WorldWideScience

Sample records for irradiated molten lead

  1. Compatibility tests on steels in molten lead and lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, C. E-mail: concetta@netbra.brasimone.enea.it; Benamati, G.; Martini, C.; Palombarini, G

    2001-07-01

    The compatibility of steels with liquid lead and liquid lead-bismuth is a critical issue for the development of accelerator-driven system (ADS). In this work the results of a set of preliminary tests carried out in stagnant molten lead at 737 K and in lead-bismuth at 573, 673 and 749 K are summarised. The tests were conducted for 700, 1200, 1500 and 5000 h. Three steels were tested: two martensitic steels (mod. F82H and MANET II) and one austenitic steel (AISI 316L). The martensitic steels underwent oxidation phenomena at the higher testing temperature, due to oxygen dissolved in the melts. At a lower test temperature (573 K) and higher exposure time (5000 h) the oxidation rate of the martensitic steel seems to be lower and the developed oxide layer protective against liquid metal corrosion. The austenitic steel, in turn, exhibited an acceptable resistance to corrosion-oxidation under the test conditions.

  2. Changes in the chemical structure of polytetrafluoroethylene induced by electron beam irradiation in the molten state

    CERN Document Server

    Lappan, U; Lunkwitz, K

    2000-01-01

    Polytetrafluoroethylene (PTFE) was exposed to electron beam radiation at elevated temperature above the melting point under nitrogen atmosphere and in vacuum for comparison. Fourier-transform infrared (FTIR) spectroscopy was used to study the changes in the chemical structure. The irradiation under nitrogen atmosphere leads to the same structures as described recently for PTFE irradiated in vacuum. Trifluoromethyl branches and double bond structures were detected. The concentrations of terminal and internal double bonds are higher after irradiation under nitrogen than in vacuum. Annealing experiments have shown that the thermal oxidative stability of the radiation-modified PTFE is reduced compared to unirradiated PTFE. The reason are the formation of unstable structures such as double bonds.

  3. Corrosion behaviour of 12Cr-ODS steel in molten lead

    Energy Technology Data Exchange (ETDEWEB)

    Di Gabriele, Fosca [Centrum vyzkumu Rez s.r.o. (CVRez), Hlavní 130, 250 68 Husinec-Rez (Czech Republic); Amore, Stefano [National Research Council, Institute for Energetics and Interphases (CNR-IENI), Via de Marini 6, 16149 Genoa (Italy); Scaiola, Celeste [University of Genoa, Department of Civil, Chemical and Environmental Engineering (DICCA), Via dell’Opera Pia 15, 16145 Genova (Italy); Arato, Elisabetta [National Research Council, Institute for Energetics and Interphases (CNR-IENI), Via de Marini 6, 16149 Genoa (Italy); University of Genoa, Department of Civil, Chemical and Environmental Engineering (DICCA), Via dell’Opera Pia 15, 16145 Genova (Italy); Giuranno, Donatella; Novakovic, Rada [National Research Council, Institute for Energetics and Interphases (CNR-IENI), Via de Marini 6, 16149 Genoa (Italy); Ricci, Enrica, E-mail: e.ricci@ge.ieni.cnr.it [National Research Council, Institute for Energetics and Interphases (CNR-IENI), Via de Marini 6, 16149 Genoa (Italy)

    2014-12-15

    Highlights: • The corrosion of 12Cr-ODS steel was tested in static and flowing liquid lead. • The formation of external oxides and inner diffusion were observed. • In flowing Pb there was removal of the surface oxides and damage. • Oxide scale constitution depending on oxygen concentration. • The morphology of oxides was strongly dependent on the extrusion direction. - Abstract: Oxide dispersion-strengthened (ODS) steels are being studied as potential materials for future Generation IV concepts of Nuclear Fast Reactors. In particular, the use of heavy liquid metals (HLM), lead and lead bismuth eutectic alloy, is foreseen as coolant and target. However, most of the structural materials used traditionally, suffer severe damage when in contact with HLMs. Structural materials such as the austenitic 316L and the ferritic–martensitic T91 steels have been considered for operation at temperature lower than 823 K. On the other hand, for operations at elevated temperature and under severe neutron exposure environment, the ODS steels are taken into account and currently studied. In the frame of the FP7-GETMAT (Generation IV and Transmutation Materials) project, ODS steels containing 12 wt% Cr were tested in different conditions and environments, comparing experimental techniques and results. This paper reports the results of the study on the behaviour of the 12Cr-ODS steel in contact with molten lead at the temperature of 923 K. The corrosion tests were performed both in a static cell (CorAL) and in flowing conditions, in a natural convection loop (COLONRI II), in Pb, for an exposure time up to 2000 h. The microstructure analysis of the specimens was done before and after the corrosion tests. The results of the corrosion experiments in both experimental facilities are described and the characteristics of the oxides developed on the 12Cr-ODS steel are discussed.

  4. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV; Mesures de taux de production d'elements gazeux et volatiles lors de reactions induites par des protons de 1 et 1,4 GeV sur des cibles epaisses de plomb et plomb-bismuth liquides

    Energy Technology Data Exchange (ETDEWEB)

    Tall, Y

    2008-03-15

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  5. Compatibility of Austenitic Steel With Molten Lead-Bismuth-Tin Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LI Yan; WANG Xiao-min

    2011-01-01

    The compatibility of the austenitic AISI 304 steel with Pb-Bi-Sn alloy was analyzed. The AISI 304 steels were immersed in stagnant molten Pb-33.3Bi-33. 3Sn alloy at 400, 500 and 600℃ for different exposure times (100-2 000 h) respectively. XRay diffractio

  6. Effect of the presence of In and Sn in the oxygen chemistry in molten 44.5% lead-55.5% bismuth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Colominas, S.; Verdaguer, A. [Electrochemical Methods Laboratory, Analytical Chemistry Department, ETS Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona (Spain); Abella, J. [Electrochemical Methods Laboratory, Analytical Chemistry Department, ETS Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona (Spain)], E-mail: jordi.abella@iqs.edu

    2008-06-15

    The oxygen activity and its control is a key parameter in the use of molten lead-bismuth eutectic LBE in accelerator-driven systems (ADS) reactors. The presence of pollutants in the molten alloy, such as metallic impurities dissolved from the structural material or from other sources, can modify the oxygen chemistry in the molten alloy. For this reason, the oxygen activity in molten LBE has been studied under the presence of In and Sn as a metallic impurities. All the experiments were performed with a shift of the covering gas from a reductive environment (Ar + 10% H{sub 2}) to air (20% O{sub 2}). These covering gas conditions were used to enable measurement of the electrochemical potential of the sensor in a low oxygen environment and under oxygen saturation conditions of the molten alloy (Me/LBE). All of the tests were performed at 500 deg. C and in stagnant conditions in an autoclave.

  7. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Arkundato, Artoto [Physics Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Su' ud, Zaki [Physics Department, Faculty of Mathematical and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung (Indonesia); Sudarko [Chemistry Department, Faculty of Mathematical and Natural Sciences, Jember University, Jl. Kalimantan 37 Jember (Indonesia); Shafii, Mohammad Ali [Physics Department, Faculty of Mathematical and Natural Sciences, Andalas University, Padang (Indonesia); Celino, Massimo [ENEA, CR Casaccia, Via Anguillarese 301, Rome (Italy)

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction with liquid metal.

  8. Research and Industrial Application of a Process for Direct Reduction of Molten High-Lead Smelting Slag

    Science.gov (United States)

    Li, Weifeng; Zhan, Jing; Fan, Yanqing; Wei, Chang; Zhang, Chuanfu; Hwang, Jiann-Yang

    2017-01-01

    A pyrometallurgical process for the direct reduction of molten high-lead smelting slag obtained by the Shuikoushan (SKS) method was reported in this article using solid anthracite as the fuel and reductant. The chemical composition, the lead phase composition, and the physical properties of the molten high-lead slag were examined. The effects of the process parameters on the recovery rate of valued metals were investigated in the laboratory. According to the experimental results, a new efficient bottom blow reduction furnace was employed in the pilot-scale test for high-lead slag reduction. The results showed the average recovery rate of lead was more than 96.0% with lower Pb and high Zn content of the reducing slag under the condition of reduction temperature 1100-1200°C, coal ratio 5.5-7.5%, reduction time 90-150 min, CaO/SiO2 ratio 0.35-0.45, and FeO/SiO2 ratio 1.4-1.55. Moreover, nearly 250 kg of standard coal per ton of crude Pb output was reduced compared with the blast furnace reduction process.

  9. Reductive smelting of spent lead-acid battery colloid sludge in a molten Na2CO3 salt

    Institute of Scientific and Technical Information of China (English)

    Yu-jie Hu; Chao-bo Tang; Mo-tang Tang; Yong-ming Chen

    2015-01-01

    Lead extraction from spent lead–acid battery paste in a molten Na2CO3 salt containing ZnO as a sulfur-fixing agent was studied. Some influencing factors, including smelting temperature, reaction time, ZnO and salt dosages, were investigated in detail using single-factor experiments. The optimum conditions were determined as follows:T = 880°C;t = 60 min; Na2CO3/paste mass ratio = 2.8:1; and the ZnO dosage is equal to the stoichiometric requirement. Under the optimum conditions, the direct recovery rate of lead reached 98.14%. The re-sults suggested that increases in temperature and salt dosage improved the direct recovery rate of lead. XRD results and thermodynamic cal-culations indicated that the reaction approaches of lead and sulfur were PbSO4→Pb and PbSO4→ZnS, respectively. Sulfur was fixed in the form of ZnS, whereas the molten salt did not react with other components, serving only as a reaction medium.

  10. Break-up Process of Perturbed Molten Metal Jet and Preparation of Lead-Free Solder Balls

    Institute of Scientific and Technical Information of China (English)

    He Lijun; Zhang Shuguang; Zhang Shaoming; Xu Jun; Shi Likai

    2004-01-01

    Solder balls, which are used in advanced electronics packages such as BGA (Ball Grid Array) and CSP (Chip Scale Package) to substitute the leads and realize the electrical and mechanical connections between substrate and chip,have severe specifications in diameter tolerance, roundness and surface quality, and therefore challenge the traditional technologies for fabrication of metallic particles and powders. The present work made a survey of perturbed molten metal jet break-up process, observed the formation and growth of capillary wave of tin-lead melt jet by way of rapid solidification, and on the basis of the above research, successfully obtained tin-lead eutectic and Sn-4.0Ag-0.5Cu lead free solder balls with tight distribution and good sphericity of particles through optimization of processing parameters, forming a solid base for cost effectively producing solder balls.

  11. Measurement of Gas and Volatile Elements Production Cross Section in a Molten Lead-Bismuth Target

    CERN Multimedia

    2002-01-01

    MEGAPIE is a project for a 1 MW liquid PbBi spallation source, to be built at the SINQ facility at the Paul Scherrer Institut, which will be an important step in the roadmap towards the demonstration of the ADS concept and high power molten metal targets in general. In the design and construction of such a challenging project it is extremely important to evaluate the amount and type of gas and volatile elements which will be produced, for a reliable and safe operation of the experiment. Both stable (H, $^{4}$He and other noble gases) and radioactive isotopes are of interest. Currently, different design options are under consideration to deal with the gas produced during operation. \\\\ For a correct estimation of the production cross sections, a measurement with a liquid PbBi target and a proton beam of energy close to the one of MEGAPIE (575 MeV) is necessary. We would like to use the ISOLDE facility, which offers the unique opportunity via its mass spectrometric analysis of the elements present in the gas pha...

  12. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  13. Separation of actinides from irradiated An–Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl–KCl

    Energy Technology Data Exchange (ETDEWEB)

    Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Murakami, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Claux, B.; Meier, R.; Malmbeck, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tsukada, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-04-15

    Highlights: • Electrorefining process in molten LiCl-KCl using solid Al electrodes was demonstrated. • High separation factors of actinides over lanthanides were achieved. • Efficient recovery of actinides from irradiated nuclear fuel was achieved. • Uniform, dense and well adhered deposits were obtained and characterised. • Kinetic parameters of actinide–aluminium alloy formation were evaluated. - Abstract: An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl–KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An–Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U{sub 67}–Pu{sub 19}–Zr{sub 10}–MA{sub 2}–RE{sub 2} (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide–aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  14. Compatibility of SiC and SiC Composites with Molten Lead

    Energy Technology Data Exchange (ETDEWEB)

    H Tunison

    2006-03-07

    The choice of structural material candidates to contain Lead at 1000 C are limited in number. Silicon carbide composites comprise one choice of possible containment materials. Short term screening studies (120 hours) were undertaken to study the behavior of Silicon Carbide, Silicon Nitride, elemental Silicon and various Silicon Carbide fiber composites focusing mainly on melt infiltrated composites. Isothermal experiments at 1000 C utilized graphite fixtures to contain the Lead and material specimens under a low oxygen partial pressure environment. The corrosion weight loss values (grams/cm{sup 2} Hr) obtained for each of the pure materials showed SiC (monolithic CVD or Hexoloy) to have the best materials compatibility with Lead at this temperature. Increased weight loss values were observed for pure Silicon Nitride and elemental Silicon. For the SiC fiber composite samples those prepared using a SiC matrix material performed better than Si{sub 3}N{sub 4} as a matrix material. Composites prepared using a silicon melt infiltration process showed larger corrosion weight loss values due to the solubility of silicon in lead at these temperatures. When excess silicon was removed from these composite samples the corrosion performance for these material improved. These screening studies were used to guide future long term exposure (both isothermal and non-isothermal) experiments and Silicon Carbide composite fabrication work.

  15. Thin lead sheets as tissue compensators for larger field irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, K.P.; Baxter, D.H.; Ray, P.

    1980-04-01

    This paper describes the use of a thin lead sheet as a tissue compensating filter when a large field that includes the supraclavicular and mediastinal regions is irradiated. The typical midplane depths between supraclavicular and mediastinal regions may vary between 6 to 12 cm. Flattening of the beam entry surface is necessary for dose uniformity; this is achieved with a thin lead sheet compensating filter on the shadow tray of a 4 MV Unit. The shadow tray also contains lead shielding blocks for lung, cervical spinal cord, and larynx. The advantages of using thin lead sheets include easy maneuverability of shaping and sizing for irregular fields, and the small dimensions that are needed. Dose uniformity is verified by measuring optical densities from the film that is taken with the actual tray containing this compensating filter. This compensating filter may be extended to many situations where there are marked dose variations between different locations within the same large radiation field. The electron contamination produced by the scattering medium being placed in the beam is less for lead than for aluminum and wax. This contamination is also insignificant when the scatterer is more than 20 cm. away from the patient's skin surface when Cobalt-60 and 4 MV units are used.

  16. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  17. Numerical simulation of ejected molten metal-nanoparticles liquefied by laser irradiation: Interplay of geometry and dewetting

    CERN Document Server

    Afkhami, S

    2013-01-01

    Metallic nanoparticles, liquefied by fast laser irradiation, go through a rapid change of shape attempting to minimize their surface energy. The resulting nanodrops may be ejected from the substrate when the mechanisms leading to dewetting are sufficiently strong, as in the experiments involving gold nanoparticles [Habenicht et al., Science 309, 2043 (2005)]. We use a direct continuum-level approach to accurately model the process of liquid nanodrop formation and the subsequent ejection from the substrate. Our computations show a significant role of inertial effects and an elaborate interplay of initial geometry and wetting properties: e.g., we can control the direction of ejection by prescribing appropriate initial shape and/or wetting properties. We validate our computations by comparing directly with the experiments specified above involving the length scales measured in hundreds of nanometers, and with molecular dynamics simulations on much shorter scales measured in tens of atomic diameters, as in M. Fue...

  18. Direct Printing of 1-D and 2-D Electronically Conductive Structures by Molten Lead-Free Solder

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Wang

    2016-12-01

    Full Text Available This study aims to determine the effects of appropriate experimental parameters on the thermophysical properties of molten micro droplets, Sn-3Ag-0.5Cu solder balls with an average droplet diameter of 50 μm were prepared. The inkjet printing parameters of the molten micro droplets, such as the dot spacing, stage velocity and sample temperature, were optimized in the 1D and 2D printing of metallic microstructures. The impact and mergence of molten micro droplets were observed with a high-speed digital camera. The line width of each sample was then calculated using a formula over a temperature range of 30 to 70 °C. The results showed that a metallic line with a width of 55 μm can be successfully printed with dot spacing (50 μm and the stage velocity (50 mm∙s−1 at the substrate temperature of 30 °C. The experimental results revealed that the height (from 0.63 to 0.58 and solidification contact angle (from 72° to 56° of the metallic micro droplets decreased as the temperature of the sample increased from 30 to 70 °C. High-speed digital camera (HSDC observations showed that the quality of the 3D micro patterns improved significantly when the droplets were deposited at 70 °C.

  19. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  20. Volatile elements production rates in a 1.4 Gev proton-irradiated molten lead-bismuth target

    CERN Document Server

    Zanini, L; Everaerts, P; Fallot, M; Franberg, H; Gröschel, F; Jost, C; Kirchner, T; Kojima, Y; Köster, U; Lebenhaft, J; Manfrina, E; Pitcher, E J; Ravn, H L; Tall, Y; Wagner, W; Wohlmuther, M

    2005-01-01

    Production rates of volatile elements following spallation reaction of 1.4 GeV protons on a liquid Pb/Bi target have been measured. The experiment was performed at the ISOLDE facility at CERN. These data are of interest for the developments of targets for accelerator driven systems such as MEGAPIE. Additional data have been taken on a liquid Pb target. Calculations were performed using the FLUKA and MCNPX Monte Carlo codes coupled with the evolution codes ORIHET3 and FISPACT using different options for the intra-nuclear cascades and evaporation models. Preliminary results from the data analysis show good comparison with calculations for Hg and for noble gases. For other elements such as I it is apparent that only a fraction of the produced isotopes is released. The agreement with the experimental data varies depending on the model combination used. The best results are obtained using MCNPX with the INCL4/ABLA models and with FLUKA. Discrepancies are found for some isotopes produced by fission using the MCNPX ...

  1. Adsorption of Lead Ions from Aqueous Solutions Using Gamma Irradiated Minerals

    Directory of Open Access Journals (Sweden)

    Julián Cruz-Olivares

    2016-01-01

    Full Text Available For the first time, an irradiated mineral was used as a novel modified adsorbent for lead removal of aqueous solutions. The effects of gamma radiation doses and temperature on the lead adsorption capacity of an unknown mineral were evaluated. The results show that, in the chemisorption process, the highest adsorption capacity (9.91 mg/g and the maximum percentage of lead removal (99.1% were reached at 40°C when using an irradiated mineral at 150 kGy. The improvement on the lead adsorption speed was the most important feature of the irradiated mineral. The experimental results were successfully correlated with the pseudo second-order kinetic model. For all results, the average absolute relative deviations (AARD were less than 13.20%, and the correlation factor (r2 was higher than 0.998. Moreover, the average values of the thermodynamic parameters (ΔG0=-10612 J/mol, ΔH0=-12360 J/mol, and ΔS0=171 J/mol K suggest the feasibility of the proposed process, in terms of the endothermic and irreversible chemisorption results; moreover, ion exchange was evaluated through the EDS results. The X-ray diffraction analysis showed that the unknown irradiated mineral is mainly composed of quartz (SiO2, calcite (CaCO3, and calcium magnesium silicate (Ca0.15Mg0.85 Mg (SiO6.

  2. Use of Lead (II) Sulfide Nanoparticles as Stabilizer for PMMA Exposed to Gamma Irradiation

    OpenAIRE

    Garcia,Olga Pinheiro; Albuquerque,Marília Cordeiro Carneiro de; Aquino, Kátia Aparecida da Silva; Araujo,Patricia Lopes Barros; Araujo,Elmo Silvano de

    2015-01-01

    Lead (II) sulfide (PbS) were synthesized by sonochemical method and crystals with cubic structure exhibit aggregated nanoparticles with size in the range of 50-100 nm. Commercial Poly(methyl methacrylate) (PMMA) containing the PbS nanoparticles (PbS-NP) exposed to gamma irradiation were investigated and both the viscosity-average molar mass (Mv) and degradation index (DI) values were measured. Ours results showed decreases in molar mass when the systems were gamma irradiated, i. e., random sc...

  3. Radiation-Induced Centers in Lead Silicate Glasses Irradiated by Stationary and Pulsed Electron Beams

    Science.gov (United States)

    Zhidkov, I. S.; Zatsepin, A. F.; Konev, S. F.; Cholakh, S. O.

    2015-08-01

    Radiation-induced centers formed in heavy flint glasses irradiated by electron beams are investigated by the methods of optical and EPR spectroscopy. It is revealed that stable and short-living optical absorption centers of close natures are formed under irradiation by fast electrons. A correlation is established between the stable optical absorption bands and the EPR signals interpreted as signals of the (Pb2+)/h+ hole centers. The shortliving color centers are formed due to short-term distortion of the O-Pb bonds, and the stable centers are formed due to the spatial separation, thermalization, and subsequent stabilization of excited electrons and holes in tails of the localized states. Irradiation by electron beams leads to a change in the spectral characteristics of the fundamental absorption edge and, in particular, of the Urbach energy that determines the degree of structural disorder.

  4. Nonequilibrium self-organization in alloys under irradiation leading to the formation of nano composites

    CERN Document Server

    Enrique, R A; Averback, R S; Bellon, P

    2003-01-01

    Alloys under irradiation are continuously driven away from equilibrium: Every time an external particle interacts with the atoms in the solid, a perturbation very localized in space and time is produced. Under this external forcing, phase and microstructural evolution depends ultimately on the dynamical interaction between the external perturbation and the internal recovery kinetics of the alloy. We consider the nonequilibrium steady state of an immiscible binary alloy subject to mixing by heavy-ion irradiation. It has been found that the range of the forced atomic relocations taking place during collision cascades plays an important role on the final microstructure: when this range is large enough, it can lead to the spontaneous formation of compositional patterns at the nanometer scale. These results were rationalized in the framework of a continuum model solved by deriving a nonequilibrium thermodynamic potential. Here we derive the nonequilibrium structure factor by including the role of fluctuations. In ...

  5. Accumulation of color centers in lithium fluoride crystals under irradiation with swift lead projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Benhacine, H. [LRPCSI, University of 20 Août 1955 Skikda, Route El-Hadaeik, 21000 Skikda (Algeria); Département de physique Université Constantine 1, Route Ain El-Bey 25000 (Algeria); Sorokin, M.V., E-mail: m40@lab2.ru [National Research Centre ‘Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Meftah, A. [LRPCSI, University of 20 Août 1955 Skikda, Route El-Hadaeik, 21000 Skikda (Algeria)

    2015-09-15

    Lithium fluoride crystals were irradiated with lead ions of different energies, having the electronic energy loss of 10–20 keV/nm. Accumulation of F centers with fluence was studied by absorption UV–VIS spectroscopy. It was found that the average F-center concentration is mainly determined by the average absorbed energy density with a weak decrease above 10{sup 23} eV/cm{sup 3}. A defect accumulation model, taking into account the recombination processes, is proposed for a seamless description of the F-center concentration fluence dependences for various projectiles and energy losses.

  6. Structural investigations of bismuth lead borosilicate glasses under the influence of gamma irradiation through ultrasonic studies

    Science.gov (United States)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Laopaiboon, Raewat

    2012-04-01

    The ultrasonic velocity measurements for different compositions of irradiated bismuth lead borosilicate glasses xBi2O3-(50-x)PbO-20B2O3-30SiO2 (x=2, 4, 6, 8, and 10 mol.%) were performed at room temperature using pulse-echo technique. Densities of glass samples were measured by Archimedes' principle using n-hexane as the immersion liquid. The results from the studies show that ultrasonic velocity, elastic moduli, Poisson's ratio, microhardness, and the Debye temperature increase with increasing bismuth oxide content and increasing gamma-radiation dose (3-12 Gy).

  7. Wollastonite based-Chemically Bonded Phosphate Ceramics with lead oxide contents under gamma irradiation

    Science.gov (United States)

    Colorado, H. A.; Pleitt, J.; Hiel, C.; Yang, J. M.; Hahn, H. T.; Castano, C. H.

    2012-06-01

    The shielding properties to gamma rays as well as the effect of lead concentration incorporated into Chemically Bonded Phosphate Ceramics (CBPCs) composites are presented. The Wollastonite-based CBPC was fabricated by mixing a patented aqueous phosphoric acid formulation with Wollastonite powder. CBPC has been proved to be good structural material, with excellent thermal resistant properties, and research already showed their potential for radiation shielding applications. Wollastonite-based CBPC is a composite material itself with several crystalline and amorphous phases. Irradiation experiments were conducted on different Wollastonite-based CBPCs with lead oxide. Radiation shielding potential, attenuation coefficients in a broad range of energies pertinent to engineering applications and density experiments showing the effect of the PbO additions (to improve gamma shielding capabilities) are also presented. Microstructure was identified by using scanning electron microscopy and X-ray diffraction.

  8. The morphology of the artery of heart and aorta after combined irradiation and cadmium and lead salts treatment

    Directory of Open Access Journals (Sweden)

    Ostrovskaya S.S.

    2007-01-01

    Full Text Available The purpose of the work was to study the morphology of the heart and aorta in combined action of irradiation with cadmium and lead. 60 Vistar line male rats divided into 6 groups were used. Rats of the 1,2, and 3 groups were treated by a total single gamma-irradiation in the dose 0,5 Gr. 3 months after irradiation they were treated with 1/10 LD50 in 1 ml 0,9% NaC1 chloride cadmium (1,4 groups and lead acetate (2,5 groups intraperitoneally during 10 with following 15-day regeneration period. Rats of the 3 and 6 groups irradiated and non-irradiated (the last group was a control one were treated 1 ml 0,9% of NaC1. In 10 and 15 days the heart and portion of the aorta at the level of valves were dissected for histologic examination. Combined action of irradiation, salts of cadmium and lead causes the increase of vessel index in heart arteries, thickening of aorta walls in rats that suggest that sclerosis of arteries develops. In cadmium intoxication this process accelerates predominantly in the vessels of a small caliber, while in lead intoxication – in large vessels. In both cases this process has reversible character. Combined action of irradiation and lead, irradiation and cadmium induces progressed development of sclerosis of arteries. We conclude that accelerated development of sclerosis of arteries and the aorta is one of the manifestation of potentiating effect of a combined influence of irradiation and heavy metals.

  9. Use of lead (II) sulfide nanoparticles as stabilizer for PMMA exposed to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Olga Pinheiro; Albuquerque, Marilia Cordeiro Carneiro de; Aquino, Katia Aparecida da Silva; Araujo, Elmo Silvano de, E-mail: aquino@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Araujo, Patricia Lopes Barros de [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil)

    2015-03-15

    Lead (II) sulfide (PbS) were synthesized by sonochemical method and crystals with cubic structure exhibit aggregated nanoparticles with size in the range of 50-100 nm. Commercial Poly(methyl methacrylate) (PMMA) containing the PbS nanoparticles (PbS-NP) exposed to gamma irradiation were investigated and both the viscosity-average molar mass (Mv ) and degradation index (DI) values were measured. Ours results showed decreases in molar mass when the systems were gamma irradiated, i. e., random scission effects that take place in the main chain. On the other hand, DI results showed that the addition of PbS-NP at 0.3 wt% into the PMMA matrix decreased 100% the number of main chain scissions. Results about the free radical scavenger action of the PbS-NP were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Analysis of infrared spectra, refraction index, mechanical, and thermal properties showed influence of the PbS-NP in the physical behavior of PMMA. (author)

  10. Neutron irradiation effects on domain wall mobility and reversibility in lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Joseph T. [Nuclear Engineering Teaching Laboratory, University of Texas at Austin, Austin, Texas 78758 (United States); Electronic, Optic and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Brennecka, Geoff L.; Ihlefeld, Jon F. [Electronic, Optic and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ferreira, Paulo [Materials Science and Engineering Program, University of Texas at Austin, Austin, Texas 78751 (United States); Small, Leo [Electronic, Optic and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Duquette, David [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Apblett, Christopher [Advanced Power Sources R and D Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Landsberger, Sheldon [Nuclear Engineering Teaching Laboratory, University of Texas at Austin, Austin, Texas 78758 (United States)

    2013-03-28

    The effects of neutron-induced damage on the ferroelectric properties of thin film lead zirconate titanate (PZT) were investigated. Two sets of PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films of varying initial quality were irradiated in a research nuclear reactor up to a maximum 1 MeV equivalent neutron fluence of (5.16 {+-} 0.03) Multiplication-Sign 10{sup 15} cm{sup -2}. Changes in domain wall mobility and reversibility were characterized by polarization-electric field measurements, Rayleigh analysis, and analysis of first order reversal curves (FORC). With increasing fluence, extrinsic contributions to the small-signal permittivity diminished. Additionally, redistribution of irreversible hysterons towards higher coercive fields was observed accompanied by the formation of a secondary hysteron peak following exposure to high fluence levels. The changes are attributed to the radiation-induced formation of defect dipoles and other charged defects, which serve as effective domain wall pinning sites. Differences in damage accumulation rates with initial film quality were observed between the film sets suggesting a dominance of pre-irradiation microstructure on changes in macroscopic switching behavior.

  11. Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel

    Science.gov (United States)

    Kuljanin-Jakovljević, Jadranka Ž.; Radosavljević, Aleksandra N.; Spasojević, Jelena P.; Carević, Milica V.; Mitrić, Miodrag N.; Kačarević-Popović, Zorica M.

    2017-01-01

    In this study, the nanocomposites based on semiconductor lead sulfide (PbS) nanoparticles and poly(vinyl alcohol) (PVA) were investigated. The gamma irradiation induced in situ incorporation of PbS nanoparticles in crosslinked polymer network i.e. PVA hydrogel was performed. PVA hydrogel was previously obtained also under the influence of gamma irradiation. UV-Vis absorption and X-ray diffraction measurements were employed to investigate optical and structural properties of PbS nanoparticles, respectively, and obtained results indicates the presence of nanoparticles with approximately 6 nm in diameter and face centered cubic rock-salt crystal structure. The porous morphology was confirmed by scanning electron microscopy. Swelling data revealed that investigated hydrogels (PVA and PbS-PVA nanocomposite) shows non-Fickian diffusion, indicating that both diffusion and polymer relaxation processes controlled the fluid transport. The values of diffusion coefficients have an order of magnitude 10-9 cm2/s (typical values for water diffusion in polymers) and the best fit with the experimental results showed the Etters approximation. Comparing the thermal properties of PbS-PVA xerogel nanocomposite with PVA xerogel it was observed that incorporation of PbS nanoparticles in crosslinked PVA matrix just slightly enhanced the thermal stability of nanocomposite.

  12. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  13. Trapping of Li(+) Ions by [ThFn](4-n) Clusters Leading to Oscillating Maxwell-Stefan Diffusivity in the Molten Salt LiF-ThF4.

    Science.gov (United States)

    Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M

    2016-08-18

    A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the

  14. Triple point mutation Asp10-->His, Asn101-->Asp, Arg148-->Ser in T4 phage lysozyme leads to the molten globule.

    Science.gov (United States)

    Uversky, V N; Leontiev, V V; Gudkov, A T

    1992-12-01

    The triple amino acid replacement (Asp10-->His, Asn101-->Asp, Arg148-->Ser) in T4 phage lysozyme was carried out by site-directed mutagenesis. At acid pH (2.7) the mutant is in a conformational state with the properties of the molten globule: (i) the mutant protein molecule is essentially compact; (ii) its CD spectrum in the near UV region is drastically reduced in intensity as compared with the wild type protein spectrum; (iii) the CD spectrum in the far UV region indicates the presence of pronounced secondary structure in the mutant; (iv) unlike the wild type protein the mutant protein can bind the hydrophobic fluorescent probe, ANS.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Dynamics of splashing of molten metals during irradiation with single CO2 laser pulses

    Science.gov (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1988-03-01

    An experimental investigation was made of the dynamics of the loss of the melt as a result of interaction with single-mode CO2 laser radiation pulses of 5-35 μs duration. The dynamics of splashing of the melt during irradiation with short pulses characterized by a Gaussian intensity distribution differed from that predicted by models in which the distribution of the vapor pressure was assumed to be radially homogeneous.

  16. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  17. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  18. Molten Metal Burns

    OpenAIRE

    Kahn, Arthur M.; McCrady-Kahn, Virginia L.

    1981-01-01

    Molten metal burns are a frequent industrial injury among workers in foundries. The injury is typically small but very deep. Usually the depth and seriousness of these injuries is not recognized immediately by emergency department or industrial clinic physicians.

  19. Preliminary treatment of chlorinated streams containing fission products: mechanisms leading to crystalline phases in molten chloride media; Pretraitement pyrochimique de flux charges en produits de fission: mecanismes conduisant a l'obtention de phases cristallines en milieux chlorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, D

    2008-10-15

    The world of the nuclear power gets ready for profound modifications so that 'the atom' can aspire in conformance with long-lasting energy: it is what we call the development of generation IV nuclear systems. So, the new pyrochemical separation processes for the spent fuel reprocessing are currently being investigated. Techniques in molten chloride media generate an ultimate flow (with high chlorine content) which cannot be incorporated in conventional glass matrices. This flow is entirely water-soluble and must be conditioned in a chemical form which is compatible with a long-term disposal. This work of thesis consists in studying new ways for the management of the chlorinated streams loaded with fission products (FP). To do it, a strategy of selective FP extraction via the in situ formation of crystalline phases was retained. The possibility of extracting rare earths in the eutectic LiCl-KCl was demonstrated via the development of a new way of synthesis of rare earth phosphates (TRPO{sub 4}). As regards alkaline earths, the conversion of strontium and barium chlorides to the corresponding tungstates or molybdates was studied in different solvents. Mechanisms leading to the crystalline phases in molten chloride media were studied via the coupling of NMR and XRD techniques. First of all, it has been shown that these mechanisms are dependent on the stability of the used precursors. So in the case of the formation of rare earth phosphates the solvent is chemically active. On the other hand, in the case of the formation of alkaline earth tungstates it would seem that the solvent plays the role of structuring agent which can control the ability to react of chlorides. (author)

  20. Shielding behavior of V{sub 2}O{sub 5} doped lead borate glasses towards gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghoneim, N.A.; ElBatal, H.A. [Glass Research Department, National Research Center, Dokki, Cairo (Egypt); Abdelghany, A.M., E-mail: a.m_abdelghany@yahoo.com [Spectroscopy Department, National Research Center, Dokki, Cairo (Egypt); Ali, I.S. [High Institute for Optics Technology, Dokki, Cairo (Egypt)

    2011-06-16

    Highlights: > Base lead borate glass together with samples of the same composition doped with varying V{sub 2}O{sub 5} contents were prepared. > UV-visible and infrared spectroscopy were measured before and after successive gamma irradiation. > Glass samples are observed to absorb strongly in the UV. > Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites. - Abstract: Undoped lead borate glass of the composition PbO 70%-B{sub 2}O{sub 3} 30% together with samples of the same composition and doped with varying V{sub 2}O{sub 5} contents were prepared. UV-visible absorption spectra were measured out in the range 200-1500 nm before and after successive gamma irradiation. Infrared absorption measurements within the range 4000-400 cm{sup -1} were carried out for the undoped and V{sub 2}O{sub 5} doped samples before gamma irradiation and after being irradiated with a dose of 6 Mrad. All the glass samples are observed to absorb strongly in the UV region due to the combined contributions of absorption due to trace iron impurities and that from the divalent lead Pb{sup 2+} ions. The V{sub 2}O{sub 5}-doped glasses reveal extra visible absorption bands which are attributed to the existence of V{sup 3+} ions in measurable content but not neglecting the other valence states of vanadium ions (V{sup 4+}, V{sup 5+}). Infrared absorption spectra indicate the presence of both triangular and tetrahedral borate groups besides the sharing of lead ions in network forming and network modifying sites.

  1. -Irradiation effect on the acoustical properties of zinc lead borate glasses

    Science.gov (United States)

    Sharma, G.; Singh, K.; Manupriya; Klare, H. S.; Rajendran, V.; Gayathri Devi, A. V.; Narang, S. B.

    2005-11-01

    The effect of -irradiation on the acoustical properties of xZnO.2xPbO.(1-3x)B2O3 glasses has been studied. Ultrasonic velocity and attenuation measurements have been made before and after -irradiation at room temperature in the frequency range 2.25-10 MHz. From the measured density and ultrasonic velocity data, the elastic moduli, Poisson's ratio and other parameters have been obtained. Changes in the acoustical properties are explained in terms of radiation-induced structural defects and the influence of PbO/ZnO in the glass network structure.

  2. {gamma}-irradiation effect on the acoustical properties of zinc lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.; Singh, K.; Manupriya; Klare, H.S. [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Rajendran, V.; Gayathri Devi, A.V. [Department of Physics, Mepco Schlenk Engineering College, Mepco Engineering College (P.O.) 626005, Virudhunagar, Tamil Nadu (India); Narang, S.B. [Department of Electronics and Technology, Guru Nanak Dev University, Amritsar 143005 (India)

    2005-11-01

    The effect of {gamma}-irradiation on the acoustical properties of xZnO.2xPbO.(1-3x)B{sub 2}O{sub 3} glasses has been studied. Ultrasonic velocity and attenuation measurements have been made before and after {gamma}-irradiation at room temperature in the frequency range 2.25-10 MHz. From the measured density and ultrasonic velocity data, the elastic moduli, Poisson's ratio and other parameters have been obtained. Changes in the acoustical properties are explained in terms of radiation-induced structural defects and the influence of PbO/ZnO in the glass network structure. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Post-irradiation analysis of an ISOLDE lead-bismuth target: Stable and long-lived noble gas nuclides

    Science.gov (United States)

    Leya, I.; Grimberg, A.; David, J.-C.; Schumann, D.; Neuhausen, J.; Zanini, L.; Noah, E.

    2016-07-01

    We measured the isotopic concentrations of long-lived and stable He, Ne, Ar, Kr, and Xe isotopes in a sample from a lead-bismuth eutectic target irradiated with 1.0 and 1.4 GeV protons. Our data indicate for most noble gases nearly complete release with retention fractions in the range of percent or less. Higher retention fractions result from the decay of long-lived radioactive progenitors from groups 1, 2, or 7 of the periodic table. From the data we can calculate a retention fraction for 3H of 2-3%. For alkaline metals we find retention fractions of about 10%, 30%, and 50% for Na, Rb, and Cs, respectively. For the alkaline earth metal Ba we found complete retention. Finally, the measured Kr and Xe concentrations indicate that there was some release of the halogens Br and I during and/or after the irradiation.

  4. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  5. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing

    Science.gov (United States)

    Shapiro, A. I.; Schmutz, W.; Rozanov, E.; Schoell, M.; Haberreiter, M.; Shapiro, A. V.; Nyeki, S.

    2011-05-01

    Context. The variable Sun is the most likely candidate for the natural forcing of past climate changes on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with the solar activity. During the past 10 000 years, the Sun has experienced the substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years - all reconstructions are proportional to the solar activity - there is scientific controversy on the magnitude of solar forcing. Aims: We present a reconstruction of the total and spectral solar irradiance covering 130 nm-10 μm from 1610 to the present with an annual resolution and for the Holocene with a 22-year resolution. Methods: We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are 10Be isotope concentrations in ice cores and 22-year smoothed neutron monitor data, to interpolate between the present quiet Sun and the minimum state of the quiet Sun. This determines the long-term trend in the solar variability, which is then superposed with the 11-year activity cycle calculated from the sunspot number. The time-dependent solar spectral irradiance from about 7000 BC to the present is then derived using a state-of-the-art radiation code. Results: We derive a total and spectral solar irradiance that was substantially lower during the Maunder minimum than the one observed today. The difference is remarkably larger than other estimations published in the recent literature. The magnitude of the solar UV variability, which indirectly affects the climate, is also found to exceed previous estimates.We discuss in detail the assumptions that lead us to this conclusion. Appendix is only available in electronic form at http://www.aanda.org

  6. Lead

    Science.gov (United States)

    ... found? Who is at risk? What are the health effects of lead? Get educational material about lead Get certified as a Lead Abatement Worker, or other abatement discipline Lead in drinking water Lead air pollution Test your child Check and maintain your home ...

  7. A Possible Regenerative, Molten-Salt, Thermoelectric Fuel Cell

    Science.gov (United States)

    Greenberg, Jacob; Thaller, Lawrence H.; Weber, Donald E.

    1964-01-01

    Molten or fused salts have been evaluated as possible thermoelectric materials because of the relatively good values of their figures of merit, their chemical stability, their long liquid range, and their ability to operate in conjunction with a nuclear reactor to produce heat. In general, molten salts are electrolytic conductors; therefore, there will be a transport of materials and subsequent decomposition with the passage of an electric current. It is possible nonetheless to overcome this disadvantage by using the decomposition products of the molten-salt electrolyte in a fuel cell. The combination of a thermoelectric converter and a fuel cell would lead to a regenerative system that may be useful.

  8. Molecular desorption of stainless steel vacuum chambers irradiated with 42 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating) are reported in terms of the molecular desorption yields for H/sub 2 /, CH/sub 4/, CO, Ar, and CO/sub 2/. (16 refs).

  9. Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies

    Science.gov (United States)

    Shkir, Mohd.; Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Muhammad, Shabbir

    2016-04-01

    Lead iodide (PbI2) nanostructures have been synthesized by co-precipitation, hydrothermal and rapidly by microwave irradiation techniques. SEM analysis indicated the formation of well aligned nanocrystals and nanorods of average diameter between 100 nm and 400 nm. The powder X-ray diffraction and FT-Raman spectroscopic analysis confirms the formation of a 2H-PbI2 polytypic predominantly. These studies also show that there is no extra phase due to impurity in the synthesized nanostructures. The optical energy band gap of nanostructures prepared by co-precipitation, hydrothermal and microwave irradiation techniques were found to be 2.283, 2.493, 2.542 eV and 2.331. 2.350, 2.375 eV calculated from UV-Vis absorption and diffuse reflectance data, respectively, which shows a clear blue shift in the wavelength due to confinement effect. Photoluminescence spectrum was recorded at different excitation wavelengths and shows clear blue shift in the emission peak which is due to the recombination of free excitons with band to band type transition and also may be due to confinement effect. Further the dielectric studies have been performed and a good enhancement in the dielectric constant has been observed due to small size of the fabricated nanostructures in comparison to bulk material.

  10. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  11. Oxygen-Content-Controllable Graphene Oxide from Electron-Beam-Irradiated Graphite: Synthesis, Characterization, and Removal of Aqueous Lead [Pb(II)].

    Science.gov (United States)

    Bai, Jing; Sun, Huimin; Yin, Xiaojie; Yin, Xianqiang; Wang, Shengsen; Creamer, Anne Elise; Xu, Lijun; Qin, Zhi; He, Feng; Gao, Bin

    2016-09-28

    A high-energy electron beam was applied to irradiate graphite for the preparation of graphene oxide (GO) with a controllable oxygen content. The obtained GO sheets were analyzed with various characterization tools. The results revealed that the oxygen-containing groups of GO increased with increasing irradiation dosages. Hence, oxygen-content-controllable synthesis of GO can be realized by changing the irradiation dosages. The GO sheets with different irradiation dosages were then used to adsorb aqueous Pb(II). The effects of contact time, pH, initial lead ion concentration, and ionic strength on Pb(II) sorption onto different GO sheets were examined. The sorption process was found to be very fast (completed within 20 min) at pH 5.0. Except ionic strength, which showed no/little effect on lead sorption, the other factors affected the sorption of aqueous Pb(II) onto GO. The maximum Pb(II) sorption capacities of GO increased with irradiation dosages, confirming that electron-beam irradiation was an effective way to increase the oxygen content of GO. These results suggested that irradiated GO with a controllable oxygen content is a promising nanomaterial for environmental cleanup, particularly for the treatment of cationic metal ions, such as Pb(II).

  12. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  13. Removing Dross From Molten Solder

    Science.gov (United States)

    Webb, Winston S.

    1990-01-01

    Automatic device helps to assure good solder connections. Machine wipes dross away from area on surface of molten solder in pot. Sweeps across surface of molten solder somewhat in manner of windshield wiper. Each cycle of operation triggered by pulse from external robot. Equipment used wherever precise, automated soldering must be done to military specifications.

  14. Lead

    Science.gov (United States)

    ... Chapter 6 Chapter 7 Chapter 8 Chapter 9 Appendix I Appendix II Tables Figures State Programs Alabama Alaska Arizona ... Tool Kit Resources Healthy Homes and Lead Poisoning Prevention Training Center (HHLPPTC) Training Tracks File Formats Help: ...

  15. Spatial distribution of neutrons in paraffin moderator surrounding a lead target irradiated with protons at intermediate energies

    CERN Document Server

    Adam, J; Bradnova, V

    2002-01-01

    The distribution of neutrons emitted during the irradiation with 0.65, 1.0 and 1.5 GeV protons from a lead target (O / = 8 cm, l = 20 cm) and moderated by a surrounding paraffin moderator of 6 cm thick was studied with a radiochemical sensor along the beam axis on top of the moderator. Small sup 1 sup 3 sup 9 La-sensors of approximately 1 g were used to measure essentially the thermal neutron fluence at different depths near the surface: i.e., on top of the moderator, in 10 mm deep holes and in 20 mm deep holes. The reaction sup 1 sup 3 sup 9 La(n, gamma) sup 1 sup 4 sup 0 La (tau sub 1 sub / sub 2 = 40.27 h) was studied using standard procedures of gamma spectroscopy and data analysis. The neutron induced activity of sup 1 sup 4 sup 0 La increases strongly with the depth of the hole inside the moderator, its activity distribution along the beam direction on top of the moderator has its maximum about 10 cm downstream the entrance of the protons into the lead and the induced activity increases about linearity ...

  16. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  17. Electrolysis of a molten semiconductor

    Science.gov (United States)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  18. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    Science.gov (United States)

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on

  19. Molten metal injector system and method

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Bigler, Nicolas (Morin Heights, CA); Arnaud, Guy (Riviere-Beaudette, CA)

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  20. XRF Method Determination of Nickel 、Chrome、Antimony、Niobium、Molybdenum、Titanium、Vanadium、Lead in Molten iron%XRF 法测定铁水中镍铬锑铌钼钛钒铅

    Institute of Scientific and Technical Information of China (English)

    张莉; 苏红梅

    2014-01-01

    Sample preparation conditions and the XRF analysis conditions were studied,By XRF method for determining the content of Ni、Cr、Sb、Nb、Mo、Ti、V、Pb of molten iron. The method has fast speed,Less investment and better accuracy and precision,The results obtained with wet chemical analysis.%研究了样品制备条件和 XRF 的分析条件,采用 XRF 法测定铁水中 Ni、Cr、Sb、Nb、Mo、Ti、V、Pb 元素的含量。本法分析速度快,投资少,测量准确度和精密度较好,所得结果与湿法化学分析吻合。

  1. Tritium breeding mock-up experiments containing lithium titanate ceramic pebbles and lead irradiated with DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jakhar, Shrichand; Abhangi, M.; Tiwari, S. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Makwana, R. [Department of Physics, MS University, Vadodara (India); Chaudhari, V.; Swami, H.L.; Danani, C.; Rao, C.V.S.; Basu, T.K. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Mandal, D.; Bhade, Sonali; Kolekar, R.V.; Reddy, P.J. [Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Bhattacharyay, R.; Chaudhuri, P. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2015-06-15

    Highlights: • Breeding benchmark experiment on LLCB TBM in ITER was performed. • Nuclear responses measured are TPR and reaction rate of {sup 115}In(n, n′){sup 115m}In reaction. • Measured responses are compared with calculations by MCNP and FENDL 2.1 library. • TPR measurements agree with calculations in the estimated error bar. • Measured {sup 115}In(n, n′){sup 115m}In reaction rates are underestimated by the calculations. - Abstract: Experiments were conducted with breeding blanket mock-up consisting of two layers of breeder material lithium titanate pebbles and three layers of pure lead as neutron multiplier. The radial dimensions of breeder, neutron multiplier and structural material layers are similar to the current design of the Indian Lead–Lithium cooled Ceramic Breeder (LLCB) blanket. The mock-up assembly was irradiated with 14 MeV neutrons from DT neutron generator. The local tritium production rates (TPR) from {sup 6}Li and {sup 7}Li in breeder layers were measured with the help of two different compositions of Li isotopes (60.69% {sup 6}Li and 7.54% {sup 6}Li) in Li{sub 2}CO{sub 3}. Tritium production in the multiplication layers were also measured with above mentioned two types of pellets to compare the experimental tritium production with calculations. TPR from {sup 6}Li at one location in the breeder layer was also measured by direct online measurement of tritons from {sup 6}Li(n, t){sup 4}He reaction using silicon surface barrier detector and {sup 6}Li to triton converter. Additional verification of neutron spectra (E{sub n} > 0.35 MeV) in the mock-up zones were obtained by measuring {sup 115}In(n, n′){sup 115m}In reaction rate and comparing it with calculated values in all five layers of mock-up. All the measured nuclear responses were compared with transport calculations using code MCNP with FENDL2.1 and FENDL3.0 cross-section libraries. The average C/E ratio for tritium production in enriched Li{sub 2}CO{sub 3} pellets was 1

  2. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  3. A study of the neutron irradiation effects on the susceptibility to embrittlement of A316L and T91 steels in lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Sapundjiev, D. [TCH, SCK-CEN, Boeretang 200, Mol, B-2400 (Belgium)]. E-mail: danislav.sapundjiev@sckcen.be; Al Mazouzi, A. [TCH, SCK-CEN, Boeretang 200, Mol, B-2400 (Belgium); Van Dyck, S. [TCH, SCK-CEN, Boeretang 200, Mol, B-2400 (Belgium)

    2006-09-15

    The effects of neutron irradiation on the susceptibility to liquid metal embrittlement of two primary selected materials for MYRRHA project an accelerator driven system (ADS), was investigated by means of slow strain rate tests (SSRT). The latter were carried out at 200 deg. C in nitrogen and in liquid Pb-Bi at a strain rate of 5 x 10{sup -6} s{sup -1}. The small tensile specimens were irradiated at the BR-2 reactor in the MISTRAL irradiation rig at 200 deg. C for 3 reactor cycles to reach a dose of about 1.50 dpa. The SSR tests were carried out under poor and under dissolved oxygen conditions ({approx}1.5 x 10{sup -12} wt% dissolved oxygen) which at this temperature will favour formation of iron and chromium oxides. Although both materials differ in structure (fcc for A316L against bcc for T91), their flow behaviour in contact with liquid lead bismuth eutectic before and after irradiation is very similar. Under these testing conditions none of them was found susceptible to liquid metal embrittlement (LME)

  4. Stability of Molten Core Materials

    Energy Technology Data Exchange (ETDEWEB)

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  5. Electrolysis of a molten semiconductor

    Science.gov (United States)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  6. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  7. Evaluation of the cross-sections of threshold reactions leading to the production of long-lived radionuclides during irradiation of steels by thermonuclear spectrum neutrons

    CERN Document Server

    Blokhin, A I; Manokhin, V N; Mikhajlyukova, M V; Nasyrova, S M; Skripova, M V

    2001-01-01

    The present paper analyses and evaluates the cross-sections of threshold reactions leading to the production of long-lived radionuclides during the irradiation, by thermonuclear spectrum neutrons, of steels containing V, Ti, Cr, Fe and Ni. On the basis of empirical systematics. a new evaluation of the (n,2n), (n,p), (n,np), (n,alpha) and (n,n alpha) excitation functions is made for all isotopes of V, Ti, Cr, Fe and Ni and for intermediate isotopes produced in the chain from irradiated isotopes up to production of the long-lived radionuclides sup 3 sup 9 Ar, sup 4 sup 2 Ar, sup 4 sup 1 Ca, sup 5 sup 3 Mn, sup 6 sup 0 Fe, sup 6 sup 0 Co, sup 5 sup 9 Ni and sup 6 sup 3 Ni. A comparison is made with the experimental and other evaluated data.

  8. A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing

    CERN Document Server

    Shapiro, A I; Rozanov, E; Schoell, M; Haberreiter, M; Shapiro, A V; Nyeki, S

    2011-01-01

    The variable Sun is the most likely candidate for natural forcing of past climate change on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with solar activity. During the past 10,000 years, the Sun has experienced substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years --- all reconstructions are proportional to the solar activity --- there is scientific controversy on the magnitude of solar forcing. We present a reconstruction of the Total and Spectral Solar Irradiance covering 130 nm--10 $\\mu$m from 1610 to the present with annual resolution and for the Holocene with 22-year resolution. We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are $^{10}$Be isot...

  9. Molten fluorides for nuclear applications

    Directory of Open Access Journals (Sweden)

    Sylvie. Delpech

    2010-12-01

    Full Text Available The importance of pyrochemistry is being increasingly acknowledged and becomes unavoidable in the nuclear field. Molten salts may be used for fuel processing and spent fuel recycling, for heat transfer, as a homogeneous fuel and as a breeder material in fusion systems. Fluorides that are stable at high temperature and under high neutron flux are especially promising. Analysis of several field cases reveals that corrosion in molten fluorides is essentially due to the oxidation of metals by uranium fluoride and/or oxidizing impurities. The thermodynamics of this process are discussed with an emphasis on understanding the mass transfer in the systems, selecting appropriate metallic materials and designing effective purification methods.

  10. Molten carbonate fuel cell matrices

    Science.gov (United States)

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  11. Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.

    Energy Technology Data Exchange (ETDEWEB)

    Garner, P. L.; Hanan, N. A. (Nuclear Engineering Division)

    2011-06-07

    The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decide to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.

  12. Oxygen electrode reaction in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  13. Processing method for molten salt waste

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shuichi; Sawa, Toshio; Hoshikawa, Tadahiro; Suzuoki, Akira

    1999-01-06

    The present invention concerns a processing method for selectively adsorbing and removing radioactive metal ingredients contained in high temperature molten salts by an inorganic ion exchanger and separating radioactive metal ingredients from the molten salts as high level radioactive wastes upon reprocessing of spent nuclear fuels by using molten salts. The molten salts occluded in the inorganic ion exchanger are desorbed with highly purified water. Successively, saturation adsorbed radioactive metal ingredients are desorbed by an aqueous solution of alkali metal salt or an aqueous solution of alkaline earth metal salt. The desorbed molten salts and radioactive metal ingredients are formed into at least two kinds of radioactive waste solidification materials depending on each of radioactivity level. As the inorganic ion exchanger, at least one of aluminosilicate and hydroxides is used. Then, molten salt wastes generated upon a dry-type reprocessing can be processed as a stable borosilicate glass solidification material or as a similar homogeneous solid material. (T.M.)

  14. Electrochemistry and Electrochemical Methodology in Molten Salts.

    Science.gov (United States)

    1980-09-01

    similar conditions. A manuscript based on this work has been published in the Journal of the Electrochemical Society (34). 2) Melt and co-solvent As...Temperature Molten Salt," In "Proceedings of the 2nd International Symposium on Molten Salts," 3. Braunstein, Ed., published by The Electrochemical Society , in...Jones and L. G. Boxall, "Electrochemical Studies in Molten Chloroaluminates," Symposium on Fused Salt Tech- nology, Electrochemical Society Meeting

  15. Ultra high frequency-electromagnetic field irradiation during pregnancy leads to an increase in erythrocytes micronuclei incidence in rat offspring.

    Science.gov (United States)

    Ferreira, Amâncio Romanelli; Knakievicz, Tanise; Pasquali, Matheus Augusto de Bittencourt; Gelain, Daniel Pens; Dal-Pizzol, Felipe; Fernández, Claudio Enrique Rodriguez; de Salles, Alvaro Augusto de Almeida; Ferreira, Henrique Bunselmeyer; Moreira, José Cláudio Fonseca

    2006-12-03

    Mobile telephones and their base stations are an important ultra high frequency-electromagnetic field (UHF-EMF) source and their utilization is increasing all over the world. Epidemiological studies suggested that low energy UHF-EMF emitted from a cellular telephone may cause biological effects, such as DNA damage and changes on oxidative metabolism. An in vivo mammalian cytogenetic test, the micronucleus (MN) assay, was used to investigate the occurrence of chromosomal damage in erythrocytes from rat offspring exposed to a non-thermal UHF-EMF from a cellular phone during their embryogenesis; the irradiated group showed a significant increase in MN occurrence. In order to investigate if UHF-EMF could also alter oxidative parameters in the peripheral blood and in the liver - an important hematopoietic tissue in rat embryos and newborns - we also measured the activity of antioxidant enzymes, quantified total sulfhydryl content, protein carbonyl groups, thiobarbituric acid-reactive species and total non-enzymatic antioxidant defense. No significant differences were found in any oxidative parameter of offspring blood and liver. The average number of pups in each litter has also not been significantly altered. Our results suggest that, under our experimental conditions, UHF-EMF is able to induce a genotoxic response in hematopoietic tissue during the embryogenesis through an unknown mechanism.

  16. The molten glass sewing machine

    Science.gov (United States)

    Brun, P.-T.; Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-04-01

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.

  17. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2003-01-01

    Full Text Available In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2  MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating are reported in terms of the molecular desorption yields for H_{2}, CH_{4}, CO, Ar, and CO_{2}. Unexpected large values of molecular yields per incident ion up to 2×10^{4} molecules/ion have been observed. The reduction of the ion-induced desorption yield due to continuous bombardment with lead ions (beam cleaning has been investigated for five different stainless steel vacuum chambers. The implications of these results for the vacuum system of the future Low Energy Ion Ring and possible remedies to reduce the vacuum degradation are discussed.

  18. Mechanism of removing inclusions from molten aluminum by stirring active molten flux

    Institute of Scientific and Technical Information of China (English)

    周鸣; 李克; 孙宝德; 疏达; 倪红军; 王俊; 张佼

    2003-01-01

    Removal of inclusions from industrial pure molten aluminum(A01) by stirring active molten flux wasstudied. Wettability of nonmetallic inclusions in the molten aluminum was worse than that in active molten flux. Ac-cording to the surface renewal model, the inclusions were easily transferred into molten active flux from fine alumi-num droplets and then reacted chemically when molten aluminum was dispersed into fine aluminum droplets in stir-ring active molten flux. Tensile tests show that tensile strength of purified tensile sample(as-cast) increases by8.59%. SEM photographs show that the fracture cracks of purified tensile sample are homogeneous, and the dim-ples are small and homogeneous. From metallographs and statistic results of Leco analysis software, it is found thatthe quantities and sizes of the inclusions in purified sample are obviously fewer and smaller than in unpurified tensilesample(as-cast).

  19. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  20. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  1. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  2. Purification technology of molten aluminum

    Institute of Scientific and Technical Information of China (English)

    孙宝德; 丁文江; 疏达; 周尧和

    2004-01-01

    Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%-20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.

  3. UV irradiation-induced apoptosis leads to activation of a 36-kDa myelin basic protein kinase in HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.L.; Sato, Mitsuhiro; Cao, Boliang; Richie, J.P. [Harvard Medical School, Boston, MA (United States)

    1996-08-20

    UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirements for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-{alpha}-and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis. 40 refs., 5 figs.

  4. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider (LHC) at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring (LEAR). These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow-discharges, non-evaporable getter coating) are reported in terms of the molecular desorption yields for H2, CH4, CO, Ar and CO2. Unexpected large values of molecular yields per incident ion up to 2 104 molecules/ion have been observed. The red...

  5. Oxidative stress mediated Ca(2+) release manifests endoplasmic reticulum stress leading to unfolded protein response in UV-B irradiated human skin cells.

    Science.gov (United States)

    Farrukh, Mufti R; Nissar, Ul A; Afnan, Quadri; Rafiq, Rather A; Sharma, Love; Amin, Shajrul; Kaiser, Peerzada; Sharma, Parduman R; Tasduq, Sheikh A

    2014-07-01

    Exposure of skin to ultraviolet (UV) radiation, an environmental stressor induces number of adverse biological effects (photodamage), including cancer. The damage induced by UV-irradiation in skin cells is initiated by the photochemical generation of reactive oxygen species (ROS) and induction of endoplasmic reticulum (ER) stress and consequent activation of unfolded protein response (UPR). To decipher cellular and molecular events responsible for UV-B mediated ER stress and UPR activation in skin cells. The study was performed on human skin fibroblast (Hs68) and keratinocyte (HaCaT) cells exposed to UV-B radiations in lab conditions. Different parameters of UVB induced cellular and molecular changes were analyzed using Western-blotting, microscopic studies and flow cytometry. Our results depicted that UV-B induces an immediate ROS generation that resulted in emptying of ER Ca(2+) stores inducing ER stress and activation of PERK-peIF2α-CHOP pathway. Quenching ROS generation by anti-oxidants prevented Ca(2+) release and subsequent induction of ER stress and UPR activation. UV-B irradiation induced PERK dependent G2/M phase cell cycle arrest in Hs68 and G1/S phase cell cycle arrest in HaCaT. Also our study reflects that UV-B exposure leads to loss of mitochondrial membrane potential, activation of apoptotic cascade as evident by AnnexinV/PI staining, decreased expression of Bcl-2 and increased cleavage of PARP-1 protein. UV-B induced Ca(2+) deficit within ER lumen was mediated by immediate ROS generation. Insufficient Ca(2+) concentration within ER lumen developed ER stress leading to UPR activation. These changes were reversed by use of anti-oxidants which quench ROS. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Development and Application of Refractory Materials for Molten Aluminum Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Headrick, William [University of Missouri, Rolla; Peters, Klaus-Markus [ORNL

    2008-01-01

    Two new refractory materials have been developed for use in molten aluminum contact applications which exhibit improved corrosion and wear resistance, along with improved thermal management through reduced heat losses. The development of these materials was based on understanding of the corrosion and wear mechanisms associated with currently used aluminum contact refractories through physical, chemical, and mechanical characterization and analysis performed by Oak Ridge National Laboratory (ORNL) and the University of Missouri, Rolla (UMR) along with their industrial partners, under the ITP Materials project "Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals". Spent castable refractories obtained from a natural gas fired reverberatory aluminum alloy melting furnace were analyzed leading to identification of several refractory degradation mechanisms and strategies to produce improved materials. The newly developed materials have been validated through both R&D industrial trials and independent commercial trials by the refractory manufacturers.

  7. Cracking of crude oil in the molten metals

    Directory of Open Access Journals (Sweden)

    Marat A. Glikin

    2014-03-01

    Full Text Available In this paper is investigated the process of crude oil and its individual fractions cracking in the molten metals medium to produce light petroleum products. Thermodynamic calculations demonstrate the possibility of using lead and tin including alloys thereof as the melt. The cracking of West Siberian crude oil is studied at temperatures 400-600 °C. It is detected that as the temperature increases there is increase of aromatic hydrocarbons and olefins content in gasoline while naphthenes, n- and i-paraffins content reduces. Optimal temperature for cracking in molten metals is ~500 °C. The use of a submerged nozzle increases the yield of light petroleum products by ~2%. The research octane number of gasoline produced is 82-87 points. It is determined that the yield of light petroleum products depending on the experimental conditions is increased from 46.9 to 55.1-61.3% wt.   

  8. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  9. Corrosion of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, J.P.T.

    1991-05-15

    Part 1 of this report describes the results of a literature study on the corrosion behavior of metals in molten carbonates. The results form the basis for a doctorate study related to improving the durability of metal separator plates for molten carbonate fuel cells. To gain a better understanding also the literature on corrosion in molten sulfates has been reviewed, the results of which are summarized in Part 2 of this report. For each part a separate abstract has been prepared. 83 figs., 23 tabs., 1 app., 78 refs.

  10. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  11. Molten salts processes and generic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toru; Minato, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO{sub 2} and PuO{sub 2} in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  12. Short-term uvb-irradiation leads to putative limbal stem cell damage and niche cell-mediated upregulation of macrophage recruiting cytokines

    Directory of Open Access Journals (Sweden)

    Maria Notara

    2015-11-01

    Full Text Available Ultraviolet light B (UVB-irradiation is linked to various ocular pathologies such as limbal stem cell defects in pterygium. Despite the large circumstantial evidence linking UVB irradiation and limbal epithelial stem cell damage, the precise molecular responses of limbal stem cells to UVB irradiation are unclear. Here the effect of UVB irradiation on the putative stem cell phenotype, limbal niche cells and the subsequent effects on corneal (lymphangiogenic privilege were investigated. Primary human limbal epithelial stem cells and fibroblasts were irradiated with 0.02 J/cm2 of UVB, a low dose corresponding to 3 min of solar irradiation. UVB irradiation caused significant reduction of limbal epithelial and limbal fibroblast proliferation for 24 h, but apoptosis of limbal epithelial stem cells only. Moreover, UVB induced stem-like character loss of limbal epithelial cells, as their colony forming efficiency and putative stem cell marker expression significantly decreased. Interestingly, limbal epithelial cells co-cultured with UVB-irradiated limbal fibroblasts also exhibited loss of stem cell character and decrease of colony forming efficiency. Conditioned media from limbal epithelial cells inhibited lymphatic endothelial cell proliferation and tube network complexity; however this effect diminished following UVB irradiation. In contrast, pro-inflammatory and macrophage-recruiting cytokines such as TNFα, IFNγ and MCP1 were significantly upregulated following cell irradiation of limbal fibroblasts. These data demonstrate the key role of the limbal stem cell niche in response to UVB and subsequent (lymphangiogenic and inflammatory events. These data suggest that the known pro(lymphangiogenic effect of UVB irradiation in pterygium is not linked to a direct up-regulation of pro-angiogenic cytokines, but rather to indirect macrophage-recruiting cytokines being upregulated after UVB irradiation.

  13. Structure of molten titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Alderman, O. L. G.; Skinner, L. B.; Benmore, C. J.; Tamalonis, A.; Weber, J. K. R.

    2014-09-01

    The x-ray structure factor of molten TiO2 has been measured for the first time, enabled by the use of aerodynamic levitation and laser beam heating, to a temperature of T = 2250(30) K. Ti-O coordination number in the melt is close to nTiO = 5.0(2), with modal Ti-O bond length rTiO = 1.881(5) Å, both values being significantly smaller than for the high temperature stable Rutile crystal structure (nTiO = 6.0, rTiO = 1.959 Å). The structural differences between melt and crystal are qualitatively similar to those for alumina, which is rationalized in terms of the similar field strengths of Ti4+ and Al3+. The diffraction data are used to generate physically and chemically reasonable structural models, which are then compared to the predictions based on various classical molecular dynamics (MD) potentials. New interatomic potentials, suitable for modelling molten TiO2, are introduced, given the inability of existing MD models to reproduce the diffraction data. These new potentials have the additional great advantage of being able to predict the density and thermal expansion of the melt, as well as solid amorphous TiO2, in agreement with published results. This is of critical importance given the strong correlation between density and structural parameters such as nTiO. The large thermal expansion of the melt is associated with weakly temperature dependent structural changes, whereby simulations show that nTiO = 5.85(2) – (3.0(1) x 10-4 )T (K, 2.75 Å cut-off). The TiO2 liquid is structurally analogous to the geophysically relevant high pressure liquid silica system at around 27 GPa. We argue that the predominance of 5-fold polyhedra in the melt implies the existence of as yet undiscovered TiO2 polymorphs, based on lowerthan-octahedral coordination numbers, which are likely to be metastable under ambient conditions. Given the industrial importance of titanium oxides, experimental and computational searches for such polymorphs are well warranted.

  14. The mystery of molten metal

    Directory of Open Access Journals (Sweden)

    Natalia Sobczak

    2010-11-01

    Full Text Available Recent advances in scientific understanding of high-temperature materials processing using novel experimental methodologies have shed light on the complex role of surface and interface phenomena. New in-situ studies on molten metal/solid ceramic interactions using a unique experimental complex at the Foundry Research Institute, Krakow, have revealed a number of unusual observations in materials processing at high temperatures. We present some such unusual observations and their explanation with reference to liquid metal processing of Al, Ni, and Ti, and their alloys in contact with oxide ceramics. In particular, we focus on the following aspects: primary oxidation of Al from residual water vapor or oxygen, capillary purification to remove surface oxide, substrate protection by CVD carbon, roughening due to spinel whisker formation, inclusions in castings due to mechanical detachment, floatation due to buoyancy forces, and segregation due to directional solidification, modification of the solid surface morphology by metal vapor ahead of the liquid, and the complication due to multi-component alloys melted in crucibles made from complex oxide-based ceramics. In the case of Ti, rapid reactions with oxides result in undesirable volumetric changes that create difficulty in casting high-quality Ti parts, particularly by investment casting. Nanoscale (e.g., colloidal coatings based on Y2O3 protect crucibles and hold ladles against such attack. Practical insights and recommendations for materials processing emerging from the fundamental studies on high-temperature interfacial phenomena have been described.

  15. Swift heavy ion irradiation induced nanograin formation in CdTe thin films

    Science.gov (United States)

    Survase, Smita; Narayan, Himanshu; Sulania, I.; Thakurdesai, Madhavi

    2016-11-01

    Swift Heavy Ion (SHI) irradiation is a unique technique for nanograin formation through grain fragmentation. Contrary to the generally reported SHI irradiation induced grain growth on CdTe thin films, we report fragmentation leading to nanograin formation. Thermally evaporated polycrystalline CdTe thin films were irradiated with 100 MeV 197Au, 107Ag and 58Ni ions beams up to a fluence of 5 × 1012 ions/cm2. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were carried out for surface analysis before and after irradiation. SEM micrographs indicate that the larger grains in the as-deposited films were fragmented into smaller grains due to irradiation. The extent of fragmentation was found to increase with increasing electronic energy loss (Se). AFM pictures also supported the irradiation induced fragmentation. Structural characterization was done using X-ray Diffraction (XRD) technique. The ion induced strain and dislocation density were calculated from the XRD data. Both the strain and dislocation density were found to increase with increasing Se . The observed grain fragmentation is explained on the basis of a combined effect of strain induced disintegration of grains after the Coulomb explosion, and an 'incomplete' re-crystallization of the molten thermal spikes. Moreover, the optical band gap Eg (1.5 eV for as-deposited film), determined from UV-vis spectroscopy, increased with Se, and possibly because of ion induced strain and defect annealing.

  16. Thermolysis of Kansko-Achinsk coal in a molten medium

    Energy Technology Data Exchange (ETDEWEB)

    Uzdenskiy, V.B.; Martynov, Yu.N.; Proskuryakov, V.A.

    1982-01-01

    Thermolysis of Kansko-Achinsk coal is studied in molten mediums of varying nature: metals, such as tin and lead, or salts, such as carbonates of alkaline metals. The effect of temperature, heating rate and nature of the melt on the output and composition of the decomposition products is demonstrated. The use of melts makes it possible to produce 13 to 14 percent resin per unit of coal and gas for use as a reducer or fuel. A melt of salts has an active effect on the decomposition of the organic mass of the coal.

  17. Performance evaluation and post-irradiation examination of a novel LWR fuel composed of U0.17ZrH1.6 fuel pellets bonded to Zircaloy-2 cladding by lead bismuth eutectic

    Science.gov (United States)

    Balooch, Mehdi; Olander, Donald R.; Terrani, Kurt A.; Hosemann, Peter; Casella, Andrew M.; Senor, David J.; Buck, Edgar C.

    2017-04-01

    A novel light water reactor fuel has been designed and fabricated at the University of California, Berkeley; irradiated at the Massachusetts Institute of Technology Reactor; and examined within the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. This fuel consists of U0.17ZrH1.6 fuel pellets core-drilled from TRIGA reactor fuel elements that are clad in Zircaloy-2 and bonded with lead-bismuth eutectic. The performance evaluation and post irradiation examination of this fuel are presented here.

  18. Molten fatty acid based microemulsions.

    Science.gov (United States)

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound.

  19. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  20. Molten salts and nuclear energy production

    Science.gov (United States)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  1. Molten salts and nuclear energy production

    Energy Technology Data Exchange (ETDEWEB)

    Le Brun, Christian [Laboratoire de Physique Subatomique et de Cosmologie, 53 Avenue des Martyrs, 38026 Grenoble cedex (France)]. E-mail: christian.lebrun@lpsc.in2p3.fr

    2007-01-15

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  2. Radiochemical determination of {sup 129}I and {sup 36}Cl in MEGAPIE, a proton irradiated lead-bismuth eutectic spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Hammer-Rotzler, Bernadette; Tuerler, Andreas [Paul Scherrer Institut (PSI), Villigen (Switzerland); Bern Univ. (Switzerland); Neuhausen, Joerg; Boutellier, Viktor; Wohlmuther, Michael; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland); Vockenhuber, Christof [ETH Zurich (Switzerland). Lab. of Ion Beam Physics

    2015-07-01

    The concentrations of the long-lived nuclear reaction products {sup 129}I and {sup 36}Cl have been measured in samples from the MEGAPIE liquid metal spallation target. Samples from the bulk target material (lead-bismuth eutectic, LBE), from the interface of the metal free surface with the cover gas, from LBE/steel interfaces and from noble metal absorber foils installed in the cover gas system were analysed using Accelerator Mass Spectrometry at the Laboratory of Ion beam Physics at ETH Zuerich. The major part of {sup 129}I and {sup 36}Cl was found accumulated on the interfaces, particularly at the interface of LBE and the steel walls of the target container, while bulk LBE samples contain only a minor fraction of these nuclides. Both nuclides were also detected on the absorber foils to a certain extent (<< 1% of the total amount). The latter number is negligible concerning the radio-hazard of the irradiated target material; however it indicates a certain affinity of the absorber foils for halogens, thus proving the principle of using noble metal foils for catching these volatile radionuclides. The total amounts of {sup 129}I and {sup 36}Cl in the target were estimated from the analytical data by averaging within the different groups of samples and summing up these averages over the total target. This estimation could account for about half of the amount of {sup 129}I and {sup 36}Cl predicted to be produced using nuclear physics modelling codes for both nuclides. The significance of the results and the associated uncertainties are discussed.

  3. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-03-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia.

  4. Molten salt reactors - safety options galore

    Energy Technology Data Exchange (ETDEWEB)

    Gat, U. [Oak Ridge National Lab., TN (United States); Dodds, H.L. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-03-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT).

  5. Electroreduction Kinetics for Molten Oxide Slags

    Institute of Scientific and Technical Information of China (English)

    GAO Yun-ming; CHOU Kuo-chih; GUO Xing-min; WANG Wei

    2007-01-01

    The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-circuit galvanic cell. The following galvanic cell was assembled in the present experiment: graphite rod, [O]Fe-C saturated|ZrO2(MgO)|Cu(l)+(FeO)(slag), and molybdenum wire. The FeO electroreduction reaction was studied through measuring short circuit current by controlling factors such as temperature, the FeO content in molten slags, and the external circuit resistance. An overall kinetics model was developed to describe the process of FeO electroreduction. It was found that the modeled curves were in good agreement with the experimental values. The new oxide reduction method in the metallurgy with controlled oxygen flow was proposed and the metallurgical theory with controlled oxygen flow was developed.

  6. Improving Corrosion Resistance of Ferrous Alloy to Molten Zn by Modifying the Laves Phase Characteristics

    Science.gov (United States)

    Liu, X.; Yin, F. C.; Lou, J.; Ouyang, X. M.; Li, Z.

    2017-08-01

    The Laves phase morphology in the Fe25Mo14Cr10Ni1Si (wt.%) alloy was modified by Si addition to improve the corrosion resistance of the ferrous alloy to molten zinc. The Si-containing alloy showed a woven, needle-like Laves phase with higher Mo content than that of the Fe25Mo14Cr10Ni alloy. Corrosion resistance to molten Zn for the Si-containing alloy was more than 20 times higher than that of the silicon-free alloy mainly as a result of the characteristics of the modified Laves phase. This phase was oriented perpendicular to the Zn-diffusion direction, which effectively prevented corrosion by the molten Zn, leading to a denser FeZn13 layer rather than the FeZn10 layer produced in the Fe25Mo14Cr10Ni alloy.

  7. Direct contact heat recovery from molten salt

    Science.gov (United States)

    Technological deficiencies associated with efficient and economical retrieval of heat energy from molten salt systems are addressed. The large latent heat of fusion stored in molten salt hydrates and other candidate phase change materials (PCM) is removed by internal boiling of a volatile heat transfer fluid (HTF). This procedure eliminates the conventional use of submerged heat exchangers which are costly and, in crystallizing salts, ineffective. The thermochemical conditions and material properties that are critical for application of this concept in environments that yield significant energy savings are investigated and defined.

  8. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  9. Simulation on flow process of filtered molten metals

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 魏尊杰; 安阁英; 叶荣茂

    2002-01-01

    Filtration and flow process of molten metals was analyzed by water simulation experiments. Fluid dynamic phenomena of molten metal cells through a foam ceramic filter was described and calculated by ERGOR equation as well. The results show that the filter is most useful for stable molten metals and the filtered flow is laminar, so that inclusions can be removed more effectively.

  10. Investigation of molten metal droplet deposition and solidification for 3D printing techniques

    Science.gov (United States)

    Wang, Chien-Hsun; Tsai, Ho-Lin; Wu, Yu-Che; Hwang, Weng-Sing

    2016-09-01

    This study investigated the transient transport phenomenon during the pile up of molten lead-free solder via the inkjet printing method. With regard to the droplet impact velocity, the distance from nozzle to substrate can be controlled by using the pulse voltage and distance control apparatus. A high-speed digital camera was used to record the solder impact and examine the accuracy of the pile up. These impact conditions correspond to We  =  2.1-15.1 and Oh  =  5.4  ×  10-3-3.8  ×  10-3. The effects of impact velocity and relative distance between two types of molten droplets on the shape of the impact mode are examined. The results show that the optimal parameters of the distance from nozzle to substrate and the spreading factor in this experiment are 0.5 mm and 1.33. The diameter, volume and velocity of the inkjet solder droplet are around 37-65 μm, 25-144 picoliters, and 2.0-3.7 m s-1, respectively. The vertical and inclined column structures of molten lead-free solder can be fabricated using piezoelectric ink-jet printing systems. The end-shapes of the 3D micro structure have been found to be dependent upon the distance from nozzle to substrate and the impact velocity of the molten lead-free solder droplet.

  11. Heavy irradiation effects in radiation-resistant optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Tatsuo [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1998-07-01

    Development of a system for optical measurements in a nuclear reactor has been progressing to investigate dynamic changes in a material caused by heavy irradiation. In such system, transfer of optical signals to out-pile measuring systems is being attempted by the use of optical fibers. In this report, the characteristics of optical fibers in the heavy irradiation field were summarized. It has been known that amorphous silica might produce radiolysis and structural defects by the exposure to ionizing radiation. The effects of heavy irradiation on molten silica were extremely complicated. A large intensity of visible light absorption occurred from an early time during start-up of the reactor. The absorption range was limited below 700 nm for the radiation associating fast neutron and the absorption was mostly attributed to non-bridging oxygen hole center. The depletion of optical transferring capacity under the radiation might be related to the internal stress. Therefore, it seems desirable to use optical fibers in the conditions without leading too much stress. (M.N.)

  12. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    Science.gov (United States)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  13. Oxygen electrode in molten carbonate fuel cells

    Science.gov (United States)

    Dave, B. B.; White, R. E.; Srinivasan, S.; Appleby, A. J.

    1990-12-01

    During this quarter, impedance data were analyzed for an oxygen reduction process in molten carbonate electrolyte and a manuscript, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt: Effects of Partial Pressure of Carbon Dioxide and Temperature, was prepared to be submitted to Journal of the Electrochemical Society for publication.

  14. Investigation of molten salt fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Konomura, Mamoru [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2002-05-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  15. Heat transfer behavior of molten nitrate salt

    Science.gov (United States)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  16. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lanagan, M.T.; Bloom, I.; Kaun, T.D. [Argonne National Lab., IL (United States)] [and others

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at {approximately}650{degrees}C. To be economically viable for stationary power generation, molten carbonate fuel cells must have lifetimes of more than 25,000 h while exhibiting superior cell performance. In the present technology, lithiated NiO is used as the cathode. Over the lifetime of the cell, however, N{sup 2+} ions tend to transport to the anode, where they are reduced to metallic Ni. With increased CO{sub 2} partial pressure, the transport of Ni increases because of the increased solubility of NiO in the carbonate electrolyte. Although this process is slow in MCFCs operated at 1 atm and a low CO{sub 2} partial pressure (about 0.1 atm), transport of nickel to the anode may be excessive at a higher pressure (e.g., 3 atm) and a high CO{sub 2} partial pressure (e.g., about 0.3 arm). This transport is expected to lead eventually to poor MCFC performance and/or short circuiting. Several alternative cathode compositions have been explored to reduce cathode solubility in the molten salt electrolyte. For example, LiCoO{sub 2} has been studied extensively as a potential cathode material. The LiCoO{sub 2} cathode has a low resistivity, about 10-cm, and can be used as a direct substitute for NiO. Argonne is developing advanced cathodes based on lithium ferrate (LiFeO{sub 2}), which is attractive because of its very low solubility in the molten (Li,K){sub 2}CO{sub 3} electrolyte. Because of its high resistivity (about 3000-cm), however, LiFeO{sub 2} cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. We determined the effect of cation substitution on the resistivity and deformation of LiFeO{sub 2}. The substituents were chosen because their respective oxides as well as LiFeO{sub 2} crystallize with the rock-salt structure.

  17. Investigation of irradiation effects on highly integrated leading-edge electronic components of diagnostics and control systems for LHD deuterium operation

    Science.gov (United States)

    Ogawa, K.; Nishitani, T.; Isobe, M.; Murata, I.; Hatano, Y.; Matsuyama, S.; Nakanishi, H.; Mukai, K.; Sato, M.; Yokota, M.; Kobuchi, T.; Nishimura, T.; Osakabe, M.

    2017-08-01

    High-temperature and high-density plasmas are achieved by means of real-time control, fast diagnostic, and high-power heating systems. Those systems are precisely controlled via highly integrated electronic components, but can be seriously affected by radiation damage. Therefore, the effects of irradiation on currently used electronic components should be investigated for the control and measurement of Large Helical Device (LHD) deuterium plasmas. For the precise estimation of the radiation field in the LHD torus hall, the MCNP6 code is used with the cross-section library ENDF B-VI. The geometry is modeled on the computer-aided design. The dose on silicon, which is a major ingredient of electronic components, over nine years of LHD deuterium operation shows that the gamma-ray contribution is dominant. Neutron irradiation tests were performed in the OKTAVIAN at Osaka University and the Fast Neutron Laboratory at Tohoku University. Gamma-ray irradiation tests were performed at the Nagoya University Cobalt-60 irradiation facility. We found that there are ethernet connection failures of programmable logic controller (PLC) modules due to neutron irradiation with a neutron flux of 3  ×  106 cm-2 s-1. This neutron flux is equivalent to that expected at basement level in the LHD torus hall without a neutron shield. Most modules of the PLC are broken around a gamma-ray dose of 100 Gy. This is comparable with the dose in the LHD torus hall over nine years. If we consider the dose only, these components may survive more than nine years. For the safety of the LHD operation, the electronic components in the torus hall have been rearranged.

  18. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  19. Experimental study on fragmentation behaviors of molten LBE and water contact interface

    Institute of Scientific and Technical Information of China (English)

    黄望哩; 洒荣园; 周丹娜; 姜华磊; 黄群英

    2015-01-01

    Based on the design of CLEAR (China LEAd-based Reactor), it is important to study the molten LBE (Lead-Bismuth Eutectic)/water interaction following an incidental steam generator tube rupture (SGTR) accident. Experiments were carried out to investigate the fragmentation behavior of the molten LBE/water contacting interface, with a high-speed video camera to record the fragmentation behavior of 300–600◦C LBE at 20◦C and 80◦C of water temperature. Violent explosion phenomenon occurred at water temperature of 20◦C, while no explosion occurred at 80◦C. Shapes of the LBE debris became round at 80◦C of water temperature, whereas the debris was of the needle-like shape at 20◦C. For all the molten LBE and water temperatures in the present study, the debris sized at 2.8–5.0 mm had the largest mass fraction. The results indicate that the dominant physical mechanism of the molten LBE fragmentation was the Kelvin-Helmholtz instability between LBE/water direct contact interface.

  20. Molten salt reactor: Deterministic safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Merle-Lucotte, Elsa; Heuer, Daniel; Mathieu, Ludovic; Le Brun, Christian [Laboratory for Subatomic Physics and Cosmology (LPSC), 53, Avenue des Marthyrs, F-38026 Grenoble (France)

    2006-07-01

    Molten Salt Reactors (MSRs) are one of the systems retained by Generation IV as a candidate for the next generation of nuclear reactors. This type of reactor is particularly well adapted to the thorium fuel cycle (Th- {sup 233}U) which has the advantage of producing less minor actinides than the uranium-plutonium fuel cycle ({sup 238}U- {sup 239}Pu). In the frame of a major re-evaluation of the MSR concept and concentrating on some major constraints such as feasibility, breeding capability and, above all, safety, we have considered a particular reactor configuration that we call the 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum. This reactor is presented in the first section. MSRs benefit from several specific advantages which are listed in a second part of this work. Beyond these advantages of the MSR, the level of the deterministic safety in such a reactor has to be assessed precisely. In a third section, we first draw up a list of the reactivity margins in our reactor configuration. We then define and quantify the parameters characterizing the deterministic safety of any reactor: the fraction of delayed neutrons, and the system's feedback coefficients that are here negative. Finally, using a simple point-kinetic evaluation, we analyze how these safety parameters impact the system when the total reactivity margins are introduced in the MSR. The results of this last study are discussed, emphasizing the satisfactory behavior of the MSR and the excellent level of deterministic safety which can be achieved. This work is based on the coupling of a neutron transport code called MCNP with a materials evolution code. The former calculates the neutron flux and the reaction rates in all the cells while the latter solves the Bateman equations for the evolution of the materials composition within the cells. These calculations take into account the input parameters (power released

  1. Dynamics of the Molten Contact Line

    Science.gov (United States)

    Sonin, Ain A.; Duthaler, Gregg; Liu, Michael; Torresola, Javier; Qiu, Taiqing

    1999-01-01

    The purpose of this program is to develop a basic understanding of how a molten material front spreads over a solid that is below its melting point, arrests, and freezes. Our hope is that the work will contribute toward a scientific knowledge base for certain new applications involving molten droplet deposition, including the "printing" of arbitrary three-dimensional objects by precise deposition of individual molten microdrops that solidify after impact. Little information is available at this time on the capillarity-driven motion and arrest of molten contact line regions. Schiaffino and Sonin investigated the arrest of the contact line of a molten microcrystalline wax spreading over a subcooled solid "target" of the same material. They found that contact line arrest takes place at an apparent liquid contact angle that depends primarily on the Stefan number S=c(T(sub f) -T(sub t)/L based on the temperature difference between the fusion point and the target temperature, and proposed that contact line arrest occurs when the liquid's dynamic contact angle approaches the angle of attack of the solidification front just behind the contact line. They also showed, however, that the conventional continuum equations and boundary conditions have no meaningful solution for this angle. The solidification front angle is determined by the heat flux just behind the contact line, and the heat flux is singular at that point. By comparing experiments with numerical computations, Schiaffino and Sonin estimated that the conventional solidification model must break down within a distance of order 0.1 - 1 microns of the contact line. The physical mechanism for this breakdown is as yet undetermined, and no first-principles theory exists for the contact angle at arrest. Schiaffino and Sonin also presented a framework for understanding how to moderate Weber number molten droplet deposition in terms of similarity laws and experimentation. The study is based on experiments with three molten

  2. Molten uranium dioxide structure and dynamics.

    Science.gov (United States)

    Skinner, L B; Benmore, C J; Weber, J K R; Williamson, M A; Tamalonis, A; Hebden, A; Wiencek, T; Alderman, O L G; Guthrie, M; Leibowitz, L; Parise, J B

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  3. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    Science.gov (United States)

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  4. Multiply manifolded molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.

    1994-08-01

    This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.

  5. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  6. Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Dave, Bhasker B. [Texas A & M Univ., College Station, TX (United States)

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, DO1/2CO, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product DO1/2CO were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  7. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  8. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  9. Electrochemical studies on plutonium in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Bourges, G. [CEA-Centre d' etudes de Valduc, 21 120 Is sur Tille (France)], E-mail: gilles.bourges@cea.fr; Lambertin, D.; Rochefort, S. [CEA-Centre d' etudes de Valduc, 21 120 Is sur Tille (France); Delpech, S.; Picard, G. [Laboratoire d' Electrochimie et de Chimie Analytique (UMR7575, CNRS), ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris (France)

    2007-10-11

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl{sub 2}, equimolar mixture NaCl-KCl and pure CaCl{sub 2} - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl{sub 2} at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl{sub 2}, 1 atm/Cl{sup -} reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl{sub 2} the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl{sub 2} and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log {gamma} = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements.

  10. Apparatus for controlling molten core debris. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  11. Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor

    Science.gov (United States)

    Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.

    2014-04-01

    The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.

  12. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    Science.gov (United States)

    Park, John J.; Buksa, John J.

    1995-09-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment. Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  13. Production of Oxygen from Lunar Regolith using Molten Oxide Electrolysis

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald R.; Sirk, Aislinn; Tripathy, Prabhat; Melendez, Orlando; Standish, Evan; Dominquez, Jesus A.; Stefanescu, Doru M.; Curreri, Peter A.; Poizeau, Sophie

    2009-01-01

    This slide presentation reviews the possible use of molten oxide electrolysis to extract oxygen from the Lunar Regolith. The presentation asserts that molten regolith electrolysis has advanced to be a useful method for production of oxygen and metals in situ on the Moon. The work has demonstrated an 8 hour batch of electrolysis at 5 amps using Iridium inert anodes.

  14. Stable colloids in molten inorganic salts.

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  15. Transient simulation of molten salt central receiver

    Science.gov (United States)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  16. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  17. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  18. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  19. Metals recovering from waste printed circuit boards (WPCBs) using molten salts.

    Science.gov (United States)

    Flandinet, L; Tedjar, F; Ghetta, V; Fouletier, J

    2012-04-30

    Recycling of waste electrical and electronic equipments (WEEE) has been taken into consideration in the literature due to the large quantity of concerned wastes and their hazardous contents. The situation is so critical that EU published European Directives imposing collection and recycling with a minimum of material recovery [1]. Moreover, WEEEs contain precious metals, making the recycling of these wastes economically interesting, but also some critical metals and their recycling leads to resource conservation. This paper reports on a new approach for recycling waste printed circuit boards (WPCBs). Molten salts and specifically molten KOH-NaOH eutectic is used to dissolve glasses, oxides and to destruct plastics present in wastes without oxidizing the most valuable metals. This method is efficient for recovering a copper-rich metallic fraction, which is, moreover, cleared of plastics and glasses. In addition, analyses of gaseous emission show that this method is environmentally friendly since most of the process gases, such as carbon monoxide and dioxide and halogens, are trapped in the highly basic molten salt. In other respects, under operation without oxygen, a large quantity of hydrogen is produced and might be used as fuel gas or as synthesis gas, leading to a favourable energy balance for this new process.

  20. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  1. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    Energy Technology Data Exchange (ETDEWEB)

    Trudel, David R. (Westlake, OH); Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Arnaud, Guy (Morin Heights, CA); Bigler, Nicolas (Riviere-Beaudette, CA)

    2003-06-17

    The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.

  2. Grain boundary wetness of partially molten dunite

    Science.gov (United States)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  3. Assessment of commercial prospects of molten carbonate fuel cells

    Science.gov (United States)

    Dicks, Andrew; Siddle, Angie

    The commercial prospects of molten carbonate fuel cells have been evaluated. Market applications, and the commercial criteria that the MCFC will need to satisfy for these applications, were identified through interviews with leading MCFC developers. Strengths, weaknesses, opportunities and threats (SWOT) analyses were carried out to critically evaluate the prospects for commercialisation. There are many competing technologies, but it is anticipated that MCFCs can make significant penetration into markets where their attributes, such as quality of power, low emissions and availability, give them a leading position in comparison with, for example, engine and turbine-based power generation systems. Analysis suggests that choosing the size for MCFC plant is more important than the target market sector/niche. Opportunities will exist in many market sectors, though the commercial market would be easier to penetrate initially. Developers are optimistic about the commercial prospects for the MCFC. Most believe that early commercial MCFC plants may start to appear in the first decade of the next century, the earliest date suggested for initial market entry being 2002.

  4. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Science.gov (United States)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  5. Molten Fuel-Coolant Interactions induced by coolant injection into molten fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Yamano, Norihiko; Maruyama, Yu; Moriyama, Kiyofumi; Yang, Y.; Sugimoto, Jun [Severe Accident Research Laboratory, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-07-01

    To investigate Molten Fuel-Coolant Interactions (MFCIs) in various contact geometries, an experimental program, called MUSE (MUlti-configurations in Steam Explosions), has been initiated under the ALPHA program at JAERI in Japan. The first series of MUSE test has been focused on the coolant injection (CI) and stratified modes of FCIs using water as coolant and molten thermite as molten fuel. The effects of water jet subcooling, jet dynamics, jet shape and system constraint on FCIs energetic in these modes were experimentally investigated by precisely measuring their mechanical energy release in the MUSE facility. It was observed that measured mechanical energy increased with increasing of jet subcooling in a weakly constraint system but decreased in a strongly constraint system. FCI energetic also increased with increasing of water jet velocity. These results suggested that the penetration and dispersion phenomena of a water jet inside a melt determined the mixing conditions of FCIs in these contact modes and consequently played important roles on FCI energetics. To understand fundamental physics of these phenomena and possible mixing conditions in the MUSE tests, a set of visualization tests with several pairs of jet-pool liquids in non-boiling and isothermal conditions were carried out. Numerical simulations of a water jet penetrating into a water pool at non-boiling conditions showed similar behaviors to those observed in the visualization tests. (author)

  6. Castable cements to prevent corrosion of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Vidal, J. C.; Morton, E.

    2016-08-01

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 degrees C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72+/-0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C shows a corrosion rate of 9E-04 mm/year. The present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.

  7. Molten Composition B Viscosity at Elevated Temperature

    Science.gov (United States)

    Zerkle, David K.; Núñez, Marcel P.; Zucker, Jonathan M.

    2016-10-01

    A shear-thinning viscosity model is developed for molten Composition B at elevated temperature from analysis of falling ball viscometer data. Results are reported with the system held at 85, 110, and 135°C. Balls of densities of 2.7, 8.0, and 15.6 g/cm3 are dropped to generate a range of strain rates in the material. Analysis of video recordings gives the speed at which the balls fall. Computer simulation of the viscometer is used to determine parameters for a non-Newtonian model calibrated to measured speeds. For the first time, viscosity is shown to be a function of temperature and strain rate-dependent maximum RDX (cyclotrimethylenetrinitramine) particle volume fraction.

  8. Numerical tools for Molten salt reactor simulation

    Energy Technology Data Exchange (ETDEWEB)

    Doligez, X.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Ghetta, V. [LPSC-IN2P3-CNRS/Universite Joseph Fourier/Grenoble-INP, 53 Avenue des Martyrs, 38026 Grenoble Cedex (France)

    2009-06-15

    Molten salt reactors (MSR) are basically different from other reactors mainly because the fuel is liquid. It flows through the core, pipes, pumps and heat exchangers. Previous studies showed that a particular configuration of a molten salt reactor perfectly fulfils criteria chosen by the Generation 4 International Forum (GIF). This configuration, called non-moderated Thorium Molten Salt Reactor is a 1000 GW electrical thorium cycle based molten salt reactor with no moderator inside the core. Consequently, the neutron spectrum is fast. The reactor is coupled with a salt control unit, which complicates the studies. Reactors simulation is based on resolving Bateman's equations, which give the population of each nucleus inside the core at each moment. Because of MSR's fundamental characteristics, those equations have to be modified adding two terms: a fertile/fissile alimentation for the reactivity and the salt composition control, and the reprocessing associated term. Equations become: {delta}N{sub i}/{delta}t = {sigma}{sub j{ne}}{sub i} {lambda}{sub j{yields}}{sub i} N{sub j} + X{sub j} <{sigma}{sub j}{phi}> N{sub j} - {lambda}{sub i}N{sub i} - <{sigma}{sub i}{phi}> N{sub i} {lambda}{sub chem} N{sub i} + A where {lambda}{sub chem} represents the reprocessing capacities and A represents the fertile/fissile alimentation. All our studies are made with a homemade code, REM, which is a precision driven code for material evolution. Neutron flux and neutron reactions rate are calculated thanks MCNP and the temporal integration is made thanks a Runge-Kutta fourth order method. This code REM, whose calculation scheme will be described in the paper, does not allow a coupling flexible enough between the reprocessing and the core physics. Indeed, reprocessing terms in the previous equation ({lambda}{sub chem}) are set for the whole evolution that can last several hundreds of years. A new way is to drive chemical needs to keep the core critical. Therefore, we are

  9. Modelisation of the SECMin molten salts environment

    Science.gov (United States)

    Lucas, M.; Slim, C.; Delpech, S.; di Caprio, D.; Stafiej, J.

    2014-06-01

    We develop a cellular automata modelisation of SECM experiments to study corrosion in molten salt media for generation IV nuclear reactors. The electrodes used in these experiments are cylindrical glass tips with a coaxial metal wire inside. As the result of simulations we obtain the current approach curves of the electrodes with geometries characterized by several values of the ratios of glass to metal area at the tip. We compare these results with predictions of the known analytic expressions, solutions of partial differential equations for flat uniform geometry of the substrate. We present the results for other, more complicated substrate surface geometries e. g. regular saw modulated surface, surface obtained by Eden model process, ...

  10. Molten salts database for energy applications

    CERN Document Server

    Serrano-López, Roberto; Cuesta-López, Santiago

    2013-01-01

    The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

  11. Molten-Salt Depleted-Uranium Reactor

    CERN Document Server

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  12. Energetic materials destruction using molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-04-29

    The Lawrence Livermore National Laboratory in conjunction with the Energetic Materials Center is developing methods for the safe and environmentally sound destruction of explosives and propellants as a part of the Laboratory`s ancillary demilitarization mission. LLNL has built a small-scale unit to test the destruction of HE using the Molten Salt Destruction (MSD) Process. In addition to the high explosive HMX, destruction has been carried out on RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. Also destroyed was a liquid gun propellant comprising hydroxyammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, destruction has been carried out on a number of commonly used formulations, such as LX-10, LX-16, LX-17, and PBX-9404.

  13. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  14. Stable colloids in molten inorganic salts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dimitri V.

    2017-02-16

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  15. Molten carbonate fuel cell technology improvement

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  16. Apparatus and method for stripping tritium from molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Wilson, Dane F.

    2017-02-07

    A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.

  17. Apparatus and method for stripping tritium from molten salt

    Science.gov (United States)

    Holcomb, David E.; Wilson, Dane F.

    2017-02-07

    A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.

  18. Control strategies in a thermal oil - Molten salt heat exchanger

    Science.gov (United States)

    Roca, Lidia; Bonilla, Javier; Rodríguez-García, Margarita M.; Palenzuela, Patricia; de la Calle, Alberto; Valenzuela, Loreto

    2016-05-01

    This paper presents a preliminary control scheme for a molten salt - thermal oil heat exchanger. This controller regulates the molten salt mass flow rate to reach and maintain the desired thermal oil temperature at the outlet of the heat exchanger. The controller architecture has been tested using an object-oriented heat exchanger model that has been validated with data from a molten salt testing facility located at CIEMAT-PSA. Different simulations are presented with three different goals: i) to analyze the controller response in the presence of disturbances, ii) to demonstrate the benefits of designing a setpoint generator and iii) to show the controller potential against electricity price variations.

  19. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina

    1999-01-01

    Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...... as the partial pressure of carbon dioxide varies. By combination of solubility and electromotive force measurements, a model is constructed assuming the dissolution involves complex formation. The possible species for lead are proposed to be [Pb(CO3)(2)](-2) and/or [Pb(CO3)(3)](-4). A similar complex chemistry...

  20. Ion-stimulated gas desorption yields of coated (Au, Ag, Pd) stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator (LINAC 3), has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting on different accelerator-type vacuum chambers. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, and palladium-coated 316LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 10**4 molecules/ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble metal coating by up to 2 orders of magnitude. In addition, the effectiveness of beam scrubbing with heavy ions and the consequence of a subsequent venting on the desorption yields of a beam-scrubbed vacuum chamber are described. Practical consequences for the vacuum system of the future Low Energy Ion Ring (LEIR) are discussed.

  1. Erosion Effect of Molten Steel on Carbon Containing Refractories for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    LI Hongxia; YANG Bin; LIU Guoqi; CHENG Hepeng

    2007-01-01

    The erosion resistance of carbon containing refractories for continuous casting to molten steel was investigated by means of simulative erosion test and examining used refractories.Decolonization and reaction between molten steel and decolonization layer are main erosion process of carbon containing refractories by1 molten steel.The reactions between molten steel and oxide in refractories determine the thickness of decarbonization layer A dense layer formation on the working surface contacting with molten steel during casting will suppress decarbonization and erosion process.

  2. Cyclic Voltammetric Experiment - Simulation. Comparisons of the Complex Mechanism Associated with Electrochemical Reduction of Zr4+ in LiCl-KCl Eutectic Molten Salt

    OpenAIRE

    Fabian, Cesimiro P.; Luca, Vittorio; Le, Than H.; Bond, Alan M.; Chamelot, Pierre; Massot, Laurent; Caravaca, Concepción; Hanley, Tracey L.; Lumpkin, Gregory R.

    2012-01-01

    International audience; Nuclear energy increasingly represents an important option for generating largely clean CO2-free electricity and zirconium is a fission product that is expected to be present in irradiated fuels. The present investigation addresses the electrochemical reduction of Zr4+ to Zro in LiCl - KCl eutectic molten salt in the temperature range 425-550◦C using cyclic voltammetry (CV), square-wave voltammetry (SWV) and bulk electrolysis. Simulations of the CV data indicate that t...

  3. Surface tension of molten tin investigated with sessile drop method

    Institute of Scientific and Technical Information of China (English)

    LI Jing; YUAN Zhang-fu; FAN Jian-feng; KE Jia-jun

    2005-01-01

    The surface tension of molten tin was determined by a set of self-developed digital equipment with sessile drop method at oxygen partial pressure of 1.0 × 10-6 MPa under different temperatures, and the dependence of surface tension of molten tin on temperature was also discussed. The emphasis was placed on the comparison of surface tension of the same molten tin sample measured by using different equipments with sessile drop method. Results of the comparison indicate that the measurement results with sessile drop method under the approximate experimental conditions are coincident, and the self-developed digital equipment for surface tension measurement has higher stability and accuracy. The relationships of surface tension of molten tin and its temperature coefficient with temperature and oxygen partial pressure were also elucidated from the thermodynamic equilibrium analysis.

  4. System Requirements Document for the Molten Salt Reactor Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, R.D.

    2000-04-01

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  5. Large Scale Inert Anode for Molten Oxide Electrolysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Molten oxide electrolysis is a demonstrated laboratory-scale process for producing oxygen from the JSC-1a lunar simulant; however, critical subsystems necessary for...

  6. High Surface Iridium Anodes for Molten Oxide Electrolysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith...

  7. Segregation of Molten Salt on Chromizing in Thermal Diffusion Process

    Institute of Scientific and Technical Information of China (English)

    WANG Hongfu; WANG Junyuan; WANG Huachang

    2011-01-01

    The segregation of thermal diffusion salt bath chromizing process was analyzed.The experimental chromizing ingredients were prepared by the four groups A,B,C,and D.In order to study the segregation status of this case,the cooling molten salt in the crucible was removed by drilling from the heart core of molten salt.The core of molten salt was analyzed by X-ray fluorescence spectroscopy and XRD.Through the analysis,we can conclude that the Cr element deposited in the bottom was 4.51 times than the top.Chloride added to the molten salt will reduce segregation.Meantime we proposed some measures to overcome the segregation problem.

  8. Polymers' surface interactions with molten iron: A theoretical study

    Science.gov (United States)

    Assadi, M. Hussein N.; Sahajwalla, Veena

    2014-10-01

    Environmental concerns are the chief drive for more innovative recycling techniques for end-of-life polymeric products. One attractive option is taking advantage of C and H content of polymeric waste in steelmaking industry. In this work, we examined the interaction of two high production polymers i.e. polyurethane and polysulfide with molten iron using ab initio molecular dynamics simulation. We demonstrate that both polymers can be used as carburizers for molten iron. Additionally, we found that light weight H2 and CHx molecules were released as by-products of the polymer-molten iron interaction. The outcomes of this study will have applications in the carburization of molten iron during ladle metallurgy and waste plastic injection in electric arc furnace.

  9. Molten salt synthesis of mullite nanowhiskers using different silica sources

    Institute of Scientific and Technical Information of China (English)

    Tao Yang; Peng-long Qiu; Mei Zhang; Kuo-Chih Chou; Xin-mei Hou; Bai-jun Yan

    2015-01-01

    Mullite nanowhiskers with Al-rich structure were prepared by molten salt synthesis at 1000°C for 3 h in air using silica, amor-phous silica, and ultrafine silica as the silica sources. The phase and morphology of the synthesized products were investigated by X-ray dif-fraction, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. A thermogravimetric and differential thermal analysis was carried out to determine the reaction mechanism. The results reveal that the silica sources play an important role in determining the morphology of the obtained mullite nanowhiskers. Clusters and disordered arrangements are obtained using common silica and amorphous silica, respectively, whereas the use of ultrafine silica leads to highly ordered mullite nanowhiskers that are 80−120 nm in diameter and 20−30μm in length. Considering the growth mechanisms, mullite nanowhiskers in the forms of clusters and highly ordered arrangements can be attributed to heterogeneous nucleation, whereas disordered mullite nanowhiskers are obtained by homogenous nuclea-tion.

  10. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  11. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  12. Molten fluoride mixtures as possible fission reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, W.R.

    1978-01-01

    Molten mixtures of fluorides with UF/sub 4/ as a component have been used as combined fuel and primary heat transfer agent in experimental high-temperature reactors and have been proposed for use in breeders or converters of /sup 233/U from thorium. Such use places stringent and diverse demands upon the fluid fuel. A brief review of chemical behavior of molten fluorides is given to show some of their strengths and weaknesses for such service.

  13. Minimizing the fissile inventory of the molten salt fast reactor

    OpenAIRE

    Merle-Lucotte, E.; Heuer, D.; Allibert, M.; Doligez, X.; Ghetta, V.

    2009-01-01

    International audience; Molten salt reactors in the configurations presented here, called Molten Salt Fast Reactors (MSFR), have been selected for further studies by the Generation IV International Forum. These reactors may be operated in simplified and safe conditions in the Th/233U fuel cycle with fluoride salts. We present here the concept, before focusing on a possible optimization in term of minimization of the initial fissile inventory. Our studies demonstrate that an inventory of 233U ...

  14. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    OpenAIRE

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a thorough knowledge of the physico-chemical properties of molten fluorides salts, which are one of the best options for the reactor fuel. This dissertation presents the thermodynamic description of the ...

  15. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  16. Morphology of melt-rich channels formed during reaction infiltration experiments on partially molten mantle rocks

    Science.gov (United States)

    Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is

  17. Regulation of food irradiation and detection of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B. [Institute of Geological and Nuclear Sciences, Lower Hutt (New Zealand)

    1998-12-31

    The main international standards for irradiated foods are those produced by the Codex Alimentarius Commission. The international regulatory environment is now favourable towards irradiated foods. Most countries still regulate on a food-by-food, case-by-case basis. However in Asia there is movement towards a Harmonised Regulation for Irradiated Foods. The WHO believes that irradiated foods may be safely irradiated at any dose above 10 kGy. This may lead to the Codex maximum dose being raised or abandoned. If this occurs there are opportunities to produce shelf-stable foods in lightweight packaging that last for years at room temperature. Detection methods for irradiated foods are now available and may assist to reassure consumers that labelling regulations can be enforced. (author)

  18. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  19. Evaporation of Molten Salts by Plasma Torch

    Science.gov (United States)

    Putvinski, S.; Agnew, S. F.; Chamberlain, F.; Freeman, R. L.; Litvak, A.; Meekins, M.; Schwedock, T.; Umstadter, K. R.; Yung, S.; Bakharev, V.; Dresvin, S.; Egorov, S.; Feygenson, O.; Gabdullin, P.; Ivanov; Kizevetter, D.; Kostrukov, A.; Kuteev, B.; Malugin, V.; Zverev, S.

    2003-10-01

    Archimedes Technology Group is developing a plasma nuclear waste separation technology, called the Plasma Mass Filter. The experimental results on thermal evaporation of molten NaOH based surrogates for the Filter are presented. The main goal of the experiments was the study of high-density plasma discharges in NaOH vapor with the aim to minimize injection of additional working gas in the plasma torch. In these experiments NaOH vapor has been produced either by evaporation of the melt from a crucible introduced inside the plasma torch, or by injection of the melt droplets inside the torch. In the latter case, the melt was first atomized by an ultrasonic nebulizer at a flow rate of up to 2g/s with a droplet size of ˜50um. Plasma composition has been monitored by optical measurements. An optical diagnostic for droplet size measurement is presented together with results of the measurements of the size spectrum of the NaOH droplets.

  20. Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step

    OpenAIRE

    Rodrigues Davide; Durán-Klie Gabriela; Delpech Sylvie

    2015-01-01

    The nuclear fuel reprocessing is a prerequisite for nuclear energy to be a clean and sustainable energy. In the case of the molten salt reactor containing a liquid fuel, pyrometallurgical way is an obvious way. The method for treatment of the liquid fuel is divided into two parts. In-situ injection of helium gas into the fuel leads to extract the gaseous fission products and a part of the noble metals. The second part of the reprocessing is performed by ‘batch’. It aims to recover the fissile...

  1. Effects of thermal shocks on the release of radioisotopes and on molten metal target vessels

    CERN Document Server

    Lettry, Jacques; Benedikt, Michael; Catherall, R; Cyvoct, G; Fabich, A; Georg, U; Gilardoni, S S; Jonsson, O; Ravn, H L; Sgobba, Stefano; Bauer, G; Bruchertseifer, H; Graber, T; Gudermann, C; Ni, L; Rastani, R

    2003-01-01

    The ISOLDE pulsed proton beam peak power amounts to 500 MW during the 2.4 ms proton pulse. The fraction of the proton pulse energy deposited in the target material is at the origin of severe thermal shocks. Quantitative measurement of their effect on the release of radioelements from ISOLDE targets was obtained by comparison of release profiles measured under different proton beam settings. The thermal shock induced in liquids (Pb, Sn, La) lead to mechanical failure of ISOLDE molten metal target vessels. Failure analysis is presented and discussed in the light of the response of mercury samples submitted to the ISOLDE beam and monitored by high-speed optical systems.

  2. Dissipative particle dynamics simulations of the viscosities of molten TNT and molten TNT suspensions containing nanoparticles.

    Science.gov (United States)

    Zhou, Yang; Li, Yixue; Qian, Wen; He, Bi

    2016-09-01

    Based on dissipative particle dynamics (DPD) methods and experimental data, we used an empirical relationship between the DPD temperature and the real temperature to build a model that describes the viscosity of molten TNT fluids. The errors in the predicted viscosity based on this model were no more than 2.3 %. We also studied the steady-state shear rheological behavior of molten TNT fluids containing nanoparticles ("nanofluids"). The dependence of the nanofluid viscosity on the temperature was found to satisfy an Arrhenius-type equation, η = Ae (B/T) , where B, the flow activation energy, depends on particle content, size, and shape. We modified the Einstein-type viscosity model to account for the effects of nanoparticle solvation in TNT nanofluids. The resulting model was able to correctly predict the viscosities of suspensions containing nano- to microsized particles, and did not require any changes to the physical background of Einstein's viscosity theory. Graphical Abstract The revised Einstein viscosity model that correctly predict the viscosity of TNT suspensions containing nanoparticles.

  3. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  4. Supported Molten Metal Catalysis. A New Class of Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  5. Raman Spectroscopic Study of Tungsten(VI) Oxosulfato Complexes in WO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties and Molecular Structure

    DEFF Research Database (Denmark)

    Paulson, Andreas L.; Kalampounias, Angelos G.; Berg, Rolf W.

    2011-01-01

    The dissolution reaction of WO3 in pure molten K2S2O7 and in molten K2S2O7-K2SO4 mixtures is studied under static equilibrium conditions in the XWO3 0 = 0-0.33 mol fraction range at temperatures up to 860 C. High temperature Raman spectroscopy shows that the dissolution leads to formation of WVI ...

  6. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Webb, T.

    1986-01-01

    The proposed use of gamma radiation from cobalt 60 and cesium 137 for food irradiation in the United Kingdom is discussed, with particular reference to the possible dangers and disadvantages to the safety and wholesomeness of the food.

  7. Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Poniatowski, E., E-mail: haro@xanum.uam.mx; Acosta-Zepeda, C.; Mecalco, G.; Hernández-Pozos, J. L. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340 México D. F. (Mexico); Batina, N.; Morales-Reyes, I. [Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340 México D. F. (Mexico); Bonse, J. [BAM Bundesanstalt für Materialforschung und-prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2014-06-14

    Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.

  8. [Food irradiation].

    Science.gov (United States)

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables.

  9. Investigation of Space and Energy Distributions of Neutrons Generated in Lead Target and Uranium Blanket of the Electronuclear System "Energy plus Transmutation" under Irradiation with Protons at 1.5 GeV

    CERN Document Server

    Zhuk, I V; Krivopustov, M I; Sosnin, A N; Chultem, D; Vestmaer, V; Tumendelger, T; Zaveryukha, O S; Pavlyuk, A B

    2002-01-01

    The work contains the results of space-energy distributions of neutrons in U/Pb assembly, consisting of extended lead target and the model of natural uranium blanket irradiated with relativistic protons at 1.5 GeV. The research is carried out in the framework of a series of experiments using the model of subcritical heterogeneous electronuclear system at the Laboratory of High Energies, JINR, Dubna ("Investigation of Physical Aspects of Electronuclear Method of Energy Production and Transmutation of Radioactive Waste Using Beams from JINR Synchrophasotron/Nuclotron" - project "Energy plus Transmutation"). The results of measurements and calculations of ^{235}U, ^{238}U and ^{232}Th fission rate distributions as well as threshold spectral indexes {\\bar\\sigma_f^{^{232}Th}}/{\\bar\\sigma_f^{^{235}U}} and {\\bar\\sigma_f^{^{238}U}}/{\\bar\\sigma_f^{^{235}U}} along the radius of the target and model uranium blanket are presented. The results of measurements and calculations of ^{234}U, ^{236}U and ^{237}Np fission rate ...

  10. The Limiting Phenomena at the Anode of the Electrowinning of Zinc from Zinc Chloride in a Molten Chloride Electrolyte

    OpenAIRE

    Lans, S.C.

    2004-01-01

    The objective of this research is to investigate the possibilities and technological viability for the electrowinning of zinc from zinc chloride. This research contributes to development of an alternative process, because it provides: ⢠A clear understanding and overview of the present zinc industry and future developments. ⢠A thorough literature investigation, leading to: o Understanding the reasons to abandon the proposed process route previously used (molten salt electrowinning in parti...

  11. Gasification characteristics of organic waste by molten salt

    Science.gov (United States)

    Sugiura, Kimihiko; Minami, Keishi; Yamauchi, Makoto; Morimitsu, Shinsuke; Tanimoto, Kazumi

    Recently, along with the growth in economic development, there has been a dramatic accompanying increase in the amount of sludge and organic waste. The disposal of such is a significant problem. Moreover, there is also an increased in the consumption of electricity along with economic growth. Although new energy development, such as fuel cells, has been promoted to solve the problem of power consumption, there has been little corresponding promotion relating to the disposal of sludge and organic waste. Generally, methane fermentation comprises the primary organic waste fuel used in gasification systems. However, the methane fermentation method takes a long time to obtain the fuel gas, and the quality of the obtained gas is unstable. On the other hand, gasification by molten salt is undesirable because the molten salt in the gasification gas corrodes the piping and turbine blades. Therefore, a gasification system is proposed by which the sludge and organic waste are gasified by molten salt. Moreover, molten carbonate fuel cells (MCFC) are needed to refill the MCFC electrolyte volatilized in the operation. Since the gasification gas is used as an MCFC fuel, MCFC electrolyte can be provided with the fuel gas. This paper elucidates the fundamental characteristics of sludge and organic waste gasification. A crucible filled with the molten salt comprising 62 Li 2CO 3/38 K 2CO 3, is installed in the reaction vessel, and can be set to an arbitrary temperature in a gas atmosphere. In this instance, the gasifying agent gas is CO 2. Sludge or the rice is supplied as organic waste into the molten salt, and is gasified. The chemical composition of the gasification gas is analyzed by a CO/CO 2 meter, a HC meter, and a SO x meter gas chromatography. As a result, although sludge can generate CO and H 2 near the chemical equilibrium value, all of the sulfur in the sludge is not fixed in the molten salt, because the sludge floats on the surface of the carbonate by the specific

  12. Overview on CO2 valorisation: challenge of molten carbonates

    Directory of Open Access Journals (Sweden)

    Déborah eChery

    2015-10-01

    Full Text Available The capture and utilisation of CO2 is becoming progressively one of the significant challenges in the field of energetic resources. Whatever the energetic device, it is impossible to avoid completely the production of greenhouse gas, even parting from renewable energies. Transforming CO2 in a valuable fuel, such as alcohols, CO or even C, could constitute a conceptual revolution in the energetic bouquet offering a huge application domain. Although several routes have been tested for this purpose, on which a general panorama will be given here, molten carbonates are attracting a renewed interest aiming at dissolving and reducing carbon dioxide in such melts. Because of their unique properties, molten carbonates are already used as electrolytes in molten carbonate fuel cells; they can also provoke a breakthrough in a new economy considering CO2 as an energetic source rather than a waste. Molten carbonates science and technology is becoming a strategic field of research for energy and environmental issues. Our aim in this review is to put in evidence the benefits of molten carbonates to valorise CO2 and to show that it is one of the most interesting routes for such application.

  13. Viscosity of molten lithium, thorium and beryllium fluorides mixtures

    Science.gov (United States)

    Merzlyakov, Alexander V.; Ignatiev, Victor V.; Abalin, Sergei S.

    2011-12-01

    Considering development of Molten Salt Fast Reactor (MSFR) concept, following Molten Salt fluorides mixtures have been chosen as an object for viscosity studies in this work (in mol%): 78LiF-22ThF 4; 71LiF-27ThF 4-2BeF 2 and 75LiF-20ThF 4-5BeF 2. Additionally, the effect of the 3 mol% CeF 3 additives on viscosity of the molten 75LiF-20ThF 4-5BeF 2 (mol%) salt mixture has been investigated experimentally. The method of torsional oscillations of cylindrical crucible filled by molten fluorides mixture has been chosen for kinematic viscosity measurement at temperatures up to 800-850 °C. In temperature ranges, where melts behave as normal liquids, dependences on viscosity vs. temperature are received: ν = А exp [B/T(K)], where ν - kinematic viscosity, m 2/s; T - temperature, K. The kinematic viscosity Rout mean squares (RMS) estimated in the assumption about dispersion homoscedasticity is (0.04-0.12) × 10 -6 (m 2/s). Discrepancies left in the data of viscosity for molten mixtures of LiF, BeF 2 and ThF 4 received by different researchers need further investigations in this area to be continued.

  14. Defect evolution in a Nisbnd Mosbnd Crsbnd Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature

    Science.gov (United States)

    de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti

    2016-06-01

    A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.

  15. Presence of Li Clusters in Molten LiCl-Li

    Science.gov (United States)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  16. Features of molten pool free surface in laser processing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of static characteristics of free surface of molten pools in laser processing, starting with the change of surface tension, the uniform numerical models are developed for both the liquid and solid regions of metals by applying the enthalpy source method and the porous region model. The flow and heat transfer characteristics in the molten pools and the distribution of surface tension on free surface are disclosed. The shape of free surface is analyzed by considering the static forces on the free surface and by combining with the calculated results of the molten pool. The model is applied to analyzing the laser processing of AISI 304 stainless steel, and the effects of different processing tech nics and material properties on shaping of free surface are discussed.

  17. Plasma-sprayed ceramic coatings for molten metal environments.

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, K. J. (Kendall J.); Peters, M. I. (Maria I.); Bartram, B. D. (Brian D.)

    2002-01-01

    Coating porosity is an important parameter to optimize for plasma-sprayed ceramics which are intended for service in molten metal environments. Too much porosity and the coatings may be infiltrated by the molten metal causing corrosive attack of the substrate or destruction of the coating upon solidification of the metal. Too little porosity and the coating may fail due to its inability to absorb thermal strains. This study describes the testing and analysis of tungsten rods coated with aluminum oxide, yttria-stabilized zirconia, yttrium oxide, and erbium oxide deposited by atmospheric plasma spraying. The samples were immersed in molten aluminum and analyzed after immersion. One of the ceramic materials used, yttrium oxide, was heat treated at 1000 C and 2000 C and analyzed by X-ray diffractography and mercury intrusion porosimetry. Slight changes in crysl nl structure and significant changes in porosity were observed after heat treatments.

  18. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  19. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  20. Molten pool and temperature field in CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Duan Aiqin; Chen Li; Wang Yajun; Hu Lunji

    2006-01-01

    Two measuring methods, high-speed camera and optical monitoring system, were used to study processes of laser welding. Molten pool, cooling time and temperature field were analyzed based on real measured images and optical signal data. The results show that the width of molten pool is almost equal to the width of weld, and length is about 7.8 mm. The solidification time is about 0. 5 s and the temperature gradient is great, so HAZ is very small. The method and results will be of benefit to build the relationship between welding parameters and microstructure.

  1. Surface Tension of Molten Ni and Ni-Co Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG; Kiyoshi NOGI

    2005-01-01

    Surface tension of molten Ni and Ni-Co (5 and 10 mass fraction) alloys was measured at the temperature range of 1773~1873 K using an improved sessile drop method with an alumina substrate in an Ar+3%H2 atmosphere. The error of the data obtained was analyzed. The surface tension of molten Ni and Ni-Co (5 and 10 mass fraction) alloys decreases with increasing temperature. The influence of Co on the surface tension of Ni-Co alloys is little in the studied Co concentration range.

  2. Electrochemical studies on cerium(Ⅲ) in molten fluoride mixtures

    Institute of Scientific and Technical Information of China (English)

    VIRGIL; CONSTANTIN; ANA-MARIA; POPESCU; MIRCEA; OLTEANU

    2010-01-01

    This study aims to determine the principal electrochemical characteristics of the electrodeposition of cerium metal from molten fluoride systems.The cathodic process of Ce3+ ions in LiF-NaF and LiF-NaF-CaF2 molten salts was studied using electrochemical techniques as steady state and cyclic voltammetry methods.The decomposition potential(Ed) and the overvoltage(η) were determined for NaCeF4 using current-potential curves under galvanostatic conditions.The Ed was found to be 2.025 V in LiF-NaF and 2.045 V in...

  3. Stabilization of STEP electrolyses in lithium-free molten carbonates

    CERN Document Server

    Licht, Stuart

    2012-01-01

    This communication reports on effective electrolyses in lithium-free molten carbonates. Processes that utilize solar thermal energy to drive efficient electrolyses are termed Solar Thermal Electrochemical Processes (STEP). Lithium-free molten carbonates, such as a sodium-potassium carbonate eutectic using an iridium anode, or a calcium-sodium-potassium carbonate eutectic using a nickel anode, can provide an effective medium for STEP electrolyses. Such electrolyses are useful in STEP carbon capture, and the production of staples including STEP fuel, iron, and cement.

  4. Fast Thorium Molten Salt Reactors started with Plutonium

    OpenAIRE

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Mathieu, L.; Brissot, R.; Liatard, E.; Méplan, O.; Nuttin, A.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232Th/233U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233U are examined here: dire...

  5. Castable Cement Can Prevent Molten-Salt Corrosion in CSP

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    NREL's study demonstrated that castable cements on metals are a protective barrier that can prevent permeation of molten salts toward metallic surfaces. The silica-based castable cement Aremco 645-N, when sprayed with boron nitride, can protect containment metallic alloys from attack by molten chlorides at high temperatures (650 degrees C) in short-term tests. Improved thermal energy storage technology could increase the performance of CSP and reduce costs, helping to reach the goal of the U.S. Department of Energy's SunShot Initiative to make solar cost-competitive with other non-renewable sources of electricity by 2020.

  6. Nuclear Hybrid energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.; Sabharwall, P.; Yoon, S. J.; Bragg-Sitton, S. B.; Stoot, C.

    2014-07-01

    Without growing concerns in reliable energy supply, the next generation in reliable power generation via hybrid energy systems is being developed. A hybrid energy system incorporates multiple energy input source sand multiple energy outputs. The vitality and efficiency of these combined systems resides in the energy storage application. Energy storage is necessary for grid stabilization because stored excess energy is used later to meet peak energy demands. With high thermal energy production the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct thermal properties. This paper discusses the criteria for efficient energy storage and molten salt energy storage system options for hybrid systems. (Author)

  7. SENER molten salt tower technology. Ouarzazate NOOR III case

    Science.gov (United States)

    Relloso, Sergio; Gutiérrez, Yolanda

    2017-06-01

    NOOR III 150 MWe project is the evolution of Gemasolar (19.9 MWe) to large scale Molten Salt Tower plants. With more than 5 years of operational experience, Gemasolar lessons learned have been the starting point for the optimization of this technology, considered the leader of potential cost reduction in CSP. In addition, prototypes of plant key components (heliostat and receiver) were manufactured and thoroughly tested before project launch in order to prove the new engineering solutions adopted. The SENER proprietary technology of NOOR III will be applied in the next Molten Salt Tower plants that will follow in other countries, such as South Africa, Chile and Australia.

  8. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active...

  9. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    Meer, J.P.M. van der

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of wh

  10. Melt-preferred orientation, anisotropic permeability, and melt-band formation in a deforming, partially molten aggregate

    CERN Document Server

    Taylor-West, Jesse

    2015-01-01

    Shear deformation of partially molten rock in laboratory experiments causes the emergence of melt-enriched sheets (bands in cross-section) that are aligned at about 15-20 degrees to the shear plane. Deformation and deviatoric stress also cause the coherent alignment of pores at the grain scale. This leads to a melt-preferred orientation which may give rise to an anisotropic permeability. Here we develop a simple, general model of anisotropic permeability in partially molten rocks. We use linearised analysis and nonlinear numerical solutions to investigate its behaviour under simple shear deformation. In particular, we consider implications of the model for the emergence and angle of melt-rich bands. Anisotropic permeability affects the angle of bands and, in a certain parameter regime, it can give rise to low angles consistent with experiments. However, the conditions required for this regime have a narrow range and are unlikely to be met by experiments. Although anisotropic permeability may shape the behavio...

  11. Structural change in molten basalt at deep mantle conditions.

    Science.gov (United States)

    Sanloup, Chrystèle; Drewitt, James W E; Konôpková, Zuzana; Dalladay-Simpson, Philip; Morton, Donna M; Rai, Nachiketa; van Westrenen, Wim; Morgenroth, Wolfgang

    2013-11-07

    Silicate liquids play a key part at all stages of deep Earth evolution, ranging from core and crust formation billions of years ago to present-day volcanic activity. Quantitative models of these processes require knowledge of the structural changes and compression mechanisms that take place in liquid silicates at the high pressures and temperatures in the Earth's interior. However, obtaining such knowledge has long been impeded by the challenging nature of the experiments. In recent years, structural and density information for silica glass was obtained at record pressures of up to 100 GPa (ref. 1), a major step towards obtaining data on the molten state. Here we report the structure of molten basalt up to 60 GPa by means of in situ X-ray diffraction. The coordination of silicon increases from four under ambient conditions to six at 35 GPa, similar to what has been reported in silica glass. The compressibility of the melt after the completion of the coordination change is lower than at lower pressure, implying that only a high-order equation of state can accurately describe the density evolution of silicate melts over the pressure range of the whole mantle. The transition pressure coincides with a marked change in the pressure-evolution of nickel partitioning between molten iron and molten silicates, indicating that melt compressibility controls siderophile-element partitioning.

  12. Sorbitol dehydration into isosorbide in a molten salt hydrate medium

    NARCIS (Netherlands)

    Li, J.; Spina, A.; Moulijn, J.A.; Makkee, M.

    2013-01-01

    The sorbitol conversion in a molten salt hydrate medium (ZnCl2; 70 wt% in water) was studied. Dehydration is the main reaction, initially 1,4- and 3,6-anhydrosorbitol are the main products that are subsequently converted into isosorbide; two other anhydrohexitols, (1,5- and 2,5-), formed are in less

  13. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  14. Release properties of UC sub x and molten U targets

    CERN Document Server

    Roussière, B; Sauvage, J; Bajeat, O; Barre, N; Clapier, F; Cottereau, E; Donzaud, C; Ducourtieux, M; Essabaa, S; Guillemaud-Müller, D; Lau, C; Lefort, H; Liang, C F; Le Blanc, F; Müller, A C; Obert, J; Pauwels, N; Potier, J C; Pougheon, F; Proust, J; Sorlin, O; Verney, D; Wojtasiewicz, A

    2002-01-01

    The release properties of UC sub x and molten U thick targets associated with a Nier-Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe.

  15. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a thor

  16. Two techniques enable sampling of filtered and unfiltered molten metals

    Science.gov (United States)

    Burris, L., Jr.; Pierce, R. D.; Tobias, K. R.; Winsch, I. O.

    1967-01-01

    Filtered samples of molten metals are obtained by filtering through a plug of porous material fitted in the end of a sample tube, and unfiltered samples are obtained by using a capillary-tube extension rod with a perforated bucket. With these methods there are no sampling errors or loss of liquid.

  17. Research and development issues for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  18. Release properties of UC$_x$ and molten U targets

    CERN Document Server

    Roussière, B; Sauvage, J; Bajeat, O; Barre, N; Clapier, F; Cottereau, E; Donzaud, C; Ducourtieux, M; Essabaa, S; Guillemaud-Müller, D; Lau, C; Lefort, H; Liang, C F; Le Blanc, F; Müller, A C; Obert, J; Pauwels, N; Potier, J C; Pougheon, F; Proust, J; Sorlin, O; Verney, D; Wojtasiewicz, A

    2002-01-01

    The release properties of UC$_x$ and molten U thick targets associated with a Nier- Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe.

  19. Study on electrochemical characteristics of steel in molten sodium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aoto, Kazumi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2003-06-01

    Electrochemical characteristics of steel corrosion in molten sodium oxides were studied. No report exists about such electrochemical experiments in the melt because this molten salt is very corrosive and sodium easily corrodes gold used as a reference electrode by forming eutectics. In this study, proper protection using zirconia for the equipment part exposed to the corrosive atmosphere and the acceleration of scanning rate of the electric potential led to realization of the measurement of corrosion potential and polarization curves of steel in molten sodium oxides. Electrochemical characteristics measured agreed with the features of two types of corrosion derived from previous works such as the immersed corrosion test. Those are consistent with the fact that 'Molten salt type corrosion' occurs in the melt with higher oxygen potential and 'Na-Fe double oxidation type corrosion' occurs in the basic melt. The estimated corrosion rate for the corrosion based on the corrosion current density almost agrees with the prediction by each proposed equation. (author)

  20. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Doesburg, E.B.M.; Ommen, van J.G.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In orde

  1. Electrochemical Deposition of Uranium Metal in Molten Salt

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Based on the studies in the electrode process of uranium ions in the molten LiCl-KCl, we carried out the electrochemical deposition of uranium in two kinds of melts, LiCl-KCl-UCl3 and LiCl- KCl-UCl3-

  2. Molten-Salt-Based Growth of Group III Nitrides

    Science.gov (United States)

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  3. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  4. Alloys compatibility in molten salt fluorides: Kurchatov Institute related experience

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, Victor, E-mail: ignatiev@vver.kiae.ru; Surenkov, Alexandr

    2013-10-15

    In the last several years, there has been an increased interest in the use of high-temperature molten salt fluorides in nuclear power systems. For all molten salt reactor designs, materials selection is a very important issue. This paper summarizes results, which led to selection of materials for molten salt reactors in Russia. Operating experience with corrosion thermal convection loops has demonstrated good capability of the “nickel–molybdenum alloys + fluoride salt fueled by UF{sub 4} and PuF{sub 3} + cover gas” system up to 750 °C. A brief description is given of the container material work in progress. Tellurium corrosion of Ni-based alloys in stressed and unloaded conditions studies was also tested in different molten salt mixtures at temperatures up to 700–750 °C, also with measurement of the redox potential. HN80MTY alloy with 1% added Al is the most resistant to tellurium intergranular cracking of Ni-base alloys under study.

  5. Corrosion Behavior of Alloys in Molten Fluoride Salts

    Science.gov (United States)

    Zheng, Guiqiu

    The molten fluoride salt-cooled high-temperature nuclear reactor (FHR) has been proposed as a candidate Generation IV nuclear reactor. This reactor combines the latest nuclear technology with the use of molten fluoride salt as coolant to significantly enhance safety and efficiency. However, an important challenge in FHR development is the corrosion of structural materials in high-temperature molten fluoride salt. The structural alloys' degradation, particularly in terms of chromium depletion, and the molten salt chemistry are key factors that impact the lifetime of nuclear reactors and the development of future FHR designs. In support of materials development for the FHR, the nickel base alloy of Hastelloy N and iron-chromium base alloy 316 stainless steel are being actively considered as critical structural alloys. Enriched 27LiF-BeF2 (named as FLiBe) is a promising coolant for the FHR because of its neutronic properties and heat transfer characteristics while operating at atmospheric pressure. In this study, the corrosion behavior of Ni-5Cr and Ni-20Cr binary model alloys, and Hastelloy N and 316 stainless steel in molten FLiBe with and without graphite were investigated through various microstructural analyses. Based on the understanding of the corrosion behavior and data of above four alloys in molten FLiBe, a long-term corrosion prediction model has been developed that is applicable specifically for these four materials in FLiBe at 700ºC. The model uses Cr concentration profile C(x, t) as a function of corrosion distance in the materials and duration fundamentally derived from the Fick's diffusion laws. This model was validated with reasonable accuracy for the four alloys by fitting the calculated profiles with experimental data and can be applied to evaluate corrosion attack depth over the long-term. The critical constant of the overall diffusion coefficient (Deff) in this model can be quickly calculated from the experimental measurement of alloys' weight

  6. Fundamental study of molten pool depth measurement method using an ultrasonic phased array system

    Science.gov (United States)

    Mizota, Hirohisa; Nagashima, Yoshiaki; Obana, Takeshi

    2015-07-01

    The molten pool depth measurement method using an ultrasonic phased array system has been developed. The molten pool depth distribution is evaluated by comparing the times taken by the ultrasonic wave to propagate through a molten pool and a solid-phase and through only the solid-phase near the molten pool. Maximum molten pool depths on a flat type-304 stainless-steel plate, formed with a gas tungsten arc welding machine for different welding currents from 70 to 150 A, were derived within an error of ±0.5 mm.

  7. Molar Volume Analysis of Molten Ni-Al-Co Alloy by Measuring the Density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    The density of molten Ni-Al-Co alloys was measured in the temperature range of 1714~1873K using a modified pycnometric method, and the molar volume of molten alloys was analyzed. The density of molten Ni-Al-Co alloys was found to decrease with increasing temperature and Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys increases with increasing Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys shows a negative deviation from the linear molar volume.

  8. Preliminary safety calculations to improve the design of Molten Salt Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Capellan, N.; Ghetta, V.; Laureau, A. [LPSC, CNRS/IN2P3, Grenoble INP, 53,rue des Martyrs, 38026 Grenoble Cedex (France)

    2012-07-01

    Molten salt reactors are liquid fuel reactors so that they are flexible in operation but very different in the safety approach from solid fuel reactors. This study bears on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the R and D studies. This paper presents the first step of the safety approach: the systematic description of the MSFR, limited here to the main systems surrounding the core. This systematic description is the basis on which we will be able to devise accidental scenarios. Thanks to the negative reactivity feedback coefficient, most accidental scenarios lead to reactor shut down. Because of the decay heat generated in the fuel salt, it must be cooled. After the description of the tools developed to calculate the residual heat, the different contributions are discussed in this study. The decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing that transfers the fission products to the gas reprocessing unit. As a result, the contribution of the actinides is significant (0.5% of nominal power). The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (> 1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system. (authors)

  9. Development status and potential program for development of proliferation-resistant molten-salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Engel, J.R.; Bauman, H.F.; Dearing, J.F.; Grimes, W.R.; McCoy, H.E. Jr.

    1979-03-01

    Preliminary studies of existing and conceptual molten-salt reactor (MSR) designs have led to the identification of conceptual systems that are technologically attractive when operated with denatured uranium as the principal fissile fuel. These denatured MSRs would also have favorable resource-utilization characteristics and substantial resistance to proliferation of weapons-usable nuclear materials. The report presents a summary of the current status of technology and a discussion of the major technical areas of a possible base program to develop commercial denatured MSRs. The general areas treated are (1) reactor design and development, (2) safety and safety related technology, (3) fuel-coolant behavior and fuel processing, and (4) reactor materials. A substantial development effort could lead to authorization for construction of a molten-salt test reactor about 5 years after the start of the program and operation of the unit about 10 years later. A prototype commercial denatured MSR could be expected to begin operating 25 years from the start of the program. The postulated base program would extend over 32 years and would cost about $700 million (1978 dollars, unescalated). Additional costs to construct the MSTR, $600 million, and the prototype commercial plant, $1470 million, would bring the total program cost to about $2.8 billion. Additional allowances probably should be made to cover contingencies and incidental technology areas not explicitly treated in this preliminary review.

  10. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  11. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-15

    The sodium–nickel chloride (ZEBRA) battery is operated at relatively high temperature (250–350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β"-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. Finally, the cells also exhibited stable cycling performance even at 150 °C.

  12. Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process

    Science.gov (United States)

    Jiang, Chengcan; Rui, Yannian

    2017-03-01

    The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.

  13. Micromechanical modelling of partially molten and sand reinforced polycrystalline ice

    Science.gov (United States)

    Castelnau, O.; Duval, P.

    2009-12-01

    The viscoplastic behaviour of polycrystalline ice is strongly affected by the very strong anisotropy of ice crystals. Indeed, in the dislocations creep regime relevant for ice sheet flow, dislocation glide on the basal plane of ice single crystals leads to strain-rates ~6 order of magnitude larger than strain-rates that might be obtain if only non-basal glide is activated. At the polycrystal scale, this behaviour is responsible for a strong mechanical interaction between grains in the secondary (stationary) creep regime, and strain-rate is essentially partitioned between soft grains well-oriented for basal glide and hard grains exhibiting an unfavourable orientation for basal slip. As a consequence, the macroscopic flow stress at the polycrystal scale essentially depends on the resistance of the hardest slip systems or on the associated accommodation processes such as climb of basal dislocation on non-basal planes. Creep experiments performed on polycrystalline ices containing a small amount (less than 10% volume fraction) of liquid water show a dramatic increase of strain-rate, by more than one order of magnitude, compared to solid ice when deformed under similar thermo-mechanical conditions. Similarly, a strong hardening is observed when polycrystalline ice is reinforced by sand (which can be considered as a rigid phase here). This behaviour can be explained by micromechanical models, which aims at estimating the mechanical interactions between grains. For example, the presence of water releases stress concentrations at grain boundaries and therefore favours the inactivation of non-basal systems. To estimate such effect and to reach quantitative comparison with experimental data, we make use of the recent Second-Order homogenization mean-field approach of Ponte-Castaneda, based on self-consistent scheme. The advantage of this approach, which has been shown to provide excellent results when applied to many different non-linear composite materials, comes from the

  14. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    KAUST Repository

    Wu, Hongjun

    2017-07-13

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  15. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    Science.gov (United States)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  16. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    He, Xun

    2016-06-14

    one is about the demonstration of a new MSR concept using the mathematic tools. In particular, the aim of the first part is to demonstrate the suitability of the TRACE code for the similar MSR designs by using a modified version of the TRACE code to implement the simulations for the steady-state, transient and accidental conditions. The basic approach of this part is to couple the thermal-hydraulic model and the modified point-kinetic model. The equivalent thermal-hydraulic model of the MSRE was built in 1D with three loops including all the critical main components. The point-kinetic model was improved through considering the precursor drift in order to produce more practical results in terms of the delayed neutron behavior. Additionally, new working fluids, namely the molten salts, were embedded into the source code of TRACE. Most results of the simulations show good agreements with the ORNL's reports and with another recent study and the errors were predictable and in an acceptable range. Therefore, the necessary code modification of TRACE appears to be successful and the model will be refined and its functions will be extended further in order to investigate new MSR design. Another part of this thesis is to implement a preliminary study on a new concept of molten salt reactor, namely the Dual Fluid Reactor (DFR). The DFR belongs to the group of the molten salt fast reactors (MSFR) and it is recently considered to be an option of minimum-waste and inherently safe operation of the nuclear reactors in the future. The DFR is using two separately circulating fluids in the reactor core. One is the fuel salt based on the mixture of tri-chlorides of uranium and plutonium (UCl{sub 3}-PuCl{sub 3}), while another is the coolant composed of the pure lead (Pb). The current work focuses on the basic dynamic behavior of a scaled-down DFR with 500 MW thermal output (DFR-500) instead of its reference design with 3000 MW thermal output (DFR-3000). For this purpose 10 parallel

  17. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  18. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  19. Preparation of visible-light-responsive TiO2 coatings using molten KNO3 treatment and their photocatalytic activity

    Science.gov (United States)

    Hao, Liang; Guan, Sujun; Takaya, Shunsuke; Yoshida, Hiroyuki; Tochihara, Misako; Lu, Yun

    2017-06-01

    In this work, the process of mechanical coating followed by molten KNO3 treatment is given to prepare visible-light-responsive K+-doped TiO2. X-ray diffraction (XRD), scanning electron spectroscopy (SEM), Energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize these TiO2 coatings. The results showed that K+-doped anatase TiO2/Ti composite coatings formed after molten KNO3 treatment at elevated temperatures. Meanwhile, their photocatalytic degradation of methylene blue (MB) and the antibacterial activity against Escherichia coli (E. coli) was also studied. The visible-light-responsive photocatalytic activity of the coatings in MB degradation increased with increase of K+ ions when holding temperature was raised from 673 to 773 K. An excellent antibacterial activity of the K+-doped TiO2/Ti coatings against E. coli was also obtained even in absence of light. The antibacterial activity in dark should attribute to the release of K+ ions from the coatings. The photocatalytic activity under visible-light irradiation should result from the absorption spectrum extension due to the doping of K+ ions into the lattice of TiO2.

  20. Electrodeposition of alloys or compounds in molten salts and applications

    Directory of Open Access Journals (Sweden)

    Taxil P.

    2003-01-01

    Full Text Available This article deals with the different modes of preparation of alloys or intermetallic compounds using the electrodeposition in molten salts, more particularly molten alkali fluorides. The interest in this process is to obtain new materials for high technology, particularly the compounds of reactive components such as actinides, rare earth and refractory metals. Two ways of preparation are considered: (i electrocoating of the more reactive metal on a cathode made of the noble one and reaction between the two metals in contact, and (ii electrocoating on an inert cathode of the intermetallic compound by coreduction of the ions of each elements. The kinetic is controlled by the reaction at the electrolyte interface. A wide bibliographic survey on the preparation of various compounds (intermetallic compounds, borides, carbides… is given and a special attention is paid to the own experience of the authors in the preparation of these compounds and interpretation of their results.

  1. Deoxidation Behavior of Alloys Bearing Barium in Molten Steel

    Institute of Scientific and Technical Information of China (English)

    LI Yang; JIANG Zhou-hua; JIANG Mao-fa; WANG Jun-wen; GU Wen-bing

    2003-01-01

    The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K. The total oxygen contents of molten steel, the distribution, size and morphology of deoxidation products in the steel were surveyed. The metamorphic mechanism for deoxidation products of alloy bearing barium was also discussed. The results show that applying alloy bearing barium to the pipe steel, very low total oxygen contents can be obtained, and deoxidation products, which easily float up from molten steel, can be changed into globular shape and uniformly distributed in steel. The equilibrium time of total oxygen is about 25 min, and the terminal total oxygen contents range from 0.002 0 % to 0.002 2 % after treating with SiCa wire. The best deoxidizers are SiAlBaCa and SiAlBaCaSr.

  2. MAG-GATE System for Molten metal Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  3. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  4. Plasma-sprayed ceramic coatings for protection against molten metal.

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, K. J. (Kendall J.); Peters, M. I. (Maria I.); Bartram, B. D. (Brian D.)

    2002-01-01

    Molten metal environments pose a special demand on materials due to the high temperature corrosion effects and thermal expansion mismatch induced stress effects. A solution that has been successfully employed is the use of a base material for the mechanical strength and a coating material for the chemical compatibility with the molten metal. The work described here used such an approach coating tungsten rods with aluminum oxide, yttria-stabilized zirconia, yttrium oxide, and erbium oxide deposited by atmospheric plasma spraying. The ceramic materials were deposited under varying conditions to produce different structures. Measurement of particle characteristics was performed to correlate to material properties. The coatings were tested in a thermal cycling environment to simulate the metal melting cycle expected in service. Results of the testing indicate the effect of material composition and spray conditions on the thermal cycle crack resistance of the coatings.

  5. Molten metal analysis by laser produced plasmas. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong W.

    1994-02-01

    A new method of molten metal analysis, based on time- and space-resolved spectroscopy of a laser-produced plasma (LPP) plume of a molten metal surface, has been implemented in the form of a prototype LPP sensor-probe, allowing in-situ analysis in less than 1 minute. The research at Lehigh University has been structured in 3 phases: laboratory verification of concept, comparison of LPP method with conventional analysis of solid specimens and field trials of prototype sensor-probe in small-scale metal shops, and design/production/installation of two sensor-probes in metal production shops. Accomplishments in the first 2 phases are reported. 6 tabs, 3 figs.

  6. Uranium (III) precipitation in molten chloride by wet argon sparging

    Science.gov (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  7. A Reliable Reference Electrode in Molten Carbonate and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Ag|AgCl reference electrode which can be used in molten carbonate media has been described in this paper.It consists of a silver wire immersed in a solution of AgCl(1mol%) in (Li0.62,K0.38)2CO3,with a zirconia junction.The main properties of reference electrode,such as reproducibility ,stability and reversibility, were checked.The results have demonstrated that the reference electrode is reliable.With such reference electrode catalysis of various electrode materials to oxygen reduction in molten alkali carbonate media was investigated.It is found that as catalysts for oxygen reduction oxidized nickel-niobium alloy is superior to nickel oxide.

  8. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  9. Development of large scale internal reforming molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Shinoki, T.; Matsumura, M. [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  10. Molten carbonate fuel cell reduction of nickel deposits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James L. (Lemont, IL); Zwick, Stanley A. (Darien, IL)

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  11. Temperature Modeling of the Molten Glass in Tin Bath

    Institute of Scientific and Technical Information of China (English)

    WEI Zhihua; CHEN Jinshu; NIE Yingsong

    2009-01-01

    Based on the experimental investigation by quantitative analysis, temperature fields of the molten glass in tin bath were numerically simulated by the finite elememt method. The ex-perimental results show that the cooling rate of glass is directly proportional to the draught speed, but inversely proportional to the thickness of the glass. This model lays the foundation for computer simulation system about float glass.

  12. Renewable energy and the role of molten salts and carbon

    Directory of Open Access Journals (Sweden)

    Fray D.

    2013-01-01

    Full Text Available Molten carbonate fuel cells have been under development for a number of years and reliable units are successfully working at 250kW scale and demonstration units have produced up to 2 MW. Although these cells cannot be considered as renewable as the fuel, hydrogen or carbon monoxide is consumed and not regenerated, the excellent reliability of such a cell can act as a stimulus to innovative development of similar cells with different outcomes. Molten salt electrolytes based upon LiCl - Li2O can be used to convert carbon dioxide, either drawn from the output of a conventional thermal power station or from the atmosphere, to carbon monoxide or carbon. Recently, dimensionally stable anodes have been developed for molten salt electrolytes, based upon alkali or alkaline ruthenates which are highly electronically conducting and these may allow the concept of high temperature batteries to be developed in which an alkali or alkaline earth element reacts with air to form oxides when the battery is discharging and the oxide decomposes when the battery is being recharged. Batteries using these concepts may be based upon the Hall-Heroult cell, which is used worldwide for the production of aluminium on an industrial scale, and could be used for load levelling. Lithium ion batteries are, at present, the preferred energy source for cars in 2050 as there are sufficient lithium reserves to satisfy the world’s energy needs for this particular application. Graphite is used in lithium ion batteries as the anode but the capacity is relatively low. Silicon and tin have much higher capacities and the use of these materials, encapsulated in carbon nanotubes and nanoparticles will be described. This paper will review these interesting developments and demonstrate that a combination of carbon and molten salts can offer novel ways of storing energy and converting carbon dioxide into useful products.

  13. Densities of molten Ni-(Cr, Co, W) superalloys

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; YANG Ren-hui; FANG Liang; LIU Lan-xiao; ZHAO Hong-kai

    2008-01-01

    In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.

  14. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-09-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  15. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  16. CO2 decomposition using electrochemical process in molten salts

    Science.gov (United States)

    Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2012-08-01

    The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.

  17. Prebiotic formation of polyamino acids in molten urea

    Science.gov (United States)

    Mita, H.; Nomoto, S.; Terasaki, M.; Shimoyama, A.; Yamamoto, Y.

    2005-04-01

    It is important for research into the origins of life to elucidate polyamino acid formation under prebiotic conditions. Only a limited set of amino acids has been reported to polymerize thermally. In this paper we demonstrate a novel thermal polymerization mechanism in a molten urea of alkylamino acids (i.e. glycine, alanine, β-alanine, α-aminobutyric acid, valine, norvaline, leucine and norleucine), which had been thought to be incapable of undergoing thermal polymerization. Also, aspartic acid was found to polymerize in molten urea at a lower temperature than that at which aspartic acid alone had previously been thermally polymerized. Individual oligomers produced in heating experiments on urea-amino acid mixtures were analysed using a liquid chromatograph mass spectrometer. Major products in the reaction mixture were three different types of polyamino acid derivatives: N-carbamoylpolyamino acids, polyamino acids containing a hydantoin ring at the N-terminal position and unidentified derivatives with molecular weights that were greater by 78 than those of the corresponding peptide forms. The polymerization reaction occurred by taking advantage of the high polarity of molten urea as well as its dehydrating ability. Under the presumed prebiotic conditions employed here, many types of amino acids were thus revealed to undergo thermal polymerization.

  18. Development of electrochemical separation methods from molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Straka, M.; Tulackova, R.; Chuchvalcova Bimova, K. [Nuclear Research Institute Rez plc, 250 68 Husinec, Rez 130, (Czech Republic)

    2008-07-01

    Molten Salt Reactor (MSR) is liquid-fueled reactor that can be used for actinide burning, production of electricity, production of hydrogen, and production of fissile fuels (breeding). The MSR concept was identified, along with five other concepts, as a suitable candidate of cooperative development by the Generation IV International Forum (GIF). The MSR concept takes into account a circulating molten fluoride salts fuel mixture. Use of liquid fuel mixture results in possibility of its continuous (online) reprocessing. Within the proposed MSR fuel cycle, the electro-separation methods are considered as important techniques. The main aim of this work is to determine the electrochemical behaviour of selected actinides and lanthanides, which represents the fissile material and fission products, in suitable molten fluoride media as the general framework of our work is to verify the separation capability of the electrochemical methods and proposal of its integration into the MSR fuel cycle. Presented results were obtained by the method of cyclic voltammetry. The experimental set-up, preparation of the melt and results of selected measurements are presented in this paper and electrochemical behaviour of uranium and selected lanthanides are demonstrated by respective voltammograms evaluation. (authors)

  19. Advances in electroanalysis, sensing and monitoring in molten salts.

    Science.gov (United States)

    Corrigan, Damion K; Elliott, Justin P; Blair, Ewen O; Reeves, Simon J; Schmüser, Ilka; Walton, Anthony J; Mount, Andrew R

    2016-08-15

    Microelectrodes have a number of advantages over macroelectrodes for quantitative electroanalysis and monitoring, including reduced iR drop, a high signal-to-noise ratio and reduced sensitivity to convection. Their use in molten salts has been generally precluded by the combined materials challenges of stresses associated with thermal cycling and physical and corrosive chemical degradation at the relatively high temperatures involved. We have shown that microfabrication, employing high precision photolithographic patterning in combination with the controlled deposition of materials, can be used to successfully address these challenges. The resulting molten salt compatible microelectrodes (MSMs) enable prolonged quantitative microelectrode measurements in molten salts (MSs). This paper reports the fabrication of novel MSM disc electrodes, chosen because they have an established ambient analytical response. It includes a detailed set of electrochemical characterisation studies which demonstrate both their enhanced capability over macroelectrodes and over commercial glass pulled microelectrodes, and their ability to extract quantitative electroanalytical information from MS systems. MSM measurements are then used to demonstrate their potential for shedding new light on the fundamental properties of, and processes in, MSs, such as mass transport, charge transfer reaction rates and the selective plating/stripping and alloying reactions of liquid Bi and other metals; this will underpin the development of enhanced MS industrial processes, including pyrochemical spent nuclear fuel reprocessing.

  20. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    P K Vijayan; A Basak; I V Dulera; K K Vaze; S Basu; R K Sinha

    2015-09-01

    The third stage of Indian nuclear power programme envisages the use of thorium as the fertile material with 233U, which would be obtained from the operation of Pu/Th-based fast reactors in the later part of the second stage. Thorium-based reactors have been designed in many configurations, from light water-cooled designs to high-temperature liquid metal-cooled options. Another option, which holds promise, is the molten salt-fuelled reactor, which can be configured to give significant breeding ratios. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian molten salt breeder reactor (IMSBR). Presently, various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel, fundamental studies on natural circulation and corrosion behaviour of various molten salts have also been initiated.

  1. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  2. Structure of molten TbCl sub 3 measured by neutron diffraction

    CERN Document Server

    Martin, R A; Barnes, A C; Cuello, G J

    2002-01-01

    The total structure factor of molten TbCl sub 3 at 617 deg. C was measured by using neutron diffraction. The data are in agreement with results from previous experimental work but the use of a diffractometer having an extended reciprocal-space measurement window leads to improved resolution in real space. Significant discrepancies with the results obtained from recent molecular dynamics simulations carried out using a polarizable ion model, in which the interaction potentials were optimized to enhance agreement with previous diffraction data, are thereby highlighted. It is hence shown that there is considerable scope for the development of this model for TbCl sub 3 and for other trivalent metal halide systems spanning a wide range of ion size ratios. (letter to the editor)

  3. Effects of thermal shocks on the release of radioisotopes and on molten metal target vessels

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J. E-mail: jacques.lettry@cern.ch; Arnau, G.; Benedikt, M.; Gilardoni, S.; Catherall, R.; Georg, U.; Cyvogt, G.; Fabich, A.; Jonsson, O.; Ravn, H.; Sgobba, S.; Bauer, G.; Brucherstseifer, H.; Graber, T.; Guedermann, C.; Ni, L.; Rastani, R

    2003-05-01

    The ISOLDE pulsed proton beam peak power amounts to 500 MW during the 2.4 {mu}s proton pulse. The fraction of the proton pulse energy deposited in the target material is at the origin of severe thermal shocks. Quantitative measurement of their effect on the release of radioelements from ISOLDE targets was obtained by comparison of release profiles measured under different proton beam settings. The thermal shock induced in liquids (Pb, Sn, La) lead to mechanical failure of ISOLDE molten metal target vessels. Failure analysis is presented and discussed in the light of the response of mercury samples submitted to the ISOLDE beam and monitored by high-speed optical systems.

  4. Effect of adhesive on molten pool structure and penetration in laser weld bonding of magnesium alloy

    Science.gov (United States)

    Liu, L. M.; Ren, D. X.

    2010-09-01

    Laser weld bonding (LWB) is a new hybrid technique that combines adhesive bonding with laser seam welding together, and can achieve higher joint strength than adhesive bonding or laser welding individually. Some new physical phenomena have been observed in this welding method, and the phenomena are different from the normal laser welding process, such as a remarkable deeper penetration in LWB than that in laser welding direct (LWD). The adhesive-induced gas can influence the molten pool structure in front of the keyhole, so that less energy is required for laser keyhole through the upper sheet; thus, higher laser power density can interact with the lower sheet, leading to deeper penetration. Simulation comparison experiments are set to indirectly verify these conclusions above.

  5. Mathematical Modeling of the Vacuum Circulation Refining Processof Molten Steel

    Institute of Scientific and Technical Information of China (English)

    魏季和

    2003-01-01

    The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research group have been Summarized. On the basis of the mass and momentum balances in the system, a new mathematical model for decarburization and degassing during the RH and RH-KTB refining processes of molten steel was proposed and developed. The refining roles of the three reaction sites, i.e. the up-snorkel zone, the droplet group and steel bath in the vacuum vessel, were considered in the model. It was assumed that the mass transfer of reactive components in the molten steel is the rate control step of the refining reactions. And the friction losses and drags of flows in the snorkels and vacuum vessel were all counted. The model was applied to the refining of molten steel in a multifunction RH degasser of 90 t capacity. The decarburization and degassing processes in the degasser under the RH and RH-KTB operating condi-tions were modeled and analyzed using this model. Besides, proceeded from the two-resistance mass transfer theory and the mass bal-ance of sulphur in the system, a kinetic model for the desulphurization by powder injection and blowing in the RH refining of molten steel was developed. Modeling and predictions of the process of injecting and blowing the lime based powder flux under assumed oper-ating modes with the different initial contents of sulphur and amounts of powder injected and blown in a RH degasser of 300 t capacity were carried out using the model. It was demonstrated that for the RH and RH-KTB refining processes, and the desulphurization by powder injection and blowing in the RH refining, the results predicted by the models were all in good agreement respectively with data from industrial experiments and practice. These models may be expected to offer some useful information and a reliable basis for de-termining and optimizing

  6. Effect of electromagnetic force on turbulent flow of molten metal in aluminum electrolysis cells

    Institute of Scientific and Technical Information of China (English)

    周萍; 梅炽; 周乃君; 姜昌伟

    2004-01-01

    The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of molten metal were calculated quantitatively. The turbulent Reynolds number is in the order of 103 , and Reynolds number is in the order of 104 if taking the depth of molten metal as the characteristic length. The results show that the molten metal flow is the turbulence of high Reynolds number, the turbulent Reynolds number is more appropriate than Reynolds number to be used to describe the turbulent characteristic of molten metal, and Hartman number displays very well that electromagnetic force inhibits turbulent motion of molten metal.

  7. Physical Modeling of the Vacuum Circulation Refining Process of Molten Steel

    Institute of Scientific and Technical Information of China (English)

    魏季和

    2003-01-01

    The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl-Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was employed to investigate the flow and mixing characteristics of molten steel under the RH and RH-KTB (Kawasaki top blowing) conditions and the mass transfer features between molten steel and powder particles in the RH-PTB (powder top blowing) refining. The geometric similarity ratio between the model and its prototype (a multifunction RH degasser of 90 t capacity) was 1:5. The effects of the related technological and structural factors were considered. These latest studies have revealed the flow and mixing characteristics of molten steel and the mass transfer features between molten steel and powder particles in these processes, and have provided a better understanding of the refining processes of molten steel.

  8. Ionic Conductivities of Molten CuI and AgI-CuI Mixtures

    Science.gov (United States)

    Tahara, Shuta; Shimakura, Hironori; Ohno, Satoru; Fukami, Takanori

    2017-08-01

    Ionic conductivities σ for molten CuI and AgI-CuI mixtures were measured in the temperature ranges of approximately 580-800 and 500-850 °C, respectively. The value of σ for molten CuI in the range is smaller than that for molten CuBr and CuCl. σ for molten AgI-CuI mixtures decreases with increasing CuI-concentration. The activation energies Ea for molten AgI-CuI system were determined from the analysis of temperature dependence of σ by using the by Arrhenius type equation. Ea for molten AgI-CuI gradually increase with increasing CuIconcentration.

  9. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  10. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  11. Effect of Grain Boundary on the Wettability and Interfacial Morphology in the Molten Bi/Cu System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The wetting behavior of molten Bi on polycrystalline Cu substrate and single crystal Cu substrate was studied bythe sessile drop method in the temperature range from 673 to 873 K. At low temperature the wetting behaviors ofmolten Bi on both types of Cu substrate were similar. However, at high temperature, the equilibrium contact angleof polycrystalline Cu substrate was lower than that of single crystal Cu substrate, because the preferred dissolutionof grain boundaries leads to a smaller liquid/solid interfacial energy for polycrystalline Cu substrate. The formationmechanism of arrow-shaped Cu grains at the Bi/single crystal Cu interface is also discussed.

  12. Core-concrete molten pool dynamics and interfacial heat transfer. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, A.S.

    1980-01-01

    Theoretical models are derived for the heat transfer from molten oxide pools to an underlying concrete surface and from molten steel pools to a general concrete containment. To accomplish this, two separate effects models are first developed, one emphasizing the vigorous agitation of the molten pool by gases evolving from the concrete and the other considering the insulating effect of a slag layer produced by concrete melting. The resulting algebraic expressions, combined into a general core-concrete heat transfer representation, are shown to provide very good agreement with experiments involving molten steel pours into concrete crucibles.

  13. Role of molten salt flux in melting of used beverage container (UBC) scrap

    Energy Technology Data Exchange (ETDEWEB)

    Ye, J.; Sahai, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-12-31

    Recycling of aluminum scrap, such as Used Beverage Container (UBC) scrap is steadily increasing. In secondary remelting of such scrap, it is a common practice to use protective molten salt cover. An appropriate salt protects metal from oxidation, promotes coalescence of the suspended metal droplets, and separates clean metal from the oxide contamination. The molten salt also reacts with metal. This causes metal loss and change of resulting metal composition. In this paper, role of molten salt fluxes in melting of UBC scrap is discussed, and selection criteria for molten salt are provided.

  14. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  15. Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy

    Science.gov (United States)

    Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55

  16. Lead Poisoning

    Science.gov (United States)

    Lead is a metal that occurs naturally in the earth's crust. Lead can be found in all parts of our ... from human activities such as mining and manufacturing. Lead used to be in paint; older houses may ...

  17. Time-resolved optical transmission of pulsed laser-irradiated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.C.; Lo, H.W.; Aydinli, A.; Compaan, A.

    1980-10-20

    The time-resolved optical transmission of silicon has been observed at lambda = 1.15 microns during irradiation by an 8 nsec pulsed laser at 485 nm with several energy densities in the range of .25 to 1.2 J/sq cm. The transmission exhibits a sudden brief drop consistent with the rise and fall of the reflectivity enhancement. However, the transmission does not exhibit the strong absorption expected of molten silicon with a skin depth of approx. 100A.

  18. Sensitivity and Uncertainty Study for Thermal Molten Salt Reactors

    Science.gov (United States)

    Bidaud, Adrien; Ivanona, Tatiana; Mastrangelo, Victor; Kodeli, Ivo

    2006-04-01

    The Thermal Molten Salt Reactor (TMSR) using the thorium cycle can achieve the GEN IV objectives of economy, safety, non-proliferation and durability. Its low production of higher actinides, coupled with its breeding capabilities - even with a thermal spectrum - are very valuable characteristics for an innovative reactor. Furthermore, the thorium cycle is more flexible than the uranium cycle since only a small fissile inventory (reactor. The potential of these reactors is currently being extensively studied at the CNRS and EdF /1,2/. A simplified chemical reprocessing is envisaged compared to that used for the former Molten Salt Breeder Reactor (MSBR). The MSBR concept was developed at Oak Ridge National Laboratory (ORNL) in the 1970's based on the Molten Salt Reactor Experiment (MSRE). The main goals of our current studies are to achieve a reactor concept that enables breeding, improved safety and having chemical reprocessing needs reduced and simplified as much as reasonably possible. The neutronic properties of the new TMSR concept are presented in this paper. As the temperature coefficient is close to zero, we will see that the moderation ratio cannot be chosen to simultaneously achieve a high breeding ratio, long graphite lifetime and low uranium inventory. It is clear that any safety margin taken due to uncertainty in the nuclear data will significantly reduce the capability of this concept, thus a sensitivity analysis is vital to propose measurements which would allow to reduce at present high uncertainties in the design parameters of this reactor. Two methodologies, one based on OECD/NEA deterministic codes and one on IPPE (Obninsk) stochastic code, are compared for keff sensitivity analysis. The uncertainty analysis of keff using covariance matrices available in evaluated files has been performed. Furthermore, a comparison of temperature coefficient sensitivity profiles is presented for the most important reactions. These results are used to review the

  19. STRUCTURING & RHEOLOGY OF MOLTEN POLYMER/CLAY NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yuan-ze Xu; Yi-bin Xu

    2005-01-01

    The evolution and the origin of "solid-like state" in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the "solid-like" state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.

  20. Helium-cooled molten-salt fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

    1984-12-01

    We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

  1. Optimized transition from the reactors of second and third generations to the thorium molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Merle-Lucotte, E.; Heuer, D.; Allibert, M.; Ghetta, V.; Le Brun, C.; Mathieu, L.; Brissot, R.; Liatard, E. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC/IN2P3/CNRS), 38 - Grenoble (France)

    2007-07-01

    We present in this article a very promising, simple and feasible concept of Molten Salt Reactor with no moderator in the core, operated in the Th/U{sup 233} fuel cycle with fluoride salts and called non-moderated Thorium Molten Salt Reactor (TMSR). We have detailed in this article some parametric studies, related to the system reprocessing constraints, and the heavy nuclei composition of the salt which modifies the neutron spectrum of the reactor. Since U{sup 233} does not exist on earth and is not being produced today, we aim at designing a critical MSR able to burn the Plutonium and the Minor Actinides produced in the current operating reactors, and consequently to convert this Plutonium into U{sup 233}. This leads to closing the current fuel cycle thanks to TMSRs started with transuranic elements on a Thorium base, i.e. started in the Th/Pu fuel cycle, similarly to fast neutron reactors operated in the U/Pu fuel cycle. The burning of transuranic elements in these Pu-started TMSRs results in high waste reduction rates, up to 95-97% for all TMSR configurations assessed. We particularly point out in our analyses the excellent level of deterministic safety of all the TMSR configurations studied, for the U{sup 233}-started TMSRs as well as for the Pu-started TMSRs. We will detail optimizations of this transition between the reactors of second and third generations to the Thorium cycle. Such a transition is based on a fleet of TMSRs with no moderator in the core, including TMSRs started with Plutonium and TMSRs directly started with U{sup 233}. We have analyzed the characteristics of each reactor configuration, in terms of deterministic safety parameters, fissile matter inventory, salt reprocessing, radiotoxicity and waste production, and finally deployment capacities.

  2. Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step

    Directory of Open Access Journals (Sweden)

    Rodrigues Davide

    2015-12-01

    Full Text Available The nuclear fuel reprocessing is a prerequisite for nuclear energy to be a clean and sustainable energy. In the case of the molten salt reactor containing a liquid fuel, pyrometallurgical way is an obvious way. The method for treatment of the liquid fuel is divided into two parts. In-situ injection of helium gas into the fuel leads to extract the gaseous fission products and a part of the noble metals. The second part of the reprocessing is performed by ‘batch’. It aims to recover the fissile material and to separate the minor actinides from fission products. The reprocessing involves several chemical steps based on redox and acido-basic properties of the various elements contained in the fuel salt. One challenge is to perform a selective extraction of actinides and lanthanides in spent liquid fuel. Extraction of actinides and lanthanides are successively performed by a reductive extraction in liquid bismuth pool containing metallic lithium as a reductive reagent. The objective of this paper is to give a description of the several steps of the reprocessing retained for the molten salt fast reactor (MSFR concept and to present the initial results obtained for the reductive extraction experiments realized in static conditions by contacting LiF-ThF4-UF4-NdF3 with a lab-made Bi-Li pool and for which extraction efficiencies of 0.7% for neodymium and 14.0% for uranium were measured. It was concluded that in static conditions, the extraction is governed by a kinetic limitation and not by the thermodynamic equilibrium.

  3. Design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium; Diseno de un reactor nuclear subcritico heterogeneo con sales fundidas a base de torio

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Hernandez A, P.; Letechipia de L, C.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Sajo B, L., E-mail: dmedina_c@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2015-09-15

    This paper presents the design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium, with graphite moderator and a {sup 252}Cf source, whose dose levels at the periphery allows its use in teaching and research activities. The design was realized by the Monte Carlo method, where the geometry, dimensions and the fuel was varied in order to obtain the best design. The result was a cubic reactor of 110 cm of side, with graphite moderator and reflector. In the central part having 9 ducts of 3 cm in diameter, eight of them are 110 cm long, which were placed on the Y axis; the separation between each duct is 10 cm. The central duct has 60 cm in length and this contains the {sup 252}Cf source, also there are two irradiation channels and the other six contain a molten salt ({sup 7}LiF - BeF{sub 2} - ThF{sub 4} - UF{sub 4}) as fuel. For the design the k{sub eff} was calculated, neutron spectra and ambient dose equivalent. In the first instance the above was calculated for a virgin fuel, was called case 1; then a percentage of {sup 233}U was used and the percentage of Th was decreased and was called case 2. This with the purpose of comparing two different fuels operating within the reactor. For the two irradiation ducts three positions are used: center, back and front, in each duct in order to have different flows. (Author)

  4. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  5. Precipitation of lamellar gold nanocrystals in molten polymers

    Science.gov (United States)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  6. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  7. Recovery of protactinium from molten fluoride nuclear fuel compositions

    Science.gov (United States)

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  8. Nanoporous surfaces via impact of molten metallic droplets

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Meng [Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA (United States); Colmenares, Jose R.; Valarezo, Alfredo [State University of New York, Stony Brook (United States). Center for Thermal Spray Research; Gouldstone, Andrew [Northeastern University, Department of Mechanical and Industrial Engineering, Boston, MA (United States)

    2009-08-15

    Here we describe a new pathway for the production of nanoporous surfaces, by recourse to molten droplet impact and solidification. The nanopores in this case are frozen in bubbles that nucleate in the melt due to gas supersaturation within 100 nanoseconds of impact. Initial observations and previous analysis are presented, as well as ongoing work to control or pattern porosity via process variation and substrate pre-treatment. This method is presumably not limited in material, and has potential to create large area, functional surfaces. (orig.)

  9. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  10. Dynamic modeling of Badaling molten salt tower CSP pilot plant

    Science.gov (United States)

    Yang, Zijiang; Lu, Jiahui; Zhang, Qiangqiang; Li, Zhi; Li, Xin; Wang, Zhifeng

    2017-06-01

    Under the collaboration framework between EDF China R&D Centre and CAS-IEE, a preliminary numerical model of 1MWth molten salt tower solar power demonstration plant in Badaling, Beijing is presented in this paper. All key components in the plant are presented throughout detailed modules in the model according to its design specifications. Control strategies are also implemented to maintain the design system performance at transient scenario. By this model some key design figures of plant has been validated and it will be used to guide experiment set-up and plant commissioning.

  11. Determination of optimum electrolyte composition for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  12. Fundamental of Inclusion Removal from Molten Steel by Rising Bubble

    Institute of Scientific and Technical Information of China (English)

    WANG Li-tao; ZHANG Qiao-ying; LI Zheng-bang; XUE Zheng-liang

    2004-01-01

    The mechanism of inclusion removal by attachment to rising bubble was analyzed, and the movement behavior of inclusion, the mechanism of bubbles/inclusion interaction, collision probability and adhesion probability were discussed. A mathematical model of inclusion removal from molten steel by attachment to fine bubble was developed. The results of theoretical analysis and mathematical model showed that the optimum bubble diameter for inclusion removal is 1 to 2 mm. A new method that argon is injected into the shroud from ladle to tundish during continuous casting has been proposed to produce fine bubble. It provides theoretical guides for production of super clean steel.

  13. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  14. Steady thermal hydraulic analysis for a molten salt reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dalin; QIU Suizheng; LIU Changliang; SU Guanghui

    2008-01-01

    The Molten Salt Reactor (MSR) can meet the demand of transmutation and breeding. In this study, theoretical calculation of steady thermal hydraulic characteristics of a graphite-moderated channel type MSR is conducted. The DRAGON code is adopted to calculate the axial and radial power factor firstly. The flow and heat transfer model in the fuel salt and graphite are developed on basis of the fundamental mass, momentum and energy equations. The results show the detailed flow distribution in the core, and the temperature profiles of the fuel salt, inner and outer wall in the nine typical elements along the axial flow direction are also obtained.

  15. Measurements of Thermal Conductivity and Thermal Diffusivity of Molten Carbonates

    OpenAIRE

    Wicaksono, Hendro; Zhang, Xing; Fujiwara, Seiji; Fujii, Motoo

    2001-01-01

    The thermal conductivity and thermal diffusivity of molten carbonates (Li_2CO_3/K_2CO_3 and Li_2CO_3/Na_2CO_3) were measured using the transient short-hot-wire method in the temperature range from 530 to 670℃. Two types of probes were examined. One was a platinum short-hot-wire probe coated with alumina (Al_2O_3) thin film to prevent current leakage and corrosion. The other was a bare gold short-hot-wire probe. For the platinum probe, the quality of coating reduces gradually during the measur...

  16. ULTRASONIC SEPARATION OF MICRO-SIZED INCLUSIONSIN MOLTEN METAL

    Institute of Scientific and Technical Information of China (English)

    X.Q. Bai; J.C. He

    2001-01-01

    The coagulation time and position of micro-sized non-metallic inclusions in molten metal during ultrasonic separation process were investigated, and the motion course of micro-sized non-metallic inclusions in an ultrasonic standing wave field was numerically simulated. The results of theoretical analysis and numerical simulation show that the movement of inclusions depends on the balance between the acoustic radiation force, effective buoyancy force and viscous drag force. It is presented that micro-sized inclusions, agglomerated at antinode-planes may be removed further with horizon tal ultrasound.``

  17. Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia

    Science.gov (United States)

    Chen, Zhiyuan; Morita, Kazuki

    2016-12-01

    A high-temperature process of refining metallurgical-grade silicon to solar-grade silicon was developed. In this gas purging treatment, boron impurity in silicon reacts with ammonia and the products are removed as volatiles at high temperature. 1 mass pct metallic iron was added to molten silicon as a catalyst, improving the boron removal ratio from 14 to 80 pct at 1723 K (1450 °C). At 1823 K (1550 °C), this reaction could reduce boron concentration from more than 120 ppmw to activation energy of 329 ± 129 kJ mol-1 was calculated from experimental data.

  18. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  19. Lead Toxicity

    Science.gov (United States)

    ... including some imported jewelry. What are the health effects of lead? • More commonly, lower levels of lead in children over time may lead to reduced IQ, slow learning, Attention Deficit Hyperactivity Disorder (ADHD), or behavioral issues. • Lead also affects other ...

  20. Investigation of molten pool oscillation during GMAW-P process based on a 3D model

    Science.gov (United States)

    Wang, L. L.; Lu, F. G.; Cui, H. C.; Tang, X. H.

    2014-11-01

    In order to better reveal the oscillation mechanism of the pulsed gas metal arc welding (GMAW-P) process due to an alternately varied welding current, arc plasma and molten pool oscillation were simulated through a self-consistent three-dimensional model. Based on an experimental analysis of the dynamic variation of the arc plasma and molten pool captured by a high-speed camera, the model was validated by comparison of the measured and predicted results. The calculated results showed that arc pressure was the key factor causing the molten pool to oscillate. The variation in arc size and temperature from peak time to base time resulted in a great difference in the heat input and arc pressure acting on the molten pool. The surface deformation of the molten pool due to the varying degrees of arc pressure induced alternate displacement and backflow in the molten metal. The periodic iteration of deeper and shallower surface deformation, drain and backflow of molten metal caused the molten pool to oscillate at a certain frequency. In this condition, the arc pressure at the peak time is more than six times higher than that at the base time, and the maximum surface depression is 1.4 mm and 0.6 mm, respectively, for peak time and base time.

  1. Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Teilum, Kaare; Poulsen, Flemming M

    2010-01-01

    Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein is particul...

  2. Chlorination and Dissolution Process of CeO2 in Molten Salt

    Institute of Scientific and Technical Information of China (English)

    MENG; Zhao-kai; LIN; Ru-shan; CHEN; Hui; ZHANG; Kai; JIA; Yan-hong; WANG; Chang-shui; SONG; Peng; HE; Hui

    2015-01-01

    Molten salt electrolysis is considered as a promising technology in pyrochemical process in recent years.In the pyrochemical process of oxides fuel,dissolution of the oxides is a significant issue for study.Oxides cannot be reduced,as the solubility is small in molten salt.The chlorination of oxides can improve the solubility

  3. Thermodynamic Stability of LiFeO2 in Molten Carbonate Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    LiFeO2, as one of candidate cathode materials or additive for molten carbonate fuel cell, has been found to be thermodynamically unstable in CO2 atmosphere at 650℃ (the condition of molten carbonate fuel cell) both by computation and experimental confirmation.

  4. Removal of H2S using molten carbonate at high temperature.

    Science.gov (United States)

    Kawase, Makoto; Otaka, Maromu

    2013-12-01

    Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.

  5. Palladium Catalyzed Suzuki Cross-coupling Reaction in Molten Tetra-n-butylammonium Bromide

    Institute of Scientific and Technical Information of China (English)

    ZOU, Yue(邹岳); WANG, Quan-Rui(王全瑞); TAO, Feng-Gang(陶凤岗); DING, Zong-Biao(丁宗彪)

    2004-01-01

    A practical procedure for palladium catalyzed Suzuki cross-coupling reaction of arylboronic acids with aryl halides, including aryl chlorides in molten tetra-n-butylammonium bromide (TBAB) was developed. The reaction exhibits high efficiency and functional group tolerance. The recovery of the catalyst and molten n-Bu4NBr was also investigated.

  6. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule.

    NARCIS (Netherlands)

    Nabuurs, S.M.; Westphal, A.H.; Toorn, M. aan den; Lindhoud, S.; Mierlo, C.P. van

    2009-01-01

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing char

  7. Topological switching between an a-ß parallel protein and a remarkably helical molten globule.

    NARCIS (Netherlands)

    Nabuurs, S.M.; Westphal, A.H.; Toorn, aan den M.; Lindhoud, S.; Mierlo, van C.P.M.

    2009-01-01

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing char

  8. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.

    Science.gov (United States)

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-02-06

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments.

  9. An SPH Study of Molten Matte-Slag Dispersion

    Science.gov (United States)

    Natsui, Shungo; Nashimoto, Ryota; Kumagai, Takehiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2017-02-01

    The transient behaviors of two immiscible liquids, namely, molten matte and molten slag, with a high interfacial tension were investigated using the smoothed particle hydrodynamics model. Numerical simulations were performed using a discrete-element-type method that could track the movement of both the continuous liquid phase and the dispersed one directly. Numerical simulations were also performed for conditions corresponding to different interfacial tension and density values. Further, the predicted topological changes as well as the relationship between the physical properties and the droplet size distribution were investigated. It was found that, with an increase in the interfacial tension, the large droplets formed aggregate quickly with the bulk phase, owing to the buoyancy force. It was also found that the absolute value of the interfacial tension determines the interfacial area, suggesting that it also affects the droplet settling time. As such, we can conclude that the nonlinearly changed interface shape can easily become unstable as a result of only a slight change in the curvature.

  10. Motion and Arrest of a Molten Liquid on Cold Substrates

    Science.gov (United States)

    Tavakoli-Dastjerdi, Faryar

    Spreading of liquid drop on cold solid substrates followed by solidification involves heat transfer, fluid dynamics, and phase change physics. Coupling of these physical phenomena, although present in many industrial applications and nature, renders the physical understanding of the process challenging. Here, the key aspects of molten liquid spreading and solidifying on cold solid substrate are examined experimentally and theoretically. A novel hypothesis of spreading solidifying drops on cold solid substrates is introduced that emphasizes on early stages of the drop solidification at the solid-liquid-gas interface. The derived equations of the drop motion and arrest, stemmed from the development of the presented hypothesis, are in accord with obtained empirical results. The hypothesis is then thoroughly tested with new sets of experiments: i) Drop impact experiments, ii) Inclined plate experiments. In addition, the solidification of static supercooled drops and the initiation mechanism of an intermittent stage (recalescence) are addressed. Also, a peculiar delay-freezing property of hydrophobic surfaces is examined under varying liquid flow rates and substrate temperatures. Moreover, a new phenomenon of cold-induced spreading of water drops on hydrophobic surfaces due to premature condensation followed by thin-film formation at the trijunction is explored and the effect of physical parameters such as relative humidity, the substrate temperature, initial contact angle, surface roughness, and drop volume are investigated. This study will significantly advance the current understanding of dynamic interaction between molten liquid and cold solid substrates.

  11. Pipe Poiseuille flow of viscously anisotropic, partially molten rock

    CERN Document Server

    Allwright, Jane

    2014-01-01

    Laboratory experiments in which synthetic, partially molten rock is subjected to forced deformation provide a context for testing hypotheses about the dynamics and rheology of the mantle. Here our hypothesis is that the aggregate viscosity of partially molten mantle is anisotropic, and that this anisotropy arises from deviatoric stresses in the rock matrix. We formulate a model of pipe Poiseuille flow based on theory by Takei and Holtzman [2009a] and Takei and Katz [2013]. Pipe Poiseuille is a configuration that is accessible to laboratory experimentation but for which there are no published results. We analyse the model system through linearised analysis and numerical simulations. This analysis predicts two modes of melt segregation: migration of melt from the centre of the pipe toward the wall and localisation of melt into high-porosity bands that emerge near the wall, at a low angle to the shear plane. We compare our results to those of Takei and Katz [2013] for plane Poiseuille flow; we also describe a ne...

  12. Sulfide ceramics in molten-salt electrolyte batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kaun, T.D.; Hash, M.C.; Simon, D.R.

    1995-06-01

    Sulfide ceramics are finding application in the manufacture of advanced batteries with molten salt electrolyte. Use of these ceramics as a peripheral seal component has permitted development of bipolar Li/FeS{sub 2} batteries. This bipolar battery has a molten lithium halide electrolyte and operates at 400 to 450C. Initial development and physical properties evaluations indicate the ability to form metal/ceramic bonded seal (13-cm ID) components for use in high-temperature corrosive environments. These sealants are generally CaAl{sub 2}S{sub 4}-based ceramics. Structural ceramics (composites with oxide or nitride fillers), highly wetting sealant formulations, and protective coatings are also being developed. Sulfide ceramics show great promise because of their relatively low melting point, high-temperature viscous flow, chemical stability, high-strength bonding, and tailored coefficients of thermal expansion. Our methodology of generating laminated metal/ceramic pellets (e.g., molybdenum/sulfide ceramic/molybdenum) with which to optimize materials formulation and seal processing is described.

  13. An SPH Study of Molten Matte-Slag Dispersion

    Science.gov (United States)

    Natsui, Shungo; Nashimoto, Ryota; Kumagai, Takehiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2017-06-01

    The transient behaviors of two immiscible liquids, namely, molten matte and molten slag, with a high interfacial tension were investigated using the smoothed particle hydrodynamics model. Numerical simulations were performed using a discrete-element-type method that could track the movement of both the continuous liquid phase and the dispersed one directly. Numerical simulations were also performed for conditions corresponding to different interfacial tension and density values. Further, the predicted topological changes as well as the relationship between the physical properties and the droplet size distribution were investigated. It was found that, with an increase in the interfacial tension, the large droplets formed aggregate quickly with the bulk phase, owing to the buoyancy force. It was also found that the absolute value of the interfacial tension determines the interfacial area, suggesting that it also affects the droplet settling time. As such, we can conclude that the nonlinearly changed interface shape can easily become unstable as a result of only a slight change in the curvature.

  14. A basic study on fluoride-based molten salt electrolysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon [Seoul National University, Seoul (Korea); Kim, Kwang Bum [Yonsei University, Seoul (Korea); Park, Byung Gi [Seoul National University, Seoul (Korea)

    2001-04-01

    The objective of this project is to study on the physicochemical properties of fluoride molten salt, to develop numerical model for simulation of molten salt electrolysis, and to establish experimental technique of fluoride molten salt. Physicochemical data of fluoride molten salt are investigated and summarized. The numerical model, designated as REFIN is developed with diffusion-layer theory and electrochemical reaction kinetics. REFIN is benchmarked with published experimental data. REFIN has a capability to simulate multicomponent electrochemical system at transient conditions. Experimental device is developed to measure electrochemical properties of structural material for fluoride molten salt. Ni electrode is measured with cyclic voltammogram in the conditions of 600 .deg. C LiF-BeF{sub 2} and 700 .deg. C LiF-BeF{sub 2}. 74 refs., 23 figs., 57 tabs. (Author)

  15. Preparation and characterizations of heat storage material combining porous metal with molten salt

    Institute of Scientific and Technical Information of China (English)

    王华; 何方; 戴永年; 胡建杭

    2003-01-01

    A new type of heat storage materials combining high temperature molten salts phases change latent heat thermal storage materials, PCM with porous metals sensible heat thermal storage materials was developed. The process was expressed as following: firstly, it is necessary to heat up the molten salts phases change materials to molten; and then the porous metals are put into the molten bath; after being held for 1-3 h, the composite heat thermal storage materials lumps are taken out of the molten bath and cooled to atmospheric temperature; the last step is to electrodeposit a layer metal coat on the surface of the material lumps. The new type of heat storage material integrates the advantages of both solid sensible heat thermal storage materials and high temperature phases change latent heat thermal storage materials. The metal-base heat storage materials enjoy some favorable characteristics such as higher heat charge-discharge rate, higher heat storage density and better mechanical strength.

  16. Electrical conductivity anisotropy of partially molten peridotite under shear deformation

    Science.gov (United States)

    Zhang, B.; Yoshino, T.; Yamazaki, D.; Manthilake, G. M.; Katsura, T.

    2013-12-01

    Recent ocean bottom magnetotelluric investigations have revealed a high-conductivity layer (HCL) with high anisotropy characterized by higher conductivity values in the direction parallel to the plate motion beneath the southern East Pacific Rise (Evans et al., 2005) and beneath the edge of the Cocos plate at the Middle America trench offshore of Nicaragua (Naif et al., 2013). These geophysical observations have been attributed to either hydration (water) of mantle minerals or the presence of partial melt. Currently, aligned partial melt has been regarded as the most preferable candidate for explaining the conductivity anisotropy because of the implausibility of proton conduction (Yoshino et al., 2006). In this study, we report development of the conductivity anisotropy between parallel and normal to shear direction on the shear plane in partial molten peridotite as a function of time and shear strain. Starting samples were pre-synthesized partial molten peridotite, showing homogeneous melt distribution. The partially molten peridotite samples were deformed in simple shear geometry at 1 GPa and 1723 K in a DIA-type apparatus with uniaxial deformation facility. Conductivity difference between parallel and normal to shear direction reached one order, which is equivalent to that observed beneath asthenosphere. In contrast, such anisotropic behavior was not found in the melt-free samples, suggesting that development of the conductivity anisotropy was generated under shear stress. Microstructure of the deformed partial molten peridotite shows partial melt tends to preferentially locate grain boundaries parallel to shear direction, and forms continuously thin melt layer sub-parallel to the shear direction, whereas apparently isolated distribution was observed on the section perpendicular to the shear direction. The resultant melt morphology can be approximated by tube like geometry parallel to the shear direction. This observation suggests that the development of

  17. Lead Poisoning

    Science.gov (United States)

    ... lead is of microscopic size, invisible to the naked eye. More often than not, children with elevated ... majority of the childhood lead poisoning cases we see today. Children and adults too can get seriously ...

  18. Relational Leading

    DEFF Research Database (Denmark)

    2015-01-01

    This first chapter presents the exploratory and curious approach to leading as relational processes – an approach that pervades the entire book. We explore leading from a perspective that emphasises the unpredictable challenges and triviality of everyday life, which we consider an interesting......, relevant and realistic way to examine leading. The chapter brings up a number of concepts and contexts as formulated by researchers within the field, and in this way seeks to construct a first understanding of relational leading....

  19. Dosimetry Formalism and Implementation of a Homogenous Irradiation Protocol to Improve the Accuracy of Small Animal Whole-Body Irradiation Using a 137Cs Irradiator.

    Science.gov (United States)

    Brodin, N Patrik; Chen, Yong; Yaparpalvi, Ravindra; Guha, Chandan; Tomé, Wolfgang A

    2016-02-01

    Shielded Cs irradiators are routinely used in pre-clinical radiation research to perform in vitro or in vivo investigations. Without appropriate dosimetry and irradiation protocols in place, there can be large uncertainty in the delivered dose of radiation between irradiated subjects that could lead to inaccurate and possibly misleading results. Here, a dosimetric evaluation of the JL Shepard Mark I-68A Cs irradiator and an irradiation technique for whole-body irradiation of small animals that allows one to limit the between subject variation in delivered dose to ±3% are provided. Mathematical simulation techniques and Gafchromic EBT film were used to describe the region within the irradiation cavity with homogeneous dose distribution (100% ± 5%), the dosimetric impact of varying source-to-subject distance, and the variation in attenuation thickness due to turntable rotation. Furthermore, an irradiation protocol and dosimetry formalism that allows calculation of irradiation time for whole-body irradiation of small animals is proposed that is designed to ensure a more consistent dose delivery between irradiated subjects. To compare this protocol with the conventional irradiation protocol suggested by the vendor, high-resolution film dosimetry measurements evaluating the dose difference between irradiation subjects and the dose distribution throughout subjects was performed using phantoms resembling small animals. Based on these results, there can be considerable variation in the delivered dose of > ± 5% using the conventional irradiation protocol for whole-body irradiation doses below 5 Gy. Using the proposed irradiation protocol this variability can be reduced to within ±3% and the dosimetry formalism allows for more accurate calculation of the irradiation time in relation to the intended prescription dose.

  20. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); mckellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most

  1. Study of thorium-uranium based molten salt blanket in a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing, E-mail: zhao_jing@mail.tsinghua.edu.cn [INET, Tsinghua University, Beijing 100084 (China); Yang Yongwei; Zhou Zhiwei [INET, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A molten salt blanket has been designed for the fusion-fission hybrid reactor. Black-Right-Pointing-Pointer The use of Thorium in the molten salt fuels has been studied. Black-Right-Pointing-Pointer The molten salt was consisted of F-Li-Be and with the thickness of 40 cm. Black-Right-Pointing-Pointer The concentration of {sup 6}Li was chosen to be the natural enrichment ratio. Black-Right-Pointing-Pointer The result shows that TBR is greater than 1, M is about 15-16. - Abstract: Not only solid fuels, but also liquid fuels can be used for the fusion-fission symbiotic reactor blanket. The operational record of the molten salt reactor with F-Li-Be was very successful, so the F-Li-Be blanket was chosen for research. The molten salt has several features which are suited for the fusion-fission applications. The fuel material uranium and thorium were dissolved in the F-Li-Be molten salt. A combined program, COUPLE, was used for neutronics analysis of the molten salt blanket. Several cases have been calculated and compared. Not only the influence of the different fuels have been studied, but also the thickness of the molten salt, and the concentration of the {sup 6}Li in the molten salt. Preliminary studies indicate that when thorium-uranium-plutonium fuels were added into a F-Li-Be molten salt blanket and with a component of 71% LiF-2% BeF{sub 2}-13.5% ThF{sub 4}-8.5% UF{sub 4}-5% PuF{sub 3}, and also with the molten salt thickness of 40 cm and natural concentration of {sup 6}Li, the appropriate blanket energy multiplication factor and TBR can be obtained. The result shows that thorium-uranium molten salt can be used in the blanket of a fusion-fission symbiotic reactor. The research on the molten salt blanket must be valuable for the design of fusion-fission symbiotic reactor.

  2. REAKTOR INNOVATIVE MOLTEN SALT (IMSR DENGAN SISTEM KESELAMATAN PASIF MENYELURUH

    Directory of Open Access Journals (Sweden)

    Andang Widiharto

    2015-04-01

    Full Text Available Pengembangan Teknologi Reaktor Nuklir pada masa mendatang mengarah pada peningkatan aspek keselamatan, peningkatan pendayagunaan bahan bakar, reduksi limbah radioaktif, ketahanan terhadap proliferasi bahan-bakar nuklir dan peningkatan aspek ekonomi. reaktor Innovative Molten Salt (IMSR adalah reaktor nuklir yang menggunakan bahan bakar cair berupa garam lebur fluoride (7LiF-ThF4-UF4-MaFx. Reaktor IMSR didesain sebagai reaktor pembiak termal, yaitu membiakkan U-233 dari Th-232. Hal ini untuk menjawab permasalahan sustainabilitas ketersedian sumber daya bahan bakar nuklir dan reduksi limbah radioaktif. Dalam aspek keselamatan, desain reaktor IMSR memiliki sifat inherent safe, yaitu koefisien umpan balik daya yang negatif serta memiliki fitur-fitur keselamatan pasif. Fitur-fitur keselamatan pasif terdiri dari sistem shutdown pasif, sistem pendinginan pasif pasca shutdown serta sistem pendinginan pasif untuk produk fisi. Kecelakaan yang berpotensi terjadi pada IMSR, yaitu kecelakaan kehilangan aliran bahan bakar, kecelakaan kehilangan aliran pendingin, kecelakaan kehilangan kemampuan pengambilan kalor serta kecelakaan kerusakan integritas sistem reaktor, dapat ditangani sepenuhnya secara pasif hingga mencapai kondisi shutdown selamat. Kata kunci: keselamatan pasif, inherent safe, IMSR   The next Nuclear Reactor Technology developments are directed to the increasing of the aspects of safety, fuel utility, radioactive waste reduction, proliferation retention and economy. Innovative Molten Salt Reactor (IMSR is a nuclear reactor design that uses fluoride molten salt (7LiF-ThF4-UF4-MaFx. IMSR is designed as a thermal breeder reactor, i.e. to produce U-233 from Th-232. This is the answer of natural nuclear fuel sustainability and radioactive waste problems. In term of safety aspect, IMSR design has inherent safe characteristics, i.e. negative power feedback coefficient, and passive safety features. The passive safety features are passive shutdown

  3. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  4. ANALISIS TRANSIEN PADA PASSIVE COMPACT MOLTEN SALT REACTOR (PCMSR

    Directory of Open Access Journals (Sweden)

    M. Makrus Imron

    2015-04-01

    Full Text Available Penggunaan bahan bakar cair berupa garam LiF-BeF2-ThF4-UF4 pada Passive Compact Molten Salt Reactor (PCMSR meyebabkan pengendalian daya pada PCMSR dapat dilakukan dengan mengendalikan laju aliran bahan bakar dan pendingin. Sedangkan dari sistem keselamatan, penggunaan bahan bakar cair menjadikan PCMSR memiliki karakter keselamatan melekat (inherent safety yang baik. Pada penelitian ini telah dilakukan analisis transien PCMSR pada tiga kondisi, yaitu: ketika terjadi perubahan laju aliran bahan bakar, ketika terjadi perubahan laju aliran pendingin dan ketika terdapat kegagalan pada sistem pelepasan panas (loss of heat sink. Penelitian dilakukan dengan memodelkan reaktor pada kondisi tunak menggunakan paket program. Standart Reactor Analysis Code (SRAC. Selanjutnya dari keluaran paket program SRAC diperoleh data data yang meliputi fluks netron,konstanta grup, kontanta peluran prekusor netron, fraksi netron kasip untuk perhitungan transien. Penelitian ini menunjukkan bahwa penurunan laju aliran bahan bakar sebesar 50 % dari laju bahan bakar sebelumnya, menyebabkan daya pada PCMSR turun menjadi 78 % dari daya sebelumnya. Dan penurunan laju aliran pendingin sebesar 50 % dari laju pendingin sebelumnya, menyebabkan daya pada PCMSR turun menjadi 63 % dari daya sebelumnya. Sedangkan pada saat terjadi loss of heat sink daya PCMSR menunjukkan penurunan. Kata kunci: PCMSR, transien, daya, laju aliran.   The use of liquid fuels in the form of molten salts LiF-BeF2-ThF4-UF4 in Passive Compact Molten Salt Reactor (PCMSR makes power control at PCMSR can be done by controlling the flow rate of fuel and coolant. In addition, from safety systems aspect, the use of liquid fuels makes PCMSR has good inherent safety characteristics. In this study transient analysis has been carried out on three conditions of PCMSR, namely when the fuel flow rate is changing, when the coolant flow rate is changing and when there is loss of heat sink condition. This research is

  5. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  6. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  7. Recent advances in the molten salt destruction of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Pruneda, C. O., LLNL

    1996-09-01

    We have demonstrated the use of the Molten Salt Destruction (MSD) Process for destroying explosives, liquid gun propellant, and explosives-contaminated materials on a 1.5 kg of explosive/hr bench- scale unit (1, 2, 3, 4, 5). In our recently constructed 5 kg/hr pilot- scale unit we have also demonstrated the destruction of a liquid gun propellant and simulated wastes containing HMX (octogen). MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen, and water. Any inorganic constituents of the waste, such as metallic particles, are retained in the molten salt. The destruction of energetic materials waste is accomplished by introducing it, together with air, into a vessel containing molten salt (a eutectic mixture of sodium, potassium, and lithium carbonates). The following pure explosives have been destroyed in our bench-scale experimental unit located at Lawrence Livermore National Laboratory`s (LLNL) High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K- 6 (keto-RDX), NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following compositions were also destroyed: Comp B, LX- IO, LX- 1 6, LX- 17, PBX-9404, and XM46 (liquid gun propellant). In this 1.5 kg/hr bench-scale unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NO{sub x} were found to be well below 1%. In addition to destroying explosive powders and compositions we have also destroyed materials that are typical of residues which result from explosives operations. These include shavings from machined pressed parts of plastic-bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the process data obtained on the bench-scale unit we designed and constructed a next-generation 5 kg/hr pilot-scale unit, incorporating LLNL`s advanced chimney design. The pilot unit has completed process implementation operations and explosives safety reviews. To date, in this

  8. Modeling of thermal and hydrodynamic aspects of molten jet/water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.K.; Blomquist, C.A.; Spencer, B.W. (Argonne National Lab., IL (USA))

    1989-01-01

    In order to predict the effect of a fuel-coolant interaction after a hypothetical core-melt-down accident, a phenomenological model has been developed to describe the thermal and hydrodynamic behavior of a high-temperature molten jet when it interacts with saturated or subcooled water in a film boiling regime. The mechanisms of jet-material erosion were analyzed by Kelvin-Helmholtz instabilities on the coherent column and by boundary layer stripping on the leading edge. The heat transfer coefficient, vapor-film thickness, and net steam generation, all of which strongly affect the jet-breakup behavior, were solved analytically. It was found that the jet breakup (or erosion) depends strongly on the steam generation from the jet/water interaction. The jet-breakup length (i.e., penetration distance) was found to be sensitive to the initial jet temperature, water subcooling, and the physical state of the ambient water. The jet-breakup length and leading-edge velocity of the Wood's metal/water experiments are predicted well by the current model for the cases where a continuous vapor film exists. 14 refs., 13 figs.

  9. Irradiation history of meteoritic inclusions

    DEFF Research Database (Denmark)

    Wielandt, Daniel Kim Peel

    somewhat philosophical question. . . did our solar system form under special circumstances, and what are the implications for the occurrence of similar planetary systems and ultimately life around other stars? In this thesis, we present methods and measurements pertaining to the study of irradiation......K anomalies were formed during co-storage in the protoplanetary disc, providing constraints on the disc dynamics leading up to planet formation....

  10. Molten salt parabolic trough system with synthetic oil preheating

    Science.gov (United States)

    Yuasa, Minoru; Hino, Koichi

    2017-06-01

    Molten salt parabolic trough system (MSPT), which can heat the heat transfer fluid (HTF) to 550 °C has a better performance than a synthetic oil parabolic trough system (SOPT), which can heat the HTF to 400 °C or less. The utilization of HTF at higher temperature in the parabolic trough system is able to realize the design of a smaller size of storage tank and higher heat to electricity conversion efficiency. However, with MSPT there is a great amount of heat loss at night so it is necessary to circulate the HTF at a high temperature of about 290 °C in order to prevent solidification. A new MSPT concept with SOPT preheating (MSSOPT) has been developed to reduce the heat loss at night. In this paper, the MSSOPT system, its performance by steady state analysis and annual performance analysis are introduced.

  11. Controlled Molten Metal Droplet Deposition for Net-Form Manufacturing

    Science.gov (United States)

    Orme, Melissa; Michaelis, Matthew; Smith, Robert

    2001-11-01

    Molten metal droplets generated from capillary stream breakup are employed as the deposition element in a droplet-based net-form manufacturing technique that is under development at UCI. The metallic droplets are electrostatically charged at the time of generation and are subsequently deflected onto a substrate by passing them through an electric field. As a showcase to this new technique, we have employed various combinations of electrostatic charging and substrate motion in order to net-form manufacture rectangular components with both thick (2.8 mm) and thin (0.6 mm) walls, tubular components with clover cross-sections, and intriguing metallic braids up to 3.0 meters in length.

  12. Molten Salt Fuel Cycle Requirements for ADTT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Del Cul, G. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Toth, L. M. [Commodore Advanced Sciences, Inc., Oak Ridge, TN (United States)

    1999-06-07

    The operation of an ADT system with the associated nuclear reactions has a profound effect upon the chemistry of the fuel - especially with regards to container compatibility and the chemical separations that may be required. The container can be protected by maintaining the redox chemistry within a relatively narrow, non-corrosive window. Neutron economy as well as other factors require a sophisticated regime of fission product separations. Neither of these control requirements has been demonstrated on the scale or degree of sophistication necessary to support an ADT device. We review the present situation with respect to fluoride salts, and focus on the critical issues in these areas which must be addressed. One requirement for advancement in this area - a supply of suitable materials - will soon be fulfilled by the remediation of ORNL's Molten Salt Reactor Experiment, and the removal of a total of 11,000 kg of enriched (Li-7 > 99.9%) coolant, flush, and fuel salts.

  13. Al slurry coatings for molten carbonate fuel cells separator plates

    Energy Technology Data Exchange (ETDEWEB)

    Agueero, A.; Garcia, M.C.; Muelas, R.; Sanchez, A. [Instituto Nacional de Tecnica Aerospacial, Madrid (Spain); Perez, F.J.; Duday, D.; Hierro, M.P.; Gomez, C. [Universidad Complutense de Madrid (Spain). Dept. de Ciencia de los Materiales

    2001-07-01

    The corrosion behaviour of Al slurry coated AISI 310 stainless steel, with and without diffusion heat treatment, was investigated as a wet seal material for molten carbonate fuel cell (MCFC) at 650 C. The results were compared with IVD Al coated AISI 310. Characterization of the samples before and after exposure to the eutectic 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} mixture at 650 C for 1000 h by SEM-EDS and XRD was carried out. The presence of LiAlO{sub 2} on the coated samples was confirmed by XRD. The slurry Al-coated stainless steels performed at least as well as the IVD Al coating. (orig.)

  14. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  15. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  16. Molten carbonate fuel cell technology improvement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, ``Molten Carbonate Fuel Cell Technology Improvement.`` This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  17. On purpose simulation model for molten salt CSP parabolic trough

    Science.gov (United States)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto

    2017-06-01

    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  18. SIMMER-III Analyses of Local Fuel-Coolant Interactions in a Simulated Molten Fuel Pool: Effect of Coolant Quantity

    Directory of Open Access Journals (Sweden)

    Songbai Cheng

    2015-01-01

    Full Text Available Studies on local fuel-coolant interactions (FCI in a molten pool are important for the analyses of severe accidents that could occur for sodium-cooled fast reactors (SFRs. To clarify the mechanisms underlying this interaction, in recent years, several experimental tests, with comparatively larger difference in coolant volumes, were conducted at the Japan Atomic Energy Agency by delivering a given quantity of water into a molten pool formed with a low-melting-point alloy. In this study, to further understand this interaction, interaction characteristics including the pressure buildup as well as mechanical energy release and its conversion efficiency are investigated using the SIMMER-III, an advanced fast reactor safety analysis code. It is found that the SIMMER-III code not only reasonably simulates the transient pressure and temperature variations during local FCIs, but also supports the limited tendency of pressurization and resultant mechanical energy release as observed from experiments when the volume of water delivered into the pool increases. The performed analyses also suggest that the most probable reason leading to such limited tendency should be primarily due to an isolation effect of vapor bubbles generated at the water-melt interface.

  19. Controllable Generation of a Submillimeter Single Bubble in Molten Metal Using a Low-Pressure Macrosized Cavity

    Science.gov (United States)

    Konovalenko, Alexander; Sköld, Per; Kudinov, Pavel; Bechta, Sevostian; Grishchenko, Dmitry

    2017-04-01

    We develop a method for generation of a single gas bubble in a pool of molten metal. The method can be useful for applications and research studies where a controllable generation of a single submillimeter bubble in opaque hot liquid is required. The method resolves difficulties with bubble detachment from the orifice, wettability issues, capillary channel and orifice surfaces degradation due to contact with corrosive hot liquid, etc. The macrosized, 5- to 50-mm3 cavity is drilled in the solid part of the pool. Flushing the cavity with gas, vacuuming it to low pressure, as well as sealing and consequent remelting cause cavity implosion due to a few orders in magnitude pressure difference between the cavity and the molten pool. We experimentally demonstrate a controllable production of single bubbles ranging from a few milliliters down to submillimeter size. The uncertainties in size and bubble release timing are estimated and compared with experimental observations for bubbles ranging within 0.16 to 4 mm in equivalent-volume sphere diameter. Our results are obtained in heavy liquid metals such as Wood's and Lead-Bismuth eutectics at 353 K to 423 K (80 °C to 150 °C).

  20. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  1. Controllable Generation of a Submillimeter Single Bubble in Molten Metal Using a Low-Pressure Macrosized Cavity

    Science.gov (United States)

    Konovalenko, Alexander; Sköld, Per; Kudinov, Pavel; Bechta, Sevostian; Grishchenko, Dmitry

    2017-01-01

    We develop a method for generation of a single gas bubble in a pool of molten metal. The method can be useful for applications and research studies where a controllable generation of a single submillimeter bubble in opaque hot liquid is required. The method resolves difficulties with bubble detachment from the orifice, wettability issues, capillary channel and orifice surfaces degradation due to contact with corrosive hot liquid, etc. The macrosized, 5- to 50-mm3 cavity is drilled in the solid part of the pool. Flushing the cavity with gas, vacuuming it to low pressure, as well as sealing and consequent remelting cause cavity implosion due to a few orders in magnitude pressure difference between the cavity and the molten pool. We experimentally demonstrate a controllable production of single bubbles ranging from a few milliliters down to submillimeter size. The uncertainties in size and bubble release timing are estimated and compared with experimental observations for bubbles ranging within 0.16 to 4 mm in equivalent-volume sphere diameter. Our results are obtained in heavy liquid metals such as Wood's and Lead-Bismuth eutectics at 353 K to 423 K (80 °C to 150 °C).

  2. Food irradiation makes progress

    Energy Technology Data Exchange (ETDEWEB)

    Kooij, J. van (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))

    1984-06-01

    In the past fifteen years, food irradiation processing policies and programmes have been developed both by a number of individual countries, and through projects supported by FAO, IAEA and WHO. These aim at achieving general acceptance and practical implementation of food irradiation through rigorous investigations of its wholesomeness, technological and economic feasibility, and efforts to achieve the unimpeded movement of irradiated foods in international trade. Food irradiation processing has many uses.

  3. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600ÀC. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  4. Measurement and Analysis of Density of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; XIAO Feng; TAO Zainan; MuKai Kusuhiro

    2005-01-01

    The density of molten Ni-W alloys was measured with a modified pycnometric method. It is found that the density of the molten Ni- W alloys decreases with temperature rising, but increases with the increase of tungsten concentration in the alloys. The molar volume of molten Ni- W binary alloys increases with the increase of temperature and tungsten concentration. The partial molar volume of tungsten in liquid Ni- W binary alloy has been calculated approximately as ( - 1.59+ 5.64 × 10-3 T) × 10-6m3 ·mol-1.

  5. Hot corrosion monitoring of alloy 617 in molten chlorides using electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F.J.; Hierro, M.P.; Nieto, J. [Univ. Complutense de Madrid (Spain). Dept. de Ciencia de los Materiales, Facultad de Ciencias Quimicas

    2006-07-01

    Molten chloride mixtures are formed in waste incineration plants during waste firing and energy production. These mixtures are responsible for degradation processes like hot corrosion. In order to evaluate the damage of molten salt mixtures in waste incineration environments, the alloy 617 was exposed beneath a molten KCl-ZnCl{sub 2} mixture at 650 C in air. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS). An extensive microscopy analysis have been done in order to correlate the electrochemical results, and to establish an electrochemical mechanism for such high temperature corrosion process. (orig.)

  6. Electrodeposition of Ca Metal in CaCl2-CaO Molten Salt

    Institute of Scientific and Technical Information of China (English)

    GUO; Jun-kang; WANG; Chang-shui; CAO; Long-hao; OUYANG; Ying-gen

    2013-01-01

    To realize the continuouscalciothermic reduction in molten salts,the electrodeposition behavior of Ca metal in CaCl2-CaO molten salt was investigated by cylic voltammetry.The cyclic voltammograms at the scan rate of 100 mV/s are shown in Fig.1.As is shown,the electrodeposition potential of Ca deviated from-1.66 V to-0.97 V after CaO was added to molten CaCl2 and the decomposition of CaO

  7. Synthesis of TiNi/Ti2Ni Composite Particles in Molten Salts

    Institute of Scientific and Technical Information of China (English)

    YANG Rui-song; CUI Li-shan; ZHENG Yan-jun

    2006-01-01

    A new process of synthesizing TiNi/Ti2Ni composite particles, high temperature molten salts method, is introduced. This method uses molten salts as a reaction medium that does not take part in the chemical reaction and can be easily dissolved in rinsing water. According this method, the composite particles were prepared in molten salts at 700 ℃-900 ℃. By means of differential scanning calorimetry (DSC), the reversible martensitic transformation of TiNi particles in these composite particles was confirmed.

  8. Evaluation of Modified Pycnometric Method for Accurately Measuring the Density of Molten Nickel

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    A modified pycnometric method has been developed to obtain accurate densities of molten nickel.The new method allows continuous measurement of density over a wide temperature range from a single experiment.The measurement error of the method was analyzed, and the total uncertainty of the measurement was estimated to be within ±0.34%. The measured density of molten nickel decreases linearly with increasing temperature over a range from the melting point to 1873K. The density at the melting point and the thermal expansion coefficient of molten nickel are 7.90Mg·m-3 and 1.92×10-4 K-1,respectively.

  9. Spreading of molten corium in Mk I geometry following vessel meltthrough

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J.; Farmer, M.T.; Spencer, B.W.

    1988-01-01

    A one-dimensional, multicell, Eulerian computer code is under development to predict the gravity-driven spreading dynamics and thermal interactions of a molten corium layer flowing horizontally over a concrete substrate. The code is compared to recent experiments in which molten mixtures of iron and aluminum oxide flowed over concrete in the presence and absence of water. Results are presented from scoping calculations for the Mk I BWR system investigating the spreading-induced penetration immediately following the drainage of a predominantly oxide molten corium mixture from a localized breach in the reactor vessel. 12 refs., 7 figs.

  10. Fragment structure from vapor explosions during the impact of molten metal droplets into a liquid pool

    Science.gov (United States)

    Kouraytem, Nadia; Li, Er Qiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur

    2015-11-01

    High-speed video imaging is used in order to look at the impact of a molten metal drop falling into a liquid pool. The interaction regimes are three: film boiling, nucleate boiling or vapor explosion. Following the vapor explosion, the metal fragments and different textures are observed. It was seen that, using a tin alloy, a porous structure results whereas using a distinctive eutectic metal, Field's metal, micro beads are formed. Different parameters such as the metal type, molten metal temperature, pool surface tension and pool boiling temperature have been altered in order to assess the role they play on the explosion dynamics and the molten metal's by product.

  11. Mechanical properties of UV irradiated rat tail tendon (RTT) collagen.

    Science.gov (United States)

    Sionkowska, Alina; Wess, Tim

    2004-04-01

    The mechanical properties of RTT collagen tendon before and after UV irradiation have been investigated by mechanical testing (Instron). Air-dried tendon were submitted to treatment with UV irradiation (wavelength 254 nm) for different time intervals. The changes in such mechanical properties as breaking strength and percentage elongation have been investigated. The results have shown, that the mechanical properties of the tendon were greatly affected by time of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the tendon. Increasing UV irradiation leads to a decrease in Young's modulus of the tendon.

  12. Food irradiation in China

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, L.

    1986-08-01

    The paper concerns food irradiation in The People's Republic of China. Its use is envisaged to prolong storage times and to improve the quality of specific foodstuffs. Commercialisation in China, demonstration plants, seasonal shortages and losses, Shanghai irradiation centre, health and safety approval, prospects for wider applications and worldwide use of food irradiation, are all discussed.

  13. Lead Test

    Science.gov (United States)

    ... months, and at 3, 4, 5, and 6 years of age. A blood lead level test should be done only if the risk ... recommended if the person is symptomatic at any level below 70 mcg/dL. Because lead will pass through the blood to an unborn child, pregnant ...

  14. Effects of alternative electromagnetic field on surface tension and filling ability of molten metal

    Institute of Scientific and Technical Information of China (English)

    HE Hong-liang; KANG Fu-wei; WANG Li-ping

    2005-01-01

    Surface tension and filling ability of molten metal play an important role on the shaping of the molten metal. The surface tension was calculated from wetting angles of the molten metal by the sessile drop method. The specimen for filling ability was designed and the filling ability experiments under the alternative electromagnetic field were performed. The results show that the intensity and frequency of the alternative electromagnetic field have significant effects on the surface tension of the molten metal. The surface tension of Al-6%Si alloy decreases with increasing the intensity of the electromagnetic field. For pure Sn, the surface tension decreases gradually when the frequency of electromagnetic field is reduced. The filling ability is improved by applying the alternative electromagnetic field.

  15. Viscosity of multi-component molten nitrate salts : liquidus to 200 degrees C.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.

    2010-03-01

    The viscosity of molten salts comprising ternary and quaternary mixtures of the nitrates of sodium, potassium, lithium and calcium was determined experimentally. Viscosity was measured over the temperature range from near the relatively low liquidus temperatures of he individual mixtures to 200C. Molten salt mixtures that do not contain calcium nitrate exhibited relatively low viscosity and an Arrhenius temperature dependence. Molten salt mixtures that contained calcium nitrate were relatively more viscous and viscosity increased as the roportion of calcium nitrate increased. The temperature dependence of viscosity of molten salts containing calcium nitrate displayed curvature, rather than linearity, when plotted in Arrhenius format. Viscosity data for these mixtures were correlated by the Vogel-Fulcher- ammann-Hesse equation.

  16. Surface tension of molten Ni-(Cr, Co, W) alloys and segregation of elements

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; LIU Lan-xiao; YANG Ren-hui; ZHAO Hong-kai; FANG Liang; ZHANG Chi

    2008-01-01

    Surface tension of molten Ni-(Cr, Co, W) alloys was measured at the temperature of 1 773-1 873 K in an Ar+3%H2 atmosphere using an improved sessile drop method. The segregation of Cr, Co and W in alloy was calculated and analyzed using Butler's equation. The results show a good agreement between measured and calculated data. The surface tension of molten Ni-(Cr,Co, W) alloys decreases with increasing temperature. In Ni-(Cr, Co, W) alloys, the element with lower surface tension tends to segregate on the surface of molten alloy while that with higher surface tension tends to segregate inside of the molten alloy. The larger the differences in surface tension, atom radius and electron configuration between solvent and solute are, the more significant the segregation is. As a result, Ni segregates onto the surface and Co and W segregate inside the alloys.

  17. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  18. A Model for Molten Fuel-Coolant Interaction during Melt Slumping in a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, Manohar Singh; Siefken, Larry James

    1999-10-01

    This paper describes a simple fuel melt slumping model to replace the current parametric model in SCDAP/RELAP5. Specifically, a fuel-coolant interaction (FCI) model is developed to analyze the slumping molten fuel, molten fuel breakup, heat transfer to coolant, relocation of the molten droplets, size of a partially solidified particles that settle to the bottom of the lower plenum, and melt-plenum interaction, if any. Considering our objectives, the molten fuel jet breakup model, and fuel droplets Lagrangian model as included in a code TEXAS-V with Eulerian thermal hydraulics for water and steam from SCDAP/RELAP5 were used. The model was assessed with experimental data from MAGICO-2000 tests performed at University of California at Santa Barbara, and FARO Test L-08 performed at Joint Research Center, Ispra, Italy. The comparison was found satisfactory.

  19. SURFACE TENSION OF MOLTEN IF STEEL CONTAINING Ti AND ITS INTERFACIAL PROPERTIES WITH SOLID ALUMINA

    Institute of Scientific and Technical Information of China (English)

    L.C. Zhong; M. Zeze; K. Mukai

    2004-01-01

    Surface tension of molten IF steel containing Ti and contact angle between the liquid steel and solid alumina were measured with sessile droplet method under Ar gas atmosphere at 1500, 1575 and 1600℃. The results show that titanium decreases the surface tension of the molten IF steel and the contact angle. The interfacial tension between the molten IF steel containing Ti and solid alumina decreases with increase in titanium content. The work of adhesion between molten IF steel containing Ti and solid alumina decreases slightly at 1550℃, but increases at 1600℃ with increasing titanium content. It can be deduced that fine bubbles and fine alumina inclusions are easily entrapped in solidifying interface for IF steel containing Ti.

  20. Mechanism of Gas Intrusion into Molten Metal during Horizontal Centrifugal Casting

    Institute of Scientific and Technical Information of China (English)

    NI Feng; ZHANG Xhan-ling; YANG Di-xin; BI Xiao-qin; ZHANG Yong-zhen

    2004-01-01

    A mechanism of gas intrusion into molten metal during horizontal centrifugal casting was introduced .Based upon this concept, a special pouring method was suggested ,which can effectively prevent the pinhole defects in horizontal centrifugal castings.

  1. High Surface Area Iridium Anodes and Melt Containers for Molten Oxide Electrolysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Direct electrochemical reduction of molten regolith is the most attractive method of oxygen production on the lunar surface, because no additional chemical reagents...

  2. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Science.gov (United States)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  3. Proceedings of the workshop on molten salts technology and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hirokazu; Minato, Kazuo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Applications of molten salts technology to separation and synthesis of materials have been studied eagerly, which would develop new fields of materials science. Research Group for Actinides Science, Department of Materials Science, Japan Atomic Energy Research Institute (JAERI), together with Reprocessing and Recycle Technology Division, Atomic Energy Society of Japan, organized the Workshop on Molten Salts Technology and Computer Simulation at Tokai Research Establishment, JAERI on July 18, 2001. In the workshop eleven lectures were made and lively discussions were there on the fundamentals and applications of the molten salts technology that covered the structure and basic properties of molten salts, the pyrochemical reprocessing technology and the relevant computer simulation. The 10 of the presented papers are indexed individually. (J.P.N.)

  4. Molten-salt reactor program. Semiannual progress report for period ending February 29, 1976

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1976-08-01

    Separate abstracts and indexing were prepared for sections dealing with MSBR design and development; chemistry of fuel-salt and coolant-salt systems and analytical methods; materials development; fuel processing for molten-salt reactors; and salt production. (DG)

  5. Lead Poisoning

    Science.gov (United States)

    ... Topics Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works The Natural World Games ... OTHERS: Lead has recently been found in some plastic mini-blinds and vertical blinds which were made ...

  6. Recent Research of Thorium Molten-Salt Reactor from a Sustainability Viewpoint

    Directory of Open Access Journals (Sweden)

    Takashi Kamei

    2012-09-01

    Full Text Available The most important target of the concept “sustainability” is to achieve fairness between generations. Its expanding interpolation leads to achieve fairness within a generation. Thus, it is necessary to discuss the role of nuclear power from the viewpoint of this definition. The history of nuclear power has been the control of the nuclear fission reaction. Once this is obtained, then the economy of the system is required. On the other hand, it is also necessary to consider the internalization of the external diseconomy to avoid damage to human society caused by the economic activity itself, due to its limited capacity. An extreme example is waste. Thus, reducing radioactive waste resulting from nuclear power is essential. Nuclear non-proliferation must be guaranteed. Moreover, the FUKUSHIMA accident revealed that it is still not enough that human beings control nuclear reaction. Further, the most essential issue for sustaining use of one technology is human resources in manufacturing, operation, policy-making and education. Nuclear power will be able to satisfy the requirements of sustainability only when these subjects are addressed. The author will review recent activities of a thorium molten-salt reactor (MSR as a cornerstone for a sustainable society and describe its objectives and forecasts.

  7. Thermal analysis to support decommissioning of the molten salt reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF{sub 6} and F{sub 2} had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits.

  8. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, S. [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), Hyogo 679-5198 (Japan); Kawakita, Y. [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Shimakura, H. [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Ohara, K. [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), Hyogo 679-5198 (Japan); Fukami, T. [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Takeda, S. [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag–Cl and ionic Rb–Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag–Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb–Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag–Ag and Rb–Rb correlations, S{sub AgAg}(Q) and S{sub RbRb}(Q), show a positive contribution to the FSDP, while S{sub AgRb}(Q) for the Ag–Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM.

  9. Thermal analysis to support decommissioning of the molten salt reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF{sub 6} and F{sub 2} had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits.

  10. Industrial experience on the development of the molten carbonate fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Bosio, B.; Costamagna, P. [Ist. di Ingegneria Chimica e di Processo ``G.B. Bonino`` Univ. di Genova (Italy); Parodi, F.; Passalacqua, B. [Ansaldo Ricerche, Genova (Italy)

    1998-08-01

    The development of the molten carbonate fuel cell (MCFC) technology at Ansaldo Ricerche (ARI) is reported, starting from small scale single cells up to stacks of several kW capacity. The evolution of material and fabrication strategies as well as the progress in terms of electrical performance are described and discussed. The data reported show that the MCFC technology has been successfully tested on stacks in the kW power class, however some problems still need to be solved to improve the stack performance. In particular, better control of the start-up phase, of electrolyte migration through the manifolds and of the gas feed distribution are required, based on the latest experimental data on a 50 cell stack with cell area 0.1 m{sup 2} (cell active area 0.0702 m{sup 2}), which operated for 780 h with a maximum performance of 4 kW at 206 mA/cm{sup 2} at 50% fuel utilisation. Future development steps, which will lead to the realisation and operation of systems of several hundred kW, are presented. (orig.)

  11. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  12. Simulated coal-gas-fueled molten carbonate fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  13. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  14. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  15. Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s10853-015-9340-2 The electrochemical interaction between graphite and molten salts to produce carbon nanostructures is reviewed. It is demonstrated that, depending on the conditions, it is possible to electrochemically convert graphite in molten salts to either carbon nanoparticles and nanotubes, metal filled carbon nanoparticles and nanotubes, graphene or nanodiamonds. The...

  16. Resistivity Measurement of Molten Olivine in a Laser-Heated Diamond Anvil Cell

    Institute of Scientific and Technical Information of China (English)

    LI Ming; GAO Chun-Xiao; MA Yan-Zhang; HE Chun-Yuan; HAO Ai-Min; ZHANG Dong-Mei; LI Yan-Chun; LIU Jing; WANG Duo-Jun

    2007-01-01

    The electrical conductivity of molten olivine is studied up to 3720 K and 13.2 GPa.The results indicate that the electrical conductivity of molten olivine exhibits the perfect Arrhenivs behaviour.The activation energy as well as temperature effect is much smaller than that of the solid olivine.It is expected that the high conductivity zone in the mantle is almost independent of the melting based on our experimental data.

  17. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  18. Molten-Salt Batteries for Medium and Large-Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Yang, Zhenguo (Gary)

    2014-12-01

    This chapter discusses two types of molten salt batteries. Both of them are based on a beta-alumina solid electrolyte and molten sodium anode, i.e., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. The chapter first reviews the basic electrochemistries and materials for various battery components. It then describes the performance of state-of-the-art batteries and future direction in material development for these batteries.

  19. Electrochemistry of Molten Sulfides: Copper Extraction from BaS-Cu[subscript 2]S

    OpenAIRE

    Sokhanvaran, Samira; Lee, Sang-Kwon; Lambotte, Guillaume; Allanore, Antoine

    2015-01-01

    The electrolytic extraction of liquid copper at 1105°C from a molten sulfide electrolyte composed of 57 wt% BaS and 43 wt% Cu[subscript 2]S was investigated. DC cyclic voltammetry, Fourier transformed AC voltammetry, and galvanostatic electrolysis revealed that the electrodeposition of copper is possible in the selected molten sulfide electrolyte. The half wave potential for the reaction on graphite was determined, and liquid copper of high purity was obtained by galvanostatic electrolysis. T...

  20. Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture.

    Science.gov (United States)

    Chen, Yubin; Sun, Jingyu; Gao, Junfeng; Du, Feng; Han, Qi; Nie, Yufeng; Chen, Zhaolong; Bachmatiuk, Alicja; Priydarshi, Manish Kr; Ma, Donglin; Song, Xiuju; Wu, Xiaosong; Xiong, Chunyang; Rümmeli, Mark H; Ding, Feng; Zhang, Yanfeng; Liu, Zhongfan

    2015-12-16

    The direct growth of uniform graphene disks and their continuous film is achieved by exploiting the molten state of glass. The use of molten glass enables highly uniform nucleation and an enhanced growth rate (tenfold) of graphene, as compared to those scenarios on commonly used insulating solids. The obtained graphene glasses show promising application potentials in daily-life scenarios such as smart heating devices and biocompatible cell-culture mediums.

  1. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    OpenAIRE

    Gheribi, Aimen; Corradini, D; Dewan, L. (Lawrence); Chartrand, P; Simon, C.; Madden, Paul,; M. Salanne

    2014-01-01

    International audience; Molten fluorides are known to show favorable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and fuel in the molten salt fast reactor concept. By using ab initio parameterized polarizable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat cap...

  2. Thermal Energy Storage in Molten Salts: Overview of Novel Concepts and the DLR Test Facility (TESIS)

    OpenAIRE

    2016-01-01

    At present, two-tank molten salt storage systems are the established commercially available concept for solar thermal power plants. Due to their very low vapour pressure and comparatively high thermal stability, molten salts are preferred as the heat transfer fluid and storage medium. Therefore, the development of alternative, more cost-effective concepts is an important step in making thermal energy storage more competitive for industrial processes and solar thermal applications. The pape...

  3. Lanthanides extraction processes in molten fluoride media. Application to nuclear spent fuel reprocessing

    OpenAIRE

    Taxil, Pierre; Massot, Laurent; Nourry, Christophe; Gibilaro, Mathieu; Chamelot, Pierre; Cassayre, Laurent

    2009-01-01

    This paper describes four techniques of extraction of lanthanides elements (Ln) from molten salts in the general frame of reprocessing nuclear wastes; One of them is chemical: the precipitation of Ln ions in insoluble compounds (oxides or oxifluorides); the others use electrochemical methodology in molten fluorides for extraction and measurement of the progress of the processes: first electrodeposition of pure Ln metals on an inert cathode material was proved to be incomplete and cause probl...

  4. Electrochemical reduction of metal oxides in molten salts for nuclear reprocessing

    OpenAIRE

    Abdulaziz, R.

    2016-01-01

    This thesis examines the electrochemical reduction of metal oxides in molten salts for nuclear reprocessing applications. The objective of this research is to characterise and understand the direct electrochemical reduction of UO₂ to U metal in a LiCl-KCl molten salt eutectic, as part of the nuclear pyroprocessing scheme, following a similar approach to the FFC Cambridge for the reduction of TiO₂ to Ti metal. The voltammetric behaviour of reduction processes of metal oxides were evaluated usi...

  5. Molten Salt: Concept Definition and Capital Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Larry [Black & Veatch, Kansas City, MO (United States); Andrew, Daniel [Black & Veatch, Kansas City, MO (United States); Adams, Shannon [Black & Veatch, Kansas City, MO (United States); Galluzzo, Geoff [Black & Veatch, Kansas City, MO (United States)

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2

  6. Development of Channeled Flow in Partially Molten Medium

    Science.gov (United States)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2002-12-01

    There exist two contrasting models as to the style of melt migration in the partially molten medium; homogeneous permeable flow on grain scale and heterogeneous localized one (channeled flow on larger scale than the grain scale). It is considered that the style evolves from the homogeneous flow to the heterogeneous one as the degree of melting increases, but the physics responsible for this flow organization is not yet clarified. Several models as to this process and the melt segregation are proposed based on numerical simulation, though the experimental verification is not given yet. Here we present simple experimental results on the flow organization. We utilized highly deformable transparent gel as the solid phase. Due to this high deformability the matrix composed of the gel is easy to vary its internal structure. We have conducted the following experiments; the gel (about 5mm in diameter) is mingled with methyl-cellulose solution (MS) with almost same density as the gel, 1.01g/cm3, packed in a rectangular parallelepiped case (2.4cm*18cm*14.4cm), and a compaction state is realized by covering with wire netting at the upper boundary. Gel fraction of this mixture system is controlled by changing the ratio of the gel to MS (about 100% to 60%). Glycerol solution (GS) with density of 1.2g/cm3 is poured at the upper boundary. This is a kind of Rayleigh-Taylor Instability and the dense GS flows downward through the mixture. The flow pattern of the GS is analyzed. A series of these procedures is carried out at various gel fractions (from about 100% to 60%), and how the flow style varies with the gel fraction is investigated. At median fraction of the gel about 80% to 70% the evolution from homogeneous permeable flow to heterogeneous localized flow was observed. At higher gel fraction, liquid phase flows as homogeneous permeable flow. Fragility of the solid frame is a most important factor for flow organization. The structure of the partially molten medium can be easily

  7. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    Science.gov (United States)

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q

    2015-05-01

    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles.

  8. Resistance of Nanostructured Environmental Barrier Coatings to the Movement of Molten Salts

    Science.gov (United States)

    Rao, S.; Frederick, L.; McDonald, A.

    2012-09-01

    Corrosion of components in a recovery boiler is a major problem faced by the pulp and paper industry. The superheater tubes become severely corroded due to the presence of sulfidic gases in the boiler and molten salts which are deposited on the surface of the tubes. As a result, the boiler must be decommissioned for expensive maintenance and repairs. Yttria-stabilized zirconia (YSZ) coatings have been shown to provide corrosion resistance when applied on gas turbines operating at high temperatures. Air plasma-sprayed YSZ environmental barrier coatings on Type 309 stainless steel were exposed to three different corrosive environments: Test A—600 °C, salt vapors, flue gases, 168 h; Test B—600 °C, molten salt, air, 168 h; and Test C—600 °C, molten salt, flue gases, 168 h. Two different types of YSZ coatings—conventional YSZ and nanostructured YSZ—were tested to study their resistance to corrosion and molten salt penetration. The performances of both types of coatings were evaluated, and a comparative study was conducted. It was found that the nanostructured YSZ samples protected the stainless steel substrate better than their conventional counterparts. This superior performance was attributed to the presence of semi-molten nano-agglomerates present in the coating microstructure, which acted as collection points for the penetrating molten salts.

  9. Comparison of molten chloride and fluoride salts potentialities for An/Ln separation by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, A.; Peron, F.; Marrot, F.; Lacquement, J. [DRCP/SCPS/LPP - CEA/CEN Valrho - BP 17171 - 30207 Bagnols/Ceze (France)

    2008-07-01

    The objective of this paper is the comparison of molten fluoride and chloride salts potentialities for Am/Nd separation by electrodeposition on inert cathode, on a purely thermodynamic point of view. The molten LiF-CaF{sub 2} eutectic (77-23 mol.%, at 780 deg. C) was considered for this study. Cyclic voltammetry showed a one step Am(III)/Am reduction at a potential of {approx_equal}+0.5 V vs. Li{sup +}/Li. A potential difference of 290 mV between Am and Nd metallic deposition was estimated by square-wave voltammetry. This Am/Nd potential difference is more important than in molten chlorides (220 mV in the LiCl-KCl eutectic at 500 deg. C). Moreover in molten fluoride salt, the americium and neodymium (+II) oxidation state is not stable contrary to the molten chloride one where corrosion of deposited Am would be potential. However this larger potential difference in molten fluorides is quite balanced by the higher working temperature. (authors)

  10. Ultrasonic Transducer Irradiation Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Paul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States); Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States); Rempe, Joy [Rempe and Associates, Idaho Falls, ID (United States)

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  11. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    Science.gov (United States)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-10-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100- µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  12. Ecotoxicology: Lead

    Science.gov (United States)

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  13. Conductivity measurements of molten metal oxide electrolytes and their evaluation in a direct carbon fuel cell (DCFC)

    Science.gov (United States)

    Yarlagadda, Venkata Raviteja

    2011-12-01

    Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid carbon fuel and electrolyte in a DCFC Three different metal oxide electrolytes (Bi2O3 , V2O5, and TeO2) have been chosen based on their ability to form stable liquids in air at higher temperatures. Conductivity data beyond their melting points was not readily available for most of the metal oxides. Conductivity studies concerning the above mentioned molten metal oxides have been thoroughly investigated in this study. A four probe measurement method using an AC milliohm-meter at 1 KHz validated by Electrochemical Impedance Spectroscopy (EIS) was used to acquire the conductivity data because of its accuracy when compared to two probe measurement widely used in literature. Also, a DC ohmmeter was used to check whether these metal oxides exhibit electronic conductivity. Experimental results corresponding to the accuracy of DC ohmmeter showed that, it accurately detected the electronic component of the electrolyte. These conductivity studies revealed that the molten oxide electrolytes exhibit high ionic conductivity, in particular, beyond their melting points. Of all the three metal oxides, Bi2O 3 demonstrated high ionic conductivity but with minor stability issues under CO2 environment. Under CO2 environment Bi 2O3 showed a slight decrease in the conductivity. EDX analysis revealed an increase in carbon content by 50 percent per one mole of bismuth which can be attributed to possible carbonate formation. V2O 5 exhibited lower ionic conductivity when compared to Bi2O 3 but had the advantage of lower cost and higher abundance. Also, the higher volumetric expansion of V2O5 upon cooling from its melting point i.e. 690°C caused the alumina crucible containing the metal oxide to break leading to leakage problems. Investigating further, quartz was found to be the best

  14. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  15. High-temperature molten salt thermal energy storage systems

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Tison, R. R.; Marianowski, L. G.

    1980-02-01

    The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified.

  16. Dynamics of Molten Metal Droplets Falling on a Solid Surface

    Science.gov (United States)

    Chandra, Sanjeev; Aziz, Shiraz

    1997-11-01

    Experiments were done to photograph the impact of molten tin droplets impacting on a stainless steel surface. Initial droplet temperature was maintained at 240 C (slightly above the melting point of tin, 232 C). Impact velocity was varied from 1 m/s to 4 m/s and initial surface temperatures from 25 C to 240 C. Droplet dimensions and the evolution of liquid-solid contact angle during impact were measured from photographs. Droplets were observed to spread into the shape of a flat disc after impact. Once they reached their maximum extension they either stayed in that position or recoiled off the surface. A simple energy conservation model is proposed to predict the maximum spread diameter. Droplet recoil was attributed to surface tension pulling back the periphery of the splat. Increasing droplet impact velocity produced splashing, with a ring of satellite droplets breaking loose from the periphery. A model based on the Rayleigh-Taylor instability was used to predict the number of droplets that broke loose after impact.

  17. Optimized molten salt receivers for ultimate trough solar fields

    Science.gov (United States)

    Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas

    2016-05-01

    Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.

  18. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  19. Aerosol production by high-velocity molten-metal droplets

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D J; Benson, D A

    1988-06-01

    This report presents the results of an experimental study of the aerosol produced by high-velocity molten-metal droplets. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. The primary droplets are produced by the heating and electromagnetic launch of metal wires; velocities approaching Mach 1 can be obtained at present. Size distributions obtained tungsten and zirconium droplets burning in air. Lognormal size distributions were observed in both cases with DMPS-equivalent mean diameters of about 0.4 ..mu..m and geometric standard deviations of about two. SEM and TEM analysis of aerosol samples collected by a point-to-plane electrostatic precipitator showed that the majority of these particles were web-like chain agglomerates. Tests performed in argon atmospheres produced several orders-of-magnitude less aerosol mass than in equivalent air tests, supporting the key role combustion plays in secondary aerosol generation. 26 refs., 14 figs., 2 tabs.

  20. Electrochemistry of ytterbium (III) in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Smolenski, V.; Novoselova, A. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, Ekaterinburg, 620219 (Russian Federation); Osipenko, A. [Research Institute of Atomic Reactors, Dimitrovgrad-10, Ulyanovsk Region, 433010 (Russian Federation); Caravaca, C. [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain); Cordoba, G. de [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain)], E-mail: g.cordoba@ciemat.es

    2008-12-30

    This work presents the electrochemical study of Yb(III) ions in molten alkali metal chlorides in the temperature range 723-1073 K. Transient electrochemical techniques such as linear sweep, cyclic and square wave voltammetry, and potentiometry at zero current have been used to investigate the reduction mechanism, transport parameters and thermodynamic properties of the reaction YbCl{sub 2} + 1/2Cl{sub 2} = YbCl{sub 3} The results obtained show that the reduction reaction Yb(III) + e{sup -} {r_reversible} Yb(II) is reversible being controlled by the rate of the mass transfer. The diffusion coefficient of [YbCl{sub 6}]{sup 3-} complex ions has been determined at different temperatures in the fused eutectic LiCl-KCl, the equimolar NaCl-KCl and the CsCl media. The apparent standard potential of the soluble-soluble redox system Yb(III)/Yb(II) has been obtained by cyclic voltammetry. The influence of the nature of the solvent on the electrochemical and thermodynamic properties of ytterbium compounds is discussed.

  1. Ion-stimulated Gas Desorption Yields of Electropolished, Chemically Etched, and Coated (Au, Ag, Pd, TiZrV) Stainless Steel Vacuum Chambers and St707 Getter Strips Irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator LINAC 3, has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting under grazing incidence on different accelerator-type vacuum chambers. Desorption yields for H2, CH4, CO, and CO2, which are of fundamental interest for future accelerator applications, are reported for different stainless steel surface treatments. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, palladium-, and getter-coated 316 LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 104 molecules/Pb53+ ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble-metal coating by up to 2 orders of magnitude. In addition, pressure rise measurements, the effectiveness of beam scrubbing with le...

  2. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    OpenAIRE

    Ben De Pauw; Alfredo Lamberti; Julien Ertveldt; Ali Rezayat; Katrien van Tichelen; Steve Vanlanduit; Francis Berghmans

    2016-01-01

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fr...

  3. Compatibility of Lead-Bismuth Eutectic with SiC-Coated Graphite at Elevated Temperature

    Science.gov (United States)

    Chakraborty, Poulami; Ghosh, Abhijit; Dey, Gautam Kumar

    2017-02-01

    Uniform coating of β-silicon carbide (β-SiC) was formed over a graphite pellet through slurry-based silicon coating followed by in situ reaction at 1873 K (1600 °C). The coated pellet was exposed to molten lead-bismuth eutectic (LBE) at 1173 K (900 °C) in static condition for 200 h. Weight loss measurement, X-ray diffraction, and secondary electron microscopy-energy-dispersive spectroscopy confirmed that the SiC coating could effectively prevent molten LBE from attacking the inner graphite material.

  4. Leading men

    DEFF Research Database (Denmark)

    Bekker-Nielsen, Tønnes

    2016-01-01

    Through a systematic comparison of c. 50 careers leading to the koinarchate or high priesthood of Asia, Bithynia, Galatia, Lycia, Macedonia and coastal Pontus, as described in funeral or honorary inscriptions of individual koinarchs, it is possible to identify common denominators but also...

  5. Lead grids

    CERN Multimedia

    1974-01-01

    One of the 150 lead grids used in the multiwire proportional chamber g-ray detector. The 0.75 mm diameter holes are spaced 1 mm centre to centre. The grids were made by chemical cutting techniques in the Godet Workshop of the SB Physics.

  6. Effect of gamma irradiation on commercial eggs experimentally inoculated with Salmonella enteritidis

    Science.gov (United States)

    Tellez, I. G.; Trejo, R. M.; Sanchez, R. E.; Ceniceros, R. M.; Luna, Q. P.; Zazua, P.; Hargis, B. M.

    1995-02-01

    Using intact, fresh shell eggs, inoculated with 10 8 colony-forming units (cfu) of S. enteritidis, the effect of three doses of gamma irradiation on bacteriologic population and physical characteristics (Haugh units and yolk color) of the eggs was determinated. Penetration test area was picked at random just off the air cell of each egg. Aluminum cylinders were attached to the egg surface with a rim of molten paraffin, and 10 8S. enteritidis was then applied to inoculate the egg. Eggs were then irradiated within 2 hours using a Cobalt-60 gamma source at either 1, 2, or 3 kGy. A second set of inoculated, non-irradiated was used as controls. Following irradiation, eggs were maintained at 4°C for 42 hours prior culture. Irradiation with 1 kGy resulted in a significant (P < .05), 3.9 log reduction in detectable S. enteritidis in the shell and a higly significant (P < .025) 95% reduction in detectable S. enteritidis in the internal shell membranes. Irradiation of eggs with either 2 or 3 kGy reduced bacterial contamination to non-detectable levels in both the shell and internal membranes. However, irradiation at either 1, 2 or 3 kGy resulted in a significant (P <- .05) decrease (approximately 50%) in Haugh units. Additionally, irradiation of intact shell eggs at 2 or 3 Kgy significantly (P ≤ .05) reduced yolk color regardless of the level of irradiation exposure implemented. This data indicates that gamma irradiation of intact raw eggs is effective in reducing (1 kGy) or eliminating (2 or more kGy) S. enteritidis contamination. However, each of the levels of irradiation used in the present experiments caused marked reduction of selected measures of egg quality.

  7. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  8. Mechanical properties for irradiated face-centred cubic nanocrystalline metals

    Science.gov (United States)

    Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.

    2015-01-01

    In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091

  9. Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Dominguez, Jesus A.; Sibille, Laurent

    2010-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as

  10. Influence of submerged entry nozzle clogging on the behavior of molten steel in continuously cast slab molds

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The influence of submerged entry nozzle clogging on the behavior of molten steel in continuously cast slab molds was studied using commercial code CFX4.3. The results indicate that clogging at the top part of the nozzle port not only increases the velocity of molten steel, but also enhances the wall shear stress, F number and heat flux. This clogging has the greatest effect on the behavior of molten steel. However, clogging at the top 1/3 of the nozzle only increases the velocity of molten steel and has little influence. Clogging at the bottom of the nozzle almost has no influence.

  11. Who Leads China's Leading Universities?

    Science.gov (United States)

    Huang, Futao

    2017-01-01

    This study attempts to identify the major characteristics of two different groups of institutional leaders in China's leading universities. The study begins with a review of relevant literature and theory. Then, there is a brief introduction to the selection of party secretaries, deputy secretaries, presidents and vice presidents in leading…

  12. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  13. Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts

    Science.gov (United States)

    Yan, Xiao Y.

    2008-04-01

    A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.

  14. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Castrillejo, Y., E-mail: ycastril@qa.uva.es [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Fernandez, P. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Medina, J. [Dept Fisica Materia Condensada Cristalografia y Mineralogia, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain); Hernandez, P. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42076 Pachuca, Hidalgo (Mexico); Barrado, E. [QUIANE/Dept Quimica Analitica, F. de Ciencias, Universidad de Valladolid, Prado de la Magdalena s/n, 47005 Valladolid (Spain)

    2011-10-01

    This work concerns the electrochemical extraction of samarium from molten chlorides. In this way, the electrochemical behaviour of samarium ions has been investigated in the eutectic LiCl-KCl at the surface of tungsten, aluminium and aluminium coated tungsten electrodes. On a W inert electrode the electro-reduction of Sm(III) takes place in only one soluble-soluble electrochemical step Sm(III)/Sm(II). The electrochemical system Sm(II)/Sm(0) has not been observed within the electrochemical window, because of the prior reduction of Li(I) ions from the solvent, which inhibits the electro-extraction of Sm species from the salt on such a substrate. Sm metal in contact with the melt react to give Li(0) according to the reaction: Sm(0) + 2Li(I) {r_reversible} Sm(II) + 2Li(0). On the contrary, on reactive Al electrodes the electrochemical system Sm(II)/Sm(0) was observed within the electroactive range. The potential shift of the redox couple is caused by the decrease of Sm activity in the metal phase due to the formation of Sm-Al alloys at the interface. The formation mechanism of the intermetallic compounds was studied in a melt containing: (i) both Sm(III) and Al(III) ions, using W and Al coated tungsten electrodes, and (ii) Sm(III) ions using an Al electrode. Analysis of the samples after potentiostatic electrolysis by X-ray diffraction and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), allowed the identification of Al{sub 3}Sm and Al{sub 2}Sm.

  15. Leading Cities

    DEFF Research Database (Denmark)

    Pogner, Karl-Heinz

    2017-01-01

    and technical engineering; Smart Cities) is very prominent in the traditional mass media discourse, in PR / PA of tech companies and traditional municipal administrations; whereas the second one (participation; Livable Cities) is mostly enacted in social media, (local) initiatives, movements, (virtual......) communities, new forms of urban governance in municipal administration and co-competitive city networks. Both forms seem to struggle for getting voice and power in the discourses, negotiations, struggles, and conflicts in Urban Governance about the question how to manage or lead (in) a city. Talking about...

  16. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  17. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    Energy Technology Data Exchange (ETDEWEB)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K., E-mail: kp2952002@gmail.com

    2014-11-15

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO{sub 2} adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO{sub 2} at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability.

  18. Space Molten Salt Reactor Concept for Nuclear Electric Propulsion and Surface Power

    Science.gov (United States)

    Eades, M.; Flanders, J.; McMurray, N.; Denning, R.; Sun, X.; Windl, W.; Blue, T.

    Students at The Ohio State University working under the NASA Steckler Grant sought to investigate how molten salt reactors with fissile material dissolved in a liquid fuel medium can be applied to space applications. Molten salt reactors of this kind, built for non-space applications, have demonstrated high power densities, high temperature operation without pressurization, high fuel burn up and other characteristics that are ideal for space fission systems. However, little research has been published on the application of molten salt reactor technology to space fission systems. This paper presents a conceptual design of the Space Molten Salt Reactor (SMSR), which utilizes molten salt reactor technology for Nuclear Electric Propulsion (NEP) and surface power at the 100 kWe to 15 MWe level. Central to the SMSR design is a liquid mixture of LiF, BeF2 and highly enriched U235F4 that acts as both fuel and core coolant. In brief, some of the positive characteristics of the SMSR are compact size, simplified core design, high fuel burn up percentages, proliferation resistant features, passive safety mechanisms, a considerable body of previous research, and the possibility for flexible mission architecture.

  19. FTIR assessment of poly(ethylene oxide) irradiated in solid state, melt and aqeuous solution

    Science.gov (United States)

    Pucić, Irina; Jurkin, Tanja

    2012-09-01

    FTIR spectroscopy was used to study poly(ethylene oxide), PEO, irradiated in solid and molten aggregate states and as aqueous solutions of various concentrations. The changes in shape and width of -C-O-C- complex absorption intensities at around 1112 cm-1 were the most prominent. On irradiation of solid samples in contact with air shrinking of -C-O-C- complex and increase in its absorption intensities indicated predominant degradation. Crosslinking prevailed on irradiation of molten PEO and of its aqueous solutions in nitrogen atmosphere and manifested itself as widening of -C-O-C- absorption and decrease of corresponding intensities. Partial or complete merging of CH2 wagging vibrations at 1342 cm-1 and 1360 cm-1 that are characteristic of crystalline PEO into a single absorption at around 1350 cm-1 indicated amorphization what was observed for samples that had reduced degree of crystallinity determined by differential scanning calorimetry. DSC could not discriminate between degradation and crosslinking while the changes in width and shape of -C-O-C- complex were independent of the changes in crystallinity. Comparison of FTIR spectra of the same PEO samples obtained as thin film and as KBr pellets revealed that pellet preparation results in a number of spectral artefacts.

  20. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

    2009-02-06

    The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project

  1. THE REACTION BETWEEN ZnO AND MOLTEN NA2S2O7 OR K2S2O7 FORMING NA2Zn(SO4)2 OR K2Zn(SO4)2, STUDIED BY RAMAN SPECTROSCOPY AND X-RAY DIFFRACTION

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Thorup, Niels

    2005-01-01

    Reactions between solid ZnO and molten Na2S2O7 or K2S2O7 at 500 are shown by Raman spectroscopy to be 1:1 reactions leading to solns. By lowering the temp. of the soln. melts, colorless crystals form. Raman spectra of the crystals are given and tentatively assigned. Crystal structures of the mon...

  2. ENHANCING FOOD SAFETY AND STABILITY THROUGH IRRADIATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad Shah

    2014-04-01

    Full Text Available Food irradiation is one of the non thermal food processing methods. It is the process of exposing food materials to the controlled amounts of ionizing radiations such as gamma rays, X-rays and accelerated electrons, to improve microbiological safety and stability. Irradiation disrupts the biological processes that lead to decay of food quality. It is an effective tool to reduce food-borne pathogens, spoilage microorganisms and parasites; to extend shelf-life and for insect disinfection. The safety and consumption of irradiated foods have been extensively studied at national levels and in international cooperations and have concluded that foods irradiated under appropriate technologies are both safe and nutritionally adequate. Specific applications of food irradiation have been approved by national legislations of more than 55 countries worldwide. This review aims to discuss the applications of irradiation in food processing with the emphasis on food safety and stability.

  3. Pollen irradiation and possible gene transfer in Nicotiana species

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1985-01-01

    Progeny from crosses of Nicotiana langsdorffii with gamma irradiated pollen of Nicotiana alata ‘Crimson Bedder’ showed skewed segregation in the F2 favoring the maternal parent. This is probably not gene transfer in a strict sense, rather just an extreme case of reduced transmission of irradiated...... chromosomes, leading to massive overrepresentation of maternal genes. Gene transfer or mutational loss may explain some anomalous F1 plants. Segregation in the F2 progeny showed the presence of several genes from the irradiated pollen. Crosses of Nicotiana sylvestris, N. plumbaginifolia N. paniculata......, and Petunia parodii with irradiated pollen from N. alata and Petunia hybrida showed no evidence of gene transfer, nor did experiments with irradiated mentor pollen. This indicates that gene transfer with irradiated pollen between non-crossing species or between species giving sterile hybrids is probably...

  4. Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, N J; Fiet, K J; Krueger, R; Jankowski, A F; Cooper, J F

    2004-01-28

    Anodes of elemental carbon may be discharged in a galvanic cell using a molten carbonate electrolyte, a nickel-foam anode-current collector, and a porous nickel air cathode to achieve power densities of 40-100 mW/cm{sup 2}. We report cell and anode polarization, surface area, primary particle size and a crystallization index for nine particulate carbon samples derived from fuel oil, methane, coal, charred biological material and petroleum coke. At 800 C, current densities of 50-125 mA/cm{sup 2} were measured at a representative cell voltage of 0.8 V. Power densities for cells with two carbon-anode materials were found to be nearly the same on scales of 2.8- and 60 cm{sup 2} active area. Constant current operation of a small cell was accompanied by constant voltage during multiple tests of 10-30 hour duration. Cell voltage fell off after the carbon inventory was consumed. Three different cathode structures are compared, indicating that an LLNL fabricated porous nickel electrode with <10 {micro}m pores provides improved rates compared with nickel foam with 100-300 {micro}m pores. Petroleum coke containing substantial sulfur and ash discharges at a slightly lower rate than purified petroleum coke. The sulfur leads to degradation of the anode current collector over time. A conceptual model for electrochemical reactivity of carbon is presented which indicates the importance of (1) bulk lattice disorder, which continually provides surface reactive sites during anodic dissolution and (2) electrical conductivity, which lowers the ohmic component of anode polarization.

  5. The IRMA gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Berger, L.; Raboin, M.; Corbiere, J. [IRSN, Fontenat-aux-roses (France)

    2011-07-01

    The IRMA cobalt-60 irradiation cell has been installed at the Saclay research centre (25 km from Paris) for 40 years. IRMA is a facility with a maximum authorized capacity of 1, 700 TBq (i.e. approx. 46, 000 Ci). It is a test facility intended primarily for research and development studies on how equipment and materials respond to dose or dose rate exposure. Cobalt-60 gamma photons are the reference in this field. Irradiation is panoramic and achieved using 4, independent, cylindrical sealed sources (11 mm in diameter and 452 mm in length). When not in use, the sources are stored in a lead cask with 0.30 m thick walls to allow safe access inside the cell (uncontaminated environment). With an internal volume of 24 m{sup 3}, it can accommodate a very wide variety of geometric configurations for exposure to gamma radiation. Available dose rates range from 5 {mu}Gy/h (which is the background radiation in the cell when the sources are enclosed in their lead cask) to 25 kGy/h (value obtained 10 cm from a source holder containing all four sources). The resulting doses can be used in experiments representing relatively extreme situations (reactor accidents, dose after x years for equipment in hot cells, reprocessing plants, and so on).The IRMA facility has performed several irradiation tests on new components for EPR and LWR. The IRMA facility is also adapted to check the performance of new biological shieldings and protections for reactors and reprocessing plants. In several other fields of nuclear applications, this facility is useful to characterize and calibrate radiation detectors for the nuclear, space, and military industries

  6. Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

    2008-07-09

    An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

  7. Molten metal-related ocular thermal burn: report on two cases

    Directory of Open Access Journals (Sweden)

    Ceyhun Arici

    2015-12-01

    Full Text Available ABSTRACT We report two cases of severe thermal burns on the ocular surface and its adnexal appendages that developed secondary to exposure to molten heavy metal with a melting temperature of near-thousand degree Celsius. Despite aggressive intervention and strict monitoring, the profound inflammation caused significant damage to the ocular surface, ending up in an intractable infection with an unfavorable outcome. The heat of the molten metal at impact, the heat-retaining capacity of the heavy metal, the total area of the ocular surface exposed to the molten metal, and the duration of exposure determined the severity of the injury. The unfavorable outcome, despite an intensive treatment, in terms of visual acuity and cosmetic appearance, should be explicitly explained to the patient, and a psychiatrist consultation should be considered if necessary.

  8. A Novel Electrochemical Oxygen Sensor for Determination of Ultra-low Oxygen Contents in Molten Metal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel electrochemical oxygen sensor has been developed by using La-Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-low oxygen sensor. Especially, it is very sensitive to measure ultra-low oxygen in molten metal. For estimating the accuracy of La-Al2O3 oxygen sensor, two series of oxygen activities in molten iron at different oxygen contents and different temperature were measured by both La-Al2O3 oxygen sensor and ZrO2 oxygen sensor. The theoretical values of oxygen activities in molten iron (3.30%C, in mass fraction) at 1723K and 1745K were also evaluated for comparing the measuring results of two sensors. At last, the error of measurement for La-Al2O3 oxygen sensor was discussed too.

  9. A new dynamic method for measuring hydrogen partial pressure in molten aluminum alloy

    Directory of Open Access Journals (Sweden)

    Sun Qian

    2011-02-01

    Full Text Available Hydrogen partial pressure is an important parameter to calculate hydrogen concentration levels in molten aluminum alloy. A new dynamic method for measuring hydrogen partial pressure in molten aluminum alloy is studied. Dynamic and rapid measurement is realized through changing the volume of the vacuum chamber and calculating the pressure difference ΔP between the theoretical and measured pressures in the vacuum chamber. Positive ΔP indicates hydrogen transmits from melt to vacuum chamber and negative ΔP means the reverse. When ΔP is equal to zero, hydrogen transmitted from both sides reached a state of dynamical equilibrium and the pressure in the vacuum chamber is equal to the hydrogen partial pressure in the molten aluminum alloy. Compared with other existing measuring methods, the new method can significantly shorten the testing time and reduce measuring cost.

  10. Vacuum Treatment for Simultaneous Desulphurization and Dephosphorization of Hot Metal and Molten Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-chuan; WANG Shi-jun; ZHOU Yun; WU Bao-guo; DONG Yuan-chi

    2004-01-01

    The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out. For pre-treatment of hot metal, both desulphurization and dephosphorization are improved with the increase of CaO in slag, but deteriorated with the increase of CaF2 in slag. The average desulphurization and dephosphorization rate is 68.83 % and 78.46 %, respectively. For molten steel, the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization. The desulphurization and dephosphorization rate is higher than 90 % and 50 % respectively with the lowest final sulfur and phosphorus mass percent being 0.001 2 % and 0.010 %, respectively. The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.

  11. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    Science.gov (United States)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  12. Very Efficient Nucleophilic Aromatic Fluorination Reaction in Molten Salts: A Mechanistic Study

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Woo; Park, Sung Woo; Lee, Sung Yul [Kyung Hee University, Seoul (Korea, Republic of); Lee, Byoung Se; Chi, Dae Yoon [Sogang University, Seoul (Korea, Republic of); Song, Choong Eui [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-03-15

    We report a quantum chemical study of an extremely efficient nucleophilic aromatic fluorination in molten salts. We describe that the mechanism involves solvent anion interacting with the ion pair nucleophile M{sup +}F{sup -} (M = Na, K, Rb, Cs) to accelerate the reaction. We show that our proposed mechanism may well explain the excellent efficiency of molten salts for S{sub N}Ar reactions, the relative efficacy of the metal cations, and also the observed large difference in rate constants in two molten salts (n-C{sub 4}H{sub 9}){sub 4}N{sup +} CX{sub 3}SO{sub 3}{sup -}, (X=H, F) with slightly different sidechain (-CH{sub 3} vs. -CF{sub 3})

  13. A Feasibility Study of Steelmaking by Molten Oxide Electrolysis (TRP9956)

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Sadoway; Gerbrand Ceder

    2009-12-31

    Molten oxide electrolysis (MOE) is an extreme form of molten salt electrolysis, a technology that has been used to produce tonnage metals for over 100 years - aluminum, magnesium, lithium, sodium and the rare earth metals specifically. The use of carbon-free anodes is the distinguishing factor in MOE compared to other molten salt electrolysis techniques. MOE is totally carbon-free and produces no CO or CO2 - only O2 gas at the anode. This project is directed at assessing the technical feasibility of MOE at the bench scale while determining optimum values of MOE operating parameters. An inert anode will be identified and its ability to sustain oxygen evalution will be demonstrated.

  14. Advances in Molten Oxide Electrolysis for the Production of Oxygen and Metals from Lunar Regolith

    Science.gov (United States)

    Sadoway, Donald R.; Sirk, Aislinn; Sibille, Laurent; Melendez, Orlando; Lueck, Dale; Curreri, Peter; Dominquez, Jesus; Whitlow, Jonathan

    2008-01-01

    As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.

  15. Polygenic expression of teratozoospermia and normal fertility in B10.MOL-TEN1 mouse strain.

    Science.gov (United States)

    Hirawatari, Keitaro; Hanzawa, Naoto; Kuwahara, Maki; Aoyama, Hiroaki; Miura, Ikuo; Wakana, Shigeharu; Gotoh, Hideo

    2015-05-01

    Subfertility and infertility are two major reproductive health problems in human and domestic animals. The contribution of the genotype to these conditions is poorly understood. To examine the genetic basis of male subfertility, we analyzed its relationship to sperm morphology in B10.MOL-TEN1 mice, which shows high-frequencies (about 50%) of morphologically abnormal sperm. Drastic histological changes were also found in the testis of the B10.MOL-TEN1. Segregation analysis showed that the abnormal sperm phenotype in B10.MOL-TEN1 was inherited and was predictably controlled by at least three loci. We also found that male fertility of this strain was normal. These findings indicate a complicated relationship between sperm morphology and male subfertility.

  16. STUDY ON EROSION RESISTANCE PROPERTIES OF O'-SIALON-BN IN MOLTEN STEEL

    Institute of Scientific and Technical Information of China (English)

    Q. Zhen; W.Z. Ding; W.C. Li

    2001-01-01

    The erosion resistance properties of O'-Sialon-BN in molten steel are investigated in this work. According to experimental results and theoretical analysis, BN in O'Sialon-BN plays an important role in molten steel erosion resistance. And the erosion kinetics of the O'-Sialon-BN composites in molten steel is controlled by two stages:the first one is controlled by chemical reaction taking place on the interface; the second one is controlled by diffusion. The erosion surface of the materials is also investigated with fractal theory. The results show that the fractal dimensions of the erosion surface vary with erosion time from a linear way to parabolic way, which relates to the change of erosion mechanism from interface chemical reaction to diffusion.

  17. Optimization and simplification of the concept of non-moderated Thorium Molten Salt Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Merle-Lucotte, Elsa; Heuer, Daniel; Allibert, Michel; Doligez, Xavier; Ghetta, Veronique; Le Brun, Christian [LPSC-IN2P3-CNRS/UJF/INPG, LPSC 53 avenue des Martyrs, 38026 Grenoble Cedex (France)

    2008-07-01

    Molten salt reactors, in the configuration presented here and called Thorium Molten Salt Reactor (TMSR), are particularly well suited to fulfil the criteria defined by the Generation IV forum, and may be operated in simplified and safe conditions in the Th/{sup 233}U fuel cycle with fluoride salts. The characteristics of the non-moderated TMSR based on a fast neutron spectrum are detailed in this paper: we aimed at designing an optimised TMSR with the simplest configuration. Using a simple kinetic-point model, we analyze the reactor's transient as the total reactivity margins are introduced in the core. We thus confirm, beyond the classical advantages of molten salt reactors, the satisfactory behaviour of the TMSR in terms of safety and the excellent level of stability which can be achieved in such reactors. (authors)

  18. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    Science.gov (United States)

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  19. Complex Behavior of Forces Influencing Molten Weld Metal Flow based on Static Force Balance Theory

    Science.gov (United States)

    Achebo, Joseph I.

    This study is aimed at investigating the forces responsible for the detachment of molten metal droplets formed at an electrode tip, which imminently and eventually drop into the weld pool during the welding process. The Equations used by Kim and Eagar in 1993 were applied to this study. It was found that the different detaching forces which are the gravitational force, the electromagnetic force, and the drag force, were determined to be 7.154 x 10-6N, 0.05N and 1.736N respectively. Whereas, the primary retaining force, which is the surface tension force, was calculated to be 0.0195N. From the findings, since the combination of the detaching forces taken together is greater than the retaining force, detachment of the molten metal droplet must inevitably occur. The combined effect of these forces on the behaviour of molten metal during the droplet detachment process was adequately investigated in this study.

  20. Preparation of Ferrotitanium Alloy from Ilmenite by Electrochemical Reduction in Chloride Molten Salts

    Science.gov (United States)

    Qi, Can-can; Hua, Yi-xin; Chen, Kong-hao; Jie, Ya-fei; Zhou, Zhong-ren; Ru, Juan-jian; Xiong, Li; Gong, Kai

    2016-02-01

    Ferrotitanium alloy is prepared by electrochemical reduction from ilmenite in LiCl-KCl and LiCl-KCl-CaCl2 molten salts, respectively. The products prepared are observed by x-ray diffraction (XRD). It is shown that Fe2Ti can be prepared from ilmenite in LiCl-KCl molten salt at 1073 K with a cell voltage of 3.2 V. Ilmenite can be electrochemically reduced to FeTi in LiCl-KCl-CaCl2 molten salt under the same condition. It is indicated that CaCl2 can promote the reaction and is favors the deoxidization of the FeTiO3.

  1. Activities of chromium in molten copper at dilute concentrations by solid-state electrochemical cell

    Science.gov (United States)

    Inouye, T. K.; Fujiwara, H.; Iwase, M.

    1991-08-01

    In order to obtain the activities of chromium in molten copper at dilute concentrations (copper was brought to equilibrium with molten CaCl2 + Cr2O3 slag saturated with Cr2O3 (s), at temperatures between 1423 and 1573 K, and the equilibrium oxygen partial pressures were measured by means of solid-oxide galvanic cells of the type Mo/Mo + MoO2/ZrO2(MgO)/(Cu + Cr))alloy + Cr2O3 + (CaCl2 + Cr2O3)slag/Mo. The free energy changes for the dissolution of solid chromium in molten copper at infinite dilution referred to 1 wt pct were determined as Cr (s) = Cr(1 wt pct, in Cu) and Δ G° = + 97,000 + 73.3 (T/K) ± 2,000 J mol-1.

  2. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    Science.gov (United States)

    Gheribi, A. E.; Corradini, D.; Dewan, L.; Chartrand, P.; Simon, C.; Madden, P. A.; Salanne, M.

    2014-05-01

    Molten fluorides are known to show favourable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and as fuel in the molten salt fast reactor concept. By using ab initio parameterised polarisable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat capacity, viscosity and thermal conductivity) which are necessary for assessing the heat transfer performance of the melt over the whole range of compositions and temperatures. We then deduce from our calculations several figures of merit which are important in helping the optimisation of the design of molten salt fast reactors.

  3. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Paul D.

    2005-09-01

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  4. Numerical simulation and experimental investigation of natural convection heat transfer of molten salt around fine wire

    Institute of Scientific and Technical Information of China (English)

    LU; YuanWei; LI; XiaoLi; LI; Qiang; WU; YuTing; MA; ChongFang

    2013-01-01

    In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Experiment was carried out on the nat-ural convection heat transfer of air and water around the fine wire using the method of Joule heating. The results showed that the natural convection heat transfer of air and water around the fine wire agreed well with Fand’s correlation. Based on the aforementioned experiment, the natural convection heat transfer of molten salt LiNO3was studied by experiment and the same results were got. Therefore, the natural convection heat transfer of molten salt can be calculated by Fand’s correlation, which takes into consideration the effect of viscosity dissipation.

  5. Electrochemical Impedance and Modelling Studies of the Corrosion of Three Commercial Stainless Steels in Molten Carbonate

    Directory of Open Access Journals (Sweden)

    C. S. Ni

    2014-01-01

    Full Text Available The corrosion induced by molten carbonates on the metallic structure materials is a problem constraining the life span of molten carbonate fuel cell (MCFC at elevated temperatures. The reaction between the outgrowing oxide scale and lithium carbonate in the electrolyte is generally a slow process and very important to the passivation behaviour of the underlying steel. The corrosion behaviour of three commercial alloys (P92, SS304, and SS310 with different Cr contents in molten (0.62Li, 0.38K2CO3 at 650°C was monitored by electrochemical impedance spectroscopy (EIS for 120 hours to investigate the lithiation process. With SEM images and extensive XRD analysis of the oxides, equivalent circuits were proposed to interpret the impedance data and explain the corrosion behaviour of the three alloys at different stage with respect to lithiation process.

  6. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  7. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  8. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan Krishnan

    2011-01-01

    Full Text Available Abstract In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction analysis (XRD, and X-ray photoelectron spectroscopy (XPS. The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200, (211, and (321 reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure.

  9. Demonstration of flow localization in analogue partially molten system

    Science.gov (United States)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2003-04-01

    Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from permeable flow to localized one is promoted with advance of melting and deformation of the medium. Kelemen et al(1995) and Spiegelmanet al(2001) modeled this process taking into accounts of compaction and dissolution. But the physics behind this transition is not yet clarified well. Here we explore rheological aspect of this problem based analogue experiments using deformable soft gel as a solid phase and would like to argue the role of self-organization in the flow development. In this presentation we show two kinds of experimental results which are mutually related. One is a demonstration of development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid(glycerol solution) is poured at the top of the matrix fluid;homogeneous mixture of soft transparent gel and visocous fluid( the viscosity is controlled by adding methyl-cellulose) having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction(between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by adoting PIV/PTV methods. Calculated relative motion describes how flow localization has developed. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. At the intermediate gel fraction, the rheology is sensitive to the mixture state. Deformation of bulk sample depends on the internal melt distribution and the melt distribution depends on the

  10. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  11. Steel oxidation phenomena during Molten Corium siliceous Concrete Interaction (MCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Brusset, Mathieu; Piluso, Pascal [CEA/DEN/Cadarache, SMTA/LPMA, 13108 St. Paul lez-Durance (France); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font-Romeu Odeillo (France); Bottomley, Paul David; Wiss, Thierry [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe, German (Germany)

    2015-02-15

    Highlights: • Corium metallic phase oxidation during corium-concrete interaction is studied. • Steel is separated from the oxide melt or emulsified inside the oxide melt. • Oxidation layer depends on the nature of the interfaces and location in the corium. • Oxides formed are (Fe,Cr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3}. • Concrete gases are not sufficient to explain the experimental steel oxidation. - Abstract: The VULCANO facility at CEA Cadarache is a Molten Corium Concrete Interaction (MCCI) installation for testing material reactions representative of the late stages of a nuclear reactor severe accident. The objectives of the VBS-U3 test were to study ablation phenomena and oxidation of the metallic phase when two liquid phases are present: oxide phase and metallic phase (steel). In this paper we describe the materials post-test analysis of the VULCANO VBS-U3 test performed at the Institute for Transuranium Elements in Karlsruhe (JRC-ITU) with the focus on the metallic phase oxidation of the corium. Post-test analyses show that the remaining metallic phase of the corium is under two forms: drops discontinuously dispersed in the oxide phase forming an emulsion and a continuous metallic ingot clearly separated from the oxide phase. In average, taking into account or not the metallic phase dispersed in the oxide phase, between 60% and 70% of the steel has been oxidized. The size of the drops and their proportion in the oxide phase is depending on their distance from horizontal and vertical walls of the concrete test section. Oxidation mechanisms are mainly depending on two parameters: nature of the metallic interface and localization in the test section. Calculations at thermodynamic equilibrium show that the only product from steel oxidation is (Fe,Cr){sub 3}O{sub 4}, Cr{sub 2}O{sub 3} is never formed. Moreover taking into account the two gaseous species coming from the concrete (CO{sub 2} and H{sub 2}O), considered up to now as being the only sources

  12. Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith

    NARCIS (Netherlands)

    Hemmes, K.; Dijkema, G.P.J.

    1998-01-01

    A method of operating a molten carbonate fuel cell having an anode and a cathode and in between a matrix comprising molten carbonate. Carbon dioxide is introduced into the matrix at a distance from the cathode. This greatly reduces the cathode's deterioration and in the system design increases the c

  13. Application of Proton Conductors to Hydrogen Monitoring for Liquid Metal and Molten Salt Systems

    Science.gov (United States)

    Kondo, Masatoshi; Muroga, Takeo; Katahira, Koji; Oshima, Tomoko

    The chemical control of impurity such as hydrogen and oxygen in coolants is one of the critical issues for the development of liquid metal cooled fast reactors and self-cooled liquid breeder blankets for fusion reactors. Especially, hydrogen (isotopes) level is the key parameter for corrosion and mechanical properties of the in-reactor components. For fission reactors, the monitor of hydrogen level in the melt is important for safety operation. The control of tritium is essential for the tritium breeding performance of the fusion reactors. Therefore, on-line hydrogen sensing is a key technology for these systems. In the present study, conceptual design for the on-line hydrogen sensor to be used in liquid sodium (Na), lead (Pb), lead-bismuth (Pb-Bi), lithium (Li), lead-lithium (Pb-17Li) and molten salt LiF-BeF2 (Flibe) was performed. The cell of hydrogen sensor is made of a solid electrolyte. The solid electrolyte proposed in this study is the CaZrO3-based ceramics, which is well-known as proton conducting ceramics. In this concept, the cell is immersed into the melt which is containing the hydrogen at the activity of PH1 of ambient atmosphere. Then, the cell is filled with Ar-H2 mixture gas at regulated hydrogen activity of PH2. The electromotive force (EMF) is obtained by the proton conduction in the electro chemical system expressed as Pt, Melt(PH1) | Proton conductor | PH2, Pt. The Nernst equation is used for the evaluation of the hydrogen activity from the obtained EMF. The evaluations of expected performance of the sensor in liquid Na, Pb, Pb-Bi, Pb-17Li, Li and Flibe were carried out by means of the measurement test in gas atmosphere at hydrogen activities equivalent to those for the melts in the reactor conditions. In the test, the hydrogen activity in the gas varied from 2.2x10-14 to 1. The sensor exhibited good response, stability and reproducibility.

  14. INVESTIGATION OF THE THERMODYNAMICS GOVERNING METAL HYDRIDE SYNTHESIS IN THE MOLTEN STATE PROCESS.

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, A; Polly Berseth, P; Ragaiy Zidan, R; Donald Anton, D

    2007-08-23

    Complex metal hydrides have been synthesized for hydrogen storage through a new synthetic technique utilizing high hydrogen overpressure at elevated temperatures (molten state processing). This synthesis technique holds the potential of fusing different complex hydrides at elevated temperatures and pressures to form new species with enhanced hydrogen storage properties. Formation of these compounds is driven by thermodynamic and kinetic considerations. We report on investigations of the thermodynamics. Novel synthetic complexes were formed, structurally characterized, and their hydrogen desorption properties investigated. The effectiveness of the molten state process is compared with mechanicosynthetic ball milling.

  15. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  16. Influence of backward flowing molten jet on humping bead formation during high-speed GMA welding

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji; WU Chuansong

    2009-01-01

    Considering the inflttence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during high-speed gas metal arc (GMA) welding. Three-dimensional geometry of the humping bead is numerically simulated only if some extra force and heat acted at the rear part of weld pool are taken into account in the model. It has proved that both the momentum and heat content of backward flowing molten jet must be appropriately treated to quantitatively analyze the physical mechanism of the humping phenomenon.

  17. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  18. The structure of molten ZnCl2 : A new analysis of some old data

    Indian Academy of Sciences (India)

    A K Soper

    2004-07-01

    Using a recently derived method, based on empirical potential structure refinement (EPSR), the structure of molten zinc chloride (ZnCl2) is re-analysed. Contrary to the picture given in some early analyses, the results indicate that there are significant uncertainties in the extracted site–site radial distribution functions, particularly the Zn–Zn distribution. These are derived from the small weighting of this partial structure factor in the measured diffraction data and from systematic uncertainties in the original data. The simulated atom distributions are used to discuss the three-dimensional structure of this molten salt.

  19. Recent development in electrolytic formation of carbon nanotubes in molten salts

    Directory of Open Access Journals (Sweden)

    Chen G.Z.

    2003-01-01

    Full Text Available This article reviews the recent research development in the electrolytic production of carbon nano-tubes in molten salts. The experimental procedure and product morphologies of the electrolytic method are described in details. Different hypotheses of the carbon nano-tube formation mechanism in molten salts, particularly it relation with the erosion of the cathode, are compared and discussed. It is anticipated that the electrolytic method can potentially become a cheap and continuous process for the production of curved carbon nano-tubes, carbon sheathed metal nanowires and other carbon based nano-structures.

  20. Preparation of Mg-Li-Sm alloys by electrocodeposition in molten salt

    Institute of Scientific and Technical Information of China (English)

    韩伟; 田阳; 张密林; 颜永得; 景晓燕

    2009-01-01

    Electrocodeposition of Mg-Li-Sm alloys was investigated in molten KCl-LiCl-MgCl2-SmCl3-KF system.The effects of electrolytic temperature and cathodic current density on current efficiency were studied and optimal electrolysis parameters were obtained.The optimum electrolysis condition was a molten salt mixture of LiCl:KCl =50:50(wt.%),electrolytic temperature:660 oC,cathode current density:9.5 A/cm2 and electrolysis time of 40 min.The current efficiency reached 77.3%.X-ray diffraction(XRD) and scanning elec...

  1. Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature

    Institute of Scientific and Technical Information of China (English)

    Mi Lin Zhang; Yong De Yan; Zhi Yao Hou; Lu An Fan; Zeng Chen; Ding Xiang Tang

    2007-01-01

    A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten were investigated, and optimal electrolysis parameters were obtained. Mg-Li alloys with low lithium content (about 25%) were prepared by the unique method of a higher post-thermal treatment temperature after electrolysis at low temperature. The results showed that the electrolysis can be carried out at low temperature, which resulted in reducing preparation cost due to energy saving.The new technology for the preparation of Mg-Li alloy by electrolysis in molten salt was proved to be feasible.

  2. Kinetics of Reduction of MnO in Molten Slag with Carbon Undersaturated Liquid Iron

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reduction of MnO in molten slag with carbon undersaturated iron was studied. It was found that the process is affected by the carbon content of molten metal and the temperature. The higher the carbon content and the temperature, the faster both the reduction and the emerging of the hump on curve of ωFeO, the larger the difference betwe en ωFeO, max and ωFeO, e. The phenomena were explained with three-step reaction model.

  3. Emissions from energetic material waste during the Molten Salt Destruction process

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, B.E.; Upadhye, R.S.; Pruneda, C.O.; Brummond, W.A.

    1994-07-05

    The Molten Salt Destruction (MSD) process is an alternative to open burn/open detonation for destroying energetic materials; MSD has inherently low gaseous emissions, and the salt bath can scrub both acidic gases and particulates. It was demonstrated that high explosives and a liquid propellant can be safely and completely destroyed using MSD. Gaseous emissions of NOx and CO are very low. Nitrate builds up in the salt bath when nitrate-rich materials are destroyed, but addition fuel reduces the nitrate to NO. A program has been begun to add catalytic materials to the bed to further reduce emissions; a small molten salt bath has been constructed for chemical kinetic studies.

  4. Electrode process of La(Ⅲ) in molten LiCl-KCl

    Institute of Scientific and Technical Information of China (English)

    高繁星; 王长水; 刘利生; 郭建华; 常尚文; 常利; 李瑞雪; 欧阳应根

    2009-01-01

    The electrode process of La(Ⅲ) at Mo electrode in the molten LiCl-KCl for temperatures ranging from 683 K to 773 K was studied by cyclic voltammetry and chronopotentiometry,respectively.The results showed that in the molten LiCl-KCl,reduction of La(Ⅲ) occurred in a step with a global exchange of three electrons.Cyclic voltammetry studies indicated that at a sweep rate lower than 0.2 V/s,the electroreduction of La(Ⅲ) to lanthanum metal was reversible and controlled by diffusion of La(Ⅲ).However,the process b...

  5. Development of a Minichannel Compact Primary Heat Exchanger for a Molten Salt Reactor

    OpenAIRE

    Lippy, Matthew Stephen

    2011-01-01

    The first Molten Salt Reactor (MSR) was designed and tested at Oak Ridge National Laboratory (ORNL) in the 1960â s, but recent technological advancements now allow for new components, such as heat exchangers, to be created for the next generation of MSRâ s and molten salt-cooled reactors. The primary (fuel salt-to-secondary salt) heat exchanger (PHX) design is shown here to make dramatic improvements over traditional shell-and-tube heat exchangers when changed to a compact heat exchanger de...

  6. An overview of the measurements of thermophysical properties and some results on molten superalloys and semiconductors

    Science.gov (United States)

    Taylor, R. E.

    1993-01-01

    This presentation consists of two parts: comments on the results of measurements on thermophysical properties based on the paper, 'Things Mother Never Taught Me (About Thermophysical Properties of Solids)' and results of thermophysical property measurements on selected solid and molten semiconductors and a proprietary superalloy. The first part may be considered as a tutorial for those involved in using or procuring thermophysical property data. The second part is presented as illustrations of what has been accomplished on molten materials at the Thermophysical Properties Research Laboratory (TPRL). The materials include Ge, PbTe, PbSnTe, HgCdTe and a superalloy.

  7. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.

    Science.gov (United States)

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-01

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  8. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  9. Effects of growth parameters on silicon molten zone formed by infrared convergent-heating floating zone method

    Science.gov (United States)

    Hossain, Md. Mukter; Watauchi, Satoshi; Nagao, Masanori; Tanaka, Isao

    2017-02-01

    The effects of rotation rate, filament size, mirror shape, and crystal diameter on the shape of the silicon molten zones prepared using the infrared convergent-heating floating zone method were examined. The crystal rotation rate did not significantly affect the shape of the feed-melt or crystal-melt interfaces, gap between the crystal and feed, zone length, or lamp power required to form the molten zone. More efficient heating was achieved using lamps with smaller filaments and ellipsoidal mirrors with higher eccentricity. The convexity of both the feed and the crystal sides of the molten zone decreased with increasing crystal diameter. However, the required lamp power, gap, and zone length increased with increasing crystal diameter. The stability of the molten zone seemed to reduce with increasing crystal diameter. The minimum melt width divided by the crystal diameter was found to be a good parameter to describe the stability of the molten zone.

  10. AGC-2 Irradiation Report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the

  11. Study on Tribological Properties of Irradiated Crosslinking UHMWPE Nano-Composite

    Institute of Scientific and Technical Information of China (English)

    Lei Xiong; Dang-sheng Xiong; Jia-bo Jin

    2009-01-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) has been widely used as a bearing material for artificial joint replacement over forty years. It is usually crosslinked by gamma rays irradiation before its implantation into human body. In this study, UHMWPE and UHMWPE/nano-hydroxyapatite (n-HA) composite were prepared by vacuum hot-pressing method. The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation. The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine (model MM-200) under deionized water lubrication. Micro-morphology of wom surface was observed by metallographic microscope. Contact angle and hardness of the materials were also measured. The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation. Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA. While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation. The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear, and that of n-HA filled material is mainly characterized as abrasive wear. After gamma irradiation, the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced. Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear. The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.

  12. Molten salt reactors and the oil sands: odd couple or key to north american energy independence?

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, D., E-mail: d_leblanc@rogers.com [Ottawa Valley Research Associates Ltd., Ottawa, Ontario (Canada); Quesada, M.; Popoff, C.; Way, D. [Penumbra Energy, Calgary, Alberta (Canada)

    2012-07-01

    The use of nuclear power to aid oil sands development has often been proposed largely due to the virtual elimination of natural gas use and thus a large reduction in GHG emissions. Nuclear power can replace natural gas for process steam production (SAGD) and electricity generation but also potentially for hydrogen production to upgrade bitumen for pipeline transit, synthetic crude production and even at the final refinery stage. Prior candidates included CANDU and gas cooled Pebble Bed Reactors. The case for CANDU use can be shown to be marginally economic with a proven technology but with an uncertainty of current construction costs and too large a unit size (~2400 MWth). PBRs offered modest theoretical cost savings, smaller unit size and the ability to offer higher temperatures needed for thermochemical hydrogen production from water. Interest in PBRs however has greatly waned with the cancellation of their major South African development program which highlighted the severe challenges of helium as a coolant and TRISO fuel manufacturing. More recently, Small Modular Reactors based on scaled down light water reactor technology have attracted interest but are unlikely to compete economically outside of niche applications. However, a 'new' reactor option, the Molten Salt Reactor, has been rapidly gaining momentum over the past decade. This 'new' technology was actually developed over 50 years ago as a thorium breeder reactor to compete with the sodium cooled fast breeder reactor (U-Pu cycle). During this time two molten salt test reactors were constructed. A modern version however would likely be a simpler converter design using Low Enriched Uranium but needing only a small fraction the uranium resources of LWRs or CANDUs. Besides resource sustainability, these unique designs offer large potential improvements in the areas of capital costs, safety and nuclear waste. This presentation will explain the unique attributes and advantages of these

  13. Irradiation Defects in Silicon Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The application of irradiation in silicon crystal is introduced.The defects caused by irradiation are reviewed and some major ways of studying defects in irradiated silicon are summarized.Furthermore the problems in the investigation of irradiated silicon are discussed as well as its properties.

  14. Food irradiation; Napromieniowanie zywnosci

    Energy Technology Data Exchange (ETDEWEB)

    Migdal, W. [Instytut Chemii i Techniki Jadrowej, Doswiadczalna Stacja Radiacyjnego Utrwalania Plodow Rolnych, Warsaw (Poland)

    1995-12-31

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author) 14 refs, 3 tabs

  15. Total lymphoid irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  16. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  17. Studies on Hot Corrosion of the 2.25 Cr-1Mo Boiler Tube Steel and Its Weldments in the Molten Salt Na2SO4-60 pct V2O5 Environment

    Science.gov (United States)

    Kumar, Ravindra; Tewari, V. K.; Prakash, S.

    2007-01-01

    Hot corrosion is mainly due to the dissolution of protective oxides in the molten salt at the metal surface and their reprecipitation at some other sites as nonprotective porous mass. The hot corrosion attack along the grain boundaries leading to subsurface precipitation of oxides and sulfides also contributes to weakening of material. Ferritic steel with 2.25Cr 1Mo is used widely as a candidate material in the steam generating system of power plants. Hot corrosion studies were conducted on 2.25Cr-1Mo unwelded as well as welded steel specimens with molten salt coated after exposure at 900 °C under cyclic conditions. The thermogravimetric technique was used to establish the kinetics of corrosion X-ray diffraction (XRD); scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) was used to analyze the corrosion products.

  18. Irradiation effects in hydrated zirconium molybdate

    Science.gov (United States)

    Fourdrin, C.; Esnouf, S.; Dauvois, V.; Renault, J.-P.; Venault, L.; Tabarant, M.; Durand, D.; Chenière, A.; Lamouroux-Lucas, C.; Cochin, F.

    2012-07-01

    Hydrated zirconium molybdate is a precipitate formed during the process of spent nuclear fuel dissolution. In order to study the radiation stability of this material, we performed gamma and electron irradiation in a dose range of 10-100 kGy. XRD patterns showed that the crystalline structure is not affected by irradiation. However, the yellow original sample exhibits a blue-grey color after exposure. The resulting samples were analyzed by means of EPR and diffuse reflectance spectroscopy. Two sites for trapped electrons were evidenced leading to a d1 configuration responsible for the observed coloration. Moreover, a third defect corresponding to a hole trapped on oxygen was observed after electron irradiation at low temperature.

  19. Phosphorus out-diffusion in laser molten silicon

    Energy Technology Data Exchange (ETDEWEB)

    Köhler, J. R.; Eisele, S. J. [Institut für Photovoltaik (ipv), Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany)

    2015-04-14

    Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ion mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].

  20. CONCEPTUAL PAPER : Utilization of GPS Satellites for Precise Irradiation Measurement and Monitoring

    Indian Academy of Sciences (India)

    S. Vijayan

    2008-03-01

    Precise measurement of irradiance over the earth under various circumstances like solar flares, coronal mass ejections, over an 11-year solar cycle, etc. leads to better understanding of Sun–earth relationship. To continuously monitor the irradiance over earth-space regions several satellites at several positions are required. For that continuous and multiple satellite monitoring we can use GPS (Global Positioning System) satellites (like GLONASS, GALILEO, future satellites) installed with irradiance measuring and monitoring instruments. GPS satellite system consists of 24 constellations of satellites. Therefore usage of all the satellites leads to 24 measurements of irradiance at the top of the atmosphere (or 12 measurements of those satellites which are pointing towards the Sun) at an instant. Therefore in one day, numerous irradiance observations can be obtained for the whole globe, which will be very helpful for several applications like Albedo calculation, Earth Radiation Budget calculation, monitoring of near earth-space atmosphere, etc. Moreover, measuring irradiance both in ground (using ground instruments) and in space at the same instant of time over a same place, leads to numerous advantages. That is, for a single position we obtain irradiance at the top of the atmosphere, irradiance at ground and the difference in irradiance from over top of the atmosphere to the ground. Measurement of irradiance over the atmosphere and in ground at a precise location gives more fine details about the solar irradiance influence over the earth, path loss and interaction of irradiance with the atmosphere.

  1. STUDY ON THE MECHANISM OF GRAPHITIZATION IN MOLTEN CAST IRON PROMOTED BY ELECTROPULSE DISCHARGE

    Institute of Scientific and Technical Information of China (English)

    G.W. Chang; J.S. Wang; J.Z. Wang; Q.G. Xue; D.Q. Zhou; D.Q. Cang

    2004-01-01

    From the points of both molten cast iron structure and the appearing ratio of electrons in outer-layer of different atoms, analysis on enhancement mechanism of graphitization ability after processing of the iron by pulse electric discharge has been made, and the theory has been proofed by corresponding experiments. The results show that when the molten cast iron is being processed by pulse electric discharge, both the size of crystal embryos that composed by Fe and C atoms as well as the number of clusters can bereduced, even be separated by such discharging; consequently results in the segregation of C atoms in the molten cast iron near the cathode of discharging. The nucleation of graphite in these areas of the iron has been promoted at the discharging temperature; even though such degree has not been reached, the most favorable nucleation conditions of graphite can be at least created. Under the preconditions of not breaking up the graphite crystal embryos, with proper adjustment of discharging frequency, the stronger of the electric field and the longer of the pulsation treatment time are, the more graphitization ability of the molten cast iron is. The theoretical analysis on the above rules consists well with experimental results.

  2. A Novel Modeling of Molten-Salt Heat Storage Systems in Thermal Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Rogelio Peón Menéndez

    2014-10-01

    Full Text Available Many thermal solar power plants use thermal oil as heat transfer fluid, and molten salts as thermal energy storage. Oil absorbs energy from sun light, and transfers it to a water-steam cycle across heat exchangers, to be converted into electric energy by means of a turbogenerator, or to be stored in a thermal energy storage system so that it can be later transferred to the water-steam cycle. The complexity of these thermal solar plants is rather high, as they combine traditional engineering used in power stations (water-steam cycle or petrochemical (oil piping, with the new solar (parabolic trough collector and heat storage (molten salts technologies. With the engineering of these plants being relatively new, regulation of the thermal energy storage system is currently achieved in manual or semiautomatic ways, controlling its variables with proportional-integral-derivative (PID regulators. This makes the overall performance of these plants non optimal. This work focuses on energy storage systems based on molten salt, and defines a complete model of the process. By defining such a model, the ground for future research into optimal control methods will be established. The accuracy of the model will be determined by comparing the results it provides and those measured in the molten-salt heat storage system of an actual power plant.

  3. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  4. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  5. Recovery of Nickel from Nickel-Based Superalloy Scraps by Utilizing Molten Zinc

    Science.gov (United States)

    Yagi, Ryohei; Okabe, Toru H.

    2017-02-01

    With the purpose of developing a new process for recycling nickel (Ni) directly from superalloy scraps, a fundamental study on the extraction and separation of Ni was carried out using molten zinc (Zn) as the extraction medium. In order to examine the reaction between molten Zn and the Ni-based superalloy, superalloy samples and Zn shots were heated at 1173 K (900 °C) for 6 hours. After heating, the superalloy samples fully reacted with Zn and dissolved in molten Zn. The Zn-alloyed sample obtained by slow cooling consisted of two separated upper and lower phases. In the upper part of the sample, only Zn and the Zn-Ni alloys were found; in the lower part, an intermetallic alloy consisting of refractory metals such as rhenium (Re) and tantalum (Ta) was found. This result shows that Ni and refractory metals contained in the scrap can be separated by utilizing the density differences between the Zn-Ni alloy and the refractory metals in molten Zn. Vacuum treatment of the upper part of the Zn-alloyed sample at 1173 K (900 °C) reduced the concentration of Zn in the sample from 97.0 to 0.4 mass pct. After Zn removal, a Ni alloy containing Ni with a purity of 85.3 to 86.1 mass pct and negligible quantities (scraps without the consumption of Zn or the generation of toxic wastes solutions.

  6. Thermodynamic Analysis on Interaction between MoltenTi Alloys and Oxide Molding Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A thermodynamic model has been built up for the interactions between molten Ti alloys and oxide molding materials in the way of decomposition and solution of molding materials, then the influences on the reaction free energy changes have been calculated and discussed.

  7. Numerical Evaluation of Cyclone Application for Impurities Removal from Molten Aluminum

    NARCIS (Netherlands)

    Turchin, A.N.; Eskin, D.G.; Katgerman, L.

    2008-01-01

    The purification of gaseous and liquid media by means of a cyclone concept is well known and has been successfully applied in different industries. While the impurities removal from molten metal has been an important issue for many years, to the best of our knowledge, the application of a cyclone

  8. Corrosion Behavior of Au, Hastelloy C-276 Alloy and Monel 400 Alloy in Molten Lithium Fluoride

    Institute of Scientific and Technical Information of China (English)

    WANG; Chang-shui; GUO; Jun-kang

    2013-01-01

    For searching better corrosion-resistant material in high temperature,we investigated the corrosion behavior of Au,Haynes C-276 alloy and Monel 400 alloy in molten lithium fluoride at 950℃.The corrosion products and fine structures of the corroded specimens were characterized by inductively coupled plasma mass spectrometry(ICP-MS),scanning electron microscope(SEM),energy dispersive

  9. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  10. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    Science.gov (United States)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  11. A Parametric Sizing Model for Molten Regolith Electrolysis Reactors to Produce Oxygen from Lunar Regolith

    Science.gov (United States)

    Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.

    2015-01-01

    We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.

  12. The application of the Wilhelmy balance to the measurement of electrocapillary effects in molten carbonate

    NARCIS (Netherlands)

    Peelen, W.H.A.; Hemmes, K.; Kamping, H.; Bos, M.; Wit, de J.H.W.

    1998-01-01

    In this work, the Wilhelmy method is shown to be very suitable for studying electrocapillary effects in molten salts. Unlike the optical methods usually used this method, can easily be used in automated set-ups. High accuracies of 0.3° in the contact angle were easily obtained. First experiments are

  13. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrial uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.

  14. Wall heat transfer coefficient in a molten salt bubble column: testing the experimental setup

    CSIR Research Space (South Africa)

    Skosana, PJ

    2014-10-01

    Full Text Available reactors that are highly exothermic or endothermic. This paper presents the design and operation of experimental setup used for measurement of the heat transfer coefficient in molten salt media. The experimental setup was operated with tap water, heat...

  15. The Solubility of metal oxides in molten carbonates - why the acid-basic chemistry fails?

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Qingfeng, Li; Borup, Flemming

    1999-01-01

    Solubilities of various metal oxides in molten Li/K carbonates have been measured at 650°C under carbon dioxide atmosphere. It is found that the solubility of NiO and PbO decreases with increasing lithium mole fraction and decreasing CO2 partial pressure. On the other hand, the emf measurement...

  16. Thermodynamic study of the molten salt binary system KHSO4-NaHSO4

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus; Hatem, G

    2002-01-01

    The partial molar enthalpies of mixing of NaHSO4 and KHSO4 have been measured at 528 K by dropping samples of pure compounds into molten mixtures of NaHSO4 and KHSO4 in Calvet calorimeter. From these values the molar enthalpy of mixing has been deduced.The same method has been used for the determ...

  17. Topological switching between an alpha-beta parallel protein and a remarkably helical molten globule.

    Science.gov (United States)

    Nabuurs, Sanne M; Westphal, Adrie H; aan den Toorn, Marije; Lindhoud, Simon; van Mierlo, Carlo P M

    2009-06-17

    Partially folded protein species transiently exist during folding of most proteins. Often these species are molten globules, which may be on- or off-pathway to native protein. Molten globules have a substantial amount of secondary structure but lack virtually all the tertiary side-chain packing characteristic of natively folded proteins. These ensembles of interconverting conformers are prone to aggregation and potentially play a role in numerous devastating pathologies, and thus attract considerable attention. The molten globule that is observed during folding of apoflavodoxin from Azotobacter vinelandii is off-pathway, as it has to unfold before native protein can be formed. Here we report that this species can be trapped under nativelike conditions by substituting amino acid residue F44 by Y44, allowing spectroscopic characterization of its conformation. Whereas native apoflavodoxin contains a parallel beta-sheet surrounded by alpha-helices (i.e., the flavodoxin-like or alpha-beta parallel topology), it is shown that the molten globule has a totally different topology: it is helical and contains no beta-sheet. The presence of this remarkably nonnative species shows that single polypeptide sequences can code for distinct folds that swap upon changing conditions. Topological switching between unrelated protein structures is likely a general phenomenon in the protein structure universe.

  18. Numerical Evaluation of Cyclone Application for Impurities Removal from Molten Aluminum

    NARCIS (Netherlands)

    Turchin, A.N.; Eskin, D.G.; Katgerman, L.

    2008-01-01

    The purification of gaseous and liquid media by means of a cyclone concept is well known and has been successfully applied in different industries. While the impurities removal from molten metal has been an important issue for many years, to the best of our knowledge, the application of a cyclone co

  19. Grain Boundary Penetration of Various Types of Ni Layer by Molten Metals

    Science.gov (United States)

    Yang, S.; Chang, C. Y.; Zhu, Z. X.; Lin, Y. F.; Kao, C. R.

    2017-02-01

    The grain boundary penetration of three types of Ni layer, Ni foil, electroplated Ni, and electroless Ni, by molten Pb and 95Pb5Sn (wt.%) is investigated. The average grain sizes of Ni foil and electroplated Ni are 10 μm and 1 μm, respectively, while the electroless Ni is amorphous. The purpose of using two molten metals is to study the effect of intermetallic formation on grain boundary penetration. Molten Pb was able to penetrate or disintegrate all three types of Ni, including amorphous Ni, which does not contain any grain boundaries. On the other hand, the addition of merely 5 wt.% Sn into molten Pb was able to slow the penetration down substantially for all three types of Ni layer, with the greatest suppression found in electroless Ni where a grain boundary penetration event did not take place. The mechanism for the Sn effect is due to the formation of a protective Ni3Sn4 intermetallic compound at the interface acting as a barrier against grain boundary penetration.

  20. Plasma diagnostics approach to welding heat source/molten pool interaction

    Energy Technology Data Exchange (ETDEWEB)

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.