WorldWideScience

Sample records for iron-doped lithium niobate

  1. Iron site location in Fe-diffused lithium niobate crystals by combined RBS-PIXE-NRA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaltron, A. [University of Padova and CNISM, Via Marzolo 8, 35131 Padova (Italy); Argiolas, N., E-mail: nicola.argiolas@unipd.it [University of Padova and CNISM, Via Marzolo 8, 35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale Fisica Nucleare, Viale dell' Universita 2, 35020 Legnaro (Padova) (Italy); De Salvador, D.; Bazzan, M. [University of Padova and CNISM, Via Marzolo 8, 35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale Fisica Nucleare, Viale dell' Universita 2, 35020 Legnaro (Padova) (Italy); Ciampolillo, M.V.; Bacci, L.; Sada, C. [University of Padova and CNISM, Via Marzolo 8, 35131 Padova (Italy)

    2012-03-15

    Iron diffused x-cut lithium niobate samples have been studied from a structural point of view by ion beam analysis techniques in channeling conditions. The aim of this work is to determine the most probable position of iron atoms after high temperature diffusion treatment in pure oxygen atmosphere and to verify their location after an additional full reducing annealing at low temperature. The results are compared with the bulk doping case that can be considered the final equilibrium state of the diffusion process. By comparing the iron signal with niobium and lithium counterparts in angular scans along proper crystallographic directions, we demonstrate that iron occupies in any case the lithium site or a very close position regardless of the reduction degree, just as in the case of bulk doped samples.

  2. Photorefractive effect at 775 nm in doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V. [Department of Electrical, Computer, and Biomedical Engineering, and CNISM, University of Pavia, 27100 Pavia (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C. [Physics and Astronomy Departement, University of Padova, 35131 Padova (Italy)

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  3. Diffusion of iron in lithium niobate: a secondary ion mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolillo, M.V.; Argiolas, N.; Zaltron, A.; Bazzan, M.; Sada, C. [University of Padova, Physics Department (Italy); CNISM, Padova (Italy)

    2011-10-15

    Iron-doped X-cut lithium niobate crystals were prepared by means of thermal diffusion from thin film varying in a systematic way the process parameters such as temperature and diffusion duration. Secondary Ion Mass Spectrometry was exploited to characterize the iron in-depth profiles. The evolution of the composition of the Fe thin film in the range between 600 C and 800 C was studied, and the diffusion coefficient at different temperatures in the range between 900 C and 1050 C and the activation energy of the diffusion process were estimated. (orig.)

  4. Optical cleaning of lithium niobate crystals

    International Nuclear Information System (INIS)

    Koesters, Michael

    2010-01-01

    An all-optical method for the removal of photoexcitable electrons from photorefractive centers to get rid of optical damage in lithium niobate crystals is presented, the so-called ''optical cleaning''. The method combines the photovoltaic drift of electrons with ionic charge compensation at sufficiently high temperatures of about 180 C. Optimum choice of the light pattern plus heat dramatically decreases the concentration of photoexcitable electrons in the exposed region leading to a suppression of optical damage. Experiments with slightly iron-doped lithium niobate crystals have shown an increase of the threshold for optical damage of more than 1000 compared to those of untreated crystals. (orig.)

  5. Optical cleaning of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Michael

    2010-01-15

    An all-optical method for the removal of photoexcitable electrons from photorefractive centers to get rid of optical damage in lithium niobate crystals is presented, the so-called ''optical cleaning''. The method combines the photovoltaic drift of electrons with ionic charge compensation at sufficiently high temperatures of about 180 C. Optimum choice of the light pattern plus heat dramatically decreases the concentration of photoexcitable electrons in the exposed region leading to a suppression of optical damage. Experiments with slightly iron-doped lithium niobate crystals have shown an increase of the threshold for optical damage of more than 1000 compared to those of untreated crystals. (orig.)

  6. Iron doping of lithium niobate by thermal diffusion from thin film: study of the treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolillo, Maria Vittoria; Zaltron, Annamaria; Bazzan, Marco; Argiolas, Nicola; Sada, Cinzia [Universita di Padova (Italy); CNISM, Dipartimento di Fisica ' ' G. Galilei' ' , Padova (Italy); Mignoni, Sabrina; Fontana, Marc [Universite de Metz et Supelec, Laboratoire Materiaux Optiques, Photoniques et Systemes, UMR CNRS 7132, Metz (France)

    2011-07-15

    Thermal diffusion from thin film is one of the most widespread approaches to prepare iron doped regions in lithium niobate with limited size for photorefractive applications. In this work, we investigate the doping process with the aim of determining the best process conditions giving a doped region with the characteristics required for photorefractive applications. Six samples were prepared by changing the atmosphere employed in the diffusion treatment in order to obtain different combination of diffusion profiles and reduction degrees and also to check the effect of employing a wet atmosphere. The compositional, optical, and structural properties are then extensively characterized by combining Secondary ion Mass Spectrometry, UV, visible and IR spectrophotometry, High Resolution X-Rays Diffraction, and Micro-Raman Spectroscopy. Moreover, the sample topography was checked by Atomic Force Microscopy. An analysis of all our data shows that the best results are obtained performing a double step process, i.e. diffusion in oxidizing atmosphere and subsequent reduction at lower temperature in an hydrogen-containing atmosphere. (orig.)

  7. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA Phase I STTR effort, the feasibility of fabricating isolated ridge waveguides in 5% magnesium-doped lithium niobate (5% MgO:LN) will be established....

  8. Photoluminescence of Copper-Doped Lithium Niobate Crystals

    Science.gov (United States)

    Gorelik, V. S.; Pyatyshev, A. Yu.; Sidorov, N. V.

    2018-05-01

    The photoluminescence (PL) of copper-doped lithium niobate single crystals is studied using different UV-Vis light-emitting diodes and a pulse-periodic laser with a wavelength of 266 nm as excitation radiation sources. With the resonance excitation from a 527-nm light-emitting diode, the intensity of PL increases sharply (by two orders of magnitude). When using a 467-nm light-emitting diode for excitation, the PL spectrum is characterized by the presence of multiphonon lines in the range of 520-620 nm.

  9. Numerical and Experimental Study of Optoelectronic Trapping on Iron-Doped Lithium Niobate Substrate

    Directory of Open Access Journals (Sweden)

    Michela Gazzetto

    2016-09-01

    Full Text Available Optoelectronic tweezers (OET are a promising technique for the realization of reconfigurable systems suitable to trap and manipulate microparticles. In particular, dielectrophoretic (DEP forces produced by OET represent a valid alternative to micro-fabricated metal electrodes, as strong and spatially reconfigurable electrical fields can be induced in a photoconductive layer by means of light-driven phenomena. In this paper we report, and compare with the experimental data, the results obtained by analyzing the spatial configurations of the DEP-forces produced by a 532 nm laser beam, with Gaussian intensity distribution, impinging on a Fe-doped Lithium Niobate substrate. Furthermore, we also present a promising preliminary result for water-droplets trapping, which could open the way to the application of this technique to biological samples manipulation.

  10. Experimental and theoretical investigation of lattice defect structures in a series of Zn, Fe-doped nonstoichiometric lithium niobate

    International Nuclear Information System (INIS)

    Guo Fengyun; Lue Qiang; Sun Liang; Li Hongtao; Zhen Xihe; Xu Yuheng; Zhao Liancheng

    2006-01-01

    A series of the double doped lithium niobate (LiNbO 3 , LN) single crystals had been grown by Czochralski method. The Curie temperatures of various concentrations doped or [Li]/[Nb] ratio LN crystals measured by differential thermal analysis (DTA) were discussed to investigate their defect structures with Safaryan et al. new approach about LN lattice defect structure using Curie temperatures calculated. Infrared transmission spectra of various concentrations doped were used to compare the investigation above. The results show that the lithium vacancy model is the more probable to describe the lattice defect structure of the doped LN single crystal

  11. Lithium niobate packaging challenges

    International Nuclear Information System (INIS)

    Murphy, E.J.; Holmes, R.J.; Jander, R.B.; Schelling, A.W.

    1988-01-01

    The use of lithium niobate integrated optic devices outside of the research laboratory is predicated on the development of a sound packaging method. The authors present a discussion of the many issues that face the development of a viable, robust packaging technology. The authors emphasize the interaction of lithium niobate's physical properties with available packaging materials and technologies. The broad range of properties (i.e. electro-optic, piezo-electric, pyro-electric, photorefractive...) that make lithium niobate an interesting material in many device applications also make it a packaging challenge. The package design, materials and packaging technologies must isolate the device from the environment so that lithium niobate's properties do not adversely affect the device performance

  12. Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate

    Science.gov (United States)

    Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.

    2009-06-01

    Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.

  13. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shulei; Zheng, Shili; Wang, Zheming; Cui, Wenwen; Zhang, Hailin; Yang, Liangrong; Zhang, Yi; Li, Ping

    2018-01-01

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.

  14. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    International Nuclear Information System (INIS)

    Zheng, Dahuai; Yao, Jiaying; Kong, Yongfa; Liu, Shiguo; Zhang, Ling; Chen, Shaolin; Xu, Jingjun

    2015-01-01

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm 2 ). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals

  15. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dahuai; Yao, Jiaying [School of Physics, Nankai University, Tianjin 300071 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Kong, Yongfa, E-mail: kongyf@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China); MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); R and D Center, Taishan Sports Industry Group, Leling 253600 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Liu, Shiguo [School of Physics, Nankai University, Tianjin 300071 (China); Zhang, Ling; Chen, Shaolin [MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); Xu, Jingjun [School of Physics, Nankai University, Tianjin 300071 (China); MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2015-01-15

    Bismuth-doped lithium niobate (LN:Bi) crystals were grown by Czochralski method and their optical damage resistance, photorefraction, absorption spectra, and defect energy levels were investigated. The experimental results indicate that the photorefractive properties of LN:Bi were enhanced as compared with congruent one, the photorefractive response time was greatly shortened, the photorefractive sensitivity was increased, and the diffraction efficiency of near-stoichiometric LN:Bi (SLN:Bi) reached 31.72% and 49.08% at 532 nm and 488 nm laser, respectively (light intensity of 400 mW/cm{sup 2}). An absorption peak at about 350 nm was observed in the absorption spectrum of LN:Bi. And the defect energy levels simulation indicates new defect levels appear in the forbidden gap of LN:Bi crystals. Therefore bismuth can act as photorefractive centers in LN crystals.

  16. Thermo-electric oxidization of iron in lithium niobate crystals

    International Nuclear Information System (INIS)

    Falk, Matthias

    2007-01-01

    Lithium niobate crystals (LiNbO 3 ) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO 3 crystals this treatment leads to a nearly complete oxidization from Fe 2+ to Fe 3+ indicated by the disappearance of the absorption caused by Fe 2+ . During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe 2+ concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10 -6 for oxidized crystals whereas it is about 10 -1 for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from Fe 2+ . A microscopic shock-wave model is developed that explains the observed absorption front by

  17. Synthesis of lithium niobate and monocrystal growth by Czochralski method

    International Nuclear Information System (INIS)

    Balzuweit, K.

    1988-01-01

    The qualitative analysis of lithium niobate by x-ray analysis and optical microscopy is presented. The lithium niobate compound was obtained by synthesis using niobium oxides and lithium carbonates. The lithium niobate monocrystal growth was done by Czochralski method. (M.C.K.)

  18. Generation of ionizing radiation from lithium niobate crystals

    Science.gov (United States)

    Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.

    2017-01-01

    The work done experimentally explores generation of electron and x-ray radiation in the process of heating and cooling monolithic and iron-doped crystals of lithium niobate. Iron doping to the concentrations in the range of 1023 m3 was carried out by adding ferric oxide into the melt during the process of crystal growth. The research into radiation generation was performed at 1-10 Pa. The speed of heating from -10 to 1070 C was 10-20 degrees a minute. Current pulses appeared at 17, 38, 56, 94, 98, 100, 105, 106, 1070 C with the interval of 1-3 minutes. The obtained electron current increased in direct proportion to the crystal surface area. The maximum current was 3mA at the design voltage 11 kV on the crystal with 14,5x10,5x10 mm3 surface area. The article describes the possibility to control the start of generation by introducing priming pulse. The results achieved are explained by the domain repolarization while heating the crystal and the appearance of electric field local strength. Bias and overcharge currents contribute to the appearance of electric strength, which stimulates breakdown and plasma formation. X-ray radiation appears both at the stage of discharge formation and during electron deceleration on gas and target material.

  19. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.

    Science.gov (United States)

    Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang

    2017-06-12

    Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.

  20. Micromachining Lithium Niobate for Rapid Prototyping of Resonant Biosensors

    International Nuclear Information System (INIS)

    Al-Shibaany, Zeyad Yousif Abdoon; Hedley, John; Huo, Dehong; Hu, Zhongxu

    2014-01-01

    Lithium niobate material is widely used in MEMS application due to its piezoelectric properties. This paper presents the micromachining process of lithium niobate to rapid prototype a resonant biosensor design. A high precision CNC machine was used to machine a sample of lithium niobate material at 5 different spindle speeds to find out the best conditions to machine this brittle material. A qualitative visual check of the surface was performed by using scanning electron microscopy, surface roughness was quantitatively investigated using an optical surface profiler and Raman spectroscopy to check the strain of the surface. Results show that the surface quality of the lithium niobate was significantly affected by the spindle speed with optimum conditions at 70k rpm giving a strained surface with 500 nm rms roughness

  1. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    Science.gov (United States)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  2. Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Steigerwald, Hendrik

    2011-08-15

    One of the most important non-linear-optical materials is lithium niobate, due to its ease of fabrication, robustness, transparency in the visible-to-infrared and excellent nonlinear properties. In this thesis the issue of tailoring ferroelectric domain structures in lithium niobate crystals is approached from two sides: interaction of defect structures inside the crystal with growing ferroelectric domains is investigated and also actual domain patterning on all crystal faces by different methods is performed. Special emphasis is given to the Mg-doped material. The fundamental understanding and the methods of domain patterning developed in this thesis are then used to obtain tailored domain structures that meet the requirements of their intended application in non-linear optics. (orig.)

  3. Magnetophotorefractive effect and interference filters in lithium niobate

    International Nuclear Information System (INIS)

    Dam-Hansen, C.

    1996-03-01

    This thesis deals with the fundamental photorefractive and photovoltaic properties of iron-doped lithium niobate crystals. Experimental observations of a strong magnetic field effect on the energy coupling and grating formation in a vectorial interaction scheme are presented. To the author's knowledge these are the first reported results in the field. It is shown that an enhancement of the diffraction efficiency of 60% is possible by applying even a moderate magnetic field of 0.23 T. A new theoretical model of the magnetophotorefractive effect in the vectorial interaction scheme is presented. It describes the space-charge field formation, two-wave mixing and grating formation under the influence of an externally applied magnetic field. Good agreement with the experimental results and the first measurement of nondiagonal components of the magnetophotovoltaic tensor are reported. A theoretical model for the temperature properties of photorefractive interference filters with subangstrom bandwidths are presented and compared favourably with experimental investigations. A novel method for determining the spectral response of these filters from a combined thermal and angular response measurements is described. (au) 9 tabs., 30 ills., 84 refs

  4. Erbium medium temperature localised doping into lithium niobate and sapphire: A comparative study

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Macková, Anna; Peřina, Vratislav; Červená, Jarmila; Čapek, P.; Schrofel, J.; Špirková, J.; Oswald, Jiří

    90-91, - (2003), s. 559-564 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z1048901 Keywords : lithium niobate * sapphire * erbium Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.687, year: 2003

  5. Micro- and nanostructuration of lithium niobate

    International Nuclear Information System (INIS)

    Hartung, Holger

    2010-01-01

    In the framework of this thesis the application of the ion-beam-enhanced-etching (IBEE) technique for the fabrication of different optical elements, among these photonic crystals, in lithium niobate, was studied. The development of a mask technology fitted to the requirements of the IBEE technique as well as a simulation of the process were performed. Hereby the limitations of the technique in view on minimal structure sizes and structure quality were analyzed. In chapter 1 first the material lithium niobate with its properties and the structuration procedures studied hitherto in the literature is presented. Chapter 2 presents the functionality of the IBEE process and describes the studies on the application of IBEE in lithium niobate performed in the framework of this thesis. In chapter 3 the experimental conditions of all applied processes of the IBEE procedure, the processes used for the mask fabrication, as well all further applied methods and technologies are summarized. Chapter 4 deals with the mask fabrication. The requirements on the masks and the developments necessary for their fulfilment are studied. In chapter 5 the performed simulation of the irradiation, annealing, and etching process is described. This simulation makes the prediciton of the geometry of the components from the process parameters and vice versa the determination of parameters for the reaching of an optimal element geometry possible. In chapter 6 the application of the technique for the fabrication of photonic-crystal membranes and their optical characterization is described. Chapter 7 shows the fabrication of different waveguide and diffractive elements in lithium niobate by means of IBEE.

  6. Synthesis and thermoluminescent characterization of lithium niobate doped with erbium

    International Nuclear Information System (INIS)

    Landavazo, M.; Brown, F.; Cubillas, F.; Munoz, I.; Cruz Z, E.

    2015-10-01

    Full text: Lithium niobate (Nl) is a synthetic dielectric and is mainly used in optical devices. There are reports on the thermoluminescent property of Nl monocrystals doped with rare earths and excited with X and gamma rays. In this study the Nl was synthesized and doped with erbium (Er) at concentrations of 1, 2 and 4 % mol and was characterized by its Tl property. The synthesis was realized by solid state reaction at 1000 degrees C for 22 hours and the formation of Nl:Er was confirmed by X-ray diffraction, scanning electron microscopy and EDS analysis, finding a new phase (ErNbO 4 ). Was studied the dose-response gamma in a range of 1-1000 Gy, the material showed linear behavior of 1-600 Gy. The brightness curves have maxima at 185 and 285 degrees C to 1% in 183 and 301 degrees C for 2%, respectively. While for the concentration of 4% a maximum in 177 degrees C accompanied by a smaller peak at higher temperature of the glow curve was observed. The Tl response of Nl:Er 4% to 450 Gy was increased 271 times compared to pure Nl. The reproducibility of the Tl signal at ten cycles of irradiation-reading, present a standard deviation of 5%. In Nl:Er 1% Tl signal fades in 21.3% after 24 hours, while in 2 and 4% an unusual fading occurs. The Tl characteristics of Nl:Er synthesized material is of interest to gamma radiation dosimetry of high doses. (Author)

  7. Stability of lithium niobate on irradiation at elevated temperature

    International Nuclear Information System (INIS)

    Primak, W.; Gavin, A.P.; Anderson, T.T.; Monahan, E.

    1977-01-01

    In contrast to results obtained for neutron irradiation in a thermal reactor near room temperature, lithium niobate plates irradiated in the Experimental Breeder Reactor II (EBR-II) did not become metamict. This is attributed to the elevated temperature of the EBR-II. Ion bombardment experiments indicate that to avoid disordering of lithium niobate on irradiation, its temperature should be maintained above 673 K. Evidence for ionic conductivity was found at 873 K, indicating that it would be inadvisable to permit the temperature to rise that high, particularly with voltage across the plate. In reactor application as a microphone transducer, it is tentatively recommended that the lithium niobate be maintained in the middle of this temperature range for a major portion of reactor operating time

  8. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J

    2008-05-01

    We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.

  9. Effect of powder processing conditions on the electromechanical properties of lithium doped potassium sodium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Mensur-Alkoy, E.; Berksoy-Yavuz, A.

    2016-07-01

    Lithium doped potassium sodium niobate ceramics with (K0.50−x/2Na0.50−x/2Lix)NbO3 composition where x=0.04 and 0.07 were fabricated by solid state calcination and pressureless sintering methods. However, two different powder processing and calcination routes were used in this study and their effect on the structural and electrical properties were investigated and discussed. The routes were namely loose calcination and compact calcination. A general trend of decreasing grain size was observed in the sintered ceramics prepared from these powders. The most drastic effect was observed on the electromechanical properties of the samples, where the maximum strain of 7% lithium modified sample under an E-field of 50kV/cm was increased from 0.09% to 0.12% by changing processing route. Furthermore, hysteretic behavior of the strain was found to decrease. This tendency was also valid for ferroelectric hysteresis property, with remnant polarization (2Pr) increasing from 23μC/cm2 to 46μC/cm2. The improvements observed in the electrical properties were discussed on the basis of chemical homogeneity and uniform ionic distribution. (Author)

  10. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia [Department of Applied Physics, KTH - Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.

  11. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    International Nuclear Information System (INIS)

    Neumayer, Sabine M.; Rodriguez, Brian J.; Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.; Manzo, Michele; Gallo, Katia; Kholkin, Andrei L.

    2015-01-01

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity

  12. Recharging processes, radiation induced strain and changes of OH - bands under H + ion implantation in Ti doped lithium niobate

    Science.gov (United States)

    Kumar, P.; Moorthy Babu, S.; Bhaumik, I.; Ganesamoorthy, S.; Karnal, A. K.; Kumar, Praveen; Rodrigues, G. O.; Sulania, I.; Kanjilal, D.; Pandey, A. K.; Raman, R.

    2010-01-01

    A systematic analysis of variations in structural and optical characteristics of Z-cut plates of titanium doped congruent lithium niobate single crystals implanted with 120 keV proton beam at various fluences of 10 15, 10 16 and 10 17 protons/cm 2 is presented. Through, high resolution X-ray diffraction, atomic force microscopy, Fourier transform infrared and UV-visible-NIR analysis of congruent lithium niobate, the correlation of properties before and after implantation are discussed. HRXRD (0 0 6) reflection by Triple Crystal Mode shows that both tensile and compressive strain peak are produced by the high fluence implantation. A distinct tensile peak was observed from implanted region for a fluence of 10 16 protons/cm 2. AFM micrographs indicate mountain ridges, bumps and protrusions on target surface on implantation. UV-visible-NIR spectra reveal an increase in charge transfer between Ti 3+/Ti 4+ and ligand oxygen for implantation with 10 15 protons/cm 2, while spectra for higher fluence implanted samples show complex absorption band in the region from 380-1100 nm. Variations of OH - stretching vibration mode were observed for cLN Pure, cLNT2% virgin, and implanted samples with FTIR spectra. The concentration of OH - ion before and after implantation was calculated from integral absorption intensity. The effect of 120 keV proton implantation induced structural, surface and optical studies were correlated.

  13. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Irradiation-induced modification of the material parameters in magnesium-doped lithium niobate

    International Nuclear Information System (INIS)

    Jentjens, Lena

    2010-01-01

    In the framework of this thesis the material properties of lithium niobate are directedly influenced by the irradiation with 3 He ions with an energy of 40 MeV. In the first part the irradiation-induced material changes are intensively studied. Long-time stable changes of the refractive index are measured in the range of up to 6.10 -3 , which depend on the radiation dose and exhibit until now no saturation behaviour. Accompanied is this change by an also dose-dependent deformation as well as a brownish change of color of the crystals. Furthermore a by several orders of magnitude increased electrical dark- and photoconductivity, which depends on the ion dose and exhibits until now also no saturation behaviour. An effect independent on the ion dose is the reduction of the coercive field strength by about 10%. Furthermore it was stated the quantity of the effects not only depends on the absolute dose, but also on the irradiation direction in view of the crystallographic c-axis. The second part of this thesis deals with the generation of microscopic structures in lithium niobate. By an ion microbeam respectively a shiftable slit aperture the fabrication of refractive-index gratings is pursued. Grating with periodicity lengths in the range of 12-160 μm could until now be detected and promise in comparison with photorefractive gratings the advance of larger stability.

  15. Absorption and reflectivity of the lithium niobate surface masked with a graphene layer

    Directory of Open Access Journals (Sweden)

    O. Salas

    2017-01-01

    Full Text Available We performed simulations of the interaction of a graphene layer with the surface of lithium niobate utilizing density functional theory and molecular dynamics at 300K and atmospheric pressure. We found that the graphene layer is physisorbed on the lithium niobate surface with an adsorption energy of -0.8205 eV/(carbon-atom. Subsequently, the energy band structure, the optical absorption and reflectivity of the new system were calculated. We found important changes in these physical properties with respect to the corresponding ones of a graphene layer and of a lithium niobate crystal.

  16. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    International Nuclear Information System (INIS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-01-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results. (orig.)

  17. Recharging processes, radiation induced strain and changes of OH{sup -} bands under H{sup +} ion implantation in Ti doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Moorthy Babu, S., E-mail: smoorthybabu@yahoo.co [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Bhaumik, I.; Ganesamoorthy, S.; Karnal, A.K. [LMDD Division, RRCAT, Indore 452013, Madhya Pradesh (India); Kumar, Praveen; Rodrigues, G.O.; Sulania, I.; Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg 110067, New Delhi (India); Pandey, A.K.; Raman, R. [Solid State Physics Laboratory, Timarpur 110 054, New Delhi (India)

    2010-01-15

    A systematic analysis of variations in structural and optical characteristics of Z-cut plates of titanium doped congruent lithium niobate single crystals implanted with 120 keV proton beam at various fluences of 10{sup 15}, 10{sup 16} and 10{sup 17} protons/cm{sup 2} is presented. Through, high resolution X-ray diffraction, atomic force microscopy, Fourier transform infrared and UV-visible-NIR analysis of congruent lithium niobate, the correlation of properties before and after implantation are discussed. HRXRD (0 0 6) reflection by Triple Crystal Mode shows that both tensile and compressive strain peak are produced by the high fluence implantation. A distinct tensile peak was observed from implanted region for a fluence of 10{sup 16} protons/cm{sup 2}. AFM micrographs indicate mountain ridges, bumps and protrusions on target surface on implantation. UV-visible-NIR spectra reveal an increase in charge transfer between Ti{sup 3+}/Ti{sup 4+} and ligand oxygen for implantation with 10{sup 15} protons/cm{sup 2}, while spectra for higher fluence implanted samples show complex absorption band in the region from 380-1100 nm. Variations of OH{sup -} stretching vibration mode were observed for cLN Pure, cLNT2% virgin, and implanted samples with FTIR spectra. The concentration of OH{sup -} ion before and after implantation was calculated from integral absorption intensity. The effect of 120 keV proton implantation induced structural, surface and optical studies were correlated.

  18. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Ivanov, Ilia N. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia, E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  19. Shock-wave compression of lithium niobate from 2.4 to 44 GPa

    International Nuclear Information System (INIS)

    Stanton, P.L.; Graham, R.A.

    1979-01-01

    Shock compression of lithium niobate above the Hugoniot elastic limit (about 2.5 GPa) reveals a succession of unusual features. Just above the Hugoniot elastic limit, the shock velocity is observed to be well below the bulk sound speed, indicative of a drastic reduction of shear strength. The shock velocity is observed to increase with particle velocity at an unusually large rate due to the reduction of strength in a very stiff material and an anomalously large pressure derivative of the bulk modulus. This later behavior may be due to the effects of localized shock heating resulting from heterogeneous shear deformation in ferroelectrics like lithium niobate and lithium tantalate in which increases in temperature are shown to have a strong effect on bulk modulus. A shock-induced polymorphic phase transition occurs at 13.9 GPa. Above the transition point the slope of the Hugoniot curve relating shock velocity and particle velocity is unusually low, indicative of a broad mixed phase region of undetermined extent. Limited work is reported on the isomorphous crystal, lithium tantalate, which exhibits features similar to lithium niobate with a Hugoniot elastic limit of 4 GPa and a phase transition in the vicinity of 19 GPa

  20. Shock-induced luminescence from Z-cut lithium niobate

    International Nuclear Information System (INIS)

    Brannon, P.J.; Morris, R.W.; Asay, J.R.

    1985-01-01

    Shock-induced luminescence from lithium niobate has been studied in the stress range 1.6--21.0 GPa. Both fast-framing photography and five-channel optical pyrometry were used to observe the luminescence. The framing photography showed that the emission pattern is heterogeneous for stresses just above the dynamic yield point. A further increase of the stress resulted in a pattern which was essentially homogeneous to within the experimental spatial resolution of about 30 μm. Narrowband filters and photomultiplier tubes were used in the optical pyrometry experiments. A broadband spectrum with a peak near 700 nm was observed. A plot of the energy dissipated by the shock versus shock stress correlates very well with a plot of the 700-nm intensity versus shock stress. The mechanism for light emission in lithium niobate appears to be closely related to the dynamic yielding process

  1. Noise Analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2008-01-01

    Full Text Available Noise characteristics of second-harmonic generation (SHG in periodically poled lithium niobate (PPLN using the quasiphase matching (QPM technique are analyzed experimentally. In the experiment, a0.78 μm second-harmonic (SH wave was generated when a 1.56 μm fundamental wave passed through a PPLN crystal (bulk or waveguide. The time-domain and frequency-domain noise characteristics of the fundamental and SH waves were analyzed. By using the pump-probe method, the noise characteristics of SHG were further analyzed when a visible light (532 nm and an infrared light (1090 nm copropagated with the fundamental light, respectively. The noise characterizations were also investigated at different temperatures. It is found that for the bulk and waveguide PPLN crystals, the SH wave has a higher relative noise level than the corresponding fundamental wave. For the same fundamental wave, the SH wave has lower noise in a bulk crystal than in a waveguide, and in MgO-doped PPLN than in undoped PPLN. The 532 nm irradiation can lead to higher noise in PPLN than the 1090 nm irradiation. In addition, increasing temperature of device can alleviate the problem of noise in conjunction with the photorefractive effect incurred by the irradiation light. This is more significant in undoped PPLN than in MgO-doped one.

  2. Micro- and nanostructuration of lithium niobate; Mikro- und Nanostrukturierung von Lithiumniobat

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Holger

    2010-04-13

    In the framework of this thesis the application of the ion-beam-enhanced-etching (IBEE) technique for the fabrication of different optical elements, among these photonic crystals, in lithium niobate, was studied. The development of a mask technology fitted to the requirements of the IBEE technique as well as a simulation of the process were performed. Hereby the limitations of the technique in view on minimal structure sizes and structure quality were analyzed. In chapter 1 first the material lithium niobate with its properties and the structuration procedures studied hitherto in the literature is presented. Chapter 2 presents the functionality of the IBEE process and describes the studies on the application of IBEE in lithium niobate performed in the framework of this thesis. In chapter 3 the experimental conditions of all applied processes of the IBEE procedure, the processes used for the mask fabrication, as well all further applied methods and technologies are summarized. Chapter 4 deals with the mask fabrication. The requirements on the masks and the developments necessary for their fulfilment are studied. In chapter 5 the performed simulation of the irradiation, annealing, and etching process is described. This simulation makes the prediciton of the geometry of the components from the process parameters and vice versa the determination of parameters for the reaching of an optimal element geometry possible. In chapter 6 the application of the technique for the fabrication of photonic-crystal membranes and their optical characterization is described. Chapter 7 shows the fabrication of different waveguide and diffractive elements in lithium niobate by means of IBEE.

  3. Writing single-mode waveguides in lithium niobate by ultra-low intensity solitons

    International Nuclear Information System (INIS)

    Fazio, E.; Ramadan, W.; Petris, A.; Chauvet, M.; Bosco, A.; Vlad, V.I.; Bertolotti, M.

    2005-01-01

    Optical waveguides can be conveniently written in photorefractive materials by using spatial solitons. We have generated bright spatial solitons inside lithium niobate which allow single-mode light propagation. Efficient waveguides have been generated with CW light powers as high as few microwatts. According to the soliton formation, waveguides can be formed with different shapes. Due to the slow response time of the lithium niobate, both for soliton formation and relaxation, the soliton waveguide remains memorised for a long time, of the order of months

  4. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Manzo, Michele; Gallo, Katia, E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2016-03-21

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, as well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode–PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN–PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.

  5. Optical waveguides in lithium niobate: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  6. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-01-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO 3 ) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000 deg. C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO 3 , producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN/GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO 3 modulators on compact optoelectronic/electronic chips

  7. Gamma radiation effects on photorefractive and photoelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyan, Eh.S.; Ovsepyan, R.K.; Pogosyan, A.R.; Timofeev, A.L.

    1984-08-01

    Investigations into the gamma radiation effect on the photorefractive aned photoelectric properties of lithium niobate crystals have been carried out for the first time. Gamma irradiation has been found to lead to an increase in the photorefractive sensitivity. The effect of optical decoloration has been discovered for the first time along with photorelaxation currents resulting from radiation center decay under the action of light. It has been shown that an increase of photorefractive sensitivity in gamma-irradiated lithium niobate crystals is caused by a new photorefraction mechanism - photorelaxation currents.

  8. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    Science.gov (United States)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  9. Chemical transport of niobium(V) oxide and of lithium niobate with sulphur

    International Nuclear Information System (INIS)

    Schaefer, H.

    1988-01-01

    Niobium(V) oxide is transported by means of sulphur (calculated for 10 bar at 1223 K) from 1273 → 1173 K. The same applies for lithium niobate. Similar experiments of lithium oxide lead to turbidity of the quartz ampoule. (author)

  10. Sub-band-gap laser micromachining of lithium niobate

    DEFF Research Database (Denmark)

    Christensen, F. K.; Müllenborn, Matthias

    1995-01-01

    method is reported which enables us to do laser processing of lithium niobate using sub-band-gap photons. Using high scan speeds, moderate power densities, and sub-band-gap photon energies results in volume removal rates in excess of 106µm3/s. This enables fast micromachining of small piezoelectric...

  11. Conversion of broadband IR radiation and structural disorder in lithium niobate single crystals with low photorefractive effect

    Science.gov (United States)

    Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.

    2016-11-01

    The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.

  12. Efficient femtosecond mid-infrared pulse generation by dispersivewave radiation in bulk lithium niobate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm.......We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm....

  13. Material modifications in lithium niobate and lithium tantalate crystals by ion irradiation

    International Nuclear Information System (INIS)

    Raeth, Niels Lennart

    2017-01-01

    The artificially produced crystals lithium niobate (LiNbO 3 ) and the closely related lithium tantalate (LiTaO 3 ) are proven starting materials for producing active and passive devices that can guide, amplify, switch and process light. For this purpose, it is often necessary to be able to influence the refractive index of the substrate targeted, which is possible in addition to other methods by irradiation of the materials with fast light ions. In this work, lithium niobate and lithium tantalate crystals are irradiated with alpha particles, 3 He ions, deuterons, and protons at projectile energies of up to 14 MeV / nucleon. Energy and crystal thickness are chosen so that the projectiles penetrate the entire sample and are not implanted. All isotopes responsible for the unwanted nuclear activation of the crystals due to the irradiation are relatively short-lived and overall the activation decreases fast enough to allow the safe handling of the irradiated samples after a storage period of a few days to a few weeks. The refractive index changes produced in lithium niobate and lithium tantalate by irradiation with the different projectiles are determined interferometrically and can also be measured by suitable choice of the sample geometry as a function of the ion penetration depth: In LiNbO 3 the ordinary refractive index decreases, the extraordinary increases equally. In LiTaO 3 , both the ordinary and the extraordinary refractive indices decrease as a result of the irradiation; the ordinary refractive index change is many times stronger than the extraordinary one. There is an enormous long-term stability at room temperature for both crystal systems: Even after eleven (LiNbO 3 ) or three (LiTaO 3 ) years, no decrease in the ion beam-induced refractive index change can be observed. The ion beam-induced refractive index changes are probably the result of atomic displacements such as vacancies, defect clusters or ''latent tracks''. An explanation for

  14. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  15. Design of multi-wavelength tunable filter based on Lithium Niobate

    Science.gov (United States)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  16. Growth, defect structure, and THz application of stoichiometric lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1121 Budapest, Konkoly-Thege M. út 29-33 (Hungary); Pálfalvi, L.; Unferdorben, M. [Institute of Physics, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); Hebling, J. [Institute of Physics, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); MTA-PTE High Field Terahertz Research Group, 7624 Pécs (Hungary)

    2015-12-15

    Owing to the extraordinary richness of its physical properties, congruent lithium niobate has attracted multidecade-long interest both for fundamental science and applications. The combination of ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as the strong photorefractive and photovoltaic effects offers a great potential for applications in modern optics. To provide powerful optical components in high energy laser applications, tailoring of key material parameters, especially stoichiometry, is required. This paper reviews the state of the art of growing large stoichiometric LiNbO{sub 3} (sLN) crystals, in particular, the defect engineering of pure and doped sLN with emphasis on optical damage resistant (ODR) dopants (e.g., Mg, Zn, In, Sc, Hf, Zr, Sn). The discussion is focused on crystals grown by the high temperature top seeded solution growth (HTTSSG) technique using alkali oxide fluxing agents. Based on high-temperature phase equilibria studies of the Li{sub 2}O–Nb{sub 2}O{sub 5}–X{sub 2}O ternary systems (X = Na, K, Rb, Cs), the impact of alkali homologue additives on the stoichiometry of the lithium niobate phase will be analyzed, together with a summary of the ultraviolet, infrared, and far-infrared absorption spectroscopic methods developed to characterize the composition of the crystals. It will be shown that using HTTSSG from K{sub 2}O containing flux, crystals closest to the stoichiometric composition can be grown characterized by a UV-edge position of at about 302 nm and a single narrow hydroxyl band in the IR with a linewidth of less than 3 cm{sup −1} at 300 K. The threshold concentrations for ODR dopants depend on crystal stoichiometry and the valence of the dopants; Raman spectra, hydroxyl vibration spectra, and Z-scan measurements prove to be useful to distinguish crystals below and above the photorefractive threshold. Crystals just above the threshold are

  17. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    Science.gov (United States)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  18. Optimal design of DC-based polarization beam splitter in lithium niobate on insulator

    Science.gov (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wang, Junbao; Wu, Chonghao; Li, Xiao; Zhang, Shicheng

    2017-08-01

    We propose a DC-based polarization beam splitter (PBS) in lithium niobate on insulator (LNOI). Utilizing the high birefringence property of Lithium Niobate (LiNbO3, LN), the device is achieved by simple structure in a short length. With the use of beam propagation method (BPM), the simulation results show that the device has a good performance for the separation of TE and TM polarizations with a high extinction ratio (about 35 dB). The simulated fabrication tolerance for the variation of the waveguide width is about 100 nm and the bandwidth is about 65 nm when the extinction ratio is higher than 10 dB.

  19. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    Science.gov (United States)

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  20. Temperature dependence of the thermoelectric coeffiicients of lithium niobate and lithium tantalate

    International Nuclear Information System (INIS)

    Khachaturyan, O.A.; Gabrielyan, A.I.; Kolesnik, S.P.

    1988-01-01

    Thermoelectric Zeebeck,Thomson, Peltier coefficients for LiNbO 3 and LiTaO 3 monocrystals and their dependence on temperature in 300-1400 K range were investigated. It is shown that Zeebeck (α) coefficient changes its sign, depending on temperature change - the higher is α, the higher is material conductivity in the corresponding temperature region. Thomson and Peltier coefficients were calculated analytically for lithium niobate and tantalate

  1. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, Tonya

    2008-02-15

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu{sup 1+} and Cu{sup 2+}) and Fe (Fe{sup 2+} and Fe{sup 3+}) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn{sup 2+} and Mn{sup 3+} in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu{sup 1+}) and sixfold (Cu{sup 2+}) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with {sup 3}He{sup 2+} ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  2. All-optical switching in lithium niobate directional couplers with cascaded nonlinearity

    NARCIS (Netherlands)

    Schiek, R.; Baek, Y.; Krijnen, Gijsbertus J.M.; Stegeman, G.I.; Baumann, I.; Sohler, W.

    1996-01-01

    We report on intensity-dependent switching in lithium niobate directional couplers. Large nonlinear phase shifts that are due to cascading detune the coupling between the coupler branches, which makes all-optical switching possible. Depending on the input intensity, the output could be switched

  3. Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate

    Directory of Open Access Journals (Sweden)

    Guang-hao Shao

    2016-12-01

    Full Text Available A tunable dual-wavelength filter is experimentally demonstrated in domain-engineered lithium niobate. Application of an electric field on the y-surfaces of the sample results in the optical axes rotating clockwise and anticlockwise, which makes selective polarization rotation. The quasi phase-matching wavelengths could be adjusted through suitable domain design. A unique dual valley spectrum is obtained in a periodically poled lithium niobate structure with a central defect if the sample is placed between two parallel polarizers. The expected bandwidth could be varied from ∼1 nm to ∼40 nm. Moreover, both the spectral response and group delay dispersion could be engineered.

  4. Monolithic acoustic graphene transistors based on lithium niobate thin film

    Science.gov (United States)

    Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.

    2018-05-01

    This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.

  5. Annealed proton exchanged optical waveguides in lithium niobate differences between the X- and Z-cuts

    CERN Document Server

    Nekvindova, P; Cervena, J; Budnar, M; Razpet, A; Zorko, B; Pelicon, P; 10.1016/S0925-3467(01)00186-0

    2002-01-01

    Summarizes results and assessments of our systematic fabrication and characterization of proton exchanged (PE) and annealed proton exchanged (APE) waveguides in lithium niobate. This study focused on different behavior of crystallographically diverse X(1120) and Z (0001) substrate cuts during waveguide fabrication, and differences in characteristics of the resulting waveguides. Non-toxic adipic acid was used as a proton source, and the waveguides properties were defined by mode spectroscopy (waveguide characteristics) and neutron depth profiling (NDP, lithium concentration and distribution), infrared vibration spectra and elastic recoil detection analysis (ERDA, concentration and depth distribution of hydrogen). It was discovered that the X-cut structure is more permeable for moving particles (lithium and hydrogen ions), which leads to a higher effectiveness of the PE process within the X-cut. The explanation of this phenomenon is based on fitting X-cut orientation towards cleavage planes of lithium niobate c...

  6. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    International Nuclear Information System (INIS)

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Ronning, Carsten; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Bharuth-Ram, Krish; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Ridgway, Mark; Hasan, Shakeeb Bin; Rockstuhl, Carsten

    2016-01-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic "8"4Kr and "1"9"7Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm"−"1 in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles. (paper)

  7. Near-field-optical-microscopy studies of micro-modifications caused by femtosecond laser irradiation in lithium niobate crystals

    International Nuclear Information System (INIS)

    Lamela, J.; Jaque, D.; Rodenas, A.; Jaque, F.; Torchia, G.A.; Vazquez, J.R.; Mendez, C.; Roso, L.

    2008-01-01

    Near-field-optical-microscopy has been used to study the micro-modifications caused by femtosecond laser pulses focused at the surface and in the volume of lithium niobate crystals. We have found experimental evidence of the existence, close to femtosecond ablation craters, of periodic modifications in the surface reflectivity. In addition, the potential application of near-field-optical microscopy for the spatial location of permanent modifications caused by femtosecond pulses focused inside lithium niobate crystals has been also demonstrated. (orig.)

  8. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    Science.gov (United States)

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  9. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal microresonators

    CSIR Research Space (South Africa)

    Sono, Tleyane J

    2017-08-01

    Full Text Available Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities...

  10. Nonlinear excitations and charge transport in lithium niobate crystals investigated using femtosecond-light gratings; Nichtlineare Anregungen und Ladungstransport in Lithiumniobatkristallen untersucht mit Femtosekunden-Lichtgittern

    Energy Technology Data Exchange (ETDEWEB)

    Maxein, Karl Dominik

    2009-12-15

    Lithium niobate (LiNbO{sub 3}) is a widely employed material in nonlinear optics and photonics. Its usage is hampered by the photorefractive effect, which can destroy beam profiles and phase matching conditions. Existing methods to suppress photorefraction fail for the interesting regime of very high intensities and short pulses. Therefore, the photorefractive effect is investigated using femtosecond laser pulses: By utilizing so-called 2K holography, the occupation of energetically shallow traps is observed to occur in less than 100 fs after a two-photon excitation. Writing of photorefractive gratings into oxidized iron-doped LiNbO{sub 3} is much faster with pulses than with cw light. This is explained by the sensitization of the crystal due to charge trapping in photorefractive centers after nonlinear excitations. Finally, light-induced scattering of pulse light is suppressed compared to the scattering of cw light due to the small coherence length of pulses. (orig.)

  11. Annealing behaviour of MeV erbium implanted lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Gortmaker, P.; McCallum, J.C. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Lithium niobate (LiNbO{sub 3}) is a crystalline ceramic commonly used in the fabrication of optoelectronic devices. Recently, rare earth doping of LiNbO{sub 3} has become a topic of particular interest. The electronic configuration of rare earth elements such as Erbium (Er) and Neodymium (Nd) allows them to lase in nearly any host matrix making fabrication of a whole range of new optoelectronic devices possible. At present, the doping technique, for LiNbO{sub 3} are centred upon diffusion technology, but the diffusion profiles for the rare earths are not generally well-matched to the optical modes of the device. The aim of this research is to develop MeV implantation and annealing conditions of rare earth doped LiNbO{sub 3} that would be compatible with optoelectronic device fabrication. To determine the characteristics of the rare earth elements in the LiNbO{sub 3} host material over the depth range of interest in optoelectronic device applications, high energy Rutherford backscattering spectrometry and ion channeling (RBS-C) must be used. Presented here are the Er depth profile and lattice damage results obtained from 5 MeV RBS-C measurements on samples of LiNbO{sub 3} implanted with various doses of MeV Erbium and subsequently thermally annealed at a temperature of 1000 deg C. It was found that there is a peak implant concentration (2 x 10{sup 16} Er/cm{sup 2}) for which erbium no longer goes substitutional in the lattice, and the implantation damage is not fully removed by annealing. 8 refs., 3 figs.

  12. Annealing behaviour of MeV erbium implanted lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Gortmaker, P; McCallum, J C [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Lithium niobate (LiNbO{sub 3}) is a crystalline ceramic commonly used in the fabrication of optoelectronic devices. Recently, rare earth doping of LiNbO{sub 3} has become a topic of particular interest. The electronic configuration of rare earth elements such as Erbium (Er) and Neodymium (Nd) allows them to lase in nearly any host matrix making fabrication of a whole range of new optoelectronic devices possible. At present, the doping technique, for LiNbO{sub 3} are centred upon diffusion technology, but the diffusion profiles for the rare earths are not generally well-matched to the optical modes of the device. The aim of this research is to develop MeV implantation and annealing conditions of rare earth doped LiNbO{sub 3} that would be compatible with optoelectronic device fabrication. To determine the characteristics of the rare earth elements in the LiNbO{sub 3} host material over the depth range of interest in optoelectronic device applications, high energy Rutherford backscattering spectrometry and ion channeling (RBS-C) must be used. Presented here are the Er depth profile and lattice damage results obtained from 5 MeV RBS-C measurements on samples of LiNbO{sub 3} implanted with various doses of MeV Erbium and subsequently thermally annealed at a temperature of 1000 deg C. It was found that there is a peak implant concentration (2 x 10{sup 16} Er/cm{sup 2}) for which erbium no longer goes substitutional in the lattice, and the implantation damage is not fully removed by annealing. 8 refs., 3 figs.

  13. UV laser-assisted fabrication of ridge waveguides in lithium niobate crystals

    OpenAIRE

    Sones, C.L.; Ying, C.Y.J.; Eason, R.W.; Mailis, S.; Ganguly, P.; Soergel, E.

    2010-01-01

    We present a UV laser-assisted method for the fabrication of ridge waveguides in lithium niobate. The UV laser irradiation step provides the refractive index change required for the vertical light confinement in the waveguide and also defines the ferroelectric domain pattern which produces the ridge structures after chemical etching.

  14. Irradiation-induced modification of the material parameters in magnesium-doped lithium niobate; Bestrahlungsinduzierte Modifikation der Materialparameter in Magnesiumdotiertem Lithiumniobat

    Energy Technology Data Exchange (ETDEWEB)

    Jentjens, Lena

    2010-07-01

    In the framework of this thesis the material properties of lithium niobate are directedly influenced by the irradiation with {sup 3}He ions with an energy of 40 MeV. In the first part the irradiation-induced material changes are intensively studied. Long-time stable changes of the refractive index are measured in the range of up to 6.10{sup -3}, which depend on the radiation dose and exhibit until now no saturation behaviour. Accompanied is this change by an also dose-dependent deformation as well as a brownish change of color of the crystals. Furthermore a by several orders of magnitude increased electrical dark- and photoconductivity, which depends on the ion dose and exhibits until now also no saturation behaviour. An effect independent on the ion dose is the reduction of the coercive field strength by about 10%. Furthermore it was stated the quantity of the effects not only depends on the absolute dose, but also on the irradiation direction in view of the crystallographic c-axis. The second part of this thesis deals with the generation of microscopic structures in lithium niobate. By an ion microbeam respectively a shiftable slit aperture the fabrication of refractive-index gratings is pursued. Grating with periodicity lengths in the range of 12-160 {mu}m could until now be detected and promise in comparison with photorefractive gratings the advance of larger stability.

  15. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    NARCIS (Netherlands)

    Wolf, S.; Rensberg, J.; Johannes, A.; Thomae, R.; Smit, F.; Neveling, R.; Moodley, M.; Bierschenk, T.; Rodriquez, M.; Afra, B.; Hasan, Shakeeb Bin; Rockstuhl, C.; Ridgway, M.; Bharuth-Ram, K.; Ronning, C.

    2016-01-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic 84Kr and 197Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm−1 in the top layer of the samples. Due to

  16. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    International Nuclear Information System (INIS)

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-01-01

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals

  17. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Branch, D. W.; Cular, S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Schamiloglu, E. [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-04-21

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128–1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  18. Propagation of light in the lithium niobate crystal along directions close to an optical axis

    International Nuclear Information System (INIS)

    Volkov, V.V.; Egorova, G.A.; Lonskij, Eh.S.; Potapov, E.V.; Rakov, A.V.

    1978-01-01

    Theoretical and experimental results are given of studying some characteristics of electrooptical modulator from lithium niobate when propagating in it linear-polarized light in directions close to the optical axis, the electric field being applied along the X axis. It has been shown that an increase in an angle of deviation from the optical axis of a light beam passing in the crystal changes the value of the controlling voltage. This is accompanied by the rotation of the polarization plane and the change in the intensity of the light being passed. The methods have been proposed of increasing the modulator aperture, determining the main refraction indices and some electrooptical coefficients fo the lithium niobate crystal

  19. Formation of 2D bright spatial solitons in lithium niobate with photovoltaic response and incoherent background

    Science.gov (United States)

    Pustozerov, A.; Shandarov, V.

    2017-12-01

    The influence of incoherent background illumination produced by light-emitting diodes (LED's) of different average wavelengths and laser diode emitting in blue region of visible on diffraction characteristics of narrow coherent light beams of He-Ne laser due to refractive index changes of Fe-doped lithium niobate sample are studied. It has been experimentally demonstrated that nonlinear diffraction of red beams with wavelength 633 nm and diameters on full width of half maximum (FWHM) near to 15 μm may be totally compensated using background light with average wavelengths 450 - 465 nm. To provide the necessary intensity of incoherent background, the combinations of spherical and cylindrical concave lenses with blue LED and laser diode module without focusing its beam have been used.

  20. Erbium ion implantation into different crystallographic cuts of lithium niobate

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Švecová, B.; Cajzl, J.; Macková, Anna; Malinský, Petr; Oswald, Jiří; Kolitsch, A.; Špirková, J.

    2012-01-01

    Roč. 34, č. 4 (2012), s. 652-659 ISSN 0925-3467 R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125; GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : Lithium niobate * Erbium * Ion implantation * Luminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.918, year: 2012

  1. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen

    2018-06-13

    Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.

  2. Periodic domain inversion in x-cut single-crystal lithium niobate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mackwitz, P., E-mail: peterm@mail.upb.de; Rüsing, M.; Berth, G.; Zrenner, A. [Department Physik, Universität Paderborn, 33095 Paderborn (Germany); Center for Optoelectronics and Photonics Paderborn, 33095 Paderborn (Germany); Widhalm, A.; Müller, K. [Department Physik, Universität Paderborn, 33095 Paderborn (Germany)

    2016-04-11

    We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LN thin film/SiO{sub 2} layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.

  3. Enhanced electrochemical properties of vanadium-doped titanium niobate as a new anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Xiaoyan; Ma, Chenxiang; Du, Chenqiang; Liu, Jie; Zhang, Xinhe; Qu, Deyang; Tang, Zhiyuan

    2015-01-01

    The Vanadium-doped TiNb 2 O 7 (TNO) samples have been investigated as novel anode active materials for application in lithium-ion batteries. The samples are characterized by X-ray diffraction patterns (XRD), raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge tests, and cyclic voltammetry (CV) tests. The XRD results indicate that V-doping expands the lattice parameters of TiNb 2 O 7 samples and facilitates the enhanced lithium ion diffusion. SEM and TEM results show that lattice expansion caused by V-doping doesn’t significantly change the particle size distribution of TiNb 2 O 7 samples. The electrochemical measurements indicate that the TiNb 1.98 V 0.02 O 7 anode material displays a highly reversible capacity and excellent cycling stability. The initial discharge capacities of TiNb 1.98 V 0.02 O 7 are 298.48 mAh g −1 and 171.99 mAh g −1 at 0.3C and 10C, respectively, indicating that the TiNb 1.98 V 0.02 O 7 material can be utilized as a promising anode material for lithium-ion batteries.

  4. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits

    Science.gov (United States)

    Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.

    2017-01-01

    This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.

  5. Field induced modification of defect complexes in magnesium-doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nadège; Granzow, Torsten [Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Nataf, Guillaume F., E-mail: nataf@lippmann.lu [Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux (Luxembourg); CEA, DSM/IRAMIS/SPEC, F-91191 Gif-sur-Yvette Cedex (France)

    2014-12-28

    Dielectric constant, thermally stimulated depolarization currents (TSDC), and conductivity of undoped and 5% Mg-doped LiNbO{sub 3} single crystals between −100 °C and 200 °C have been investigated. A Debye-like dielectric relaxation with an activation energy of 135 meV is observed in the Mg-doped material, but not in undoped crystals. On heating this relaxation disappears near 140 °C and does not reappear after cooling. Anomalies observed in TSDC around this temperature are attributed to the motion of lithium vacancies, in agreement with conductivity measurements. It is proposed that in thermal equilibrium the electrons from the Mg{sub Li}{sup •} donors are trapped in (4Mg{sub Li}{sup •}+4V{sub Li}{sup ′}) defect complexes. High-temperature poling breaks these defect complexes. The transition of the liberated electrons between the Mg{sub Li}{sup •} donor centers and the Nb{sub Nb} forming the conduction band gives rise to the observed dielectric relaxation.

  6. PHYSICAL AND ELECTRICAL PROPERTIES ENHANCEMENT OF RARE-EARTH DOPED-POTASSIUM SODIUM NIOBATE (KNN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Akmal Mat Harttat Maziati

    2015-06-01

    Full Text Available Alkaline niobate mainly potassium sodium niobate, (KxNa1-x NbO3 (abreviated as KNN has long attracted attention as piezoelectric materials as its high Curie temperature (Tc and piezoelectric properties. The volatility of alkaline element (K, Na is, however detrimental to the stoichiometry of KNN, contributing to the failure to achieve high-density structure and lead to the formation of intrinsic defects. By partially doping of several rare-earth elements, the inherent defects could be improved significantly. Therefore, considerable attempts have been made to develop doped-KNN based ceramic materials with high electrical properties. In this paper, these research activities are reviewed, including dopants type and doping role in KNN perovskite structure.

  7. Synthesis and thermoluminescent characterization of lithium niobate doped with erbium; Sintesis y caracterizacion termoluminiscente de niobato de litio impurificado con erbio

    Energy Technology Data Exchange (ETDEWEB)

    Landavazo, M.; Brown, F.; Cubillas, F. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Blvd. Luis Encinas y Rosales s/n, 83000 Hermosillo, Sonora (Mexico); Munoz, I. [Universidad de Sonora, Departamento de Ciencias Quimico Biologicas, 83000 Hermosillo, Sonora (Mexico); Cruz Z, E., E-mail: imunoz@polimeros.uson.mx [UNAM, Instituto de Ciencias Nucleares, Apdo. Postal 70-543, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Lithium niobate (Nl) is a synthetic dielectric and is mainly used in optical devices. There are reports on the thermoluminescent property of Nl monocrystals doped with rare earths and excited with X and gamma rays. In this study the Nl was synthesized and doped with erbium (Er) at concentrations of 1, 2 and 4 % mol and was characterized by its Tl property. The synthesis was realized by solid state reaction at 1000 degrees C for 22 hours and the formation of Nl:Er was confirmed by X-ray diffraction, scanning electron microscopy and EDS analysis, finding a new phase (ErNbO{sub 4}). Was studied the dose-response gamma in a range of 1-1000 Gy, the material showed linear behavior of 1-600 Gy. The brightness curves have maxima at 185 and 285 degrees C to 1% in 183 and 301 degrees C for 2%, respectively. While for the concentration of 4% a maximum in 177 degrees C accompanied by a smaller peak at higher temperature of the glow curve was observed. The Tl response of Nl:Er 4% to 450 Gy was increased 271 times compared to pure Nl. The reproducibility of the Tl signal at ten cycles of irradiation-reading, present a standard deviation of 5%. In Nl:Er 1% Tl signal fades in 21.3% after 24 hours, while in 2 and 4% an unusual fading occurs. The Tl characteristics of Nl:Er synthesized material is of interest to gamma radiation dosimetry of high doses. (Author)

  8. Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses

    International Nuclear Information System (INIS)

    Elbatal, H.A.; Mandouh, Z.; Zayed, H.; Marzouk, S.Y.; Elkomy, G.; Hosny, A.

    2010-01-01

    Ultraviolet-visible absorption of undoped lithium disilicate glass reveals strong UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within raw materials used for the preparation of this glass. Optical absorption of the CuO-doped samples show an extra broad visible band centered at 780 nm and in high CuO contents samples obvious splitting to several component peaks are observed. This characteristic visible absorption of copper-doped samples is correlated with the presence of Cu +2 ions in octahedral coordination with tetragonal distortion. Gamma irradiation of the prepared samples produces radiation-induced defects, which are related to the sharing of host lithium disilicate glass, trace iron impurities and copper iron in their formation. The visible spectrum of the CuO samples shows shielding effect towards successive gamma irradiation.

  9. Study of structural differences between stoichiometric and congruent lithium niobate

    CERN Document Server

    Kling, A; Correia, J G; Da Silva, M F A; Diéguez, E; Agulló-López, F; Soares, J C

    1996-01-01

    The structural differences between stoichiometric and congruent (lithium deficient) lithium niobate single crystals were studied by RBS- and NRA-channeling as well as perturbed angular correlation (PAC) measurements. The d-PAC111Cd-PAC investigations point out that a second Li site can be detected in congruent material, while only one is present in stoichiometric. Channeling studies of different axes and the comparison of the results with computer simulations corroborated former indications that this additional lattice site can be attributed to the formation of ilmenite type stacking faults. A comparative study of the energy dependence of the dechanneling showed that a remarkable disorder is also present in the Nb sublattice of the congruent crystals and that these defects have a point-like character.

  10. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Science.gov (United States)

    Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.

    2017-04-01

    The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  11. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Directory of Open Access Journals (Sweden)

    G. Y. Yang

    2017-04-01

    Full Text Available The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM. The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  12. Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal

    Directory of Open Access Journals (Sweden)

    K. Takeya

    2017-01-01

    Full Text Available When combined with a nonlinear waveguide crystal, Cherenkov phase matching allows for highly effective generation of high power and broadband terahertz (THz waves. Using a ridged Lithium Niobate (LiNbO3 waveguide coupled with a specially designed silicon lens, we successfully generated THz waves with intensity of approximately three orders of magnitude stronger than those from conventional photoconductive antenna. The broadband spectrum was from 0.1 THz to 7 THz with a maximum dynamic range of 80 dB. The temporal shape of time domain pulse is a regular single cycle which could be used for high depth resolution time of flight tomography. The generated THz wave can also be easily monitored by compact room-temperature THz camera, enabling us to determine the spatial characteristics of the THz propagation.

  13. Reduced Dimensionality Lithium Niobate Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Eichenfield, Matt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO3 ). Section 1 provides an introduction to integrated LiNbO3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbO3 structures fabricated from LiNbO3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.

  14. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.; Palatnikov, M. N. [Russian Academy of Sciences, Tananaev Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Science Centre (Russian Federation)

    2017-03-15

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  15. Bending waveguides made in x-cut lithium niobate crystals for technological applications

    International Nuclear Information System (INIS)

    Guarepi, V; Perrone, C; Aveni, M; Videla, F; Torchia, GA

    2015-01-01

    In this paper we analyse the performance of several designs of integrated optical deviators made in x-cut lithium niobate crystals by means of femtosecond laser writing using the double line approach. Straight and bent guiding structures have been designed and implemented using this technique. Well-confined propagation modes at communication wavelengths (1.55 μm) were conducted in these structures with acceptable overall losses (less than 2 dB cm −1 ). Further, a discussion about the optical propagation losses for curved and straight deviators devices is included in this work. At a low aperture angle (less than 0.2°), as expected, low losses were determined for both structures; however, a weak output light was observed for large angles (greater than 0.2°) in the straight optical circuits. In contrast, a smooth variation of the output was measured for the bent structures. The results presented in this paper support the possibility of the technological implementation of integrated optical circuits for optical communications fabricated with ultrashort laser writing in lithium niobate crystals. In addition, some hypotheses of loss mechanisms that are normally not considered are discussed in order to explain the differences between the measured values and predictions obtained by calculating with the usual models. (paper)

  16. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  17. Domain wall width of lithium niobate poled during growth

    CERN Document Server

    Brooks, R; Hole, D E; Callejo, D; Bermudez, V; Diéguez, E

    2003-01-01

    Good quality crystals of periodically poled lithium niobate can be generated directly during growth. However, the temperature gradients at the zone boundaries define the width of the regions where the polarity is reversed. Hence, the region influenced the domain transition may be a significant fraction of the overall poling period for material poled during growth. Evidence for the scale of this feature is reported both by chemical etching and by the less common method of ion beam luminescence and the 'domain wall' width approximately 1 mu m for these analyses. The influence of the reversal region may differ for alternative techniques but the relevance to device design for second harmonic generation is noted.

  18. Systematic hardness studies on lithium niobate crystals

    Indian Academy of Sciences (India)

    Unknown

    crystals with different growth origins, and a Fe-doped sample. The problem of load ... The true hardness of LiNbO3 is found to be 630 ± 30 kg/mm2. .... Experimental. Pure lithium ... the index of d strikes at this simple and meaningful defini-.

  19. Integrated optics on Lithium Niobate for sensing applications

    Science.gov (United States)

    Zaltron, A.; Bettella, G.; Pozza, G.; Zamboni, R.; Ciampolillo, M.; Argiolas, N.; Sada, C.; Kroesen, S.; Esseling, M.; Denz, C.

    2015-05-01

    In micro-analytical chemistry and biology applications, optofluidic technology holds great promise for creating efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. Therefore, in this work the possibility of integrating opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. In particular, a T-junction droplet generator is directly engraved in a LiNbO3 substrate by means of laser ablation process and optical waveguides are realized in the same material by exploiting the Titanium in-diffusion approach. The coupling of these two stages as well as the realization of holographic gratings in the same substrate will allow creating new compact optical sensor prototypes, where the optical properties of the droplets constituents can be monitored.

  20. Novel iron-cobalt derivatised lithium iron phosphate nanocomposite for lithium ion battery cathode

    CSIR Research Space (South Africa)

    Ikpo, CO

    2013-01-01

    Full Text Available Described herein is the electrochemical study conducted on lithium ion battery cathode material consisting of composite of lithium iron phosphate (LiFePO(sub4), iron-cobalt derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials...

  1. Copper-substituted, lithium rich iron phosphate as cathode material for lithium secondary batteries

    International Nuclear Information System (INIS)

    Lee, S.B.; Cho, S.H.; Heo, J.B.; Aravindan, V.; Kim, H.S.; Lee, Y.S.

    2009-01-01

    Carbon-free, copper-doped, lithium rich iron phosphates, Li 1+x Fe 1-y Cu y PO 4 (0 ≤ x ≤ 0.15, 0 ≤ y ≤ 0.005), have been synthesized by a solid-state reaction method. From the optimization, the Li 1.05 Fe 0.997 Cu 0.003 PO 4 phase showed superior performances in terms of phase purity and high discharge capacity. The structural, morphological, and electrochemical properties were studied and compared to LiFePO 4 , Li 1.05 FePO 4 , LiFe 0.997 Cu 0.003 PO 4 , and materials. X-ray photoelectron spectroscopy (XPS) was conducted to ensure copper doping. Only smooth surface morphologies were observed for lithium rich iron phosphates, namely Li 1.05 FePO 4 and Li 1.05 Fe 0.997 Cu 0.003 PO 4 . The Li/Li 1.05 Fe 0.997 Cu 0.003 PO 4 cell delivered an initial discharge capacity of 145 mAh/g and was 18 mAh/g higher than the Li/LiFePO 4 cell without any carbon coating effect. Cyclic voltammetry revealed excellent reversibility of the Li 1.05 Fe 0.997 Cu 0.003 PO 4 material. High rate capability studies were also performed and showed a capacity retention over 95% during the cycling. We concluded that substituted Li and Cu ions play an important role in enhancing battery performance of the LiFePO 4 material through improving the kinetics of the lithium insertion/extraction reaction on the electrode.

  2. Textured and tungsten-bronze-niobate-doped (K,Na,Li)(Nb,Ta)O3 piezoceramic materials

    International Nuclear Information System (INIS)

    Soller, Thomas; Bathelt, Robert; Benkert, Katrin; Bodinger, Hermann; Schuh, Carsten; Schlenkrich, Falko

    2010-01-01

    In this study, the effects of an alkaline-earth niobate doping in tungsten-bronze (TB) stoichiometry on the piezoelectric properties and the phase transition temperatures of lead-free (K,Na,Li)(Nb,Ta)O 3 ceramics were investigated. In particular, the TB compounds barium niobate (BN), barium sodium niobate (BNN) and strontium calcium sodium niobate (SCNN) were investigated. The TB-modified ceramics show promising piezoelectric properties with large-signal piezo coefficients, d 33 * lose to 400 pm/V, planar coupling coefficients, k p , up to 0.45 and Curie temperatures of approximately 310 .deg. C. In addition, the effect of texturing on the undoped (K,Na,Li)(Nb,Ta)O 3 base composition via templated grain growth (TGG) with microcrystalline NaNbO 3 templates was examined. Lotgering factors up to 81% and strain enhancements by a factor 1.5 with large-signal values of d 33 * up to 550 pm/V could be achieved in the textured samples.

  3. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  4. Photorefractive lithium niobate crystals for applications in photonics

    International Nuclear Information System (INIS)

    Hartwig, U.

    2006-12-01

    Lithium niobate crystals (LiNbO 3 ) generally show a photorefractive response, i.e., light-induced refractive index changes. Crystals are investigated at room temperature and at elevated temperatures. As a result 'classical' photorefractive holographic volume-phase gratings, originating from space charge fields and the electro-optic effect, and 'non-classical' photorefractive volume-phase gratings, which can be traced back to strong absorption gratings, emerge. Single domain and periodically poled crystals (PPLN) are investigated. PPLN is typically used in non-linear optics for frequency conversion. The crystals also show non-linear photorefractive response during holographic recording with isotropically polarized light beams of equal intensity and, in the case of PPLN, by mixing of domain and holographic gratings. The results are important for applications combining the photorefractive and non-linear optical properties of LiNbO 3 . (orig.)

  5. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  6. Fabrication and performance of porous lithium sodium potassium niobate ceramic

    Science.gov (United States)

    Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong

    2018-02-01

    Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.

  7. Distribution of the solute in the lithium niobate crystal grown by the Stepanov method in a periodically changing external electric field

    International Nuclear Information System (INIS)

    Zhdanov, A.; Nikolayeva, L.; Red'kin, B.

    2000-01-01

    The Iithium niobate crystals with the periodic domain structure are characterised by the capacity for the light frequency adoption of the laser light. Consequently, they are promising for the development of compact light sources. There are several methods of producing periodic ferroelectric domain structures of the lithium niobate crystals in the growth process. It is evident that the main method of production of the periodic structures in the lithium niobate is the Stepanov method. The development of the mathematical model of the variation of the concentration of the alloying solute with the periodic variation of the conditions of growth of the crystal in the growth of the crystal by the Stepanov methods in the conditions of periodic changes of the drawing rate of the crystal V and the temperature of the thermal junction T have been investigated elsewhere. The formation of the domain structure is also possible in the case of the periodic variation of the electric field, during the supply of the alternating voltage between the shaper and the seed. In this work, we proposed mathematical model discounting the process of formation of the domain structure in the alternating electric field during the growth of the lithium niobate crystal by the Stepanov method. In the mathematical modelling we obtain the numerical solutions of the unidimensional nonstationary problem of the Stepanov type, the diffusion equation for concentration, and the Laplace capillary equation. The proposed mathematical model is at the present and the most complete and accurate description of the variation of the concentration of the solute in the growing crystal. The semi-discrete Galerkin method was used for the equations

  8. Spectral evolution of Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K-Y.; Durand, A. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Heintz, J-M.; Veillere, A. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Bordeaux INP, ICMCB, UPR 9048, F-33600 Pessac (France); Jubera, V., E-mail: veronique.jubera@u-bordeaux.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2016-03-15

    A Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate powder was synthetized using a polymerizable complex route. It gave rise to nanometric particles that crystallized in the fluorine structure, corresponding to the Y{sub 3}NbO{sub 7} phase. The thermal evolution of this powder was followed up to 1600 °C, using X-ray diffraction and optical characterizations. The fluorine structure was maintained in the whole temperature range. However, spectral evolution of the samples calcined above 900 °C showed a more complex situation. Emission spectra of powders heat treated at different temperatures showed an evolution of the emission lines that can be attributed first to a better crystallization of the niobate phase and second to its partial decomposition in favor of the formation of YNbO{sub 4} and Y{sub 2}O{sub 3}. Although the Y{sub 3}NbO{sub 7} phase appeared stable up to 1650 °C, from X-ray diffraction analysis, spectral analysis showed that the local environment of the doping element is modified from 1100 °C. - Graphical abstract: Spectral evolution of Eu{sup 3+} doped Y{sub 3}NbO{sub 7} niobate induced by temperature.

  9. Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mailis, S.; Riziotis, C.; Smith, P.G.R.; Scott, J.G.; Eason, R.W

    2003-02-15

    Illumination of the -z face of congruent lithium niobate single crystals with continuous wave (c.w.) ultraviolet (UV) laser radiation modifies the response of the surface to subsequent acid etching. A frequency doubled Ar{sup +} laser ({lambda}=244 nm) was used to illuminate the -z crystal face making it resistive to HF etching and thus transforming the illuminated tracks into ridge structures. This process enables the fabrication of relief patterns in a photolithographic manner. Spatially resolved Raman spectroscopy indicates preservation of the good crystal quality after irradiation.

  10. Effect of Fe Doping by Thermal in-Diffusion on the Defect Structure of Lithium Niobate

    Energy Technology Data Exchange (ETDEWEB)

    Mignoni, S; Zaltron, A; Ciampolillo, M V; Bazzan, M; Argiolas, N; Sada, C; Fontana, M D, E-mail: zaltronam@padova.infm.it

    2010-11-15

    In this work we investigate the iron incorporation in thermally diffused Fe doped LN, by combining two experimental techniques, i.e. micro-Raman spectroscopy and proton induced X rays emission. Our results point out that in substituting for Li, Fe ions induces a decrease of Nb{sub Li} antisite defects and rearrangement of the Nb sublattice.

  11. Control of coercive field in lithium niobate crystals with repeated polarization reversal

    International Nuclear Information System (INIS)

    Ro, Jung Hoon; Jeong, Doun; Park, Taeyong; Kim, Chulhan; Kwon, Soon-Bok; Cha, Myoungsik; Choi, Byeong Cheol; Yu, Nanei; Kurimura, Sunao; Jeon, Gyerok

    2005-01-01

    In this study, the amount of decrease in coercive field of congruent lithium niobate during repeated poling and back-poling was measured. The polarization is reversed in 300 ms and then back-poled during the rest period. The coercive field can be decreased around 1 kV/mm with a repeated poling interval of 5 s. As the interval prolonged, the poling field decrease became smaller, and a stretched exponential function is suggested for the experimental fitting resulting in a set of meaningful parameters. These values are essential for the design of high quality domain engineering

  12. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  13. Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV

    Science.gov (United States)

    Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano

    2017-11-01

    In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.

  14. Ion irradiation effects on lithium niobate etalons for tunable spectral filters

    Science.gov (United States)

    Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.

    2017-11-01

    , coupled with the HV field, could trigger a dielectric breakdown in the Lithium Niobate. In this paper we present the electro-optical results obtained when exposing a set of LN samples and a lowquality full size etalon to different radiation conditions. In a first irradiation campaign, performed at the Centre for Micro Analysis of Materials (CMAM-Madrid) facilities, we were mainly focused on the long-term degradation effects with a series of high flux (109 cm-2 s-1) proton tests at an energy of 10 MeV. In order to study the possibility of a single ion breakdown, a second campaign was carried out, at the Texas A&M University (TAMU), exposing Lithium Niobate to high LET ion species (78Kr, 40Ar, 129Xe, 197Au) accelerated to the GeV energy range to penetrate or even pass through the entire Lithium Niobate thickness.

  15. Domain-Reversed Lithium Niobate Single-Crystal Fibers are Potentially for Efficient Terahertz Wave Generation

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available Nonlinear frequency conversion remains one of the dominant approaches to efficiently generate THz waves. Significant material absorption in the THz range is the main factor impeding the progress towards this direction. In this research, a new multicladding nonlinear fiber design was proposed to solve this problem, and as the major experimental effort, periodic domain structure was introduced into lithium niobate single-crystal fibers by electrical poling. The introduced periodic domain structures were nondestructively revealed using a crossly polarized optical microscope and a confocal scanning optical microscope for quality assurance.

  16. Analysis of Waveguides on Lithium Niobate Thin Films

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2018-04-01

    Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.

  17. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  18. Development of lithium doped radiation resistent solar cells

    Science.gov (United States)

    Berman, P. A.

    1972-01-01

    Lithium-doped solar cells have been fabricated with initial lot efficiencies averaging 11.9 percent in an air mass zero (AMO) solar simulator and a maximum observed efficiency of 12.8 percent. The best lithium-doped solar cells are approximately 15 percent higher in maximum power than state-of-the-art n-p cells after moderate to high fluences of 1-MeV electrons and after 6-7 months exposure to low flux irradiation by a Sr-90 beta source, which approximates the electron spectrum and flux associated with near Earth space. Furthermore, lithium-doped cells were found to degrade at a rate only one tenth that of state-of-the-art n-p cells under 28-MeV electron irradiation. Excellent progress has been made in quantitative predictions of post-irradiation current-voltage characteristics as a function of cell design by means of capacitance-voltage measurements, and this information has been used to achieve further improvements in lithium-doped cell design.

  19. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics.

    Science.gov (United States)

    Weigel, Peter O; Savanier, Marc; DeRose, Christopher T; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

  20. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  1. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    Science.gov (United States)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  2. Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Meyn, J P; Wallenstein, R; Beigang, R; Avetisyan, Y

    2001-04-23

    The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 microm which determines the maximum THz frequency in forward direction.

  3. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.

    Science.gov (United States)

    Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng

    2017-09-15

    Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.

  4. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    Science.gov (United States)

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  5. Evaluation of domain randomness in periodically poled lithium niobate by diffraction noise measurement.

    Science.gov (United States)

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2013-12-16

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett.36, 864-866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.

  6. Acoustic wave filter based on periodically poled lithium niobate.

    Science.gov (United States)

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  7. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    Science.gov (United States)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  8. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Won [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ko, Do-Kyeong [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yu, Nan Ei, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kitamura, Kenji [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ro, Jung Hoon, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan 602-739 (Korea, Republic of)

    2015-03-09

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  9. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  10. Incorporation mechanism for doping of metal ions into a passivating film at the lithium/thionyl chloride interface

    Science.gov (United States)

    Danilov, V. G.; Shikin, V. I.

    1993-05-01

    Effects of iron and titanium ions on corrosion processes of lithium in thionyl chloride electrolytes have been studied. Laws for the growth of the passivating film on the type and concentration of doped ions have been established, and equations for these are suggested. A stepwise mechanism of dopant incorporation into passivating film structure is presented.

  11. Influence of heat treatment on structure and some physical properties of lithium boro-niobate glass

    Science.gov (United States)

    Kashif, I.; Sakr, E. M.; Soliman, A. A.; Ratep, A.

    2012-08-01

    The glass composition (90 mol% Li2B4O7-10 mol% Nb2O5) was prepared by the melt quenching technique. The quenched sample was heat treated at 480°C, 545°C and 630°C for 5 h and heat treated at 780°C with different time. The times were 5, 10, 15, 20, 28, and 36 h. The glass and glass ceramics were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and dc conductivity as a function of temperature. Lithium niobate (LiNbO3) and lithium diborate (Li2B4O7) were the main phases in glass ceramic addition to traces from LiNb3O8. Crystallite size of the main phases determined from the X-ray diffraction peaks are in the range <100 nm. The fraction of crystalline (LiNbO3) phase increases with increase the heat treatment temperature and time. The relation between physical properties and structure were studied.

  12. Incorporation mechanism for doping of metal ions into a passive film at the lithium/thionyl chloride interface

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, V.G. (Siberian Inst. of Tech., Krasnoyarsk (Russian Federation). Lab. of Electrochemistry); Shilkin, V.I. (Siberian Inst. of Tech., Krasnoyarsk (Russian Federation). Lab. of Electrochemistry)

    1993-05-01

    Effects of iron and titanium ions on corrosion processes of lithium in thionyl chloride electrolytes have been studied. Laws for the growth of the passivating film on the type and concentration of doped ions have been established, and equations for these are suggested. A stepwise mechanism of dopant incorporation into passivating film structure is presented. (orig.)

  13. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    International Nuclear Information System (INIS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-01-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70–x) B 2 O 3 –30 Li 2 O–(x) Dy 2 O 3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5–5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy 2 O 3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD). - Highlights: • TL response of undoped and dysprosium doped lithium borate glass subjected to 6 MV photons irradiation at low dose range. • TL linear response of dysprosium doped lithium borate glass. • The sensitivity of dysprosium doped lithium borate glass is approximately 93 times higher than undoped glass

  14. Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Angel García-Cabañes

    2018-01-01

    Full Text Available This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical description of photovoltaic tweezers, detailed simulations of the electrophoretic and dielectrophoretic forces acting on different crystal configurations are discussed in relation to the structure of the obtained trapping patterns. As for the experimental work, we will pay attention to the manipulation and patterning of micro-and nanoparticles that has experimented an outstanding progress and relevant applications have been reported. An additional focus is now laid on recent work about micro-droplets, which is a central topic in microfluidics and optofluidics. New developments in biology and biomedicine also constitute a relevant part of the review. Finally, some topics partially related with photovoltaic tweezers and a discussion on future prospects and challenges are included.

  15. Interaction of light with impurities in lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Schwesyg, Judith Renate Marie-Luise

    2011-06-06

    Congruent lithium niobate (LiNbO{sub 3}) and 5-mol% MgO-doped LiNbO{sub 3} (MgO:LN) crystals are widely used as nonlinear-optical crystals in frequency-conversion devices due to their large nonlinear-optic coefficients. These devices usually require high optical pump powers, but absorption of photons by impurities limits their usability due to heat accumulation that leads to thermo-optic refractive index changes. These refractive index changes distort the beam shape and disturb the phase-matching condition. Furthermore pyroelectric fields can build up. In this thesis the residual optical absorption in congruent LiNbO{sub 3} (CLN) and MgO:LN crystals is studied. Absorption spectra of CLN and MgO:LN crystals between 400-2000 nm reveal a residual absorption up to 0.04 cm{sup -1}. This absorption is mainly caused by transition metal impurities. Between 2300-2800 nm unknown hydrogen absorption bands in CLN and MgO:LN are revealed on the order of 0.001 cm{sup -1}. High-temperature annealing is applied to the CLN and MgO:LN crystals, which decreases optical absorption by up to one order of magnitude. As an application, the operation of a 1550-nm pumped singly-resonant CW optical parametric oscillator, resonant around 2600 nm, using a low-loss, periodically-poled, annealed CLN crystal is demonstrated. Another issue that affects CLN is photorefractive damage (PRD), i.e. light-induced refractive index changes. In contrast, MgO:LN crystals do not suffer from PRD even at high optical intensities. However, it is shown in this thesis that PRD can occur within seconds in MgO:LN, using green laser light at light intensity levels as low as 100 mW/cm{sup 2}, if the crystal is heated by several degrees Celsius during or before illumination. Photorefractive damage does not occur in CLN crystals under the same conditions. We show that the pyroelectric effect together with an elevated photoconductivity compared to that of CLN causes this beam distortion and that this effect also

  16. Interaction of light with impurities in lithium niobate crystals

    International Nuclear Information System (INIS)

    Schwesyg, Judith Renate Marie-Luise

    2011-01-01

    Congruent lithium niobate (LiNbO 3 ) and 5-mol% MgO-doped LiNbO 3 (MgO:LN) crystals are widely used as nonlinear-optical crystals in frequency-conversion devices due to their large nonlinear-optic coefficients. These devices usually require high optical pump powers, but absorption of photons by impurities limits their usability due to heat accumulation that leads to thermo-optic refractive index changes. These refractive index changes distort the beam shape and disturb the phase-matching condition. Furthermore pyroelectric fields can build up. In this thesis the residual optical absorption in congruent LiNbO 3 (CLN) and MgO:LN crystals is studied. Absorption spectra of CLN and MgO:LN crystals between 400-2000 nm reveal a residual absorption up to 0.04 cm -1 . This absorption is mainly caused by transition metal impurities. Between 2300-2800 nm unknown hydrogen absorption bands in CLN and MgO:LN are revealed on the order of 0.001 cm -1 . High-temperature annealing is applied to the CLN and MgO:LN crystals, which decreases optical absorption by up to one order of magnitude. As an application, the operation of a 1550-nm pumped singly-resonant CW optical parametric oscillator, resonant around 2600 nm, using a low-loss, periodically-poled, annealed CLN crystal is demonstrated. Another issue that affects CLN is photorefractive damage (PRD), i.e. light-induced refractive index changes. In contrast, MgO:LN crystals do not suffer from PRD even at high optical intensities. However, it is shown in this thesis that PRD can occur within seconds in MgO:LN, using green laser light at light intensity levels as low as 100 mW/cm 2 , if the crystal is heated by several degrees Celsius during or before illumination. Photorefractive damage does not occur in CLN crystals under the same conditions. We show that the pyroelectric effect together with an elevated photoconductivity compared to that of CLN causes this beam distortion and that this effect also influences frequency conversion

  17. The compact converter of Bessel beams of zero and second orders on the basis of z-cut lithium niobate

    International Nuclear Information System (INIS)

    Paranin, V D; Karpeev, S V; Khonina, S N; Tukmakov, K N

    2016-01-01

    Transformation of zero-order Bessel beams into a second-order vortex beam in the process of propagation in a c-cut of lithium niobate LiNbO 3 crystal has been investigated experimentally. The possibility of controlling beam transformation by means of changing the curve radius of the illuminating beam is shown. The possibility of Bessel beam transforming by compact devices on the basis of thin c-cuts of uniaxial crystals with a diffraction mask formed on their surface is proved. (paper)

  18. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  19. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon.

    Science.gov (United States)

    Chang, Lin; Pfeiffer, Martin H P; Volet, Nicolas; Zervas, Michael; Peters, Jon D; Manganelli, Costanza L; Stanton, Eric J; Li, Yifei; Kippenberg, Tobias J; Bowers, John E

    2017-02-15

    An ideal photonic integrated circuit for nonlinear photonic applications requires high optical nonlinearities and low loss. This work demonstrates a heterogeneous platform by bonding lithium niobate (LN) thin films onto a silicon nitride (Si3N4) waveguide layer on silicon. It not only provides large second- and third-order nonlinear coefficients, but also shows low propagation loss in both the Si3N4 and the LN-Si3N4 waveguides. The tapers enable low-loss-mode transitions between these two waveguides. This platform is essential for various on-chip applications, e.g., modulators, frequency conversions, and quantum communications.

  20. Linear diffraction of light waves on periodically poled domain structures in lithium niobate crystals: collinear, isotropic, and anisotropic geometries

    International Nuclear Information System (INIS)

    Shandarov, S M; Mandel, A E; Akylbaev, T M; Borodin, M V; Savchenkov, E N; Smirnov, S V; Akhmatkhanov, A R; Shur, V Ya

    2017-01-01

    The possible variants of experimental observation of light diffraction on periodically poled domain structures (PPDS) in the lithium niobate crystal with 180-degree domain Y-walls are considered. We experimentally investigated isotropic and anisotropic diffraction of coherent light (λ = 655nm) on the PPDS with spatial period Λ = 8.79 μm produced by poling method in a LiNbO 3 : 5% MgO crystal. The central wavelength of irradiation experiencing a collinear diffraction on these PPDS is estimated as λ c = 455 nm. (paper)

  1. Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application

    Directory of Open Access Journals (Sweden)

    Fakhri Makram A.

    2017-01-01

    Full Text Available This work is dedicated to investigation of temperature effects in Lithium Niobate (LiNbO3 nanostructures. The LiNbO3 nanostructures were deposited on glass substrate by spin-coating technique. LiNbO3 was set down at 3000 rpm for 30 sec and annealed from 100 to 600 °C. The structures were characterized and analyzed by scanning electron microscopy (SEM and ultra-violet visible (UV-vis spectrophotometer. The measured results have showed that by increasing annealing temperatures, the structures start to be more crystallized and be more homogenized until the optimum arrangement was achieved. Once this was accomplished, it's applicable for optical waveguides development. Eventually, it starts to be less crystallization and non-homogeneous. Energy gap was recorded to be at average value of 3.9 eV.

  2. Thermal property of holmium doped lithium lead borate glasses

    Science.gov (United States)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  3. Nonlinear optical properties of TeO2-P2 O5- ZnO-LiNbO3 glass doped with Er3+ ions

    Science.gov (United States)

    Miedzinski, R.; Fuks-Janczarek, I.; El Sayed Said, Y.

    2016-10-01

    A series of lithium niobate LiNbO3 (LN) single crystals doped with Er3+ were grown under the same conditions by melt-quenching method. The distribution coefficients of rare-earth (RE) elements in the "crystal-melt" system of LN were determined at the beginning of the crystal growth. Their dependence on the dopant concentration in melt for 0.4 and 0.8 wt % was investigated. The procedure is applied to RE-doped lithium niobate (LiNbO3), a material of great interest for optoelectronic applications. We have obtained the real χR(3) and imaginary parts χI(3) of the third-order, nonlinear optical susceptibility to the nonlinear refractive index n2 and the nonlinear absorption coefficient β that are valid for absorbing systems. We show that nonlinear refractive or absorptive effects are the consequence of the interplay between the real and imaginary parts of the third-order susceptibilities of the materials. The method for measuring non-linear absorption coefficients and nonlinear refractive index based on well-known Z-scan is presented.

  4. Récuperation d'horloge d'un signal OTDM à 640 Gbit/s transmis sur 50 km par boucle à verrouillage de phase opto-électronique utilisant un dispositif en Niobate de Lithium à inversion de domaines

    DEFF Research Database (Denmark)

    Gomez, F.; Ware, Agis C.; Oxenløwe, Leif Katsuo

    2008-01-01

    L'extraction d'horloge d'un signal OTDM à 640 Gbit/s, transmis sur 50 km, à partir d'une boucle à verrouillage de phase utilisant l'effet non-linéaire de mélange à trois ondes dans un composant de niobate de lithium à inversion de domaines a été mise en oeuvre.......L'extraction d'horloge d'un signal OTDM à 640 Gbit/s, transmis sur 50 km, à partir d'une boucle à verrouillage de phase utilisant l'effet non-linéaire de mélange à trois ondes dans un composant de niobate de lithium à inversion de domaines a été mise en oeuvre....

  5. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    Science.gov (United States)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  6. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals

    International Nuclear Information System (INIS)

    Bourim, El Mostafa; Moon, Chang-Wook; Lee, Seung-Woon; Kyeong Yoo, In

    2006-01-01

    The behaviors of thermally stimulated electron emission from pyroelectric monodomain lithium niobate single crystal (LiNbO 3 ) were investigated by utilizing a Si p-n junction photodiode as electron detector and a receptive electron beam resist (E-beam resist) as electron collector. In high vacuum (10 -6 Torr), the pyroelectric electron emission (PEE) was found to depend on the exposed emitting polar crystal surface (+Z face or -Z face) and was significantly influenced by the emitter-electron receiver gap distances. Thus, the PEE from +Z face was detected during heating and was activated, in small gaps ( 2 mm) the emission was simply mastered by field emission effect. Whereas, The PEE from -Z face was detected during cooling and was solely due to the field ionization effect. Therewith, for small gaps ( 2 mm) PEE was governed by field ionization generating a soft and continuous plasma ambient atmosphere. Significant decrease of electron emission current was observed from +Z face after successive thermal cycles. A fast and fully emission recovery was established after a brief exposure of crystal to a poor air vacuum of 10 -1 Torr

  7. An improved PNGV modeling and SOC estimation for lithium iron phosphate batteries

    Science.gov (United States)

    Li, Peng

    2017-11-01

    Because lithium iron phosphate battery has many advantages, it has been used more and more widely in the field of electric vehicle. The lithium iron phosphate battery, presents the improved PNGV model, and the batteries charge discharge characteristics and pulse charge discharge experiments, identification of parameters of the battery model by interpolation and least square fitting method, to achieve a more accurate modeling of lithium iron phosphate battery, and the extended Calman filter algorithm (EKF) is completed state nuclear power battery (SOC) estimate.

  8. Structural and compositional characterization of LiNbO{sub 3} crystals implanted with high energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Sada, C., E-mail: cinzia.sada@unipd.i [Universita di Padova and CNISM, Dipartimento di Fisica, Via Marzolo 8, 35131 Padova (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M.V.; Zaltron, A.M.; Mazzoldi, P. [Universita di Padova and CNISM, Dipartimento di Fisica, Via Marzolo 8, 35131 Padova (Italy); Agarwal, D.C.; Avastshi, D.K. [Inter-University Accelerator Centre, Post Box-10502, New Delhi 110067 (India)

    2010-10-01

    Iron ions were implanted with a total fluence of 6 x 10{sup 17} ions/m{sup 2} into lithium niobate crystals by way of a sequential implantation at different energies of 95, 100 and 105 MeV respectively through an energy retarder Fe foil to get a uniform Fe doping of about few microns from the surface. The implanted crystals were then annealed in air in the range 200-400 {sup o}C for different durations to promote the crystalline quality that was damaged by implantation. In order to understand the basic phenomena underlying the implantation process, compositional in-depth profiles obtained by the secondary ion mass spectrometry were correlated to the structural properties of the implanted region measured by the high resolution X-ray diffraction depending on the process parameters. The optimised preparation conditions are outlined in order to recover the crystalline quality, essential for integrated photorefractive applications.

  9. The study on microstructure and microwave-absorbing properties of lithium zinc ferrites doped with magnesium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xiaofei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Sun Kangning [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)], E-mail: xiaowenhoulvbu1@yahoo.com.cn; Sun Chang; Leng Liang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)

    2009-09-15

    Lithium zinc ferrites doped with magnesium and copper were prepared by means of a combination of sol-gel method and subsequent calcination. The crystalline phase and microstructure of different doped lithium zinc ferrites were measured by X-ray powder diffraction and scanning electronic microscopy analysis. The results indicate that there are no remarkable differences in phase composition between pure lithium zinc ferrite and the as-doped lithium zinc ferrites. The effects of magnesium and copper dopants on microwave absorption in low-frequency region were investigated by the transmission/reflection coaxial line method. It was found from the present work that doping with copper improved microwave-absorbing properties, while doping with magnesium had little effect on microwave absorption of pure lithium zinc ferrite.

  10. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    Science.gov (United States)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  11. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.

    Science.gov (United States)

    Das, Suman; Swain, Diptikanta; Araujo, Rafael B; Shi, Songxin; Ahuja, Rajeev; Row, Tayur N Guru; Bhattacharyya, Aninda J

    2018-02-02

    We discuss here a unique flexible non-carbonaceous layered host, namely, metal titanium niobates (M-Ti-niobate, M: Al 3+ , Pb 2+ , Sb 3+ , Ba 2+ , Mg 2+ ), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M-Ti-niobate is formed by ion exchange of the K + ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO 6 and NbO 6 octahedral units in the sol-gel synthesized potassium titanium niobate (KTiNbO 5 ). Drastic volume changes (approximately 300-400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M-Ti-niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50-75 % of total K + ) in the M-Ti-niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M-Ti-niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li + and Na + ion cyclability (>2 Li + /Na + per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al-titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M-Ti-niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes

  12. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  13. Photorefractive lithium niobate crystals for applications in photonics; Photorefraktive Lithiumniobatkristalle fuer Anwendungen in der Photonik

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, U.

    2006-12-15

    Lithium niobate crystals (LiNbO{sub 3}) generally show a photorefractive response, i.e., light-induced refractive index changes. Crystals are investigated at room temperature and at elevated temperatures. As a result 'classical' photorefractive holographic volume-phase gratings, originating from space charge fields and the electro-optic effect, and 'non-classical' photorefractive volume-phase gratings, which can be traced back to strong absorption gratings, emerge. Single domain and periodically poled crystals (PPLN) are investigated. PPLN is typically used in non-linear optics for frequency conversion. The crystals also show non-linear photorefractive response during holographic recording with isotropically polarized light beams of equal intensity and, in the case of PPLN, by mixing of domain and holographic gratings. The results are important for applications combining the photorefractive and non-linear optical properties of LiNbO{sub 3}. (orig.)

  14. Using a helium--neon laser to convert infrared radiation to visible emission on lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aurtyunyan, E.A.; Kostanyan, R.B.; Mkrtchyan, V.S.; Mkrtchyan, M.A.

    1975-01-01

    The conversion of infrared emission to the visible region was investigated by mixing with helium-neon laser emission in lithium niobate crystals. The infrared source was a Globar, and the laser was the LG-75. Emission of the sum frequencies was filtered out. The spectral composition of the converted radiation was analyzed by the ISP-51 spectrograph with an FEU-79 photomultiplier at the output. The amplified photomultiplier signal was recorded by the ChZ-33 frequency meter. By varying the angle between the optical axis of the crystal and the incident emission, infrared radiation in the 1.75 to 3.3 ..mu..m wavelength band could be converted to visible emission. It is suggested that measurement of the wavelength of converted emission might be used to study the distribution of concentration nonhomogeneities in crystals.

  15. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yuki [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ion battery.

  16. Growth and characterization of pure and lithium doped strontium ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. The effect of lithium ion as dopant on the size and transparency of strontium tartrate tetrahydrate. (SrC4H4O6⋅4H2O) crystals are presented in this paper. Growth of single crystals of undoped and lithium doped strontium tartrate tetrahydrate by controlled diffusion of strontium nitrate into the gel charged with.

  17. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.

    Science.gov (United States)

    Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D

    2009-04-01

    With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.

  18. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    Science.gov (United States)

    Alikin, D. O.; Ievlev, A. V.; Turygin, A. P.; Lobov, A. I.; Kalinin, S. V.; Shur, V. Ya.

    2015-05-01

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  19. Characteristics of Vanadium Doped And Bamboo Activated Carbon Coated LiFePO4 And Its Performance For Lithium Ion Battery Cathode

    Directory of Open Access Journals (Sweden)

    Nofrijon Sofyan

    2018-04-01

    Full Text Available Vanadium doped and bamboo activated carbon coated lithium iron phosphate (LiFePO4 used for lithium ion battery cathode has been successfully prepared. Lithium iron phosphate was prepared through a wet chemical method followed by a hydrothermal process from the starting materials of LiOH, NH4H2PO4, and FeSO4.7H2O. The dopant variations of 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% of vanadium and a fixed 3 wt.% of bamboo activated carbon were carried out via a solid-state reaction process each by using NH4VO3 as a source of vanadium and carbon pyrolyzed from bamboo tree, respectively. The characterization was carried out using X-ray Diffraction (XRD for the phase formed and its crystal structure, Scanning Electron Microscope (SEM for the surface morphology, Electrochemical Impedance Spectroscopy (EIS for the conductivity, and battery analyzer for the performance of lithium ion battery cathode. The XRD results show that the phase formed has an olivine based structure with an orthorhombic space group. Morphology examination revealed that the particle agglomeration decreased with the increasing level of vanadium concentrations. Conductivity test showed that the impedance of solid electrolyte interface decreased with the increase of vanadium concentration indicated by increasing conductivity of 1.25 x 10-5 S/cm, 2.02 x 10-5 S/cm, 4.37 x 10-5 S/cm, and 5.69 x 10-5 S/cm, each for 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% vanadium, respectively. Vanadium doping and bamboo activated carbon coating are promising candidate for improving lithium ion battery cathode as the initial charge and discharge capacity at 0.5C for LiFePO4/C at 7 wt.% vanadium is in the range of 8.0 mAh/g.

  20. Material modifications in lithium niobate and lithium tantalate crystals by ion irradiation; Materialmodifikationen in Lithiumniobat- und Lithiumtantalat-Kristallen durch Ionenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Raeth, Niels Lennart

    2017-02-17

    The artificially produced crystals lithium niobate (LiNbO{sub 3}) and the closely related lithium tantalate (LiTaO{sub 3}) are proven starting materials for producing active and passive devices that can guide, amplify, switch and process light. For this purpose, it is often necessary to be able to influence the refractive index of the substrate targeted, which is possible in addition to other methods by irradiation of the materials with fast light ions. In this work, lithium niobate and lithium tantalate crystals are irradiated with alpha particles, {sup 3}He ions, deuterons, and protons at projectile energies of up to 14 MeV / nucleon. Energy and crystal thickness are chosen so that the projectiles penetrate the entire sample and are not implanted. All isotopes responsible for the unwanted nuclear activation of the crystals due to the irradiation are relatively short-lived and overall the activation decreases fast enough to allow the safe handling of the irradiated samples after a storage period of a few days to a few weeks. The refractive index changes produced in lithium niobate and lithium tantalate by irradiation with the different projectiles are determined interferometrically and can also be measured by suitable choice of the sample geometry as a function of the ion penetration depth: In LiNbO{sub 3} the ordinary refractive index decreases, the extraordinary increases equally. In LiTaO{sub 3}, both the ordinary and the extraordinary refractive indices decrease as a result of the irradiation; the ordinary refractive index change is many times stronger than the extraordinary one. There is an enormous long-term stability at room temperature for both crystal systems: Even after eleven (LiNbO{sub 3}) or three (LiTaO{sub 3}) years, no decrease in the ion beam-induced refractive index change can be observed. The ion beam-induced refractive index changes are probably the result of atomic displacements such as vacancies, defect clusters or ''latent tracks

  1. Density functional theory prediction for diffusion of lithium on boron-doped graphene surface

    International Nuclear Information System (INIS)

    Gao Shuanghong; Ren Zhaoyu; Wan Lijuan; Zheng Jiming; Guo Ping; Zhou Yixuan

    2011-01-01

    The density functional theory (DFT) investigation shows that graphene has changed from semimetal to semiconductor with the increasing number of doped boron atoms. Lithium and boron atoms acted as charge contributors and recipients, which attracted to each other. Further investigations show that, the potential barrier for lithium diffusion on boron-doped graphene is higher than that of intrinsic graphene. The potential barrier is up to 0.22 eV when six boron atoms doped (B 6 C 26 ), which is the lowest potential barrier in all the doped graphene. The potential barrier is dramatically affected by the surface structure of graphene.

  2. Complex capacitance in the representation of modulus of the lithium niobate crystals

    International Nuclear Information System (INIS)

    Alim, Mohammad A.; Batra, A.K.; Bhattacharjee, Sudip; Aggarwal, M.D.

    2011-01-01

    The lithium niobate (LiNbO 3 or LN) single crystal is grown in-house. The ac small-signal electrical characterization is conducted over a temperature range 35≤T≤150 o C as a function of measurement frequency (10≤f≤10 6 Hz). Meaningful observation is noted only in a narrow temperature range 59≤T≤73 o C. These electrical data when analyzed via complex plane formalisms revealed single semicircular relaxation both in the complex capacitance (C * ) and in the modulus (M * ) planes. The physical meaning of this kind of observation is obtained on identifying the relaxation type, and then incorporating respective equivalent circuit model. The simplistic non-blocking nature of the equivalent circuit model obtained via M * -plane is established as the lumped relaxation is identified in the C * -plane. The feature of the eventual equivalent circuit model allows non-blocking aspect for the LN crystal attributing to the presence of the operative dc conduction process. Identification of this leakage dc conduction via C * -plane is portrayed in the M * -plane where the blocking nature is removed. The interacting interpretation between these two complex planes is successfully presented.

  3. Thin films of ErNbO.sub.4./sub. and YbNbO.sub.4./sub. prepared by sol–gel

    Czech Academy of Sciences Publication Activity Database

    Jakeš, V.; Rubešová, K.; Hlásek, T.; Polák, V.; Oswald, Jiří; Nádherný, L.

    2016-01-01

    Roč. 78, č. 3 (2016), s. 600-605 ISSN 0928-0707 Institutional support: RVO:68378271 Keywords : rare earth niobate * lithium niobate * doping * metal alkoxide * spin coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.575, year: 2016

  4. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  5. New ways for the optimization of the photorefractive response of lithium niobate crystals

    International Nuclear Information System (INIS)

    Luennemann, M.

    2003-11-01

    In the framework of this thesis three different approaches for the increasement of the photorefractive response of LiNbO 3 crystals are pursued: First an extremely large external electric field is applied as additional charge driver in order to support the photorefractive process and to improve the characteristic quantities. Furthermore the photorefractive properties of LiNbO 3 crystals doped with manganese are studied, because iron-doped crystals exhibit a relatively low practical upper limit of the doping concentration. The third approach for the optimization of the photorefractive response in LiNbO 3 crystals is the sensibilization of LiNbO 3 :Fe for infrared light by a temperature-dependent absorption change

  6. Hierarchical nitrogen doped bismuth niobate architectures: Controllable synthesis and excellent photocatalytic activity

    International Nuclear Information System (INIS)

    Hou, Jungang; Cao, Rui; Wang, Zheng; Jiao, Shuqiang; Zhu, Hongmin

    2012-01-01

    Graphical abstract: Efficient visible-light-driven photocatalysts of peony-like nitrogen doped Bi 3 NbO 7 hierarchical architectures and silver-layered Bi 3 NbO 7−x Nx heterostructures were successfully synthesized in this discovery. Highlights: ► N-Bi 3 NbO 7 architectures were synthesized via two-step hydrothermal process. ► Electronic structure calculations indicated that N replaced O in samples. ► Growth mechanism is proposed for transformation of nanoparticles to microflowers. ► Excellent activities of N-Bi 3 NbO 7 architectures were obtained for degradation. ► Enhanced photocatalytic performance was observed for Ag/N-Bi 3 NbO 7 architectures. - Abstract: Nitrogen doped bismuth niobate (N-Bi 3 NbO 7 ) hierarchical architectures were synthesized via a facile two-step hydrothermal process. XRD patterns revealed that the defect fluorite-type crystal structure of Bi 3 NbO 7 remained intact upon nitrogen doping. Electron microscopy showed the N-Bi 3 NbO 7 architecture has a unique peony-like spherical superstructure composed of numerous nanosheets. UV–vis spectra indicated that nitrogen doping in the compound results in a red-shift of the absorption edge from 450 nm to 470 nm. XPS indicated that [Bi/Nb]-N bonds were formed by inducing nitrogen to replace a small amount of oxygen in Bi 3 NbO 7−x N x , which is explained by electronic structure calculations including energy band and density of states. Based on observations of architectures formation, a possible growth mechanism was proposed to explain the transformation of polyhedral-like nanoparticles to peony-like microflowers via an Ostwald riping mechanism followed by self-assembly. The N-Bi 3 NbO 7 architectures due to the large specific surface area and nitrogen doping exhibited higher photocatalytic activities in the decomposition of organic pollutant under visible-light irradiation than Bi 3 NbO 7 nanoparticles. Furthermore, an enhanced photocatalytic performance was also observed for Ag

  7. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Liangzhi, E-mail: 15004110853@163.com; Liu, Qing

    2016-12-15

    Density Functional Theory (DFT) combines with grand canonical Monte Carlo (GCMC) simulations are performed to explore the effect of Li doping on the hydrogen storage capability of COF-320. The results show that the interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. GCMC simulations are employed to study the hydrogen uptake of Li-doped COF-320 at ambient temperature, further confirm that the lithium doping can improve the hydrogen uptake at ambient temperature. Our results demonstrate that Li-doped COFs have good potential in the field of hydrogen storage. - Graphical abstract: Fig. 1. The optimized cluster model used here to represent the COF-320 and possible adsorption sites (A, B, C) for adsorption of metals in the COF-320. The dangling bonds are terminated by H atoms. C, H, and N atoms are shown as gray, white, and blue colors, respectively. Fig. 2. The adsorption isotherm of H{sub 2} in the pristine and Li-doped COF-320 at 298 K. - Highlights: • The binding sites of single and two lithium atoms in COF-320 were studied. • The interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. • H{sub 2} uptakes on the Li-doped COFs obtain significant improvement at ambient temperature. • Lithium-doping is a successful strategy for improving hydrogen uptake.

  8. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature

    International Nuclear Information System (INIS)

    Xia, Liangzhi; Liu, Qing

    2016-01-01

    Density Functional Theory (DFT) combines with grand canonical Monte Carlo (GCMC) simulations are performed to explore the effect of Li doping on the hydrogen storage capability of COF-320. The results show that the interaction energy between the H 2 and the Li-doped COF-320 is about three times higher than that of pristine COF-320. GCMC simulations are employed to study the hydrogen uptake of Li-doped COF-320 at ambient temperature, further confirm that the lithium doping can improve the hydrogen uptake at ambient temperature. Our results demonstrate that Li-doped COFs have good potential in the field of hydrogen storage. - Graphical abstract: Fig. 1. The optimized cluster model used here to represent the COF-320 and possible adsorption sites (A, B, C) for adsorption of metals in the COF-320. The dangling bonds are terminated by H atoms. C, H, and N atoms are shown as gray, white, and blue colors, respectively. Fig. 2. The adsorption isotherm of H 2 in the pristine and Li-doped COF-320 at 298 K. - Highlights: • The binding sites of single and two lithium atoms in COF-320 were studied. • The interaction energy between the H 2 and the Li-doped COF-320 is about three times higher than that of pristine COF-320. • H 2 uptakes on the Li-doped COFs obtain significant improvement at ambient temperature. • Lithium-doping is a successful strategy for improving hydrogen uptake.

  9. Novel Mesoporous Flowerlike Iron Sulfide Hierarchitectures: Facile Synthesis and Fast Lithium Storage Capability

    Directory of Open Access Journals (Sweden)

    Quanning Ma

    2017-12-01

    Full Text Available The 3D flowerlike iron sulfide (F-FeS is successfully synthesized via a facile one-step sulfurization process, and the electrochemical properties as anode materials for lithium ion batteries (LIBs are investigated. Compared with bulk iron sulfide, we find that the unique structural features, overall flowerlike structure, composed of several dozen nanopetals and numerous small size iron sulfide particles embedded within the fine nanopetals, and hierarchical pore structure features provide signification improvements in lithium storage performance, with a high-rate discharge capacity of 779.0 mAh g−1 at a rate of 5 A g−1, due to effectively alleviating the volume expansion during the lithiation/delithiation process, and shorting the diffusion length of both lithium ion and electron. Especially, an excellent cycling stability are achieved, a high discharge capacity of 890 mAh g−1 retained at a rate of 1.0 A g−1, suggesting its promising applications in lithium ion batteries (LIBs.

  10. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  11. Effect of additives for higher removal rate in lithium niobate chemical mechanical planarization

    International Nuclear Information System (INIS)

    Jeong, Sukhoon; Lee, Hyunseop; Cho, Hanchul; Lee, Sangjik; Kim, Hyoungjae; Kim, Sungryul; Park, Jaehong; Jeong, Haedo

    2010-01-01

    High roughness and a greater number of defects were created by lithium niobate (LN; LiNbO 3 ) processes such as traditional grinding and mechanical polishing (MP), should be decreased for manufacturing LN device. Therefore, an alternative process for gaining defect-free and smooth surface is needed. Chemical mechanical planarization (CMP) is suitable method in the LN process because it uses a combination approach consisting of chemical and mechanical effects. First of all, we investigated the LN CMP process using commercial slurry by changing various process conditions such as down pressure and relative velocity. However, the LN CMP process time using commercial slurry was long to gain a smooth surface because of lower material removal rate (MRR). So, to improve the material removal rate (MRR), the effects of additives such as oxidizer (hydrogen peroxide; H 2 O 2 ) and complexing agent (citric acid; C 6 H 8 O 7 ) in a potassium hydroxide (KOH) based slurry, were investigated. The manufactured slurry consisting of H 2 O 2 -citric acid in the KOH based slurry shows that the MRR of the H 2 O 2 at 2 wt% and the citric acid at 0.06 M was higher than the MRR for other conditions.

  12. Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires

    Science.gov (United States)

    Sergeyev, Anton; Reig Escalé, Marc; Grange, Rachel

    2017-02-01

    Recent developments in the fabrication of lithium niobate (LiNbO3) structures down to the nanoscale opens up novel applications of this versatile material in nonlinear optics. Current nonlinear optical studies in sub-micron waveguides are mainly restricted to the generation of second and third harmonics. In this work, we demonstrate the generation and waveguiding of the sum-frequency generation (SFG) signal in a single LiNbO3 nanowire with a cross-section of 517 nm  ×  654 nm. Furthermore, we enhance the guided SFG signal 17.9 times by means of modal phase matching. We also display tuning of the phase-matched wavelength by varying the nanowire cross-section and changing the polarization of the incident laser. The results prove that LiNbO3 nanowires can be successfully used for nonlinear wave-mixing applications and assisting the miniaturization of optical devices. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Rachel Grange was selected by the Editorial Board of J Phys D as an Emerging Leader.

  13. Spectroscopic investigations of nanostructured LiNbO3 doped with Eu3+

    International Nuclear Information System (INIS)

    Hreniak, D.; Speghini, A.; Bettinelli, M.; Strek, W.

    2006-01-01

    Structural and optical properties of the sol-gel derived nanocrystalline lithium niobate (LiNbO 3 ) powders doped with Eu 3+ ions have been studied. In particular, the influence of the sizes of nanoparticles controlled by temperature on the structural and luminescence properties has been investigated. Emission bands corresponding to 5 D emission became more resolved with increasing nanocrystal size and changed to a typical Eu 3+ :LiNbO 3 single crystal spectrum for nanocrystals having an average size of more than 40 nm. Nonlinear optical properties of nanostructured LiNbO 3 have been confirmed by simple observation of second harmonic generation effect (SHG). The possibility of using nanostructured LiNbO 3 doped with rare-earth ions as self-doubling elements in integrated optoelectronic devices has been discussed

  14. Effect of iron doping on Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Abd Halim Shaari; Mansor Hashim; Sidek Hj Abd Aziz; Laily Rafiah Abdullah

    1991-01-01

    Study on the effect of iron doping at different values of doping percentage (0.00< x<0.06) and hence the influence of magnetic iron on Y-Ba-Cu-O superconductor has been carried out. The conventional technique of sintering is used in preparing the ceramic materials. The crystal structure and their lattice parameters are determined from X-ray diffraction measurements. Observation on the dependence of resistance on temperature is made between room temperature to the boiling point of liquid nitrogen, using four-probe techniques. Magnetisation properties namely the Meissner Effect is also observed by levitating a small piece of permanent magnet on the cooled sample. The X-ray diffraction data show that the phase transitions have been observed; from orthorhombic to tetragonal when the iron doping exceeded ∼0.02. Transition temperature, Tc decrease from ∼87.7K to ∼83K. Meissner Effect is observed for sample doped up to 2% only

  15. Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage

    Science.gov (United States)

    Gan, Qingmeng; Zhao, Kuangmin; He, Zhen; Liu, Suqin; Li, Aikui

    2018-04-01

    We propose a new strategy to uniformly coat zeolitic imidazolate framework-8 (ZIF-8) on iron oxides containing no Zn to obtain an α-Fe2O3@ZIF-8 composite. After carbonization, the α-Fe2O3@ZIF-8 transforms into iron oxides@N-doped porous carbon (FeOx@NC). The uniform N-doped porous carbon layer gives rise to a superior electrical conductivity, highly-increased specific BET surface area (179.2 m2 g-1), and abundant mesopores for the FeOx@NC composite. When served as the LIB anode, the FeOx@NC shows a high reversible capacity (of 1064 mA h g-1 at 200 mA g-1), excellent rate performance (of 198.1 mA h g-1 at 10000 mA g-1) as well as brilliant long-term cyclability (with a capacity retention of 93.3% after 800 cycles), which are much better than those of the FeOx@C and pristine FeOx anodes. Specifically, the Li-ion intercalation pseudocapacitive behavior of the FeOx@NC anode is improved by this N-doped porous carbon coating, which is beneficial for rapid Li-ion insertion/extraction processes. The excellent electrochemical performance of FeOx@NC should be ascribed to the increased electrolyte penetration areas, improved electrical conductivity, boosted lithium storage kinetics, and shortened Li-ion transport length.

  16. First principles calculation of lithium-phosphorus co-doped diamond

    Directory of Open Access Journals (Sweden)

    Q.Y. Shao

    2013-03-01

    Full Text Available We calculate the density of states (DOS and the Mulliken population of the diamond and the co-doped diamonds with different concentrations of lithium (Li and phosphorus (P by the method of the density functional theory, and analyze the bonding situations of the Li-P co-doped diamond thin films and the impacts of the Li-P co-doping on the diamond conductivities. The results show that the Li-P atoms can promote the split of the diamond energy band near the Fermi level, and improve the electron conductivities of the Li-P co-doped diamond thin films, or even make the Li-P co-doped diamond from semiconductor to conductor. The affection of Li-P co-doping concentration on the orbital charge distributions, bond lengths and bond populations is analyzed. The Li atom may promote the split of the energy band near the Fermi level and also may favorably regulate the diamond lattice distortion and expansion caused by the P atom.

  17. Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique

    Science.gov (United States)

    Kitashima, Tomonori; Liu, Lijun; Kitamura, Kenji; Kakimoto, Koichi

    2004-05-01

    The transport mechanism of supplied raw material in a double-crucible Czochralski system using the accelerated crucible rotation technique (ACRT) was investigated by three-dimensional and time-dependent numerical simulation. The calculation clarified that use of the ACRT resulted in enhancement of the mixing effect of the supplied raw material. It is, therefore, possible to maintain the composition of the melt in an inner crucible during crystal growth by using the ACRT. The effect of the continuous charge of the raw material on melt temperature was also investigated. Our results showed that the effect of feeding lithium niobate granules on melt temperature was small, since the feeding rate of the granules is small. Therefore, solidification of the melt surface due to the heat of fusion in this system is not likely.

  18. Development of revitalisation technique for impaired lithium doped germanium detector

    International Nuclear Information System (INIS)

    Singh, N.S.B.; Rafi Ahmed, A.G.; Balasubramanian, G.R.

    1994-01-01

    Semiconductor detectors play very significant role in photon detection and are important tools in the field of gamma spectroscopy. Lithium doped germanium detectors belong to this category. The development of revitalisation technique for these impaired detectors are discussed in this report

  19. The origin of the enhanced performance of nitrogen-doped MoS_2 in lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Weijun, Xia; Wu, Zhenjun; Huo, Jia; Liu, Dongdong; Wang, Shuangyin; Wang, Qiang

    2016-01-01

    MoS_2 with a similar layered structure to graphene has been widely applied in various areas including lithium ion batteries. However, low conductivity, capacity fading and poor rate performance are still the main challenges for MoS_2 anode materials. In this work, for the first time, we prepared nitrogen-doped MoS_2 (N-MoS_2) nanosheets through a simple two-step method involving the preparation of MoS_2 with defects by the hydrothermal method, followed by sintering in a NH_3 atmosphere. Our electrochemical characterizations and density functional theory calculations demonstrated that nitrogen doping could enhance the electron conductivity and showed higher specific capacity than pristine MoS_2 as anode materials of lithium ion batteries, which can be attributed to the faster transportation of electrons and ions because of nitrogen doping. This work helps us understand the origin of the enhanced performance of N-doped MoS_2 in lithium ion batteries. (paper)

  20. Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries.

    Science.gov (United States)

    Li, Fen; Su, Yan; Zhao, Jijun

    2016-09-14

    The advance of lithium sulfur batteries is now greatly restricted by the fast capacity fading induced by shuttle effect. Using first-principles calculations, various vacancies, N doping, and B,N co-doping in graphene sheets have been systematically explored for lithium polysufides entrapped in Li-S batteries. The LiS, LiC, LiN and SB bonds and Hirshfeld charges in the Li 2 S 6 adsorbed defective graphene systems have been analyzed to understand the intrinsic mechanism of retaining lithium polysulfides in these systems. Total and local densities of states analyses elucidate the strongest adsorption sites among the N and B-N co-doped graphene systems. The overall electrochemical performance of Li-S batteries varies with the types of defects in graphene. Among the defective graphene systems, only the reconstructed pyrrole-like vacancy is effective for retaining lithium polysulfides. N doping induces a strong LiN interaction in the defective graphene systems, in which the pyrrolic N rather than the pyridinic N plays a dominant role in trapping of lithium polysulfides. The shuttle effect can be further depressed via pyrrolic B,N co-doped defective graphene materials, especially the G-B-N-hex system with extremely strong adsorption of lithium polysulfides (4-5 eV), and simultaneous contribution from the strong LiN and SB interactions.

  1. Thermoluminescence characteristics of Cu2O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    International Nuclear Information System (INIS)

    Rammadhan, Ismail; Taha, Saddon; Wagiran, H.

    2017-01-01

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu 2 O doped calcium lithium borate glass upon adding various Cu 2 O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with 60 CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu 2 O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s −1 . However, the value of effective atomic number Z eff is 8.84 for 0.02Cu 2 O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu 2 O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu 2 O doped calcium lithium borate glass. •The doping effects of Cu 2 O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu 2 O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  2. SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage.

    Science.gov (United States)

    Zhou, Wei; Wang, Jinxian; Zhang, Feifei; Liu, Shumin; Wang, Jianwei; Yin, Dongming; Wang, Limin

    2015-02-28

    A SnO2-N-doped graphene (SnO2-NG) composite is synthesized by a rapid, facile, one-step microwave-assisted solvothermal method. The composite exhibits excellent lithium storage capability and high durability, and is a promising anode material for lithium ion batteries.

  3. Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO3

    International Nuclear Information System (INIS)

    Nataf, Guillaume F.; Guennou, Mael; Haussmann, Alexander; Barrett, Nick; Kreisel, Jens

    2016-01-01

    The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain walls and their variations with dopant concentration and annealing conditions. It is shown that defects are stabilized at domain walls and that changes in the defect structures with Mg concentration can be probed by the shift of Raman modes. We show that the signatures of polar defects in the bulk and at the domain walls differ. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Influence of lithium doping on the structural and electrical characteristics of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Johny, T. Anto [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Kumar, Viswanathan, E-mail: vkumar10@yahoo.com [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Imai, Hideyuki; Kanno, Isaku [Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-06-30

    Thin films of undoped and lithium-doped Zinc oxide, (Zn{sub 1-x}Li{sub x})O; x = 0, 0.05, 0.10 and 0.20 were prepared by sol-gel method using spin-coating technique on silicon substrates [(111)Pt/Ti/SiO{sub 2}/Si)]. The influence of lithium doping on the structural, electrical and microstructural characteristics have been investigated by means of X-ray diffraction, leakage current, piezoelectric measurements and scanning electron microscopy. The resistivity of the ZnO film is found to increase markedly with low levels (x {<=} 0.05) of lithium doping thereby enhancing their piezoelectric applications. The transverse piezoelectric coefficient, e{sub 31}{sup Low-Asterisk} has been determined for the thin films having the composition (Zn{sub 0.95}Li{sub 0.05})O, to study their suitability for piezoelectric applications. - Highlights: Black-Right-Pointing-Pointer Preferentially c-axis oriented (Zn{sub 1-x}Li{sub x})O films were spin-coated on glass. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films exhibit dense columnar microstructure. Black-Right-Pointing-Pointer Low levels of lithium doping, increases the electrical resistivity of ZnO thin films. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films show high values of transverse piezoelectric coefficient, e{sup Low-Asterisk }{sub 31}.

  5. Label-free investigation of the effects of lithium niobate polarization on cell adhesion

    Science.gov (United States)

    Mandracchia, B.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2017-06-01

    The determination of contact area is pivotal to understand how biomaterials properties influence cell adhesion. In particular, the influence of surface charges is well-known but still controversial, especially when new functional materials and methods are introduced. Here, we use for the first time Holographic Total Internal Reflection Microscopy (HoloTIRM) to study the influence of the spontaneous polarization of ferroelectric lithium niobate (LN) on the adhesion properties of fibroblast cells. The selective illumination of a very thin region directly above the substrate, achieved by Total Internal Reflection, provides high-contrast images of the contact regions. Holographic recording, on the other hand, allows for label-free quantitative phase imaging of the contact areas between cells and LN. Phase signal is more sensitive in the first 100nm and, thus more reliable in order to locate focal contacts. This work shows that cells adhering on negatively polarized LN present a significant increase of the contact area in comparison with cells adhering on the positively polarized LN substrate, as well as an intensification of contact vicinity. This confirms the potential of LN as a platform for investigating the role of charges on cellular processes. The similarity of cell adhesion behavior on negatively polarized LN and glass control also confirms the possibility to use LN as an active substrate without impairing cell behavior.

  6. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiawen Xiong

    2018-04-01

    Full Text Available Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g−1 after 150 cycles at 0.2 A g−1, and a high capacity of 531.2 mA h g−1 can be observed even after 5,000 cycles at 10.0 A g−1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g−1 can be obtained at 5.0 A g−1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

  7. Influence of calcium and lithium on the densification and electrical conductivity of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Porfirio, Tatiane Cristina

    2011-01-01

    In this work, the use of calcium and lithium as sintering aid to gadolinia-doped ceria was systematically investigated. The main purpose was to verify the influence of these additives on the densification and electrical conductivity of sintered ceramics. Powder compositions containing up to 1.5 mol% (metal basis) of calcium or lithium were prepared by both solid state reaction and oxalate coprecipitation methods. The main characterization techniques were thermal analyses, X-ray diffraction, scanning electron microscopy and electrical conductivity by impedance spectroscopy. Both additives promoted densification of gadolinia-doped ceria. The densification increases with increasing the additive content. Different effects on microstructure and electrical conductivity result from the method of preparation, e.g., solid state reaction or coprecipitation. Calcium addition greatly enhances the grain growth compared to lithium addition. The electrical conductivity of specimens containing a second additive is lower than that of pure gadolinia-doped ceria. Both additives influence the intergranular conductivity and favor the exudation of gadolinium out of the solid solution. (author)

  8. Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, Guillaume F. [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Guennou, Mael [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Haussmann, Alexander [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, George-Baehr-Str. 1, 01069, Dresden (Germany); Barrett, Nick [Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Kreisel, Jens [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Physics and Materials Science Research Unit, University of Luxembourg, 41 Rue du Brill, 4422, Belvaux (Luxembourg)

    2016-03-15

    The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain walls and their variations with dopant concentration and annealing conditions. It is shown that defects are stabilized at domain walls and that changes in the defect structures with Mg concentration can be probed by the shift of Raman modes. We show that the signatures of polar defects in the bulk and at the domain walls differ. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Thermoluminescence characteristics of Cu{sub 2}O doped Calcium Lithium borate glass irradiated with the cobalt-60 gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rammadhan, Ismail, E-mail: ismail.rammadhan@koyauniversity.org [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Taha, Saddon [Department of Physics, Faculty of Sciences and Health, Koya University, Danielle Mitterrand Boulevard, Koya 45, Kurdistan Region (Iraq); Wagiran, H. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2017-06-15

    The aim of this study is to prepare and investigate the thermoluminescence characteristics for the un-doped and Cu{sub 2}O doped calcium lithium borate glass upon adding various Cu{sub 2}O concentrations of 0.005% to 0.1 mol%. The glasses were prepared by melt quenching method and irradiated with {sup 60}CO gamma-ray having different doses in the range of (0.5–4) Gy, (5–10) Gy, and (20–100) Gy. The amorphous phases were identified for optimization glass samples, effect of heating rate, glowing curves, linearity, sensitivity, fading, reproducibility of response and minimum detectable dose are also studied. The TL sample with 0.02 mol% Cu{sub 2}O concentration has higher response compared to the other samples concentration for a delivered dose of 50 Gy, The recorded glow curves consist a dominant peak at 187 °C for a heating rate of 5 °C s{sup −1}. However, the value of effective atomic number Z{sub eff} is 8.84 for 0.02Cu{sub 2}O doped which are near to the atomic number of soft tissue. - Highlights: •We have prepared and investigate the crystalline structure for the un-doped and Cu{sub 2}O doped calcium lithium borate glass are carried out. •Investigate the amorphous structure of calcium lithium borate glass. •Determine the best setting of annealing temperature, annealing time and heating rate for Cu{sub 2}O doped calcium lithium borate glass. •The doping effects of Cu{sub 2}O on the thermoluminescence properties of calcium lithium borate glass subjected gamma radiations. •The new dosimeter showed simple glow curve with single prominent peak centred at 187 °C and linear dose–response range 0.5–100 Gy, good reproducibility, the fading of the signal is relatively slow. •Effective atomic number for Cu{sub 2}O doped Calcium lithium borate close to the effective atomic number of soft tissue.

  10. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.

    Science.gov (United States)

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-13

    We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.

  11. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  12. Dielectric dispersion in pure and doped lithium rubidium sulphate

    Science.gov (United States)

    Kassem, M. E.; El-Muraikhi, M.; Al-Houty, L.; Mohamed, A. A.

    The frequency (102 - 105 Hz) dependence of the dielectric properties of lithium rubidium sulphate (LRS) are reported in the vicinity of the transition temperature Tc = 477 K. The a.c. conductivity σ(ω) shows a strong temperature dependence and weak frequency response. The dielectric constant in this region shows a strong frequency dispersion. A Cole-Cole diagram was used to determine the distribution parameter and the molecular relaxation time. The effect of doping with Dy+3, Sm+3 and V+3, was also studied. It was found that doping gives rise to localized states which produce a disorder in the structure of LiRbSO4.

  13. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  14. Effect of lithium doping in BaTiO3 ceramics for vibration sensor application

    Science.gov (United States)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2018-04-01

    Phase pure undoped and Lithium doped BaTiO3 particles have been synthesized by high temperature solid-state reaction method. Substitution of Lithium at the Ba2+ site in BaTiO3 lattice has been investigated. The structural, vibrational, electrical and mechanical characterization have been carried out. The poled samples were used as a sensing element for the detection of mechanical oscillations and the presence of 80 Hz pulse in the output spectrum manifest the response of the sensor element to the applied mechanical stress. In comparison with pure BaTiO3 the sensitivity of Li doped BaTiO3 is 14 times greater than the pure BaTiO3. This confirms that Li doped BaTiO3 could be an efficient candidate for the functionalization of vibration sensors in space application.

  15. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es; Siegel, Jan, E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, Javier; Solis, Javier [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2014-09-21

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  16. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Garcia-Lechuga, Mario; Siegel, Jan; Hernandez-Rueda, Javier; Solis, Javier

    2014-01-01

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  17. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser.

    Science.gov (United States)

    Bhardwaj, S; Mittholiya, K; Bhatnagar, A; Bernard, R; Dharmadhikari, J A; Mathur, D; Dharmadhikari, A K

    2017-07-10

    We describe two types of waveguides (type I and depressed cladding) inscribed in lithium niobate using a variable repetition rate (200 kHz-25 MHz), 270 fs duration fiber laser. The type I modification-based waveguides have propagation losses in the range from 1.2 to 10 dB/cm at 1550 nm, depending on experimental parameters. These waveguides are not permanent; they deteriorate over time. Such deterioration of waveguides can be slowed down from 30 days to 100 days by pre-annealing the samples and by writing at a 720 kHz laser repetition rate. The propagation losses measured at 1550 nm show significant improvement for pre-annealed samples. The depressed cladding-inscribed waveguides are permanent, but the propagation loss depends on the number of damage tracks. A track separation of ∼1  μm between adjacent damage tracks yields the lowest propagation loss of 0.5 dB/cm at 1550 nm for a 40 μm diameter waveguide. We observe multimode guidance for sizes in the range of 20-80 μm in these waveguide structures at 1550 nm. Their crystalline nature is found to remain intact, as inferred from second-harmonic generation within the waveguide region.

  18. Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system

    International Nuclear Information System (INIS)

    Saidu, A.; Wagiran, H.; Saeed, M.A.; Alajerami, Y.S.M.; Kadir, A.B.A.

    2016-01-01

    The effect of sodium as a co-dopant on the thermoluminescence (TL) properties of copper-doped zinc lithium borate (ZLB: Cu) subjected to Co-60 gamma radiation is reported in this study. TL intensity is enhanced with the introduction of sodium in ZLB: Cu. The obtained glow curve is simple with a single peak. The annealing procedure and the best heating rate for the proposed thermoluminescent dosimeter (TLD) are established, and the phosphor is reusable. The TL response within the dose range of 0.5–1000 Gy is investigated. The results show that the thermal fading behaviour is improved significantly. - Highlights: • Dosimetry properties of an improved TL dosimeter. • The dosimeter is made of lithium borate, modified with ZnO, doped with CuO and co-doped with Na 2 O. • With addition of Na to Cu in the ZLB host, TL yield and sensitivity has significantly enhanced. • The fading behaviour has also been minimized significantly. • The new material is also characterized with the linear dose response, and good reproducibility behaviour.

  19. Effect of iron ions on corrosion of lithium in a thionyl chloride electrolytes

    International Nuclear Information System (INIS)

    Shirokov, A.V.; Churikov, A.V.

    1999-01-01

    The effect of the iron electrolyte addition on the growth rate of the passivating layer on lithium in the LiAlCl 4 1 M solution in thionyl chloride is experimentally studied. It is established, that kinetic curved in the first 10 hours of the Li-electrode contact with electrolyte are described by the equation, assuming mixed diffusion kinetic control over the corrosion process. It is shown that introduction of Fe 3+ into electrolyte causes increase in both ionic and electron conductivity constituents. Increase in the electron carrier concentration is the cause of lithium corrosion in the iron-containing thionyl chloride solutions [ru

  20. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    Science.gov (United States)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  1. Synthesis and characterization of lithium fluoride nano crystals doped with silver

    International Nuclear Information System (INIS)

    Rosario M, B. R.; Ramirez C, G.; Encarnacion E, E. K.; Sosa A, M. A.

    2017-10-01

    Thermoluminescence (Tl) is the emission of light by certain materials to be heated below its incandescence temperature, having previously been exposed to an exciting agent such as ionizing radiation. Lithium fluoride (LiF) is the thermoluminescent material used in the manufacture of Tl-100 dosimeters. What morphological characteristics (size, crystallinity) do the nano crystals of pure lithium fluoride (LiF) have when doped with silver (Ag) by the precipitation method? The objective of this study was to synthesize and characterize the LiF nano crystals doped with silver (Ag) in concentrations of 0.02, 0.04, 0.06, 0.08, 0.1 and 0.2%. The samples were synthesized using as reagents; distilled water, ammonium fluoride (NH 4 F), lithium chloride (LiCl), silver nitrate (AgNO 3 ); and materials such as: 0.1 mg precision balance, spatulas, test piece, magnetic stirrer, beaker, volumetric flask, burette, burette clamp, key and magnetic stirring wand. In the characterization process we used and X-ray diffractometer (XRD) with which we obtained the X-ray diffraction spectrum with well-defined peaks that are characteristic of LiF. Using the Scherrer equation we calculate the sizes of nano crystals. This study demonstrates that is possible to synthesize LiF using new dopant materials. (Author)

  2. Galvanomagnetic properties and electronic structure of iron-doped PbTe

    Energy Technology Data Exchange (ETDEWEB)

    Skipetrov, E. P., E-mail: skip@mig.phys.msu.ru [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Faculty of Materials Science, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Kruleveckaya, O. V.; Skipetrova, L. A. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Knotko, A. V. [Faculty of Materials Science, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Slynko, E. I.; Slynko, V. E. [Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsy 58001 (Ukraine)

    2015-11-21

    We synthesize an iron-doped PbTe single-crystal ingot and investigate the phase composition and distribution of the iron impurity along the ingot as well as galvanomagnetic properties in weak magnetic fields (4.2 K ≤ T ≤ 300 K, B ≤ 0.07 T) of Pb{sub 1−y}Fe{sub y}Te alloys. We find microscopic inclusions enriched with iron and regions with a chemical composition close to FeTe in the heavily doped samples, while the iron impurity content in the main phase rises only slightly along the length of the ingot reaching the impurity solubility limit at approximately 0.6 mol. %. Samples from the initial and the middle parts of the ingot are characterized by p-type metal conductivity. An increase of the iron impurity content leads to a decrease in the free hole concentration and to a stabilization of galvanomagnetic parameters due to the pinning of the Fermi level by the iron resonant impurity level E{sub Fe} lying under the bottom of the valence band (E{sub v} − E{sub Fe} ≈ 16 meV). In the samples from the end of the ingot, a p-n inversion of the conductivity type and an increase of the free electron concentration along the ingot are revealed despite the impurity solubility limit being reached. The kinetics of changes of charge carrier concentration and of the Fermi energy along the ingot is analyzed in the framework of the six-band Dimmock dispersion relation. A model is proposed for the electronic structure rearrangement of Pb{sub 1−y}Fe{sub y}Te with doping, which may also be used for PbTe doped with other transition metals.

  3. Effects of Nanofiber Architecture and Antimony Doping on the Performance of Lithium-Rich Layered Oxides: Enhancing Lithium Diffusivity and Lattice Oxygen Stability.

    Science.gov (United States)

    Yu, Ruizhi; Zhang, Zhijuan; Jamil, Sidra; Chen, Jiancheng; Zhang, Xiaohui; Wang, Xianyou; Yang, Zhenhua; Shu, Hongbo; Yang, Xiukang

    2018-05-07

    Li-rich layered oxides (LLOs) with high specific capacities are favorable cathode materials with high-energy density. Unfortunately, the drawbacks of LLOs such as oxygen release, low conductivity, and depressed kinetics for lithium ion transport during cycling can affect the safety and rate capability. Moreover, they suffer severe capacity and voltage fading, which are major challenges for the commercializing development. To cure these issues, herein, the synthesis of high-performance antimony-doped LLO nanofibers by an electrospinning process is put forward. On the basis of the combination of theoretical analyses and experimental approaches, it can be found that the one-dimensional porous micro-/nanomorphology is in favor of lithium-ion diffusion, and the antimony doping can expand the layered phase lattice and further improve the lithium ion diffusion coefficient. Moreover, the antimony doping can decrease the band gap and contribute extra electrons to O within the Li 2 MnO 3 phase, thereby enhancing electronic conductivity and stabilizing lattice oxygen. Benefitting from the unique architecture, reformative electronic structure, and enhanced kinetics, the antimony-doped LLO nanofibers possess a high reversible capacity (272.8 mA h g -1 ) and initial coulombic efficiency (87.8%) at 0.1 C. Moreover, the antimony-doped LLO nanofibers show excellent cycling performance, rate capability, and suppressed voltage fading. The capacity retention can reach 86.9% after 200 cycles at 1 C, and even cycling at a high rate of 10 C, a capacity of 172.3 mA h g -1 can still be obtained. The favorable results can assist in developing the LLO material with outstanding electrochemical properties.

  4. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.

    Science.gov (United States)

    Song, Jiangxuan; Gordin, Mikhail L; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage

    Science.gov (United States)

    Tian, Lei-Lei; Wei, Xian-Yong; Zhuang, Quan-Chao; Jiang, Chen-Hui; Wu, Chao; Ma, Guang-Yao; Zhao, Xing; Zong, Zhi-Min; Sun, Shi-Gang

    2014-05-01

    A facile bottom-up strategy was developed to fabricate nitrogen-doped graphene sheets (NGSs) from glucose using a sacrificial template synthesis method. Three main types of nitrogen dopants (pyridinic, pyrrolic and graphitic nitrogens) were introduced into the graphene lattice, and an inimitable microporous structure of NGS with a high specific surface area of 504 m2 g-1 was obtained. Particularly, with hybrid features of lithium ion batteries and Faradic capacitors at a low rate and features of Faradic capacitors at a high rate, the NGS presents a superior lithium storage performance. During electrochemical cycling, the NGS electrode afforded an enhanced reversible capacity of 832.4 mA h g-1 at 100 mA g-1 and an excellent cycling stability of 750.7 mA h g-1 after 108 discharge-charge cycles. Furthermore, an astonishing rate capability of 333 mA h g-1 at 10 000 mA g-1 and a high rate cycle performance of 280.6 mA h g-1 even after 1200 cycles were also achieved, highlighting the significance of nitrogen doping on the maximum utilization of graphene-based materials for advanced lithium storage.

  6. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage.

    Science.gov (United States)

    Tian, Lei-Lei; Wei, Xian-Yong; Zhuang, Quan-Chao; Jiang, Chen-Hui; Wu, Chao; Ma, Guang-Yao; Zhao, Xing; Zong, Zhi-Min; Sun, Shi-Gang

    2014-06-07

    A facile bottom-up strategy was developed to fabricate nitrogen-doped graphene sheets (NGSs) from glucose using a sacrificial template synthesis method. Three main types of nitrogen dopants (pyridinic, pyrrolic and graphitic nitrogens) were introduced into the graphene lattice, and an inimitable microporous structure of NGS with a high specific surface area of 504 m(2) g(-1) was obtained. Particularly, with hybrid features of lithium ion batteries and Faradic capacitors at a low rate and features of Faradic capacitors at a high rate, the NGS presents a superior lithium storage performance. During electrochemical cycling, the NGS electrode afforded an enhanced reversible capacity of 832.4 mA h g(-1) at 100 mA g(-1) and an excellent cycling stability of 750.7 mA h g(-1) after 108 discharge-charge cycles. Furthermore, an astonishing rate capability of 333 mA h g(-1) at 10,000 mA g(-1) and a high rate cycle performance of 280.6 mA h g(-1) even after 1200 cycles were also achieved, highlighting the significance of nitrogen doping on the maximum utilization of graphene-based materials for advanced lithium storage.

  7. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Lithium ion battery technology has the potential to meet the requirements of high energy density and high power density applications. A continuous search for novel materials is pursued continually to exploit the latent potential of this technology. In this review paper, methods for preparation of Lithium Iron Phosphate are discussed which include solid state and solution based synthesis routes. The methods to improve the electrochemical performance of lithium iron phosphate are presented in detail.

  8. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Science.gov (United States)

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  9. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  10. Simultaneous Perforation and Doping of Si Nanoparticles for Lithium-Ion Battery Anode.

    Science.gov (United States)

    Lv, Guangxin; Zhu, Bin; Li, Xiuqiang; Chen, Chuanlu; Li, Jinlei; Jin, Yan; Hu, Xiaozhen; Zhu, Jia

    2017-12-27

    Silicon nanostructures have served as promising building blocks for various applications, such as lithium-ion batteries, thermoelectrics, and solar energy conversions. Particularly, control of porosity and doping is critical for fine-tuning the mechanical, optical, and electrical properties of these silicon nanostructures. However, perforation and doping are usually separated processes, both of which are complicated and expensive. Here, we demonstrate that the porous nano-Si particles with controllable dopant can be massively produced through a facile and scalable method, combining ball-milling and acid-etching. Nano-Si with porosity as high as 45.8% can be achieved with 9 orders of magnitude of conductivity changes compared to intrinsic silicon. As an example for demonstration, the obtained nano-Si particles with 45.8% porosity and 3.7 atom % doping can serve as a promising anode for lithium-ion batteries with 2000 mA h/g retained over 100 cycles at the current density of 0.5 C, excellent rate performance with 1600 mA h/g at the current density of 5 C, and a stable cycling performance of above 1500 mA h/g retained over 940 cycles at the current density of 1 C with carbon coating.

  11. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.

    Science.gov (United States)

    Liu, Yuxin; Liu, Ping; Wu, Dongqing; Huang, Yanshan; Tang, Yanping; Su, Yuezeng; Zhang, Fan; Feng, Xinliang

    2015-03-27

    Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron-doped, carbon-coated SnO2 /graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core-shell architecture and B-doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium-ion batteries with a highly stable capacity of 1165 mA h g(-1) at 0.1 A g(-1) after 360 cycles and an excellent rate capability of 600 mA h g(-1) at 3.2 A g(-1), and thus outperforms most of the previously reported SnO2-based anode materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  13. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  14. Optical properties of Er{sup 3+}-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass

    Energy Technology Data Exchange (ETDEWEB)

    Haro-Gonzalez, P. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)], E-mail: patharo@ull.es; Lahoz, F. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Platas, J. [Dep. of Fisica Fundamental II, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Caceres, J.M. [Dep. of Edafologia y Geologia, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Perez, S. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain); Marrero-Lopez, D. [Dep. of Quimica Inorganica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Capuj, N. [Dep. of Fisica Basica, Universidad de La Laguna, 38206 La Laguna, S/C de Tenerife (Spain); Martin, I.R. [Dep. of Fisica Fundamental Experimental, Electronica y Sistemas, Universidad de La Laguna Avda Astrofisico Franscisco Sanchez, 38206 La Laguna, S/C de Tenerife (Spain)

    2008-05-15

    Measurements of the optical properties of Er{sup 3+} ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} (SBN) doped with Er{sup 3+} ions with a mean size of {approx}50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er{sup 3+} ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency.

  15. Effect of co-doped SnO{sub 2} nanoparticles on photoluminescence of cu-doped potassium lithium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Namma, Haydar Aboud; Wagiran, H.; Hussin, R.; Ariwahjoedi, B. [Department of Physics, Universiti Teknologi Malaysia, Skudai 81310, Malaysia and Baghdad College of Economic Sciences University (Iraq); Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 31750 Tronoh (Malaysia)

    2012-09-26

    The SnO{sub 2} co-doped lithium potassium borate glasses doped with 0.05, 0.10, 0.25 and 0.50 mol% of Cu were synthesized by the melt quenching technique. The SnO{sub 2} co-dope was added to the compounds in the amounts of 0.05, 0.10, and 0.20 mol%. The photoluminescent spectrum for different concentrations of copper was studied. It was observed that the intensity of blue emission (450, 490 nm) varies with concentration mol%. In addition, with different concentration of SnO{sub 2} to 0.10 mol% Cu, the influence of the luminescence has been observed to enhance intensity and shifted to blue and red (490, 535 nm) emissions.

  16. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  17. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  18. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.; Hayes, Dugan; Kempa, Thomas J.; von Cube, Felix; Bell, David C.; Chen, Lin X.; Nocera, Daniel G.

    2017-01-30

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.

  19. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    Science.gov (United States)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  20. Ion-beam enhanced etching for the 3D structuration of lithium niobate

    International Nuclear Information System (INIS)

    Gischkat, Thomas

    2010-01-01

    The present thesis deals with the usage of the ion-beam enhanced etching (IBEE) for the 3D structuration of lithium niobate (LiNbO 3 ).Hereby the approach of the enhancement of the wet-chemical etching rate due to the irradiation with energetic ions is pursued. This method is very success promising for the realization of micro- and nanostructures with perpendicular structural walls as well as small roughnesses. The aim of this thesis consisted therein to form the foundations for the realization of three-dimensional micro- and nanostructures (for instance: Layer systems and photonic crystals) in LiNbO 3 with high optical quality and to demonstrate on selected examples. Conditions for the success of the IBEE structuration technique is first of all the understanding of the defect formation under ion irradiation as well as the radiation-induced structure changes in the crystal and the change of the chemical resistance connected with this. For this the defect formation was studied in dependence on th ion mass, the ion energy, and the irradiation temperature. Thermally induced influences and effects on the radiation damage, as they can occur in intermediate steps in the complex processing, must be known and were studied by means of subsequent temperature treatment. The results from the defect studies were subsequently applied for the fabrication of micro- and nanostructures in LiNbO 3 . Shown is the realization of lateral structure with nearly perpendicular structure walls as well as the realization of thin membranes and slits. The subsequent combination of lateral structuration with the fabrication of thin membranes and slits allowed the three-dimensional structuration of LiNbO 3 . This is exemplarily shown for a microresonator and for a 2D photonic crystal with below lying air slit. [de

  1. Characterization of lithium niobate monocrystals doped with iron (Li Nb O3:Fe)

    International Nuclear Information System (INIS)

    Mastelaro, V.R.; Terrile, N.C.; Nascimento, O.R.; Nicolo, I.

    1988-01-01

    LiNbO 3 :Fe Crystals were analised using EPR Optical absorption spectroscopy and holographic techniques. The site occupied by Fe 3+ is discused and the effect of thermal treatments on Fe 2+ and OH - concentration is studied. The high diffraction efficiency, measure by holographic techniques shows that crystals are particularly good for holographic applications. (author) [pt

  2. Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    He, Jianxin; Zhao, Shuyuan; Lian, Yanping; Zhou, Mengjuan; Wang, Lidan; Ding, Bin; Cui, Shizhong

    2017-01-01

    Highlights: • GN@C/Fe 3 O 4 are synthesized via in-situ electrospinning and thermal treatment. • GN@C/Fe 3 O 4 show unique dark/light banding with a hierarchical porous structure. • Doped graphene induces a uniform distribution of smaller size Fe 3 O 4 nanoparticles. • Doped graphene provides more active sites and accommodate the volume change. • GN@C/Fe 3 O 4 electrode displays a reversible capacity of 872 mAh/g after 100 cycles. - Abstract: Porous graphene-doped carbon/Fe 3 O 4 (GN@C/Fe 3 O 4 ) nanofibers are synthesized via in-situ electrospinning and subsequent thermal treatment for use as lithium-ion battery anode materials. A polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) solution containing ferric acetylacetone and graphene oxide nanosheets is used as the electrospinning precursor solution. The resulting porous GN@C/Fe 3 O 4 nanofibers show unique dark/light banding and a hierarchical porous structure. These nanofibers have a Brunauer–Emmett–Teller (BET) specific surface area of 323.0 m 2 /g with a total pore volume of 0.337 cm 3 /g, which is significantly greater than that of a sample without graphene and C/Fe 3 O 4 nanofibers. The GN@C/Fe 3 O 4 nanofiber electrode displays a reversible capacity of 872 mAh/g at a current density of 100 mA/g after 100 cycles, excellent cycling stability, and superior rate capability (455 mA/g at 5 A/g). The excellent performance of porous GN@C/Fe 3 O 4 is attributed to the material’s unique structure, including its striped topography, hierarchical porous structure, and inlaid flexible graphene, which not only provides more accessible active sites for lithium-ion insertion and high-efficiency transport pathways for ions and electrons, but also accommodates the volume change associated with lithium insertion/extraction. Moreover, the zero-valent iron and graphene in the porous nanofibers enhance the conductivity of the electrodes.

  3. Optical fabrication of large area photonic microstructures by spliced lens

    Science.gov (United States)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  4. How lithium atoms affect the first hyperpolarizability of BN edge-doped graphene.

    Science.gov (United States)

    Song, Yao-Dong; Wu, Li-Ming; Chen, Qiao-Ling; Liu, Fa-Kun; Tang, Xiao-Wen

    2016-01-01

    How do lithium atoms affect the first hyperpolarizability (β0) of boron-nitrogen (BN) edge-doped graphene. In this work, using pentacene as graphene model, Lin@BN-1 edge-doped pentacene and Lin@BN-2 edge-doped pentacene (n = 1, 5) were designed to study this problem. First, two models (BN-1 edge-doped pentacene, and BN-2 edge-doped pentacene ) were formed by doping the BN into the pentacene with different order, and then Li@BN-1 edge-doped pentacene and Li@ BN-2 edge-doped pentacene were obtained by substituting the H atom in BN edge-doped pentacene with a Li atom. The results show that the first hyperpolarizabilities of BN-1 edge-doped pentacene and Li@BN-1 edge-doped pentacene were 4059 a.u. and 6249 a.u., respectively; the first hyperpolarizabilities of BN-2 edge-doped pentacene and Li@BN-2 edge-doped pentacene were 2491 a.u. and 4265 a.u., respectively. The results indicate that the effect of Li substitution is to greatly increase the β0 value. To further enhance the first hyperpolarizability, Li5@ BN-1 edge-doped pentacene and Li5@BN-2 edge-doped pentacene were designed, and were found to exhibit considerably larger first hyperpolarizabilities (β0) (12,112 a.u. and 7921a.u., respectively). This work may inspire further study of the nonlinear properties of BN edge-doped graphene.

  5. Enhancement of Dielectric Breakdown Strength and Energy Conversion Efficiency of Niobate Glass-Ceramics by Sc2O3 Doping

    Science.gov (United States)

    Xiao, Shi; Xiu, Shaomei; Yang, Ke; Shen, Bo; Zhai, Jiwei

    2018-01-01

    Niobate glass-ceramics K2O-SrO-Nb2O5-B2O3-Al2O3-SiO2 (KSN-BAS) doped with different amounts of Sc2O3 have been prepared through a melt quenching/controlled crystallization method, and the influence of the Sc2O3 content on their phase composition, microstructure, dielectric performance, and charge-discharge properties investigated. X-ray powder diffraction results showed that the peak positions of the KSr2Nb5O15 phase shifted to higher angle and the glass-ceramic microstructures were significantly improved by Sc2O3 addition. Based on these results, 0.5 mol.% Sc2O3 doping was found to achieve remarkable enhancement in energy storage density, which reached 9.63 ± 0.39 J/cm3 at dielectric breakdown strength of 1450.38 ± 29.01 kV/cm with high conversion efficiency of ˜ 92.1%. For pulsed power applications, discharge speed of 17 ns and power density of 0.48 MW/cm3 were obtained in the glass-ceramic with 0.5 mol.% Sc2O3. These results could provide a new design strategy for high-performance dielectric capacitors.

  6. Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering

    International Nuclear Information System (INIS)

    Bastwoeste, K.; Schwalenberg, S.; Baeumer, Ch.; Kraetzig, E.

    2003-01-01

    Iron-doped lithium-tantalate samples with different compositions ranging from the congruently melting to the stoichiometric one are analyzed by anisotropic holographic scattering. The temperature dependence of the birefringence yields information on the composition of the crystals. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bastwoeste, K.; Schwalenberg, S.; Baeumer, Ch.; Kraetzig, E. [Fachbereich Physik, Universitaet Osnabrueck, D-49069 Osnabrueck (Germany)

    2003-09-01

    Iron-doped lithium-tantalate samples with different compositions ranging from the congruently melting to the stoichiometric one are analyzed by anisotropic holographic scattering. The temperature dependence of the birefringence yields information on the composition of the crystals. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  9. Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots

    International Nuclear Information System (INIS)

    Ruiyi, Li; Yuanyuan, Jiang; Xiaoyan, Zhou; Zaijun, Li; Zhiguo, Gu; Guangli, Wang; Junkang, Liu

    2015-01-01

    Graphical abstract: The study reported a facile synthesis of Li4Ti5O12/nitrogen and sulfur co-doped graphene quantum dots (LTO/N,S-GQDs). The unique architecture and the introduction of N,S-GQDs create both ultrafast electron transfer and electrolyte transport. The as-prepared LTO/N,S-GQDs anode provides prominent advantage of specific capacity, high-rate performance and cycle stability. - Highlights: • We reported a new lithium titanate/nitrogen and sulfur co-doped graphene quantum dots hybrid • The synthesis creates a crystalline interconnected porous framework composed of nanoscale LTO • The unique architecture achieves to maximize the rate performance and enhance the power density • Introduction of N,S-GQDs greatly enhances the electron transfer and the storage lithium capacity • The hybrid anode provides an excellent electrochemical performance for lithium-ion batteries - ABSTRACT: The paper reported a facile synthesis of lithium titanate/nitrogen and sulfur co-doped graphene quantum dots(LTO/N,S-GQDs). Tetrabutyl titanate was dissolved in tertbutanol and heated to refluxing state by microwave irradiation. Then, lithium acetate was added into the mixed solution to produce LTO precursor. The precursor was hybridized with N,S-GQDs in ethanol. Followed by drying and thermal annealing at 500 °C in Ar/H_2 to obtain LTO/N,S-GQDs. The synthesis creates fully crystalline interconnected porous framework composed of nanoscale LTO crystals. The unique architecture achieves to maximize the high-rate performance and enhance the power density. More importantly, the introduction of N,S-GQDs don't almost influence on the electrolyte transport, but greatly improve the electron transfer and the storage lithium capacity. The LTO/N,S-GQDs anode exhibits remarkably enhanced electrochemical performance for lithium ion battery. The specific discharge capacity is 254.2 mAh g"−"1 at 0.1C and 126.5 mAh g"−"1 at 10C. The capacity remains 96.9% at least after 2000 cycles

  10. Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 Nano materials

    CSIR Research Space (South Africa)

    Palaniyandy, Nithyadharseni

    2017-09-01

    Full Text Available In this paper, we show that magnesium and cobalt doped SnO2 (Mg-SnO2 and Co-SnO2) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO2 and zinc doped SnO2 (Zn-Sn...

  11. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  12. Porous Carbon Spheres Doped with Fe_3C as an Anode for High-Rate Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Wu, Jiafeng; Zhou, Rihui; Zuo, Li; Li, Ping; Song, Yonghai; Wang, Li

    2015-01-01

    Highlights: • Novel porous carbon spheres doped with Fe_3C was prepared via hydrothermal reaction. • The resulted material was fabricated as an anode for high-rate lithium-ion batteries. • A stepwise increase profile was shown in the discharge/charge process. • Pseudocapacity was one of the properties owned by the as-prepared anode. - Abstract: The search of advanced anodes has been an important way to satisfy the ever-growing demands on high rate performance lithium-ion batteries (LIBs). It was observed that the capacity of Fe_3C as an anode is larger than its theoretical one, which might be attributed to the pseudocapacity on the interface between the carbide and electrolyte. In this work, a novel carbon sphere doped with Fe_3C nanoparticles was fabricated and tested as the anode in LIBs. In the first place, iron precursors were embedded in the cross-link polymer resorcinol-formaldehyde (RF) spheres via a facile hydrothermal reaction, in which RF served as the carbon source and ethanol as a dispersant agent. Consequently, the hydrothermal products were carbonized successively at 700 °C under inert atmosphere to obtain porous carbon spheres doped with Fe_3C. When the composite severed as an anode in LIBs, its discharge capacity increased to the largest during the first 250-400 cycles, then dropped down to a similar level of that after 1000 cycles at different current rates. The discharge capacity of the composite increased from ∼300 mAh g"−"1 to ∼540 mAh g"−"1 at the current of 100 mA g"−"1 during the initial hundreds cycles, and even a discharge capacity of ∼230 mAh g"−"1 at the current of 2000 mA g"−"1. Moreover, it was observed that a discharge plateau gradually appeared between 0.7∼1.1 V during the first hundreds of cycles. The electrochemical behaviors of the anode before 1000 discharge/charge cycles were compared with that after 1000 discharge/charge cycles by cyclic voltammetry and electrochemical impedance spectroscopy to find

  13. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we obta...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz.......We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...

  14. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation

    Science.gov (United States)

    Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang

    2018-01-01

    The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.

  15. Lithium Iron Orthosilicate Cathode: Progress and Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jiangfeng [College; amp, Physics (CECMP), Soochow University, Suzhou 215006, PR China; Jiang, Yu [College; amp, Physics (CECMP), Soochow University, Suzhou 215006, PR China; Bi, Xuanxuan [Chemical; Li, Liang [College; amp, Physics (CECMP), Soochow University, Suzhou 215006, PR China; Lu, Jun [Chemical

    2017-07-18

    The pursuit of cathodes with a high capacity is remarkably driven by the ever increasing demand of high-energy lithium ion batteries in electronics and transportation. In this regard, polyanionic lithium iron orthosilicate (Li2FeSiO4) offers a promising opportunity because it affords a high theoretical capacity of 331 mAh g–1. However, such a high theoretical capacity of Li2FeSiO4 has frequently been compromised in practice because of the extremely low electronic and ionic conductivity. To address this issue, material engineering strategies to boost the Li storage kinetics in Li2FeSiO4 have proven indispensable. In this Perspective, we will briefly present the structural characteristics, intrinsic physicochemical properties, and electrochemical behavior of Li2FeSiO4. We particularly focus on recent materials engineering of silicates, which is implemented mainly through advanced synthetic techniques and elaborate controls. This Perspective highlights the importance of integrating theoretical analysis into experimental implementation to further advance the Li2FeSiO4 materials.

  16. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  17. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    International Nuclear Information System (INIS)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan; Chakrabarti, Sampa

    2016-01-01

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with the proposed models.

  18. Iron porphyrins doped sol-gel glasses: a chemometric study

    International Nuclear Information System (INIS)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R.

    2000-01-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na) 4 Cl and Fe TCPP(Na) 4 Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established . The variables (Solvent volume, fractional factorial design in two levels, 2 5-1 type, generating 16 total experiments for each Fe P studied. (author)

  19. The secret behind the success of doping nickel oxyhydroxide with iron.

    Science.gov (United States)

    Fidelsky, Vicky; Toroker, Maytal Caspary

    2017-03-15

    Discovering better catalysts for water splitting is the holy grail of the renewable energy field. One of the most successful water oxidation catalysts is nickel oxyhydroxide (NiOOH), which is chemically active only as a result of doping with Fe. In order to shed light on how Fe improves efficiency, we perform Density Functional Theory +U (DFT+U) calculations of water oxidation reaction intermediates of Fe substitutional doped NiOOH. The results are analyzed while considering the presence of vacancies that we use as probes to test the effect of adding charge to the surface. We find that the smaller electronegativity of the Fe dopant relative to Ni allows the dopant to have several possible oxidation states with less energy penalty. As a result, the presence of vacancies which alters local oxidation states does not affect the low overpotential of Fe-doped NiOOH. We conclude that the secret to the success of doping NiOOH with iron is the ability of iron to easily change oxidation states, which is critical during the chemical reaction of water oxidation.

  20. Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Srivastava, Manish; Ojha, Animesh K.; Chaubey, S.; Sharma, Prashant K.; Pandey, Avinash C.

    2010-01-01

    Cobalt doped lithium ferrite nanoparticles were synthesized at different pH by sol-gel method. The effect of pH on the physical properties of cobalt doped lithium ferrite nanoparticles has been investigated. The nanoparticles synthesized at different pH were characterized through X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectroscopy (RS), Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and vibrating sample magnetometer (VSM). The XRD patterns were analyzed to determine the crystal phase of cobalt doped lithium ferrites nanoparticles synthesized at different pH. The XRD results show the formation of impurity free cobalt doped lithium ferrites having ordered phase spinel structure. A similar kind of conclusion was also drawn through the analysis of Raman spectra of the nanoparticles synthesized at different pH. SEM micrographs show that the structural morphology of the nanoparticles is highly sensitive to the pH during the synthesis process. The magnetic properties such as; saturation magnetization (Ms), remnant magnetization (Mr) and coercivety (Hc) have been also investigated and found to be different for the nanoparticles synthesized at different pH, which may be attributed to the different size and surface morphology of the nanoparticles.

  1. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Guo, Shasha; Chen, Yaxin; Shi, Liluo; Dong, Yue; Ma, Jing; Chen, Xiaohong; Song, Huaihe

    2018-04-01

    In this paper, a low-cost and environmental friendly synthesis strategy is proposed to fabricate nitrogen-doped biomass-based ultra-thin carbon nanosheets (N-CNS) with interconnected framework by using soybean milk as the carbon precursor and sodium chloride as the template. The interconnected porous nanosheet structure is beneficial for lithium ion transportation, and the defects introduced by pyridine nitrogen doping are favorable for lithium storage. When used as the anodes for lithium-ion batteries, the N-CNS electrode shows a high initial reversible specific capacity of 1334 mAh g-1 at 50 mA g-1, excellent rate performance (1212, 555 and 336 mAh g-1 at 0.05, 0.5 and 2 A g-1, respectively) and good cycling stability (355 mAh g-1 at 1 A g-1 after 1000 cycles). Furthermore, this study demonstrates the prospects of biomass and soybean milk, as the potential anode for the application of electrochemical energy storage devices.

  2. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, L.S. [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain); Meatza, I. de [Dpto. Energia, CIDETEC, Po Miramon 196, Parque Tecnologico de San Sebastian, 20009 Donostia-San Sebastian (Spain); Martin, M.I., E-mail: imartin@ietcc.csic.e [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain); Bengoechea, M. [Dpto. Energia, CIDETEC, Po Miramon 196, Parque Tecnologico de San Sebastian, 20009 Donostia-San Sebastian (Spain); Cantero, I. [Dpto. I-D-i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain); Rabanal, M.E., E-mail: mariaeugenia.rabanal@uc3m.e [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain)

    2010-03-01

    In the field of materials for lithium ion batteries, the lithium iron phosphate LiFePO{sub 4} has been proven for use as a positive electrode due to its good resistance to thermal degradation and overcharge, safety and low cost. The use of nanostructured materials would improve its efficiency. This work shows the results of the synthesis of nanostructured materials with functional properties for lithium batteries through aerosol techniques. The Spray Pyrolysis method allows synthesizing nanostructured particles with spherical geometry, not agglomerates, with narrow distribution of particle size and homogeneous composition in respect to a precursor solution. Experimental techniques were focused on the morphological (SEM and TEM), structural (XRD and HRTEM-SAED), chemical (EDS) and electrochemical characterization.

  3. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis

    International Nuclear Information System (INIS)

    Gomez, L.S.; Meatza, I. de; Martin, M.I.; Bengoechea, M.; Cantero, I.; Rabanal, M.E.

    2010-01-01

    In the field of materials for lithium ion batteries, the lithium iron phosphate LiFePO 4 has been proven for use as a positive electrode due to its good resistance to thermal degradation and overcharge, safety and low cost. The use of nanostructured materials would improve its efficiency. This work shows the results of the synthesis of nanostructured materials with functional properties for lithium batteries through aerosol techniques. The Spray Pyrolysis method allows synthesizing nanostructured particles with spherical geometry, not agglomerates, with narrow distribution of particle size and homogeneous composition in respect to a precursor solution. Experimental techniques were focused on the morphological (SEM and TEM), structural (XRD and HRTEM-SAED), chemical (EDS) and electrochemical characterization.

  4. Frequency control of a 1163 nm singly resonant OPO based on MgO:PPLN

    NARCIS (Netherlands)

    Gross, P.; Lindsay, I.D.; Lee, Christopher James; Nittmann, M.; Bauer, T.; Bartschke, J.; Warring, U.; Fischer, A.; Kellenbauer, A.; Boller, Klaus J.

    2010-01-01

    We report the realization of a singly resonant optical parametric oscillator (SRO) that is designed to provide narrow-bandwidth, continuously tunable radiation at a wavelength of 1163 nm for optical cooling of osmium ions. The SRO is based on periodically poled, magnesium-oxide-doped lithium niobate

  5. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  6. Iron porphyrins doped sol-gel glasses: a chemometric study

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R. [Soap Paulo Univ (USP), Sao Carlos (Brazil). Inst. de Fisica; Biazzotto, Juliana C.; Serra, Osvaldo A.; Iamamoto, Yassuko [Sao Paulo Univ. (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Ciuffi, Katia J.; Mello, Cesar A.; Oliveira, Daniela C. de [Universidade de Franca , SP (Brazil)

    2000-07-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe (PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na){sub 4}Cl and Fe TCPP(Na){sub 4} Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established. The variables Solvent volume, fractional factorial design in two levels, 2{sup 5-1} type, generating 16 total experiments for each Fe P studied. (author)

  7. Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage

    International Nuclear Information System (INIS)

    Geng, Hongbo; Ming, Hai; Ge, Danhua; Zheng, Junwei; Gu, Hongwei

    2015-01-01

    Graphical abstract: Hollow TiO 2 with mesoporous shell (MHTO) was successfully fabricated by a novel and controllable route, followed by fluorine-doped carbon coating the MHTO (MHTO-C/F), with the aim of enhancing the conductivity and stability of structures. - Highlights: • Anatase TiO 2 hollow spheres with mesoporous shells (MHTO) was fabricated via a facile and controllable route, to improve the lithium ion mobility as well as the stability of the architecture. • Fluorine-doped carbon derived from polyvinylidene difluoride was further encapsulated onto TiO 2 hollow spheres to improve the conductivity. • The composites could provide excellent electrochemical performance, which was desirable for the application of TiO 2 as an anode material in lithium ion batteries. - Abstract: In this manuscript, we demonstrated a facile route for the controllable design of “Fluorine (F)-doped carbon” (C/F)-treated TiO 2 hollow spheres with mesoporous shells (MHTO-C/F). The fabrication of this distinct mesoporous hollow structures and the C/F coating could effectively improve the electrolyte permeability and architectural stability, as well as electrical conductivity and lithium ion mobility. As anticipated, MHTO-C/F has several remarkable electrochemical properties, such as a high specific reversible capacity of 252 mA h g −1 , outstanding cycling stability of more than 210 mA h g −1 after 100 cycles at 0.5 C, and good rate performance of around 123 mA h g −1 at 5 C (1 C = 168 mA g −1 ). These properties are highly beneficial for lithium storage

  8. Optical and physical properties of samarium doped lithium diborate glasses

    Science.gov (United States)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  9. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    Science.gov (United States)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  10. Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly

    Science.gov (United States)

    Tang, Xiaofu; Wen, Guangwu; Song, Yan

    2018-04-01

    We fabricate a novel 3D N-doped graphene/silicon composite for lithium-ion battery anodes, with Si nanoparticles uniformly dispersed and thoroughly embedded in the N-doped graphene matrix. The favorable structure of the composite results in a BET surface area and an average mesopore diameter of 189.2 m2 g-1 and 3.82 nm, respectively. The composite delivers reversible capacities as high as 1132 mA h g-1 after 100 cycles under a current of 5 A g-1 and 1017 mA h g-1 after 200 cycles at 1 A g-1, and exhibits an improved rate capability. The present approach shows promise for the preparation of other high-performance anode materials for lithium-ion batteries.

  11. Dielectric properties of Ga2O3-doped barium iron niobate ceramics

    International Nuclear Information System (INIS)

    Sanjoom, Kachaporn; Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee; Rujijanagul, Gobwute

    2014-01-01

    Ga-doped BaFe 0.5 Nb 0.5 O 3 (Ba(Fe 1-x Ga x ) 0.5 Nb 0.5 O 3 ) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε r > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε r > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Long-Life Lithium-Sulfur Battery Derived from Nori-Based Nitrogen and Oxygen Dual-Doped 3D Hierarchical Biochar.

    Science.gov (United States)

    Wu, Xian; Fan, Lishuang; Wang, Maoxu; Cheng, Junhan; Wu, Hexian; Guan, Bin; Zhang, Naiqing; Sun, Kening

    2017-06-07

    Due to restrictions on the low conductivity of sulfur and soluble polysulfides during discharge, lithium sulfur batteries are unsuitable for further large scale applications. The current carbon based cathodes suffer from poor cycle stability and high cost. Recently, heteroatom doped carbons have been considered as a settlement to enhance the performance of lithium sulfur batteries. With this strategy, we report the low cost activated nori based N,O-doped 3D hierarchical carbon material (ANC) as a sulfur host. The N,O dual-doped ANC reveals an elevated electrochemical performance, which exhibits not only a good rate performance over 5 C, but also a high sulfur content of 81.2%. Further importantly, the ANC represents an excellent cycling stability, the cathode reserves a capacity of 618 mAh/g at 2 C after 1000 cycles, which shows a 0.022% capacity decay per cycle.

  13. Corrosion of iron-base alloys by lithium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1976-01-01

    A review of corrosion mechanisms operating in lithium-iron-base alloy systems is presented along with data obtained with thermal-convection loops of niobium-stabilized 2 1 / 4 percent Cr-1 percent Mo steel and types 304L and 321 stainless steels. A corrosion rate of 2.3 μm/year (0.09 mil/year) was obtained on the 2 1 / 4 percent Cr-1 percent Mo steel at 600 0 C. Considerably more mass transport of alloying constituents and a maximum corrosion rate of about 14 μm/year (0.55 mil/year) was obtained with the austenitic stainless steels. Results of metallography, x-ray fluorescence analysis, scanning electron microscopy, and weight-change data are presented and discussed

  14. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Ruisi Zhang

    2015-05-01

    Full Text Available Application of gel polymer electrolytes (GPE in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol % were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  15. Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries

    Science.gov (United States)

    Wang, Chao; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; Chen, Yanjun; He, Shengnan

    2018-02-01

    The Li2MnSiO4 as a novel cathode material for lithium ion batteries, performs high specific capacity, high thermal stability, low cost and etc. However, it suffers from relatively low electronic conductivity and lithium ion diffusion rate. Herein, we successfully introduce fluorine to Li2MnSiO4 (Li2MnSiO4-xFx, x = 0.00, 0.01, 0.03 and 0.05) to overcome these obstacles. The results show that F doping not only enlarges the lattice parameters but also decreases the particle size, synergistically improving the lithium ion diffusion of Li2MnSiO4. Moreover, F doping increase electronic conductivity of Li2MnSiO4/C by inhibiting the formation of C-O bonds in the carbon layers. Meanwhile, F doping improves the crystallinity and stabilizes the crystal structure of Li2MnSiO4. Finally, the Li2MnSiO3.97F0.03/C with the best electrochemical performances delivers the initial specific discharge capacity of 279 mA h g-1 at 25mA g-1 current density from 1.5 V to 4.8 V. Also, it maintains a higher capacity (201 mA h g-1) than F-free Li2MnSiO4 (145 mA h g-1) after 50 cycles.

  16. Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications

    Science.gov (United States)

    Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.

    Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.

  17. Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles

    OpenAIRE

    Mitchell, K.K. Pohaku; Sandoval, S.; Cortes-Mateos, M. J.; Alfaro, J.G.; Kummel, A. C.; Trogler, W.C.

    2014-01-01

    Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein ...

  18. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, Husam N.

    2012-01-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility

  19. Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage

    International Nuclear Information System (INIS)

    Li, Xiaoyan; Fu, Nianqing; Zou, Jizhao; Zeng, Xierong; Chen, Yuming; Zhou, Limin; Lu, Wei; Huang, Haitao

    2017-01-01

    Graphical abstract: Ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes show exceptional lithium ion storage as anodes. - Abstract: Nanostructured cobalt sulfide based materials with rational design are attractive for high-performance lithium-ion batteries. In this work, we report a multistep method to synthesize ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes (CoS x @HNCNTs). Co-based zeolitic imidazolate framework (ZIF-67) nanotubes are obtained from the reaction between electrospun polyacrylonitrile/cobalt acetate and 2-methylimidazole, followed by the dissolution of template. Next, a combined calcination and sulfidation process is employed to convert the ZIF-67 nanotubes to CoS x @HNCNTs. Benefited from the compositional and structural features, the as-prepared nanostructured hybrid materials deliver superior lithium storage properties with high capacity of 1200 mAh g −1 at 0.25 A g −1 . More importantly, a remarkable capacity of 1086 mAh g −1 can be maintained after 100 cycles at the current density of 0.5 A g −1 . Even at a high rate of 5 A g −1 , a reversible capacity of 592 mAh g −1 after 1600 cycles can still be achieved.

  20. Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage

    International Nuclear Information System (INIS)

    Li, Sheng; Xue, Pan; Lai, Chao; Qiu, Jingxia; Ling, Min; Zhang, Shanqing

    2015-01-01

    The high rate applications such as electric vehicles of the traditional lithium ion batteries (LIBs) are commonly limited by their insufficient electron conductivity and slow mass transport of lithium ions in bulk electrode materials. In order to address these issues, in this work, a simple and up-scalable wet-mechanochemical (wet-ball milling) route has been developed for fabrication of amorphous porous TiO 2 @nitrogen doped graphene (TiO 2 @N-G) nanocomposites. The amorphous phase, unique porous structure of TiO 2 and the surface defects from nitrogen doping to graphene planes have incurred surface controlled reactions, contributing pseudocapacitance to the total capacity of the battery. It plays a dominant role in producing outstanding high rate electrochemical performance, e.g., 182.7 mAh/g (at 3.36 A/g) after 100 cycles. The design and synthesis of electrode materials with enhanced conductivity and surface pseudocapacitance can be a promising way for high rate LIBs.

  1. Effect of iron content on permeability and power loss characteristics ...

    Indian Academy of Sciences (India)

    Administrator

    have been measured by vibrating sample magnetometer (VSM). The permeability of cadmium doped lithium ferrites exhibited higher values than zinc doped lithium ferrites. The power loss of cadmium doped lithium ferrites is lesser as compared to zinc doped lithium ferrites in the frequency range of 50–5000 kHz and at flux.

  2. Tuning hydrogen storage in lithium-functionalized BC2N sheets by doping with boron and carbon.

    Science.gov (United States)

    Qiu, Nian-xiang; Zhang, Cheng-hua; Xue, Ying

    2014-10-06

    First-principles calculations are used to explore the strong binding of lithium to boron- and carbon-doped BC2N monolayers (BC2NBC and BC2NCN, respectively) without the formation of lithium clusters. In comparison to BC2N and BC2NCB, lithium-decorated BC2NBC and BC2NCN systems possess stronger s-p and p-p hybridization and, hence, the binding energy is higher. Lithium becomes partially positively charged by donating electron density to the more electronegative atoms of the sheet. Attractive van der Waals interactions are responsible for binding hydrogen molecules around the lithium atoms. Each lithium atom can adsorb three hydrogen molecules on both sides of the sheet, with an average hydrogen binding energy of approximately 0.2 eV, which is in the range required for practical applications. The BC2NBC-Li and BC2NCN-Li complexes can serve as high-capacity hydrogen-storage media with gravimetric hydrogen capacities of 9.88 and 9.94 wt %, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Guanghui Yuan

    2018-01-01

    Full Text Available A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG, is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g−1 after 200 cycles at 100 mA g−1. Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li+ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  4. Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2018-01-01

    Full Text Available A boron-doped carbon nano-/microballs (BC was successfully obtained via a two-step procedure including hydrothermal reaction (180°C and carbonization (800°C with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

  5. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia

    KAUST Repository

    Casula, Maria F.

    2016-06-10

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. © the Owner Societies 2016.

  6. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia

    KAUST Repository

    Casula, Maria F.; Conca, Erika; Bakaimi, Ioanna; Sathya, Ayyappan; Materia, Maria Elena; Casu, Alberto; Falqui, Andrea; Sogne, Elisa; Pellegrino, Teresa; Kanaras, Antonios G.

    2016-01-01

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. © the Owner Societies 2016.

  7. Peapod-like Li3 VO4 /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors.

    Science.gov (United States)

    Shen, Laifa; Lv, Haifeng; Chen, Shuangqiang; Kopold, Peter; van Aken, Peter A; Wu, Xiaojun; Maier, Joachim; Yu, Yan

    2017-07-01

    Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li 3 VO 4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li 3 VO 4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g -1 at 0.1 A g -1 , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li 3 VO 4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li 3 VO 4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg -1 at a power density of 532 W kg -1 , revealing the potential for application in high-performance and long life energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optical properties of nanocrystalline potassium lithium niobate in the glass system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5).

    Science.gov (United States)

    Ahamad, M Niyaz; Varma, K B R

    2009-08-01

    Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

  9. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    Science.gov (United States)

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  10. Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries

    International Nuclear Information System (INIS)

    Luo, Yao; Liu, Lihu; Qiao, Wencan; Liu, Fan; Zhang, Yashan; Tan, Wenfeng; Qiu, Guohong

    2016-01-01

    Iron oxides exhibit excellent physicochemical properties as functional materials because of the diversity of crystal structure. Nano-sized iron oxides, including akaganite (β-FeOOH), maghemite (γ-Fe_2O_3), ferrihydrite (Fe_5HO_8∙4H_2O) and hematite (α-Fe_2O_3), were prepared by a facile reflux treatment of iron powder in NaClO solution at 50 °C for 12 h. The crystal structures were controlled by adjusting the pH values of reaction systems. Akaganite, maghemite, ferrihydrite, and hematite were formed when pHs were adjusted to 2–4, 6, 8, and 10, respectively. They showed excellent adsorption performance for As(III), and the adsorption capacity was affected by crystal structure as well as specific surface area. The maximum adsorption capacity for akaganite, maghemite, ferrihydrite, and hematite reached 89.8, 79.1, 78.4, and 63.4 mg g"−"1, respectively. Hematite showed lithium storage capacity of 2043 mAh g"−"1 for the first cycle and then kept stable after twenty cycles at a current density of 100 mA g"−"1. The discharge specific capacity stabilized at 639 mAh g"−"1 after 100 cycles. The as-prepared iron oxides might be applied as potential adsorbents and anode materials for rechargeable lithium-ion battery. - Highlights: • Nano-sized ferric oxides were fabricated by refluxing iron powder in NaClO solutions. • Crystal structures were controlled by adjusting pHs from 2.0 to 10.0 in systems. • Akaganite exhibited the largest As(III) adsorption capacity of 89.8 mg g"−"1. • Hematite had lithium storage capacity of 639 mAh g"−"1 after 100 cycles.

  11. Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yao; Liu, Lihu; Qiao, Wencan; Liu, Fan [College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 (China); Zhang, Yashan [Department of Chemistry, University of Connecticut, Storrs, 55 North Eagleville Road, Storrs, CT, 06269 (United States); Tan, Wenfeng [College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 (China); Qiu, Guohong, E-mail: qiugh@mail.hzau.edu.cn [College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 (China)

    2016-02-15

    Iron oxides exhibit excellent physicochemical properties as functional materials because of the diversity of crystal structure. Nano-sized iron oxides, including akaganite (β-FeOOH), maghemite (γ-Fe{sub 2}O{sub 3}), ferrihydrite (Fe{sub 5}HO{sub 8}∙4H{sub 2}O) and hematite (α-Fe{sub 2}O{sub 3}), were prepared by a facile reflux treatment of iron powder in NaClO solution at 50 °C for 12 h. The crystal structures were controlled by adjusting the pH values of reaction systems. Akaganite, maghemite, ferrihydrite, and hematite were formed when pHs were adjusted to 2–4, 6, 8, and 10, respectively. They showed excellent adsorption performance for As(III), and the adsorption capacity was affected by crystal structure as well as specific surface area. The maximum adsorption capacity for akaganite, maghemite, ferrihydrite, and hematite reached 89.8, 79.1, 78.4, and 63.4 mg g{sup −1}, respectively. Hematite showed lithium storage capacity of 2043 mAh g{sup −1} for the first cycle and then kept stable after twenty cycles at a current density of 100 mA g{sup −1}. The discharge specific capacity stabilized at 639 mAh g{sup −1} after 100 cycles. The as-prepared iron oxides might be applied as potential adsorbents and anode materials for rechargeable lithium-ion battery. - Highlights: • Nano-sized ferric oxides were fabricated by refluxing iron powder in NaClO solutions. • Crystal structures were controlled by adjusting pHs from 2.0 to 10.0 in systems. • Akaganite exhibited the largest As(III) adsorption capacity of 89.8 mg g{sup −1}. • Hematite had lithium storage capacity of 639 mAh g{sup −1} after 100 cycles.

  12. Structural and Electrochemical Study of Vanadium-Doped TiO2 Ramsdellite with Superior Lithium Storage Properties for Lithium-Ion Batteries.

    Science.gov (United States)

    Pérez-Flores, Juan Carlos; Hoelzel, Markus; García-Alvarado, Flaviano; Kuhn, Alois

    2016-04-04

    Titanium-oxide-based materials are considered attractive and safe alternatives to carbonaceous anodes in Li-ion batteries. In particular, the ramsdellite form TiO2 (R) is known for its superior lithium-storage ability as the bulk material when compared with other titanates. In this work, we prepared V-doped lithium titanate ramsdellites with the formula Li0.5 Ti1-x Vx O2 (0≤x≤0.5) by a conventional solid-state reaction. The lithium-free Ti1-x Vx O2 compounds, in which the ramsdellite framework remains virtually unaltered, are easily obtained by a simple aqueous oxidation/ion-extraction process. Neutron powder diffraction is used to locate the Li channel site in Li0.5 Ti1-x Vx O2 compounds and to follow the lithium extraction by difference-Fourier maps. Previously delithiated Ti1-x Vx O2 ramsdellites are able to insert up to 0.8 Li(+) per transition-metal atom. The initial gravimetric capacities of 270 mAh g(-1) with good cycle stability under constant current discharge conditions are among the highest reported for bulk TiO2 -related intercalation compounds for the threshold of one e(-) per formula unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  14. N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries with greatly enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Guanghui, Wu; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2015-01-01

    Graphical abstract: The study reported a novel N-doped graphene/graphite anode material for lithium ion batteries. The composite exhibits a largely enhanced electrochemical performance. The study also provides an attractive approach for the fabrication of various graphite-based materials for high power batteries. Display Omitted -- Highlights: • The paper developed a new N-doped graphene/graphite composite for lithium ion battery • The composite contains a three-dimensional graphene framework with rich of open pores • The hybrid offers a higher electrical conductivity when compared with pristine graphite • The hybrid electrode provides a greatly enhanced electrochemical performance • The study provides a prominent approach for fabrication of graphite-based materials -- ABSTRACT: Present graphite anode cannot meet the increasing requirement of electronic devices and electric vehicles due to its low specific capacity, poor cycle stability and low rate capability. The study reported a promising N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries. Herein, graphite oxide and urea were dispersed in ultrapure water and partly reduced by ascorbic acid. Followed by mixing with graphite and hydrothermal treatment to produce graphene oxide/graphite hydrogel. The hydrogel was dried and finally annealed in Ar/H 2 to obtain N-doped graphene/graphite composite. The result shows that all of graphite particles was dispersed in three-dimensional graphene framework with a rich of open pores. The open pore accelerates the electrolyte transport. The graphene framework works as a conductive agent and graphite particle connector and improves the electron transfer. Electrical conductivity of the composite reaches 5912 S m −1 , which is much better than that of the pristine graphite (4018 S m −1 ). The graphene framework also acts as an expansion absorber in the anodes of lithium ion battery to relieve the large strains

  15. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun, E-mail: lijuna@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li, Yang [Department of chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhou, Zhongxiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Guo, Ruyan; Bhalla, Amar S. [Multifunctional Electronic Materials and Device Research Lab, Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio 78249 (United States)

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  16. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.; Rai, S.B., E-mail: sbrai49@yahoo.co.in

    2017-02-15

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} and Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3+}/Yb{sup 3

  17. Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Franger, Sylvain; Cruz, Manuel; Morales, Julián; Santos-Peña, Jesús

    2014-01-01

    Highlights: • Thermal treatment of boron phosphate with LiFePO 4 provides electrode materials with high performance in lithium half-cells: 160 mAh·g -1 (90% of theoretical capacity) under C/5 rate • The products are composites containing boron-modified LiFePO 4 , FePO 4 and an amorphous phase with ionic diffusion properties • The boron treatment affects textural, conductive and lithium diffusivity of the electrode material leading to higher performance • A limited boron-doping of the phospholivine structure is observed - Abstract: Electrode materials with homogeneous distribution of boron were obtained by heating mixtures of nanosized carbon-coated lithium iron phosphate and BPO 4 in 3-9% weight at 700 °C. The materials can be described as nanocomposites containing i) LiFePO 4 , possibly doped with a low amount of boron, ii) FePO 4 and iii) an amorphous layer based on Li 4 P 2 O 7 -derived material that surrounds the phosphate particles. The thermal treatment with BPO 4 also triggered changes in the carbon coating graphitic order. Galvanostatic and voltammetric studies in lithium half-cells showed smaller polarisation, higher capacity and better cycle life for the boron-doped composites. For instance, one of the solids, called B 6 -LiFePO 4 , provided close to 150 and 140 mAhg -1 (87% and 81% of theoretical capacity, respectively) under C/2.5 and C regimes after several cycles. Improved specific surface area, carbon graphitization, conductivity and lithium ion diffusivity in the boron-doped phospholivine network account for this excellent rate performance. The properties of an amorphous layer surrounding the phosphate particles also account for such higher performance

  18. Epitaxial growth of Er, Ti doped LiNbO3 films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Yoshiga, Tsuyoshi; Kajitani, Naofumi; Takeda, Yuki; Sato, Shoji; Wakita, Koichi; Ohnishi, Naoyuki; Hotta, Kazutoshi; Kurachi, Masato

    2006-01-01

    Erbium (Er 3+ ) doped lithium niobate (LiNbO 3 ) thick films were deposited on z-cut congruent LiNbO 3 (LN) substrate by the sol-gel method from the 0.20 mol/dm 3 precursor solution containing various Er 3+ concentration and 0.10 mol/dm 3 poly(vinyl alcohol) (PVA), and their crystal characteristics were evaluated. The Er 3+ concentration in the LN film was controlled by the Er 3+ concentration in the starting solution. The orientation relationships between Er doped LN films and substrates were determined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy, and (006) oriented Er doped LN epitaxial layers with parallel epitaxial relationships could be grown on the z-cut LN wafer. Moreover, it was made clear from the electron beam diffraction measurements that the film came to be polycrystalline, when the Er concentration was over 3 mol%. The refractive index of Er-doped LN films decreased with increasing Er concentration. 1.5 mol% Ti: 1.0 mol% Er LN films, which acted as a waveguide, were prepared by our so-gel method. It showed the 1530 nm emission by 980 nm excitation, which was considered to be due to the Er 3+ corresponding to the 4 I 13/2 → 4 I 15/2 transition. (author)

  19. Phase transition in lithium ammonium sulphate doped with cesium metal ions

    Science.gov (United States)

    Gaafar, M.; Kassem, M. E.; Kandil, S. H.

    2000-07-01

    Effects of doped cesium (C s+) metal ions (with different molar ratios n) on the phase transition of lithium ammonium sulphate LiNH 4SO 4 system have been studied by measuring the specific heat Cp( T) of the doped systems in the temperature range from 400 to 480 K. The study shows a peculiar phase transition of the pure system ( n=0) characterized by double distinct peaks, changed to a single sharp and narrow one as a result of the doping process. The measurements exhibit different effects of enhanced molar ratios of dopants on the phase transition behaviour of this system. At low dopant content ( n≤3%), the excess specific heat (Δ Cp) max at the transition temperature T1 decreases till a minimum value at n=0.8%, then it increases gradually. In this case, Δ Cp( T) behaviour is varied quantitatively and not modified. Enhanced dopant content ( n>3%) has a pronounced effect on the critical behaviour, which is significantly changed and considerably modified relative to the pure system. In addition, broadening of the critical temperature region, and decrease of (Δ Cp) max associated with changes of the Landau expansion coefficients are obtained and discussed. The study deals with the contribution of the thermally excited dipoles to the specific heat in the ferroelectric region and shows that their energy depends on doping.

  20. Characterization of pure and copper-doped iron tartrate crystals

    Indian Academy of Sciences (India)

    Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu Fe(1−) C4H4O6 · H2O, where = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies ...

  1. Mössbauer studies of iron doped poly(methyl methacrylate) before ...

    Indian Academy of Sciences (India)

    Unknown

    Mössbauer studies of iron doped poly(methyl methacrylate) before and after ion beam modification. D R S SOMAYAJULU, C N MURTHY†, D K AWASTHI‡, N V PATEL and M SARKAR. Physics Department, Faculty of Science, MS University of Baroda, Vadodara 390 002, India. †Applied Chemistry Department, Faculty ...

  2. Remarkable Strontium B-Site Occupancy in FerroelectricPb(Zr1-xTix)O3 Solid Solutions Doped with Cryolite-Type StrontiumNiobate

    Energy Technology Data Exchange (ETDEWEB)

    Feltz, A.; Schmidt-Winkel, P.; Schossman, M.; Booth, C.H.; Albering, J.

    2007-04-26

    New high-performance ferroelectric materials based on Pb(Zr{sub 1-x}Ti{sub x})O{sub 3} (PZT) that are doped with cryolite-type strontium niobate (SNO, Sr{sub 4}(Sr{sub 2-2y/3}Nb{sub 2+2y/3})O{sub 11+y}V{sub 0,1-y} with 0 {le} y {le} 1), hence denoted PZT:SNO, and their microscopic structure are described. The combination of exceptional piezoelectric properties, i.e. a piezoelectric strain constant of d{sub 33} {approx} 760 pm/V, with excellent stability and degradation resistance makes ferroelectric PZT:SNO solid solutions very attractive for use in novel and innovative piezoelectric actuator and transducer applications. Extended X-ray absorption fine-structure (EXAFS) analyses of PZT:SNO samples revealed that {approx}10 % of the Sr cations occupy the nominal B-sites of the perovskite-type PZT host lattice. This result was supported by EXAFS analyses of both a canonical SrTiO{sub 3} perovskite and two SNO model and reference compounds. Fit models that do not account for Sr cations on B-sites were ruled out. A clear Sr-Pb peak in Fourier transformed EXAFS data visually confirmed this structural model. The generation of temporary oxygen vacancies and the intricate defect chemistry induced by SNO-doping of PZT are crucial for the exceptional materials properties exhibited by PZT:SNO materials.

  3. Effects of lithium iodide doping on devolatilization characteristics of brown coals; Yoka lithium no tenka ga kattan no kanetsu henka katei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, J.; Kumagai, H.; Hayashi, J.; Chiba, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    In order to discuss effects of lithium iodide (LiI) doping on condensation structure of brown coals during heating, spectral changes were measured by using an in-situ FT-IR. It was found that the LiI doping accelerates weight reduction due to heating, and the doping effect is affected by coal structure. Both of Loy Yang (LY) coal and its LiI doped coal (DLY) had absorption intensity of the FT-IR spectra decreased with rising temperature, and the absorption center belonging to an OH group shows different shifts between the LY and DLY coals. This indicates that the LiI doping has affected the change in hydrogen bonding patterns associated with heating. Both of South Banko (SB) and LY coals had the absorption spectral intensity in the OH group decreased as the weight reduction (conversion) rate increased. Reduction in the OH groups associated with heating is caused by volatilization and condensation reaction in light-gravity fraction. However, in the case of equal conversion rate, the LiI doped coal shows higher spectral intensity than the original coal, with the LiI doping suppressing reduction in the OH groups. It appears that the doping suppresses the condensation reaction between the OH groups. 2 refs., 6 figs., 1 tab.

  4. Visible light absorbance enhanced by nitrogen embedded in the surface layer of Mn-doped sodium niobate crystals, detected by ultra violet - visible spectroscopy, x-ray photoelectron spectroscopy, and electric conductivity tests

    Energy Technology Data Exchange (ETDEWEB)

    Molak, A., E-mail: andrzej.molak@us.edu.pl; Pilch, M. [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-28

    Sodium niobate crystals doped with manganese ions, Na(NbMn)O{sub 3}, were annealed in a nitrogen N{sub 2} flow at 600, 670, and 930 K. It was verified that simultaneous doping with Mn ions and annealing in nitrogen enhanced the photocatalytic features of sodium niobate. The transmission in the ultraviolet-visible range was measured at room temperature. The absorbance edge is in the range from 3.4 to 2.3 eV. The optical band gap E{sub gap} = 1.2–1.3 eV was evaluated using the Tauc relation. Crystals annealed at 670 K and 930 K exhibited an additional shift of the absorption edge of ∼20–40 nm toward longer wavelengths. The optical energy gap narrowed as a result of the superimposed effect of Mn and N co-doping. The x-ray photoelectron spectroscopy test showed that N ions incorporated into the surface layer. The valence band consisted of O 2p states hybridized with Nb 4d, Mn 3d, and N 2s states. The disorder detected in the surroundings of Nb and O ions decreased due to annealing. The binding energy of oxygen ions situated within the surface layer was E{sub B} ≈ 531 eV. The other contributions were assigned to molecular contamination. The contribution centered at 535.5 eV vanished after annealing at 600 K and 670 K. The contribution centered at 534 eV vanished after annealing at 930 K. The N{sub 2} annealing partly removed carbonates from the surfaces of the samples. In the 480–950 K range, the electric conductivity activation energy, E{sub a} = 0.7–1.2 eV, was comparable with the optical E{sub gap}. The electric permittivity showed dispersion in the 0.1–800 kHz range that corresponds to the occurrence of defects.

  5. Properties of lithium aluminate for application as an OSL dosimeter

    International Nuclear Information System (INIS)

    Twardak, A.; Bilski, P.; Marczewska, B.; Lee, J.I.; Kim, J.L.; Gieszczyk, W.; Mrozik, A.; Sądel, M.; Wróbel, D.

    2014-01-01

    Several samples of undoped and carbon or copper doped lithium aluminate (LiAlO 2 ) were prepared in an attempt to achieve a material, which can be applicable in optically stimulated luminescence (OSL) dosimetry. All investigated samples are highly sensitive to ionizing radiation and show good reproducibility. The undoped and copper doped samples exhibit sensitivity several times higher than that of Al 2 O 3 :C, while sensitivity of the carbon doped samples is lower. The studied samples exhibit significant fading, but dynamics of signal loss is different for differently doped samples, what indicates a possibility of improving this characteristic by optimizing dopant composition. - Highlights: • OSL properties of lithium aluminate for personal dosimetry. • Doping influence on OSL fading of lithium aluminate. • Application of lithium aluminate in thermal neutron measurements

  6. Anomalous Lithium Adsorption Propensity of Monolayer ...

    Indian Academy of Sciences (India)

    longer life cycle, thus an ideal candidate to replace the conventional ... tion in the development of lithium ion batteries as they ... interaction of graphene with lithium based on density ... aromatic hydrocarbons.30 Lithium doping increases.

  7. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides

    International Nuclear Information System (INIS)

    Hashim, S.; Alajerami, Y.S.M.; Ramli, A.T.; Ghoshal, S.K.; Saleh, M.A.; Abdul Kadir, A.B.; Saripan, M.I.; Alzimami, K.; Bradley, D.A.; Mhareb, M.H.A.

    2014-01-01

    Lithium potassium borate (LKB) glasses co-doped with TiO 2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of 60 Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z eff =8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10 3 Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software. - Highlights: • Lithium potassium borate glass doped with Ti and Mg was prepared. • The material is close to soft tissues in terms of Zeff. • The radiation sensitivity is about 12 times lower than that of TLD-100. • The signal fades about 8% in 10 days and 17% in 3 months

  8. Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped LiZn ferrite

    Directory of Open Access Journals (Sweden)

    Xiaona Jiang

    2017-05-01

    Full Text Available Bi-doped LiZn ferrites with different iron deficiencies were fabricated by a conventional ceramic method. Anisotropy constant (K1 was calculated and ferromagnetic resonance (FMR linewidth (ΔH was investigated. Crystalline anisotropy broadening linewidth (ΔHa and porosity broadening linewidth (ΔHp were derived by an approximate calculation based on dipolar narrowing theory, which play a significant role in contributions to FMR linewidth and occupy more than 90 % of ΔH. Physical and static magnetic properties of LiZn ferrite with iron deficiency are presented, which supports a decline in linewidths with increasing iron deficiency. Iron deficiency makes K1, ΔHa and ΔHp reduce. The results also show that ΔHp is the majority of contributions to ΔH in Bi-doped LiZn ferrite and densification is an effective method to decrease ΔH.

  9. A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu

    2017-08-25

    Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.

  10. Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    Science.gov (United States)

    Surzhikov, A. P.; Galtseva, O. V.; Vasendina, E. A.; Vlasov, V. A.; Nikolaev, E. V.

    2016-02-01

    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 0C within- 120 min.

  11. Doping dependence of the anisotropic quasiparticle interference in NaFe(1-x)Co(x)As iron-based superconductors.

    Science.gov (United States)

    Cai, Peng; Ruan, Wei; Zhou, Xiaodong; Ye, Cun; Wang, Aifeng; Chen, Xianhui; Lee, Dung-Hai; Wang, Yayu

    2014-03-28

    We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where fourfold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always fourfold symmetric. We argue this implies small nematic susceptibility and, hence, insignificant nematic fluctuation in optimally doped iron pnictides. Since TC is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.

  12. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    NARCIS (Netherlands)

    Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first

  13. Effect of iron content on permeability and power loss characteristics of

    Indian Academy of Sciences (India)

    Magnetic properties like saturation magnetization, coercivity, retentivity have been measured by vibrating sample magnetometer (VSM). The permeability of cadmium doped lithium ferrites exhibited higher values than zinc doped lithium ferrites. The power loss of cadmium doped lithium ferrites is lesser as compared to zinc ...

  14. Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Reddy, MV

    2014-05-01

    Full Text Available at ScienceDirect Electrochimica Acta jo ur nal ho me p age: www.elsev ier .com/ locate /e lec tac ta Graphical Abstract Electrochimica Acta xxx (2013) xxx–xxx Studies on Bare and Mg-doped LiCoO2 as a cathode material for Lithium ion Batteries M.V. Reddy... for Lithium ion Batteries M.V. Reddy∗, Thor Wei Jie, Charl J. Jafta, Kenneth I. Ozoemena, Mkhulu K. Mathe, A. Sree Kumaran Nair, Soo Soon Peng, M. Sobri Idris, Geetha Balakrishna, Fabian I. Ezema, B.V.R. Chowdari • Layered compounds, Li...

  15. Site preference of rare earth doping in palladium-iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzer, Christine; Schulz, Anne; Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2014-12-15

    The solid solutions (Ca{sub 1-y}RE{sub y}Fe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8} with RE = La, Ce, and Pr were synthesized by solid state methods and characterized by X-ray powder diffraction with subsequent Rietveld refinements [(CaFeAs){sub 10}Pt{sub 3}As{sub 8}-type structure (''1038 type''), P anti 1, Z = 1]. Substitution levels (Ca/RE, Fe/Pd, and Pd/□) obtained from Rietveld refinements coincide well with the nominal values according to EDS and the linear courses of the lattice parameters as expected from the ionic radii. The RE atoms favor the one out of five calcium sites, which is eightfold coordinated by arsenic. This leads to significant stabilization of the structure, and especially prevents palladium over-doping in the iron-arsenide layers as observed in the pristine compound (CaFe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8}. While the stabilization energy is estimated to about 40 kJ.mol{sup -1} by electronic structure calculations, the reason for the diminished Fe/Pd substitution through RE doping is still not yet understood. We suggest that the electrons transferred from RE{sup 3+} to the (Fe{sub 1-x}Pd{sub x})As layer makes higher palladium concentrations unfavorable. Anyway the reduced palladium doping enables superconductivity with critical temperatures up to 20 K (onset) in the RE doped Pd1038 samples, which could not be obtained earlier due to palladium over-doping in the active iron-arsenide layers. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Dielectric properties of Li doped Li-Nb-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Perentzis, G.; Horopanitis, E.E.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Durman, V.; Saly, V.; Packa, J. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava (Slovakia)

    2007-03-15

    Lithium niobate LiNbO{sub 3} was prepared as a thin film layered structure deposited on stainless steel substrate using e-gun evaporation. The Li doping was provided for by the formation of Li-Nb-O/Li/LiNb-O sandwich structure and annealing at about 250 C. AC impedance spectroscopy measurements were performed on the samples at temperatures from the interval between 28 and 165 C and in a frequency range of 10{sup -3} to 10{sup 6} Hz. Using the values Z' and Z'' at different frequencies, the dielectric parameters - parts of the complex permittivity {epsilon}' and {epsilon}'' and loss tangent tan {delta} were calculated. The results prove validity of the proposed equivalent circuit containing parallel RC elements connected in series where the first RC element represents the bulk of material and the second RC element belongs to the double layer at the metal interface. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effect of iron doping concentration on magnetic properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Sharma, Prashant K.; Dutta, Ranu K.; Pandey, Avinash C.; Layek, Samar; Verma, H.C.

    2009-01-01

    The ZnO:Fe nanoparticles of mean size 3-10 nm were synthesized at room temperature by simple co-precipitation method. The crystallite structure, morphology and size estimation were performed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Fe doping concentration. The magnetic behavior of the nanoparticles of ZnO with varying Fe doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong ferromagnetic behavior, however at higher doping percentage of Fe, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Fe-Fe ions suppressed the ferromagnetism at higher doping concentrations of Fe. Room-temperature Moessbauer spectroscopy investigation showed Fe 3+ nature of the iron atom in ZnO matrix.

  18. Lithium doped calcium phosphate cement maintains physical mechanical properties and promotes osteoblast proliferation and differentiation.

    Science.gov (United States)

    Li, Li; Wang, Renchong; Li, Baichuan; Liang, Wei; Pan, Haobo; Cui, Xu; Tang, Jingli; Li, Bing

    2017-07-01

    Calcium phosphate cement (CPC) has been widely used in bone tissue repairing due to its physical mechanical properties and biocompatibility. Addition of trace element to CPC has shown promising evidence to improve the physical properties and biological activities of CPC. Lithium (Li) has effect on osteoblast proliferation and differentiation. In this study, we incorporated Li to CPC and examined the physical properties of Li/CPC and its effect on osteoblast proliferation and differentiation. We found that Li doped CPC maintained similar setting time, pore size distribution, compressive strength, composition, and morphology as CPC without Li. Additionally, Li doped CPC improved osteoblast proliferation and differentiation significantly compared to CPC without Li. To our knowledge, our results, for the first time, show that Li doped CPC has beneficial effect on osteoblast in cell culture while keeps the excellent physical-mechanical properties of CPC. This study will lead to potential application of Li doped CPC in bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 944-952, 2017. © 2016 Wiley Periodicals, Inc.

  19. Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jiayu; Peng, Changqing; Zhang, Lili; Fu, Yongsheng; Li, Hang; Zhao, Xianmin; Zhu, Junwu; Wang, Xin

    2017-01-01

    Highlights: •N-doped carbon@MoSe 2 core/branch was prepared via a facile calcining method. •N-doped carbon core and MoSe 2 branch can be simultaneously constructed. •PANI played vital roles in the reduction of MoO 3 and elemental Se. •The core/branch structure remarkably improved the lithium storage performance. -- Abstract: Here, we report a one-step simultaneous-construction approach to synthesize N-doped carbon@MoSe 2 core/branch nanostructures by heating a mixture of MoO 3 /PANI hybrids and Se powders in argon atmosphere, without requiring a cumbersome multi-step process or highly toxic reducing agents. It is found that in the construction process, PANI played a crucial role in the reduction of MoO 3 and Se to form MoSe 2 nanosheet branches, while PANI itself was decomposed and carbonized into N-doped carbon nanorod cores. Interestingly, the coexistence of 1D and 2D nanostructures in the N-doped carbon@MoSe 2 core/branch system leads to excellent lithium storage performance, including a large discharging capacity of 1275 mA h g −1 , a high reversible lithium extraction capacity of 928 mA h g −1 and a coulombic efficiency of 72.8%. After 100 cycles, the NDC@MS electrode still delivers a reversible capacity of 906 mA h g −1 with a capacity retention ratio of 97.6%. The superior electrochemical properties can be attributed to the unique core/branch nanostructure of NDC@MS and the synergistic effect between the N-doped carbon nanorod cores and MoSe 2 nanosheet branches.

  20. Heteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries.

    Science.gov (United States)

    Pappas, George S; Ferrari, Stefania; Huang, Xiaobin; Bhagat, Rohit; Haddleton, David M; Wan, Chaoying

    2016-01-09

    Long cycle performance is a crucial requirement in energy storage devices. New formulations and/or improvement of "conventional" materials have been investigated in order to achieve this target. Here we explore the performance of a novel type of carbon nanospheres (CNSs) with three heteroatom co-doped (nitrogen, phosphorous and sulfur) and high specific surface area as anode materials for lithium ion batteries. The CNSs were obtained from carbonization of highly-crosslinked organo (phosphazene) nanospheres (OPZs) of 300 nm diameter. The OPZs were synthesized via a single and facile step of polycondensation reaction between hexachlorocyclotriphosphazene (HCCP) and 4,4'-sulphonyldiphenol (BPS). The X-ray Photoelectron Spectroscopy (XPS) analysis showed a high heteroatom-doping content in the structure of CNSs while the textural evaluation from the N₂ sorption isotherms revealed the presence of micro- and mesopores and a high specific surface area of 875 m²/g. The CNSs anode showed remarkable stability and coulombic efficiency in a long charge-discharge cycling up to 1000 cycles at 1C rate, delivering about 130 mA·h·g -1 . This study represents a step toward smart engineering of inexpensive materials with practical applications for energy devices.

  1. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Mohammad Jafar; Mousavi-Khoshdel, Morteza, E-mail: mmousavi@iust.ac.ir; Targholi, Ehsan

    2017-05-01

    In this report, we investigate the adsorption energies and diffusion characteristics of Li atom on doped silicenes using first principles density functional theory (DFT) calculations. Our results show that the Li adsorption energy on doped silicenes is larger than pristine silicene. Based on our calculations, Al- and B-doped silicenes, due to creating an electron-deficient center in silicene, show a stronger interaction with Li atom compared to P- and N-doped silicenes. The obtained data for surface and perpendicular diffusion of Li atom show the easier mobility of Li on some doped silicenes compared to pristine silicene. According to our results, doping silicene with nitrogen and phosphorus atoms facilitates the Li surface mobility (diffusion barrier of 0.05 and 0.11 eV, respectively versus 0.18 eV for pure silicene) while, doping with aluminum, speed Li perpendicular diffusion (1.47 eV versus 1.67 eV for pristine silicene). The adsorption energy and diffusion barrier values, show the advantage of doped silicenes for use in LIBs with respect to pure silicene. - Highlights: • Calculation of adsorption energy of lithium on pristine and doped silicenes. • Surface and perpendicular diffusion barrier of Li on doped silicenes. • Examination of electronic structure of Li adsorbed doped silicenes.

  2. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Momeni, Mohammad Jafar; Mousavi-Khoshdel, Morteza; Targholi, Ehsan

    2017-01-01

    In this report, we investigate the adsorption energies and diffusion characteristics of Li atom on doped silicenes using first principles density functional theory (DFT) calculations. Our results show that the Li adsorption energy on doped silicenes is larger than pristine silicene. Based on our calculations, Al- and B-doped silicenes, due to creating an electron-deficient center in silicene, show a stronger interaction with Li atom compared to P- and N-doped silicenes. The obtained data for surface and perpendicular diffusion of Li atom show the easier mobility of Li on some doped silicenes compared to pristine silicene. According to our results, doping silicene with nitrogen and phosphorus atoms facilitates the Li surface mobility (diffusion barrier of 0.05 and 0.11 eV, respectively versus 0.18 eV for pure silicene) while, doping with aluminum, speed Li perpendicular diffusion (1.47 eV versus 1.67 eV for pristine silicene). The adsorption energy and diffusion barrier values, show the advantage of doped silicenes for use in LIBs with respect to pure silicene. - Highlights: • Calculation of adsorption energy of lithium on pristine and doped silicenes. • Surface and perpendicular diffusion barrier of Li on doped silicenes. • Examination of electronic structure of Li adsorbed doped silicenes.

  3. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti [Physics Department, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Applied Physics Department, Guru Jambheshwara University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  4. X-shooter spectroscopy of young stellar objects in Lupus. Lithium, iron, and barium elemental abundances

    Science.gov (United States)

    Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.

    2017-09-01

    Aims: With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: 1) to derive the lithium abundance for the almost complete sample ( 90%) of known class II stars in the Lupus I, II, III, and IV clouds; 2) to perform chemical tagging of a region where few iron abundance measurements have been obtained in the past, and no determination of the barium content has been done up to now. We also investigated possible barium enhancement at the very young age of the region, as this element has become increasingly interesting in the last few years following the evidence of barium over-abundance in young clusters, the origin of which is still unknown. Methods: Using the X-shooter spectrograph mounted on the Unit 2 (UT2) at the Very Large Telescope (VLT), we analyzed the spectra of 89 cluster members, both class II (82) and class III (7) stars. We measured the strength of the lithium line at λ6707.8 Å and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also derived the iron and barium abundances using the spectral synthesis method and the code MOOG. The veiling contribution was taken into account in the abundance analysis for all three elements. Results: We find a dispersion in the strength of the lithium line at low effective temperatures and identify three targets with severe Li depletion. The nuclear age inferred for these highly lithium-depleted stars is around 15 Myr, which exceeds by an order of magnitude the isochronal one. We derive a nearly solar metallicity for the members whose spectra could be analyzed. We find that Ba is over-abundant by 0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar

  5. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-06-26

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  6. Dielectric properties of Ga{sub 2}O{sub 3}-doped barium iron niobate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoom, Kachaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand); Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Rujijanagul, Gobwute [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand)

    2014-08-15

    Ga-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} (Ba(Fe{sub 1-x}Ga{sub x}){sub 0.5}Nb{sub 0.5}O{sub 3}) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε{sub r} > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε{sub r} > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Processing and characterization of lead-free ceramics on the base of sodium-potassium niobate

    Science.gov (United States)

    Politova, E. D.; Golubko, N. V.; Kaleva, G. M.; Mosunov, A. V.; Sadovskaya, N. V.; Stefanovich, S. Yu.; Kiselev, D. A.; Kislyuk, A. M.; Panda, P. K.

    Lead-free sodium-potassium niobate-based piezoelectric materials are most intensively studied in order to replace the widely used Pb-based ones. In this work, the effects of modification of compositions by donor and acceptor dopants in the A- and B-sites of perovskite lattice on structure, dielectric, ferroelectric, and piezoelectric properties of ceramics from Morphotropic Phase Boundary in the (1-x)(K0.5Na0.5)NbO3-xBaTiO3 system and in compositions with x=0.05 and 0.06 additionally doped by Ni3+ cations have been studied.

  8. Processing and characterization of lead-free ceramics on the base of sodium–potassium niobate

    Directory of Open Access Journals (Sweden)

    E. D. Politova

    2018-02-01

    Full Text Available Lead-free sodium–potassium niobate-based piezoelectric materials are most intensively studied in order to replace the widely used Pb-based ones. In this work, the effects of modification of compositions by donor and acceptor dopants in the A- and B-sites of perovskite lattice on structure, dielectric, ferroelectric, and piezoelectric properties of ceramics from Morphotropic Phase Boundary in the (1−x(K0.5Na0.5NbO3–xBaTiO3 system and in compositions with x=0.05 and 0.06 additionally doped by Ni3+ cations have been studied.

  9. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  10. Radiation defects in some oxide compounds

    International Nuclear Information System (INIS)

    Kaczmarek, S.M.

    1999-01-01

    Yttrium aluminium garnets, yttrium aluminium perovskite, strontium and barium lanthanum and gadolinium gallates, lithium niobate and tantalate as-grown crystals and doped by diffusion with rare-earth (Nd, Dy, Er, Tm, Ho, Pr, Ce, Eu) and ions of the first transition series (Mn, Cr, Cu, Fe) were investigated optically and using electron spin resonance method before and after gamma, electron and proton irradiation. (author)

  11. Electromechanical properties of engineered lead free potassium sodium niobate based materials =

    Science.gov (United States)

    Rafiq, Muhammad Asif

    vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 ?C/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. (Abstract shortened by ProQuest.).

  12. Synthesis and Electrochemical Properties of Fe-doped V6O13 as Cathode Material for Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    YUAN Qi

    2018-01-01

    Full Text Available Fe-doped V6O13 was synthesized via a facile hydrothermal method after preparing precursor in order to improve the discharge capacity and cycle performance of V6O13 cathode material at high-lithium state. XRD, SEM and XPS were employed to characterize the phase, morphology and valence of the Fe-doped V6O13. Meanwhile, the electrochemical performance was analyzed and researched. Different morphologies and electrochemical performances of Fe-doped V6O13 were obtained via doping different contents of Fe3+ ion. The sample 0.02 presented the largest thickness of nanosheets (the thickness of 600-900nm and clearance between layers. The Fe-doped V6O13 has a better electrochemical performance than that of pure V6O13. The sample 0.02 exhibits the best electrochemical performance, the initial discharge specific capacity is 433mAh·g-1 and the capacity retention is 47.1% after 100 cycles.

  13. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    Science.gov (United States)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  14. The use of one-dimensional Niobate to improve MgH{sub 2} hydrogen sorption

    Energy Technology Data Exchange (ETDEWEB)

    Brum, M.C., E-mail: mbrum@metalmat.ufrj.br; Conceição, M.O.T. da; Jardim, P.M.; Santos, D.S. dos

    2014-12-05

    Highlights: • The 1-D Niobate W and Niobate C catalysts were synthesized. • The composites MgH{sub 2} + 5 wt.% catalysts were obtained by 20 min of mechanical milling. • The synthesized wired-like material 1-D Niobate W showed to be a promising catalyst. • A desorption capacity of 6.0 wt.%. of H{sub 2} was attained in 10 min with MgH{sub 2} + 5 wt.% 1-D Niobate W. - Abstract: A study was performed on the hydrogen absorption/desorption properties of MgH{sub 2} with the addition of Niobates synthesized by hydrothermal treatment of Nb{sub 2}O{sub 5} in 10 M NaOH. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to evaluate their synthesis and show the morphological and crystallographic differences between Nb{sub 2}O{sub 5} used as a precursor and the Niobates produced, the one-dimensional wired type, 1-D Niobate W and the cuboid one, Niobate C. The ball milling of MgH{sub 2} with the Niobates was performed within only 20 min and afterwards the Differential Scanning Calorimetry (DSC) examination of MgH{sub 2} + 1-D Niobate W and MgH{sub 2} + Niobate C showed the shifting of the peaks for both composites in comparison to pure MgH{sub 2}. The influence of the two different types of Niobates and also the Nb{sub 2}O{sub 5} on the hydrogen absorption/desorption capacity was evaluated at 350 °C. The higher absorption and desorption values were attained by the MgH{sub 2} + 5 wt.% 1-D Niobate W composite, reaching, in 10 min, approximately 5.0 wt.% and 6.0 wt.%, respectively. The possible mechanism involved in such property improvement upon adding niobium based catalysts with different morphology and structure was discussed.

  15. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes

    DEFF Research Database (Denmark)

    Loftager, Simon; García Lastra, Juan Maria; Vegge, Tejs

    2017-01-01

    a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3......Lithium iron borate (LiFeBO3) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and a small volume change during operation. Yet, challenges relating to severe air- and moisture-induced degradation necessitate the application of a protective...... coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating–electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present...

  16. Thermoluminescence study of Cu and Ag doped lithium tetraborate samples synthesized by water/solution assisted method

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, S.; Kumar, S.; Vallejo, M.; Sosa, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, 37150 Leon, Guanajuato (Mexico); Velusamy, J., E-mail: thiya93@gmail.com [Centro de Investigaciones en Optica, Apdo. Postal 1-948, Leon, Guanajuato (Mexico)

    2016-10-15

    In this paper lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) was produced by water/solution assisted synthesis method. Transition metals, such as Cu and Ag were used to dope Li{sub 2}B{sub 4}O{sub 7} in order to enhance its thermoluminescent properties. The heating temperature parameters for synthesis were 750 degrees Celsius for 2 hours and 150 degrees Celsius for another 2 hours. The samples produced by water assisted method were doped at different doping percentage (0.08, 0.12, 0.5, 0.1 and 1%) of Cu and Ag. Pellets of samples were prepared and there were irradiated with different doses (58, 100, 500 and 945 mGy) by using and X-ray source. The characteristics of undoped and doped Li{sub 2}B-4O{sub 7} were determined by X-ray diffraction (XRD), scanning electron microscopy (Sem), photoluminescence and ultraviolet-visible spectroscopy. The chemical composition and their morphologies of the obtained Li{sub 2}B{sub 4}O{sub 7} and Li{sub 2}B{sub 4}O{sub 7}:Cu, Ag was confirmed by XRD and Sem results. The most intense peak of the XRD pattern of the lithium tetraborate sample was determined by comparing to the reference data and was found to have a tetragonal structure. The thermoluminescent glow curves of the pellets exposed to different doses exhibited a clear response to X-ray irradiation. Especially Li{sub 2}B{sub 4}O{sub 7}:Cu presented a good glow curve in all kind of doses. The experimental results showed that this could have good potential applications in radiation dosimetry. The order of kinetics (b), frequency factor (s) and activation energy (E) or the trapping parameters were calculated using peak shape method. (Author)

  17. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery.

    Science.gov (United States)

    Zhou, Xiangyang; Chen, Sanmei; Yang, Juan; Bai, Tao; Ren, Yongpeng; Tian, Hangyu

    2017-04-26

    A facile process is developed to prepare SnO 2 -based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO 2 composites (SnO 2 @N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO 2 @N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g -1 at a constant current of 200 mA g -1 after 180 charge-discharge processes and excellent rate capability. The excellent performance can be primarily ascribed to the unique structure of 1D okra-like SnO 2 in SnO 2 @N-RGO which are actually composed of a great number of SnO 2 primary crystallites and numerous well-defined internal voids, can effectively alleviate the huge volume change of SnO 2 , and facilitate the transport and storage of lithium ions. Besides, the structural stability acquires further improvement when the okra-like SnO 2 are wrapped by N-doped graphene. Similarly, this synthetic strategy can be employed to synthesize other high-capacity metal-oxide-based composites starting from various metal-organic frameworks, exhibiting promising application in novel electrode material field of lithium-ion batteries.

  18. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Yeol [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Na Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Shin, Dong Yun [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Park, Hee-Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Lee, Sang-Soo [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Joon Kwon, S. [Korea Institute of Science and Technology, Nanophotonics Research Center (Korea, Republic of); Lim, Dong-Hee [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Bong, Ki Wan [Korea University, Department of Chemical and Biological Engineering (Korea, Republic of); Son, Jeong Gon, E-mail: jgson@kist.re.kr [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Jin Young, E-mail: jinykim@kist.re.kr [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of)

    2017-03-15

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe{sub 2}O{sub 3}) microparticles with melamine. The heat treatment leads to transformation of Fe{sub 2}O{sub 3} microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E{sub 1/2} of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm{sup −2} indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  19. Lithium, rubidium and cesium ion removal using potassium iron(III) hexacyanoferrate(II) supported on polymethylmethacrylate

    International Nuclear Information System (INIS)

    Shabana Taj; Din Muhammad; Ashraf Chaudhry, M.; Muhammad Mazhar

    2011-01-01

    Potassium iron(III) hexacyanoferrate(II) supported on poly methyl methacrylate, has been developed and investigated for the removal of lithium, rubidium and cesium ions. The material is capable of sorbing maximum quantities of these ions from 5.0, 2.5 and 4.5 M HNO 3 solutions respectively. Sorption studies, conducted individually for each metal ion, under optimized conditions, demonstrated that it was predominantly physisorption in the case of lithium ion while shifting to chemisorption with increasing ionic size. Distribution coefficient (K d ) values followed the order Cs + > Rb + > Li + at low concentrations of metal ions. Following these findings Cs + can preferably be removed from 1.5 to 5 M HNO 3 nuclear waste solutions. (author)

  20. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Lu, Mingjie; Yu, Wenhua; Shi, Jing; Liu, Wei; Chen, Shougang; Wang, Xin; Wang, Huanlei

    2017-01-01

    Highlights: •Self-doped carbon architectures with nitrogen, oxygen, and sulfur are derived from Carrageen. •The obtained carbon materials exhibit excellent electrochemical property. •The strategy provides a one-step synthesis route to design advanced anodes for batteries. -- Abstract: Nitrogen, oxygen and sulfur tridoped porous carbons have been successfully synthesized from natural biomass algae-Carrageen by using a simultaneous carbonization and activation procedure. The doped carbons with sponge-like interconnected architecture, partially ordered graphitic structure, and abundant heteroatom doping perform outstanding features for electrochemical energy storage. When tested as lithium-ion battery anodes, a high reversible capacity of 839 mAh g −1 can be obtained at the current density of 0.1 A g −1 after 100 cycles, while a high capacity of 228 mAh g −1 can be maintained at 10 A g −1 . Tested against sodium, a high specific capacity of 227 can be delivered at 0.1 A g −1 after 100 cycles, while a high capacity of 109 mAh g −1 can be achieved at 10 A g −1 . These results turn out that the doped carbons would be potential anode materials for lithium- and sodium-ion batteries, which can be achieved by a one-step and large-scale synthesis route. Our observation indicates that heteroatom doping (especially sulfur) can significantly promote ion storage and reduce irreversible ion trapping to some extent. This work gives a general route for designing carbon nanostructures with heteroatom doping for efficient energy storage.

  1. Studies on physicochemical properties of pure and iron substituted chromium niobates, Cr{sub 1−x}Fe{sub x}NbO{sub 4} (x = 0, 0.2, 0.4, 0.6)

    Energy Technology Data Exchange (ETDEWEB)

    Sree Rama Murthy, A.; Gnanasekar, K.I. [Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Govindaraj, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Jayaraman, V., E-mail: vjram@igcar.gov.in [Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Umarji, A.M. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2017-03-15

    Highlights: • Systematic increase in unit cell volume on iron substitution. • Similar mechanism of electronic conduction in these compositions. • Decrease in quadrupole splitting with increasing iron content in Mössbauer spectra. • Iron and chromium exhibited multiple valences, as identified from X-ray photoelectron spectra. - Abstract: Pristine and iron substituted chromium niobates (Cr{sub 1−x}Fe{sub x}NbO{sub 4} with x = 0, 0.2, 0.4 and 0.6) are prepared by solid-state synthesis and phase characterised by X-ray diffraction. Microstructure is determined using scanning electron microscope and micro-chemical analysis is performed by energy dispersive X-ray analysis (EDX). The current-voltage characteristics are studied in the temperature range of 423–723 K. The electrical conductivity of sintered pellets is measured by impedance spectroscopy. Temperature dependent magnetization studies are performed using vibrating sample magnetometer (VSM) and room temperature Bohr magneton number is calculated from the magnetic susceptibility data. The conductivity is passed through a minimum at x = 0.2 in Cr{sub 1−x}Fe{sub x}NbO{sub 4} for x = 0–0.6. X-ray photoelectron spectroscopic studies revealed the surface non-stoichiometry in these compositions.

  2. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  3. High-temperature thermal conductivity of uranium chromite and uranium niobate

    International Nuclear Information System (INIS)

    Fedoseev, D.V.; Varshavskaya, I.G.; Lavrent'ev, A.V.; Oziraner, S.N.; Kuznetsova, D.G.

    1979-01-01

    The technique of determining thermal conductivity coefficient of uranium niobate and uranium chromite on heating with laser radiation is described. Determined is the coefficient of free-convective heat transfer (with provision for a conduction component) by means of a standard specimen. The thermal conductivity coefficients of uranium chromite and niobate were measured in the 1300-1700 K temperature range. The results are presented in a diagram form. It has been calculated, that the thermal conductivity coefficient for uranium niobate specimens is greater in comparison with uranium chromite specimens. The thermal conductivity coefficients of the materials mentioned depend on temperature very slightly. Thermal conductivity of the materials considerably depends on their porosity. The specimens under investigation were fabricated by the pressing method and had the following porosity: uranium chromite - 30 %, uranium niobate - 10 %. Calculation results show, that thermal conductivity of dense uranium chromite is higher than thermal conductivity of dense uranium niobate. The experimental error equals approximately 20 %, that is mainly due to the error of measuring the temperature equal to +-25 deg, with a micropyrometer

  4. Heteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    George S. Pappas

    2016-01-01

    Full Text Available Long cycle performance is a crucial requirement in energy storage devices. New formulations and/or improvement of “conventional” materials have been investigated in order to achieve this target. Here we explore the performance of a novel type of carbon nanospheres (CNSs with three heteroatom co-doped (nitrogen, phosphorous and sulfur and high specific surface area as anode materials for lithium ion batteries. The CNSs were obtained from carbonization of highly-crosslinked organo (phosphazene nanospheres (OPZs of 300 nm diameter. The OPZs were synthesized via a single and facile step of polycondensation reaction between hexachlorocyclotriphosphazene (HCCP and 4,4′-sulphonyldiphenol (BPS. The X-ray Photoelectron Spectroscopy (XPS analysis showed a high heteroatom-doping content in the structure of CNSs while the textural evaluation from the N2 sorption isotherms revealed the presence of micro- and mesopores and a high specific surface area of 875 m2/g. The CNSs anode showed remarkable stability and coulombic efficiency in a long charge–discharge cycling up to 1000 cycles at 1C rate, delivering about 130 mA·h·g−1. This study represents a step toward smart engineering of inexpensive materials with practical applications for energy devices.

  5. Laser induced Erasable Patterns in a N* Liquid Crystal on an Iron Doped Lithium Niobate (Postprint)

    Science.gov (United States)

    2017-10-12

    4685; Clearance Date: 22 Sep 2017. This document contains color . Journal article published in Optics Express, Vol. 25, No. 21, 22 Sep 2017. © 2017...be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives , and...erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives , and touch sensitive devices in a

  6. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  7. Pd- and Ca-doped iron oxide for ethanol vapor sensing

    International Nuclear Information System (INIS)

    Neri, G.; Bonavita, A.; Ipsale, S.; Rizzo, G.; Baratto, C.; Faglia, G.; Sberveglieri, G.

    2007-01-01

    Iron oxide thin films doped with Ca and Pd, prepared by a liquid-phase deposition method (LPD) from aqueous solution, have been investigated as potential ethanol gas sensors. SEM and XRD analyses were used to characterize Fe 2 O 3 LPD films. Hematite (α-Fe 2 O 3 ), having an average crystallite size in the range between 20 and 30 nm, was the only crystalline phase detected on all undoped and doped films. The electrical response towards ethanol (100-500 ppm) has been studied in the temperature range of 300-500 deg. C. Both Ca and Pd promoters have shown a positive effect on the sensitivity of Fe 2 O 3 films at the lower temperature investigated, whereas at higher temperature the undoped Fe 2 O 3 film has shown better performances. The sensing properties of undoped and doped Fe 2 O 3 thin films towards different interfering gases like NO 2 , CO and NH 3 have been also investigated, showing that the selectivity to ethanol benefits of the Ca addition

  8. Thermal plasma fabricated lithium niobate-tantalate films on sapphire substrate

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Yoshida, T.; Yamamoto, H.; Terashima, K.

    2003-01-01

    We report the deposition of LiNb 1-x Ta x O 3 (0≤x≤1) films on (001) sapphire substrates in soft vacuum using a radio frequency thermal plasma. The growth rate, crystallinity, c-axis orientation, and surface roughness were examined as functions of substrate temperature, precursor feed rate, and substrate surface condition. The film Nb/Ta ratio was well controlled by using an appropriate uniform mixture of lithium-niobium and lithium-tantalum alkoxide solutions. The epitaxy and crystallinity of the films were much improved when the film growth rate was raised from 20 to 180-380 nm/min, where the films with the (006) rocking curve full width at half maximum values as low as 0.12 deg. -0.2 deg. could be produced. The film roughness could be reduced by using a liquid precursor with higher metal concentrations, achieving the root-mean-square value on the order of 5 nm. The refractive indices of the films are in good correspondence with their composition and crystallinity

  9. Iron single crystal growth from a lithium-rich melt

    Science.gov (United States)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  10. Electrical and magnetic behavior of iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lenin, Nayagam; Karthik, Arumugam; Sridharpanday, Mathu; Selvam, Mohanraj; Srither, Saturappan Ravisekaran; Arunmetha, Sundarmoorthy; Paramasivam, Palanisamy; Rajendran, Venkatachalam, E-mail: veerajendran@gmail.com

    2016-01-01

    Iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) ferromagnetic nanoparticles with different concentrations of Fe (0.2, 0.4, and 0.6 mol) were synthesized using precipitation route with precursor source such as nickel nitrate and iron nitrate solutions. The prepared magnetic nanopowders were investigated through X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscope, X-ray fluorescence, Brunauer–Emmett–Teller, vibrating sample magnetometer, and electrochemical impedance spectroscopy to explore the structural, ferromagnetic, and dielectric properties. The obtained XRD pattern shows formation of iron doped nickel titanate in orthorhombic structure. The crystallite size ranges from 57 to 21 nm and specific surface area ranges from 11 to 137 m{sup 2} g{sup −1}. The hysteresis loops of nanomagnetic materials show ferromagnetic behavior with higher magnitude of coercivity (H{sub c}) 867–462 Oe. The impedance analysis of ferromagnetic materials explores the ferro-dielectric behavior with enhanced properties of Fe{sup 3+}/NiTiO{sub 3} nanoparticles at higher Fe content. - Highlights: • Iron doped nickel titanate magnetic nanoparticles. • Ferromagnetic magnetism behavior with higher magnitude of coercivity. • Dielectric behavior of ferromagnetic nanoparticles with increase of Fe content.

  11. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Chao Yan

    2017-01-01

    Full Text Available Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge–charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.

  12. Physical-chemical characterization and biological assessment of simple and lithium-doped biological-derived hydroxyapatite thin films for a new generation of metallic implants

    Science.gov (United States)

    Popescu, A. C.; Florian, P. E.; Stan, G. E.; Popescu-Pelin, G.; Zgura, I.; Enculescu, M.; Oktar, F. N.; Trusca, R.; Sima, L. E.; Roseanu, A.; Duta, L.

    2018-05-01

    We report on the synthesis by PLD of simple and lithium-doped biological-origin hydroxyapatite (HA) films. The role of doping reagents (Li2CO3, Li3PO4) on the morphology, structure, chemical composition, bonding strength and cytocompatibility of the films was investigated. SEM investigations of the films evidenced a surface morphology consisting of particles with mean diameters of (5-7) μm. GIXRD analyses demonstrated that the synthesized structures consisted of HA phase only, with different degrees of crystallinity, mainly influenced by the doping reagent type. After only three days of immersion in simulated body fluid, FTIR spectra showed a remarkable growth of a biomimetic apatitic film, indicative of a high biomineralization capacity of the coatings. EDS analyses revealed a quasi-stoichiometric target-to-substrate transfer, the values inferred for the Ca/P ratio corresponding to a biological apatite. All synthesized structures displayed a hydrophilic behavior, suitable for attachment of osteoblast cells. In vitro cell viability tests showed that the presence of Li2CO3 and Li3PO4 as doping reagents promoted the hMSC growth on film surfaces. Taking into consideration these enhanced characteristics, corroborated with a low fabrication cost generated by sustainable resources, one should consider the lithium-doped biological-derived materials as promising prospective solutions for a next generation of coated implants with rapid osteointegration.

  13. Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation

    International Nuclear Information System (INIS)

    Liu, Guang; He, Dongying; Yao, Rui; Zhao, Yong; Li, Jinping

    2017-01-01

    Highlights: •A sol-gel method for synthesis of Fe-doping Ni 2 P nanocatalysts was present. •Fe-doping Ni 2 P sample exhibited high OER activity after electrochemical activation. •In situ formed Fe-NiOOH layer on activated Fe-Ni 2 P provided more active OER sites. -- Abstract: In this work, we reported a facile and safe route for synthesis of Ni 2 P nanocatalysts by sol-gel method and demonstrated that the oxygen evolution reaction (OER) activity of Ni 2 P nanocatalysts can be dramatically enhanced by iron-doping and electrochemical activation. Compared with the fresh Fe-doped Ni 2 P nanocatalysts, a stable Fe-NiOOH layer was formed on the surface of Fe-doped Ni 2 P nanoparticles by electrochemical activation, thus promoting the charge transfer ability and surface electrochemically active sites generation for the electrochemical activated Fe-doped Ni 2 P nanocatalysts, ultimately accounting for the improvement of water oxidation activity, which was evidenced by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectra (XPS) as well as high-resolution transmission electron microscopy (HR-TEM) measurements. For water oxidation reaction in 1 M KOH solution, the electrochemical activated Fe-doped Ni 2 P nanocatalysts can attain 10 mA/cm 2 at an overpotential of 292 mV with Tafel slope of 50 mV/dec, which was also much better than that of individual Ni 2 P, Fe 2 P nanocatalysts as well as commercial RuO 2 electrocatalyst. Moreover, long-term stability performance by chronoamperometric and chronopotentiometric tests for the activated Fe-doped Ni 2 P nanocatalysts exhibited no obvious decline within 56 h. It was demonstrated that modulating the OER catalytic activity for metal phosphide by iron-doping and electrochemical activation may provide new opportunities and avenues to engineer high performance electrocatalysts for water splitting.

  14. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    Science.gov (United States)

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  15. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries

    Science.gov (United States)

    Xiao, Wei; Wang, Zhiyan; Zhang, Yan; Fang, Rui; Yuan, Zun; Miao, Chang; Yan, Xuemin; Jiang, Yu

    2018-04-01

    To improve the ionic conductivity as well as enhance the mechanical strength of the gel polymer electrolyte, poly(vinylidene fluoride-hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with the organic-inorganic hybrid particles poly(methyl methacrylate) -ZrO2 (PMMA-ZrO2) are prepared by phase inversion method, in which PMMA is successfully grafted onto the surface of the homemade nano-ZrO2 particles via in situ polymerization confirmed by FT-IR. XRD and DSC patterns show adding PMMA-ZrO2 particles into P(VDF-HFP) can significantly decrease the crystallinity of the CPE membrane. The CPE membrane doped with 5 wt % PMMA-ZrO2 particles can not only present a homogeneous surface with abundant interconnected micro-pores, but maintain its initial shape after thermal exposure at 160 °C for 1 h, in which the ionic conductivity and lithium ion transference number at room temperature can reach to 3.59 × 10-3 S cm-1 and 0.41, respectively. The fitting results of the EIS plots indicate the doped PMMA-ZrO2 particles can significantly lower the interface resistance and promote lithium ions diffusion rate. The Li/CPE-sPZ/LiCoO2 and Li/CPE-sPZ/Graphite coin cells can deliver excellent rate and cycling performance. Those results suggest the P(VDF-HFP)-based CPE doped with 5 wt % PMMA-ZrO2 particles can become an exciting potential candidate as polymer electrolyte for the lithium ion battery.

  16. Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiaoyang Li

    2018-01-01

    Full Text Available Serving as conductive matrix and stress buffer, the carbon matrix plays a pivotal role in enabling red phosphorus to be a promising anode material for high capacity lithium ion batteries and sodium ion batteries. In this paper, nitrogen-doping is proved to effective enhance the interface interaction between carbon and red phosphorus. In detail, the adsorption energy between phosphorus atoms and oxygen-containing functional groups on the carbon is significantly reduced by nitrogen doping, as verified by X-ray photoelectron spectroscopy. The adsorption mechanisms are further revealed on the basis of DFT (the first density functional theory calculations. The RPNC (red phosphorus/nitrogen-doped carbon composite material shows higher cycling stability and higher capacity than that of RPC (red phosphorus/carbon composite anode. After 100 cycles, the RPNC still keeps discharge capacity of 1453 mAh g−1 at the current density of 300 mA g−1 (the discharge capacity of RPC after 100 cycles is 1348 mAh g−1. Even at 1200 mA g−1, the RPNC composite still delivers a capacity of 1178 mAh g−1. This work provides insight information about the interface interactions between composite materials, as well as new technology develops high performance phosphorus based anode materials.

  17. High-rate and ultralong cycle-life LiFePO{sub 4} nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinpeng, E-mail: goldminer@sina.com; Wang, Youlan

    2016-12-30

    Highlights: • B-doped carbon decorated LiFePO{sub 4} has been fabricated for the first time. • The LiFePO{sub 4}@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO{sub 4}@C. • The LiFePO{sub 4}@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO{sub 4}. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO{sub 4} is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO{sub 4}@B{sub 0.4}-C can reach 164.1 mAh g{sup −1} at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g{sup −1}). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g{sup −1} and can be maintained at 124.5 mAh g{sup −1} after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO{sub 4}@B-C composite for high-performance lithium-ion batteries.

  18. Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries

    International Nuclear Information System (INIS)

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Zhu, Jing; Liu, Yang; Dai, Lei; Wang, Ling

    2016-01-01

    Highlights: • LiTi 2 (PO 4 ) 3 @N-doped carbon anode was prepared by in-situ coating approach for aqueous lithium ion batteries. • The well-proportioned N-doped carbon layer and loose nanoporous structure was obtained using urea as nitrogen source and pore former. • LiTi 2 (PO 4 ) 3 @N-doped carbon demonstrates excellent rate performance and good cycling stability. - Abstract: In this paper, LiTi 2 (PO 4 ) 3 @N-doped carbon anode has been synthesized by in situ carbon coating approach. The well-proportioned N-doped carbon layer and loose nanoporous structure was obtained by using urea as nitrogen source and pore former. LiTi 2 (PO 4 ) 3 @N-doped carbon as anode demonstrates much better rate capability than LiTi 2 (PO 4 ) 3 @carbon in ALIBs. The optimized anode delivers the discharge capacity of 93.7 mAh g −1 and 74.2 mAh g −1 at rates of 10C and 20C, 22.5 mAh g −1 and 50.0 mAh g −1 larger than that of LiTi 2 (PO 4 ) 3 @carbon. Moreover, LiTi 2 (PO 4 ) 3 @N-doped carbon exhibits excellent cycling performance with capacity retention of 84.3% at 5C after 1000 cycles. As verified, the well-proportioned N-doped carbon layer could reduce charge transfer resistance and improve electrical conductivity. The loose nanoporous structure could shorten pathway and facilitate diffusion for Li ion. Therefore, LiTi 2 (PO 4 ) 3 @N-doped carbon gets the superior electrochemical properties benefiting from those two characteristics.

  19. Characterization and control of the electro-optic phase dispersion in lithium niobate modulators for wide spectral band interferometry applications in the mid-infrared.

    Science.gov (United States)

    Heidmann, S; Ulliac, G; Courjal, N; Martin, G

    2017-05-10

    Mid-infrared wideband modulation (3.2-3.7 μm) is achieved in an electro-optic Y-junction using lithium niobate waveguides in TE polarized light. Comparison between external (scanning mirror) and internal (electro-optical) modulation allows studying the chromatic polynomial dependence of the relative phase. Internal modulation consists on a V AC ramp up to 370 V at 0.25 Hz, applied over 14 mm long electrodes with 14 μm separation. The overall V π L π obtained is 17.5 V·cm, meaning that using a 300 V generator we can actively scan and track the whole L-band (3.4-4.1 μm) wideband fringes. We observe a dramatic reduction of the coherence length under electro-optic modulation, which is attributed to a strong nonlinear dependence of the electro-optic effect on the wavelength upon application of such high voltages. We study the effect of applying a V DC offset, from -50  V to 200 V (50 V step). We characterize this dispersion and propose an improved dispersion model that is used to show active dispersion compensation in wideband fringe modulation in the mid-infrared. This can be useful for long baseline interferometry or pulse compression applications when light propagates along fibers, in order to compensate for chromatic effects that induce differential dispersion or pulse spreading, respectively.

  20. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry

    Science.gov (United States)

    Shibagaki, Toshio; Merla, Yu; Offer, Gregory J.

    2018-01-01

    Diagnosing the state-of-health of lithium ion batteries in-operando is becoming increasingly important for multiple applications. We report the application of differential thermal voltammetry (DTV) to lithium iron phosphate (LFP) cells for the first time, and demonstrate that the technique is capable of diagnosing degradation in a similar way to incremental capacity analysis (ICA). DTV has the advantage of not requiring current and works for multiple cells in parallel, and is less sensitive to temperature introducing errors. Cells were aged by holding at 100% SOC or cycling at 1C charge, 6D discharge, both at an elevated temperature of 45 °C under forced air convection. Cells were periodically characterised, measuring capacity fade, resistance increase (power fade), and DTV fingerprints. The DTV results for both cells correlated well with both capacity and power, suggesting they could be used to diagnose SOH in-operando for both charge and discharge. The DTV peak-to-peak capacity correlated well with total capacity fade for the cycled cell, suggesting that it should be possible to estimate SOC and SOH from DTV for incomplete cycles within the voltage hysteresis region of an LFP cell.

  1. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.

    Science.gov (United States)

    Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi

    2018-03-01

    The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improvements of uniformity and stoichiometry for zone-leveling Czochralski growth of MgO-doped LiNbO3 crystals

    International Nuclear Information System (INIS)

    Tsai, C.B.; Hsu, W.T.; Shih, M.D.; Tai, C.Y.; Hsieh, C.K.; Hsu, W.C.; Hsu, R.T.; Lan, C.W.

    2006-01-01

    The zone-leveling Czochralski (ZLCz) technique is a continuous feeding process and can be used for the growth of near-stoichiometric lithium niobate (SLN) single crystals. However, the finite crucible length can cause the variation of the zone length and thus the composition and stoichiometry, especially in the growth of a large diameter crystal. To solve the problems, several approaches were proposed for the growth of 4 cm-diameter 1 mol% MgO-doped SLN. The modification of the hot zone to minimize the zone variation was found useful for the uniformity, but the stoichiometry was inadequate even with the zone composition up to 60 mol% Li 2 O. A Li-excess feed was further used and a good Li/Nb ratio was obtained. Adding K 2 O (16 mol%) into the solution zone was useful as well, but it was inferior to using the Li-excess feed. In addition, a much lower growth rate was needed for getting an inclusion-free crystal

  3. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions

    International Nuclear Information System (INIS)

    Diamandescu, L.; Vasiliu, F.; Tarabasanu-Mihaila, D.; Feder, M.; Vlaicu, A.M.; Teodorescu, C.M.; Macovei, D.; Enculescu, I.; Parvulescu, V.; Vasile, E.

    2008-01-01

    Iron- and europium-doped (≤1 at.%) TiO 2 nanoparticles powders have been synthesized by a hydrothermal route at 200 deg. C, starting with TiCl 4 , FeCl 3 .6H 2 O and EuCl 3 .6H 2 O. The structure, morphology and optical peculiarities were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), extended X-ray absorption fine structure (EXAFS), Moessbauer spectroscopy and UV-vis measurements. The photocatalytic performance was analysed in the photodegradation reaction of phenol. Rietveld refinements of XRD patterns reveal that the as-prepared samples consist in iron- and europium-doped TiO 2 in the tetragonal anatase structural shape, with particle size as low as 15 nm. By means of Moessbauer spectroscopy on both 57 Fe and 151 Eu isotopes as well as by EXAFS analyses, the presence of Fe 3+ and/or Eu 3+ ions in the nanosized powders has been evidenced. It was found that iron and europium ions can substitute for titanium in the anatase structure. From the UV-vis reflection spectra, by using the transformed Kubelka-Munk functions, the band gap energy (E g ) of the hydrothermal samples has been determined in comparison with that of Degussa P-25 photocatalyst. A decrease of E g from 2.9 eV found for Degussa photocatalyst to 2.8 eV for the titania doped with 1 at.% Fe has been evidenced, indicating a valuable absorption shift (∼20 nm) towards visible light region. However, the best photocatalytic activity in the photodegradation reaction of phenol was evidenced for the hydrothermal sample, TiO 2 : 1 at.% Fe, 0.5 at.% Eu, in both UV and visible light regions. The photocatalytic activities of iron-doped and iron-europium-codoped samples are high and practically the same only in visible light. The photocatalytic properties in correlation with the structural and optical peculiarities of the hydrothermal samples are discussed

  4. Influence of Fe{sup 3+} substitution on the dielectric and ferroelectric characteristics of Lead Indium Niobate

    Energy Technology Data Exchange (ETDEWEB)

    Divya, A.S.; Kumar, V., E-mail: vkumar10@yahoo.com

    2015-07-15

    Highlights: • Prepared phase-pure Fe{sup 3+}-substituted Lead Indium Niobate, Pb[(In{sub 0.50−x}Fe{sub x})Nb{sub 0.50}]O{sub 3} by sol–gel method. • Spontaneous Relaxor (R) → Ferroelectric (FE) transition observed for the composition with x = 0.20. • Local structural rearrangement responsible for R → FE transition has been confirmed by Raman spectroscopy. - Abstract: Lead Indium Niobate, Pb(In{sub 0.50}Nb{sub 0.50})O{sub 3} (PIN) is a complex perovskite that exhibits Relaxor (R) characteristics. In this study, we report the synthesis of phase-pure compositions in the system Pb[(In{sub 0.50−x}Fe{sub x})Nb{sub 0.50}]O{sub 3} by sol–gel method and discuss the influence of isovalent substitution of Indium by Iron on the dielectric and ferroelectric characteristics. Spontaneous transition to the Ferroelectric (FE) phase has been observed for the composition having x = 0.20. Local structural rearrangements responsible for R → FE transition have also been studied by Raman spectroscopy and are discussed in detail.

  5. Lithium niobate. Defects, photorefraction and ferroelectric switching

    Energy Technology Data Exchange (ETDEWEB)

    Volk, Tatyana [Russian Academy of Sciences, Inst. for Crystallography, Moscow (Russian Federation); Woehlecke, Manfred [Osnabrueck Univ. (Germany). Fachbereich Physik

    2008-07-01

    The book presents the current state of studies of point defects, both intrinsic and extrinsic (impurities, radiation centers, etc.), in LiNbO{sub 3}. The contribution of intrinsic defects to photoinduced charge transport, i.e. to the photorefraction, is explained. The photorefractive and optical properties of LiNbO{sub 3} crystals with different stoichiometry and of those doped with so-called ''optical-damage resistant'' impurities controlling the intrinsic defect structure are described in detail. Applications included are to the problem of non-erasable recording of photorefractive holograms in LiNbO{sub 3} and the current situation of studies in the ferroelectric switching and domain structure of LiNbO{sub 3}, as well as the creation of periodically-poled structures for the optical frequency conversion. (orig.)

  6. Enhanced Manifold of States Achieved in Heterostructures of Iron Selenide and Boron-Doped Graphene

    Directory of Open Access Journals (Sweden)

    Valentina Cantatore

    2017-10-01

    Full Text Available Enhanced superconductivity is sought by employing heterostructures composed of boron-doped graphene and iron selenide. Build-up of a composite manifold of near-degenerate noninteracting states formed by coupling top-of-valence-band states of FeSe to bottom-of-conduction-band states of boron-doped graphene is demonstrated. Intra- and intersubsystem excitons are explored by means of density functional theory in order to articulate a normal state from which superconductivity may emerge. The results are discussed in the context of electron correlation in general and multi-band superconductivity in particular.

  7. Study on performance of composite polymer films doped with modified molecular sieve for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang Yuqing; Zhang Guodong; Du Tingdong; Zhang Lizao

    2010-01-01

    To improve the tensile strength and ionic conductivity of composite polymer films for lithium-ion batteries, molecular sieves of MCM-41 modified with sulfated zirconia (SO 4 2- /ZrO 2 , SZ), denoted as MCM-41/SZ, were doped into a poly(vinylidene fluoride) (PVdF) matrix to fabricate MCM-41/SZ composite polymer films, denoted as MCM-41/SZ films. Examination by transmission electron microscope (TEM) shows that modified molecular sieves have lower aggregation and a more porous structure. Tensile strength tests were carried out to investigate the mechanical performance of MCM-41/SZ films, and then the electrochemical performance of batteries with MCM-41/SZ films as separators was tested. The results show that the tensile strength (σ t ) of MCM-41/SZ film was up to 7.8 MPa; the ionic conductivity of MCM-41/SZ film was close to 10 -3 S cm -1 at room temperature; and the coulombic efficiency of the assembled lithium-ion battery was 92% at the first cycle and reached as high as 99.99% after the 20th cycle. Meanwhile, the charge-discharge voltage plateau of the lithium-ion battery presented a stable state. Therefore, MCM-41/SZ films are a good choice as separators for lithium-ion batteries due to their high tensile strength and ionic conductivity.

  8. Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes.

    Science.gov (United States)

    Ding, Lei; Tang, Xun; Xu, Mei-Feng; Shi, Xiao-Bo; Wang, Zhao-Kui; Liao, Liang-Sheng

    2014-10-22

    Lithium hydride (LiH) is employed as a novel n-dopant in the intermediate connector for tandem organic light-emitting diodes (OLEDs) because of its easy coevaporation with other electron transporting materials. The tandem OLEDs with two and three electroluminescent (EL) units connected by a combination of LiH doped 8-hydroxyquinoline aluminum (Alq3) and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) demonstrate approximately 2-fold and 3-fold enhancement in current efficiency, respectively. In addition, no extra voltage drop across the intermediate connector is observed. Particularly, the lifetime (T75%) in the tandem OLED with two and three EL units is substantially improved by 3.8 times and 7.4 times, respectively. The doping effect of LiH into Alq3, the charge injection, and transport characteristics of LiH-doped Alq3 are further investigated by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).

  9. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    Science.gov (United States)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  10. Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Huang, Xiao; Li, Mingqi

    2018-05-01

    To improve the cycling stability and rate capability of SiO electrodes, multi-channel and porous SiO@N-doped C (mp-SiO@N-doped C) rods are fabricated by the combination of electrospinning and heat treatment with the assistance of poly(methyl methacrylate) (PMMA). During annealing, in-situ PMMA degradation and gasification lead to the formation of multi-channel structure and more pores. As anodes for lithium ion batteries, the mp-SiO@N-doped C rods exhibit excellent cycling stability. At a current density of 400 mA g-1, a discharge capacity of 806 mAh g-1 can be kept after 250 cycles, the retention of which is over than 100% versus the initial reversible capacity. Compared with the SiO@N-doped C rods synthesized without the help of PMMA, the mp-SiO@N-doped C rods exhibit more excellent rate capability. The excellent electrochemical performance is attributed to the special structure of the mp-SiO@N-doped C rods. In addition to the conductivity improved by carbon fibers, the multi-channel and porous structures not only make ions/electrons transfer and electrolyte diffusion easier, but also contribute to the structural stability of the electrodes.

  11. Research, Development and Fabrication of Lithium Solar Cells, Part 2

    Science.gov (United States)

    Iles, P. A.

    1972-01-01

    The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.

  12. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    Science.gov (United States)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  13. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics.

    Science.gov (United States)

    Wang, Xiaopeng; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Cheng, Xiaojing; Zheng, Ting; Zhang, Binyu; Lou, Xiaojie; Wang, Xiangjian

    2014-02-19

    Environment protection and human health concern is the driving force to eliminate the lead from commercial piezoelectric materials. In 2004, Saito et al. [ Saito et al., Nature , 2004 , 432 , 84 . ] developed an alkali niobate-based perovskite solid solution with a peak piezoelectric constant d33 of 416 pC/N when prepared in the textured polycrystalline form, intriguing the enthusiasm of developing high-performance lead-free piezoceramics. Although much attention has been paid on the alkali niobate-based system in the past ten years, no significant breakthrough in its d33 has yet been attained. Here, we report an alkali niobate-based lead-free piezoceramic with the largest d33 of ∼490 pC/N ever reported so far using conventional solid-state method. In addition, this material system also exhibits excellent integrated performance with d33∼390-490 pC/N and TC∼217-304 °C by optimizing the compositions. This giant d33 of the alkali niobate-based lead-free piezoceramics is ascribed to not only the construction of a new rhombohedral-tetragonal phase boundary but also enhanced dielectric and ferroelectric properties. Our finding may pave the way for "lead-free at last".

  14. Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique

    Directory of Open Access Journals (Sweden)

    Stephen Lourduraj

    2017-08-01

    Full Text Available Thin films of iron (Fe-doped titanium dioxide (Fe:TiO2 were prepared by sol–gel spin coating technique and further calcined at 450∘C. The structural and optical properties of Fe-doped TiO2 thin films were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet–visible spectroscopy (UV–vis and atomic force microscopic (AFM techniques. The XRD results confirm the nanostructured TiO2 thin films having crystalline nature with anatase phase. The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity. The SEM investigations of Fe-doped TiO2 films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature. AFM analysis establishes that the uniformity of the TiO2 thin film with average roughness values. The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO2 film with iron (Fe decrease with increase in iron content. These important requirements for the Fe:TiO2 films are to be used as window layers in solar cells.

  15. Macroscopic polarization and thermoluminescence of barium niobate - sodium niobate

    International Nuclear Information System (INIS)

    Gorban', I.S.; Gumenyuk, A.F.; Omel'yanenko, V.A.

    1989-01-01

    Thermoluminescence (TL) of initial and thermally treated purposely undoped crystals of barium niobate - sodium has been studied within 85-400 K. The TL intensity is found to depend on the temperature to which the sample has been heated. A conclusion is drawn that nonstationarity of the TL properties is due to slowly occuring processes of compensation of pyrocharge, which depend on the temperatural prehistory of the sample. A mechanism of the traps transformation in a strong pyrofield of high-impedance crystals is discussed

  16. Studies of solid-state electrochromic devices based on Peo/siliceous hybrids doped with lithium perchlorate

    International Nuclear Information System (INIS)

    Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Goncalves, A.; Fortunato, E.

    2007-01-01

    Sol-gel hybrid organic-inorganic networks, doped with a lithium salt, have been used as electrolytes in prototype smart windows. The work described in this presentation is focused on the application of these networks as dual-function electrolyte/adhesive components in solid-state electrochromic devices. The performance of multi-layer electrochromic devices was characterized as a function of the choice of precursor used to prepare the polymer electrolyte component and the guest salt concentration. The prototype devices exhibited good open-circuit memory, coloration efficiency, optical contrast and stability

  17. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    Science.gov (United States)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  18. The solid-liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Xiao-Li Sun; Ling Gu; Dan Qiu; Dong-Hong Ren; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2015-01-01

    A green and efficient solid-liquid extraction method of lithium isotopes separation by porous composite materials doped with imidazolium ionic liquids and 2,2'-binaphthyldiyl-17-crown-5 has been reported in this paper. The composite materials of mesoporous silica and impregnated resin were synthesized by sol-gel and direct impregnation process, respectively. Various extraction parameters such as the concentration of lithium salt, anion of lithium salt, initial pH, time and temperature were investigated. Under optimized conditions, the maximum single-stage separation factor of 6 Li/ 7 Li was 1.048 ± 0.002, the maximum extraction efficiency was 15.86 %. The sorbents can be regenerated easily with HCl solution and reused repeatedly. (author)

  19. Rare-Earth Tantalates and Niobates Single Crystals: Promising Scintillators and Laser Materials

    Directory of Open Access Journals (Sweden)

    Renqin Dou

    2018-01-01

    Full Text Available Rare-earth tantalates, with high density and monoclinic structure, and niobates with monoclinic structure have been paid great attention as potential optical materials. In the last decade, we focused on the crystal growth technology of rare-earth tantalates and niobates and studied their luminescence and physical properties. A series of rare-earth tantalates and niobates crystals have been grown by the Czochralski method successfully. In this work, we summarize the research results on the crystal growth, scintillation, and laser properties of them, including the absorption and emission spectra, spectral parameters, energy levels structure, and so on. Most of the tantalates and niobates exhibit excellent luminescent properties, rich physical properties, and good chemical stability, indicating that they are potential outstanding scintillators and laser materials.

  20. Study of Paramagnetic Species in γ-irradiated Lithium Borate Glasses Doped With Cu2+ Ions

    International Nuclear Information System (INIS)

    Mansour, A.; Abd-Allah, W.M.; El-Alaily, N.A.; Ezz-Eldin, F.M.

    2013-01-01

    Mixed alkali borate glasses doped with different concentration of Cu O ranging from (0.1-10) wt% have been prepared by the melt quenching technique. The prepared samples were studied by means of density, molar volume, infrared spectroscopy and electron paramagnetic resonance (EPR) measurements before and after successive gamma irradiation (50-200 kGy). The results showed that the density increase while molar volume decrease with the increase of CuO %. The infrared absorption studies revealed that structure of the glass network consists of BO 3 , BO 4 and B-O-Cu linkages. Gamma irradiation causes minor changes in the IR spectral bands which are related to the bond break of the B-O bond and formation non-bridging oxygen. Gamma irradiation causes irregular change in the intensities of the EPR spectra for samples doped with 0.1, 0.2 and 10 wt % of Cu O, however, no change in the EPR spectra of 2 and 5 wt % of Cu O for all absorbed doses (50-200 kGy). It is expected that the Cu-doped lithium borate glass 2 and 5 wt % of Cu O may be used for radiation shielding.

  1. The effects of dopants on the electrical resistivity in lead magnesium niobate multilayer ceramic capacitors

    International Nuclear Information System (INIS)

    Chang, D.D.; Ling, H.C.

    1989-01-01

    Electrical resistivity studies were performed on multilayer ceramic capacitors (MLC) based on lead magnesium niobate and containing dopants of lead titanate, lead zinc niobate, and lead cobalt niobate. The results showed that lead titanate and/or lead zinc niobate had no effect on the electrical resistivity while lead cobalt niobate decreased the resistivity. In samples without lead cobalt niobate, we observed a conduction mechanism with an activation energy of --1 eV, which is commonly observed in barium titanate based dielectrics. This is attributed to ionic conduction via the motion of oxygen vacancies. The increase in conductivity (or decrease in resistivity) resulting from the addition of lead cobalt niobate was rationalized as due to electronic conduction through charge hopping among the cations. This conduction mechanism was characterized by an activation energy of --0.5 eV. Since the activation energy associated with the long-term failure was previously determined by a matrix of temperature and voltage accelerated life tests to be -- 1 eV, they conclude that conduction through charge hopping is not affecting the long-term reliability of these devices

  2. Corrosion of ferrous alloys in nitrogen contaminated liquid lithium

    International Nuclear Information System (INIS)

    Olson, D.L.; Bradley, W.L.

    1976-01-01

    Liquid lithium penetration of 304L stainless steel and Armco iron grain boundaries has been studied. The penetration kinetics for the 304L stainless steel was found to be diffusion controlled. The measured temperature dependent delay time has been associated with the initial formation of the corrosion product at the grain boundary. Nitrogen in the stainless steel or the liquid lithium has been found to accelerate the rate of attack without changing the apparent activation energy. Grain boundary grooving of Armco iron in liquid lithium indicates that the controlling mass transport is also through a corrosion product present as a surface film. Stresses as small as 12 MPa have been found to give rise to a fifty-fold increase in the rate of penetration of Armco iron by liquid lithium

  3. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  4. TiO{sub 2} nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan; Shi Dongqi [Institute for Superconducting and Electronic Materials, University of Wollongong (Australia); Liu Zongwen [University of Sydney, School of Chemical and Biomolecular Engineering (Australia); Liu Huakun; Guo Zaiping, E-mail: zguo@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong (Australia)

    2013-05-15

    Anatase TiO{sub 2} nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized as an anode material for the lithium ion battery. The nanosized TiO{sub 2} particles were homogeneously distributed on the reduced graphene oxide to inhibit the restacking of the neighbouring graphene sheets. The obtained TiO{sub 2}/N-rGO composite exhibits improved cycling performance and rate capability, indicating the important role of reduced graphene oxide, which not only facilitates the formation of uniformly distributed TiO{sub 2} nanocrystals, but also increases the electrical conductivity of the composite material. The introduction of nitrogen on the reduced graphene oxide has been proved to increase the conductivity of the reduced graphene oxide and leads to more defects. A disordered structure is thus formed to accommodate more lithium ions, thereby further improving the electrochemical performance.

  5. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles

    Science.gov (United States)

    Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.

    2014-03-01

    Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.

  6. Thermal behavior of an experimental 2.5-kWh lithium/iron sulfide battery

    Science.gov (United States)

    Chen, C. C.; Olszanski, T. W.; Gibbard, H. F.

    1981-10-01

    The thermal energy generation and the gross thermal energy balance in the battery systems was studied. High temperature lithium/iron sulfide batteries for electric vehicle applications were developed. The preferred battery temperature range during operation and idle periods is 400 to 500 C. Thermal management is an essential part of battery design, the battery requires a thermal insulation vessel to minimize heat loss and heating and cooling systems to control temperature. Results of temperature measurements performed on a 2.5-kWh battery module, which was built to gain information for the design of larger systems are reported.

  7. Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping

    International Nuclear Information System (INIS)

    Geng, Zhen; Xiao, Qiangfeng; Wang, Dabin; Yi, Guanghai; Xu, Zhigang; Li, Bing; Zhang, Cunman

    2016-01-01

    A two-step method with high-efficiency is developed to prepare nitrogen doped activated carbons (NACs) with high surface area and nitrogen content. Based on the method, series of NACs with similar surface area and pore texture but different nitrogen content and nitrogen group species are successfully prepared. The influence of nitrogen doping on electrochemical performance of carbon/sulfur composites cathode is studied deeply under the conditions of similar surface area and pore texture. It presents the directly experimental demonstration that both nitrogen content and nitrogen group species play crucial roles on electrochemical performance of carbon/sulfur composites cathode. NAC/sulfur composites show the much improved cycling performance, which is about 3.5 times as that of nitrogen free carbon. Improved electrochemical performance is due to synergistic effects between nitrogen content and effective nitrogen groups, which enables effective trapping of lithium polysulfides within carbon framework. Besides, it is found that oxygen groups exist in carbon materials obviously influence electrochemical performance of cathode, which could be ignored in most of studies. Based on above, it can be concluded that enhanced chemisorption to lithium polysulfides by functional groups modification is the effective route to improve the electrochemical performance of Li-S battery.

  8. Photocatalytic degradation of malachite green dye using Au/NaNbO_3 nanoparticles

    International Nuclear Information System (INIS)

    Baeissa, E.S.

    2016-01-01

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl_4. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO_3 due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO_2 Degussa under visible light irradiation. - Highlights: • Au/NaNbO_3 were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  9. Photocatalytic degradation of malachite green dye using Au/NaNbO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baeissa, E.S., E-mail: elhambaeissa@gmail.com

    2016-07-05

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl{sub 4}. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO{sub 3} due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO{sub 2} Degussa under visible light irradiation. - Highlights: • Au/NaNbO{sub 3} were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  10. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  11. Conical light scattering in strontium barium niobate crystals related to an intrinsic composition inhomogeneity

    International Nuclear Information System (INIS)

    Bastwoeste, K; Sander, U; Imlau, M

    2007-01-01

    Conical light scattering is uncovered in poly- and mono-domain, nominally pure and Eu-doped strontium barium niobate (SBN) crystals over a wide temperature regime. The appearance of two scattering cones, a scattering line and a corona is observed and can be explained comprehensively within the Ewald sphere concept. Photorefraction, scattering from domain boundaries or from growth striations can be excluded from explaining the origin of the scattering. It is shown that the temperature-persistent scattering process is related to a growth-induced seeding rod, i.e. a composition inhomogeneity primarily localized at the centre of the SBN sample. The rod is directed parallel to the c axis and yields a refractive-index inhomogeneity with spatial frequencies on the micro-scale

  12. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    Science.gov (United States)

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  13. Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Dai, Ruoling; Sun, Weiwei; Wang, Yong

    2016-01-01

    Highlights: • Sn-based metal-organic-framework (MOF) is prepared. • Ultrasmall tin nanodots (2–3 nm) are embedded in nitrogen-doped mesoporous carbon. • The Sn/C composite anode shows high capacity and ultralong cycle life. - Abstract: This work reports a facile metal-organic-framework based approach to synthesize Sn/C composite, in which ultrasmall Sn nanodots with typical size of 2–3 nm are uniformly embedded in the nitrogen-doped porous carbon matrix (denoted as Sn@NPC). The effect of thermal treatment and nitrogen doping are also explored. Owing to the delicate size control and confined volume change within carbon matrix, the Sn@NPC composite can exhibit reversible capacities of 575 mAh g −1 (Sn contribution: 1091 mAh g −1 ) after 500 cycles at 0.2 A g −1 and 507 mAh g −1 (Sn contribution: 1077 mAh g −1 ) after 1500 cycles at 1 A g −1 . The excellent long-life electrochemical stability of the Sn@NPC anode has been mainly attributed to the uniform distribution of ultrasmall Sn nanodots and the highly-conductive and flexible N-doped carbon matrix, which can effectively facilitate lithium ion/electron diffusion, buffer the large volume change and improve the structure stability of the electrode during repetitive cycling with lithium ions.

  14. Effect of rapid thermal treatment on optical properties of porous silicon surface doped lithium

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Ikbel, E-mail: haded.ikbel@yahoo.fr; Slema, Sonia Ben; Amor, Sana Ben; Bousbih, Rabaa; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2015-04-15

    In this paper, we have studied the effect of rapid thermal annealing on the optical properties of porous silicon layers doped with lithium (Li/PS). Surface modification of As-deposited Li/PS samples through thermal annealing were investigated by varying the temperature from 100 °C to 800 °C in an infrared (IR) heated belt furnace. A decrease in the reflectivity to about 6% for Li/PS annealed at 200 °C was obtained. From Photoluminescence (PL) spectra, a blue-shift of the gap was observed when the temperature is increased to 800 °C; we correlate these results to the change in chemical composition of the layers in order to find the optimized conditions for a potential application in silicon solar cells. - Highlights: • We have varied the annealing temperature of PS doped with Li. • PL intensity shows significant variation as function of temperature. • We observe reduce of Si–O–Li bands with increasing temperature. • Concurrent with the loss of Li we observe a decrease of the PL.

  15. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Science.gov (United States)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  16. Effect of Al doping on phase formation and thermal stability of iron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Mukul, E-mail: mgupta@csr.res.in [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Pandey, Nidhi [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India); Horisberger, Michael [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stahn, Jochen [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2015-11-25

    In the present work, we systematically studied the effect of Al doping on the phase formation of iron nitride (Fe–N) thin films. Fe–N thin films with different concentration of Al (Al = 0, 2, 3, 6, and 12 at.%) were deposited using dc magnetron sputtering by varying the nitrogen partial pressure between 0 and 100%. The structural and magnetic properties of the films were studied using x-ray diffraction and polarized neutron reflectivity. It was observed that at the lowest doping level (2 at.% of Al), nitrogen rich non-magnetic Fe–N phase gets formed at a lower nitrogen partial pressure as compared to the un-doped sample. Interestingly, we observed that as Al doping is increased beyond 3 at.%, nitrogen rich non-magnetic Fe–N phase appears at higher nitrogen partial pressure as compared to un-doped sample. The thermal stability of films were also investigated. Un-doped Fe–N films deposited at 10% nitrogen partial pressure possess poor thermal stability. Doping of Al at 2 at.% improves it marginally, whereas, for 3, 6 and 12 at.% Al doping, it shows significant improvement. The obtained results have been explained in terms of thermodynamics of Fe–N and Al–N. - Highlights: • Doping effects of Al on Fe–N phase formation is studied. • Phase formation shows a non-monotonic behavior with Al doping. • Low doping levels of Al enhance and high levels retard the nitridation process. • Al doping beyond 3 at.% improve thermal stability of Fe–N films.

  17. New, dense, and fast scintillators based on rare-earth tantalo-niobates

    International Nuclear Information System (INIS)

    Voloshyna, O.V.; Boiaryntseva, I.A.; Baumer, V.N.; Ivanov, A.I.; Korjik, M.V.; Sidletskiy, O.Ts.

    2014-01-01

    Samples of undoped yttrium and gadolinium tantalo-niobates with common formulae RE(Nb x Ta 1−x )O 4 , where RE=Y or Gd and x=0–1, have been obtained by solid-state reaction. Systematic study of structural, luminescent, and scintillation properties of these compounds was carried out. Lattice parameters and space groups of the mixed compounds were identified. UV- and X-ray luminescence spectra, as well as relative light outputs and scintillation decay times are measured. Gadolinium tantalo-niobate with the formulae GdNb 0.2 Ta 0.8 O 4 showed the light output around 13 times larger than PbWO 4 and fast decay with time constant 12 ns without additional slow component. Gadolinium tantalo-niobates may be considered as promising materials for high energy physics due to extremely high density, substantial light output, and fast decay. -- Highlights: •Structural, optical and scintillation properties of the rare earth tantalo-niobates were studied. •Light output shows about gradual increase with Nb content in GdTa x Nb 1−x O 4 . •Light output increases by 2–7 times relatively to yttrium tantalate and niobate in YTa x Nb 1−x O 4 . •GdTa 0.8 Nb 0.2 O 4 demonstrates the most promising scintillation parameters

  18. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes.

    Science.gov (United States)

    Loftager, Simon; García-Lastra, Juan María; Vegge, Tejs

    2017-01-18

    Lithium iron borate (LiFeBO 3 ) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and small volume change during operation. Yet, challenges related to severe air- and moisture-induced degradation have prompted the utilization of a protective coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating-electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO 3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO 3 and LiFeBO 3 electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration in which the coating layers were anchored normal to the electrode surface at B and O atoms was found to be most stable. Nudged elastic band (NEB) calculations of the lithium diffusion barriers across the interface between the optimally oriented coating layers and the electrode show no kinetic limitations for lithium extraction and insertion. Additionally, this graphite-coating configuration showed partial blocking of electrode-degrading species.

  19. Facile synthesis of the N-doped graphene/nickel oxide with enhanced electrochemical performance for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chuanning, E-mail: yangcn1988@outlook.com [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China); Qing, Yongquan; An, Kai [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China); Zhang, Zefei; Wang, Linshan [College of Science, Northeastern University, Shenyang, Liaoning 110819 (China); Liu, Changsheng, E-mail: csliu@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China)

    2017-07-01

    The nitrogen-doped graphene/NiO nanohybrids with a hierarchical structure have been successfully synthesized by a one-step hydrothermal route assisted by microwave treatment. The as-obtained products were characterized by scanning electron microscopy, high-resolution transmission microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The nitrogen-doped graphene/NiO electrodes exhibit an enhanced electrochemical performance. The initial discharge capacity can reach 1737 mAh g{sup -1} at the current density of 0.1 A g{sup -1}. Significantly, the nanocomposites anodes also display a relatively high reversible capacity of 1095 mAh g{sup -1} at the current density of 0.3 A g{sup -1} after 100 cycles. Herein, the nitrogen-doped graphene/NiO possesses electrodes enormous potential as the anode materials for lithium ion batteries. - Highlights: • The nitrogen-doped graphene/NiO nanohybrids have been successfully synthesized. • Microwave treatment may enhance conductivity and capacity of electrodes. • The hierarchical structure will help to improve the stability of the electrodes. • The reversible capacity of electrodes can reach 1095 mAh g{sup -1} over 100 cycles.

  20. First-Principles Study of Antimony Doping Effects on the Iron-Based Superconductor CaFe(SbxAs1-x)2

    Science.gov (United States)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-09-01

    We study antimony doping effects on the iron-based superconductor CaFe(SbxAs1-x)2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework.

  1. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-01-01

    Highlights: • Three-dimensional porous LiFePO 4 /N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO 4 electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO 4 /N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO 4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO 4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  2. Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Yue, Jie; Gu, Xin; Jiang, Xiaolei; Chen, Liang; Wang, Nana; Yang, Jian; Ma, Xiaojian

    2015-01-01

    Highlights: • MnO 2 @N-dopedcarbonnanotube(N-CNT) composites are prepared by a facile process. • MnO 2 @N-CNT anodes exhibit better electrochemical properties than MnO 2 @CNT. • MnO 2 @N-CNT anodes show a capacity of 1415 mAh g −1 at 100 mA g −1 after 150 cycles. - Abstract: Carbon nanotube (CNT) has been widely applied to transition metal oxides anodes for lithium ion batteries, acting as a buffer, hollow backbone and conductive additive. Since the presence of N in carbon materials can enhance the reactivity and electrical conductivity, N-doped carbon nanotube (N-CNT) might be a better choice than pure CNT, which is exemplified by coaxial manganese dioxide@N-doped carbon nanotubes as a superior anode. The electrochemical properties of MnO 2 @N-CNT are investigated in terms of cycling stability and rate capability. The nanocomposite can deliver a specific capacity of 1415 mAh g −1 after 100 cycles at the current density of 100 mA g −1 , which is better than that of MnO 2 @commercial CNT and MnO 2 . The excellent performance might be related to the integration of hollow structure, one-dimensional nanoscale size as well as combination with N-doped carbon materials.

  3. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  4. Preparation of N-Doped Composite Shell Encapsulated Iron Nanoparticles and Their Magnetic, Adsorptive, and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Caijing Shi

    2017-01-01

    Full Text Available The N-doped composite shell encapsulated iron nanoparticles (CSEINPs were prepared by DC arc discharge under nitrogen at 800°C, using the anode with high Fe content and good homogeneity. The morphology, microstructure, composition, and some properties of the N-doped CSEINPs were characterized by various characterization techniques. The results revealed that the shells of the N-doped CSEINPs were composed of homogeneously amorphous structure containing C, Fe, O, and N elements; the saturation magnetization (Ms and coercivity (Hc of them at room temperature were 130 emu/g and 194 Oe, respectively. Due to the surface structure and the electrostatic interaction, the N-doped CSEINPs are employed to remove methylene blue (MB from the waste solution, and they exhibited high adsorption properties and photocatalytic activity under irradiation of visible light (IVL. The kinetics of adsorption of MB on the N-doped CSEINPs was investigated and the recycling test was carried out. The formation mechanism of the N-doped CSEINPs is discussed briefly.

  5. In Situ Synthesis of Tungsten-Doped SnO2 and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Shuai; Shi, Liyi; Chen, Guorong; Ba, Chaoqun; Wang, Zhuyi; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-05-24

    The composite of tungsten-doped SnO 2 and reduced graphene oxide was synthesized through a simple one-pot hydrothermal method. According to the structural characterization of the composite, tungsten ions were doped in the unit cells of tin dioxide rather than simply attaching to the surface. Tungsten-doped SnO 2 was in situ grown on the surface of graphene sheet to form a three-dimensional conductive network that enhanced the electron transportation and lithium-ion diffusion effectively. The issues of SnO 2 agglomeration and volume expansion could be also avoided because the tungsten-doped SnO 2 nanoparticles were homogeneously distributed on a graphene sheet. As a result, the nanocomposite electrodes of tungsten-doped SnO 2 and reduced graphene oxide exhibited an excellent long-term cycling performance. The residual capacity was still as high as 1100 mA h g -1 at 0.1 A g -1 after 100 cycles. It still remained at 776 mA h g -1 after 2000 cycles at the current density of 1A g -1 .

  6. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2017-11-01

    Full Text Available In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries’ appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen co-doped porous carbon (S/ONPC composite materials reveal a high initial capacity of 1150 mAh·g−1 as well as a reversible capacity of 613 mAh·g−1 after the 100th cycle at 0.2 C. Furthermore, when current density increases to 1 C, a discharge capacity of 331 mAh·g−1 is still attainable. Due to the hierarchical porous framework and oxygen/nitrogen co-doping, the S/ONPC composite exhibits a high utilization of sulfur and good electrochemical performance via the immobilization of the polysulfides through strong chemical binding.

  7. Study of the potentiometric response of the doped spinel Li1.05Al0.02Mn1.98O4 for the optimization of a selective lithium ion sensor

    International Nuclear Information System (INIS)

    Freitas, Bruno H.; Amaral, Fabio A.; Bocchi, Nerilso; Teixeira, Marcos F.S.

    2010-01-01

    In this paper, we studied the development of a selective lithium ion sensor constituted of a carbon paste electrode modified (CPEM) with an aluminum-doped spinel-type manganese oxide (Li 1.05 Al 0.02 Mn 1.98 O 4 ) for investigating the influence of a doping ion in the sensor response. Experimental parameters, such as influence of the lithium concentration in the activation of the sensor by cyclic voltammetry, pH of the carrier solution and selectivity for Li + against other alkali and alkaline-earth ions were investigated. The sensor response to lithium ions was linear in the concentration range 5.62 x 10 -5 to 1.62 x 10 -3 mol L -1 with a slope 100.1 mV/decade over a wide pH 10 (Tris buffer) and detection limit of 2.75 x 10 -5 mol L -1 , without interference of other alkali and alkaline-earth metals, demonstrating that the Al 3+ doping increases the structure stability and improves the potentiometric response and sensitivity of the sensor. The super-Nernstian response of the sensor in pH 10 can be explained by mixed potential arising from two equilibria (redox and ion-exchange) in the spinel-type manganese oxide.

  8. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  9. Erbium diffusion from erbium metal or erbium oxide layers deposited on the surface of various LiNbO3 cuts

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Cajzl, J.; Švecová, B.; Macková, Anna; Malinský, Petr; Oswald, Jiří; Vacík, Jiří; Spirkova, J.

    2013-01-01

    Roč. 36, č. 2 (2013), s. 402-407 ISSN 0925-3467 R&D Projects: GA ČR(CZ) GAP106/10/1477; GA ČR GA106/09/0125; GA MŠk(XE) LM2011019; GA TA ČR TA01010237 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : lithium niobate * erbium * erbium oxide * diffusion doping * luminescent materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.075, year: 2013

  10. Radiation-induced defects in manganese-doped lithium tetraborate phosphor.

    Science.gov (United States)

    Annalakshmi, O; Jose, M T; Madhusoodanan, U; Sridevi, J; Venkatraman, B; Amarendra, G; Mandal, A B

    2015-01-01

    Lithium tetraborate doped with manganese synthesised by solid-state sintering technique exhibits a dosimetric peak at 280°C. The high-temperature glow curve results in no fading for three months. The sensitivity of Li2B4O7:Mn is determined to be 0.9 times that of TLD-100. The infrared spectrum of this phosphor indicates the presence of bond vibrations corresponding to BO4 tetrahedral and BO3 triangles. The mechanism for thermoluminescence in this phosphor was proposed based on the thermoluminescence (TL) emission spectra, kinetic analysis of TL glow curves and electron paramagnetic resonance (EPR) measurements on non-irradiated and gamma-irradiated phosphors. It was identified that oxygen vacancies and Boron oxygen hole centre (BOHC) are the electron and hole trap centres for TL in this phosphor. When the phosphor is heated, the electrons are released from the electron trap and recombine with the trapped holes. The excitation energy during the recombination is transferred to the nearby Mn(2+) ions, which emit light at 580 nm. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    International Nuclear Information System (INIS)

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-01-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO 3 ) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment

  12. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Science.gov (United States)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-08-01

    Cr-doped core-shell iron/iron-oxide nanoparticles (NPs) containing 0, 2, 5, and 8 at.% of Cr dopant were synthesized via a nanocluster deposition system and their structural and magnetic properties were investigated. We observed the formation of a σ-FeCr phase in 2 at.% of Cr doping in core-shell NPs. This is unique since it was reported in the past that the σ-phase forms above 20 at.% of Cr. The large coercive field and exchange bias are ascribed to the antiferromagnetic Cr2O3 layer formed with the Fe-oxide shell, which also acts as a passivation layer to decrease the Fe-oxide shell thickness. The additional σ-phase in the core and/or Cr2O3 in the shell cause the hysteresis loop to appear tight waisted near the zero-field axis. The exchange interaction competes with the dipolar interaction with the increase of σ-FeCr grains in the Fe-core. The interaction reversal has been observed in 8 at.% of Cr. The observed reversal mechanism is confirmed from the Henkel plot and delta M value, and is supported by a theoretical watermelon model based on the core-shell nanostructure system.

  13. Effects of Lithium Dopant on Size and Morphology of Magnesium Oxide Nano powders

    International Nuclear Information System (INIS)

    Mohd Sufri Mastuli; Siti Nur Hazlinda Hasbu; Noraziahwati Ibrahim; Mohd Azizi Nawawi; Mohd Sufri Mastuli

    2014-01-01

    Lithium doped of magnesium oxide powders have been synthesized using the sol-gel method with magnesium acetate tetrahydrate, oxalic acid dihydrate and lithium acetate dihydrate used as the starting materials. The dried sol-gel products were calcined at 950 degree Celsius for 36 h to form the Li doped-MgO samples. The calcined samples were characterized using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The present work is investigated the effect of lithium ion on the band gap energy of studied samples. The band gap energies were obtained from a Tauc plot that drawn based on absorption edge of each sample that measured using a UV-Vis spectrophotometer. It is found that the doped and undoped MgO samples showed a slightly different in their band gap energies. The lithium ion that present in the MgO as a dopant affects the crystallite size and morphology of the final products. Our study shows that the lithium dopant can modified optical properties of the metal oxide which to be beneficial in some industrial applications. (author)

  14. First-principles study of antimony doping effects on the iron-based superconductor CaFe(SbxAs1−x)2

    International Nuclear Information System (INIS)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-01-01

    We study antimony doping effects on the iron-based superconductor CaFe(Sb x As 1−x ) 2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework. (author)

  15. Synthesis and characterization of nanosized lithium manganate and its derivatives

    Science.gov (United States)

    Iqbal, Muhammad Javed; Zahoor, Sabia

    Spinel lithium manganese oxide, LiMn 2O 4 and its derivatives are prepared by the sol-gel method. The lattice constant of the pure material is calculated as 8.23 Å. Different transition metal cations of chromium, iron, cobalt, nickel, copper and zinc (0.05 and 0.15 M) are doped in place of manganese in the LiMn 2O 4. X-ray powder diffraction data show that the spinel framework preserved its integrity upon doping. Formation of a single phase and the purity of the samples are confirmed by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The crystallite size of the samples is calculated by use of the Scherrer formula and is found to be within a range of 43-66 nm. The electrical conductivity of the samples is determined over a temperature range of 200-300 K by means of four-point probe method. An increasing trend of conductivity with increase in temperature is noted for all the samples. The parent compound LiMn 2O 4 has a conductivity value of 3.47 × 10 -4 ohm -1 cm -1 at room temperature. This value increases on doping with the above-mentioned transition metal cations.

  16. Synthesis and characterization of nanosized lithium manganate and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed; Zahoor, Sabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2007-02-25

    Spinel lithium manganese oxide, LiMn{sub 2}O{sub 4} and its derivatives are prepared by the sol-gel method. The lattice constant of the pure material is calculated as 8.23 Aa. Different transition metal cations of chromium, iron, cobalt, nickel, copper and zinc (0.05 and 0.15 M) are doped in place of manganese in the LiMn{sub 2}O{sub 4}. X-ray powder diffraction data show that the spinel framework preserved its integrity upon doping. Formation of a single phase and the purity of the samples are confirmed by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The crystallite size of the samples is calculated by use of the Scherrer formula and is found to be within a range of 43-66 nm. The electrical conductivity of the samples is determined over a temperature range of 200-300 K by means of four-point probe method. An increasing trend of conductivity with increase in temperature is noted for all the samples. The parent compound LiMn{sub 2}O{sub 4} has a conductivity value of 3.47 x 10{sup -4} ohm{sup -1} cm{sup -1} at room temperature. This value increases on doping with the above-mentioned transition metal cations. (author)

  17. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    OpenAIRE

    Edelman , Irina; Ivanova , Oxana; Ivantsov , Ruslan; Velikanov , D.; Zabluda , V.; Zubavichus , Y.; Veligzhanin , A.; Zaikovskiy , V.; Stepanov , S.; Artemenko , Alla; Curély , Jacques; Kliava , Janis

    2012-01-01

    International audience; A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge struct...

  18. Ultrasound assisted synthesis of iron doped TiO2 catalyst.

    Science.gov (United States)

    Ambati, Rohini; Gogate, Parag R

    2018-01-01

    The present work deals with synthesis of Fe (III) doped TiO 2 catalyst using the ultrasound assisted approach and conventional sol-gel approach with an objective of establishing the process intensification benefits. Effect of operating parameters such as Fe doping, type of solvent, solvent to precursor ratio and initial temperature has been investigated to get the best catalyst with minimum particle size. Comparison of the catalysts obtained using the conventional and ultrasound assisted approach under the optimized conditions has been performed using the characterization techniques like DLS, XRD, BET, SEM, EDS, TEM, FTIR and UV-Vis band gap analysis. It was established that catalyst synthesized by ultrasound assisted approach under optimized conditions of 0.4mol% doping, irradiation time of 60min, propan-2-ol as the solvent with the solvent to precursor ratio as 10 and initial temperature of 30°C was the best one with minimum particle size as 99nm and surface area as 49.41m 2 /g. SEM analysis, XRD analysis as well as the TEM analysis also confirmed the superiority of the catalyst obtained using ultrasound assisted approach as compared to the conventional approach. EDS analysis also confirmed the presence of 4.05mol% of Fe element in the sample of 0.4mol% iron doped TiO 2 . UV-Vis band gap results showed the reduction in band gap from 3.2eV to 2.9eV. Photocatalytic experiments performed to check the activity also confirmed that ultrasonically synthesized Fe doped TiO 2 catalyst resulted in a higher degradation of Acid Blue 80 as 38% while the conventionally synthesized catalyst resulted in a degradation of 31.1%. Overall, the work has clearly established importance of ultrasound in giving better catalyst characteristics as well as activity for degradation of the Acid Blue 80 dye. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage

    International Nuclear Information System (INIS)

    Liu, Peng; Hao, Qingli; Xia, Xifeng; Lei, Wu; Xia, Hui; Chen, Ziyang; Wang, Xin

    2016-01-01

    Graphical abstract: A novel hybrid of hollow amorphous MnSnO 3 nanoparticles and nitrogen-doped reduced graphene oxide was fabricated. The unique structure and well-combination of both components account for the ultra long-term cyclic life with high reversible capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . - Highlights: • Novel hybrid of MnSnO 3 and nitrogen-doped reduced graphene oxide was fabricated. • The MnSnO 3 nanoparticles possess amorphous and hollow structure in the composite. • The excellent electrochemical performance benefits from unique nanostructure. • The reversible capacity of as-prepared hybrid is 610 mAh g −1 after 1000 cycles. • A long-term life with 97.3% capacity retention over 1000 cycles was obtained. - Abstract: Tin-based metal oxides usually suffer from severe capacity fading resulting from aggregation and considerable volume variation during the charge/discharge process in lithium ion batteries. In this work, a novel nanocomposite (MTO/N-RGO) of hollow amorphous MnSnO 3 (MTO) nanoparticles and nitrogen-doped reduced graphene oxide (N-RGO) has been designed and synthesized by a two-step method. Firstly, the nitrogen-doped graphene nanocomposite (MTO/N-RGO-P) with MnSn(OH) 6 crystal nanoparticles was synthesized by a facile solvothermal method. Subsequently, the MTO/N-RGO nanocomposite was obtained through the post heat treatment of MTO/N-RGO-P. The designed heterostructure and well-combination of the hollow amorphous MTO and N-RGO matrix can accelerate the ionic and electronic transport, and simultaneously accommodate the aggregation and volume variation of MTO nanoparticles during the lithiation–delithiation cycles. The as-prepared hybrid of MTO and N-RGO (MTO/N-RGO) exhibits a high reversible capacity of 707 mAh g −1 after 110 cycles at 200 mA g −1 , superior rate capability, and long-term cyclic life with high capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . Superior capacity retention of

  1. Nb 3d and O 1s core levels and chemical bonding in niobates

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kalabin, I.E.; Kesler, V.G.; Pervukhina, N.V.

    2005-01-01

    A set of available experimental data on binding energies of Nb 3d 5/2 and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d 5/2 ) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d 5/2 ) values measured with XPS for Nb 5+ -niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d 5/2 ) values possible in Nb 5+ -niobates has been defined. An energy gap ∼1.4-1.8 eV is found between (O 1s-Nb 3d 5/2 ) values reasonable for Nb 5+ and Nb 4+ states in niobates

  2. Review of lithium iron-base alloy corrosion studies

    International Nuclear Information System (INIS)

    DeVan, J.H.; Selle, J.E.; Morris, A.E.

    1976-01-01

    An extensive literature search was conducted on the compatibility of ferrous alloys with lithium, with the emphasis on austenitic stainless steels. The information is summarized and is divided into two sections. The first section gives a brief summary and the second is an annotated bibliography. Comparisons of results are complicated by differences in lithium purity, alloy composition, alloy treatment, flow rates, and lithium handling procedures. For long-term application, austenitic stainless steels appear to be limited to about 500 0 C. While corrosion can probably not be decreased to zero, a considerable reduction to tolerable and predictable amounts appears possible

  3. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    Directory of Open Access Journals (Sweden)

    Juha-Pekka Nikkanen

    2008-01-01

    Full Text Available The liquid flame spray (LFS method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical composition were determined by TEM, XRD, XPS, and N2-adsorption measurements. The collected particulate material consists of micron-sized aggregates with nanosized primary particles. In both doped and undoped samples, tetragonal phase of zirconia was detected in room temperature while alumina was found to be noncrystalline. In the doped powder, Fe was oxidized to Fe2O3. The primary particle size of collected sample was approximately from 6 nm to 40 nm. Doping was observed to increase the specific surface area of the powder from 39 m2/g to 47 m2/g.

  4. Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed; Ahmad, Zahoor [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2008-05-01

    Substituted LiR{sub x}Mn{sub 2} {sub -} {sub x}O{sub 4} (R = La{sup 3+}, Ce{sup 3+}{sub ,} Pr{sup 3+} and x = 0.00 - 0.20) nanoparticles are prepared by the sol-gel method and the consequent changes in their lattice structure, dielectric and electrical parameters are determined by XRD, ED-XRF, SEM, LCR meter bridge and dc electrical resistivity measurements. Diffraction data show that the samples are single-phase spinel materials with crystallites sizes between 21 and 38 nm. The lattice parameter, cell volume and X-ray density are found to be affected by doping the Li-manganate with the rare-earth elements. The ED-XRF analysis confirms the stoichiometric composition of the synthesized samples and SEM reveals their morphology. Calculated values of the dielectric constant ({epsilon}) and the dielectric loss (tan {delta}) decrease with the frequency of the applied field. This is attributed to Maxwell-Wagner polarization. Replacement of manganese by the rare-earth elements results in an improvement in the structural stability of the material, which is considered to be useful for enhancement of the cycleability of the compounds when used in lithium rechargeable batteries, and increases significantly the values of {epsilon} and tan {delta} (except for Ce). Lithium manganate nanomaterials with high {epsilon} and low tan {delta} may be attractive for application in memory storage devices. (author)

  5. Novel lithium iron phosphate materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Jelena

    2011-06-15

    Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to deliver a stable 94% of the theoretically known capacity.

  6. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  7. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    Science.gov (United States)

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage

    Science.gov (United States)

    Xu, G. B.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K.

    2015-11-01

    Highly-crystalline gadolinium doped and carbon-coated ultrathin Li4Ti5O12 (LTO) nanosheets (denoted as LTO-Gd-C) as an anode material for Li-ion batteries (LIBs) are synthesized on large scale by controlling the amount of carbon precursor in the topotactic transformation of layered ultrathin Li1.81H0.19Ti2O5·xH2O (H-LTO) nanosheets at 700 °C. The characterizations of structure and morphology reveal that the gadolinium doped and carbon-coated ultrathin LTO nanosheets have high crystallinity with a thickness of about 10 nm. Gadolinium doping allows the spinel LTO products to be stabilized, thereby preserving the precursor's sheet morphology and single crystal structure. Carbon encapsulation serves dual functions by restraining crystal growth of the LTO primary nanoparticles in the LTO-Gd-C nanosheets and decreasing the external electron transport resistance. Owing to the synergistic effects rendered by ultrathin nanosheets with high crystallinity, gadolinium doping and carbon coating, the developed ultrathin LTO nanosheets possess excellent specific capacity, cycling performance, and rate capability compared with reference materials, when evaluated as an anode material for lithium ion batteries (LIBs). The simple and effective strategy encompassing nanoscale morphological engineering, surface modification, and doping improves the performance of LTO-based anode materials for high energy density and high power LIBs applied in large scale energy storage.

  9. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Science.gov (United States)

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  10. A green strategy for lithium isotopes separation by using mesoporous silica materials doped with ionic liquids and benzo-15-crown-5

    International Nuclear Information System (INIS)

    Wen Zhou; Xiao-Li Sun; Lin Gu; Fei-Fei Bao; Xin-Xin Xu; Chun-Yan Pang; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2014-01-01

    Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C 8 mim + PF 6 - , C 8 mim + BF 4 - or C 8 mim + NTf 2 - ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N 2 gas adsorption-desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7 Li was concentrated in the solution phase while the lighter isotope 6 Li was enriched in the gel phase. The solid-liquid extraction maximum single-stage isotopes separation factor of 6 Li- 7 Li in the solid-liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li 0.5 ) 2 (B 15 ) 2 (H 2 O)] + complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L -1 HCl and reused in the consecutive removal of lithium ion in five cycles. (author)

  11. Nb 3d and O 1s core levels and chemical bonding in niobates

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kalabin, I.E. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Center, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, N.V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation)

    2005-02-01

    A set of available experimental data on binding energies of Nb 3d{sub 5/2} and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d{sub 5/2}) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d{sub 5/2}) values measured with XPS for Nb{sup 5+}-niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d{sub 5/2}) values possible in Nb{sup 5+}-niobates has been defined. An energy gap {approx}1.4-1.8 eV is found between (O 1s-Nb 3d{sub 5/2}) values reasonable for Nb{sup 5+} and Nb{sup 4+} states in niobates.

  12. Doped graphene supercapacitors

    Science.gov (United States)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  13. Doped graphene supercapacitors

    International Nuclear Information System (INIS)

    Kumar, Nanjundan Ashok; Baek, Jong-Beom

    2015-01-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed. (topical review)

  14. Freeze-drying synthesis of three-dimensional porous LiFePO{sub 4} modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiaofeng; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Song, Yijie

    2017-04-01

    Highlights: • Three-dimensional porous LiFePO{sub 4}/N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO{sub 4} electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO{sub 4}/N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO{sub 4} modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO{sub 4} to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  15. Defect structure in lithium-doped polymer-derived SiCN ceramics characterized by Raman and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Erdem, Emre; Mass, Valentina; Gembus, Armin; Schulz, Armin; Liebau-Kunzmann, Verena; Fasel, Claudia; Riedel, Ralf; Eichel, Rüdiger-A

    2009-07-21

    Lithium-doped polymer-derived silicon carbonitride ceramics (SiCN:Li) synthesized at various pyrolysis temperatures, have been investigated by means of multifrequency and multipulse electron paramagnetic resonance (EPR) and Raman spectroscopy in order to determine different defect states that may impact the materials electronic properties. In particular, carbon- and silicon-based 'dangling bonds' at elevated, as well as metallic networks containing Li0 in the order of 1 microm at low pyrolysis temperatures have been observed in concentrations ranging between 10(14) and 10(17) spins mg(-1).

  16. EPR and optical absorption study of Cu{sup 2+} doped lithium sulphate monohydrate (LSMH) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, K. Juliet; Subramanian, P., E-mail: psubramaniangri@gmail.com [Department of Physics, Gandhigram Rural Institute-Deemed University, Gandhigram, Dindigul-624302, Tamilnadu (India); Krishnan, S. Radha; Shanmugam, V. M. [CSIR-Central Electrochemical Research Institute, Karaikudi-63006, Tamilnadu (India)

    2016-05-23

    EPR study of Cu{sup 2+} doped NLO active Lithium Sulphate monohydrate (Li{sub 2}SO{sub 4.}H{sub 2}O) single crystals were grown successfully by slow evaporation method at room temperature. The principal values of g and A tensors indicate existence of orthorhombic symmetry around the Cu{sup 2+} ion. From the direction cosines of g and A tensors, the locations of Cu{sup 2+} in the lattice have been identified as interstitial site. Optical absorption confirms the rhombic symmetry and ground state wave function of the Cu{sup 2+} ion in a lattice as d{sub x2-y2}.

  17. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    Science.gov (United States)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  18. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    Science.gov (United States)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  19. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.

    2012-06-22

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin filmtransistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectrictransistors, which is very promising for low-power non-volatile memory applications.

  20. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  2. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    Science.gov (United States)

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ca-doped LTO using waste eggshells as Ca source to improve the discharge capacity of anode material for lithium-ion battery

    Science.gov (United States)

    Setiawan, D.; Subhan, A.; Saptari, S. A.

    2017-07-01

    The necessity of high charge-discharge capacity lithium-ion battery becomes very urgent due to its applications demand. Several researches have been done to meet the demand including Ca doping on Li4Ti5O12 for anode material of lithium-ion batteries. Ca-doped Li4Ti5O12 (LTO) in the form of Li4-xCaxTi5O12 (x = 0, 0.05, 0.075, and 0.1) have been synthesized using simple solid state reaction. The materials preparation involved waste eggshells in the form of CaCO3 as Ca source. The structure and capacity of as-prepared samples were characterized using X-Ray Diffractometer and Cyclic Voltametry. X-Ray Diffractometer characterization revealed that all amount of dopant had entered the lattice structure of LTO successfully. The crystalline sizes were obtained by using Scherrer equation. No significant differences are detected in lattice parameters (˜8.35 Å) and crystalline sizes (˜27 nm) between all samples. Cyclic Voltametry characterization shows that Li4-xCaxTi5O12 (x = 0.05) has highest charge-discharge capacity of 177.14 mAh/g and 181.92 mAh/g, respectively. Redox-potentials of samples show no significant differences with the average of 1.589 V.

  4. Electrical property studies of neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fleming, P.H.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1978-01-01

    Results of studies of electrical properties of neutron-transmutation-doped (NTD) silicon are presented. Annealing requirements to remove lattice damage were obtained. The electrical role of clustered oxygen and defect-oxygen complex was investigated. An NTD epitaxial layer on a heavily doped n- or p- type substrate can be produced. There is no evident interaction between lithium introduced by diffusion and phosphorous 31 introduced by irradiation. There may be some type of pairing reaction between lithium 7 introduced by boron 10 fission and any remaining boron

  5. Holographic recording in a doubly doped lithium niobate crystal with two wavelengths: a blue laser diode and a green laser

    Science.gov (United States)

    Komori, Yuichi; Ishii, Yukihiro

    2010-08-01

    A doubly-doped LiNbO3 (LN) crystal has been well used as a nonvolatile two-wavelength recording material. By using two levels of the crystal, two-kind holograms can be recorded on one crystal; a hologram is recorded with a 405-nm blue laser diode (LD) for a deep Mn level, and another hologram is with a 532-nm green laser for a shallow Fe level. The recording capacity doubles. A 780-nm LD is non-volatile reconstructing source since the LD line is insensitive to both levels. Multiplexed reconstructed images are demonstrated by using a sharp angular selectivity of a volume LN crystal keeping Bragg condition with spherical reconstructions.

  6. Mesoporous TiO2 powders as host matrices for iron nanoparticles. Effect of the preparation procedure and doping with Hf

    Czech Academy of Sciences Publication Activity Database

    Dimitrov, M.; Ivanova, R.; Velinov, N.; Henych, Jiří; Slušná, Michaela; Štengl, Václav; Tolasz, Jakub; Mitov, I.; Tsoncheva, T.

    2016-01-01

    Roč. 7, JUL (2016), s. 56-63 ISSN 2352-507X Institutional support: RVO:61388980 Keywords : Mesoporous titania * Hafnium doping * Iron modification * Ethyl acetate oxidation * Methanol decomposition Subject RIV: CA - Inorganic Chemistry

  7. Performance Study of optical Modulator based on electrooptic effect

    International Nuclear Information System (INIS)

    Palodiya, V; Raghuwanshi, S K

    2016-01-01

    In this paper, we have studied and derive performance parameter of highly integrated Lithium Niobate optical modulator. This is a chirp free modulator having low switching voltage and large bandwidth. For an external modulator in which travelling-wave electrodes length L imposed the modulating switching voltage, the product of V_π and L is fixed for a given electro optic material Lithium Niobate. We investigate to achieve a low V_π by both magnitude of the electro-optic coefficient for a wide variety of electro-optic materials. A Sellmeier equation for the extraordinary index of congruent lithium niobate is derived. For phase-matching, predictions are accmate for temperature between room temperature 250°C and wavelength ranging from 0.4 to 5µm. The Sellmeier equations predict more accmately refractive indices at long wavelengths. Theoretical result is confirmed by simulated results. We have analysed the various parameters such as switching voltage, device performance index, time constant, transmittance, cut-off frequency, 3-dB bandwidth, power absorption coefficient and transmission bit rate of Lithium Niobate optical Modulator based on electro -optic effect. (paper)

  8. Protons in neutron-irradiated and thermochemically reduced MgO crystals doped with lithium impurities

    International Nuclear Information System (INIS)

    Gonzalez, R.; Pareja, R.; Chen, Y.

    1992-01-01

    H - (hydride) ions have been observed in lithium-doped MgO crystals which have been neutron irradiated or thermochemically reduced (TCR). Infrared-absorption measurements have been used to identify the local modes of the H - ions in these crystals. The concentration of the H - ions in the neutron-irradiated crystals is found to be far less than that found in the TCR crystals. The thermal stability of H - and oxygen vacancies in both oxidizing and reducing atmospheres are investigated. The emergence of sharp structures due to OH - ions is attributed to the displacements of substitutional Li + ions, leaving behind unperturbed OH - ions, via a mechanism of rapid radiation-induced diffusion during irradiation in a reactor. Results of neutron-irradiated MgO:Li, which had previously been oxidized at high temperature, are also presented

  9. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  10. Solvothermal synthesis of Mg-doped Li2FeSiO4/C nanocomposite cathode materials for lithium-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Naik, V. M.; Nazri, G. A.; Naik, R.

    Lithium transition metal orthosilicates, such as Li2FeSiO4 and Li2MnSiO4, as cathode material have attracted much attention lately due to their high theoretical capacity ( 330 mAh/g), low cost, and environmental friendliness. However, they suffer from poor electronic conductivity and slow lithium ion diffusion in the solid phase. Several cation-doped orthosilicates have been studied to improve their electrochemical performance. We have synthesized partially Mg-substituted Li2Mgx Fe1-x SiO4-C, (x = 0.0, 0.01, 0.02, and 0.04) nano-composites by solvothermal method followed by annealing at 600oC in argon flow. The structure and morphology of the composites were characterized by XRD, SEM and TEM. The surface area and pore size distribution were measured by using N2 adsorption/desorption curves. The electrochemical performance of the Li2MgxFe1-x SiO4-C composites was evaluated by Galvanostatic cycling against metallic lithium anode, electrochemical impedance spectroscopy, and cyclic voltammetry. Li2Mg0.01Fe0.99SiO4-C sample shows a capacity of 278 mAh/g (at C/30 rate in the 1.5-4.6 V voltage window) with an excellent rate capability and stability, compared to the other samples. We attribute this observation to its higher surface area, enhanced electronic conductivity and higher lithium ion diffusion coefficient.

  11. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3.

    Science.gov (United States)

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO 3 and iron doped SrTiO 3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO 3 and compared it to DOS of iron-doped SrTiO 3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO 3 and iron-doped SrTiO 3 . Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO 3 , are accessible only on TiO 2 terminated SrTiO 3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction.

  12. Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Boron doped silicon n+p solar cells were counterdoped with lithium by ion implantation and the resuitant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacanies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.

  13. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    Science.gov (United States)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  14. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    Science.gov (United States)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  15. Luminescence life time and time-resolved spectroscopy of Cr3+ ions in strontium barium niobate

    International Nuclear Information System (INIS)

    Han, T.P.J.; Jaque, F.; Jaque, D.; Garcia-Sole, J.; Ivleva, L.

    2006-01-01

    This paper reports on the photo-luminescence spectroscopic results of congruent strontium-barium-niobate (SBN) crystals doped with Cr 2 O, at cryogenic temperature (20 K). The experimental results reveal the need of re-assignment of the Cr 3+ ions defect centres in this material. For first time, a broad emission band in the near infrared region centred at ca. 950 nm is reported. This emission band has micro-seconds decaytime constant and a band-width full-width at half-maximum (FWHM) larger than 1700 cm -1 and has been ascribed to the vibronically assisted 4 T 2 →4 A 2 transition. A much narrower emission band centred at ca. 764 nm with milli-seconds decaytime constant and a FWHM band-width of ca. 170 cm -1 is correlated to the 2 E →4 A 2 radiative transition (R-line)

  16. In situ growth of SnO2 nanoparticles in heteroatoms doped cross-linked carbon frameworks for lithium ion batteries anodes

    International Nuclear Information System (INIS)

    Zhou, Xiangyang; Xi, Lihua; Chen, Feng; Bai, Tao; Wang, Biao; Yang, Juan

    2016-01-01

    Highlights: • A facile hydrothermal method is proposed to prepare cross-linked NSG/CNTs@SnO 2 . • The graphene/CNTs anchored with untrasmall SnO 2 nanoparticles can be obtained. • The N, S are successfully incorporated into the carbon matrix. • The NSG/CNTs@SnO 2 presents enhanced cycling stability and good high-rate capacity. - Abstract: SnO 2 -based nanostructures have attracted considerable interest as a promising high-capacity anode materials for lithium ion batteries. We present herein a facile one step hydrothermal approach for in situ growth of SnO 2 nanoparticles in heteroatoms doped cross-linked carbon framework (NSG/CNTs@SnO 2 ). Thiourea is employed as a single source of nitrogen and sulfur in the cross-linked carbon framework (NSG/CNTs). Characterization shows that the SnO 2 nanoparticles with an average size of 6–10 nm are uniformly anchored on NSG/CNTs matrix. When evaluated for the electrochemical properties in lithium ion batteries, the obtained NSG/CNTs@SnO 2 composite with ultrasmall SnO 2 particle size (6–10 nm) delivers a high reversible capacity of 999 mAh g −1 at 200 mA g −1 after 120 cycles and excellent rate performance. Such outstanding electrochemical performance of the peculiar cross-linked NSG/CNTs@SnO 2 composite can be primarily attributed to the synergistic effect of the ultrasmall anchored SnO 2 nanoparticles and the dual-doped NSG/CNTs matrix. The uniformly distributed SnO 2 nanoparticles can deliver large capacity and the robust dual-doped NSG/CNTs matrix can guarantee the good structural integrity and high electrical conductivity during cycling. Besides, the porous structure can provide free space for the volume expansion of SnO 2 and accommodate the strain formed during repeated lithiation/delithiation processes.

  17. Dopant-Modulating Mechanism of Lithium Adsorption and Diffusion at the Graphene /Li2S Interface

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Wang, Huayu; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo

    2018-02-01

    Graphene modification is one of the most effective routes to enhance the electrochemical properties of the transition-metal sulfide anode for Li-ion batteries and the Li2S cathode for Li-S batteries. Boron, nitrogen, oxygen, phosphorus, and sulfur doping greatly affect the electrochemical properties of Li2S /graphene . Here, we investigate the interfacial binding energy, lithium adsorption energy, interface diffusion barrier, and electronic structure by first-principles calculations to unveil the diverse effects of different dopants during interfacial lithiation reactions. The interfacial lithium storage follows the pseudocapacitylike mechanism with intercalation character. Two different mechanisms are revealed to enhance the interfacial lithium adsorption and diffusion, which are the electron-deficiency host doping and the vacancylike structure evolutions with bond breaking. The synergistic effect between different dopants with diverse doping effects is also proposed. The results give a theoretical basis for the materials design with doped graphene as advanced materials modification for energy storage.

  18. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    Science.gov (United States)

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  19. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  20. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  1. Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications.

    Science.gov (United States)

    Sood, Parveen; Kim, Ki Chul; Jang, Seung Soon

    2018-03-19

    The high electron affinity of fullerene C 60 coupled with the rich chemistry of carbon makes it a promising material for cathode applications in lithium-ion batteries. Since boron has one electron less than carbon, the presence of boron on C 60 cages is expected to generate electron deficiency in C 60 , and thereby to enhance its electron affinity. By using density functional theory (DFT), we studied the redox potentials and electronic properties of C 60 and C 59 B. We have found that doping C 60 with one boron atom results in a substantial increase in redox potential from 2.462 V to 3.709 V, which was attributed to the formation of an open shell system. We also investigated the redox and electronic properties of C 59 B functionalized with various redox-active oxygen containing functional groups (OCFGs). For the combination of functionalization with OCFGs and boron doping, it is found that the enhancement of redox potential is reduced, which is mainly attributed to the open shell structure being changed to a closed-shell one. Nevertheless, the redox potentials are still higher than that of pristine C 60 . From the observation that the lowest unoccupied molecular orbital of closed-shell OCFG- functionalized C 59 B is correlated well with the redox potential, it was confirmed that the spin state is crucial to be considered to understand the relationship between electronic structure and redox properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A three-dimensional interlayer composed of graphene and porous carbon for Long-life, High capacity Lithium-Iron Fluoride Battery

    International Nuclear Information System (INIS)

    Yang, Juan; Xu, Zhanglin; Sun, Hongxu; Zhou, Xiangyang

    2016-01-01

    We design a macroscopic structure composing of porous carbon and graphene sheets, which are coated onto a cellulose paper as an interlayer inserted between electrode and separator. The interlayer mainly acts as a divertor to accommodate the discharge products breaking away from the electrode by mechanical degradation or cathode dissolution during cycling and keeps the close contact with current collector. Iron fluoride is a new-type lithium storage material developed in recent years, which can act as a cathode material candidate for the rechargeable lithium ion battery due to their large theoretical capacity and relatively high operating potential. Specifically, FeF 3 ·0.33H 2 O, which possesses unusual tunnel structure, is attracting more and more attentions. However, FeF 3 ·0.33H 2 O suffers from the poor electronic conductivity and volume effect during cycling, causing the large capacity fading. In this study, we design a macroscopic structure composing of porous carbon and graphene sheets, which are coated onto a cellulose paper as an interlayer inserted between electrode and separator. The interlayer can not only enhance the electronic conductivity, but also absorb the FeF 3 ·0.33H 2 O nanoparticles breaking away from the Al foil due to the volume effect upon cycling. When the interlayer is applied in battery, discharge capacities of 600 and 460 mAh g −1 can be achieved at the rates of 100 and 600 mA g −1 after 60 cycles, respectively. Furthermore, the capacity of 435 mAh g −1 can be still retained at a high rate of 1000 mA g −1 after 250 cycles. The results demonstrate a potential feasibility for the porous carbon/graphene sheets to be applied to obtain a high-performance lithium-iron fluoride battery.

  3. Radiation damage and annealing of lithium-doped silicon solar cells

    Science.gov (United States)

    Statler, R. L.

    1971-01-01

    Evidence has been presented that a lithium-diffused crucible-grown silicon solar cell can be made with better efficiency than the flight-quality n p 10 ohms-cm solar cell. When this lithium cell is exposed to a continuous radiation evironment at 60 C (electron spectrum from gamma rays) it has a higher power output than the N/P cell after a fluence equivalent to 1 MeV. A comparison of annealing of proton- and electron-damage in this lithium cell reveals a decidedly faster rate of recovery and higher level of recoverable power from the proton effects. Therefore, the lithium cell shows a good potential for many space missions where the proton flux is a significant fraction of the radiation field to be encountered.

  4. Uniqueness of Co3O4/Nitrogen-Doped Carbon Nano-spheres Derived from Metal-Organic Framework: Insight of Superior Lithium Storage Capabilities Beyond Theoretical and Electrochemical Features in High Voltage Battery

    KAUST Repository

    Ming, Jun

    2018-05-24

    Developing versatile strategy to create new structured materials with hetero-atomic doping has become one of the fascinating research topics owing to their fantastic properties, while the popular metal-organic-framework opens a promising avenue to design diverse architectures. Herein, an intriguing kind of spherical N-doped porous carbon (i.e., N-C) particles containing numerous Co3O4 nanocrystals (i.e., Co3O4/N-C) is introduced, in which the Zn-Co based Prussian blue analogue act as a sacrificial template and carbon source while the volatilization of zinc and oxidation of Co can produce rich pores and form highly active Co3O4 nanocrystals. The resultant Co3O4/N-C particles has an extremely high lithium storage capacity of 1255 mA h g-1 and excellent rate capability even to the current of 2000 mA g-1. The long cycle life over 500 cycles at 1000 mA g-1 with the high capacity of 798 mAh g-1 further demonstrates its prominent properties. Our kinetics analysis reveals that the high performances beyond theoretical mainly stem from the active Co3O4 nanocrystals, fast diffusion of lithium ions within the structure and pseudocapacitive behaviors; therefore it further demonstrates impressive stability and rate capabilities in lithium ion battery versus the cathode of lithium layered oxide even at high voltage conditions.

  5. Analyzing the defect structure of CuO-doped PZT and KNN piezoelectrics from electron paramagnetic resonance.

    Science.gov (United States)

    Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A

    2014-09-01

    The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.

  6. Composition-Driven Phase Boundary and Piezoelectricity in Potassium-Sodium Niobate-Based Ceramics.

    Science.gov (United States)

    Zheng, Ting; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Wang, Xiangjian; Lou, Xiaojie

    2015-09-16

    The piezoelectricity of (K,Na)NbO3 ceramics strongly depends on the phase boundary types as well as the doped compositions. Here, we systematically studied the relationships between the compositions and phase boundary types in (K,Na) (Nb,Sb)O3-Bi0.5Na0.5AO3 (KNNS-BNA, A=Hf, Zr, Ti, Sn) ceramics; then their piezoelectricity can be readily modified. Their phase boundary types are determined by the doped elements. A rhombohedral-tetragonal (R-T) phase boundary can be driven in the compositions range of 0.035≤BNH≤0.040 and 0.035≤BNZ≤0.045; an orthorhombic-tetragonal (O-T) phase boundary is formed in the composition range of 0.005≤BNT≤0.02; and a pure O phase can be only observed regardless of BNS content (≤0.01). In addition, the phase boundary types strongly affect their corresponding piezoelectricities. A larger d33 (∼440-450 pC/N) and a higher d33* (∼742-834 pm/V) can be attained in KNNS-BNA (A=Zr and Hf) ceramics due to the involvement of R-T phase boundary, and unfortunately KNNS-BNA (A=Sn and Ti) ceramics possess a relatively poor piezoelectricity (d33≤200 and d33*piezoelectricity and phase boundary types were also discussed. We believe that comprehensive research can design more excellent ceramic systems concerning potassium-sodium niobate.

  7. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.

    Science.gov (United States)

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S

    2014-01-21

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.

  8. Advanced manganese oxide material for rechargeable lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwater, Terrill B.; Salkind, Alvin J. [Rutgers University, Piscataway, NJ (United States)

    2006-11-22

    A family of potassium-doped manganese oxide materials were synthesized with the stoichiometric formula Li{sub 0.9-X}K{sub X}Mn{sub 2}O{sub 4}, where X=0.0-0.25 and evaluated for their viability as a cathode material for a rechargeable lithium battery. A performance maximum was found at X=0.1 where the initial specific capacity for the lithium-potassium-doped manganese dioxide electrochemical couple was 130mAhg{sup -1} of active cathode material. The discharge capacity of the system was maintained through 90 cycles (95% initial capacity). Additionally, the capacity was maintained at greater than 90% initial discharge through 200 cycles. Other variants demonstrated greater than 75% initial discharge through 200 cycles at comparable capacity. (author)

  9. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries

  10. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    OpenAIRE

    Juha-Pekka Nikkanen; Helmi Keskinen; Mikko Aromaa; Mikael Järn; Tomi Kanerva; Erkki Levänen; Jyrki M. Mäkelä; Tapio Mäntylä

    2008-01-01

    The liquid flame spray (LFS) method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K) H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical compositi...

  11. Synthesis and Characterization of Lithium-Doped Lanthanum ...

    African Journals Online (AJOL)

    Vostro 2520

    made of the above materials showed very promising features for future development of microbatteries. Solid electrolytes with ... promising option to meet such demands because of their inherent .... derivatives, show the highest bulk lithium ion.

  12. Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries.

    Science.gov (United States)

    Liu, Jian; Banis, Mohammad N; Sun, Qian; Lushington, Andrew; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang

    2014-10-08

    Atomic layer deposition is successfully applied to synthesize lithium iron phosphate in a layer-by-layer manner by using self-limiting surface reactions. The lithium iron phosphate exhibits high power density, excellent rate capability, and ultra-long lifetime, showing great potential for vehicular lithium batteries and 3D all-solid-state microbatteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes

    CSIR Research Space (South Africa)

    West, N

    2013-07-01

    Full Text Available This paper explores the synergistic and catalytic properties of a newly developed lithium ion battery (LIB) composite cathode of LiMn(sub2)O(Sub4) modified with bimetallic (Au–Fe) nanoparticle. Spinel phase LiMn(sub)2O(sub4) was doped...

  14. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    Science.gov (United States)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  15. Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cortés-Arriagada, Diego, E-mail: dcarriagada@gmail.com; Toro-Labbé, Alejandro

    2016-11-15

    Graphical abstract: Quantum chemistry calculations show the ability of aluminum and iron doped graphene for the removal of methylated arsenicals in their trivalent and pentavalent states, with adsorption energies on the range of 1.5–4.2 eV, and high stability in a water environment. Display Omitted - Highlights: • Al and Fe-doped graphene serve as superior materials for adsorption of methylated arsenicals, including thioarsenicals. • Pentavalent arsenicals are adsorbed with higher adsorption energies (up to 4.2 eV) than trivalent arsenicals (up to 1.7 eV). • The adsorption strength is determined by the weakening of the interacting σAs−O bond in the pollutant. • The adsorption stability was studied in a water environment and molecular dynamics calculations were performed at 300 K. • Trivalent and petavalent forms are mainly adsorbed at neutral pH in their neutral and anionic forms, respectively. - Abstract: The ability of Al and Fe-doped graphene for the adsorption of trivalent and pentavalent methylated arsenic compounds was studied by quantum chemistry computations. The adsorption of trivalent methylarsenicals is reached with adsorption energies of 1.5–1.7 eV at neutral conditions; while, adsorption of pentavalent methylarsenicals reaches adsorption energies of 3.3–4.2 eV and 1.2–2.4 eV from neutral to low pH conditions, respectively. Moreover, the weakening of the interacting σAs−O bond in the pollutant structure played an important role in the stability of the adsorbent–adsorbate systems, determining the adsorption strength. In addition, the pollutant adsorption appears to be efficient in aqueous environments, with even high stability at ambient temperature; in this regard, it was determined that the trivalent and petavalent forms are mainly adsorbed in their neutral and anionic forms at neutral pH, respectively. Therefore, Al and Fe-doped graphene are considered as potential future materials for the removal of methylated arsenic

  16. Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants

    International Nuclear Information System (INIS)

    Cortés-Arriagada, Diego; Toro-Labbé, Alejandro

    2016-01-01

    Graphical abstract: Quantum chemistry calculations show the ability of aluminum and iron doped graphene for the removal of methylated arsenicals in their trivalent and pentavalent states, with adsorption energies on the range of 1.5–4.2 eV, and high stability in a water environment. Display Omitted - Highlights: • Al and Fe-doped graphene serve as superior materials for adsorption of methylated arsenicals, including thioarsenicals. • Pentavalent arsenicals are adsorbed with higher adsorption energies (up to 4.2 eV) than trivalent arsenicals (up to 1.7 eV). • The adsorption strength is determined by the weakening of the interacting σAs−O bond in the pollutant. • The adsorption stability was studied in a water environment and molecular dynamics calculations were performed at 300 K. • Trivalent and petavalent forms are mainly adsorbed at neutral pH in their neutral and anionic forms, respectively. - Abstract: The ability of Al and Fe-doped graphene for the adsorption of trivalent and pentavalent methylated arsenic compounds was studied by quantum chemistry computations. The adsorption of trivalent methylarsenicals is reached with adsorption energies of 1.5–1.7 eV at neutral conditions; while, adsorption of pentavalent methylarsenicals reaches adsorption energies of 3.3–4.2 eV and 1.2–2.4 eV from neutral to low pH conditions, respectively. Moreover, the weakening of the interacting σAs−O bond in the pollutant structure played an important role in the stability of the adsorbent–adsorbate systems, determining the adsorption strength. In addition, the pollutant adsorption appears to be efficient in aqueous environments, with even high stability at ambient temperature; in this regard, it was determined that the trivalent and petavalent forms are mainly adsorbed in their neutral and anionic forms at neutral pH, respectively. Therefore, Al and Fe-doped graphene are considered as potential future materials for the removal of methylated arsenic

  17. Blue and Orange Two-Color CW Laser Based on Single-Pass Second-Harmonic and Sum-Frequency Generation in MgO:PPLN

    Directory of Open Access Journals (Sweden)

    Dismas K. Choge

    2018-04-01

    Full Text Available We demonstrate a compact blue and orange-two color continuous wave laser source emitting at 487 nm and from 597.4 to 600.3 nm, respectively. The temperature tunable coherent orange radiation is achieved by frequency mixing 974 nm laser diode (LD and a C-band amplified spontaneous emission laser source while the temperature insensitive blue radiation is generated by second-order quasi-phase-matching frequency doubling of 974 nm LD. We implement the simultaneous nonlinear processes in a single magnesium oxide doped periodically poled lithium niobate bulk crystal without the need of an aperiodic design.

  18. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage

    Science.gov (United States)

    Yang, Chao; Yu, Shu; Ma, Yu; Lin, Chunfu; Xu, Zhihao; Zhao, Hua; Wu, Shunqing; Zheng, Peng; Zhu, Zi-Zhong; Li, Jianbao; Wang, Ning

    2017-08-01

    Ti2Nb10O29 is an advanced anode material for lithium-ion batteries due to its large specific capacity and high safety. However, its poor electronic/ionic conductivity significantly limits its rate capability. To tackle this issue, a Cr3+-Nb5+ co-doping is employed, and a series of CrxTi2-2xNb10+xO29 compounds are prepared. The co-doping does not change the Wadsley-Roth shear structure but increases the unit-cell volume and decreases the particle size. Due to the increased unit-cell volumes, the co-doped samples show increased Li+-ion diffusion coefficients. Experimental data and first-principle calculations reveal significantly increased electronic conductivities arising from the formation of impurity bands after the co-doping. The improvements of the electronic/ionic conductivities and the smaller particle sizes in the co-doped samples significantly contribute to improving their electrochemical properties. During the first cycle at 0.1 C, the optimized Cr0.6Ti0.8Nb10.6O29 sample delivers a large reversible capacity of 322 mAh g-1 with a large first-cycle Coulombic efficiency of 94.7%. At 10 C, it retains a large capacity of 206 mAh g-1, while that of Ti2Nb10O29 is only 80 mAh g-1. Furthermore, Cr0.6Ti0.8Nb10.6O29 shows high cyclic stability as demonstrated in over 500 cycles at 10 C with tiny capacity loss of only 0.01% per cycle.

  19. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.

    Science.gov (United States)

    Park, Min-Sik; Lim, Young-Geun; Hwang, Soo Min; Kim, Jung Ho; Kim, Jeom-Soo; Dou, Shi Xue; Cho, Jaephil; Kim, Young-Jun

    2014-11-01

    Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a H-2-NO fuel cell

    NARCIS (Netherlands)

    Daems, Nick; Sheng, Xia; Alvarez-Gallego, Yolanda; Vankelecom, Ivo F. J.; Pescarmona, Paolo P.

    2016-01-01

    Iron-containing N-doped carbon materials were investigated as electrocatalysts for the cogeneration of hydroxylamine (NH2OH) and electricity in a H-2-NO fuel cell. This electrochemical route for the production of hydroxylamine is a greener alternative to the present industrial synthesis, because it

  1. Effect of AgCl NPs: Physical, thermal, absorption and luminescence properties

    Science.gov (United States)

    Nurhafizah, H.; Rohani, M. S.

    2017-06-01

    Silver nanoparticles (AgCl NPs) are embedded in Er3+/Nd3+ co-doped lithium niobate tellurite glasses of the form (68-x)TeO2-15Li2CO3-15Nb2O5-1Er2O3-1Nd2O3-(x)AgCl with x = 1,2 and 3 mol% via conventional melt-quenching technique. The physical properties such as density, ionic packing density, refractive index and electronic polarizability are computed utilizing the usual method. The existence of AgCl NPs with an average size of 3.7 nm is confirmed using TEM analysis. Moreover, the thermal stability and Hruby criterion of the glass decreases as the AgCl NPs content increases. The direct optical band gap are found decrease as the AgCl NPs content increase, but both indirect optical band gap and Urbach energy are found increases as AgCl NPs content increases. The luminescence spectra shows two strong emission which is the purple emission at 436 nm and red emission at 724 nm which also been observed has strong quenching due to the AgCl NPs, Er3+/Nd3+ dopant and modifier, lithium niobate which possessed magnetic penetration. These glass compositions may be potential for various applications such as solid state devices including laser.

  2. Towards spontaneous parametric down-conversion at low temperatures

    Directory of Open Access Journals (Sweden)

    Akatiev Dmitrii

    2017-01-01

    Full Text Available The possibility of observing spontaneous parametric down-conversion in doped nonlinear crystals at low temperatures, which would be useful for combining heralded single-photon sources and quantum memories, is studied theoretically. The ordinary refractive index of a lithium niobate crystal doped with magnesium oxide LiNbO3:MgO is measured at liquid nitrogen and helium temperatures. On the basis of the experimental data, the coefficients of the Sellmeier equation are determined for the temperatures from 5 to 300 K. In addition, a poling period of the nonlinear crystal has been calculated for observing type-0 spontaneous parametric down-conversion (ooo-synchronism at the liquid helium temperature under pumping at the wavelength of λp = 532 nm and emission of the signal field at the wavelength of λs = 794 nm, which corresponds to the resonant absorption line of Tm3+ doped ions.

  3. A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes

    Science.gov (United States)

    Lourenço, Tuanan C.; Zhang, Yong; Costa, Luciano T.; Maginn, Edward J.

    2018-05-01

    Classical molecular dynamics simulations were performed on twelve different ionic liquids containing aprotic heterocyclic anions doped with Li+. These ionic liquids have been shown to be promising electrolytes for lithium ion batteries. Self-diffusivities, lithium transference numbers, densities, and free volumes were computed as a function of lithium concentration. The dynamics and free volume decreased with increasing lithium concentration, and the trends were rationalized by examining the changes to the liquid structure. Of those examined in the present work, it was found that (methyloxymethyl)triethylphosphonium triazolide ionic liquids have the overall best performance.

  4. Effect of Metal (Mn, Ti Doping on NCA Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dao Yong Wan

    2018-01-01

    Full Text Available NCA (LiNi0.85Co0.10Al0.05-x MxO2, M=Mn or Ti, x < 0.01 cathode materials are prepared by a hydrothermal reaction at 170°C and doped with Mn and Ti to improve their electrochemical properties. The crystalline phases and morphologies of various NCA cathode materials are characterized by XRD, FE-SEM, and particle size distribution analysis. The CV, EIS, and galvanostatic charge/discharge test are employed to determine the electrochemical properties of the cathode materials. Mn and Ti doping resulted in cell volume expansion. This larger volume also improved the electrochemical properties of the cathode materials because Mn4+ and Ti4+ were introduced into the octahedral lattice space occupied by the Li-ions to expand the Li layer spacing and, thereby, improved the lithium diffusion kinetics. As a result, the NCA-Ti electrode exhibited superior performance with a high discharge capacity of 179.6 mAh g−1 after the first cycle, almost 23 mAh g−1 higher than that obtained with the undoped NCA electrode, and 166.7 mAh g−1 after 30 cycles. A good coulombic efficiency of 88.6% for the NCA-Ti electrode is observed based on calculations in the first charge and discharge capacities. In addition, the NCA-Ti cathode material exhibited the best cycling stability of 93% up to 30 cycles.

  5. TECHNOLOGIES OF DOPING OF CAST IRON THROUGH THE SLAG PHASE WITH USING OF THE SPENT NICKEL- AND COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    I. B. Provorova

    2015-01-01

    Full Text Available We have defined the regularities of the doping of cast iron through the slag phase of nickel and copper due to the waste catalysts using a carbonaceous reducing agent. We have justified the need to use the cast iron chips as a seed in the composition of the slag mixture. We have defined the dependence of the degree of extraction of nickel or copper from spent catalyst on the amount of the catalyst, on the basicity of the slag mixture, on the temperature and time of melting.

  6. Optical properties of lithium magnesium borate glasses doped with Dy3+ and Sm3+ ions

    International Nuclear Information System (INIS)

    Yasser Saleh Mustafa Alajerami; Suhairul Hashim; Wan Muhamad Saridan Wan Hassan; Ahmad Termizi Ramli; Azman Kasim

    2012-01-01

    Several studies showed the interesting properties of trivalent lanthanide ions when doped in various types of glasses. Optical and physical properties of lithium magnesium borate glasses doped with Dy 3+ then with Sm 3+ ions were determined by measuring their absorption and luminescence spectra in the visible region. The absorption spectra of Dy 3+ showed eight absorption bands with hypersensitive transition at 1265 nm ( 6 H 15/2 → 6 F 11/2 - 6 H 9/2 ) and three PL emission bands at 588 nm ( 4 F 9/2 → 6 H 15/2 ), 660 nm ( 4 F 9/2 → 6 H 13/2 ) and 775 nm ( 4 F 9/2 → 6 H 11/2 ). Regarding the Sm3 + , nine absorption bands were observed with hypersensitive transition at 1237 nm ( 6 H 5/2 - 6 F 7/2 ); the PL spectrum showed four prominent peaks at 4 G 5/2 → 6 H 5/2 (yellow color), 4 G 5/2 → 6 H 7/2 (bright orange color), 4 G 5/2 → 6 H 9/2 (orange reddish color) and 4 G 5/2 → 6 H 11/2 (red color), respectively. Finally, a series of physical parameters such as the oscillator strengths, refractive index, ions concentration, Polaron radius and other parameters were calculated for each dopant.

  7. A new insight to the physical interpretation of activated carbon and iron doped carbon material: sorption affinity towards organic dye.

    Science.gov (United States)

    Shah, Irfan; Adnan, Rohana; Ngah, Wan Saime Wan; Mohamed, Norita; Taufiq-Yap, Yun Hin

    2014-05-01

    To enhance the potential of activated carbon (AC), iron incorporation into the AC surface was examined in the present investigations. Iron doped activated carbon (FeAC) material was synthesized and characterized by using surface area analysis, energy dispersive X-ray (EDX), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). The surface area of FeAC (543 m(2)/g) was found to be lower than AC (1043 m(2)/g) as a result of the pores widening due to diffusion of iron particles into the porous AC. Iron uploading on AC surface was confirmed through EDX analysis, showing up to 13.75 wt.% iron on FeAC surface. TPR and TPD profiles revealed the presence of more active sites on FeAC surface. FeAC have shown up to 98% methylene blue (MB) removal from the aqueous media. Thermodynamic parameters indicated the spontaneous and exothermic nature of the sorption processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Properties of complex tungstates, niobates, translated with fluorite-like structure

    International Nuclear Information System (INIS)

    Vetkina, S.N.; Zolin, V.F.; Sirotinkin, V.P.; Smirnov, S.A.

    1989-01-01

    Spectra of ternary tungstates, niobates and tantalates (MeLa 2 WO 7 , La 3 TO 7 ; Me=Ba, Sr; T=Ta, Nb) related to the layered fluorite group are analyzed. The laser pumping and time resolved luminescence are used for selecting spectra of unequivalent centers. The symmetry of the first center is near to the distorted cubic one. The vibrational spectra of europium in Eu 3 NbO 7 and SrLa 2 WO 7 are due to the chain-like structure of niobates and to the net-like structure of tantalates. The stimulated emission of Nd 3+ in powders of BaLa 2 WO 7 and La 3 NbO 7 is observed at wavelengths of 1.07 and 1.063 μm, respectively

  9. Reliability improvement of PMZNT relaxor ferroelectrics through surface modification by MnO2 doping against electroplating-induced degradation

    International Nuclear Information System (INIS)

    Cao Jiangli; Li Longtu; Gui Zhilun

    2003-01-01

    Electroplating treatment, scanning electron microscopy (SEM) observation, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses were conducted to investigate the reliability improvement of lead magnesium niobate-based ceramics (PMZNT) through MnO 2 vaporous doping against hydrogen reduction during electroplating. The results showed that manganese dopant was reduced to be +3 oxidation state during the sintering and Mn 3+ was incorporated into the perovskite lattice; however, only the outermost ceramics surface was doped while 50 μm beneath kept unchanged. This technique proved to enhance the reliability of PMZNT against electroplating significantly without changing the dielectric properties of ceramics body. Based on the above results, the modification mechanism of MnO 2 vaporous doping was analyzed from the viewpoint of defect chemistry

  10. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature

    International Nuclear Information System (INIS)

    Andrushchak, A. S.; Laba, H. P.; Yurkevych, O. V.; Mytsyk, B. G.; Solskii, I. M.; Kityk, A. V.; Sahraoui, B.

    2009-01-01

    This paper presents the results of ultrasonic measurements of LiNbO 3 and LiNbO 3 :MgO crystals. The tensors of piezoelectric coefficients, elastic stiffness constants, and elastic compliances are determined for both crystals at room temperature. Combining these data with the results of piezo-optical measurements, a complete set of photoelastic tensor coefficients is also calculated. Doping of LiNbO 3 crystals by MgO does not lead to a considerable modification of their elastic and photoelastic properties. However, LiNbO 3 :MgO is characterized by a considerably higher resistance with respect to powerful light radiation, making it promising for future application in acousto-optic devices that deal with superpowerful laser radiation. Presented here are the complete tensor sets of elastic constants and photoelastic coefficients of LiNbO 3 and LiNbO 3 :MgO crystals that may be used for a geometry optimization of acousto-optical interaction providing the best diffraction efficiency of acousto-optical cells made of these materials.

  11. Iron doped fibrous-structured silica nanospheres as efficient catalyst for catalytic ozonation of sulfamethazine.

    Science.gov (United States)

    Bai, Zhiyong; Wang, Jianlong; Yang, Qi

    2018-04-01

    Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.

  12. Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications

    Directory of Open Access Journals (Sweden)

    N. Jaidass

    2018-03-01

    Full Text Available Different concentrations of Dy3+ ions doped lithium zinc borosilicate glasses of chemical composition (30-x B2O3 - 25 SiO2 -10 Al2O3 -30 LiF - 5 ZnO - x Dy2O3 (x = 0, 0.1, 0.5, 1.0 and 2.0 mol% were prepared by the melt quenching technique. The prepared glasses were investigated through X-ray diffraction, optical absorption, photoluminescence and decay measurements. Intensities of absorption bands expressed in terms of oscillator strengths (f were used to determine the Judd-Ofelt (J-O intensity parameters Ωλ (λ = 2, 4 and 6. The evaluated J-O parameters were used to determine the radiative parameters such as transition probabilities (AR, total transition probability rate (AT, radiative lifetime (τR and branching ratios (βR for the excited 4F9/2 level of Dy3+ ions. The chromaticity coordinates determined from the emission spectra were found to be located in the white light region of CIE chromaticity diagram. Keywords: Condensed matter physics, Engineering, Materials science

  13. A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co-Doped Graphitic Nanotubes as High-Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Tabassum, Hassina; Zou, Ruqiang; Mahmood, Asif; Liang, Zibin; Wang, Qingfei; Zhang, Hao; Gao, Song; Qu, Chong; Guo, Wenhan; Guo, Shaojun

    2018-02-01

    Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li + ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni 2 O 3 , Mn 3 O 4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g -1 at the current density of 96 mA g -1 , good rate ability (410 mA h g -1 at 1.75 A g -1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron

    International Nuclear Information System (INIS)

    Zhu Xiuping; Ni Jinren

    2011-01-01

    Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO 2+ , FeO 4 2− ) was enhanced by direct electrochemical oxidation at BDD anode.

  15. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  16. Modeling the Effects of the Cathode Composition of a Lithium Iron Phosphate Battery on the Discharge Behavior

    Directory of Open Access Journals (Sweden)

    Won Il Cho

    2013-10-01

    Full Text Available This paper reports a modeling methodology to predict the effects on the discharge behavior of the cathode composition of a lithium iron phosphate (LFP battery cell comprising a LFP cathode, a lithium metal anode, and an organic electrolyte. A one-dimensional model based on a finite element method is presented to calculate the cell voltage change of a LFP battery cell during galvanostatic discharge. To test the validity of the modeling approach, the modeling results for the variations of the cell voltage of the LFP battery as a function of time are compared with the experimental measurements during galvanostatic discharge at various discharge rates of 0.1C, 0.5C, 1.0C, and 2.0C for three different compositions of the LFP cathode. The discharge curves obtained from the model are in good agreement with the experimental measurements. On the basis of the validated modeling approach, the effects of the cathode composition on the discharge behavior of a LFP battery cell are estimated. The modeling results exhibit highly nonlinear dependencies of the discharge behavior of a LFP battery cell on the discharge C-rate and cathode composition.

  17. Enhanced Absorption and Diffusion Properties of Lithium on B,N,VC-decorated Graphene

    Science.gov (United States)

    Jin, Mengting; Yu, L. C.; Shi, W. M.; Deng, J. G.; Zhang, Y. N.

    2016-01-01

    Systematic first-principles calculations were performed to investigate the adsorption and diffusion of Li on different graphene layers with B/N-doping and/or C-vacancy, so as to understand why doping heteroatoms in graphene anode could significantly improve the performance of lithium-ion batteries. We found that the formation of single or double carbon vacancies in graphene are critical for the adsorption of Li atoms. While the N-doping facilitates the formation of vacancies, it introduces over binding issue and hinders the Li diffusion. The presence of B takes the excessive electrons from Li and N and reduces the energy barrier of Li diffusion on substrates. We perceive that these clear insights are crucial for the further development of graphene based anode materials for lithium-ion batteries. PMID:27897202

  18. Macroscopic polarization and thermoluminescence of barium niobate - sodium niobate. Makroskopicheskaya polyarizatsiya i termolyuminestsentsiya niobata bariya - natriya

    Energy Technology Data Exchange (ETDEWEB)

    Gorban' , I S; Gumenyuk, A F; Omel' yanenko, V A [Kievskij Gosudarstvennyj Univ., Kiev (Ukrainian SSR)

    1989-11-01

    Thermoluminescence (TL) of initial and thermally treated purposely undoped crystals of barium niobate - sodium has been studied within 85-400 K. The TL intensity is found to depend on the temperature to which the sample has been heated. A conclusion is drawn that nonstationarity of the TL properties is due to slowly occuring processes of compensation of pyrocharge, which depend on the temperatural prehistory of the sample. A mechanism of the traps transformation in a strong pyrofield of high-impedance crystals is discussed.

  19. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha; Sen, Pintu; Duttachowdhury, Ankan; Ghosh, Uday Chand

    2012-01-01

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl 3 as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10 −2 S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  20. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  1. Iron-Doped (La,Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia.

    Science.gov (United States)

    Shlapa, Yulia; Kulyk, Mykola; Kalita, Viktor; Polek, Taras; Tovstolytkin, Alexandr; Greneche, Jean-Marc; Solopan, Sergii; Belous, Anatolii

    2016-12-01

    Fe-doped La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles have been synthesized by sol-gel method, and ceramic samples based on them were sintered at 1613 K. Crystallographic and magnetic properties of obtained nanoparticles and ceramic samples have been studied. It has been established that cell volume for nanoparticles increases with growing of iron content, while this dependence displays an opposite trend in the case of ceramic samples. Mössbauer investigations have shown that in all samples, the oxidation state of iron is +3. According to magnetic studies, at room temperature, both nanoparticles and ceramic samples with y ≤ 0.06 display superparamagnetic properties and samples with y ≥ 0.08 are paramagnetic. Magnetic fluids based on La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles and aqua solution of agarose have been prepared. It has been established that heating efficiency of nanoparticles under an alternating magnetic field decreases with growing of iron content.

  2. Optical properties of Eu(III) doped strontium gadolinium niobate oxide

    Energy Technology Data Exchange (ETDEWEB)

    Vishwnath, Verma, E-mail: mnsmsu@gmail.com, E-mail: vermavicky.1988@gmail.com; Srinivas, M.; Patel, Nimesh; Modi, Dhaval [Luminescent Materials Laboratory, Physics Department, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Murthy, K. V. R. [Display Materials Laboratory, Applied Physics Department, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara-390001, Gujarat (India)

    2016-05-23

    Sr{sub 2}GdNbO{sub 6} doped with trivalent ion of Eu phosphors having monoclinic phase of space group P2{sub 1}/n have been synthesized via solid state reaction method, and their photoluminescence properties have been examined under UV excitation. The emission peaks exhibited around 580, 596, and 610 nm wavelength. By using xenon lamp as a source of excitation having wavelengths at 254 and 262 nm, it is observed that the maximum light emission yielded in red region. It is inferred that the dopant Eu{sup +3} ions may take the substitutional positions at non-centrosymmetric site.

  3. 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries

    Science.gov (United States)

    Wang, Bin; Wang, Yunhui; Peng, Yueying; Wang, Xin; Wang, Jing; Zhao, Jinbao

    2018-06-01

    In this work, N-doped biomass derived porous carbon (NSBDC) has been prepared utilizing low-cost agricultural waste-sugarcane bagasse as the prototype, and needle-like PANI as the dopant. NSBDC possesses a special 3D interconnected framework structure, superior hierarchical pores and suitable heteroatom doping level, which benefits a large number of applications on ion storage and high-rate ion transfer. Typically, the NSBDC exhibits the high specific capacitance (298 F g-1 at 1 A g-1) and rate capability (58.7% capacitance retention at 20 A g-1), as well as the high cycle stability (5.5% loss over 5000 cycles) in three-electrode systems. A two-electrode asymmetric system has been fabricated employing NSBDC and the precursor of NSBDC (sugarcane bagasse derived carbon/PANI composite) as the negative and positive electrodes, respectively, and an energy density as high as 49.4 Wh kg-1 is verified in this asymmetric system. A NSBDC-based whole symmetric supercapacitors has also been assembled, and it can easily light a 1.5 V bulb due to its high energy density (27.7 Wh kg-1). In addition, for expanding the application areas of NSBDC, it is also applied to lithium ion battery, and a high reversible capacity of 1148 mAh g-1 at 0.1 A g-1 is confirmed. Even at 5 A g-1, NSBDC can still deliver a high reversible capacity of 357 mAh g-1 after 200 cycles, indicating its superior lithium storage capability.

  4. Radiation-damage recovery in undoped and oxidized Li doped Mg O crystals implanted with lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E. E-mail: ealves@itn.pt; Silva, R.C. da; Pinto, J.V.; Monteiro, T.; Savoini, B.; Caceres, D.; Gonzalez, R.; Chen, Y

    2003-05-01

    Undoped MgO and oxidized Li-doped MgO single crystals were implanted with 1 x 10{sup 17} Li{sup +}/cm{sup 2} at 175 keV. The Rutherford backscattering spectrometry (RBS)/channeling data obtained after implantation shows that damage was produced throughout the entire range of the implanted ions. Optical absorption measurements indicate that after implantation the most intense band occurs at {approx}5.0 eV, which has been associated with anion vacancies. After annealing at 450 K the intensity of the oxygen-vacancy band decreases monotonically with temperature and completely disappears at 950 K. A broad extinction band centered at {approx}2.14 eV associated with lithium precipitates emerges gradually and anneals out at 1250 K. RBS/channeling shows that recovery of the implantation damage is completed after annealing the oxidized samples at 1250 K.

  5. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic

  6. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals.

    Science.gov (United States)

    Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R

    2018-05-09

    Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.

  7. Facile synthesis of hydroxy-modified MOF-5 for improving the adsorption capacity of hydrogen by lithium doping.

    Science.gov (United States)

    Kubo, Masaru; Hagi, Hayato; Shimojima, Atsushi; Okubo, Tatsuya

    2013-11-01

    A facile synthesis of partially hydroxy-modified MOF-5 and its improved H2-adsorption capacity by lithium doping are reported. The reaction of Zn(NO3)2·6H2O with a mixture of terephthalic acid (H2BDC) and 2-hydroxyterephthalic acid (H2BDC-OH) in DMF gave hydroxy-modified MOF-5 (MOF-5-OH-x), in which the molar fraction (x) of BDC-OH(2-) was up to 0.54 of the whole ligand. The MOF-5-OH-x frameworks had high BET surface areas (about 3300 m(2) g(-1)), which were comparable to that of MOF-5. We suggest that the MOF-5-OH-x frameworks are formed by the secondary growth of BDC(2-)-rich MOF-5 seed crystals, which are nucleated during the early stage of the reaction. Subsequent Li doping into MOF-5-OH-x results in increased H2 uptake at 77 K and 0.1 MPa from 1.23 to 1.39 wt.% and an increased isosteric heat of H2 adsorption from 5.1-4.2 kJ mol(-1) to 5.5-4.4 kJ mol(-1). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural properties of pure and Fe-doped Yb films prepared by vapor condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Ayala, C., E-mail: chachi@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, P.O.B. 14-149, Lima 14 (Peru); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES (Brazil); Suguihiro, N.M. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig (Germany); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil)

    2014-10-15

    Ytterbium and iron-doped ytterbium films were prepared by vapor quenching on Kapton substrates at room temperature. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. The aim was to study the microstructure of pure and iron-doped films and thereby to understand the effects induced by iron incorporation. A coexistence of face centered cubic and hexagonal close packed-like structures was observed, the cubic-type structure being the dominant contribution. There is an apparent thickness dependence of the cubic/hexagonal relative ratios in the case of pure ytterbium. Iron-clusters induce a crystalline texture effect, but do not influence the cubic/hexagonal volume fraction. A schematic model is proposed for the microstructure of un-doped and iron-doped films including the cubic- and hexagonal-like structures, as well as the iron distribution in the ytterbium matrix. - Highlights: • Pure and Fe-doped Yb films have been prepared by vapor condensation. • Coexistence of fcc- and hcp-type structures was observed. • No oxide phases have been detected. • Fe-clustering does not affect the fcc/hcp ratio, but favors a crystalline texture. • A schematic model is proposed to describe microscopically the microstructure.

  9. Layered lithium transition metal nitrides as novel anodes for lithium secondary batteries

    International Nuclear Information System (INIS)

    Liu Yu; Horikawa, Kumi; Fujiyosi, Minako; Imanishi, Nobuyuki; Hirano, Atsushi; Takeda, Yasuo

    2004-01-01

    We report the approach to overcome the deterrents of the hexagonal Li 2.6 Co 0.4 N as potential insertion anode for lithium ion batteries: the rapid capacity fading upon long cycles and the fully Li-rich state before cycling. Research reveals that the appropriate amount of Co substituted by Cu can greatly improve the cycling performance of Li 2.6 Co 0.4 N. It is attributed to the enhanced electrochemical stability and interfacial comparability. However, doped Cu leads to a slightly decreased capacity. High energy mechanical milling (HEMM) was found to effectively improve the reversible capacity associated with the electrochemical kinetics by modifying the active hosts' morphology characteristics. Moreover, the composite based on mesocarbon microbead (MCMB) and Li 2.6 Co 0.4 N was developed under HEMM. The composite demonstrates a high first cycle efficiency at 100% and a large reversible capacity of ca. 450 mAh g -1 , as well as a stable cycling performance. This work may contribute to a development of the lithium transition metal nitrides as novel anodes for lithium ion batteries

  10. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M.; Kassem, M.E.; El-Khatib, A.M.

    1994-01-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C p , of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author)

  11. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    International Nuclear Information System (INIS)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-01-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K + )-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K + ion doping caused no change in the phase structure, and highly crystalline K x Cu 1−x O 1−δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K + -doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g −1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g −1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g −1 at 0.1 C and 68.9 mA h g −1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K + ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  12. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Science.gov (United States)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  13. Role of Disorder in Enhancing Lithium-Ion Battery Performance

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; He, W.

    and type of disorder, material performances can be significantly enhanced. Disorder can be tuned by doping, calcination, redox reaction, composition tuning, and so on. Recently we have fabricated a cathode material for lithium ion battery by introducing heterostructure and disorder into the material...... material exhibits the extremely high reversible lithium ion capacity and extraordinary rate capability with high cycling stability at high discharge current. In this presentation we demonstrate that the disorder plays a decisive role in achieving those exceptional electrochemical performances. We describe...... how the disorder affects the migration of both lithium ions and electrons. It is found that both the modified glassy surface and the heterogeneous superlattice structure greatly contribute to the extremely high discharge/charge rates owing to the enhanced storage capacity of lithium ions and ultrafast...

  14. Synthesis and electrochemical properties of tin-doped MoS{sub 2} (Sn/MoS{sub 2}) composites for lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lin; Min, Feixia; Luo, Zhaohui; Wang, Shiquan, E-mail: wsqhao@126.com [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Teng, Fei [Nanjing University of Information Science and Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Sciences and Engineering (China); Li, Guohua [Zhejiang University of Technology, School of Chemical Engineering and Materials Science (China); Feng, Chuanqi [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China)

    2016-12-15

    SnO{sub 2}-MoO{sub 3} composites were synthesized by using (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O and SnCl{sub 2}·2H{sub 2}O as raw materials through a simple solvothermal method followed by pyrolysis. Tin-doped MoS{sub 2} (Sn/MoS{sub 2}) flowers have been synthesized by a solvothermal method followed with annealing in Ar(H{sub 2}) atmosphere, with SnO{sub 2}-MoO{sub 3}, thioacetamide (TAA), and urea as starting materials. The doping and the content of Sn-doping play crucial roles in the morphology and electrochemical performance of the MoS{sub 2}. As anode materials for lithium ion battery (LIB), all Sn/MoS{sub 2} composites exhibit both higher reversible capacity and better cycling performance at current density of 200 mA g{sup −1}, compared with MoS{sub 2} without Sn doping. The achieved discharge capacity for Sn/MoS{sub 2} composites is above 1000 mAh g{sup −1} after 100 cycles with nearly 100% coulombic efficiency. The doping of metal Sn in MoS{sub 2} can improve the conductivity of MoS{sub 2} and significantly enhance its electrochemical properties. The good electrochemical performance suggests that the Sn/MoS{sub 2} composite could be a promising candidate as a novel anode material for LIB application. Our present work provides a new approach to the fabrication of anode materials for LIB applications.

  15. The effects of lithium counterdoping on radiation damage and annealing in n(+)p silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Brandhorst, H. W., Jr.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Boron-doped silicon n(+)p solar cells were counterdoped with lithium by ion implantation and the resultant n(+)p cells irradiated by 1 MeV electrons. Performance parameters were determined as a function of fluence and a deep level transient spectroscopy (DLTS) study was conducted. The lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. Isochronal annealing studies of cell performance indicate that significant annealing occurs at 100 C. Isochronal annealing of the deep level defects showed a correlation between a single defect at E sub v + 0.43 eV and the annealing behavior of short circuit current in the counterdoped cells. The annealing behavior was controlled by dissociation and recombination of this defect. The DLTS studies showed that counterdoping with lithium eliminated three deep level defects and resulted in three new defects. The increased radiation resistance of the counterdoped cells is due to the interaction of lithium with oxygen, single vacancies and divacancies. The lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.

  16. Ultra-broadband mid-wave-IR upconversion detection

    DEFF Research Database (Denmark)

    Barh, Ajanta; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2017-01-01

    In this Letter, we demonstrate efficient room temperature detection of ultra-broadband mid-wave-infrared (MWIR) light with an almost flat response over more than 1200 nm, exploiting an efficient nonlinear upconversion technique. Black-body radiation from a hot soldering iron rod is used as the IR...... test source. Placing a 20 mm long periodically poled lithium niobate crystal in a compact intra-cavity setup (> 20 WCW pump at 1064 nm), MWIR wavelengths ranging from 3.6 to 4.85 mu m are upconverted to near-infrared (NIR) wavelengths (820-870 nm). The NIR light is detected using a standard low...

  17. Magnetic and magnetostrictive properties of RE-doped Cu-Co ferrite fabricated from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Guoxi, E-mail: wlnfu107@126.com; Wang, Lu, E-mail: hnsdwl314@163.com; Zhao, Tingting

    2017-02-15

    Magnetostrictive Cu{sub 0.1}Co{sub 0.9}RE{sub x}Fe{sub 2-x}O{sub 4} (RE=Ho, Gd or Sm) was fabricated by a sol-gel auto-combustion technique using spent lithium-ion batteries as raw materials. X-ray diffraction analysis confirmed the spinel structure of the RE-incorporated samples with limited RE solubility. Field-emission scanning electron microscopy and Fourier transform infrared spectroscopy revealed a layered structure composed of particles and the cation distribution. Magnetic hysteresis loops and magnetostriction strain curves showed that the saturation magnetization, magnetostriction coefficient and strain derivative were significantly modified due to the substitution of larger ionic radius RE{sup 3+} ions for Fe{sup 3+} ions, influencing the interaction between the tetrahedral and octahedral sites. - Highlights: • Magnetostrictive Cu{sub 0.1}Co{sub 0.9}RE{sub x}Fe{sub 2−x}O{sub 4} (RE=Ho, Gd or Sm, x=0.0–0.25) nanocomposites were fabricated via sol-gel auto-combustion route using spent lithium-ion batteries as raw materials. • The RE elements doping had limited solubility. • The saturation magnetization (M{sub s}) and maximum magnetostriction (λ{sub max}) were reduced and the lattice parameter (a) was increasing by increasing RE{sup 3+} substitution contents. • The relationship of maximum strain derivative (dλ/dH{sub max}) after the incorporation of RE was Ho>Gd>Sm.

  18. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    International Nuclear Information System (INIS)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J.; Kowalczyk, Z.; Grasza, K.

    1994-01-01

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab

  19. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J. [Institute of Vacuum Technology, Warsaw (Poland); Kowalczyk, Z. [Warsaw Univ. (Poland); Grasza, K. [Polska Akademia Nauk, Warsaw (Poland). Inst. Fizyki

    1994-12-31

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab.

  20. Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingxuan; Wang, Xuemei; Qin, Dongdong; Xue, Zhonghua; Lu, Xiaoquan, E-mail: luxq@nwnu.edu.cn

    2014-11-30

    Highlights: • We fabricated the Fe-doped Co{sub 3}O{sub 4} nanofilms for the first time by potentiostatic electrodeposition method. • The Fe was doped homogeneously in the nanofilms by this method. • Among the different concentration ratios of Co{sup 2+}/Fe{sup 2+}, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. • The Fe-doped Co{sub 3}O{sub 4} nanofilms in this work exhibit good electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalyst in alkaline fuel cells. - Abstract: In this work, Fe-doped Co{sub 3}O{sub 4} nanofilms were fabricated by electrodeposition on FTO glass substrates for the first time. The structures of the as-prepared nanofilms were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Characterization results demonstrate that Fe was doped homogeneously in the nanofilms. As the different concentration ratios of Fe{sup 2+}/Co{sup 2+} were explored, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. It is considered that the difference in the catalytic activities for the ORR of the samples may be due to the fact that the joining of iron changed the catalyst surface's electric state and enhanced the acidity of cobalt centers, on the other hand, the doping process probably modified the absorption property of the nanofilms. The experimental results suggest that the Fe-doped Co{sub 3}O{sub 4} nanofilms in this work exhibit favorable electrocatalytic activity toward ORR and appear to be promising cathodic electrocatalyst in alkaline fuel cells.