order to enhance ductility.

  10. Impedance calculation for ferrite inserts

    Energy Technology Data Exchange (ETDEWEB)

    Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  11. Morphology of Proeutectoid Ferrite

    Science.gov (United States)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-03-01

    The morphology of grain boundary nucleated ferrite particles in iron alloys with 0.3 mass pct carbon has been classified according to the presence of facets. Several kinds of particles extend into both grains of austenite and have facets to both. It is proposed that they all belong to a continuous series of shapes. Ferrite plates can nucleate directly on the grain boundary but can also develop from edges on many kinds of particles. Feathery structures of parallel plates on both sides of a grain boundary can thus form. In sections, parallel to their main growth direction, plates have been seen to extend the whole way from the nucleation site at the grain boundary and to the growth front. This happens in the whole temperature range studied from 973 K to 673 K (700 °C to 400 °C). The plates thus grow continuously and not by subunits stopping at limited length and continuing the growth by new ones nucleating. Sometimes, the plates have ridges and in oblique sections they could be mistaken for the start of new plates. No morphological signs were observed indicating a transition between Widmanstätten ferrite and bainitic ferrite. It is proposed that there is only one kind of acicular ferrite.

  12. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    T K Kundu; S Mishra

    2008-06-01

    Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the doping of Nb2O5, the size of NiFe2O4 is reduced down to 33 nm. Similarly, nanostructured manganese ferrites (MnFe2O4) with diameters in the range of 45–30 nm were synthesized by Ti4+ ion doping. Particle diameters in all the specimens are found to decrease with increasing dopant content. The substitution of Nb5+ or Ti3+ ions essentially breaks up the ferrimagnetically active oxygen polyhedra. This created nanoscale regions of ferrites. Saturation magnetization and coercive field show a strong dependence on the size of the ferrite grains. Superparamagnetic behaviour is observed from the Mössbauer spectra of nanostructured NiFe2O4, if the particle size is reduced to 30 nm. Zero field cooled and field cooled curves from 30 nm sized MnFe2O4 particles showed a peak at B (∼ 125 K), typical of superparamagnetic blocking temperature. These results are explained in terms of core/shell structure of the materials. The d.c. resistivity of the doped specimens decreases by atleast five orders of magnitude compared to pure sample. This is ascribed to the presence of an interfacial amorphous phase between the sites.

  13. Ferrite logic reliability study

    Science.gov (United States)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  14. PVP assisted hydrothermal fabrication and morphology-controllable fabrication of BiFeO{sub 3} uniform nanostructures with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingfu; Mao, Weiwei [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); School of Science, Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Zhang, Qiaoxia; Wang, Qi; Zhu, Yiyi; Zhang, Jian; Yang, Tao [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Yang, Jianping [School of Science, Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Li, Xing' ao, E-mail: lxahbmy@126.com [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Huang, Wei, E-mail: iamwhuang@njupt.edu.cn [Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials - IAM, School of Materials Science and Engineering - SMSE, Nanjing University of Posts and Telecommunications - NUPT, Nanjing 210023 (China); Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China)

    2016-08-25

    Bismuth ferrite (BiFeO{sub 3}) nanostructures with various morphologies (spindles, cubes and plates) have been successfully synthesized via a convenient one-pot hydrothermal method. The results show that three kinds of BiFeO{sub 3} products were obtained in this polyvinylpyrrolidone (PVP)-assisted hydrothermal reaction under different alkaline conditions. The resulting nanostructures were characterized using XRD and SEM. Possible formation mechanism for BiFeO{sub 3} nanostructures was proposed on the basis of our results. The experiments showed that the visible light absorptive capacity of the BiFeO{sub 3} nanostructures was significant influenced on the size and morphology. Notably, the as-prepared BiFeO{sub 3} plates with (104) facets exposed exhibit high efficiency for the degradation of methyl orange (MO) under visible light irradiation, suggesting potential applications in photocatalytic and related areas under visible light. - Highlights: • BiFeO{sub 3} nanostructures were synthesized via a PVP-assisted hydrothermal method. • The effect of the PVP and alkaline concentration was investigated. • The visible light absorptive capacity was significant influenced on the morphology. • The photocatalytic activity of the as-prepared BiFeO{sub 3} plates is the best.

  15. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Eiselt, Ch.Ch., E-mail: charles.eiselt@imf.fzk.de [Forschungszentrum Karlsruhe/IMF I, P.O. Box 3640, 72061 Karlsruhe (Germany); Klimenkov, M.; Lindau, R.; Moeslang, A. [Forschungszentrum Karlsruhe/IMF I, P.O. Box 3640, 72061 Karlsruhe (Germany); Odette, G.R., E-mail: odette@engineering.ucsb.edu [Materials Department University of California, Santa Barbara, CA 93106 (United States); Yamamoto, T.; Gragg, D. [Materials Department University of California, Santa Barbara, CA 93106 (United States)

    2011-10-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y{sub 2}O{sub 3} reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y{sub 2}0{sub 3} and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  16. Structure and magnetic properties of granular NiZn-ferrite - SiO2

    Directory of Open Access Journals (Sweden)

    Albuquerque Adriana Silva de

    1999-01-01

    Full Text Available Granular systems composed by nanostructured magnetic materials embedded in a non-magnetic matrix present unique physical properties that depend crucially on their nanostructure. In this work, we have studied the structural and magnetic properties of NiZn-ferrite nanoparticles embedded in SiO2, a granular system synthesized by sol-gel processing. Samples with ferrite volumetric fraction x ranging from 6% to 78% were prepared, and characterized by X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometry. Our results show the formation of pure stoichiometric NiZn-ferrite in the SiO2 matrix for x < 34%. Above these fraction, our samples presented also small amounts of Fe2O3. Mössbauer spectroscopy revealed the superparamagnetic behaviour of the ferrimagnetic NiZn-ferrite nanoparticles. The combination of different ferrite concentration and heat treatments allowed the obtaintion of samples with saturation magnetization between 1.3 and 68 emu/g and coercivity ranging from 0 to 123 Oe, value which is two orders of magnitude higher than the coercivity of bulk NiZn-ferrite.

  17. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    Institute of Scientific and Technical Information of China (English)

    T. Hino; K. Yamaguchi; Y. Yamauchi; Y. Hirohata; K. Tsuzuki; Y.Kusama

    2005-01-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall,vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study,deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus.After a ferritic steel sample was irradiated by 1.7 kev D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316 L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention.Ferritic steel sample was

  18. Photothermal cancer therapy by gold-ferrite nanocomposite and near-infrared laser in animal model.

    Science.gov (United States)

    Heidari, M; Sattarahmady, N; Azarpira, N; Heli, H; Mehdizadeh, A R; Zare, T

    2016-02-01

    Surface plasmon resonance effect of gold nanostructures makes them good candidates for photothermal therapy (PTT) application. Herein, gold-ferrite nanocomposite (GFNC) was synthesized and characterized as a photothermal agent in PTT. The aim of this study was to investigate the effect of GFNC upon laser irradiation on treatment of cancer in mice bearing melanoma cancer. Thirty mice received 1.5 × 10(6) B16/F10 cells subcutaneously. After 1 week, the mice bearing solid tumor were divided into four groups: control group (without any treatment), laser group (received laser irradiation without GFNC injection), GFNC group (only received intratumorally GFNC), and GFNC + laser group (received intratumorally GFNC upon laser irradiation). In GFNC + laser group, 200 μL of fluid, 1.3 × 10(-7) mol L(-1) gold nanoparticles, was injected intratumorally and immediately the site of tumor was exposed to continuous wave diode laser beam (808 nm, 1.6 W cm(-2)) for 15 min. All mice but four were euthanized 24 h after treatment to compare the necrotic surface area histologically by using measuring graticule. Statistical analyses revealed significant differences in necrosis extent for GFNC + laser group, compared to other groups. Four subjects (control group and GFNC + laser group, two mice each) were kept for longitudinal study. Histological analyses and tumor volume measurements of the four subjects indicated that tumor in GFNC + laser group was controlled appropriately. It was concluded that combining an 808-nm laser at a power density of 1.6 W cm(-2) with GFNC has a destruction effect in melanoma cancer cells in an animal model.

  19. The structural and magnetic properties of dual phase cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Jadhav, Santosh S; Jadhav, Vijaykumar V; Patange, S M; Naushad, Mu; Mane, Rajaram S; Kim, Kwang Ho

    2017-05-31

    The bismuth (Bi(3+))-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co(2+) by trivalent Bi(3+) cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi(3+) doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi(3+)-addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi(3+)-doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi(3+)-doping in enhancing the magnetic properties of cobalt ferrite.

  20. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    Science.gov (United States)

    Tan, L.; Katoh, Y.; Tavassoli, A.-A. F.; Henry, J.; Rieth, M.; Sakasegawa, H.; Tanigawa, H.; Huang, Q.

    2016-10-01

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. In addition to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti, X = C/N) precipitates and reducing coarse M23C6 (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. Limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic are presented and compared with data for F82H and Eurofer97 irradiated up to ∼70 displacements per atom at ∼300-325 °C.

  1. Cracks growth behaviors of commercial pure titanium under nanosecond laser irradiation for formation of nanostructure-covered microstructures (with sub-5-μm)

    Science.gov (United States)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.

    2016-11-01

    This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.

  2. Analysis of Effects in a Low-activation Ferritic/Martensitic Steel by High-energy Heavy-ion Irradiation%一种低活化铁素体/马氏体钢的高能重离子辐照效应研究

    Institute of Scientific and Technical Information of China (English)

    张崇宏; 杨义涛; 宋银; J.S.Jang; 孙友梅; 金运范; 李炳生

    2009-01-01

    Low-activation Ferritic/Martensitic steels are a kind of important structural materials candidate to the application in advanced nuclear energy systems. Possible degradation of properties and even failure in the condition of high-temperature and high helium production due to energetic neutron irradiation in a fusion reactor is a major concern with the application of this kind of materials. In the present work micro-structural evolution in a 9Cr Ferritic/Martensitic steel (T92B) irradiated with 122 MeV ~(20)Ne ions at temperatures between 0.3-0.5 T_m (T_m is the melting point of the material) was investigated with transmission electron microscopy. High concentration voids were observed in the specimens irradiated at high temperatures when the displacement damage dose and Ne concentration exceed a certain level. Preferential formation of voids at lath-boundaries and other grain-boundaries was found. The data of void swellings in 9Cr ferritic/martensitic steels irradiated in different conditions (such as with He-ions, Ne-ions, Fe/He dual beams, fast neutrons, Ni-ions etc. ) were compiled and analyzed based on a classic model of helium bubble formation, and bubble to void transition.%低活化的铁素体/马氏体钢是先进核能装置(如聚变堆)的重要候选结构材料.在聚变堆实际工作环境下,由于高温和高氦产生率引起的材料失效是这类材料面临的一个重要问题.本项研究以兰州重离子加速器(HIRFL)提供的中能惰性气体离子束(~(20)Ne,122 MeV)作为模拟辐照条件,借助透射电子显微镜,研究了一种低活化的9Cr铁素体/马氏体钢(T92B)组织结构的变化和辐照肿胀.实验结果表明,高温下当材料中晶格原子的撞出损伤和惰性气体原子沉积浓度超过一定限值时,材料内部形成高浓度的空洞,并且空洞肿胀率显著依赖于辐照温度和剂量;在马氏体板条界面及其它晶界处空洞趋于优先形成,并且在晶界交汇处呈加速生长.

  3. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high-en...

  4. Superhydrophilic nanostructure

    Science.gov (United States)

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  5. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  6. Electron postgrowth irradiation of platinum-containing nanostructures grown by electron-beam-induced deposition from Pt(PF3)4

    NARCIS (Netherlands)

    Botman, A.; Hagen, C.W.; Li, J.; Thiel, B.L.; Dunn, K.A.; Mulders, J.J.L.; Randolph, S.; Toth, M.

    2009-01-01

    The material grown in a scanning electron microscope by electron beam-induced deposition (EBID) using Pt(PF3)4 precursor is shown to be electron beam sensitive. The effects of deposition time and postgrowth electron irradiation on the microstructure and resistivity of the deposits were assessed by t

  7. EFFECT OF POLY (ETHYLENE GLYCOL) ON THE FORMATION OF NANOSTRUCTURES: A FACILE SUSTAINABLE APPROACH FOR THE SYNTHESIS OF SILVER NANORODS USING MICROWAVE IRRADIATION

    Science.gov (United States)

    Bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) under microwave irradiation is reported. The formation of nanorods or particulate morphology is dependent on the PEG concentration. This greener method uses no surfactants or reducing agents and employs a b...

  8. Study of Zn-Cu ferrite nanoparticles for LPG sensing.

    Science.gov (United States)

    Jain, Anuj; Baranwal, Ravi Kant; Bharti, Ajaya; Vakil, Z; Prajapati, C S

    2013-01-01

    Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. XRD patterns of different compositions of zinc-copper ferrite, Zn(1-x)Cu(x)Fe2O4 (x = 0.0, 0.25, 0.50, 0.75), revealed single phase inverse spinel ferrite in all the samples synthesized. With increasing copper concentration, the crystallite size was found to be increased from 28 nm to 47 nm. The surface morphology of all the samples studied by the Scanning Electron Microscopy there exhibits porous structure of particles throughout the samples. The pellets of the samples are prepared for LPG sensing characteristics. The sensing is carried out at different operating temperatures (200, 225, and 250°C) with the variation of LPG concentrations (0.2, 0.4, and 0.6 vol%). The maximum sensitivity of 55.33% is observed at 250°C operating for the 0.6 vol% LPG.

  9. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States); He, Li [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  10. Ferrite attenuator modulation improves antenna performance

    Science.gov (United States)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  11. Optimization of multiroute synthesis for polyaniline-barium ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ghzaiel, Tayssir, E-mail: tayssir.ben-ghzaiel@satie.ens-cachan.fr [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France); Dhaoui, Wadia [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); Pasko, Alexander; Mazaleyrat, Frédéric [SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France)

    2016-08-15

    A comparative study of physicochemical and magnetic properties of Polyaniline-BaFe{sub 12}O{sub 19} composites prepared by Solid-Based Polymerization (SBP) and by Aqueous-Based Polymerization (ABP) is carried out. The composites obtained by the latter method underwent a grinding to study the influence of shear stress. Thus, in a systematic approach, an investigation of stirring effect was done by synthesizing these composites using aqueous-based polymerization but without mechanical stirring. Different mass ratio of BaFe{sub 12}O{sub 19} was used to explore their impact on composites properties. X-ray diffraction, FTIR, SEM, TGA, conductivity and vibrating sample magnetometer measurements were performed. Structural and morphological investigations confirmed the presence of polyaniline and barium hexaferrite phase, which were in interaction in the composites regardless the polymerization route. The powder obtained by solid-based pathway revealed distinct particles with uniform distribution for various compositions (wt. %) of BaFe{sub 12}O{sub 19} in Pani, while the composites obtained by aqueous-based polymerization presented agglomerated nanostructures. Thermogravimetric analysis exhibited an improved thermal stability for Pani-BaFe{sub 12}O{sub 19} obtained by solid-based route. The electric conductivity has displayed decreasing trend of DC conductivity with the increase of BaFe{sub 12}O{sub 19} particles in the polymer matrix. Magnetic studies showed a ferromagnetic behaviour for all composites. The saturation magnetization monotonously increased with the increasing of BaFe{sub 12}O{sub 19} amount. The magnetic properties of the powders were mainly related to the hexaferrite loading which was determined using measured magnetic data. These results revealed that magnetization saturation was dependant of volume fraction of ferrite in the composites which was significantly affected by the reaction medium and mechanical stirring. The powders obtained by solid

  12. Nano-ferrites for water splitting: Unprecedented high photocatalytic hydrogen production under visible light

    KAUST Repository

    Mangrulkar, Priti A.

    2012-01-01

    In the present investigation, hydrogen production via water splitting by nano-ferrites was studied using ethanol as the sacrificial donor and Pt as co-catalyst. Nano-ferrite is emerging as a promising photocatalyst with a hydrogen evolution rate of 8.275 μmol h -1 and a hydrogen yield of 8275 μmol h -1 g -1 under visible light compared to 0.0046 μmol h -1 for commercial iron oxide (tested under similar experimental conditions). Nano-ferrites were tested in three different photoreactor configurations. The rate of hydrogen evolution by nano-ferrite was significantly influenced by the photoreactor configuration. Altering the reactor configuration led to sevenfold (59.55 μmol h -1) increase in the hydrogen evolution rate. Nano-ferrites have shown remarkable stability in hydrogen production up to 30 h and the cumulative hydrogen evolution rate was observed to be 98.79 μmol h -1. The hydrogen yield was seen to be influenced by several factors like photocatalyst dose, illumination intensity, irradiation time, sacrificial donor and presence of co-catalyst. These were then investigated in detail. It was evident from the experimental data that nano-ferrites under optimized reaction conditions and photoreactor configuration could lead to remarkable hydrogen evolution activity under visible light. Temperature had a significant role in enhancing the hydrogen yield. © 2012 The Royal Society of Chemistry.

  13. Experimental investigations of SiO{sub 2} based ferrite magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@mepcoeng.ac.in [Department of Physics, Mepco Schlenk Engineering College, Sivakasi (India); Karthikeyan, A. [Department of Physics, Mepco Schlenk Engineering College, Sivakasi (India); Aravindan, V. [Energy Research Institute, Nanyang Technological University (Singapore); Pugazhvadivu, K.S.; Tamilarasan, K. [Department of Physics, Kongu Engineering College, Perundurai (India)

    2013-09-01

    Highlights: • CoFe{sub 2}O{sub 4}/SiO{sub 2}/Co–NiFe{sub 2}O{sub 4} magnetic junction was fabricated using RF/DC sputtering. • Spin transport through nanostructure silicon oxide with ferrite as free and pinned layer is our first report. • Magnetization studies were done to justify the free layer and pinned layer for our multilayer. • Magnetoresistance behavior shows a sharp discriminating between parallel and antiparallel alignment with TMR value of 16%. -- Abstract: We report experimental results of ferrite based magnetic tunnel junction. Ferrite junction and spin transport through SiO{sub 2} were interesting since they can readily replace the conventional electronics. We fabricated a cobalt ferrite/SiO{sub 2}/cobalt nickel ferrite based magnetic tunnel junction over a copper coated n-silicon substrate using a RF/DC magnetron sputtering. The tunneling magnetoresistance shows a very good response to applied field and we achieved a TMR of about 16%. Although theoretically it was predicted infinite TMR for half metallic ferromagnetic junction, the deviation was explained on the basis of incoherent scattering along the interfaces.

  14. Magnetocaloric phenomena in Mg-ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Burianova, S; Holec, P; Plocek, J [Charles University, Faculty of Science, Department of Inorganic chemistry, Prague (Czech Republic); Poltierova-Vejpravova, J, E-mail: burianovasimona@email.c, E-mail: jana@mag.mff.cuni.c

    2010-01-01

    A comparative study of magnetocaloric effect (MCE) in superparamagnetic (SPM) regime is reported in two different types of magnesium ferrite nanostructures. The samples were prepared either by microemulsion method as MgFe{sub 2}O{sub 4} nanoparticles encapsulated in amorphous SiO{sub 2}, or as matrix-less nanoparticles using hydrothermal synthesis in supercritical water conditions. The particle diameter in all prepared samples was obtained from XRD measurements and TEM analysis. All samples show a SPM behavior above the blocking temperature, T{sub B}. The entropy change, {Delta}S was finally derived from the measurements of magnetization, M(H,T) curves at defined temperature intervals. We observed, that all samples show a broad peak of {Delta}S in the temperature range that is fairly above the T{sub B}. The values of the {Delta}S also depend on the particle size, and they are of about two orders lower than those reported in the famous giant magnetocaloric materials.

  15. Articles comprising ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  16. High power ferrite microwave switch

    Science.gov (United States)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  17. The use of ferrites at microwave frequencies

    CERN Document Server

    Thourel, Léo

    1964-01-01

    The Use of Ferrites at Microwave Frequencies describes the applications of ferrites at microwave frequencies and the apparatus involved. Topics covered range from the properties of ferrites to gyromagnetic and non-reciprocal effects, ferrite isolators, circulators, and modulators. The use of ferrites in variable frequency filter cavities is also discussed. Mathematical explanations are reduced to the strict minimum and only the results of calculations are indicated. This book consists of seven chapters and opens with a review of the theory of magnetism, touching on subjects such as the BOHR m

  18. System and method of forming nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dial, Laura Cerully; DiDomizio, Richard; Alinger, Matthew Joseph; Huang, Shenyan

    2016-07-26

    A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.

  19. Influence of helium on impact properties of reduced-activation ferritic/martensitic Cr-steels

    Science.gov (United States)

    Lindau, R.; Möslang, A.; Preininger, D.; Rieth, M.; Röhrig, H. D.

    Instrumented Charpy impact tests of the reduced activation type 8Cr2WVTa steel F82H have been performed after homogeneous implantation of 300 appm helium at 250°C. The results are compared with investigations on mixed spectrum neutron irradiated (HFR Petten) specimens. After neutron irradiation at 250°C to the same low damage dose of 0.2 dpa, the ductile-brittle transition temperature shift (ΔDBTT) amounts to 18°C, whereas a much higher ΔDBTT of 42°C has been measured after helium implantation. These results are compared with other neutron irradiated ferritic/martensitic steels having different boron levels and thus different helium contents. A model is proposed which describes the dynamic brittle fracture of martensitic/ferritic steels by a stress-induced propagation of micro-cracks, taking into account radiation induced hardening as well as helium bubble formation.

  20. Femtosecond laser nanostructuring of silver film

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ye; Ma, Guohong [Shanghai University, Department of Physics, Shanghai (China); Shanghai University, Laboratory for Microstructures, Shanghai (China); He, Min; Bian, Huadong; Yan, Xiaona [Shanghai University, Department of Physics, Shanghai (China); Lu, Bo [Shanghai University, Laboratory for Microstructures, Shanghai (China)

    2012-03-15

    In this paper, we report an evolution of surface morphology of silver film irradiated by a 1 kHz femtosecond laser. By SEM observations, it is noted that different nanostructures with respective surface features depend highly on the number of pulses and the laser fluence. Especially when the laser fluence is below the threshold fluence of film breakdown, a textured nanostructure including many nanobumps and nanocavities will appear on the surface of silver film. In order to determine an optimal regime for nanostructuring silver film and to further study the underlying mechanism, we perform a quantitative analysis of laser fluence and pulse number. The results show that this nanostructure formation should be due to a sequential process of laser melting, vapor bubbles bursting, heat stress confinement, and subsequent material redistribution. As a potential application, we find this nanostructured silver film can be used as the active substrate for surface enhanced Raman scattering effect. (orig.)

  1. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    OpenAIRE

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomec...

  2. A STUDY OF FERRITE CAVITY.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2002-04-19

    This note addresses the general concerns for the design of a ferrite cavity. The parameters are specified for the RCMS, for which the frequency ramp is in the range of 1.27 MHz to 6.44 MHz, or a ratio of 1:5.

  3. Synthesis of Nitrogen-Doped ZnS with Camellia Brushfield Yellow Nanostructures for Enhanced Photocatalytic Activity under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Gang-Juan Lee

    2013-01-01

    Full Text Available Nitrogen modified zinc sulfide photocatalysts were successfully prepared and characterized by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, high-resolution transmission electron microscopy (HR-TEM, X-ray photoelectron spectroscopy (XPS, and surface area analysis. Thermal decomposition of the semisolid was carried out under nitrogen conditions at 500°C for 2 hours, and a series of nitrogen-doped ZnS photocatalysts were produced by controlling inflow flow rate of nitrogen at 15–140 mL/min. Optical characterizations of the synthesized N-doping ZnS substantially show the shifted photoabsorption properties from ultraviolet (UV region to visible light. The band gaps of nitrogen-doped ZnS composite catalysts were calculated to be in the range of 2.58~2.74 eV from the absorptions edge position. The 15N/ZnS catalyst shows the highest photocatalytic activity, which results in 75.7% degradation of Orange II dye in 5 hrs by visible light irradiation, compared with pristine ZnS and higher percentage N-doping ZnS photocatalysts.

  4. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  5. Development of a monolithic ferrite memory array

    Science.gov (United States)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  6. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    . For geometries without ferrite, these zones can be defined only on basis of distance from coils. The simulation results indicate that magnetic field profile in the surroundings is influenced for ferrite based geometries and the three zones tend to overlap. This overlapping is studied via Comsol simulations...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  7. Instrumented charpy impact tests of austenitic and ferritic steels

    Science.gov (United States)

    Yoshida, H.; Miyata, K.; Hayashi, Y.; Narui, M.; Kayano, H.

    1985-08-01

    The instrumented Charpy impact test was applied to commercial Mn-steel and ferritic steels before and after JMTR irradiation ( 6.5 × 10 22 n/m 2). The load-deflection curves show typical characteristics of the fracture properties of the specimens; i.e. linear elastic behaviour for the brittle fracture and elastic-plastic behaviour for the ductile fracture. The fracture deflection and the absorption energy (fracture energy) dropped rapidly at the temperature of ductile to brittle transition. The ductile-brittle transition temperatures (DBTTs) showed shifts of about 30 and 40 K due to the irradiation for 9Cr-1Mo and 9Cr-2Mo steels, respectively. In Mn-steel the transition from ductile to brittle did not appear at temperatures higher than 77 K. The lateral expansions measured from the scanning electron micrographs show good correspondence to the above results.

  8. Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.

    Science.gov (United States)

    Prozorov, Tanya; Palo, Pierre; Wang, Lijun; Nilsen-Hamilton, Marit; Jones, DeAnna; Orr, Daniel; Mallapragada, Surya K; Narasimhan, Balaji; Canfield, Paul C; Prozorov, Ruslan

    2007-10-01

    Magnetotactic bacteria produce exquisitely ordered chains of uniform magnetite (Fe(3)O(4)) nanocrystals, and the use of the bacterial mms6 protein allows for the shape-selective synthesis of Fe(3)O(4) nanocrystals. Cobalt ferrite (CoFe(2)O(4)) nanoparticles, on the other hand, are not known to occur in living organisms. Here we report on the use of the recombinant mms6 protein in a templated synthesis of CoFe(2)O(4) nanocrystals in vitro. We have covalently attached the full-length mms6 protein and a synthetic C-terminal domain of mms6 protein to self-assembling polymers in order to template hierarchical CoFe(2)O(4) nanostructures. This new synthesis pathway enables facile room-temperature shape-specific synthesis of complex magnetic crystalline nanomaterials with particle sizes in the range of 40-100 nm that are difficult to produce using conventional techniques.

  9. Hydrothermal growth of fine magnetite and ferrite crystals

    Science.gov (United States)

    Byrappa, Shayan; Vicas, C. S.; Dhanaraj, Neel; Namratha, K.; Keerthana, S. D.; Dey, Ravi; Byrappa, K.

    2016-10-01

    In the present work, magnetite (Fe3O4, avg. 70 nm) synthesis employing Azadirachta indica (neem) leaf extract is reported originally using hydrothermal conditions and the results obtained were compared with that of D-glucose. Fourier transform infrared spectroscopy confirms the presence of polysaccharides and proteins in the extract which act as both surfactants and reducing agents, aided the formation of magnetite nanostructures. Authors also reported the selective doping of Zn, Cu and Co on nickel ferrite for the enhancement of adsorptive dye removal property, adopting and investigating the use of eloquent one-step green hydrothermal approach (T=180 °C, t=4 h, pH=12) with sodium dodecyl sulfate as surfactant. X-ray diffraction studies reveal that all the materials synthesized are isometric spinel structures and furthermore, morphological evidences using scanning electron microscopy are accounted. Adsorptive dye removal ability of synthesized materials was investigated using trypan blue as a probe. It was evident from the results that magnetite using neem extract showed enhanced adsorption ability (75%) than that of D-glucose (62%). Also, exponential increase in dye removal efficiency from 55% to 81% due to the presence of copper in nickel ferrite was duly noted.

  10. Sonochemical Synthesis of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Partha P. Goswami

    2013-01-01

    Full Text Available Cobalt ferrite being a hard magnetic material with high coercivity and moderate magnetization has found wide-spread applications. In this paper, we have reported the sonochemical synthesis of cobalt ferrite nanoparticles using metal acetate precursors. The ferrite synthesis occurs in three steps (hydrolysis of acetates, oxidation of hydroxides, and in situ microcalcination of metal oxides that are facilitated by physical and chemical effects of cavitation bubbles. The physical and magnetic properties of the ferrite nano-particles thus synthesized have been found to be comparable with those reported in the literature using other synthesis techniques.

  11. Biological synthesis of cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Anal K. Jha

    2012-01-01

    Full Text Available A low-cost green and reproducible yeast (Saccharomyces cerevisiae mediated biosynthesis of cobalt ferrite nanoparticles is reported. The synthesis is performed at close to room temperature in the laboratory. X-ray, Fourier transform infrared spectroscopy and high resolution transmission electron microscopy analyses are performed to ascertain the formation of cobalt ferrite nanoparticles. Individual nanoparticles, as well as a very few aggregate having the size of 3-15 nm, were found. The vibrating sample magnetometer measurement showed superparamagnetic behavior in cobalt ferrite nanoparticles. The mechanism involved in the biosynthesis of cobalt ferrite nanoparticles has also been discussed.

  12. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    Mohsen Kazeminezhad

    2012-06-01

    In this research, an algorithm based on the -state Potts model is presented for modeling the austenite to ferrite transformation. In the algorithm, it is possible to exactly track boundary migration of the phase formed during transformation. In the algorithm, effects of changes in chemical free energy, strain free energy and interfacial energies of austenite–austenite, ferrite–ferrite and austenite–ferrite during transformation are considered. From the algorithm, the kinetics of transformation and mean ferrite grain size for different cooling rates are calculated. It is found that there is a good agreement between the calculated and experimental results.

  13. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  14. Microwave Ferrites for Cryogenic Applications

    OpenAIRE

    G. Dionne

    1997-01-01

    Recent advances in microwave ferrite device technology have seen the introduction of superconductivity that virtually eliminates insertion losses due to electrical conduction in microstrip circuits. The conventional ferrimagnetic spinel and garnet compositions, however, are not generally optimized for temperatures in the vicinity of 77 K and may require chemical redesign in order to realize the full potential of these devices. For microwave transmission, absorption losses may be reduced by a ...

  15. Progress in ferrite phase shifters

    Science.gov (United States)

    Boyd, C. R., Jr.

    1983-10-01

    Advances in the technology of reciprocal ferrite phase shifters are outlined. Nonlatching rotary-field phase shifters have been produced with enhanced phase accuracy and modest control power. A significant quantity of dual-mode latching units has been built at 35 GHz, with good results. Both types of phase shifter can be adapted to perform other functions in addition to phase shifting. Examples of phase shifters that perform duplexing and polarization switching functions are given.

  16. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y. [Paul Scherrer Institut, Villigen (Switzerland)

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.

  17. Spin canting in ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J., E-mail: jmarx@physik.uni-kl.de; Huang, H.; Salih, K. S. M.; Thiel, W. R.; Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    Recently, an easily scalable process for the production of small (3 −7 nm) monodisperse superparamagnetic ferrite nanoparticles MeFe{sub 2}O{sub 4} (Me = Zn, Mn, Co) from iron metal and octanoic acid has been reported (Salih et al., Chem. Mater. 25 1430–1435 2013). Here we present a Mössbauer spectroscopic study of these ferrite nanoparticles in external magnetic fields of up to B = 5 T at liquid helium temperatures. Our analysis shows that all three systems show a comparable inversion degree and the cationic distribution for the tetrahedral A and the octahedral B sites has been determined to (Zn{sub 0.19}Fe{sub 0.81}){sup A}[Zn{sub 0.81}Fe{sub 1.19}] {sup B}O{sub 4}, (Mn{sub 0.15}Fe{sub 0.85}){sup A}[Mn{sub 0.85}Fe{sub 1.15}] {sup B}O{sub 4} and (Co{sub 0.27}Fe{sub 0.73}){sup A}[Co{sub 0.73}Fe{sub 1.27}] {sup B}O{sub 4}. Spin canting occurs presumably in the B-sites and spin canting angles of 33°, 51° and 59° have been determined for the zinc, the manganese, and the cobalt ferrite nanoparticles.

  18. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket

    Science.gov (United States)

    Tanigawa, H.; Shiba, K.; Möslang, A.; Stoller, R. E.; Lindau, R.; Sokolov, M. A.; Odette, G. R.; Kurtz, R. J.; Jitsukawa, S.

    2011-10-01

    The status and key issues of reduced activation ferritic/martensitic (RAFM) steels R&D are reviewed as the primary candidate structural material for fusion energy demonstration reactor blankets. This includes manufacturing technology, the as-fabricated and irradiates material database and joining technologies. The review indicated that the manufacturing technology, joining technology and database accumulation including irradiation data are ready for initial design activity, and also identifies various issues that remain to be solved for engineering design activity and qualification of the material for international fusion material irradiation facility (IFMIF) irradiation experiments that will validate the data base.

  19. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu [ORNL; Stoller, Roger E [ORNL; Sokolov, Mikhail A [ORNL; Odette, G.R. [University of California, Santa Barbara; Jitsukawa, Shiro [Japan Atomic Energy Agency (JAEA); Shiba, K. [Japan Atomic Energy Agency (JAEA); Kurtz, Richard [Pacific Northwest National Laboratory (PNNL); Moeslang, A. [Forschungszentrum Karlsruhe, Karlsruhe, Germany; Lindau, R. [Forschungszentrum Karlsruhe, Karlsruhe, Germany

    2011-01-01

    The status and key issues of reduced activation ferritic/martensitic (RAFM) steels R&D are reviewed as the primary candidate structural material for fusion energy demonstration reactor blankets. This includes manufacturing technology, the as-fabricated and irradiates material database and joining technologies. The review indicated that the manufacturing technology, joining technology and database accumulation including irradiation data are ready for initial design activity, and also identifies various issues that remain to be solved for engineering design activity and qualification of the material for international fusion material irradiation facility (IFMIF) irradiation experiments that will validate the data base.

  20. Nanostructured Materials

    Science.gov (United States)

    2012-08-30

    with macroscopic reinforcements such as fiber, clay, glass mineral and other fillers. The nano-alloyed polymers are particularly useful for producing...applications, including space-sur- vivable materials and seals, gaskets, cosmetics , and personal care. 25 Claims, 10 Drawing Sheets B-3 U.S. Patent Mar...the incorporation of fluorinated nanostructured chemicals onto the surface of a secondary material (such as Ti02 , CaC03 , glass or mineral

  1. Nanostructured photovoltaics

    Science.gov (United States)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  2. Swift heavy ion induced surface modifications in nano-crystalline Li-Mg ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sanjukta [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India) and Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)]. E-mail: sanjukta@iopb.res.in; Ganesan, V. [Inter University Consortium for DAE facilities, Khandwa Road, Indore 452017 (India); Khan, S.A. [Nuclear Science Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Ayyub, Pushan [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Kumar, Nitendar [Solid State Physics Laboratory, DRDO, Lucknow Road, Delhi 110054 (India)

    2006-09-30

    The swift heavy ion (190 MeV Au{sup 14+}) induced modifications in surface morphologies of the nanocrystals of ferrite thin films have been extensively studied through the images of atomic force microscopy (AFM). In most of the irradiated films significant features like, the ditch and dike structures, have been observed through out the surface. We try to explain the observed changes on the basis of thermal spike model followed by momentum transfer induced lateral mass transport. In addition to these changes some new and interesting features have been noticed after irradiation in 8F and 9F ferrite thin films. These new features are attributed to sputtering phenomenon due to the presence of defects like latent tracks.

  3. Ferrite Solutions for Electromagnetic Shock Lines

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Phillip D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dudley, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Primm, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The goal of this work is to develop tools and test procedures for identifying ferrites suitable for use in shock line applications. Electromagnetic shocklines have been used to provide fast rising voltage pulses for many applications. In these applications a slow rising pulse is injected into the line where currents drive the ferrites into saturation leading to a fast rising output pulse. A shockline’s unique capabilities could be applied to new detonator configurations. A properly conditioned voltage pulse is critical for fire set applications. A carefully designed shockline could provide a passive solution to generating a fast rising voltage pulse for the fire set. Traditional circuits use ferrites operating in a linear regime. Shock lines push the ferrites well into the nonlinear regime where very few tools and data currently exist. Ferrite material is key to the operation of these shock lines, and tools for identifying suitable ferrites are critical. This report describes an experimental setup to that allows testing of ferrite samples and comparison to models with the goal of identifying optimal ferrites for shockline use.

  4. Embrittlement of irradiated F82H in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)], E-mail: kluehrl@ornl.gov; Shiba, K. [Japan Atomic Energy Agency, Toki-Mura, Ibaraki (Japan); Sokolov, M.A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2009-04-30

    Neutron irradiation of 7-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects and precipitation that cause an increase in yield stress. This irradiation hardening causes embrittlement, which is observed in a Charpy impact or fracture toughness test as an increase in the ductile-brittle transition temperature. Based on observations that show little change in strength in steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study of F82H steel, significant embrittlement was observed after irradiation at 500 deg. C, but no hardening occurred. This embrittlement is apparently due to irradiation-accelerated Laves-phase precipitation. Observations of the embrittlement of F82H in the absence of irradiation hardening have been examined and analyzed with thermal-aging studies and computational thermodynamics calculations to illuminate and understand the embrittlement during irradiation.

  5. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  6. Multiscale Modeling of the Deformation of Advanced Ferritic Steels for Generation IV Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Nasr M. Ghoniem; Nick Kioussis

    2009-04-18

    The objective of this project is to use the multi-scale modeling of materials (MMM) approach to develop an improved understanding of the effects of neutron irradiation on the mechanical properties of high-temperature structural materials that are being developed or proposed for Gen IV applications. In particular, the research focuses on advanced ferritic/ martensitic steels to enable operation up to 650-700°C, compared to the current 550°C limit on high-temperature steels.

  7. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Science.gov (United States)

    Sam, Shiju; Das, C. R.; Ramasubbu, V.; Albert, S. K.; Bhaduri, A. K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-12-01

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  8. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.T.; Chang, H.T.; Huang, B.M. [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Huang, C.Y. [Iron and Steel R& D Department, China Steel Corporation, Kaohsiung, Taiwan, ROC (China); Yang, J.R., E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China)

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during

  9. DNA nanostructure meets nanofabrication.

    Science.gov (United States)

    Zhang, Guomei; Surwade, Sumedh P; Zhou, Feng; Liu, Haitao

    2013-04-07

    Recent advances in DNA nanotechnology have made it possible to construct DNA nanostructures of almost arbitrary shapes with 2-3 nm of precision in their dimensions. These DNA nanostructures are ideal templates for bottom-up nanofabrication. This review highlights the challenges and recent advances in three areas that are directly related to DNA-based nanofabrication: (1) fabrication of large scale DNA nanostructures; (2) pattern transfer from DNA nanostructure to an inorganic substrate; and (3) directed assembly of DNA nanostructures.

  10. Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites

    Indian Academy of Sciences (India)

    M R Anantharaman; K A Malini; S Sindhu; E M Mohammed; S K Date; S D Kulkarni; P A Joy; Philip Kurian

    2001-12-01

    Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties.

  11. Spinel ferrite thin-film synthesis by spin-spray ferrite plating

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Tran Hoang; Van, Ha Thi Bich; Phong, Tran Canh; Abe, Masanori

    2003-04-01

    By spin-spray ferrite plating with optimizing conditions in the oxidizing and reaction solutions, we can synthesize polycrystalline ferrite film of spinel type (Fe, M){sub 3}O{sub 4}, where M=Fe, Co, Ni, Zn, etc., in low temperatures (<100 deg. C). By this method we can synthesize Co, Co-Ni ferrite for perpendicular magnetic recording media with high coercivity H{sub c} in the plane perpendicular to the film.

  12. Wetting properties of nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Canut, S. [Laboratoire de Physique de la Matiere Condensee et Nanostructures (UMR CNRS 5586), Universite Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)]. E-mail: ramos@lpmcn.univ-lyon1.fr

    2006-04-15

    Swift heavy ion irradiation is a powerful tool to tailor surfaces under controlled conditions at a nanometric scale. The growing importance of nanostructured surfaces for a wide variety of applications and fundamental investigations is now well established. In this paper I will mainly discuss the interest of such surfaces for investigations concerning solid-liquid interfaces. The role played by topographical defects on wetting properties of solid surfaces, and both the dissipative and the confinement effects on the interface will be demonstrated by simple examples.

  13. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj; Barman, P. B., E-mail: pb.barman@juit.ac.in [Nanotechnology Lab, Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan (H.P)-173234 (India)

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  14. Ferritic steels for sodium-cooled fast reactors: Design principles and challenges

    Science.gov (United States)

    Raj, Baldev; Vijayalakshmi, M.

    2010-09-01

    An overview of the current status of development of ferritic steels for emerging fast reactor technologies is presented in this paper. The creep-resistant 9-12Cr ferritic/martensitic steels are classically known for steam generator applications. The excellent void swelling resistance of ferritic steels enabled the identification of their potential for core component applications of fast reactors. Since then, an extensive knowledge base has been generated by identifying the empirical correlations between chemistry of the steels, heat treatment, structure, and properties, in addition to their in-reactor behavior. A few concerns have also been identified which pertain to high-temperature irradiation creep, embrittlement, Type IV cracking in creep-loaded weldments, and hard zone formation in dissimilar joints. The origin of these problems and the methodologies to overcome the limitations are highlighted. Finally, the suitability of the ferritic steels is re-evaluated in the emerging scenario of the fast reactor technology, with a target of achieving better breeding ratio and improved thermal efficiency.

  15. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a function of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.

  16. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    Science.gov (United States)

    EL-Rafei, A. M.; El-Kalliny, Amer S.; Gad-Allah, Tarek A.

    2017-04-01

    Three-dimensional random calcium ferrite, CaFe2O4, nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe2O4 phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe2O4 NFs were fabricated with diameters in the range of 50-150 nm and each fiber was composed of 20-50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field.

  17. Manganese ferrite thin films Part II: Properties

    NARCIS (Netherlands)

    Hulscher, W.S.

    1972-01-01

    Some properties of evaporated manganese ferrite thin films are investigated, e.g. resistivity, magnetization reversal, Curie temperature, Faraday rotation and optical absorption. The properties are partly related to the partial oxygen pressure present during a preceding annealing process.

  18. ALL-FERRITE RHIC INJECTION KICKER

    Energy Technology Data Exchange (ETDEWEB)

    HAHN,H.; FISCHER,W.; PTITSYN,V.I.; TUOZZOLO,J.E.

    2001-06-18

    Ion beams are transferred from the AGS into RHIC in boxcar fashion as single bunches. The nominal design assumes 60 bunches per ring but increasing the number of bunches to gain luminosity is possible, thereby requiring injection kickers with a shorter rise time. The original injection system consists of traveling-wave dielectric loaded kicker magnets and a Blumlein pulser with a rise time adequate for the present operation. Voltage breakdown in the dielectric kickers suggested the use of all-ferrite magnets. In order to minimize the conversion cost, the design of the all-ferrite kicker uses the same components as the dielectric loaded units. The all-ferrite kickers showed in bench measured good breakdown properties and a current rise time of < 50 ns. A prototype kicker has been installed in the blue ring and was tested with beam. Beam measurements indicate suitability of all-ferrite kicker magnets for upgraded operation.

  19. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  20. Ferrite Nanoparticles in Pharmacological Modulation of Angiogenesis

    Science.gov (United States)

    Deshmukh, Aparna; Radha, S.; Khan, Y.; Tilak, Priya

    2011-07-01

    Nanoparticles are being explored in the targeted drug delivery of pharmacological agents : angiogenesis being one such novel application which involves formation of new blood vessels or branching of existing ones. The present study involves the use of ferrite nanoparticles for precise therapeutic modulation of angiogenesis. The ferrite nanoparticles synthesized by co-precipitation of ferrous and ferric salts by a suitable base, were found to be 10-20 nm from X-ray diffraction and TEM measurements. The magnetization measurements showed superparamagnetic behavior of the uncoated nanoparticles. These ferrite nanoparticles were found to be bio-compatible with lymphocytes and neural cell lines from the biochemical assays. The chick chorioallantoic membrane(CAM) from the shell of fertile white Leghorn eggs was chosen as a model to study angiogenic activity. An enhancement in the angiogenic activity in the CAM due to addition of uncoated ferrite nanoparticles was observed.

  1. Development and application of ferrite materials for low temperature co-fired ceramic technology

    Science.gov (United States)

    Zhang, Huai-Wu; Li, Jie; Su, Hua; Zhou, Ting-Chuan; Long, Yang; Zheng, Zong-Liang

    2013-11-01

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics.

  2. Polymer bonded ferrite materials as EMC components

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, J. [Fachhochschule Jena, FB Werkstofftechnik, Carl-Zeiss-Promenade 2, 07745 Jena (Germany); Hermsdorfer Institut fuer Technische Keramik e.V., M.-Curie-Str. 17, 07629 Hermsdorf (Germany); Pawlowski, B. [Hermsdorfer Institut fuer Technische Keramik e.V., M.-Curie-Str. 17, 07629 Hermsdorf (Germany); Graebner, F. [IMG Nordhausen, An der Salza 8a, 99734 Nordhausen (Germany)

    2003-07-01

    Polymer bonded ferrites composed of a mixture of Mn-Zn ferrites or Ni-Zn ferrites in a polymer binder (PE, PA) were prepared and tested as electromagnetic-wave absorbing materials. Test samples and cases were prepared by hot or injection molding. Permeability spectra show loss contributions in the frequency range 100-1000 MHz. Absorption measurements of injection molded polymer-ferrite cases display a 3-5 dB better attenuation characteristics compared to graphite-loaded polyamide housings. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Polymer-gebundene Ferritwerkstoffe auf der Basis von Ferrit (Mn-Zn oder Ni-Zn Ferrite) - Thermoplast Mischungen wurden praepariert und hinsichtlich ihrer Eignung zur Absorption elektromagnetischer Strahlung untersucht. Es wurden sowohl Testproben wie auch komplette Gehaeusekomponenten durch Heisspressen oder Spritzgiessen hergestellt. Die Permeabilitaetsspektren weisen verlustbehaftete Komponenten im Frequenzbereich von 100-1000 MHz auf. Schirmdaempfungsmessungen an spritzgegossenen Gehaeuseteilen zeigen eine um 3-5 dB bessere Daempfung im Vergleich zu Graphit-gefuellten Polyamid-Gehaeusen. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Preliminary report on the irradiation conditions of the HFIR JP-23 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ermi, A.M. [Westinghouse Hanford Company, Richland, WA (United States); Gelles, D.S. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective of this effort was to irradiate a series of alloys over the temperature range 300 to 600{degrees}C to approximately 10 dpa in the High Flux Isotope Reactor (HFIR). The alloys covered a wide range of materials and treatments. The Japanese specimen matrix consisted of ferritic steels, vanadium alloys, copper alloys, molybdenum alloys, and titanium-aluminum compounds. The US specimen matrix consisted of vanadium alloys, 316 stainless steels, and isotopically tailored ferritic and austenitic alloys.

  4. Retained austenite thermal stability in a nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Avishan, Behzad, E-mail: b_avishan@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain); Yazdani, Sasan, E-mail: yazdani@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain)

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.

  5. Severe reduction of Ni–Zn ferrites during consolidation by Spark Plasma Sintering (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Raul, E-mail: monjaras@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Gaudisson, Thomas; Ammar, Souad [ITODYS, Université Paris-Diderot, PRES Sorbonne Paris Cité, CNRS-UMR-7086, 75205 Paris (France)

    2016-02-15

    NiZn ferrites of composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method and subsequently consolidated into fine grain, high density ceramics by means of Spark Plasma Sintering at 600 °C for 10 min, under vacuum and applying a uniaxial pressure of 80 MPa. Their saturation magnetization at room temperature exhibited a value far larger (~71 emu/g) than the value corresponding to the bulk ferrite (~50 emu/g), and their Curie point showed also an increase of about 210 K, as compared with the bulk value. These results, together with the presence of a small amount of metallic Ni, are interpreted in terms of a departure of Ni from the spinel phase and an associated reduction of ferric to ferrous cations to compensate for Ni loss. - Highlights: • Nanostructured ferrites are obtained at 600°C by 10 min. • Magnetic properties change significantly. • These changes are due to reductive conditions in SPS. • Metallic Ni precipitated from the spinel and are replaced by ferrous ions. • This leads to an increase in Ms and Tc.

  6. Preparation of lithium ferrite nanoparticles by high energy ball milling and characterizations

    Directory of Open Access Journals (Sweden)

    J. Touthang

    2016-11-01

    Full Text Available Ferrites are ferrimagnetic ceramic materials with inherent useful electromagnetic properties. Of them, spinelstructured ferrites are promising materials for microwave device applications; stress/torsion sensors and energy storage applications like anode materials in lithium batteries, fuel cells, solar cells etc. Nanostructured spinels further have high and wide scope of potential applications. In the present study, two different types of varied sized ferrimagnetic lithium ferrite spinel nanoparticles prepared using chemical sol-gel auto-combustion method were chosen. The prepared spinel particles were heated at 300°C for 1h. After heating the powders were milled using a High Energy Ball Mill for 30 minutes to further grind the particles and then subjected to various characterizations. Structural characterization was done using X-Ray Diffraction Method (XRD. The study revealed the spinel structure of these samples. Structural parameter such as lattice constant was determined using XRD data and found that the lattice parameter agrees with the standard data. DLS study found the agglomerations of the nanoparticles. The synthesized nanospinel particles were also characterized by the UVVis Spectroscopy, the Fourier Transform Infrared Spectroscopy (FTIR. Finally the magnetic hysteresis properties were studied using a Vibrating Sample Magnetometer (VSM.

  7. Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters

    Science.gov (United States)

    Al-Motasem, Ahmed Tamer; Mai, Nghia Trong; Choi, Seung Tae; Posselt, Matthias

    2016-04-01

    The effect of copper and/or nickel nanoclusters, generally formed by neutron irradiation, on fracture mechanisms of ferrite iron was investigated by using molecular statics simulation. The equilibrium configuration of nanoclusters was obtained by using a combination of an on-lattice annealing based on Metropolis Monte Carlo method and an off-lattice relaxation by molecular dynamics simulation. Residual stress distributions near the nanoclusters were also calculated, since compressive or tensile residual stresses may retard or accelerate, respectively, the propagation of a crack running into a nanocluster. One of the nanoclusters was located in front of a straight crack in ferrite iron with a body-centered cubic crystal structure. Two crystallographic directions, of which the crack plane and crack front direction are (010)[001] and (111) [ 1 bar 10 ] , were considered, representing cleavage and non-cleavage orientations in ferrite iron, respectively. Displacements corresponding to pure opening-mode and mixed-mode loadings were imposed on the boundary region and the energy minimization was performed. It was observed that the fracture mechanisms of ferrite iron under the pure opening-mode loading are strongly influenced by the presence of nanoclusters, while under the mixed-mode loading the nanoclusters have no significant effect on the crack propagation behavior of ferrite iron.

  8. Effect of 16.3 dpa neutron irradiation on fatigue lifetime of the RAFM steel EUROFER97

    Energy Technology Data Exchange (ETDEWEB)

    Materna-Morris, E., E-mail: edeltraud.materna-morris@kit.edu [KIT Karlsruhe Institute of Technology, Campus Nord, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A.; Rolli, R.; Schneider, H.-C. [KIT Karlsruhe Institute of Technology, Campus Nord, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2011-10-15

    Low cycle fatigue specimens of the reduced-activation martensitic/ferritic steel EUROFER97 were neutron irradiated at 250 deg. C up to an accumulated dose of 16.3 dpa. After irradiation, the specimens were push-pull fatigue tested under strain-controlled conditions at 250 deg. C to determine the impact of irradiation on lifetime, fracture behavior, and microstructure. The typical cyclic softening of martensitic/ferritic steels was observed. Furthermore, a considerable increase of lifetime after irradiation and subsequent cycling at lower strain amplitudes was remarkable. This behavior was attributed to the homogeneous distribution of stable irradiation-induced dislocation loops and small precipitates acting as barriers for the cyclic motion of dislocations, thereby influencing substantially crack initiation and crack network formation. While in the un-irradiated material push-pull fatigue sweeps the dislocations to the boundaries, a significant fraction of dislocations was fixed at irradiation-induced defects after irradiation and fatigue testing.

  9. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei, E-mail: mli@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Miller, Michael K. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Chen, Wei-Ying [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • Thermally-aged CF8 was irradiated with 1 MeV Kr ions at 400 °C. • Atom probe tomography revealed a strong dose dependence of G-phase precipitates. • Phase separation of α and α′ in ferrite was reduced after irradiation. - Abstract: The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α′ phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10{sup 19} ions/m{sup 2} at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α′ spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α′ spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.

  10. Joining technologies of reduced activation ferritic/martensitic steel for blanket fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)]. E-mail: hiroset@fusion.naka.jaeri.go.jp; Shiba, K. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Ando, M. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Enoeda, M. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Akiba, M. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2006-02-15

    Reduced activation ferritic/martensitic steel, like F82H has been developed as a structural material for in vessel components because of its superior resistance to irradiation damage. As a blanket fabrication process, hot isostatic pressing (HIP) bonding has the great merit of near-net-shaping processing. The degassing conditions and surface roughness were investigated as parameters of HIP conditions. Although the surface roughness and degassing conditions had slight effects on tensile properties, the lack of degassing caused significant degradation of impact properties. A dissimilar metal joint between sintered tungsten and F82H was fabricated by a spark plasma sintering (SPS) method. The joint had no defects in spite of the large difference in thermal expansion coefficient between tungsten and F82H. It is considered that formation of a compliant layer of the ferritic phase can lead to successful bonding for the tungsten and F82H joint even without an artificial interlayer.

  11. Nanostructured targets for TNSA laser ion acceleration

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2016-06-01

    Full Text Available Nanostructured targets, based on hydrogenated polymers with embedded nanostructures, were prepared as thin micrometric foils for high-intensity laser irradiation in TNSA regime to produce high-ion acceleration. Experiments were performed at the PALS facility, in Prague, by using 1315 nm wavelength, 300 ps pulse duration and an intensity of 1016 W/cm2 and at the IPPLM, in Warsaw, by using 800 nm wavelength, 40 fs pulse duration, and an intensity of 1019 W/cm2. Forward plasma diagnostic mainly uses SiC detectors and ion collectors in time of flight (TOF configuration. At these intensities, ions can be accelerated at energies above 1 MeV per nucleon. In presence of Au nanoparticles, and/or under particular irradiation conditions, effects of resonant absorption can induce ion acceleration enhancement up to values of the order of 4 MeV per nucleon.

  12. Nanodisperse Nickel Ferrite: Methods of Production, Structure and Magnetic Properties

    National Research Council Canada - National Science Library

    N Zaporina; J Grabis; M Maiorov; A Krumina; G Heidemane; D Bocharov

    2012-01-01

      Nanodisperse Nickel Ferrite: Methods of Production, Structure and Magnetic Properties The nickel ferrite nanoparticles were prepared using combustion synthesis and plasma chemical synthesis based on evaporation of coarse-grained...

  13. Embrittlernent of irradiated F82H in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, Ronald L [ORNL; Shiba, Kiyoyuki [ORNL; Sokolov, Mikhail A [ORNL

    2009-01-01

    Neutron irradiation of 7-12% Cr ferritic/martensitic steels below 425-450 C produces microstructural defects and precipitation that cause an increase in yield stress. This irradiation hardening causes embrittlement, which is observed in a Charpy impact or fracture toughness test as an increase in the ductile-brittle transition temperature. Based on observations that show little change in strength in steels irradiated above 425-450 C, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study of F82H steel, significant embrittlement was observed after irradiation at 500 C. This embrittlement is apparently due to irradiation-accelerated Laves-phase precipitation. Observations of the embrittlement in the absence of hardening has been examined and analyzed with thermal-aging studies and computational thermodynamics calculations to illuminate and understand the effect.

  14. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, P.

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  15. Measuring Permeability and Q-factor of Ferrite Toroids

    Institute of Scientific and Technical Information of China (English)

    XuZhe; WangChunxiao; ZhangWenzhi

    2003-01-01

    In the process of design RF cavity of CSRe, we use ferrite as the loading material of cavity. The characteristic of ferrite directly affects whether the cavity can obtain the target designed, so the measurement of ferrite material appears most important obviously.

  16. Characteristics of Strain-Induced Ferrite in Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    LI Wei-juan; LIU Cui-qin; WANG Guo-dong; LIU Xiang-hua

    2003-01-01

    The strain-induced ferrite formed under different conditions was observed with SEM and optical microscope. The nucleation sites of strain-induced ferrite include grain boundary, grain inside, deformed band and annealing twin boundary. The shapes of the ferrite accordingly are equiaxed irregular polygonal, strip-shaped and acicular.

  17. Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch

    Science.gov (United States)

    Son, S.; Taheri, M.; Carpenter, E.; Harris, V. G.; McHenry, M. E.

    2002-05-01

    Nanocrystalline (NC) ferrite powders have been synthesized using a 50 kW-3 MHz rf thermal plasma torch for high-frequency soft magnet applications. A mixed powder of Ni and Fe (Ni:Fe=1:2), a NiFe permalloy powder with additional Fe powder (Ni:Fe=1:2), and a NiFe permalloy powder (Ni:Fe=1:1) were used as precursors for synthesis. Airflow into the reactor chamber was the source of oxygen for oxide formation. XRD patterns clearly show that the precursor powders were transformed into NC ferrite particles with an average particle size of 20-30 nm. SEM and TEM studies indicated that NC ferrite particles had well-defined polygonal growth forms with some exhibiting (111) faceting and many with truncated octahedral and truncated cubic shapes. The Ni content in the ferrite particles was observed to increase in going from mixed Ni and Fe to mixed permalloy and iron and finally to only permalloy starting precursor. The plasma-torch synthesized ferrite materials using exclusively the NiFe permalloy precursor had 40%-48% Ni content in the Ni-ferrite particle, differing from the NiFe2O4 ideal stoichiometry. EXAFS was used to probe the cation coordination in low Ni magnetite species. The coercivity and Neel temperature of the high Ni content ferrite sample were 58 Oe and ˜590 °C, respectively.

  18. A comparison between different oxide dispersion strengthened ferritic steel ongoing in situ oxide dissolution in High Voltage Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, I., E-mail: monnet@ganil.fr [Centre de Recherche sur les Ions, les Materiaux et la Photonique, CEA/CNRS/ENSICAEN/UCBN, BP5133-14070 Caen cedex 5 (France); Service de Recherches Metallurgiques Appliquees, CEA/DEN/DMN/SRMA, 91191 Gif sur Yvette cedex (France); Van den Berghe, T.; Dubuisson, Ph. [Service de Recherches Metallurgiques Appliquees, CEA/DEN/DMN/SRMA, 91191 Gif sur Yvette cedex (France)

    2012-05-15

    ODS materials are considered for nuclear applications but previous experimental studies have shown a partial dissolution of some oxides under neutron irradiation. In this work, electron irradiations were used to evaluate the stability of the oxides depending on the chemical composition of the oxide dispersion. Four ferritic steels based on EM10 (Fe-9Cr-1Mo) and reinforced respectively by Al{sub 2}O{sub 3}, MgO, MgAl{sub 2}O{sub 4} and Y{sub 2}O{sub 3}, were studied. These materials were irradiated with 1 MeV or 1.2 MeV electrons in a High Voltage Electron Microscope. This technique allows to follow one single oxide and to determine the evolution of its size during the irradiation. In situ HVEM observations indicate that the dissolution rate depends on the chemical composition of the oxide, on the temperature and on the irradiation dose.

  19. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  20. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  1. Development of New Heats of Advanced Ferritic/Martensitic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-23

    The Fuel Cycle Research and Development program is investigating methods of transmuting minor actinides in various fuel cycle options. To achieve this goal, new fuels and cladding materials must be developed and tested to high burnup levels (e.g. >20%) requiring cladding to withstand very high doses (greater than 200 dpa) while in contact with the coolant and the fuel. To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Recent results from testing numerous ferritic/martensitic steels at low temperatures suggest that improvements in low temperature radiation tolerance can be achieved through carefully controlling the nitrogen content in these alloys. Thus, four new heats of HT-9 were produced with controlled nitrogen content: two by Metalwerks and two by Sophisticated Alloys. Initial results on these new alloys are presented including microstructural analysis and hardness testing. Future testing will include irradiation testing with ions and in reactor.

  2. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making

    Science.gov (United States)

    Klueh, Ronald L.; Maziasz, Philip J.

    1994-01-01

    A high strength, high toughness Cr-W-V ferritic steel composition suitable for fast induced-radioactivity (FIRD) decay after irradiation in a fusion reactor comprises 2.5-3.5 wt % Cr, 2. This invention was made with Government support under contract DE-AC05-840R21400 awarded by the U.S. Department of Energy to Martin Marietta Energy Systems, Inc. and the Government has certain rights in this invention.

  3. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  4. Dual-mode latching ferrite devices

    Science.gov (United States)

    Xu, Y.; Jiang, Z.

    1986-05-01

    A primary consideration with microwave ferrite control devices is related to the switching speed. In order to achieve fast switching with the considered devices, an operation in the latching mode is required. A description is given of a new class of ferrite latching devices, taking into account latching quadrupole devices and their modifications. It is pointed out that the advantages of the new devices include fast switching, high electrical performance, and simple construction. According to the utilization of external or internal magnetic return paths, there are two modes of operation in latching ferrite devices. Attention is given to constructions and calculations, the design of a model for each of the two modes of operation, polarization insensitive phase shifters (PIPS) with external magnetic return paths, and PIPS with internal magnetic return paths.

  5. Micromagnetic simulations of spinel ferrite particles

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Christine C., E-mail: ccdantas@iae.cta.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Gama, Adriana M., E-mail: adriana-gama@uol.com.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)

    2010-10-15

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M{sub 1}-{sub n}Zn{sub n}Fe{sub 2}O{sub 4} (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={l_brace}Fe, Mn, Co, Ni, Mg, Cu {r_brace}; (b) for n=0.1: M = {l_brace}Fe, Mg{r_brace} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {l_brace}Mg, Cu{r_brace} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe{sub 3}O{sub 4} (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe{sub 3}O{sub 4} one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  6. TEM observation of sintered permanent magnetic strontium ferrite

    Institute of Scientific and Technical Information of China (English)

    YU Hongya; LIU Zhengyi; ZENG Dechang

    2006-01-01

    Sintered permanent magnetic strontium ferrites were studied using transmission electron microscopy to investigate the microstructure morphology and its correlation with the magnetic properties. The present study shows that the microstructure of sintered permanent magnetic strontium ferrites is an important parameter in determining their magnetic properties. The microstructure morphology in low-performance ferrite magnet is obviously different from high-performance one. Themagnetic properties of sintered permanent strontium ferrite depend strongly on the orientation degree of strong magnetic crystals. The presence of ferric oxidephase in ferrite magnet can deteriorate the magnetic properties. Moreover, proper quantities of crystal defects are beneficial to high coercive force due to the fixing of magnetic domain.

  7. Simulation of non-linear coaxial line using ferrite beads

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J. [Nagaoka Univ. of Technology, Niigata (Japan)

    2002-06-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  8. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  9. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  10. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound.

    Science.gov (United States)

    Soltani, T; Entezari, M H

    2013-09-01

    In this paper, the photocatalytic degradation of Reactive Black 5 (RB5) was investigated with ferrite bismuth synthesized via ultrasound under direct sunlight irradiation. The intensity of absorption peaks of RB5 gradually decreased by increasing the irradiation time and finally vanished in 50 min in acidic medium. The formation of new intermediate was observed in basic medium. The relative concentration of RB5 in solution and on the surface of ferrite bismuth (BiFeO3) nanoparticles was considered during the experiment in acidic and basic media. The effects of various parameters such as amount of catalyst, concentration of dye, and pH of the solution have been studied on the dye degradation. The adsorption isotherm and the kinetic of photocatalytic degradation of RB5 were investigated. The adsorption constants in the dark and in the presence of sunlight irradiation were compared. The photocatalytic degradation mechanism of RB5 has been evaluated through the addition of some scavengers to the solution. In addition, the stability and reusability of the catalyst were examined in this work.

  11. Embrittlement behavior of neutron irradiated RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Gaganidze, E. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)]. E-mail: ermile.gaganidze@imf.fzk.de; Schneider, H.-C. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Dafferner, B. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Aktaa, J. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2007-08-01

    The effects of neutron irradiation on the embrittlement behavior of reduced activation ferritic/martensitic (RAFM) steel EUROFER97 for different heat treatment conditions have been investigated. The irradiation to 16.3 dpa at different irradiation temperatures (250-450 {sup o}C) was carried out in the Petten High Flux Reactor in the framework of the HFR Phase-IIb (SPICE) irradiation project. Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X) and MANET-I were also irradiated at selected temperatures. The embrittlement behavior and hardening were investigated by instrumented Charpy-V tests with subsize specimens. The neutron irradiation induced embrittlement and hardening of as-delivered EUROFER97 are comparable to those of investigated reference steels, being mostly pronounced for 250 {sup o}C and 300 {sup o}C irradiation temperatures. Heat treatment of EUROFER97 at higher austenization temperature substantially improves the embrittlement behavior at irradiation temperatures of 250 {sup o}C and 350 {sup o}C.

  12. Embrittlement behavior of neutron irradiated RAFM steels

    Science.gov (United States)

    Gaganidze, E.; Schneider, H.-C.; Dafferner, B.; Aktaa, J.

    2007-08-01

    The effects of neutron irradiation on the embrittlement behavior of reduced activation ferritic/martensitic (RAFM) steel EUROFER97 for different heat treatment conditions have been investigated. The irradiation to 16.3 dpa at different irradiation temperatures (250-450 °C) was carried out in the Petten High Flux Reactor in the framework of the HFR Phase-IIb (SPICE) irradiation project. Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X) and MANET-I were also irradiated at selected temperatures. The embrittlement behavior and hardening were investigated by instrumented Charpy-V tests with subsize specimens. The neutron irradiation induced embrittlement and hardening of as-delivered EUROFER97 are comparable to those of investigated reference steels, being mostly pronounced for 250 °C and 300 °C irradiation temperatures. Heat treatment of EUROFER97 at higher austenization temperature substantially improves the embrittlement behavior at irradiation temperatures of 250 °C and 350 °C.

  13. Scattering characteristics of conducting cylinder coated with nonuniform magnetized ferrite

    Institute of Scientific and Technical Information of China (English)

    Hu Bin-Jie; Edward Yung Kai-Ning; Zhang Jun; Toutain Serge

    2005-01-01

    An analytical technique, referred to as the scattering matrix method (SMM), is developed to analyse the scattering of a planar wave from a conducting cylinder coated with nonuniform magnetized ferrite. The SMM solution for the nonuniform ferrite coating can be reduced to the expressions for the scattering and penetrated coefficients in four particular cases: nonuniform magnetized ferrite cylinder, uniform magnetized ferrite-coated conducting cylinder, uniform ferrite cylinder as well as homogeneous dielectric-coated conducting cylinder. The resonant condition for the nonuniform ferrite coating is obtained. The distinctive differences in scattering between the nonuniform ferrite coating and the nonuniform dielectric coating are demonstrated. The effects of applied magnetic fields and wave frequencies on the scattering characteristics for two types of the linear profiles are revealed.

  14. Co-containing spinel ferrite thin-film perpendicular magnetic recording media with Mn-Zn ferrite backlayer

    OpenAIRE

    Yamamoto, Setsuo; Kuniki, Hirofumi; Kurisu, Hiroki; Matsuura, Mitsuru

    2003-01-01

    Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered perpendicular media were prepared using reactive ECR sputtering and magnetron sputtering methods, and their magnetic and structural properties and recording characteristics were studied. The Mn-Zn ferrite thin-film backlayer had saturation magnetization of 3.5 kG and coercivity of 60 Oe. Reproduced voltage for the Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered medium was about twice of that for the ...

  15. Report of IEA workshop on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    IEA Workshop on Reduced Activation Ferritic/Martensitic Steels under implementing agreement for program of research and development on fusion materials was held at Tokyo Yayoi Kaikan and JAERI headquarter on November 2-3, 2000. The objective of this workshop was a review of the fusion material development programs, the progress of the collaboration and the irradiation effects studies on RAF/M steels in the collaborating parties (Europe, Russia the United States, and Japan). Moreover, the development of plans for future collaboration was discussed. The present report contains viewgraphs presented at the workshop. (author)

  16. Recent progress of R and D activities on reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q., E-mail: qunying.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China); Baluc, N. [CRPP-EPFL, ODGA C110 5232 Villigen PSI (Switzerland); Dai, Y. [LNM, PSI, 5232 Villigen PSI (Switzerland); Jitsukawa, S. [JAEA, 2-4 Shirakata, Tokai-Mura, Ibaraki-Ken 319-1195 (Japan); Kimura, A. [IAE, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Konys, J. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Kurtz, R.J. [PNNL, Richland, WA 99352 (United States); Lindau, R. [KIT, P.O. Box 3640, 76021 Karlsruhe (Germany); Muroga, T. [NIFS, Oroshi, Toki, Gifu 509-5292 (Japan); Odette, G.R. [UCSB, Santa Barbara, CA (United States); Raj, B. [IGCAR, Kalpakkam 603 102 (India); Stoller, R.E.; Tan, L. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Tanigawa, H. [JAEA, Naka, Ibaraki 311-0193 (Japan); Tavassoli, A.-A.F. [DMN/Dir, DEN, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Yamamoto, T. [UCSB, Santa Barbara, CA (United States); Wan, F. [DMPC, USTB, Beijing 100083 (China); Wu, Y. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, P.O. Box 1135, Hefei, Anhui 230031 (China)

    2013-11-15

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER test blanket modules (TBMs) and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical properties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation to different TBM and DEMO options.

  17. Theoretical modelling of iron nitriding coupled with a nanocrystallisation treatment. Application to numerical predictions for ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Panicaud, B., E-mail: benoit.panicaud@utt.fr [ICD-LASMIS, Universite de Technologie de Troyes (UTT), UMR CNRS 6279, 12 rue Marie Curie, 10010 Troyes (France); Chemkhi, M.; Roos, A.; Retraint, D. [ICD-LASMIS, Universite de Technologie de Troyes (UTT), UMR CNRS 6279, 12 rue Marie Curie, 10010 Troyes (France)

    2012-06-15

    This paper analyses a recently developed duplex process combining nitriding with nanocrystallisation. A model is proposed to show how nitrogen diffusion mechanisms are modified within ferritic steels due to the nanostructure near the top surface. This model is based on micro-mechanical and micro-physical approaches, and also on the thermodynamics of irreversible processes. It takes into account size effects influencing the nitrogen diffusion, including mechanical stresses at the different length scales. Several models are investigated and numerical applications are performed. The results are compared to literature in order to demonstrate the generality of the present methodology.

  18. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  19. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  20. Saturation behavior of irradiation hardening in F82H irradiated in the HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Shiba, K.; Tanigawa, H.; Ando, M. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Klueh, R.L. [Oak Ridge National Laboratory, TN (United States); Stoller, R. [ORNL - Oak Ridge National Laboratory, Materials Science and Technology Div., Oak Ridge, AK TN (United States)

    2007-07-01

    Full text of publication follows: Post irradiation tensile tests on reduced activation ferritic/martensitic steel, F82H have been conducted over the past two decades using Japan Materials Testing Reactor (JMTR) of JAEA, and Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, USA, under Japan/US collaboration programs. According to these results, F82H does not demonstrate irradiation hardening above 673 K up to 60 dpa. The current study has been concentrated on hardening behavior at temperature around 573 K. A series of low temperature irradiation experiment has been conducted at the HFIR under the international collaborative research between JAEA/US-DOE. In this collaboration, the irradiation condition is precisely controlled by the well matured capsule designing and instrumentation. This paper summarizes recent results of the irradiation experiments focused on F82H and its modified steels compared with the irradiation properties database on F82H. Post irradiation tensile tests have been conducted on the F82H and its modified steels irradiated at 573 K and the dose level was up to 25 dpa. According to these results, irradiation hardening of F82H is saturated by 9 dpa and the as-irradiated 0.2 % proof stress is less than 1 GPa at ambient temperature. The deterioration of total elongation was also saturated by 9 dpa irradiation. The ductility of some modified steels which showed larger total elongation than that of F82H before irradiation become the same level as that of standard F82H steel after irradiation, even though its magnitude of irradiation hardening is smaller than that of F82H. This suggests that the more ductile steel demonstrates the more ductility loss at this temperature, regardless to the hardening level. The difference in ductility loss behavior between various tensile specimens will be discussed as the ductility could depend on the specimen dimension. (authors)

  1. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung

    2015-01-01

    Power transfer capability of wireless power transfer systems is highly dependent on the magnetic design of the primary and secondary inductors and is measured quantitatively by the coupling factor. The inductors are designed by placing the coil over a ferrite base to increase the coupling factor...... and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the base ferrite at different physical locations on the self-inductance, mutual inductance and coupling factor is under investigation in this paper. The addition can increase or decrease the mutual inductance depending...... on the placement of ferrite. Also, the addition of ferrite increases the self-inductance of the coils and there is a probability for an overall decrease in the coupling factor. Correct placement of ferrite on the other hand can increase the coupling factor relatively higher than the base ferrite as it is closer...

  2. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.

    Science.gov (United States)

    Cao, Zhenbang; Zhang, Jia; Zhou, Jizhi; Ruan, Xiuxiu; Chen, Dan; Liu, Jianyong; Liu, Qiang; Qian, Guangren

    2017-02-14

    A zinc-dominant ferrite catalyst for efficient degradation of organic dye was prepared by the calcination of electroplating sludge (ES). Characterizations indicated that zinc ferrite (ZnFe2O4) coexisted with Fe2O3 structure was the predominant phase in the calcined electroplating sludge (CES). CES displayed a high decolorization ratio (88.3%) of methylene blue (MB) in the presence of H2O2 combined with UV irradiation. The high efficiency could be ascribed to the photocatalytic process induced by ZnFe2O4 and the photo-Fenton dye degradation by ferrous content, and a small amount of Al and Mg in the sludge might also contribute to the catalysis. Moreover, the degradation capability of dye by CES was supported by the synthetic ZnFe2O4 with different Zn to Fe molar ratio (n(Zn): n(Fe)), as 84.81%-86.83% of dye was removed with n(Zn): n(Fe) ranged from 1:0.5 to 1:3. All synthetic ferrite samples in the simulation achieved adjacent equilibrium decolorization ratio, the flexible proportioning of divalent metal ions (M(2+)) to trivalent metal ions (M(3+)) applied in the synthesis indicated that the catalyst has a high availability. Therefore, an efficacious catalyst for the degradation of dye can potentially be derived from heavy metal-containing ES, it's a novel approach for the reutilization of ES.

  3. Nanostructured Materials for Magnetoelectronics

    CERN Document Server

    Mikailzade, Faik

    2013-01-01

    This book provides an up-to-date review of nanometer-scale magnetism and focuses on the investigation of the basic properties of magnetic nanostructures. It describes a wide range of physical aspects together with theoretical and experimental methods. A broad overview of the latest developments in this emerging and fascinating field of nanostructured materials is given with emphasis on the practical understanding and operation of submicron devices based on nanostructured magnetic materials.

  4. Temperature stabilization of microwave ferrite devices

    Science.gov (United States)

    Kaminsky, R.; Wendt, E. J.

    1978-01-01

    Thin-film heating element for strip-line circulator is sandwiched between insulation and copper laminations. Disks conform to shape of circulator ferrite disks and are installed between copper-clad epoxy ground planes. Heater design eliminates external cartridges and reduces weight by approximately one-third.

  5. Adding calcium improves lithium ferrite core

    Science.gov (United States)

    Lessoff, H.

    1969-01-01

    Adding calcium increases uniformity of grain growth over a wide range of sintering temperatures and reduces porosity within the grain. Ferrite cores containing calcium have square hysteresis loops and high curie temperatures, making them useful in coincident current memories of digital electronic computers.

  6. Transmission through Ferrite Samples at Submillimeter Frequencies

    Science.gov (United States)

    1986-05-01

    y Y In all the equations given above, c and 1’e are, in general, complex. Measurements are generally made on the power transmitted which is ITaI ? in...Frequency (cm-’) using measurements of2T 1 given eby Figure 8. Power transmission coeffi- equation( 2),Tp1 = ITaI ~cient for 100-m-thick ferrite slab

  7. Spinel cobalt ferrite by complexometric synthesis

    NARCIS (Netherlands)

    Pham Duc Thang, P.D.T.; Rijnders, Augustinus J.H.M.; Blank, David H.A.

    2005-01-01

    Magnetic fine particles of cobalt ferrite (CoFe2O4) have been synthesized using complexometric method in which ethylene diamine tetra acetic acid C10H16N2O8 (EDTA) acts as a complexing agent. The crystallographic structure, microstructure and magnetic properties of the synthesized powder were

  8. Ferrite Quantification Methodologies for Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Arnaldo Forgas Júnior

    2016-07-01

    Full Text Available In order to quantify ferrite content, three techniques, XRD, ferritoscope and optical metallography, were applied to a duplex stainless steel UNS S31803 solution-treated for 30 min at 1,000, 1,100 and 1,200 °C, and then compared to equilibrium of phases predicted by ThermoCalc® simulation. As expected, the microstructure is composed only by austenite and ferrite phases, and ferrite content increases as the solution treatment temperature increases. The microstructure presents preferred grains orientation along the rolling directions even for a sample solution treated for 30 min at 1,200 °C. For all solution treatment temperatures, the ferrite volume fractions obtained by XRD measurements were higher than those achieved by the other two techniques and ThermoCalc® simulation, probably due to texturing effect of previous rolling process. Values obtained by quantitative metallography look more assertive as it is a direct measurement method but the ferritoscope technique should be considered mainly for in loco measurement.

  9. Barium Ferrite Films Grown by Laser Ablation

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.; Haan, de P.; Smithers, M.A.; Roesthuis, F.J.G.

    1998-01-01

    Pulsed laser ablation (PLA) has been used to grow barium ferrite films on Al2O3 single crystal substrates. When deposition occurs in an oxidising atmosphere at high temperatures, the films are single BaFe12O19 phase, very well oriented with (001) texture, and exhibit a large perpendicular magnetic a

  10. Development of an extensive database of mechanical properties for Reduced Activation Ferritic/Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H.; Shiba, K.; Ando, M.; Wakai, E.; Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kasada, R.; Kimura, A.; Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan); Kohno, Y. [Muroran Institute of Technology, Muroran, Hokkaido (Japan); Klueh, R.L. [0ak Ridge Noational Laboratory, TN (United States); Sokolov, M.; Stoller, R.; Zinklek, S. [0ak Ridge Noational Laboratory, Materials Science and Technology Div., TN (United States); Yamamoto, T.; Odette, G. [UCSB, Dept. of Chemical Engineering UCSB, Santa-Barbara (United States); Kurtz, R.J. [Pacifie Northwest National Laboratory, Richland WA (United States)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H (8Cr-2W-0.2V-0.04Ta-0.1C) and JLF-1 (9Cr-2W-0.2V-0.08Ta-0.1C) are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldablility, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The Japan/US collaboration program also has been conducted with the emphasis on heavy irradiation effects of F82H, JLF-1 and ORNL9Cr2WVTa over the past two decades using Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, and the irradiation condition of the irradiation capsules of those reactors were precisely controlled by the well matured capsule designing and instrumentation. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the database status of RAFMs, mainly on F82H, to identify the key issues for the future development of database. Tensile, fracture toughness, creep and fatigue properties and microstructural studies before and after irradiation are summarized. (authors)

  11. Branched nanostructures and method of synthesizing the same

    Science.gov (United States)

    Fonseca, Luis F. (Inventor); Resto, Oscar (Inventor); Sola, Francisco (Inventor)

    2009-01-01

    A branched nanostructure is synthesized. A porous material, with pores having a diameter of approximately 1 .mu.m or less, is placed in a vacuum. It is irradiated with an electron beam. This causes a trunk to grow from the porous material and further causes branches to grow from the trunk.

  12. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei; Miller, M; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite-austenite duplex alloy was thermally aged at 400 degrees C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich alpha and Cr-enriched alpha' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 x 10(19) ions/m(2) at 400 degrees C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the alpha-alpha' spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the alpha-alpha' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation. (C) 2015 Elsevier B.V. All rights reserved

  13. Differential cytotoxicity of copper ferrite nanoparticles in different human cells.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Siddiqui, Maqsood A; Saquib, Quaiser; Khan, Shams T; Wahab, Rizwan; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Akhtar, Mohd Javed; Ahamed, Maqusood

    2016-10-01

    Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Study of 200 MeV Ag{sup 15+} ion induced amorphisation in nickel ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Gagan, E-mail: gagandikshit@yahoo.i [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India); Singh, Jitendra Pal, E-mail: Jitendra_singh2029@rediffmail.co [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India); Srivastava, R.C., E-mail: rcsri@rediffmail.co [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India); Agrawal, H.M., E-mail: hma001@rediffmail.co [Department of Physics, Govind Ballabh University of Ag. and Technology, Pantnagar, Uttarakhand 263 145 (India)

    2011-01-15

    Thin films of nickel ferrite of thickness {approx}100 and 150 nm were deposited by pulsed laser deposition. The films were irradiated with a 200 MeV Ag{sup 15+} beam of three fluences 1 x 10{sup 12}, 2 x 10{sup 12} and 4 x 10{sup 12} ions/cm{sup 2}. X-ray diffraction showed a decrease in the intensity of peaks indicating progressive amorphisation with increased irradiation fluence. Fourier transform infra-red and Raman spectra of pristine and irradiated films were also recorded which showed a degradation of the crystallinity of the samples after irradiation. The damage cross section of the infra-red bands was determined. It was found that the two bands at 557 and 614 cm{sup -1} did not show similar behaviour with fluence.

  15. Direct photocatalysis of supported metal nanostructures for organic synthesis

    Science.gov (United States)

    Wu, Xiayan; Jaatinen, Esa; Sarina, Sarina; Zhu, Huai Yong

    2017-07-01

    Many organic synthesis systems use thermal catalysis to achieve higher product efficiency, and it is of interest to drive reactions by light irradiation at moderate reaction conditions. Other than semiconductors, recent reports have shown that metal nanostructures can be used as direct photocatalysts to drive chemical reactions. In this review, we summarize recent progress in direct photocatalysis in organic synthesis using plasmonic and non-plasmonic metal nanostructures. It starts with a comprehensive introduction to surface plasmons and the role of interband transitions in non-plasmonic metal nanostructures. The application of metal nanostructures in organic synthesis is systematically reviewed, followed by the reaction mechanisms; the role of light-excited energetic electrons, enhanced electromagnetic fields and the photothermal effect are detailed. The influence of light intensity and wavelength is discussed, as well as the critical parameters of photocatalyst design. Finally, the outlook and future opportunities of this new exciting field will be discussed.

  16. Facile Synthesis of Samarium-doped ZnO Nanostructures and Their Photocatalytic Performance for RhB Degradation under Visible Light Irradiation%ZnO-Sm纳米复合物制备及可见光催化降解 RhB

    Institute of Scientific and Technical Information of China (English)

    李小明; 张志贝; 杨伟强; 李志军; 徐秋翔; 周理; 谢伟强; 陈寻峰

    2016-01-01

    采用简单的水热反应后于400℃煅烧3 h ,制备出正六边形柱状ZnO‐Sm纳米颗粒.合成的ZnO材料用紫外可见光谱仪(UV‐vis)、扫描电子显微镜(SEM )、能谱分析仪(EDX)和傅氏转换红外线光谱分析仪(FTIR)表征.SEM 扫描图片显示合成的ZnO材料为柱状正六边形纳米颗粒,且随着Sm 的掺杂ZnO 纳米颗粒的晶体体积变小,但并未改变ZnO晶体形态.EDX图谱证明Sm成功掺杂进入ZnO晶体.光催化实验显示在可见光照射下原子分数2.0% ZnO‐Sm纳米材料比纯ZnO纳米材料对玫瑰红B(RhB)的降解效果提高了近30%,并探索了最佳实验条件以获得更好的光催化效果.结果表明ZnO‐Sm纳米材料在废水处理中具有潜在的应用价值.%Samarium‐doped ZnO Nanoparticles were synthesized via a facile and surfactant‐free solvoth‐ernal method after calcined 3 h at 400 ℃ .The prepared nanostructures were characterized by UV‐vis spec‐trophotometer ,scanning electron microscopy (SEM ) ,energy dispersive spectrum analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) .The SEM images show that the synthesized ZnO nanopar‐ticles are regular hexagonal columnar body .And the morphology of the nanostructures is not changed after doped Sm ,while the crystal volume of ZnO‐Sm nanoparticles become smaller .The EDX spectrum depict that Sm ions are successfully doped into ZnO .The photocatalytic studies show that the ZnO‐Sm(2 .0% ) photocatalytic degradation of RhB enhanced approximately 30% under visible light irradiation compared with the pure ZnO .And in order to obtain the best photocatalytic effect ,the optimal experimental condi‐tions were explored .As such ,ZnO‐Sm nanostructures were indicated great potential for practical applica‐tions in wastewater treatment .

  17. Helium concentration measurement in tungsten fuzz-like nanostructures by means of thermal desorption spectroscopy

    NARCIS (Netherlands)

    Gasparyan, Y.; Efimov, V.; Bystrov, K.

    2016-01-01

    The concentration of helium in tungsten fuzz-like nanostructures has been measured by means of thermal desorption spectroscopy. Fuzz was formed on the W surface under intensive plasma irradiation at 1500 K. The helium content was measured first in the as-irradiated sample, and then in a similar samp

  18. Microstructure of pre-sintered permanent magnetic strontium ferrite powder

    Institute of Scientific and Technical Information of China (English)

    YU Hongya; LIU Zhengyi; ZENG Dechang

    2006-01-01

    The microstructure and characteristics of pre-sintered strontium ferrite powderwere investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The present study shows that the pre-sintered strontium ferrite powder is provided with a certain particle size distribution, which results in high-density magnets. The strontium ferrite particle has a laminar hexagonal structure with a size similar to ferrite single domain. Ferric oxidephase due to an incomplete solid phase reaction in the first sintering is discovered, which will deteriorate the magnetic properties of ferrite magnet. In addition, the waste ferrite magnets with needle shape arranging along C axis in good order into the powders are found, which have no negative effects on finished product quality.

  19. Ferrite-Piezoelectric Layered Composites: Synthesis and Magnetoelectric Characterization

    Science.gov (United States)

    Hayes, R. W.; Srinivasan, G.

    2004-10-01

    The observation of strong magnetoelectric effects is reported in thick film bilayers and multilayers of ferrite-lead titanate zirconate (PZT). The ferrites used in our studies included pure and zinc substituted cobalt-, nickel- and lithium ferrites. Samples were prepared by sintering 10-40 mm thick films obtained by tape-casting. Measurements of ME voltage coefficients at 10-1000 Hz indicated a giant ME effect in nickel ferrite-PZT, but a relatively weak coupling in other ferrite-PZT systems. Evidence was found for enhancement in ME coefficients when Zn was substituted in ferrites. The Zn-assisted increase was attributed to low anisotropy and high permeability that resulted in favorable magneto-mechanical coupling in the composites. G. Srinivasan, E. T. Rasmussen, and R. Hayes, Phys. Rev. B 67, 014418 (2003) Supported by NSF and ARO grants.

  20. Ion beam induced optical and surface modification in plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai B., E-mail: udaibhansingh123@gmail.com; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-15

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm{sup −1} along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  1. Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: tanigawa.hiroyasu@jaea.go.jp; Hirose, T.; Shiba, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kasada, R. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Wakai, E. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Serizawa, H.; Kawahito, Y. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Jitsukawa, S. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kohno, Y. [Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Katayama, S. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mori, H.; Nishimoto, K. [Division of Materials and Manufacturing Science, Osaka University, Ibaraki, Osaka 565-0871 (Japan); Klueh, R.L.; Sokolov, M.A.; Stoller, R.E.; Zinkle, S.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6132 (United States)

    2008-12-15

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems. The RAFM F82H was developed in Japan with emphasis on high-temperature properties and weldability. Extensive irradiation studies have conducted on F82H, and it has the most extensive available database of irradiated and unirradiated properties of all RAFMs. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of an ITER test blanket module (TBM) suggested from the recent research achievements in Japan. This work clarified that the primary issues with F82H involve welding techniques and the mechanical properties of weld joints. This is the result of the distinctive nature of the joint caused by the phase transformation that occurs in the weld joint during cooling, and its impact on the design of a TBM will be discussed.

  2. An investigation of co-fired varistor-ferrite materials

    OpenAIRE

    Rafferty, Aran; Gun'ko, Yurii; Raghavendra, Ramesh

    2004-01-01

    The purpose of this work was to co-fire crack-free varistor-ferrite ceramic multilayers fabricated via a dry pressing route. Multilayers were sintered using a standard industrial grade varistor sintering regime. Sinter shrinkages of both varistor and ferrite materials were measured using dilatometry and showed that the varistor shrunk significantly more than the ferrite material. X-ray diffraction analysis indicated that no significant phase changes occurred in the materials under in...

  3. The Development of Low Activation Ferritic Steels for Fusion Application

    OpenAIRE

    Kohyama, A; Hishinuma, A.; Kohno, Y; Shiba, K; Sagara, A.

    1997-01-01

    The development of low-activation ferritic/martensitic steels is a key to the achievement of nuclear fusion as a safe, environmentally attractive and economically competitive energy source. The Japanese and the European Fusion Materials programs have put low-activation ferritic and martensitic steels R & D at the highest priority for a demonstration reactor (DEMO) and the beyond. An international collaborative test program on low-activation ferritic/martensitic steels for fusion is in progres...

  4. HYDROTHERMAL SYNTHESIS OF NANO-METER MICROPOROUS ZINC FERRITE

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Hu; Ping Guan; Xin Yan

    2004-01-01

    Nano-meter microporous zinc ferrite was prepared by a hydrothermal method, using triethylamine as a template. Adsorption curves showed that the product had a microporous structure. The effects of precursor pH, reaction temperature and reaction time on the preparation were studied, yielding optimal conditions: pH=11,448 K, 360 min. The morphology of zinc ferrite as observed by TEM, showed that zinc ferrite was well-crystallized and well-dispersed with little conglomeration.

  5. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles.

    Science.gov (United States)

    Mameli, V; Musinu, A; Ardu, A; Ennas, G; Peddis, D; Niznansky, D; Sangregorio, C; Innocenti, C; Thanh, Nguyen T K; Cannas, C

    2016-05-21

    The possibility to finely control nanostructured cubic ferrites (M(II)Fe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict. In this context, this work aims to discuss the magnetic properties and the heating abilities of Zn-substituted cobalt ferrite nanoparticles with different zinc contents (ZnxCo1-xFe2O4 with 0 100 emu g(-1)). The increase in the zinc content up to x = 0.46 in the structure has resulted in an increase of the saturation magnetisation (Ms) at 5 K. High Ms values have also been revealed at room temperature (∼90 emu g(-1)) for both CoFe2O4 and Zn0.30Co0.70Fe2O4 samples and their heating ability has been tested. Despite a similar saturation magnetisation, the specific absorption rate value for the cobalt ferrite is three times higher than the Zn-substituted one. DC magnetometry results were not sufficient to justify these data, the experimental conditions of SAR and static measurements being quite different. The synergic combination of DC with AC magnetometry and (57)Fe Mössbauer spectroscopy represents a powerful tool to get new insights into the design of suitable heat mediators for magnetic fluid hyperthermia.

  6. Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites

    Science.gov (United States)

    Greene, David; Serrano-Garcia, Raquel; Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    In this work, CoFe2O4@SiO2@TiO2 core-shell magnetic nanostructures have been prepared by coating of cobalt ferrite nanoparticles with the double SiO2/TiO2 layer using metallorganic precursors. The Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Analysis (EDX), Vibrational Sample Magnetometer (VSM) measurements and Raman spectroscopy results confirm the presence both of the silica and very thin TiO2 layers. The core-shell nanoparticles have been sintered at 600 °C and used as a catalyst in photo-oxidation reactions of methylene blue under UV light. Despite the additional non-magnetic coatings result in a lower value of the magnetic moment, the particles can still easily be retrieved from reaction mixtures by magnetic separation. This retention of magnetism was of particular importance allowing magnetic recovery and re-use of the catalyst. PMID:28344226

  7. Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Greene

    2014-04-01

    Full Text Available In this work, CoFe2O4@SiO2@TiO2 core-shell magnetic nanostructures have been prepared by coating of cobalt ferrite nanoparticles with the double SiO2/TiO2 layer using metallorganic precursors. The Transmission Electron Microscopy (TEM, Energy Dispersive X-Ray Analysis (EDX, Vibrational Sample Magnetometer (VSM measurements and Raman spectroscopy results confirm the presence both of the silica and very thin TiO2 layers. The core-shell nanoparticles have been sintered at 600 °C and used as a catalyst in photo-oxidation reactions of methylene blue under UV light. Despite the additional non-magnetic coatings result in a lower value of the magnetic moment, the particles can still easily be retrieved from reaction mixtures by magnetic separation. This retention of magnetism was of particular importance allowing magnetic recovery and re-use of the catalyst.

  8. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    Science.gov (United States)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  9. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    Science.gov (United States)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-11-25

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus.

  10. Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: A study on their structural, magnetic, optical and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Charanjit; Jauhar, Sheenu [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Kumar, Vinod [ICON Analytical Equipment (P) Ltd., Mumbai 400018 (India); Singh, Jagdish [Institute Instrumentation Centre, Indian Institute of Technology–Roorkee (India); Singhal, Sonal, E-mail: sonal1174@gmail.com [Department of Chemistry, Panjab University, Chandigarh 160014 (India)

    2015-04-15

    Nano-crystalline particles of visible light responsive Zn–Co ferrites having formula Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were successfully synthesized via reverse micelle technique. Sodium dodecyl sulfate was used as a surfactant/templating agent. The ferrite formation was confirmed using powder X-Ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy. The spherical shape of the ferrite particles was established by High Resolution Transmission Electron Microscope (HR-TEM) analysis. From the magnetic studies, the ferromagnetic nature of CoFe{sub 2}O{sub 4} was known. However, the nano-particles exhibited a transition from ferromagnetic to super-paramagnetic upon increasing the zinc concentration. In addition, the photo-Fenton activity of ferrites was also studied by carrying out degradation of Rhodamine B (RhB) dye under visible light irradiation. The catalytic activity increased with increase in zinc ion concentration. - Highlights: • Controlled dimensions of Zn–Co ferrite nanoparticles by microemulsion technique. • Spherical shape with uniform size distribution of ∼5 nm was achieved. • Significant shift from ferromagnetic to superparamagnetic with Zn{sup 2+} ion doping. • Improved photocatalytic activity with Zn{sup 2+} ion doping.

  11. Microstructural defects in EUROFER 97 after different neutron irradiation conditions

    Directory of Open Access Journals (Sweden)

    Christian Dethloff

    2016-12-01

    Full Text Available Characterization of irradiation induced microstructural evolution is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM is used to determine the defect microstructure after different neutron irradiation conditions. In particular dislocation loops, voids and precipitates are analyzed concerning defect nature, density and size distribution after irradiation to 15 dpa at 300 °C in the mixed spectrum High Flux Reactor (HFR. New results are combined with previously obtained data from irradiation in the fast spectrum BOR-60 reactor (15 and 32 dpa, 330 °C, which allows for assessment of dose and dose rate effects on the aforementioned irradiation induced defects and microstructural characteristics.

  12. Void swelling of an oxide dispersion strengthened ferritic alloy in a high voltage electron microscope

    Science.gov (United States)

    Snykers, M.

    1980-03-01

    An oxide dispersion strengthened ferritic alloy with nominal composition Fe-13Cr-3.5Ti-1.5Mo-2TiO 2 and a cast alloy with a composition close to that of the matrix of the oxide dispersion strengthened alloy are irradiated in a high voltage electron microscope in the temperature range 380-550°C. The alloys are doped with 0-30 ppm helium. For alloys containing 10 ppm He a peak swelling temperature at 450°C is found. A maximum swelling of 1.1% is found at an irradiation dose of 20 dpa. In the absence of He no swelling is found in the temperature range 430-470°C. The swelling rate is highest at the onset of swelling. The results obtained here are quite similar to those for some ferritic steels such as FV607, EM 12 and HT9, except for the influence of He and for the dose dependence.

  13. Effect of Ti4+ ions doping on microstructure and dc resistivity of nickel ferrites

    Science.gov (United States)

    Kundu, T. K.; Mishra, S.; Karak, N.; Barik, P.

    2012-04-01

    Nanostructured nickel ferrites (NiFe2O4) were prepared by doping with Ti4+ ions using solid-state reaction route. Lowest grain size of 55 nm was achieved in the specimens with 20 mole% TiO2 doping. Magnetization in the specimens decreases with decreasing grain sizes. Lower volume fractions of ferrite phase due to dissociation of the magnetic phase into smaller particles by the disruption of super exchange interaction by the titanium substitution results a decrease in magnetizations. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behavior of magnetic nanoparticles. Small polaron hopping conduction between Fe2+ and Fe3+ sites controls the dc electrical properties of the specimens. The presence of an interfacial amorphous phase between the sites is evident from Mott's analysis. Specimens containing 10 mole or more TiO2 and sintered at 1350 °C contain NiTiO3 as a secondary phase and show unusual dc conductivity.

  14. Nanosized powders of NiZn ferrite: Synthesis, structure, and magnetism

    Science.gov (United States)

    Albuquerque, Adriana S.; Ardisson, José D.; Macedo, Waldemar A. A.; Alves, Maria C. M.

    2000-05-01

    The structure and magnetic behavior of nanostructured powders of stoichiometric NiZn ferrite, Ni0.5Zn0.5Fe2O4, synthesized by coprecipitation, are investigated by extended x-ray-absorption fine structure spectroscopy (EXAFS), x-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometry. Samples of high purity and high homogeneity were obtained by annealing at relatively low temperatures (300-800 °C) resulting in nanoparticles with average diameter between 9 and 90 nm, as determined by x-ray diffraction. EXAFS was applied to follow Ni, Zn, and Fe cations distribution and the evolution of the short range order of the samples with increasing annealing temperature. Our results show ferrimagnetic NiZn ferrite nanosized powders with high purity, 1:1 Ni to Zn stoichiometric ratio and superparamagnetic behavior. Moreover, the samples exhibit good structural ordering already after heat treatment at 400 °C. Analysis by vibrating sample magnetometry indicated a critical particle diameter for the transition from monodomain to multidomain behavior close to 40 nm.

  15. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications

    Science.gov (United States)

    Tanigawa, H.; Gaganidze, E.; Hirose, T.; Ando, M.; Zinkle, S. J.; Lindau, R.; Diegele, E.

    2017-09-01

    Reduced-activation ferritic/martensitic (RAFM) steel is the benchmark structural material for in-vessel components of fusion reactor. The current status of RAFM developments and evaluations is reviewed based on two leading RAFM steels, F82H and EUROFER-97. The applicability of various joining technologies for fabrication of fusion first wall and blanket structures, such as weld or diffusion bonding, is overviewed as well. The technical challenges and potential risks of utilizing RAFM steels as the structural material of in-vessel components are discussed, and possible mitigation methodology is introduced. The discussion suggests that deuterium-tritium fusion neutron irradiation effects currently need to be treated as an ambiguity factor which could be incorporated within the safety factor. The safety factor will be defined by the engineering design criteria which are not yet developed with regard to irradiation effects and some high temperature process, and the operating time condition of the in-vessel component will be defined by the condition at which those ambiguities due to neutron irradiation become too large to be acceptable, or by the critical condition at which 14 MeV fusion neutron irradiation effects is expected to become different from fission neutron irradiation effects.

  16. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    Science.gov (United States)

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  17. Ferrite microwave electronics Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-07-01

    Research reports on single crystals, thin films, dielectrics, semiconductor devices, integrated circuits, phase shifters, and waveguide components are cited. Studies on the microwave properties of ferrites are included.

  18. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    Energy Technology Data Exchange (ETDEWEB)

    William, R. V.; Marikani, A., E-mail: amari@mepcoeng.ac.in [Department of Physics, Mepco Schlenk Engineering College, Sivakasi – 626 005, Tamil Nadu (India); Madhavan, D. [Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi – 626 005, Tamil Nadu (India)

    2016-05-23

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO{sub 3} nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO{sub 3} nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO{sub 3} nano-wire show a frequency dependent property and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm{sup 2} at the frequency 4 kHz. The coercivity of BiFeO{sub 3} nano wire changes with variation of frequency from 1 kHz to 4 kHz.

  19. Ferritic-austenitic cast steel - selected problems

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2011-07-01

    Full Text Available The author has been involved in the problems occurring in the manufacture of ferritic-austenitic cast steel castings for many years. The author’s remarks and investigation results reported in this article will enable potential manufacturers to determine their own technical capabilities and structural determinants related to the chemical composition of material, which are crucial to the good quality of a casting. Particular emphasis should be laid on the role of enhanced carbon content, the presence of copper, the precipitates of the ζ phase, and the nature of solidification structure in the tendency of duplex-type cast steel to cracking. It seems that in view of the pro-ecological activities undertaken, including flue gas desulphurization in coal-fired power plants, efforts should be made in steel foundries to introduce selected grades of ferritic-austenitic cast steel to production.

  20. Interfacial microstructures and hardness distributions of vacuum plasma spraying W-coated ODS ferritic steels for fusion plasma facing applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Nagasaka, Takuya [National Institute for Fusion Science, Toki, Gifu (Japan); Sokolov, Mikhail A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-04-15

    In the present study, interfacial microstructures and hardness distributions of W-coated ODS steels as plasma facing structural materials were investigated. A vacuum plasma spraying (VPS) technique was employed to fabricate a W layer on the surface of the ODS ferritic steel substrates. The microstructural observations revealed that the VPS-W has very fine grains aligned toward the spraying direction, and a favorable interface between W and ODS ferritic steels by a mechanical inter-locking without an intermetallic layer. However, crack-type defects were found in VPS-W. Because a brittle inter-diffused layer does not exist at the joint interface, the hardness was gradually distributed in the joint region. After neutron irradiation, irradiation hardening significantly occurred in the VPS-W. However, the hardening of VPS-W was less than that of bulk W irradiated at 773 K. Thus, the VPS is considered to be one of the promising ways to join dissimilar materials between W and ODS steels, which can avoid the formation of an interfacial intermetallic layer and create favorable irradiation hardening resistance on the W coated layer.

  1. High Efficiency ELID Grinding of Garnet Ferrite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Hard and brittle materials such as ferrite, optical glass and ceramics have been widely used in many fields because of their good characteristics and still gain more attentions. However, it is difficult to machine and get good surface quality. Some parts made of these materials have large machining allowances and need to be produced with large batch, but the machining efficiency is very low with usual grinding method. So it is of great importance to research the high efficiency grinding technology of hard ...

  2. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  3. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    CSIR Research Space (South Africa)

    Mathe, NR

    2014-01-01

    Full Text Available Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared...

  4. Preparation and Characterization of Manganese Ferrite Aluminates

    Directory of Open Access Journals (Sweden)

    R. L. Dhiman

    2008-01-01

    Full Text Available Aluminum doped manganese ferrites MnAlxFe2−xO4 with 0.0≤x≤1.0 have been prepared by the double ceramic route. The formation of mixed spinel phase has been confirmed by X-ray diffraction analysis. The unit cell parameter `aO' is found to decrease linearly with aluminum concentration due to smaller ionic radius of aluminum. The cation distributions were estimated from X-ray diffraction intensities of various planes. The theoretical lattice parameter, X-ray density, oxygen positional parameter, ionic radii, jump length, and bonds and edges lengths of the tetrahedral (A and octahedral (B sites were determined. 57Fe Mössbauer spectra recorded at room temperature were fitted with two sextets corresponding to Fe3+ ions at A- and B-sites. In the present ferrite system, the area ratio of Fe3+ ions at the A- and B-sites determined from the spectral analysis of Mössbauer spectra gives evidence that Al3+ ions replace iron ions at B-sites. This change in the site preference reflects an abrupt change in magnetic hyperfine fields at A- and B-sites as aluminum concentration increases, which has been explained on the basis of supertransferred hyperfine field. On the basis of estimated cation distribution, it is concluded that aluminum doped manganese ferrites exhibit a 55% normal spinel structure.

  5. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  6. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  7. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, B.G. (comp.)

    1980-04-01

    Progress is reported concerning preparation of a materials handbook for fusion, creep-fatigue of first-wall structural materials, test results on miniature compact tension fracture toughness specimens, austenitic stainless steels, Fe-Ni-Cr alloys, iron-base alloys with long-range crystal structure, ferritic steels, irradiation experiments, corrosion testing, and hydrogen permeation studies. (FS)

  8. The Formation Process of Silico-Ferrite of Calcium (SFC) from Binary Calcium Ferrite

    Science.gov (United States)

    Ding, Xiang; Guo, Xing-Min

    2014-08-01

    Silico-ferrite of calcium (SFC) is a significant equilibrium crystalline phase in the Fe2O3-CaO-SiO2 (FCS) ternary system and a key bonding phase in the sintering process of fine iron ore. In this work, the formation process of SFC from binary calcium ferrite has been determined by X-ray diffraction and field-emission scanning electron microscopy. Experiments were carried out under air at 1473 K (1200 °C) by adding SiO2 and Fe2O3 into CaO·Fe2O3 (CF). It was found that the formation of SFC is dominated by solid-state reactions in the FCS ternary system, in which Fe2O3 reacts with CaO·Fe2O3 to form the binary calcium ferrite phase. The chemical composition of binary calcium ferrite is Ca2.5Fe15.5O25 and approximately Ca2Fe12O20 (CaO·3Fe2O3). Then Si4+ and Ca2+ ions take the place of Fe3+ ion in preference located on the octahedral layers which belongs to (0 0 18) plane of binary calcium ferrite. The crystal structure of binary calcium ferrite gradually transforms from orthorhombic to triclinic, and the grain is refined with the addition of silica due to the smaller radius of Si4+ ion. A solid solution SFC forms completely when the content of SiO2 reaches approximately 3.37 wt pct at 1473 K (1200 °C).

  9. Nanostructures of zinc oxide

    Directory of Open Access Journals (Sweden)

    Zhong Lin Wang

    2004-06-01

    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  10. A Study on Sodium Effects on the Mechanical Properties of Ferritic-Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Hun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Jun Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A sodium-cooled fast reactor (SFR) that uses fast neutrons as a fission process is considered one of the most probable candidates in next generation reactors. As an SFR core experiences high temperatures (650 .deg. C) and neutron doses (200 dpa), ferritic-martensitic steel, especially HT9 steel containing 12% Cr, is being considered due to its superior dimensional stability against high-energy neutron irradiation. After irradiation to 35 dpa at 420 .deg. C, at the Fast Flux Test Facility (FFTF), swelling of the reduced-activation 9Cr-2WV and 9Cr-2WVTa steels and the conventional 9Cr-1Mo-VNb and 12Cr-1Mo-VW steels was estimated by transmission electron microscopy (TEM) to be 0.2%, 0.33%, 0.85%, and 0.007%, respectively. The irradiation creep coefficient for neutron-irradiated steels is 2 Χ 10{sup -7} Mpa{sup -1} dpa{sup -1} for HT9 at 440-500 .deg. C with 14 dpa (EBR-II), and 1.5 Χ 10{sup -7} Mpa{sup -1} dpa{sup -1} is a good estimate for such ferritic/martensitic steels. In this study, ASTM A192 Gr. 92 steels were exposed to liquid sodium at 650 .deg. C for 1583 h and 3095 h and evaluation of the microstructure as well as the mechanical properties using ring hoop tensile tests and ring hoop creep tests were conducted. The objective of this study is to evaluate the microstructure and mechanical properties of ferritic-martensitic steel (ASTM A192 Gr. 92) that has been exposed to a high-temperature sodium environment. In order to investigate the effect of the aging process on the precipitates and the mechanical properties of Gr. 92 steel, specimens were exposed to 650 .deg. C liquid sodium and aged in a 650 .deg. C argon environment for a given time. V-rich MX-type carbonitride and M{sub 23}C{sub 6} were found in the as-received specimen. In the specimens which were exposed to sodium, mainly Cr{sub 23}C{sub 6} was observed while the Laves phase was mainly observed in the specimen that was aged in an argon environment. The maximum load of Gr. 92 steel that was

  11. Refit Silver Nanostructures Using a Convergent Electron Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Hong

    2007-01-01

    Using a superionic conductor AgI thin film and a direct current electric field,we synthesize silver nanowires in diameter of about 100 nm.In order to refit the prepared nanowires,the samples are irradiated by a convergent electron beam(200 kV)inside a transmission electron microscope to prepare new small silver nanostructures.The new nanostructures are investigated in situ by high-resolution transmission electron microscope.This electroninduced crystal growth method is useful for technical applications in fabrication of nanodevices.

  12. Nanostructured CNx (0

    NARCIS (Netherlands)

    Bongiorno, G; Blomqvist, M; Piseri, P; Milani, P; Lenardi, C; Ducati, C; Caruso, T; Rudolf, P; Wachtmeister, S; Csillag, S; Coronel, E

    2005-01-01

    Nanostructured CNx thin films were prepared by supersonic cluster beam deposition (SCBD) and systematically characterized by transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The incorporat

  13. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  14. UCSB ATR-­NSUF Irradiation DMC Sample Inspection Report

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Quintana, Matthew Estevan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    A variety of tensile samples of Ferritic and Oxide Dispersion Strengthened (ODS or nanoferritic) steels were placed the ATR reactor over 2 Years achieving doses of roughly 4-6 dpa at temperatures of roughly 290°C. After irradiation, samples were shipped from the MFC hot cells at Idaho National Laboratory (INL) to the Wing 9 hot cells in the CMR facility at Los Alamos National Laboratory. Samples were cleaned to removed alpha contamination from the MFC hot cells, and then, as needed removed from their irradiation containers, sorted and inspected. This report will summarize the inspection of the Disc Multipurpose Coupon (DMC) inspection from packet 7-1.

  15. Photoelectrochemical properties of ferrites with the spinel structure

    NARCIS (Netherlands)

    Haart, L.G.J. De; Blasse, G.

    1985-01-01

    The photoelectrochemical properties of the ferrites ZnFe2O4, MgFe2O4 and Li0.5O4 with the spinel structure are reported. The ferrites seem reasonable candidates for photoanodes in a photoelectrochemical cell, because of their 2.2 eV bandgap. The results show, however, that the visible absorptivity,

  16. A model for ferrite-loaded transversely biased coaxial resonators

    DEFF Research Database (Denmark)

    Acar, Öncel; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2013-01-01

    This work describes a simple model for shortened coaxial cavity resonators with transversely biased ferrite elements. The ferrite allows the resonance frequency to be tuned, and the presented model provides a method of approximately calculating these frequencies to generate the tuning curve...

  17. Fundamental study of a one-step ambient temperature ferrite ...

    African Journals Online (AJOL)

    Fundamental study of a one-step ambient temperature ferrite process for treatment ... The approach involves the controlled oxidation of ferrous-containing AMD water at ... The resulting oxidation product is the ferrite (M13+2M22+O4) magnetite ...

  18. Structural investigation of an extended milled ferrite powder

    Energy Technology Data Exchange (ETDEWEB)

    Moisin, A.M.; Macrin, M. (Institutul de Cercetari Electronice, Bucharest (Romania))

    1980-01-01

    An investigation of the structural modifications introduced by the extended milling and annealing processes in the barium ferrite powder during its preparation is presented. X-ray diffraction measuements on a barium ferrite powder in various milling and annealing conditions have been carried out and the results concerning the phase compositions, lattice constants and crystallite sizes are discussed.

  19. Defects, phase transformations and magnetic properties of lithium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.K.

    1977-03-01

    Achieving suitable magnetic properties in ceramic ferrites through thermomechanical treatments rather than through varying the processing and fabrication parameters alone has been investigated. Ferrimagnetic lithium ferrite and some other spinel structure materials were chosen for this investigation. Extensive characterization of phase transformations and lattice defects was done.

  20. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Webb, T.

    1986-01-01

    The proposed use of gamma radiation from cobalt 60 and cesium 137 for food irradiation in the United Kingdom is discussed, with particular reference to the possible dangers and disadvantages to the safety and wholesomeness of the food.

  1. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  2. Influence of Mg concentration on physico-chemical properties of Cd ferrites (CdMg{sub 1.5x}Fe{sub 2−x}O{sub 4}) synthesized by sol–gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Munish [Department of Chemistry, Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Department of Chemistry, D A V College, Amritsar, Punjab 143001 (India); Gupta, Manik, E-mail: manuchemistry@gmail.com [Department of Chemistry, Guru Gobind Singh College, Chandigarh 160019 (India); Randhawa, B.S., E-mail: balwinderrandhawa@yahoo.co.in [Department of Chemistry, Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005 (India)

    2015-03-25

    Highlights: • Highly crystalline, single phase ferrites are obtained. • Saturation magnetization increases with increase in Mg{sup 2+} doping up to x = 0.7. • Nanosized particles tend to form inverted spinel structure. • Ferrites obtained have large surface area. - Abstract: The nanofabrication, characterization, microstructural and magnetic properties of pure and Mg{sup 2+} doped cadmium ferrite (CdFe{sub 2−x}Mg{sub 1.5x}O{sub 4}; x = 0.0–0.7) have been carried out. Morphology and the microstructure of the nanostructured oxide materials obtained through sol–gel process using hydrated metal-citrate precursor were studied by powder X-ray diffraction (XRD), electron microscopy (SEM, TEM) and N{sub 2}-physisorption (BET) showing an ordered cubic arrangement of 11–23 nm diameter pores with single-phase spinel grains averaging 13–38 nm in diameter. Room temperature magnetic measurements using magnetometer (VSM) demonstrate that the nature and concentration of dopant both control the site preference in the crystal lattices, suggesting the partial inverted spinel structure of soft Cd ferrites, which differs from bulk CdFe{sub 2}O{sub 4} showing practically no inversion in structure. An increase in Mg{sup 2+} substitution leads to a decrease in the lattice parameter, an increase in saturation magnetization as well as BET surface area of the as-synthesized ferrites.

  3. Modeling non-saturated ferrite-based devices: Application to twin toroid ferrite phase shifters

    Science.gov (United States)

    Le Gouellec, A.; Vérissimo, G.; Laur, V.; Queffelec, P.; Albert, I.; Girard, T.

    2016-08-01

    This article describes a new set of tools developed to improve the conception and modeling of non-saturated ferrite-based devices such as twin toroid phase shifters. These new simulation tools benefit from a generalized permeability tensor model able to describe the permeability tensor of a ferrite sample whatever its magnetization state. This model is coupled to a homemade 3D multi-scale magnetostatic analysis program, which describes the evolution of the magnetization through the definition of a hysteresis loop in every mesh cell. These computed spectra are then integrated into 3D electromagnetic simulation software that retains the spatial variations of the ferrite properties by using freshly developed macro programming functions. This new approach allows the designers to accurately model complex ferrite devices such as twin toroid phase shifters. In particular, we demonstrated a good agreement between simulated and measured phase shifts as a function of applied current values with a predicted maximum phase shift of 0.96 times the measured value.

  4. [Food irradiation].

    Science.gov (United States)

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables.

  5. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    CERN Document Server

    Cahill, B M

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Dur...

  6. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, S. [Department of Physics, National Institute of Technology, Deemed University, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal (India); Sinha, M. [Department of Physics, University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Meikap, A.K., E-mail: meikapnitd@yahoo.com [Department of Physics, National Institute of Technology, Deemed University, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal (India); Pradhan, S.K. [Department of Physics, University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2010-08-15

    This paper presents the direct current conductivity, alternate current conductivity and dielectric properties of nonstoichiometric magnesium-zinc ferrite below room temperature. The frequency exponent (s) of conductivity shows an anomalous temperature dependency. The magnitude of the temperature exponent (n) of dielectric permittivity strongly depends on frequency and its value decreases with increasing frequency. The grain boundary contribution is dominating over the grain contribution in conduction process and the temperature dependence of resistance due to grain and grain boundary contribution exhibits two activation regions. The ferrite shows positive alternating current magnetoconductivity. The solid state processing technique was used for the preparation of nanocrystalline ferrite powder from oxides of magnesium, zinc and iron. The X-ray diffraction methods were used in determining the structure and composition of obtained ferrite, while multimeter, impedance analyzer, liquid nitrogen cryostat and electromagnet were used in the study of conducting and dielectric properties of ferrite.

  7. Characterization of the magnetic micro- and nanostructure in unalloyed steels by magnetic force microscopy

    Science.gov (United States)

    Batista, L.; Rabe, U.; Hirsekorn, S.

    2013-01-01

    The formation of a cementite phase influences significantly the macroscopic mechanical and magnetic properties of steels. Based on a correlation between mechanical and magnetic properties, mechanical properties as well as the morphology and content of the cementite phase can be inspected by electromagnetic non-destructive testing methods. The influence of the carbon content on bulk magnetic properties of unalloyed steels is studied on a macroscopic scale by hysteresis loop and Barkhausen noise measurements. The micro- and nanostructure is investigated by atomic force microscopy and magnetic force microscopy. Surface topography images and magnetic images of globular cementite precipitates embedded in a ferrite matrix are presented. The size, shape, and orientation of the precipitates influence the domain configuration. Applied external magnetic fields cause magnetization processes mainly in the ferrite matrix: Bloch walls move and are pinned by the cementite precipitates. The correlation between the microscopic observations and macroscopic magnetic properties of the material is discussed.

  8. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R V Ramanujan

    2003-02-01

    Research and development in nanostructured materials is one of the most intensely studied areas in science. As a result of concerted R & D efforts, nanostructured electronic and magnetic materials have achieved commercial success. Specific examples of novel industrially important nanostructured electronic and magnetic materials are provided. Advantages of nanocrystalline magnetic materials in the context of both materials and devices are discussed. Several high technology examples of the use of nanostructured magnetic materials are presented. Methods of processing nanostructured materials are described and the examples of sol gel, rapid solidification and powder injection moulding as potential processing methods for making nanostructured materials are outlined. Some opportunities and challenges are discussed.

  9. Helium Retention and Desorption Behaviour of Reduced Activation Ferritic/Martenstic Steel

    Science.gov (United States)

    Wang, Pinghuai; Nobuta, Yuji; Hino, Tomoaki; Yamauchi, Yuji; Chen, Jiming; Xu, Zengyu; Li, Xiongwei; Liu, Shi

    2009-04-01

    The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non-welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.

  10. Helium Retention and Desorption Behaviour of Reduced Activation Ferritic/Martenstic Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Pinghuai; NOBUTA Yuji; HINO Tomoaki; YAMAUCHI Yuji; CHEN Zilning; XU Zengyu; LI Xiongwei; LIU Shi

    2009-01-01

    The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwest-ern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non-welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.

  11. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Hankin, G.L. [Loughborough Univ. (United Kingdom)

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  12. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  13. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  14. Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER 97

    Science.gov (United States)

    Dethloff, Christian; Gaganidze, Ermile; Aktaa, Jarir

    2014-11-01

    Characterization of irradiation induced microstructural defects is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM) is used to analyze the types and structure of precipitates, and the evolution of their size distributions and densities caused by neutron irradiation to a dose of 32 displacements per atom (dpa) at 330-340 °C in the irradiation experiment ARBOR 1. A significant growth of MX and M23C6 type precipitates is observed after neutron irradiation, while the precipitate density remains unchanged. Hardening caused by MX and M23C6 precipitate growth is assessed by applying the Dispersed Barrier Hardening (DBH) model, and shown to be of minor importance when compared to other irradiation effects like dislocation loop formation. Additionally, grain boundary segregation of chromium induced by neutron irradiation was investigated and detected in irradiated specimens.

  15. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  16. Nanostructures having high performance thermoelectric properties

    Science.gov (United States)

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  17. Magnetic resonance in superparamagnetic zinc ferrite

    Indian Academy of Sciences (India)

    Jitendra Pal Singh; Gagan Dixit; R C Srivastava; Hemant Kumar; H M Agrawal; Prem Chand

    2013-08-01

    In the present work, we have synthesized zinc ferrite nanoparticles by nitrate method. Presence of almost zero value of coercivity and remanence in the hysteresis of these samples shows the superparamagnetic nature at room temperature. Electron paramagnetic resonance spectroscopy performed on these samples in the temperature range 120–300 K indicates the systematic variation of the line-shapes of the spectra with temperature. Both gvalue and peak-to-peak linewidth decrease with increase in temperature. The variation of g-values and peak-topeak linewidth with temperature has been fitted with existing models and we observed different values of activation energies of the spins for both the samples.

  18. CASS Ferrite and Grain Structure Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  19. Molecular dynamics for irradiation driven chemistry

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-01-01

    technologies such as focused electron beam deposition (FEBID). As an example, the new methodology is applied for studying the irradiation driven chemistry caused by FEBID of tungsten hexacarbonyl W(CO)6 precursor molecules on a hydroxylated SiO2 surface. It is demonstrated that knowing the interaction...... parameters for the fragments of the molecular system arising in the course of irradiation one can reproduce reasonably well experimental observations and make predictions about the morphology and molecular composition of nanostructures that emerge on the surface during the FEBID process....

  20. Selective Functionalization of Tailored Nanostructures

    NARCIS (Netherlands)

    Slingenbergh, Winand; Boer, Sanne K. de; Cordes, Thorben; Browne, Wesley R.; Feringa, Ben L.; Hoogenboom, Jacob P.; Hosson, Jeff Th.M. De; Dorp, Willem F. van

    2012-01-01

    The controlled positioning of nanostructures with active molecular components is of importance throughout nanoscience and nanotechnology. We present a novel three-step method to produce nanostructures that are selectively decorated with functional molecules. We use fluorophores and nanoparticles to

  1. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    CERN Document Server

    Kuchmizhak, Aleksandr; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2015-01-01

    Simple high-performance two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique a thin noble metal film on a dielectric substrate is irradiated by a tightly focused single nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depends on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. The plasmon...

  2. Nanostructured materials in potentiometry.

    Science.gov (United States)

    Düzgün, Ali; Zelada-Guillén, Gustavo A; Crespo, Gastón A; Macho, Santiago; Riu, Jordi; Rius, F Xavier

    2011-01-01

    Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.

  3. Micromachining with Nanostructured Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    The purpose of the brief is to explain how nanostructured tools can be used to machine materials at the microscale.  The aims of the brief are to explain to readers how to apply nanostructured tools to micromachining applications. This book describes the application of nanostructured tools to machining engineering materials and includes methods for calculating basic features of micromachining. It explains the nature of contact between tools and work pieces to build a solid understanding of how nanostructured tools are made.

  4. Cast Stainless Steel Ferrite and Grain Structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  5. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  6. Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Guoquan, E-mail: g.liu@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hu, Benfu; Wang, Jinsan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ullah, Asad [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Mathematics, Karakoram International University, Gilgit-Baltistan (Pakistan)

    2013-08-15

    12%Cr reduced activation ferrite/martensite steels are promising candidate materials for good corrosion and irradiation resistance used for supercritical water-cooled reactor cladding and in-core components. V and Ta are considered to have improved the creep strength of high Cr steels by precipitating as MX phase. In this paper, a series of trial products microalloyed with V and V–Ta are produced, and the microstructure is characterized after quenching at 1050 °C and tempering at 780 °C by using TEM method to investigate the effect of these elements on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel. The results from both the experimental observations and thermodynamic and kinetic calculations reveal that V and V–Ta can promote the stable MX precipitation instead of M{sub 2}X, thus increasing the volume fraction of M{sub 23}C{sub 6}. Two-phase separation behavior of the (Ta, V)(C, N) carbonitride into a Ta(V)C(N) phase and a V(Ta)N(C) phase in 12Cr3WVTa steel is observed and further discussed. - Highlights: • Microalloyed with V and V-Ta can promote the precipitation of MX instead of M{sub 2}X. • The presence of delta-ferrite in microstructure affects the morphology of MX. • Two-phase separation of MX carbonitride was observed in 12Cr3WVTa steel.

  7. Further application of the cleavage fracture stress model for estimating the T{sub 0} of highly embrittled ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R.

    2016-02-15

    The semi-empirical cleavage fracture stress model (CFS), based on the microscopic cleavage fracture stress, s{sub f}, for estimating the ASTM E1921 reference temperature (T{sub 0}) of ferritic steels from instrumented impact testing of unprecracked Charpy V-notch specimens is further confirmed by test results for additional steels, including steels highly embrittled by thermal aging or irradiation. In addition to the ferrite-pearlite, bainitic or tempered martensitic steels (which was examined earlier), acicular or polygonal ferrite, precipitation-strengthened or additional simulated heat affected zone steels are also evaluated. The upper limit for the applicability of the present CFS model seems to be T{sub 41J} ∝160 to 170 C or T{sub 0} or T{sub Qcfs} (T{sub 0} estimate from the present CFS model) ∝100 to 120 C. This is not a clear-cut boundary, but indicative of an area of caution where generation and evaluation of further data are required. However, the present work demonstrates the applicability of the present CFS model even to substantially embrittled steels. The earlier doubts expressed about T{sub Qcfs} becoming unduly non-conservative for highly embrittled steels has not been fully substantiated and partly arises from the necessity of modifications in the T{sub 0} evaluation itself at high degrees of embrittlement suggested in the literature.

  8. Synthesis of porphyrin nanostructures

    Science.gov (United States)

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  9. Interaction of carbon-vacancy complex with minor alloying elements of ferritic steels

    Science.gov (United States)

    Bakaev, A.; Terentyev, D.; He, X.; Zhurkin, E. E.; Van Neck, D.

    2014-08-01

    Interstitial carbon, dissolved in bcc matrix of ferritic steels, plays an important role in the evolution of radiation-induced microstructure since it exhibits strong interaction with vacancies. Frequent formation and break-up of carbon-vacancy pairs, occurring in the course of irradiation, affect both kinetics of the accumulation of point defect clusters and carbon spatial distribution. The interaction of typical alloying elements (Mn, Ni, Cu, Si, Cr and P) in ferritic steels used as structural materials in nuclear reactors with a carbon-vacancy complex is analyzed using ab initio techniques. It is found that all the considered solutes form stable triple clusters resulting in the increase of the total binding energy by 0.2-0.3 eV. As a result of the formation of energetically favourable solute-carbon-vacancy triplets, the dissociation energy for vacancy/carbon emission is also increased by ∼0.2-0.3 eV, suggesting that the solutes enhance thermal stability of carbon-vacancy complex. Association of carbon-vacancy pairs with multiple solute clusters is found to be favorable for Ni, Cu and P. The energetic stability of solute(s)-carbon-vacancy complexes was rationalized on the basis of pairwise interaction data and by analyzing the variation of local magnetic moments on atoms constituting the clusters.

  10. Interatomic potential to study the formation of NiCr clusters in high Cr ferritic steels

    Science.gov (United States)

    Bonny, G.; Bakaev, A.; Olsson, P.; Domain, C.; Zhurkin, E. E.; Posselt, M.

    2017-02-01

    Under irradiation NiSiPCr clusters are formed in high-Cr ferritic martensitic steels as well as in FeCr model alloys. In the literature little is known about the origin and contribution to the hardening of these clusters. In this work we performed density functional theory (DFT) calculations to study the stability of small substitutional NiCr-vacancy clusters and interstitial configurations in bcc Fe. Based on DFT data and experimental considerations a ternary potential for the ferritic FeNiCr system was developed. The potential was applied to study the thermodynamic stability of NiCr clusters by means of Metropolis Monte Carlo (MMC) simulations. The results of our simulations show that Cr and Ni precipitate as separate fractions and suggest only a limited synergetic effect between Ni and Cr. Therefore our results suggest that the NiCrSiP clusters observed in experiments must be the result of other mechanisms than the synergy of Cr and Ni at thermal equilibrium.

  11. Use of Specific Properties of Zinc Ferrite in Innovative Technologies

    Directory of Open Access Journals (Sweden)

    Kmita A.

    2016-12-01

    Full Text Available Zinc ferrite ZnFe2O4 both in the micro and nano scale is widely used in various fields. The article discusses the structure of this compound and its properties in the nanoscale, which is clearly different from those which the ferrite shows in the microscale. The properties of dust generated electric arc furnace, which can contain up to 40% zinc, substantially in the form of ZnFe2O4 are disscused here. Specific properties (electric, magnetic, thermal of zinc ferrite nanoparticles determine the very wide possibilities of their use, inter alia as catalysts, absorbents, gas sensors, and a tool to combat cancer.

  12. Dysprosium Modification of Cobalt Ferrite Ionic Magnetic Fluids

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong-li; LIU Yong-chao; GENG Quan-rong; ZHAO Wen-tao

    2005-01-01

    Dysprosium composite cobalt ferrite ionic magnetic fluids were prepared by precipitation in the presence of Tri-sodium citrate. Influence of dysprosium modification on magnetic property is studied. The result shows that magnetic response toward exterior magnetic field can be improved by adding Dy3+. Studies also show that the increase of reaction temperature may improve the modification effect of dysprosium. By adding dysprosium ions, the average diameter of the magnetic nanoparticles will be decreased evidently. It is clear that the particles appear as balls, Cobalt ferrite with sizes of 12-15 nm, rare earth composite cobalt ferrite with sizes of 6-8 nm.

  13. Preparation and characterization of rice husk/ferrite composites

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel ferrite composite using rice husk as substrate has been prepared via high temperature treatment under nitrogen atmosphere.The rice husk substrate consists of porous activated carbon and silica,where spinel ferrite particles with average diameter of 59 nm are distributed.The surface area of the composite is greater than 170 m~2 g~(-1) and the bulk density is less than 0.6 g cm~(-3).Inert atmosphere is indispensable for the synthesis of pure ferrite composites,while different preparation temperatur...

  14. Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.

    Science.gov (United States)

    Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra

    2014-08-11

    A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.

  15. Modeling of Incubation Time for Austenite to Ferrite Phase Transformation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-guang; LIU Zhen-yu; WU Di; WANG Wei; JIAO Si-hai

    2006-01-01

    On the basis of the classical nucleation theory, a new model of incubation time for austenite to ferrite transformation has been developed, in which the effect of deformation on austenite has been taken into consideration. To prove the precision of modeling, ferrite transformation starting temperature (Ar3) has been calculated using the Scheil′s additivity rule, and the Ar3 values were measured using a Gleeble 1500 thermomechanical simulator. The Ar3 values provided by the modeling method coincide with the measured ones, indicating that the model is precise in predicting the incubation time for austenite to ferrite transformation in hot deformed steels.

  16. Ultra-fine ferrite grains obtained in the TSDR process

    Institute of Scientific and Technical Information of China (English)

    Ling Zhang; Wangyue Yang; Chunxia Xue; Zuqing Sun

    2008-01-01

    By careful design of rolling schedule, ultra-fine (~2 μm) ferrite grains in a low carbon high niobium (0.09wt%Nb) micro-alloying steel with average austenite grain sizes above 800 μm can be achieved in the simulated thin slab direct rolling process. The 5-pass deformation was divided into two stages: the refinement of austenite through complete recrystallization and the refinement of ferrite through dynamic strain-induced transformation. The effects of Nb in solution and strain-induced NbCN precipitates on the fer-rite transformation were also extensively discussed.

  17. Ferric Oxide from Hematite Used in Microwave Ferrite Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ferric Oxide is an essential and raw material in the production of ferrite materials. At present, ferric oxide used by many domestic factories is mainly produced by chemical method. In this paper, we use ferric oxide refined from hematite and applied in the microwave ferrite material production test. Compared with the normal ferric oxide, we get the same or similar results. It shows that ferric oxide from hematite and applied in the microwave ferrite material production test. Compared with the normal ferric oxide, we get the same or similar results. It shows that ferric oxide from hematite has a bright application prospect.

  18. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    in an injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...... index of the nanostructured surfaces was estimated from atomic force micrographs and the theoretical reflectance was calculated using the transfer matrix method and effective medium theory. The measured reflectance shows good agreement with the theory of graded index antireflective nanostructures...

  19. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  20. Nanostructured Solar Cells.

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  1. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  2. Laser-induced micron and submicron ordering effects in quasi-percolated nanostructured silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Poniatowski, E; Alonso-Huitron, J C; Acosta-Zepeda, C [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco No. 186 Colonia Vicentina, CP 09340 Mexico DF (Mexico); Acosta-Garcia, M C; Batina, N, E-mail: haro@xanum.uam.m [Departamento de Quimica, Universidad Autonoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco No. 186 Colonia Vicentina, CP 09340 Mexico DF (Mexico)

    2009-09-02

    Quasi-percolated nanostructured silver thin films are used as the starting morphology for inducing simultaneously changes in shape and ordering effects by laser irradiation. The complex fingered nanostructures are transformed into nanospheres which in turn are arranged in micro-circular patterns when irradiated through a pinhole. These transformations are characterized by transmission electron microscopy and atomic force microscopy. The observed effects are explained using Fresnel diffraction theory. Good agreement with the experimental results is obtained. These results suggest that precise patterning engineering can be achieved through control of the spatial parameters such as the pinhole diameter and the distance from the mask to the sample.

  3. High-dose neutron irradiation embrittlement of RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Gaganidze, E. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: ermile.gaganidze@imf.fzk.de; Schneider, H.-C. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, P.O. Box 3640, 76021 Karlsruhe (Germany); Dafferner, B. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, P.O. Box 3640, 76021 Karlsruhe (Germany); Aktaa, J. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2006-09-01

    Neutron irradiation-induced embrittlement of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 was studied under different heat treatment conditions. Irradiation was performed in the Petten High Flux Reactor within the HFR Phase-IIb (SPICE) irradiation project up to 16.3 dpa and at different irradiation temperatures (250-450 deg. C). Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) were also irradiated at selected temperatures. The impact properties were investigated by instrumented Charpy-V tests with subsize specimens. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement in terms of the parameter C = {delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates no hardening embrittlement.

  4. High-dose neutron irradiation embrittlement of RAFM steels

    Science.gov (United States)

    Gaganidze, E.; Schneider, H.-C.; Dafferner, B.; Aktaa, J.

    2006-09-01

    Neutron irradiation-induced embrittlement of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 was studied under different heat treatment conditions. Irradiation was performed in the Petten High Flux Reactor within the HFR Phase-IIb (SPICE) irradiation project up to 16.3 dpa and at different irradiation temperatures (250-450 °C). Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) were also irradiated at selected temperatures. The impact properties were investigated by instrumented Charpy-V tests with subsize specimens. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement in terms of the parameter C = ΔDBTT/Δ σ indicates hardening-dominated embrittlement at irradiation temperatures below 350 °C with 0.17 ⩽ C ⩽ 0.53 °C/MPa. Scattering of C at irradiation temperatures above 400 °C indicates no hardening embrittlement.

  5. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    Science.gov (United States)

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  6. Microstructural Features During Strain Induced Ferrite Transformation in 08 and 20Mn Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The microstructure evolution during strain induced ferrite transformation was followed in thermal-simulation tests of clean 08 and 20Mn steels. The influences of carbon equivalence and initial austenite grain size on ferrite grain refinement and the volume fraction of ferrite during straining were inspected. The results revealed that the accelerating effect of ferrite transformation by strain was increased as the carbon equivalence decreased. However, finer ferrite grains were obtained at higher carbon content. At strain of ~1.5 ferrite grains less than 3m and 2m can be obtained in 08 and 20Mn steels respectively. Whereas the ferrite grain refinement in 08 steel was due to both effects of strain induced transformation and ferrite dynamic recrystallization, that in 20Mn was mainly due to strain induced transformation. Heavy strain can produce fine ferrite grains in coarse austenite grained 08 steel, but it would lead to band microstructure in coarse austenite grained 20Mn.

  7. Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources.

    Science.gov (United States)

    Kulevoy, Timur V; Chalyhk, Boris B; Fedin, Petr A; Sitnikov, Alexey L; Kozlov, Alexander V; Kuibeda, Rostislav P; Andrianov, Stanislav L; Orlov, Nikolay N; Kravchuk, Konstantin S; Rogozhkin, Sergey V; Useinov, Alexey S; Oks, Efim M; Bogachev, Alexey A; Nikitin, Alexander A; Iskandarov, Nasib A; Golubev, Alexander A

    2016-02-01

    Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.

  8. Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Kulevoy, Timur V., E-mail: kulevoy@itep.ru; Orlov, Nikolay N.; Rogozhkin, Sergey V.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Moscow (Russian Federation); Kravchuk, Konstantin S.; Useinov, Alexey S. [Technological Institute for Superhard and Novel Carbon Materials, Moscow (Russian Federation); Oks, Efim M. [Institute of High Current Electronics SB RAS, Tomsk (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk (Russian Federation)

    2016-02-15

    Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.

  9. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    Science.gov (United States)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  10. Nanostructured intense-laser cleaner

    CERN Document Server

    Li, Xiao Feng; Kong, Qing; Wang, Ping Xiao; Yu, Qin; Gu, Yan Jan; Qu, Jun Fan

    2016-01-01

    A nanostructured target is proposed to enhance an intense-laser contrast: when a laser prepulse is injected on a nanostructured solid target surface, the prepulse is absorbed effectively by the nanostructured surface. The nanostructure size should be less than the laser wavelength. After the prepulse absorption, the front part of the main pulse destroys the microstructure and makes the surface a flat plasma mirror. The body of the main pulse is reflected almost perfectly. Compared with the plasma mirrors, the nanostructured surface is effective for the absorption of the intense laser prepulse, higher than 10^14 W/cm2. By the nanostructured laser cleaner, the laser pulse contrast increases about a hundredfold. The nanostructured laser cleaner works well for near-future intense lasers.

  11. Magnetic Nano-structures

    Institute of Scientific and Technical Information of China (English)

    姚永德

    2004-01-01

    Fabrication of magnetic nano-structures with dots array and wires has been paid attention recently due to the application of high-density magnetic recording. In this study, we fabricated the magnetic dots array and wires through several ways that ensure the arrangement of magnetic dots and wires to be the structures we designed. Their magnetic properties are studied experimentally.

  12. Atomically Traceable Nanostructure Fabrication.

    Science.gov (United States)

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  13. Antibacterial Au nanostructured surfaces

    Science.gov (United States)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was information (ESI) available. See DOI: 10.1039/c5nr06157a

  14. Complex WS 2 nanostructures

    Science.gov (United States)

    Whitby, R. L. D.; Hsu, W. K.; Lee, T. H.; Boothroyd, C. B.; Kroto, H. W.; Walton, D. R. M.

    2002-06-01

    A range of elegant tubular and conical nanostructures has been created by template growth of (WS 2) n layers on the surfaces of single-walled carbon nanotube bundles. The structures exhibit remarkably perfect straight segments together with interesting complexities at the intersections, which are discussed here in detail in order to enhance understanding of the structural features governing tube growth.

  15. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    Science.gov (United States)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  16. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  17. A closer look at the fracture toughness of ferritic/martensitic steels

    Science.gov (United States)

    Lucon, Enrico

    2007-08-01

    SCK·CEN has characterized the mechanical properties of several ferritic/martensitic steels, both unirradiated and irradiated. Fracture toughness has been evaluated using Charpy impact and fracture mechanics tests. Two safety-related features have emerged: (a) the applicability of the master curve approach (ASTM E1921-05) appears questionable; and (b) irradiation embrittlement is systematically larger when quantified in terms of quasi-static fracture toughness than when measured from Charpy tests. Both issues are examined in detail and possible interpretations are proposed; potential improvements given by the application of more advanced fracture toughness analysis methodologies are discussed. In order to clarify whether the Charpy/fracture toughness difference in embrittlement is due to loading rate effects, dynamic toughness tests have been performed in the unirradiated condition and for two irradiation doses (0.3 and 1.6 dpa). The corresponding dynamic T0 shifts have been compared with the shifts of Charpy and master curve quasi-static transition temperatures. Other possible contributions are examined and discussed.

  18. Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    a different approach when deciding their operating point. In this work, laboratory measured BH curves of a ferrite magnet are used for estimating the possibility of demagnetization in a segmented axial torus (SAT) permanent magnet brushless DC (PMBLDC) motor. The BH characteristics for different temperatures...... have been used to study the performance variation of the ferrite magnet SAT PMBLDC motor with temperature. A detailed analysis is carried out to ensure that, the designed ferrite magnet motor is capable of delivering the specified torque throughout the operating speed, without any irreversible...... demagnetization of magnets. It has been shown that the ferrite magnet PMBLDC motor operation is influenced by the magnet temperature and the maximum motor speed for a given load torque decreases as the magnet temperature drops....

  19. New sintering process adjusts magnetic value of ferrite cores

    Science.gov (United States)

    Vinal, A. W.

    1964-01-01

    A two-phase sintering technique based on time and temperature permits reversible control of the coercive threshold of sintered ferrite cores. Threshold coercivity may be controlled over a substantial range of values by selective control of the cooling rate.

  20. Ferrite core coupled slapper detonator apparatus and method

    Science.gov (United States)

    Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  1. Mössbauer and magnetization studies of nanosize chromium ferrite

    African Journals Online (AJOL)

    user

    Synthesized chromium ferrite powders were in good phase and .... This could be because in smaller particles sample defect density is very high due to more broken .... nanosize particles using co-precipitation technique followed by ball milling, ...

  2. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    Directory of Open Access Journals (Sweden)

    K Bi

    Full Text Available A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  3. Ferrite-filled cavities for compact planar resonators

    Science.gov (United States)

    Keatley, P. S.; Durrant, C. J.; Berry, S. J.; Sirotkin, E.; Hibbins, A. P.; Hicken, R. J.

    2014-01-01

    Sub-wavelength metallic planar cavities, closed at one end, have been constructed by wrapping aluminium foil around teflon or ferrite slabs. Finite cavity width perturbs the fundamental cavity mode frequency of ferrite-filled cavities due to different permeability inside and outside of the cavity, in contrast to teflon-filled cavities, while the cavity length required to achieve a specific resonance frequency is significantly reduced for a ferrite-filled cavity. Ferrite-filled cavities may be excited by an in-plane alternating magnetic field and may be advantageous for high-frequency (HF) and ultra HF tagging and radio frequency identification of metallic objects within security, manufacturing, and shipping environments.

  4. Application of Ferrite Nanomaterial in RF On-Chip Inductors

    Directory of Open Access Journals (Sweden)

    Hua-Lin Cai

    2013-01-01

    Full Text Available Several kinds of ferrite-integrated on-chip inductors are presented. Ferrite nanomaterial applied in RF on-chip inductors is prepared and analyzed to show the properties of high permeability, high ferromagnetic resonance frequency, high resistivity, and low loss, which has the potential that will improve the performance of RF on-chip inductors. Simulations of different coil and ferrite nanomaterial parameters, inductor structures, and surrounding structures are also conducted to achieve the trend of gains of inductance and quality factor of on-chip inductors. By integrating the prepared ferrite magnetic nanomaterial to the on-chip inductors with different structures, the measurement performances show an obvious improvement even in GHz frequency range. In addition, the studies of CMOS compatible process to integrate the nanomaterial promote the widespread application of magnetic nanomaterial in RF on-chip inductors.

  5. Irradiation of carbon nanotubes with carbon projectiles: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Cristian D. [Departamento de Fisica Aplicada, Universidad de Alicante, 03080 Alicante (Spain); Heredia-Avalos, Santiago; Moreno-Marin, Juan Carlos [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, 03080 Alicante (Spain)

    2013-04-15

    The irradiation of carbon based nanostructures with ions and electrons has been shown to be an appropriate tool to tailor their properties. The defects induced in the nanostructures during irradiation are able to modify their mechanical and electronic properties. Here we simulate the irradiation of carbon nanotubes with carbon ions using a molecular dynamics code. We use the Tersoff potential joined smoothly to the Universal Ziegler-Biersack-Littmark potential at short distances. We study the number of defects produced after irradiation with a single carbon ion finding a saturation with its energy at {proportional_to} 3 keV. We observe, after continuum irradiation with low energy ions, the formation of bumps in the irradiated region. For larger energy ions we find that the diameter of the nanotube shrinks as shown in previous works. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding

    Science.gov (United States)

    Dubuisson, Philippe; Carlan, Yann de; Garat, Véronique; Blat, Martine

    2012-09-01

    The development of ODS materials for the cladding for Sodium Fast Reactors is a key issue to achieve the objectives required for the GEN IV reactors. CEA, AREVA and EDF have launched in 2007 an important program to determine the optimal fabrication parameters, and to measure and understand the microstructure and properties before, under and after irradiation of such cladding materials. The aim of this paper is to present the French program and the major results obtained recently at CEA on Fe-9/14/18Cr1WTiY2O3 ferritic/martensitic ODS materials. The first step of the program was to consolidate Fe-9/14/18Cr ODS materials as plates and bars to study the microstructure and the mechanical properties of the new alloys. The second step consists in producing tubes at a geometry representative of the cladding of new Sodium Fast Reactors. The optimization of the fabrication route at the laboratory scale is conducted and different tubes were produced. Their microstructure depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. To join the plug to the tube, the reference process is the welding resistance. A specific approach is developed to model the process and support the development of the welds performed within the "SOPRANO" facility. The development at CEA of Fe-9/14/18Cr new ODS materials for the cladding for GENIV Sodium Fast Reactors is in progress. The first microstructural and mechanical characterizations are very encouraging and the full assessment and qualification of this new alloys and products will pass through the irradiation of specimens, tubes, fuel pins and subassemblies up to high doses.

  7. Microstructure Evolution in Nano-reinforced Ferritic Steel Processed By Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Boulnat, Xavier; Perez, Michel; Fabregue, Damien; Douillard, Thierry; Mathon, Marie-Hélène; de Carlan, Yann

    2013-11-01

    Oxide-dispersion strengthened ferritic steel was produced by high-energy attrition, leading to a complex nanostructure with deformed ferritic grains. After mechanical alloying, the powder was then consolidated by spark plasma sintering (SPS) using various thermo-mechanical treatments. Hot isostatic pressing (HIP) was also performed on the same powder for comparison. Above 1123 K (850 °C), SPS consolidation-induced heterogeneous microstructure composed of ultra-fine-grained regions surrounded by larger grains. Spatial distribution of the stored energy was measured in the bimodal microstructure using the Kernel average misorientation. In contrary to large recrystallized grains, ultra-fine grains are still substructured with low-angle grain boundaries. The precipitation kinetics of the nano-oxides during consolidation was determined by small-angle neutron scattering. Precipitation mainly occurred during the heating stage, leading to a high density of nanoclusters that are of prime importance for the mechanical properties. Other coarser titanium-enriched oxides were also detected. The multiscale characterization allowed us to understand and model the evolution of the complex microstructure. An analytical evaluation of the contributing mechanisms explains the appearance of the complex grain structure and its thermal stability during further heat treatments. Inhomogeneous distribution of plastic deformation in the powder is the major cause of heterogeneous recrystallization and further grain growth during hot consolidation. Then, the thermal stability of coherent nano-oxides is responsible for effective grain boundary pinning in recovered regions where the driving pressure for recrystallization is lowered. This scenario is confirmed in both SPSed and HIPed materials.

  8. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    S S Bellad; S C Watawe; A M Shaikh; B K Chougule

    2000-04-01

    Polycrystalline Li0.5–/2 Cd Fe2.5–/2O4 ferrites where = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 were prepared by a double sintering ceramic technique and characterized by X-ray diffraction and scanning electron microscopy (SEM). The lattice parameter is found to increase monotonically with the cadmium content. It is explained in terms of the sizes of component ions. The grain size of the samples increases up to = 0.3 and then it decreases for higher values of . A similar trend is observed in the variation of Ms with Cd2+ content. The initial permeability () is however found to increase continuously with . The increase in is attributed to decrease of anisotropy constant K1 and higher grain size of the samples.

  9. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...... measurements it is revealed that ZnFe2O4 particles prepared are in superparamagnetic state at ambient temperature. A doublet with an average quadrupole splitting of 0.8 nm/s is observed for the as-milled sample at 295 K, which is much larger than that for bulk ZnFe2O4 prepared by traditional ceramic method...... and that for ultrafine ZnFe2O4 particles prepared by the co-precipitation method. This indicates larger structural defects in the nanometer-sized ZnFe2O4 particles prepared by high-energy ball milling....

  10. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    S P Dalawai; T J Shinde; A B Gadkari; P N Vasambekar

    2013-10-01

    Ferrite samples with composition, CdCo1−Fe2O4 ( = 0.80, 0.85, 0.90, 0.95 and 1.0), were prepared by standard ceramic method and characterized by XRD, IR and SEM techniques. X-ray analysis confirms the formation of single phase cubic spinel structure. Lattice constant and grain size of the samples increase with increase in cadmium content. Bond length (A–O) and ionic radii (A) on -sites increase, whereas bond length (B–O) and ionic radii (B) on -site decrease. The crystallite sites of the samples lie in the range of 29.1–42.8 nm. IR study shows two absorption bands around 400 cm-1 and 600 cm-1 corresponding to tetrahedral and octahedral sites, respectively.

  11. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  12. Ethanol sensor based on nanocrystallite cadmium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Gadkari, Ashok B., E-mail: ashokgadkari88@yahoo.com [Department of Physics, GKG College, Kolhapur-416012 (India); Shinde, Tukaram J. [Department of Physics, KRP Kanya Mahavidyalaya, Islampur-415409 (India); Vasambekar, Pramod N. [Department of Electronics, Shivaji University Kolhapur-416004 (India)

    2015-06-24

    The cadmium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM techniques, respectively. The nanocrystallite CdFe{sub 2}O{sub 4} sensor was tested for LPG, Cl{sub 2} and C{sub 2}H{sub 5}OH. The sensitivity was measured at various operating temperatures in the range of 100-400°C. The sensor shows highest sensitivity and selectivity to C{sub 2}H{sub 5}OH at 350°C. The response and recovery time was measured at operating temperature of 350°C. The sensor exhibits a lower response and recovery time for LPG and Cl{sub 2} as compared to ethanol.

  13. Joining Techniques for Ferritic ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  14. Propagation along azimuthally magnetized ferrite-loaded circular waveguides

    Science.gov (United States)

    Mueller, R. S.; Rosenbaum, F. J.

    1977-01-01

    The paper describes the modal dispersion characteristics of electromagnetic waves traveling along the azimuthally magnetized ferrite-loaded coaxial transmission line and the ferrite-loaded wire. The modal dispersion curves are used to determine the pass and stop bands of normal propagation. Boundary-value problems were solved with Bolle-Heller functions. The dispersion characteristics of transverse electric modes are presented as plots of the normalized propagation constant vs the normalized frequency.

  15. Residual ferrite formation in 12CrODS steels

    OpenAIRE

    Ukai, S.; Kudo, Y.; Wu, X; N. Oono; Hayashi, S.(University of Tokyo, Tokyo, Japan); Ohtsuka, S; T. Kaito

    2014-01-01

    Increasing Cr content from 9 to 12 mass% leads to superior corrosion and high-temperature oxidation resistances, and usually changes microstructure from martensite to a ferrite. To make transformable martensitic type of 12CrODS steels that have superior processing capability by using alpha/gamma phase transformation, alloy design was conducted through varying nickel content. The structure of 12CrODS steels was successfully modified from full ferrite to a transformable martensite-base matrix c...

  16. Processing of Ultralow Carbon Pipeline Steels with Acicular Ferrite

    Institute of Scientific and Technical Information of China (English)

    Furen XIAO; Mingchun ZHAO; Yiyin SHAN; Bo LIAO; Ke YANG

    2004-01-01

    Acicular ferrite microstructure was achieved for an ultralow carbon pipeline steel through the improved thermomechanical control process (TMCP), which was based on the transformation process of deformed austenite of steel.Compared with commercial pipeline steels, the experimental ultralow carbon pipeline steel possessed the satisfied strength and toughness behaviors under the current improved TMCP, although it contained only approximately 0.025% C, which should mainly be attributed to the microstructural characteristics of acicular ferrite.

  17. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  18. Formation of nanoscale titanium carbides in ferrite: an atomic study

    Science.gov (United States)

    Lv, Yanan; Hodgson, Peter; Kong, Lingxue; Gao, Weimin

    2016-03-01

    The formation and evolution of nanoscale titanium carbide in ferrite during the early isothermal annealing process were investigated via molecular dynamics simulation. The atomic interactions of titanium and carbon atoms during the initial formation process explained the atoms aggregation and carbides formation. It was found that the aggregation and dissociation of titanium carbide occurred simultaneously, and the composition of carbide clusters varied in a wide range. A mechanism for the formation of titanium carbide clusters in ferrite was disclosed.

  19. Ferrite bead effect on Class-D amplifier audio quality

    OpenAIRE

    Haddad, Kevin El; Mrad, Roberto; Morel, Florent; Pillonnet, Gael; Vollaire, Christian; Nagari, Angelo

    2014-01-01

    International audience; This paper studies the effect of ferrite beads on the audio quality of Class-D audio amplifiers. This latter is a switch-ing circuit which creates high frequency harmonics. Generally, a filter is used at the amplifier output for the sake of electro-magnetic compatibility (EMC). So often, in integrated solutions, this filter contains ferrite beads which are magnetic components and present nonlinear behavior. Time domain measurements and their equivalence in frequency do...

  20. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ping [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Gao, Guhui, E-mail: gaogh@bjtu.edu.cn [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Han [Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Tan, Zhunli [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Misra, R.DK. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968-0520 (United States); Bai, Bingzhe [Material Science & Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Tsinghua University, Key Laboratory of Advanced Material, School of Material Science and Engineering, Beijing 100084 (China)

    2016-04-20

    We elucidate here the mechanistic contribution of the application of quenching and partitioning (Q&P) concept to a high carbon Mn-Si-Cr steel in obtaining a multiphase microstructure comprising of martensite/austenite and nanostructured bainite (bainitic ferrite and nanometer-sized film-like retained austenite) that exhibited tensile strength of 1923 MPa and total elongation of 18.3%. The excellent mechanical properties are attributed to the enhanced refinement of blocky austenite islands obtained by the Q&P process. The austenite was stabilized by both carbon partitioning from martensite and bainite transformation. Compared with conventional heat treatment to produce nanostructured bainite, the total time is significantly reduced without degradation of mechanical properties.

  1. Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles

    Science.gov (United States)

    Mameli, V.; Musinu, A.; Ardu, A.; Ennas, G.; Peddis, D.; Niznansky, D.; Sangregorio, C.; Innocenti, C.; Thanh, Nguyen T. K.; Cannas, C.

    2016-05-01

    The possibility to finely control nanostructured cubic ferrites (MIIFe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict. In this context, this work aims to discuss the magnetic properties and the heating abilities of Zn-substituted cobalt ferrite nanoparticles with different zinc contents (ZnxCo1-xFe2O4 with 0 100 emu g-1). The increase in the zinc content up to x = 0.46 in the structure has resulted in an increase of the saturation magnetisation (Ms) at 5 K. High Ms values have also been revealed at room temperature (~90 emu g-1) for both CoFe2O4 and Zn0.30Co0.70Fe2O4 samples and their heating ability has been tested. Despite a similar saturation magnetisation, the specific absorption rate value for the cobalt ferrite is three times higher than the Zn-substituted one. DC magnetometry results were not sufficient to justify these data, the experimental conditions of SAR and static measurements being quite different. The synergic combination of DC with AC magnetometry and 57Fe Mössbauer spectroscopy represents a powerful tool to get new insights into the design of suitable heat mediators for magnetic fluid hyperthermia.The possibility to finely control nanostructured cubic ferrites (MIIFe2O4) paves the way to design materials with the desired magnetic properties for specific applications. However, the strict and complex interrelation among the chemical composition, size, polydispersity, shape and surface coating renders their correlation with the magnetic properties not trivial to predict. In this context, this work aims to discuss the magnetic properties and the heating abilities of Zn-substituted cobalt ferrite nanoparticles with different zinc contents (ZnxCo1-xFe2O4 with 0 100 emu g-1). The increase in the

  2. Tuning the magnetism of ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Viñas, S. Liébana [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Departamento de Física Aplicada, Universidade de Vigo, Vigo 36310 (Spain); Simeonidis, K. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Li, Z.-A.; Ma, Z. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Myrovali, E.; Makridis, A.; Sakellari, D. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Angelakeris, M., E-mail: agelaker@auth.gr [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Wiedwald, U.; Spasova, M. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Farle, M., E-mail: michael.farle@uni-due.de [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany)

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe{sub 2}O{sub 4} where M=Fe, Co, Mn) and core–shell ferrite nanoparticles consisting of a magnetically softer (MnFe{sub 2}O{sub 4}) or magnetically harder (CoFe{sub 2}O{sub 4}) core and a magnetite (Fe{sub 3}O{sub 4}) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe{sub 2}O{sub 4}) by Fe{sub 3}O{sub 4} provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe{sub 3}O{sub 4} outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects. - Highlights: • Magnetic hyperthermia is studied for 10 nm single and core/shell ferrite nanoparticles. • Maximum heating rate is observed for Fe{sub 3}O{sub 4}-coated CoFe{sub 2}O{sub 4} nanoparticles. • The increase is attributed to the interaction of phases with different anisotropy. • The presence of biocompatible Fe{sub 3}O{sub 4} shell potentially minimizes toxic side-effects.

  3. Electric properties of Co substituted Ni-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ghodake, J.S. [Department of Physics, Solapur University, Solapur 413255, MS (India); Kambale, R.C., E-mail: rckambale@hotmail.co [Department of Physics, Shivaji University, Kolhapur 416004 (India); Salvi, S.V. [Department of Physics, Birla college, Kalyan, Mumbai, MS (India); Sawant, S.R. [Department of Electronics, Shivaji University, Kolhapur 416004 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.co [Department of Physics, Solapur University, Solapur 413255, MS (India)

    2009-11-03

    Nanocrystalline Ni-Co-Zn ferrites have been synthesized by chemical co precipitation method, using oxalate precursors. The phase formation of the sintered ferrite was confirmed by X-ray diffraction study. The lattice parameter 'a' increases with the addition of Co{sup 2+} content in the Ni-Zn ferrites. The electrical resistivity (rho) of mixed Ni-Zn ferrites has been studied as a function of varying Co{sup 2+} compositions. The resistivity was found to increase with the addition Co content in the Ni-Zn ferrite matrix. The variation of dc resistivity as a function of temperature is almost linear up to the Curie temperature and thereafter a break occurs indicating a change of magnetic ordering from ferrimagnetism to paramagnetism. The values of activation energy in paramagnetic region are found to be greater than those in ferrimagnetic region, which suggests that the process of conduction is affected by the change in magnetic ordering. The dielectric properties were studied as a function of frequency by using an LCR precision meter bridge. It was observed that the dielectric constant (epsilon') and dielectric loss tangent (tan delta) decreases with the substitution of Co{sup 2+} content in the Ni-Zn ferrites.

  4. Coating of zinc ferrite particles with a conducting polymer, polyaniline.

    Science.gov (United States)

    Stejskal, Jaroslav; Trchová, Miroslava; Brodinová, Jitka; Kalenda, Petr; Fedorova, Svetlana V; Prokes, Jan; Zemek, Josef

    2006-06-01

    Particles of zinc ferrite, ZnOFe2O3, were coated with polyaniline (PANI) phosphate during the in situ polymerization of aniline in an aqueous solution of phosphoric acid. The PANI-ferrite composites were characterized by FTIR spectroscopy. X-ray photoelectron spectroscopy was used to determine the degree of coating with a conducting polymer. Even a low content of PANI, 1.4 wt%, resulted in the 45% coating of the particles' surface. On the other hand, even at high PANI content, the coating of ferrite surface did not exceeded 90%. This is explained by the clustering of hydrophobic aniline oligomers at the hydrophilic ferrite surface and the consequent irregular PANI coating. The conductivity increased from 2 x 10(-9) to 6.5 S cm(-1) with increasing fraction of PANI phosphate in the composite. The percolation threshold was located at 3-4 vol% of the conducting component. In the absence of any acid, a conducting product, 1.4 x 10(-2) Scm(-1), was also obtained. As the concentration of phosphoric acid increased to 3 M, the conductivity of the composites reached 1.8 S cm(-1) at 10-14 wt% of PANI. The ferrite alone can act as an oxidant for aniline; a product having a conductivity 0.11 S cm(-1) was obtained after a one-month immersion of ferrite in an acidic solution of aniline.

  5. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    A T Raghavender; K M Jadhav

    2009-12-01

    A series of polycrystalline spinel ferrites with composition, CoFe2–AlO4 (0 ≤ ≤ 1), have been synthesized by sol–gel method. The effect of Al-substitution on structural and dielectric properties is reported in this paper. X-ray diffraction analysis revealed the nanocrystalline nature in the prepared ferrite samples. The particle size, , decreases with increase in Al-content. The lattice parameter, and X-ray density, x, decreased with increase in Al-content. The dielectric properties for all the samples have been studied as a function of frequency in the range 100 Hz–10 MHz. Dielectric properties such as dielectric constant, ′, dielectric loss, ″ and dielectric loss tangent, tan , have been studied for nanocrystalline ferrite samples as a function of frequency. The dielectric constant and dielectric loss obtained for the nanocrystalline ferrites proposed by this technique possess lower value than that of the ferrites prepared by other methods for the same composition. The low dielectric behaviour makes ferrite materials useful in high frequency applications.

  6. Intragranular ferrite morphologies in medium carbon vanadium-microalloyed steel

    Directory of Open Access Journals (Sweden)

    Fadel A.

    2013-01-01

    Full Text Available The aim of this work was to determine TTT diagram of medium carbon V-N micro-alloyed steel with emphasis on the development of intragranular ferrite morphologies. The isothermal treatment was carried out at 350, 400, 450, 500, 550 and 600°C. These treatments were interrupted at different times in order to analyze the evolution of the microstructure. Metallographic evaluation was done using optical and scanning electron microscopy (SEM. The results show that at high temperatures (≥ 500°C polygonal intragranulary nucleated ferrite idiomorphs, combined with grain boundary ferrite and pearlite were produced and followed by an incomplete transformation phenomenon. At intermediate temperatures (450, 500°C an interloced acicular ferrite (AF microstructure is produced, and at low temperatures (400, 350°C the sheave of parallel acicular ferrite plates, similar to bainitic sheaves but intragranularly nucleated were observed. In addition to sheaf type acicular ferrite, the grain boundary nucleated bainitic sheaves are observed. [Projekat Ministartsva nauke Republike Srbije, br. OI174004

  7. Synthesis and characterization of biocompatible hydroxyapatite coated ferrite

    Indian Academy of Sciences (India)

    S Deb; J Giri; S Dasgupta; D Datta; D Bahadur

    2003-12-01

    Ferrite particles coated with biocompatible phases can be used for hyperthermia treatment of cancer. We have synthesized substituted calcium hexaferrite, which is not stable on its own but is stabilized with small substitution of La. Hexaferrite of chemical composition (CaO)0.75(La2O3)0.20(Fe2O3)6 was prepared using citrate gel method. Hydroxyapatite was prepared by precipitating it from aqueous solution of Ca(NO3)2 and (NH4)2HPO4 maintaining pH above 11. Four different methods were used for coating of hydroxyapatite on ferrite particles. SEM with EDX and X-ray diffraction analysis shows clear evidence of coating of hydroxy-apatite on ferrite particles. These coated ferrite particles exhibited coercive field up to 2 kOe, which could be made useful for hysteresis heating in hyperthermia. Studies by culturing BHK-21 cells and WBC over the samples show evidence of biocompatibility. SEM micrographs and cell counts give clear indication of cell growth on the surface of the sample. Finally coated ferrite particle was implanted in Kasaulli mouse to test its biocompatibility. The magnetic properties and biocompatibility studies show that these hydroxyapatite coated ferrites could be useful for hyperthermia.

  8. A high irradiance solar furnace for solar cell characterization and nanomaterial synthesis

    Science.gov (United States)

    Babai, Dotan; Feuermann, Daniel; Gordon, Jeffrey M.

    2010-08-01

    A high irradiance solar furnace geared toward elucidating the distinctive physics of concentrator photovoltaics and driving high-temperature reactors for the generation of novel nanostructures is described, with a target irradiance up to 12 W/mm2. The opto-mechanical design permits real-sun flash illumination at a millisecond time scale so that solar cells can be characterized with only insubstantial increases in cell temperature even at irradiance levels of thousands of suns.

  9. Cr incorporated phase transformation in Y2O3 under ion irradiation

    Science.gov (United States)

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522

  10. Cr incorporated phase transformation in Y2O3 under ion irradiation

    Science.gov (United States)

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.

  11. HYSTERESIS AND ELECTRIC MODULUS ANALYSIS OF Y³⁺ DOPED MnNi-Y-TYPE HEXAGONAL FERRITE

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2016-03-01

    Full Text Available The magnetic, grain morphology and dielectric properties of synthesized Sr₂MnNiFe₁₂O₂₂+xY₂O₃ (x=0-5wt.% ferrite have been investigated via X-ray diffraction (XRD, scanning electron microscopy (SEM and dielectric spectroscopy, respectively. The nanostructure governs increase in inter-grain connectivity with substitution. The appearance of broad peaks in imaginary electric modulus plots (Mʺ show the existence of relaxation process in all these samples. The grain boundary contribution is clearly observed from Cole-Cole plots. The preferential site occupancy of Yttrium ions results in rapid increase of coercivity, hysteresis loops also revealed same effect of substitution. The improved value of coercivity is quite beneficial for the perpendicular recording media which is an emerging technology in the recording media.

  12. Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Rajjab; Mahmood, Azhar [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chughtai, Adeel Hussain [Institute of Chemical Sciences, Bahauddin Zakaryia University, Multan 6100 (Pakistan); Shahid, Muhammad [BK 21 Physics Research Division, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shakir, Imran [Deanship of Scientific Research, College of Engineering, King Saud University, PO Box 800, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq, E-mail: farooqsi_warsi@yahoo.com [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2014-01-25

    Graphical abstract: Ni–Co substituted magnesium ferrite (Mg{sub 1−x} Ni{sub y} Fe{sub 2−y} Co{sub y} O{sub 4}) nano-structures were successfully fabricated by a cheap route. The Mg{sub 0.6} Ni{sub 0.4} Co{sub 0.4} Fe{sub 1.6}O{sub 4} (x, y = 0.4) nano-ferrite exhibited the maximum magnetic behavior and minimum dielectric behavior, that suggested their applications in devices working at GHz frequencies. Highlights: • Mg{sub 1-x}Ni{sub x}Co{sub y}Fe{sub 2-y}O{sub 4} nano ferrites were successfully fabricated by cheap route. • The magnetic behavior was increased up to x = 0.4. • Mg{sub 0.6} Ni{sub 0.4} Co{sub 0.4} Fe{sub 1.6}O{sub 4} nano-ferrite can be used in high frequency devices. -- Abstract: Magnesium ferrite (MgFe{sub 2}O{sub 4}) nano-structures doped with Ni–Co at magnesium and iron sites respectively were fabricated by the micro-emulsion method and characterized by the X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and dielectric measurements. The analysis of XRD patterns confirm the single phase spinel structure and the crystallite size calculated by Scherer’s formula lies in the range of 15–26 nm. The spectral studies elucidate the characteristic feature of spinel phase. The real and imaginary parts of dielectric constant and dielectric loss exhibit peaking behavior. The dielectric properties have been explained on the basis of Debye-type relaxation phenomenon in accordance with Koop’s phenomenological theory. The increase in the tendency of saturation magnetization is consistent with the enhancement of crystallinity. The crystallite size is small enough to obtain considerable signal to noise ratio in the recording media. The optimized dielectric and magnetic parameters suggest that the material with composition Mg{sub 0.6} Ni{sub 0.4} Co{sub 0.4} Fe{sub 1.6}O{sub 4} may be used for applications in recording media and microwave devices.

  13. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite @ Au nanoparticles.

    Science.gov (United States)

    Wang, Xin; Wang, Lingyan; Lim, I-Im S; Bao, Kun; Mott, Derrick; Park, Hye-Young; Luo, Jin; Hao, Shunli; Zhong, Chuan-Jian

    2009-05-01

    The ability to tune the magnetic properties of magnetic nanoparticles by manipulating the composition or surface properties of the nanoparticles is important for exploiting the application of the nanomaterials. This report describes preliminary findings of an investigation of the viability of synthesizing MnZn ferrite and core @ shell MnZn ferrite @ Au nanoparticles as potentially magnetization-tunable nanomaterials. The synthesis of the core-shell magnetic nanoparticles involved a simple combination of seed formation of the MnZn ferrite magnetic nanoparticles and surface coating of the seeds with gold shells. Water-soluble MnZn ferrite nanoparticles of 20-40 nm diameters and MnZn ferrite @ Au nanoparticles of 30-60 nm have been obtained. The MnZn ferrite @ Au nanoparticles have been demonstrated to be viable in magnetic separation of nanoparticles via interparticle antibody-specific binding reactivity between antibodies on the gold shells of the core-shell magnetic particles and proteins on gold nanoparticles. These findings have significant implications to the design of the core @ shell magnetic nanomaterials with core composition tuned magnetization for bioassay application.

  14. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  15. Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures

    Directory of Open Access Journals (Sweden)

    Adeela Nairan

    2016-04-01

    Full Text Available In this work MnxCo1−xFe2O4 nanoparticles (NPs were synthesized using a chemical co-precipitation method. Phase purity and structural analyses of synthesized NPs were performed by X-ray diffractometer (XRD. Transmission electron microscopy (TEM reveals the presence of highly crystalline and narrowly-dispersed NPs with average diameter of 14 nm. The Fourier transform infrared (FTIR spectrum was measured in the range of 400–4000 cm−1 which confirmed the formation of vibrational frequency bands associated with the entire spinel structure. Temperature-dependent magnetic properties in anti-ferromagnet (AFM and ferromagnet (FM structure were investigated with the aid of a physical property measurement system (PPMS. It was observed that magnetic interactions between the AFM (Mn and FM (CoFe2O4 material arise below the Neel temperature of the dopant. Furthermore, hysteresis response was clearly pronounced for the enhancement in magnetic parameters by varying temperature towards absolute zero. It is shown that magnetic properties have been tuned as a function of temperature and an externally-applied field.

  16. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  17. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  18. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  19. Building Composite Fe-Mn Oxide Flower-Like Nanostructures: A Detailed Magnetic Study

    KAUST Repository

    Zuddas, Efisio

    2017-07-21

    Here we show that it’s possible to produce different magnetic core-multiple shells heterostructures from monodispersed iron oxide spherical magnetic seeds by finely controlling the amount of a manganese precursor and using in a smart and simple way a cation exchange synthetic approach. In particular, by increasing the amount of precursor we were able to produce nanostructures ranging from Fe3O4/Mn-ferrite core/single shell nanospheres to larger, flower-like Fe3O4/Mn-ferrite/Mn3O4 core-double shell nanoparticles. We first demonstrate how the formation of the initial thin manganese-ferrite shell determines a dramatic reduction of the superficial disorder in the starting iron oxide, bringing to nanomagnets with lower hardness. Then, the growth of the second and most external manganese oxide shell causes the magnetical hardening of the heterostructures, while its magnetic exchange coupling with the rest of the heterostructure can be antiferromagentic or ferromagnetic, depending on the strength of the applied external magnetic field. This response is similar to that of an iron oxide-manganese oxide core-shell system but differs from what observed in multiple-shell heterostructures. Finally, we report as the most external shell becomes magnetically irrelevant above the ferrimagnetic-paramagnetic transition of the manganese oxide and the resulting magnetic behavior of the flower-like structures is then studied in-depth.

  20. Low temperature synthesis of Mn{0.4}Zn{0.6}In{0.5}Al{0.1}Fe{1.4}O{4} nano-ferrite and characterization for high frequency applications

    Science.gov (United States)

    Mathur, P.; Thakur, A.; Singh, M.

    2008-02-01

    In the present study, nano-ferrite of composition Mn{0.4}Zn{0.6}In{0.5}Al{0.1}Fe{1.4}O{4} has been synthesized by co-precipitation method. Decomposition of residue at a temperature as low as 200 °C, gives the ferrite powder. The ferrite has been, finally, sintered at 500 °C. The structural studies have been made by using X-ray diffraction (XRD) technique and scanning electron microscopy (SEM), which confirms the formation of single spinel phase and nanostructure. The dc resistivity is studied as a function of temperature and values are found more than twice than those for the samples prepared by the other chemical methods ... It is found that the resistivity decreases with an increase in temperature. The initial permeability value is found to be higher as compared to the other chemical routes. The initial permeability value is found to increase with an increase in temperature. At a certain temperature called Curie temperature, it attains a maximum value, after which the initial permeability decreases sharply. Even at nanolevel, appreciable value of initial permeability is obtained and low magnetic losses make these ferrites especially suitable for high frequency applications. The particle size is calculated using Scherrer's equation for Lorentzian peak, which comes out between 55 nm 69 nm. Possible mechanisms contributing to these processes have been discussed.

  1. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  2. Electrons in Nanostructures

    DEFF Research Database (Denmark)

    Flindt, Christian

    2007-01-01

    or a few electrons. Such few-electron devices are expected to form the building blocks of future electrical circuits and it is thus necessary to develop a thorough theoretical understanding of the physics of electrons in nanostructures. Re- garding applications there is a particular interest......-based communication. The statistical description of electron transport through nanostructures is based on rate equations, and the primary contribution of the thesis in that respect is the development of a method that allows for the calculation of the distribution of electrons passing through a device. The method......This thesis concerns theoretical aspects of electrons in man-made nanostruc- tures. Advances in nanofabrication technology during recent decades have made it possible to produce electrical devices on the nano-scale, whose func- tionality is determined by the quantum mechanical nature of a single...

  3. Hybrid phonons in nanostructures

    CERN Document Server

    Ridley, Brian K

    2017-01-01

    Crystalline semiconductor nanostructures have special properties associated with electrons and lattice vibrations and their interaction, and this is the topic of the book. The result of spatial confinement of electrons is indicated in the nomenclature of nonostructures: quantum wells, quantum wires, and quantum dots. Confinement also has a profound effect on lattice vibrations and an account of this is the prime focus. The documentation of the confinement of acoustic modes goes back to Lord Rayleigh’s work in the late nineteenth century, but no such documentation exists for optical modes. Indeed, it is only comparatively recently that any theory of the elastic properties of optical modes exists, and the account given in the book is comprehensive. A model of the lattice dynamics of the diamond lattice is given that reveals the quantitative distinction between acoustic and optical modes and the difference of connection rules that must apply at an interface. The presence of interfaces in nanostructures forces ...

  4. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  5. Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Ainara, E-mail: airodriguez@ceit.es [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); Morant-Miñana, Maria Carmen; Dias-Ponte, Antonio; Martínez-Calderón, Miguel; Gómez-Aranzadi, Mikel; Olaizola, Santiago M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain)

    2015-10-01

    Highlights: • Femtosecond laser-induced surface nanostructures on sputtered platinum thin films. • Three types of structures obtained: random nanostructures, LSFL and HSFL. • Two different modification regimes have been established based on laser fluence. - Abstract: In this work, submicro and nanostructures self-formed on the surface of Platinum thin films under femtosecond laser-pulse irradiation are investigated. A Ti:Sapphire laser system was used to linearly scan 15 mm lines with 100 fs pulses at a central wavelength of 800 nm with a 1 kHz repetition rate. The resulting structures were characterized by scanning electron microscopy (SEM) and 2D-Fast Fourier Transform (2D-FFT) analysis. This analysis of images revealed different types of structures depending on the laser irradiation parameters: random nanostructures, low spatial frequency LIPSS (LSFL) with a periodicity from about 450 to 600 nm, and high spatial frequency LIPSS (HSFL) with a periodicity from about 80 to 200 nm. Two different modifications regimes have been established for the formation of nanostructures: (a) a high-fluence regime in which random nanostructures and LSFL are obtained and (b) a low-fluence regime in which HSFL and LSFL are obtained.

  6. Nanostructured Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  7. Processing Nanostructured Structural Ceramics

    Science.gov (United States)

    2006-08-01

    aspects of the processing of nanostructured ceramics, viz. • • • The production of a flowable and compactable dry nanopowder suitable for use in... composition due to the different synthesis routes used. Therefore, ‘industry-standard’ dispersants can cause flocculation rather than dispersion...stabilised zirconia (3-YSZ) were no higher than for conventional, micron-sized material of the same composition . However, detailed crystallographic

  8. Characterization of Nanostructured Polymer Films

    Science.gov (United States)

    2014-12-23

    AFRL-OSR-VA-TR-2015-0059 Characterization of Nanostructured Polymer Films RODNEY PRIESTLEY TRUSTEES OF PRINCETON UNIVERSITY Final Report 12/23/2014...Report 3. DATES COVERED (From - To) 06/01/2012-08/31/2014 4. TITLE AND SUBTITLE Characterization of Nanostructured Polymer Films 5a. CONTRACT...properties is due to the film morphology, i.e., the films are nanostructured . The aim of this proposal was to understand the mechanism of film formation and

  9. Physical facets of ultrasonic cavitational synthesis of zinc ferrite particles.

    Science.gov (United States)

    Reddy, Bhaskar Rao; Sivasankar, Thirugnanasambandam; Sivakumar, Manickam; Moholkar, Vijayanand S

    2010-02-01

    This paper addresses the physical features of the ultrasonic cavitational synthesis of zinc ferrite particles and tries to establish the relationship between cavitation physics and sonochemistry of the zinc ferrite synthesis. A dual approach of coupling experimental results with simulations of radial motion of cavitation bubbles has been adopted. The precursors for the zinc ferrite, viz. ZnO and Fe(3)O(4) are produced in situ by the hydrolysis of Zn and Fe(II) acetates stimulated by (*)OH radicals produced from the transient collapse of the cavitation bubbles. Experiments performed under different conditions create significant variation in the production of (*)OH radicals, and hence, the rate of acetate hydrolysis. Correlation of the results of experiments and simulations sheds light on the important facets of the physical mechanism of ultrasonic cavitational zinc ferrite synthesis. It is revealed that too much or too little rate of acetate hydrolysis results in smaller particle size of zinc ferrite. The first effect of a higher rate of hydrolysis leads to excessively large growth of particles, due to which they become susceptible to the disruptive action of cavitation bubbles. Whereas, the second effect of too small rate of hydrolysis of Zn and Fe(II) acetates restricts the growth of particles. It has been observed that the initial reactant concentration does not influence the mean particle size or the size distribution of zinc ferrite particles. The present investigation clearly confirms that the rate-controlling step of zinc ferrite synthesis through ultrasonic cavitational route is the rate of formation of (*)OH radicals from cavitation bubbles.

  10. Sonoelectrochemical Approach Towards Nanostructures

    Science.gov (United States)

    Burda, Clemens; Qiu, Xiaofeng

    2006-03-01

    We will report on the sonoelectrochemical synthesis of nanostructured semiconductor materials. The talk will focus on the control of the nanostructure size, shape, and composition using sonolectrochemistry as a versatile synthesis tool. The synthesis of targeted nanostructures requires thorough control of the redox chemistry during the growth process. The composition of the product can be controlled by changing the initial metal-ligand concentration. Futhermore, the properties of the novel materials will be discussed. Powder X-ray diffraction of the products confirmed the compositional change in the nanomaterials. Control of the involved sonoelectrochemistry also allows for the formation of highly monodispersed 1-D Nanorods. Qiu, Xiaofeng; Lou, Yongbing; Samia, Anna C. S.; Devadoss, Anando; Burgess, James D.; Dayal, Smita; Burda, Clemens. PbTe nanorods by sonoelectrochemistry. Angewandte Chemie, International Edition (2005), 44(36), 5855-5857. Qiu, Xiaofeng; Burda, Clemens; Fu, Ruiling; Pu, Lin; Chen, Hongyuan; Zhu, Junjie. Heterostructured Bi2Se3 Nanowires with Periodic Phase Boundaries. Journal of the American Chemical Society (2004), 126(50), 16276-16277.

  11. Scattering from the Quasi-Optical Ferrite Circulator Using a Coupled Integral Equation/FEM Solution

    Science.gov (United States)

    Epp, L. W.; Hoppe, D. J.; Chinn, G. C.; Lee, J.

    1994-01-01

    Ferrite materials are used in microwave devices that exploit the property of Faraday rotation to give non-reciprocal behavior. Examples of common waveguide components that use ferrite materials include circulators, isolators and gyrators.

  12. Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels

    Science.gov (United States)

    Rezayat, Mohammad; Mirzadeh, Hamed; Namdar, Masih; Parsa, Mohammad Habibi

    2016-02-01

    Considering the detrimental effects of delta ferrite stringers in austenitic stainless steels and the industrial considerations regarding energy consumption, investigating, and optimizing the kinetics of delta ferrite removal is of vital importance. In the current study, a model alloy prone to the formation of austenite/delta ferrite dual phase microstructure was subjected to thermomechanical treatment using the wedge rolling test aiming to dissolve delta ferrite. The effect of introducing lattice defects and occurrence of dynamic recrystallization (DRX) were investigated. It was revealed that pipe diffusion is responsible for delta ferrite removal during thermomechanical process, whereas when the DRX is dominant, the kinetics of delta ferrite dissolution tends toward that of the static homogenization treatment for delta ferrite removal that is based on the lattice diffusion of Cr and Ni in austenite. It was concluded that the optimum condition for dissolution of delta ferrite can be defined by the highest rolling temperature and strain in which DRX is not pronounced.

  13. Low temperature sintering of MgCuZn ferrite and its electrical and magnetic properties

    Indian Academy of Sciences (India)

    S R Murthy

    2001-08-01

    The low temperature sintering of MgCuZn ferrite was investigated using the usual ceramic method. The effect of Cu substitution on the properties of MgZn ferrites was also investigated and it was found that the densification of MgCuZn ferrite is dependent upon Cu concentration. The sintered ferrite with a density of 4.93 g/cm3 and electrical resistivity > 1011-cm was obtained for the ferrite with 12 mol% Cu at relatively low sintering temperature (910°C). The magnetic properties of the ferrites also improved by the Cu substitution. The chip inductors made of the ferrite fired at 910 C with 12 mol% Cu exhibited higher d.c. resistance. From these studies it is concluded that the good quality chip inductor can be obtained using the MgCuZn ferrites.

  14. Synthesis of Novel Ferrite Based Recyclable Catalyst Used to Clean Dye and Emerging Contaminates from Water

    Science.gov (United States)

    Herein, we describe synthesis of novel palladium, copper, cobalt and vanadium ferrites. The ferrites were synthesized by combustion method using polyvinyl alcohol. The particles phases were confirmed using X-ray diffraction and sizes were determined using particle size analyzer. ...

  15. Synthesis of Novel Ferrite Based Recyclable Catalyst Used to Clean Dye and Emerging Contaminates from Water

    Science.gov (United States)

    Herein, we describe synthesis of novel palladium, copper, cobalt and vanadium ferrites. The ferrites were synthesized by combustion method using polyvinyl alcohol. The particles phases were confirmed using X-ray diffraction and sizes were determined using particle size analyzer. ...

  16. Performance of ferrite fillers on electrical behavior of polymer nanocomposite electrolyte

    Science.gov (United States)

    Pandey, Kamlesh; Mauli Dwivedi, Mrigank; Singh, Markandey; Agrawal, S. L.

    2011-04-01

    Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al-Zn ferrite, Mg-Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO-7NH4SCN]: X ferrite (where X = 2% in Al-Zn ferrite, 1% Mg-Zn ferrite, and 1% Zn ferrite) system.

  17. Coherent control near metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Ilya [Los Alamos National Laboratory; Efimov, Anatoly [Los Alamos National Laboratory

    2008-01-01

    We study coherent control in the vicinity of metallic nanostructures. Unlike in the case of control in gas or liquid phase, the collective response of electrons in a metallic nanostructure can significantly enhance different frequency components of the control field. This enhancement strongly depends on the geometry of the nanostructure and can substantially modify the temporal profile of the local control field. The changes in the amplitude and phase of the control field near the nanostructure are studied using linear response theory. The inverse problem of finding the external electromagnetic field to generate the desired local control field is considered and solved.

  18. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  19. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  20. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Rementeria, Rosalia, E-mail: rosalia.rementeria@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Morales-Rivas, Lucia, E-mail: lucia.morales@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Kuntz, Matthias, E-mail: matthias.kuntz2@de.bosch.com [Robert Bosch GmbH, Materials and Processing Department, Renningen, 70465 Stuttgart (Germany); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Kerscher, Eberhard, E-mail: kerscher@mv.uni-kl.de [University of Kaiserslautern, Materials Testing, Gottlieb-Damiler-Straße, 67663 Kaiserslautern (Germany); Sourmail, Thomas, E-mail: thomas.sourmail@ascometal.com [Ascometal-CREAS (Research Centre) Metallurgy, BP 70045, Hagondange Cedex 57301 (France); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain)

    2015-04-10

    Nanostructured bainite is not a novel laboratory-scale steel anymore and the interest on the commercial production of these microstructures by steelmakers and end-users is now conceivable. These microstructures are achieved through the isothermal transformation of high-carbon high-silicon steels at low temperature, leading to nanoscale plates of ferrite with thickness of 20–40 nm and retained austenite. Nanostructured bainitic steels present the highest strength/toughness combinations ever recorded in bainitic steels (2.2 GPa/40 MPa m{sup 1/2}) and the potential for engineering components is alluring. However, fatigue properties, responsible of the durability of a component, remain to be examined. In order to understand the role of the microstructure during the fatigue crack propagation, the crack path in three nanoscale bainitic structures has been analysed on the basis of the relationships between grain misorientations and grain boundaries by Electron Backscatter Diffraction. Active slip systems in bainitic ferrite and crack deflection at grain boundaries have been identified, while retained austenite is cast doubt on its role.