WorldWideScience

Sample records for iron magnetic form

  1. Magnetic Iron Oxide Nanowires Formed by Reactive Dewetting.

    Science.gov (United States)

    Bennett, Roger A; Etman, Haitham A; Hicks, Hannah; Richards, Leah; Wu, Chen; Castell, Martin R; Dhesi, Sarnjeet S; Maccherozzi, Francesco

    2018-04-11

    The growth and reactive dewetting of ultrathin films of iron oxides supported on Re(0001) surfaces have been imaged in situ in real time. Initial growth forms a nonmagnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns in length but less than 40 nm in width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe 3 O 4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.

  2. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  3. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  4. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    Science.gov (United States)

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  5. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  6. Magnetic Properties of Iron Clusters in Silver

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al Rawas, A.; Yousif, A.; Gismelseed, A.; Rais, A.; Al-Omari, I.; Bouziane, K. [College of Science, Department of Physics (Oman); Widatallah, H. [Khartoum University, Department of Physics, Faculty of Science (Sudan)

    2004-12-15

    The discrete variational method is used to study the effect of interactions of iron impurities on the magnetic moments, hyperfine fields and isomer shifts at iron sites in silver. We study small clusters of iron atoms as they grow to form FCC phase that is coherent with the silver lattice. The effects of the lattice relaxation and the ferromagnetic and antiferromagnetic couplings are also considered. When Fe atoms congregate around a central Fe atom in an FCC arrangement under ferromagnetic coupling, the local magnetic moment and the contact charge density at the central atom hardly change as the cluster builds up, whereas the hyperfine field increases asymptotically as the number of Fe nearest neighbors increases. Introduction of antiferromagnetic coupling has minor effect on the local magnetic moments and isomer shifts, however it produces large reduction in the hyperfine field. The lattice relaxation of the surrounding Fe atoms towards a BCC phase around a central Fe atom leads to reduction in the magnetic moment accompanied by increase in the magnetic hyperfine field.

  7. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-06-26

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  8. Magnetic study of iron sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, F.J. E-mail: osoro@posta.unizar.es; Larrea, A.; Abadia, A.R.; Romero, M.S

    2002-09-01

    A magnetic study of iron sorbitol, an iron-containing drug to treat the iron deficiency anemia is presented. Transmission electron microscopy reveals that the system contains nanometric particles with an average diameter of 3 nm whose composition is close to two-line ferrihydrite. The characterisation by magnetisation and AC susceptibility measurements indicates superparamagnetic behaviour with progressive magnetic blocking starting at 8 K. The quantitative analysis of the magnetic results indicates that the system consists of an assembly of very small magnetic moments, presumably originated by spin uncompensation of the antiferromagnetic nanoparticles, with Arrhenius type magnetic dynamics.

  9. Magnetic properties of iron loaded MCM-48 molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Veronica R. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Oliva, Marcos I. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); IFEG-CONICET (Argentina); Vaschetto, Eliana G. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); Urreta, Silvia E., E-mail: urreta@famaf.unc.edu.a [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); Eimer, Griselda A. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Silvetti, Silvia P. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina)

    2010-11-15

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N{sub 2} adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  10. Magnetic properties of iron loaded MCM-48 molecular sieves

    International Nuclear Information System (INIS)

    Elias, Veronica R.; Oliva, Marcos I.; Vaschetto, Eliana G.; Urreta, Silvia E.; Eimer, Griselda A.; Silvetti, Silvia P.

    2010-01-01

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N 2 adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  11. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  12. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  13. Iron dominated magnets

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided

  14. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V. [L.V. Kirensky Institute of Physics SB RAS, 660036 Krasnoyarsk (Russian Federation); Zubavichus, Y.; Veligzhanin, A. [NRC ' Kurchatov Institute,' 123182 Moscow (Russian Federation); Zaikovskiy, V. [Boreskov Institute of Catalysis, Siberian Branch of RAS, 630090 Novosibirsk (Russian Federation); Stepanov, S. [S.I. Vavilov State Optical Institute, St. Petersburg (Russian Federation); Artemenko, A. [ICMCB, UPR CNRS 9048, 33608 Pessac cedex (France); Curely, J.; Kliava, J. [LOMA, UMR 5798 Universite Bordeaux 1-CNRS, 33405 Talence cedex (France)

    2012-10-15

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe{sup 3+} ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by 'direct' techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the

  15. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    International Nuclear Information System (INIS)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-01-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe 3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by “direct” techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization

  16. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    Science.gov (United States)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-10-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

  17. Iron dominated magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  18. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  19. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  20. Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation

    Directory of Open Access Journals (Sweden)

    Yu J.

    2018-01-01

    Full Text Available In this investigation, a pilot-scale fluidized magnetization roasting reactor was introduced and used to enhance magnetic properties of iron ore. Consequently, the effects of roasting temperature, reducing gas CO flow rate, and fluidizing gas N2 flow rate on the magnetization roasting performance were studied. The results indicated that the hematite was almost completely converted into magnetite by a gas mixture of 4 Nm3/h CO and 1 Nm3/h N2 at roasting temperature of 540°C for about 30 s. Under optimized conditions, a high grade concentrate containing 66.84% iron with iron recovery of 91.16% was achieved. The XRD, VSM, and optical microscopy (OM analyses revealed that most of the hematite, except some coarse grains, was selectively converted to magnetite, and that the magnetic properties were greatly enhanced. Thus, their separation from non-magnetic gangue minerals was facilitated.

  1. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    Energy Technology Data Exchange (ETDEWEB)

    Zacchia, Nicholas A.; Valentine, Megan T. [Department of Mechanical Engineering and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States)

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  2. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications.

    Science.gov (United States)

    Zacchia, Nicholas A; Valentine, Megan T

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  3. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    Directory of Open Access Journals (Sweden)

    Rosická Dana

    2011-01-01

    Full Text Available Abstract Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed.

  4. Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data

    Science.gov (United States)

    Oliveira, Joana S.; Wieczorek, Mark A.; Kletetschka, Gunther

    2017-12-01

    Magnetic field data acquired from orbit shows that the Moon possesses many magnetic anomalies. Though most of these are not associated with known geologic structures, some are found within large impact basins within the interior peak ring. The primary magnetic carrier in lunar rocks is metallic iron, but indigenous lunar rocks are metal poor and cannot account easily for the observed field strengths. The projectiles that formed the largest impact basins must have contained a significant quantity of metallic iron, and a portion of this iron would have been retained on the Moon's surface within the impact melt sheet. Here we use orbital magnetic field data to invert for the magnetization within large impact basins using the assumption that the crust is unidirectionally magnetized. We develop a technique based on laboratory thermoremanent magnetization acquisition to quantify the relationship between the strength of the magnetic field at the time the rock cooled and the abundance of metal in the rock. If we assume that the magnetized portion of the impact melt sheet is 1 km thick, we find average abundances of metallic iron ranging from 0.11% to 0.45 wt %, with an uncertainty of a factor of about 3. This abundance is consistent with the metallic iron abundances in sampled lunar impact melts and the abundance of projectile contamination in terrestrial impact melts. These results help constrain the composition of the projectile, the impact process, and the time evolution of the lunar dynamo.

  5. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  6. Iron free permanent magnet systems for charged particle beam optics

    International Nuclear Information System (INIS)

    Lund, S.M.; Halbach, K.

    1995-01-01

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability

  7. Constitution and magnetism of iron and its alloys

    CERN Document Server

    Pepperhoff, Werner

    2001-01-01

    Iron played an important role in the development of the industrial society and has not lost any of its significance since today. This book provides the foundations of understanding the physical nature of iron and its alloys. Basics and recent developments concerning its constitution and magnetism are presented as well as its thermal properties. The exceptional role of iron with its wide spectrum of most different technological and physical properties relies on its versatility, its polymorphism of its crystal structure and its magnetism. Therefore it is the aim of the book to link together the constitution and magnetism of iron.

  8. Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications

    Science.gov (United States)

    Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd

    2017-11-01

    This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.

  9. Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy

    DEFF Research Database (Denmark)

    Pedersen, M.S.; Mørup, Steen; Linderoth, Søren

    1996-01-01

    The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic ....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....

  10. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    OpenAIRE

    Edelman , Irina; Ivanova , Oxana; Ivantsov , Ruslan; Velikanov , D.; Zabluda , V.; Zubavichus , Y.; Veligzhanin , A.; Zaikovskiy , V.; Stepanov , S.; Artemenko , Alla; Curély , Jacques; Kliava , Janis

    2012-01-01

    International audience; A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge struct...

  11. Helical patterns of magnetization and magnetic charge density in iron whiskers

    Science.gov (United States)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  12. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.

    Science.gov (United States)

    Arias, Sandra L; Shetty, Akshath R; Senpan, Angana; Echeverry-Rendón, Mónica; Reece, Lisa M; Allain, Jean Paul

    2016-05-26

    In this study, bacterial nanocellulose (BNC) produced by the bacteria Gluconacetobacter xylinus is synthesized and impregnated in situ with iron oxide nanoparticles (IONP) (Fe3O4) to yield a magnetic bacterial nanocellulose (MBNC). The synthesis of MBNC is a precise and specifically designed multi-step process. Briefly, bacterial nanocellulose (BNC) pellicles are formed from preserved G. xylinus strain according to our experimental requirements of size and morphology. A solution of iron(III) chloride hexahydrate (FeCl3·6H2O) and iron(II) chloride tetrahydrate (FeCl2·4H2O) with a 2:1 molar ratio is prepared and diluted in deoxygenated high purity water. A BNC pellicle is then introduced in the vessel with the reactants. This mixture is stirred and heated at 80 °C in a silicon oil bath and ammonium hydroxide (14%) is then added by dropping to precipitate the ferrous ions into the BNC mesh. This last step allows forming in situ magnetite nanoparticles (Fe3O4) inside the bacterial nanocellulose mesh to confer magnetic properties to BNC pellicle. A toxicological assay was used to evaluate the biocompatibility of the BNC-IONP pellicle. Polyethylene glycol (PEG) was used to cover the IONPs in order to improve their biocompatibility. Scanning electron microscopy (SEM) images showed that the IONP were located preferentially in the fibril interlacing spaces of the BNC matrix, but some of them were also found along the BNC ribbons. Magnetic force microscope measurements performed on the MBNC detected the presence magnetic domains with high and weak intensity magnetic field, confirming the magnetic nature of the MBNC pellicle. Young's modulus values obtained in this work are also in a reasonable agreement with those reported for several blood vessels in previous studies.

  13. Synthesis of pure iron magnetic nanoparticles in large quantity

    International Nuclear Information System (INIS)

    Tiwary, C S; Kashyap, S; Chattopadhyay, K; Biswas, K

    2013-01-01

    Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications. (paper)

  14. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning

    International Nuclear Information System (INIS)

    Burke, Luke; Mortimer, Chris J.; Curtis, Daniel J.; Lewis, Aled R.; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G.G.; Wright, Chris J.

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. - Graphical abstract: We present a novel facile, one-step process for the in-situ synthesis of magnetic iron oxide nanoparticle-nanofibre composites using both needle and free-surface electrospinning. This is a significant step forward for production rates of magnetic nanoparticle-nanofibre scaffolds both in terms of fibre and nanoparticle production. - Highlights: • We present a novel process for the in-situ synthesis of magnetic iron oxide nanoparticle

  15. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Luke; Mortimer, Chris J. [Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Curtis, Daniel J.; Lewis, Aled R.; Williams, Rhodri [Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Hawkins, Karl [Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Maffeis, Thierry G.G. [Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Wright, Chris J., E-mail: c.wright@swansea.ac.uk [Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. - Graphical abstract: We present a novel facile, one-step process for the in-situ synthesis of magnetic iron oxide nanoparticle-nanofibre composites using both needle and free-surface electrospinning. This is a significant step forward for production rates of magnetic nanoparticle-nanofibre scaffolds both in terms of fibre and nanoparticle production. - Highlights: • We present a novel process for the in-situ synthesis of magnetic iron oxide nanoparticle

  16. Method for preparing high cure temperature rare earth iron compound magnetic material

    Science.gov (United States)

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  17. Microstructure and magnetic properties of yttrium alumina silicate glass microspheres containing iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Basak, C.B.; Prajapat, C.L.; Singh, M.R.

    2015-01-01

    Yttrium alumino-silicate glass microspheres have been used for localized delivery of high radiation dose to tissues in the treatment of hepatocellular carcinoma (BCC) and synovitis. 90 Y is a pure beta emitter with beta emission energy of 0.9367 MeV, average penetration range in tissue 2.5 mm, physical half-life of 64.2 h, thus an effective radioisotope for delivering high radiation dose to the tumor. The efficacy of radiotherapy can further be improved if the glass microspheres are doped with magnetic particles for targeted delivery of high radiation dose. Magnetic glass microspheres can also be utilized for cancer treatment using the magnetic heating of tumor cell. The magnetic glass microspheres are obtained from the glasses with nominal composition (64-x) SiO 2 -17Y 2 O 3 -19 Al 2 O 3 -xFe 2 O 3 (x=4-16 mol %). Density of glasses increases from 3.5g/cc to 3.8g/cc as iron oxide content is increased from 4 to 16 mol %. The glass transition temperature and peak crystallization temperature decreases as the iron oxide content increases. T g values of glass samples decreases with increase of Fe 2 O 3 , while SiO 2 content is decreased. SiO 2 is a network forming oxide and a decrease in the network former in glass lead to decrease in thermo-physical properties like T g . The development of ferrimagnetic crystallites in glasses arise from the conversion of iron oxide into magnetite, magnemite and hematite, which is influenced by the structural and ordering of magnetic particles. The microstructure of glass-ceramic exhibited the formation of 50-100 nm size particles. The magnetite and hematite are formed as major crystalline phases. The magnetization values increased with an increase of iron oxide content and attributed to formation of magnetite phase. Results have shown that the glass microspheres with magnetic properties can be used as potential materials for cancer treatment. (author)

  18. Magnetic resonance imaging of reconstructed ferritin as an iron-induced pathological model system

    Energy Technology Data Exchange (ETDEWEB)

    Balejcikova, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Strbak, Oliver [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Baciak, Ladislav [Faculty of Chemical and Food Technology STU, Radlinskeho 9, 812 37 Bratislava (Slovakia); Kovac, Jozef [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Masarova, Marta; Krafcik, Andrej; Frollo, Ivan [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Dobrota, Dusan [Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Kopcansky, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2017-04-01

    Iron, an essential element of the human body, is a significant risk factor, particularly in the case of its concentration increasing above the specific limit. Therefore, iron is stored in the non-toxic form of the globular protein, ferritin, consisting of an apoferritin shell and iron core. Numerous studies confirmed the disruption of homeostasis and accumulation of iron in patients with various diseases (e.g. cancer, cardiovascular or neurological conditions), which is closely related to ferritin metabolism. Such iron imbalance enables the use of magnetic resonance imaging (MRI) as a sensitive technique for the detection of iron-based aggregates through changes in the relaxation times, followed by the change in the inherent image contrast. For our in vitrostudy, modified ferritins with different iron loadings were prepared by chemical reconstruction of the iron core in an apoferritin shell as pathological model systems. The magnetic properties of samples were studied using SQUID magnetometry, while the size distribution was detected via dynamic light scattering. We have shown that MRI could represent the most advantageous method for distinguishing native ferritin from reconstructed ferritin which, after future standardisation, could then be suitable for the diagnostics of diseases associated with iron accumulation. - Highlights: • MRI is the sensitive technique for detecting iron-based aggregates. • Reconstructed Ferritin is suitable model system of iron-related disorders. • MRI allow distinguish of native ferritin from reconstructed ferritin. • MRI could be useful for diagnostics of diseases associated with iron accumulation.

  19. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia

    KAUST Repository

    Casula, Maria F.

    2016-06-10

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. © the Owner Societies 2016.

  20. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia

    KAUST Repository

    Casula, Maria F.; Conca, Erika; Bakaimi, Ioanna; Sathya, Ayyappan; Materia, Maria Elena; Casu, Alberto; Falqui, Andrea; Sogne, Elisa; Pellegrino, Teresa; Kanaras, Antonios G.

    2016-01-01

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. © the Owner Societies 2016.

  1. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    Science.gov (United States)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  2. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pušnik, Klementina; Goršak, Tanja [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia); Drofenik, Miha [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia)

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe{sup 3+} ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe{sup 3+} ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  3. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    International Nuclear Information System (INIS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-01-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe 3+ /Fe 2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe 3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe 3+ /Fe 2+ ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe 3+ ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  4. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly

    International Nuclear Information System (INIS)

    Kim, Taegyun; Reis, Lynn; Rajan, Krishna; Shima, Mutsuhiro

    2005-01-01

    Iron oxide nanoparticles of 8-20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule-nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly

  5. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles.

    Science.gov (United States)

    Mitsumata, Tetsu; Honda, Atomu; Kanazawa, Hiroki; Kawai, Mika

    2012-10-11

    A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of magnetic particles of 0.30 exhibited a reversible increase by a factor of 1400 of the storage modulus upon a magnetic field of 500 mT, which is the highest value in the past for magnetorheological soft materials. It is considered that the giant magnetoelastic behavior is caused by both high dispersibility and high mobility of magnetic particles in the carrageenan gel. The off-field storage modulus of the magnetic gel at volume fractions below 0.30 obeyed the Krieger-Dougherty equation, indicating random dispersion of magnetic particles. At 500 mT, the storage modulus was higher than 4.0 MPa, which is equal to that of magnetic fluids, indicating that the magnetic particles move and form a chain structure by magnetic fields. Morphological study revealed the evidence that the magnetic particles embedded in the gel were aligned in the direction of magnetic fields, accompanied by stretching of the gel network. We conclude that the giant magnetoelastic phenomenon originates from the chain structure consisting of magnetic particles similar to magnetic fluids.

  6. Comparison of response between food supplemented with powdered iron and iron in syrup form for iron deficiency anemia

    International Nuclear Information System (INIS)

    Ahmed, P.

    2003-01-01

    Objective: To evaluate and compare the response between food supplemented with iron in powdered and iron in syrup forms for the treatment of iron deficiency anemia in children aged 1-5 years. Results: Over half (51 %) of the patients were between 1-2 years of age. One hundred thirty-two were males and 68 females. Most of the patients belonged to poor socioeconomic class. The iron in powder form was better tolerated than iron syrup as this group witnessed fewer episodes of gastrointestinal disturbances. The rise in mean Hb level after 6 weeks of treatment in group A and B was 1.6 g/dl and 1.9 g/dl respectively. Hemoglobin rise in group B was more than group A but this was statistically non-significant (p>0.05). There was small but significant (p<0.05) rise in serum ferritin in both the groups. There was no significant difference between the two groups for response to the two forms of iron administration. Conclusion: The powdered form of iron is a cost-effective and better tolerated method of iron administration in children and can be considered as an alternate option for the treatment of iron deficiency anemia in children. (author)

  7. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  8. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Luňáček, J., E-mail: jiri.lunacek@vsb.cz [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Životský, O. [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Jirásková, Y. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Buršík, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Janoš, P. [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2016-10-15

    The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions and grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.

  9. Effect of annealing process of iron powder on magnetic properties ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Iron powder magnetic cores are used as soft magnetic rotors, in micro special motors such as BS brake motors, refrigerator compressor motors and brushless servo motors. Heat treatment of iron powder played an important role in the magnetic properties and loss of the motor cores. After the annealing process,.

  10. Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite

    International Nuclear Information System (INIS)

    Ursachi, Irina; Vasile, Aurelia; Ianculescu, Adelina; Vasile, Eugeniu; Stancu, Alexandru

    2011-01-01

    Highlights: → A quick and facile route for the synthesis of iron oxide/MCM-41 nanocomposite. → Magnetic nanoparticles were stabilized inside the pores of mesoporous silica MCM-41. → The pore size of MCM-41 dictates the properties of iron oxide nanoparticles. → The procedure provides a narrow size distribution of magnetic nanoparticles. - Abstract: Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 deg. C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption-desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g -1 . An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.

  11. Magnetic iron oxide for contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Fahlvik, A.K.

    1991-05-01

    The main objective of this experimental work has been to study the biological fate and the contrast enhancing potential of a model preparation of magnetic iron oxide (MSM) after intravenous injection to rodents. This was achieved by: Studying in vitro contrast efficacy of various magnetic iron oxide preparations by relaxation analysis. Studying in vivo contrast efficacy of MSM by relaxation analysis and NMR imaging. Studying the biodistribution and bioelimination of MSM in independent experiments using relaxation analysis, radioactivity studies and histological techniques. Studying interactions of MSM with target cells and target organelles using ex vivo techniques. Based on the presented experimental study, the MSM model preparation of magnetic iron oxide seems to fulfill basic requirements of NMR contrast agents: efficient proton relaxation, specific in vivo distribution, and biological tolerance. 177 refs., 5 figs., 2 tabs

  12. Magnetism and superconductivity in Eu-based iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Sina [1. Physikalisches Institut, Universitaet Stuttgart (Germany)

    2015-07-01

    EuFe{sub 2}As{sub 2} is an extraordinary parent compound of the iron pnictides, as it exhibits at low temperatures - additional to the Fe spin density wave - long-range magnetic order of the Eu{sup 2+} local moments. Nevertheless, bulk superconductivity around 30 K can be induced by mechanical pressure or chemical substitution. In this talk we review the remarkable interplay of unconventional superconductivity, itinerant and local magnetism in Eu based iron pnictides. We focus on the appearance of a re-entrant spin glass phase that coexists with superconductivity and an indirect magneto-elastic coupling, enabling the persistent magnetic detwinning by small magnetic fields.

  13. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang (Indonesia)

    2016-04-19

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  14. Superconducting superferric dipole magnet with cold iron core for the VLHC

    CERN Document Server

    Foster, G W

    2002-01-01

    Magnetic system of the stage I Very Large Hadron Collider (VLHC) is based on 2 Tesla superconducting magnets with combined functions. These magnets have a room temperature iron yoke with two 20 mm air gaps. Magnetic field in both horizontally separated air gaps is generated by a single, 100 kA superconducting transmission line. An alternative design with a cold iron yoke, horizontally or vertically separated air gaps is under investigation. The cold iron option with horizontally separated air gaps reduces the amount of iron, which is one of the major cost drivers for the 233-km magnet system of future accelerator. The vertical beam separation decreases the superconductor volume, heat load from the synchrotron radiation and eliminates fringe field from the return bus. Nevertheless, the horizontal beam separation provides lowest volume of the iron yoke and, therefore, smaller heat load on the cryogenic system during cooling down. All these options are discussed and compared in the paper. Superconducting correct...

  15. Stable magnetization of iron filled carbon nanotube MFM probes in external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Franziska; Weissker, Uhland; Muehl, Thomas; Lutz, Matthias U; Mueller, Christian; Leonhardt, Albrecht; Buechner, Bernd, E-mail: f.wolny@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-01-01

    We present results on the application of an iron filled carbon nanotube (Fe-CNT) as a probe for magnetic force microscopy (MFM) in an external magnetic field. If an external field is applied parallel to the sample surface, conventional ferromagnetically coated MFM probes often have the disadvantage that the magnetization of the coating turns towards the direction of the applied field. Then it is difficult to distinguish the effect of the external field on the sample from those on the MFM probe. The Fe-CNT MFM probe has a large shape anisotropy due to the high aspect ratio of the enclosed iron nanowire. Thanks to this the direction of the magnetization stays mainly oriented along the long nanotube axis in in-plane fields up to our experimental limit of 250 mT. Thus, the quality of the MFM images remains unchanged. Apart from this, it is shown that Fe-CNT MFM probe yields a very good magnetic resolution of about 25 nm due to the small diameter of the iron filling.

  16. Synthesis and magnetic characterizations of uniform iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jiang, FuYi; Li, XiaoYi; Zhu, Yuan; Tang, ZiKang

    2014-01-01

    Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe 3 O 4 with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

  17. Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Klencsár, Z. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117 (Hungary); Petrova, E.V.; Grokhovsky, V.I. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Shtoltz, A.K. [Department of Electrophysics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maksimova, A.A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Kuzmann, E.; Homonnay, Z. [Institute of Chemistry, Eötvös Loránd University, Budapest (Hungary); Semionkin, V.A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation)

    2016-05-01

    Iron sulfide (troilite) inclusion extracted from Sikhote-Alin IIAB iron meteorite was examined for its composition, structure and magnetic properties by means of several complementary analytical techniques such as: powder X-ray diffractometry, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, magnetization measurements, ferromagnetic resonance spectroscopy and {sup 57}Fe Mössbauer spectroscopy with a high velocity resolution. The applied techniques consistently indicated the presence of daubréelite (FeCr{sub 2}S{sub 4}) as a minority phase beside troilite proper (FeS). As revealed by {sup 57}Fe Mössbauer spectroscopy, the Fe atoms in troilite were in different microenvironments associated with either the ideal FeS structure or that of a slightly iron deficient Fe{sub 1–x}S. Phase transitions of troilite were detected above room temperature by ferromagnetic resonance spectroscopy. A novel analysis of 295 and 90 K {sup 57}Fe Mössbauer spectra was carried out and the hyperfine parameters associated with the ideal structure of troilite were determined by considering the orientation of the hyperfine magnetic field in the eigensystem of the electric field gradient at the {sup 57}Fe nucleus. - Highlights: • The presence of daubréelite in iron sulfide inclusion in Sikhote-Alin iron meteorite. • The presence of the ideal FeS and iron deficient Fe{sub 1–x}S in iron sulfide inclusion. • New way of the iron sulfide Mössbauer spectrum approximation.

  18. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide

    International Nuclear Information System (INIS)

    Schickling, Tobias

    2012-01-01

    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T c = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T c superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  19. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  20. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  1. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  2. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  3. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Science.gov (United States)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  4. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paula I.P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Laia, César A.T. [Laboratório Associado para a Química Verde (LAQV), REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, Alexandra [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Pereira, Laura C.J.; Coutinho, Joana T. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066 Bobadela LRS (Portugal); Ferreira, Isabel M.M., E-mail: imf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Novo, Carlos M.M. [Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT/UNL, 1349-008 Lisboa (Portugal); Borges, João Paulo, E-mail: jpb@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-10-15

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe{sub 3}O{sub 4}, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  5. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    International Nuclear Information System (INIS)

    Soares, Paula I.P.; Laia, César A.T.; Carvalho, Alexandra; Pereira, Laura C.J.; Coutinho, Joana T.; Ferreira, Isabel M.M.; Novo, Carlos M.M.; Borges, João Paulo

    2016-01-01

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe_3O_4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  6. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  7. Optical and magnetization studies on europium based iron pnictides

    International Nuclear Information System (INIS)

    Zapf, Sina Maria Ute

    2015-01-01

    The investigations carried out in the framework of this thesis mainly concentrate on europium based iron pnictides. These are a peculiar member of the 122 family as they develop at low temperatures (∝20K) an additional magnetic order of the local rare earth moments. Therefore, europium based iron pnictides provide a unique platform to study the interplay of structural, magnetic and electronic effects in high-temperature superconductors. For this challenging purpose, we have employed SQUID magnetometry and Fourier-transform infrared spectroscopy on EuFe 2 (As 1-x P x ) 2 single crystals. By systematic studies of the in- and out-of-plane magnetic properties of a series of single crystals, we derived the complex magnetic phase diagram of europium based iron pnictides, which contains an A-type antiferromagnetic and a re-entrant spin glass phase. Furthermore, we have investigated the magneto-optical properties of EuFe 2 As 2 , revealing a much more complex magnetic detwinning process than expected. These studies demonstrate a remarkable interdependence between magnetic, electronic and structural effects that might be very important to understand the unconventional superconductivity in these fascinating materials.

  8. Optical and magnetization studies on europium based iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Sina Maria Ute

    2015-07-01

    The investigations carried out in the framework of this thesis mainly concentrate on europium based iron pnictides. These are a peculiar member of the 122 family as they develop at low temperatures (∝20K) an additional magnetic order of the local rare earth moments. Therefore, europium based iron pnictides provide a unique platform to study the interplay of structural, magnetic and electronic effects in high-temperature superconductors. For this challenging purpose, we have employed SQUID magnetometry and Fourier-transform infrared spectroscopy on EuFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} single crystals. By systematic studies of the in- and out-of-plane magnetic properties of a series of single crystals, we derived the complex magnetic phase diagram of europium based iron pnictides, which contains an A-type antiferromagnetic and a re-entrant spin glass phase. Furthermore, we have investigated the magneto-optical properties of EuFe{sub 2}As{sub 2}, revealing a much more complex magnetic detwinning process than expected. These studies demonstrate a remarkable interdependence between magnetic, electronic and structural effects that might be very important to understand the unconventional superconductivity in these fascinating materials.

  9. Magnetic properties of carbonyl iron particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Gorodkin, S R; James, R O; Kordonski, W I

    2009-01-01

    Knowledge of the magnetic properties of dispersed magnetic particles is a prerequisite to the design an MR fluid with desired performance. A term specific susceptibility is introduced for characterization of particle susceptibility. The study was performed with the Bartington MS2B magnetic susceptibility system on small samples volume. Specific magnetic susceptibility of iron particles was found to be a linear function of median particle size. Structural change in the fluid, including particle organization, led to susceptibility drift and may affect fluid performance. It was shown that susceptibility data can be used for evaluation of the concentration of carbonyl iron particles in MR fluids.

  10. Magnetic resonance imaging of splenic iron overload

    International Nuclear Information System (INIS)

    Arrive, L.; Thurnher, S.; Hricak, H.; Price, D.C.

    1990-01-01

    The value of magnetic resonance (MR) imaging in assessing iron overload in the spleen was retrospectively investigated in 40 consecutive patients. MR appearance, mesaure of signal intensity and T1-and T2-relaxation times were correlated with the histologically determined level of iron in the spleen in each patient. Histologic examination revealed no iron overload in 19 patients, mild iron overload in seven, moderate iron overload in six, and severe iron overload in eight. All 19 patients with no splenic iron overload and 11 of the other 21 patients with splenic iron overload were correctly identified by MR imaging (sensitivity 52%, specificity 100%, accuracy 75%). Splenic iron overload was diagnosed when a decrease of signal intensity of the spleen compared with those of adipose tissue and renal cortex was demonstrated. MR images demonstrated all eight cases of severe, three of the six cases of moderate, and none of the seven cases of mild iron overload. Only spleens with severe iron overload had a significant mean decrease in signal intensity and T1- and T2-relaxation times. Although specific, MR imaging is poorly sensitive to splenic iron overload. (author). 15 refs.; 5 figs.; 3 tabs

  11. Magnetic modification of diamagnetic agglomerate forming powder materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Baldíková, Eva; Pospíšková, K.; Šafaříková, Miroslava

    2016-01-01

    Roč. 29, December (2016), s. 169-171 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic modification * magnetic separation * powdered material * magnetic iron oxide * microwave assisted synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  12. Development of the Facility for Transformation of Magnetic Characteristics of Weakly Magnetic Oxidized Iron Ores Related to Improvement of Technologies for Iron Ore Concentrate Production

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.M.

    2016-01-01

    Full Text Available New facility for continuous registration of iron ore magnetization depending on temperature by heating of iron ores upon reducing conditions was created. Facility allows to register the processes of transformation of weakly magnetic minerals into strongly magnetic ones under the influence of reducing agents and temperature, as well as to determine the Curie temperature of the minerals. Using created facility it was shown, that heating of goethite and hematite in the presence of 4 % of starch in the temperature range of 300—650 °С leads to significant increase of magnetization of the samples. X-Ray diffraction confirmed that under indicated conditions the structure of hematite and goethite is transformed into magnetite structure. Obtained results open up new possibilities for the development of effective technologies for oxidized iron ore beneficiation.

  13. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    Science.gov (United States)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  14. Flake graphite cast iron investigated by a magnetic method

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2014-01-01

    Roč. 50, č. 4 (2014), s. 6200404 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : cast iron * magnetic adaptive testing (MAT) * magnetic nondestructive evaluation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  15. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  16. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ramimoghadam, Donya; Bagheri, Samira; Hamid, Sharifah Bee Abd

    2014-01-01

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants

  17. Preparation and investigation of structural properties of magnetic diatomite nanocomposites formed with different iron content

    Energy Technology Data Exchange (ETDEWEB)

    Yusan, Sabriye, E-mail: sabriye.doyurum@ege.edu.tr [Ege University, Institute of Nuclear Sciences, 35100 Bornova, Izmir (Turkey); Korzhynbayeva, Kuralay [Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, 050040 Almaty (Kazakhstan); Aytas, Sule [Ege University, Institute of Nuclear Sciences, 35100 Bornova, Izmir (Turkey); Tazhibayeva, Sagdat; Musabekov, Kuanyshbek [Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, 050040 Almaty (Kazakhstan)

    2014-09-01

    Highlights: • Magnetic diatomite nanocomposites were generated by partial reduction co-precipitation method. • VSM results showed that nanocomposites have superparamagnetic behaviour. • The nanocomposites were also characterized by XRD, FTIR, SEM, DTA/TGA and BET. - Abstract: Magnetic diatomite nanocomposites (MDNC) were synthesized successfully by partial reduction co-precipitation method from iron salt solution at different concentrations and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal analyses (DTA/TGA), vibrating sample magnetometry (VSM) and surface area measurements (BET). The XRD pattern of magnetic diatomite nanocomposites is face centered cubic with an average diameter of 4.67, 4.11 and 4. 82 nm as MDNC-1, MDNC-2 and MDNC-3, respectively. The saturation magnetization values for magnetic diatomite composites (diatomite/Fe ratio 1:1.5, 1:2.0 and 1:3.0) were found to be 13.81, 13.37 and 16.42 emu/g, respectively. By FT-IR spectra it was found that the main features of the silica framework were maintained after magnetite incorporation and some peak intensities were increased with magnetite loading. The cell parameter increase and the surface area decrease with increase in Fe content, observed by N{sub 2} adsorption–desorption technique, were considered as evidence of metal concentration effect in the synthesis procedure.

  18. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-03-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.

  19. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    Science.gov (United States)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the

  20. Magnetic properties of iron nanoparticle

    International Nuclear Information System (INIS)

    Carvell, J.; Ayieta, E.; Gavrin, A.; Cheng, Ruihua; Shah, V. R.; Sokol, P.

    2010-01-01

    Magnetic properties of Fe nanoparticles with different sizes synthesized by a physical deposition technique have been investigated experimentally. We have used a high pressure sputtering technique to deposit iron nanoparticles on a silicon substrate. The nanoparticles are then analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), and superconducting quantum interference device techniques. TEM and AFM data show that the particle size could be tuned by adjusting the deposition conditions. The magnetic properties have been investigated from temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results show that two phases including both ferromagnetic and superparamagnetic particles are present in our system. From these data we extracted the superparamagnetic critical size to be 9 nm for our samples. Ferromagnetic particles are single magnetic domain particles and the magnetic properties can be explained by the Stoner and Wohlfarth model. For the superparamagnetic phase, the effective anisotropy constant, K eff , decreases as the particle size increases.

  1. Structural properties and magnetic susceptibility of iron-intercalated titanium ditelluride

    International Nuclear Information System (INIS)

    Pleshchev, V.G.; Titov, A.N.; Titova, S.G.; Kuranov, A.V.

    1997-01-01

    Structural peculiarities and magnetic susceptibility of titanium ditelluride, intercalated by iron, are studied. It is established that the basic motive of crystal structure by intercalation is preserved and the iron atoms are locates in the van der Waals gaps in positions with octahedral coordination. It is shown that the magnetic susceptibility of the Fe 0.25 TiT 2 sample increases approximately by 20 times. The magnetic susceptibility for the Fe 0.33 TiTe 2 samples becomes even much higher

  2. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    Science.gov (United States)

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  3. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  4. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    Science.gov (United States)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized

  5. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids

    Directory of Open Access Journals (Sweden)

    Joachim Allouche

    2014-07-01

    Full Text Available The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.

  6. Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Krupskaya, Y. [Leibniz-Institute for Solid State and Materials Research IFW Dresden, 01171 Dresden (Germany)], E-mail: y.krupskaya@ifw-dresden.de; Mahn, C.; Parameswaran, A. [Leibniz-Institute for Solid State and Materials Research IFW Dresden, 01171 Dresden (Germany); Taylor, A.; Kraemer, K. [Department of Urology, Dresden University of Technology, 01307 Dresden (Germany); Hampel, S.; Leonhardt, A.; Ritschel, M.; Buechner, B.; Klingeler, R. [Leibniz-Institute for Solid State and Materials Research IFW Dresden, 01171 Dresden (Germany)

    2009-12-15

    We present a detailed magnetic study of iron containing carbon nanotubes (Fe-CNT), which highlights their potential for contactless magnetic heating in hyperthermia cancer treatment. Magnetic field dependent AC inductive heating experiments on Fe-CNT dispersions show a substantial temperature increase of Fe-CNT dispersions in applied AC magnetic fields. DC and AC magnetization studies have been done in order to elucidate the heating mechanism. We observe a different magnetic response of Fe-CNT powder compared to Fe-CNT dispersed in aqueous solution, e.g., ferromagnetic Fe-CNT in powder do not show any hysteresis when being dispersed in liquid. Our data indicate the motion of Fe-CNT in liquid in applied magnetic fields.

  7. The effect of cryoprotection on the use of PLGA encapsulated iron oxide nanoparticles for magnetic cell labeling

    International Nuclear Information System (INIS)

    Tang, Kevin S; Shapiro, Erik M; Hashmi, Sarah M

    2013-01-01

    Magnetic PLGA nanoparticles are a significant advancement in the quest to translate MRI-based cell tracking to the clinic. The benefits of these types of particles are that they encapsulate large amounts of iron oxide nanocrystals within an FDA-approved polymer matrix, combining the best aspects of inert micron-sized iron oxide particles, or MPIOs, and biodegradable small particles of iron oxide, or SPIOs. Practically, PLGA nanoparticle fabrication and storage requires some form of cryoprotectant to both protect the particle during freeze drying and to promote resuspension. While this is a commonly employed procedure in the fabrication of drug loaded PLGA nanoparticles, it has yet to be investigated for magnetic particles and what effect this might have on internalization of magnetic particles. As such, in this study, magnetic PLGA nanoparticles were fabricated with various concentrations of two common cryoprotectants, dextrose and sucrose, and analyzed for their ability to magnetically label cells. It was found that cryoprotection with either sugar significantly enhanced the ability to resuspend nanoparticles without aggregation. Magnetic cell labeling was impacted by sugar concentration, with higher sugar concentrations used during freeze drying more significantly reducing magnetic cell labeling than lower concentrations. These studies suggest that cryoprotection with 1% dextrose is an optimal compromise that preserves monodispersity following resuspension and high magnetic cell labeling. (paper)

  8. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    International Nuclear Information System (INIS)

    Le Renard, Pol-Edern; Lortz, Rolf; Senatore, Carmine; Rapin, Jean-Philippe; Buchegger, Franz; Petri-Fink, Alke; Hofmann, Heinrich; Doelker, Eric; Jordan, Olivier

    2011-01-01

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 o C, as in vivo. Using two orthogonal methods, a common SLP (20 W g -1 ) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: → Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. → Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. → Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  9. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  10. Magnetic anisotropies in ultrathin bismuth iron garnet films

    International Nuclear Information System (INIS)

    Popova, Elena; Franco Galeano, Andres Felipe; Deb, Marwan; Warot-Fonrose, Bénédicte; Kachkachi, Hamid; Gendron, François; Ott, Frédéric

    2013-01-01

    Ultrathin bismuth iron garnet Bi 3 Fe 5 O 12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi 3 Fe 5 O 12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi 3 Fe 5 O 12 films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi 3 Fe 5 O 12 were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed

  11. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  12. Finite element calculation of forces on a DC magnet moving over an iron rail

    Energy Technology Data Exchange (ETDEWEB)

    Rodger, D.; Allen, N.; Coles, P.C.; Street, S.; Leonard, P.J.; Eastham, J.F. (Univ. of Bath (United Kingdom))

    1994-11-01

    This paper describes results taken from a test rig consisting of a DC magnet over a 0.35m radius spinning iron wheel. The magnet is excited by two coils. The iron parts are unlaminated. Eddy currents are induced in the wheel by virtue of the relative motion of wheel and magnetic field. All iron parts have a nonlinear B-H characteristic. Forces on the magnet are compared with 3D finite element predictions. The results are of relevance to the design of MAGLEV vehicles which are supported by DC magnets.

  13. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  14. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Science.gov (United States)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-08-01

    Cr-doped core-shell iron/iron-oxide nanoparticles (NPs) containing 0, 2, 5, and 8 at.% of Cr dopant were synthesized via a nanocluster deposition system and their structural and magnetic properties were investigated. We observed the formation of a σ-FeCr phase in 2 at.% of Cr doping in core-shell NPs. This is unique since it was reported in the past that the σ-phase forms above 20 at.% of Cr. The large coercive field and exchange bias are ascribed to the antiferromagnetic Cr2O3 layer formed with the Fe-oxide shell, which also acts as a passivation layer to decrease the Fe-oxide shell thickness. The additional σ-phase in the core and/or Cr2O3 in the shell cause the hysteresis loop to appear tight waisted near the zero-field axis. The exchange interaction competes with the dipolar interaction with the increase of σ-FeCr grains in the Fe-core. The interaction reversal has been observed in 8 at.% of Cr. The observed reversal mechanism is confirmed from the Henkel plot and delta M value, and is supported by a theoretical watermelon model based on the core-shell nanostructure system.

  15. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2017-03-15

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.

  16. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, I; Toyoda, K [Department of Agricultural Engineering and Socio Economics, Kobe University, Nada, Kobe 657-8501 (Japan); Beneragama, N; Umetsu, K [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  17. Magnetic separation of antibiotics by electrochemical magnetic seeding

    International Nuclear Information System (INIS)

    Ihara, I; Toyoda, K; Beneragama, N; Umetsu, K

    2009-01-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  18. Thermal and magnetic properties of iron oxide colloids: influence of surfactants

    International Nuclear Information System (INIS)

    I P Soares, Paula; Lochte, Frederik; Echeverria, Coro; M M Ferreira, Isabel; P M R Borges, João; C J Pereira, Laura; T Coutinho, Joana; M M Novo, Carlos

    2015-01-01

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41–45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles’ average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe_3O_4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe_3O_4 samples do not reduce cell viability. However, oleic acid Fe_3O_4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature. (paper)

  19. Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Reznik, B. [Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe (Germany); Kontny, A., E-mail: agnes.kontny@kit.edu [Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe (Germany); Uehara, M.; Gattacceca, J. [CNRS, Aix Marseille Univ, IRD, Coll France, CEREGE, Aix-en-Provence (France); Solheid, P.; Jackson, M. [Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN (United States)

    2017-03-15

    Magnetic properties, texture and microstructure of cohenite grains from Morasko iron meteorite have been investigated using electron backscattered diffraction, Bitter pattern technique, magneto-optical imaging method and magnetic force microscopy. Cohenite shows much stronger magnetic contrast compared to kamacite because it is magnetically harder than the Fe-Ni alloy, and thus causes higher stray fields. A surprising result is the high stability and reversibility of the global stripe-like magnetic domain structure in cohenite when applying high magnetic fields up to 1.5 T, and exposing it to high temperatures above the Curie temperature of about 220 °C. Heating up to 700 °C under atmosphere conditions has shown that cohenite remains stable and that the global magnetic domain structures mainly recover to its preheating state. This observation suggests that magnetic domains are strongly controlled by the crystal anisotropy of cohenite. Branching magnetic domain structures at the grain boundary to kamacite can be annealed, which indicates that they are very sensitive to record deformation. EBSD observations clearly demonstrate that increasing deviation from the easy [010] crystallographic axis and stress localization are the main factors controlling the distortion of Bitter patterns, and suggest a high sensitivity of the cohenite magnetic domain structure to local microstructural heterogeneities. The results of this study substantiate the theory that cohenite can be a good recorder of magnetic fields in planetary core material. - Highlights: • Magnetic domain structure of cohenite from the Morasko iron meteorite was investigated by Bitter pattern method, magneto-optical imaging and magnetic force microscopy. • Strong magnetocrystalline anisotropy explains high magnetic stability. • Magnetic domain structure shows high sensitivity to local microstructural heterogeneities. • Cohenite is probably a good recorder of magnetic fields in planetary core material.

  20. Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite

    International Nuclear Information System (INIS)

    Reznik, B.; Kontny, A.; Uehara, M.; Gattacceca, J.; Solheid, P.; Jackson, M.

    2017-01-01

    Magnetic properties, texture and microstructure of cohenite grains from Morasko iron meteorite have been investigated using electron backscattered diffraction, Bitter pattern technique, magneto-optical imaging method and magnetic force microscopy. Cohenite shows much stronger magnetic contrast compared to kamacite because it is magnetically harder than the Fe-Ni alloy, and thus causes higher stray fields. A surprising result is the high stability and reversibility of the global stripe-like magnetic domain structure in cohenite when applying high magnetic fields up to 1.5 T, and exposing it to high temperatures above the Curie temperature of about 220 °C. Heating up to 700 °C under atmosphere conditions has shown that cohenite remains stable and that the global magnetic domain structures mainly recover to its preheating state. This observation suggests that magnetic domains are strongly controlled by the crystal anisotropy of cohenite. Branching magnetic domain structures at the grain boundary to kamacite can be annealed, which indicates that they are very sensitive to record deformation. EBSD observations clearly demonstrate that increasing deviation from the easy [010] crystallographic axis and stress localization are the main factors controlling the distortion of Bitter patterns, and suggest a high sensitivity of the cohenite magnetic domain structure to local microstructural heterogeneities. The results of this study substantiate the theory that cohenite can be a good recorder of magnetic fields in planetary core material. - Highlights: • Magnetic domain structure of cohenite from the Morasko iron meteorite was investigated by Bitter pattern method, magneto-optical imaging and magnetic force microscopy. • Strong magnetocrystalline anisotropy explains high magnetic stability. • Magnetic domain structure shows high sensitivity to local microstructural heterogeneities. • Cohenite is probably a good recorder of magnetic fields in planetary core material.

  1. An optimizing design method for a compact iron shielded superconducting magnet for use in MRI

    International Nuclear Information System (INIS)

    Tang Xin; Zu Donglin; Wang Tao; Han Baohui

    2010-01-01

    A method is developed for designing a special iron shielded superconducting magnet for MRI in this paper. The shield is designed as an integral part of the cryostat and high permeability and high saturated magnetization iron material is adopted. This scheme will result in a compact iron shielded magnet. In the presented design, the finite element (FE) method is adopted to calculate the magnetic field produced by superconducting coils and nonlinear iron material. The FE method is incorporated into the simulated annealing method which is employed for corresponding optimization. Therefore, geometrical configurations of both coils and iron shield can be optimized together. This method can deal with discrete design variables which are defined to describe the cable arrangements of coil cross sections. A detailed algorithm of the present design is described and an example for designing a 1.5 T clinical iron shielded magnet for MRI is shown.

  2. Measurements of a crenelated iron pole tip for the VLHC transmission line magnet

    CERN Document Server

    Di Marco, J; Kashikhin, V V; Makarov, A A; Schlabach, P; MacKay, W W

    1999-01-01

    The Very Large Hadron Collider (VLHC) is under conceptual design in Fermilab. One option under development is a 2-Tesla warm iron 2-in-1 single turn superferric magnet built around an 80 kA superconducting transmission line. A normal-conducting test stand was built to optimize the iron lamination shape for this magnet. It uses a water- cooled copper winding to provide the 100 kA-turns needed to generate 2 Tesla fields in both 20 mm air gaps of the magnet. A magnetic measurement facility has been set up for magnetic field mapping, which includes a flat measurement coil, precision stage for coil motion and integrator. Results from a first test of the "crenelation" technique to mitigate the saturation sextupole in iron magnets are described and future plans are discussed. (5 refs).

  3. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    International Nuclear Information System (INIS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.; Marzoog, Thorria R.

    2015-01-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe 2 O 3 ) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field

  4. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  5. On the crystalline structures of iron oxides formed during the removal process of iron in water

    International Nuclear Information System (INIS)

    Cho, Bongyeon; Fujita, Kenji; Oda, Katsuro; Ino, Hiromitsu

    1993-01-01

    The iron oxide samples collected from both filtration and batch reactors were analysed by X-ray diffraction and Moessbauer spectroscopy. In the filtration of water containing iron, the oxidized form of iron was determined to be ferrihydrite. In contrast, in the batch experiment without filtration, iron was oxidized to microcrystalline goethite. (orig.)

  6. Iron-platinum multilayer thin film reactions to form L1(0) iron-platinum and exchange spring magnets

    Science.gov (United States)

    Yao, Bo

    FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of [Fe/Pt] n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of [Fe/Pt]n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of [Fe/Pt] n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed [Fe/Pt]n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters

  7. Rapid determination of iron oxide content in magnetically modified particulate materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Nýdlová, L.; Pospíšková, K.; Baldíková, E.; Maděrová, Z.; Šafaříková, Miroslava

    2016-01-01

    Roč. 26, June (2016), s. 114-117 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic iron oxide s * magnetic permeability meter * magnetically modified materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  8. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    Science.gov (United States)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  9. Magnetic properties of iron-based soft magnetic composites with SiO{sub 2} coating obtained by reverse microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shen [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Sun, Aizhi, E-mail: sunaizhi@126.com [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Lu, Zhenwen; Cheng, Chuan [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Gao, Xuexu [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-05-01

    In this work, iron-based soft magnetic composites coated with the amorphous SiO{sub 2} layer have been fabricated by utilizing tetraethoxysilane in the reverse microemulsion method, and then the effects of addition amount of SiO{sub 2} and annealing temperature on the magnetic properties were investigated. The results show that the surface of iron powders contains a thin amorphous SiO{sub 2} insulation layer, which effectively decreases the magnetic loss of synthesized magnets. The magnetic loss of coated samples decreased by 87.8% as compared with that of uncoated samples at 150 kHz. Magnetic measurements show that the sample with 1.25 wt% SiO{sub 2} has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Also, the annealing treatment increased the initial permeability, the maximum permeability and the magnetic induction and decreased the coercivity with increasing temperature in the range 300–600 °C. The results of the loss separation imply that the annealed SMCs have a higher hysteresis loss coefficient (k{sub 2}) and lower eddy current loss coefficient (k{sub 3}) as compared with the pure iron compacts after the same heat treatment due to the preservation of the SiO{sub 2} layer. - Highlights: • SiO{sub 2} coated the iron powder by reverse microemulsion method, decreased the magnetic loss of SMCs. • 25 wt% is the optimum coating amount to attain the desired permeability. • The influence of annealing temperature on the magnetic performance of the core was discussed. • Compare with the pure iron compacts, the annealed SMCs have lower value of eddy current coefficient.

  10. Moessbauer effect studies of magnetic interactions in iron and dilute iron alloys

    International Nuclear Information System (INIS)

    Woude, F. van der; Schurer, P.J.; Sawatzky, G.A.

    1975-01-01

    A temperature-dependent Moessbauer study was conducted in FeX alloys, where X = Al, Si, Ti, V, Cr, Mn, Co, and Ni, aimed at solving the problem of 'what is localized and what is itinerant in iron ferromagnetism'. The experimental results are interpreted using a phenomenological model based on a modified Zener-Vonsovskij theory. Absorption spectra of FeX alloys were measured as a function of temperature. It was found that the 3d magnetic moments in iron were mainly localized while exchange coupling was provided by partly itinerant 3d electrons. (L.D.)

  11. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-08-31

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.

  12. Crystallographic phases and magnetic properties of iron nitride films

    International Nuclear Information System (INIS)

    Li, Guo-Ke; Liu, Yan; Zhao, Rui-Bin; Shen, Jun-Jie; Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian; Hou, Deng-Lu

    2015-01-01

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe 4 N, ε-Fe 3−x N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe 4 N, ε-Fe 3−x N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe

  13. Magnetic interactions in iron (III) porphyrin chlorides

    International Nuclear Information System (INIS)

    Ernst, J.; Subramanian, Japyesan; Fuhrhop, J.H.

    1977-01-01

    Intermolecular exchange interactions in iron(III) porphyrin chlorides (porphyrin = OEP, proto, TPP) have been studied by X-ray structure, EPR and magnetic susceptibility studies. The crystal structure of Fe(III)OEP-Cl was found to be different from that of the other two. Different types of exchange broadened EPR-spectra are obtained which are attributable to the arrangement in the crystals. The EPR results correlate well with magnetic susceptibility data. (orig.) [de

  14. Analysis on three-sublattice model of magnetic properties in rare-earth iron garnets under high magnetic fields

    International Nuclear Information System (INIS)

    Wang Wei; Chen Ri; Qi Xin

    2012-01-01

    Highlights: ► An improved three-sublattice model is provided. ► The magnetic properties of the rare-earth ions show great importance to the magnetic behaviors of rare-earth iron garnets. ► The coefficients α i associated with λ and χ are the functions of H e and T. ► The changes of M with H e at different temperatures are revealed. - Abstract: In this paper, based on the molecular field theory, a new and improved three-sublattice model on studying the magnetic properties of ferrimagnetic rare-earth iron garnet in high magnetic fields is introduced. Here, the effective exchange field is described as H i = λM = λχH e , where λ is the coefficient associated with the molecular field, χ is the effective magnetic susceptibility, and H e is external magnetic fields. As is known, the magnetic sublattices in rare-earth iron garnets can be classified three kinds labeled as a, c and d, in our calculations, whose magnetizations are defined as M a , M c and M d , respectively. Then, using this model, the temperature and field dependences of the total magnetization in Dy 3 Fe 5 O 12 (DyIG) are discussed. Meanwhile, the magnetizations of the three kinds of magnetic sublattices are analyzed. Furthermore, our theory suggests that the coefficients α i associated with λ and χ in DyIG show obvious anisotropic, temperature-dependence and field-dependence characteristics. And, the theoretical calculations exactly fit the experimental data.

  15. Transplantation in patients with iron overload: is there a place for magnetic resonance imaging? : Transplantation in iron overload.

    Science.gov (United States)

    Mavrogeni, Sophie; Kolovou, Genovefa; Bigalke, Boris; Rigopoulos, Angelos; Noutsias, Michel; Adamopoulos, Stamatis

    2018-03-01

    In iron overload diseases (thalassemia, sickle cell, and myelodysplastic syndrome), iron is deposited in all internal organs, leading to functional abnormalities. Hematopoietic stem cell transplantation (HSCT) is the only treatment offering a potential cure in these diseases. Our aim was to describe the experience in the field and the role of magnetic resonance imaging in the evaluation of iron overload before and after HSCT. Magnetic resonance imaging (MRI), using T2*, is the most commonly used tool to diagnose myocardial-liver iron overload and guide tailored treatment. Currently, HSCT offers complete cure in thalassemia major, after overcoming the immunologic barrier, and should be considered for all patients who have a suitable donor. The overall thalassemia-free survival of low-risk, HLA-matched sibling stem cell transplantation patients is 85-90%, with a 95% overall survival. The problems of rejection and engraftment are improving with the use of adequate immunosuppression. However, a detailed iron assessment of both heart and liver is necessary for pre- and post-transplant evaluation. In iron overload diseases, heart and liver iron evaluation is indispensable not only for the patients' survival, but also for evaluation before and after HSCT.

  16. Magnetic hyperfine field at caesium in iron

    International Nuclear Information System (INIS)

    Ashworth, C.J.; Back, P.; Stone, N.J.; White, J.P.; Ohya, S.

    1990-01-01

    We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron. 132,136 Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field B hf (CsFe) are close to 34 T, intermediate between the value of 40.7 T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8(2) T. The latter studies. The site/field distribution is briefly discussed. (orig.)

  17. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-01-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions

  18. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Costa, Fernando Ferreira [Universidade Estadual de Campinas, Campinas, SP (Brazil); Silveira, Paulo Augusto Achucarro [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Wood, John [University of Southern California, California (United States); Hamerschlak, Nelson [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2013-07-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  19. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging.

    Science.gov (United States)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-12-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  20. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method

    Science.gov (United States)

    Li, S. H.; Chen, Y. H.

    2016-12-01

    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  1. Nondestructive characterization of ductile cast iron by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 322, č. 20 (2010), s. 3117-3121 ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis * cast iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  2. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  3. SATDSK: a numerical simulation of the magnetic field due to saturated iron in cyclotron poletips

    International Nuclear Information System (INIS)

    McNeilly, G.S.

    1979-10-01

    SATDSK is a computer program, written in FORTRAN, which calculates the median plane magnetic field due to fully saturated iron poletips. Optionally, SATDSK calculates the magnetic field due to disks of magnetic charge, which can simulate the effect of holes in the iron poletip, or circular trim rods embedded in the poletip. SATDSK is intended for poletip geometries that are both symmetric about the median plane, and have azimuthal sector symmetry. Thus, the program is primarily designed to simulate the magnetic field due to iron poletips in superconducting cyclotrons

  4. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation

    International Nuclear Information System (INIS)

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-01-01

    Highlights: ► Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ► The recovery of iron was highly depended on the water-leaching process after reduction roasting. ► The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  5. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    International Nuclear Information System (INIS)

    Wu Shen; Sun Aizhi; Zhai Fuqiang; Wang Jin; Zhang Qian; Xu Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites. - Highlights: ► Silicone uniformly coated the powder, increased the operating frequency of SMCs. ► The annealing treatment increased the DC properties of SMCs. ► Annealing at 580 °C increased the maximum permeability by 72.5%. ► Compared with epoxy coated, the SMCs had higher resistivity annealing at 580 °C.

  6. Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies

    International Nuclear Information System (INIS)

    Dincer, Ilker; Tozkoparan, Onur; German, Sergey V.; Markin, Alexey V.; Yildirim, Oguz; Khomutov, Gennady B.; Gorin, Dmitry A.; Venig, Sergey B.; Elerman, Yalcin

    2012-01-01

    Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film. - Highlights: ► The magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers. ► The iron oxide nanoparticle phase in nanocomposite coatings is a mixture of magnetite and maghemite phases. ► The magnetite and maghemite phases depend on a number of iron oxide nanoparticle layers because the iron oxide nanoparticles are oxidized from magnetite to maghemite.

  7. Analysis and design of short, iron-free dipole magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.

    1981-01-01

    Iron-free, dipole magnets are used extensively as steering magnets to correct for the bending, induced by extraneous magnetic fields, of particle beams that are being transported in vacuum. Generally, the dipoles are long enough that the space occupied by the end conductors is small compared to the overall magnet length. In a recent application, however, this criteria did not apply. This has motivated a reanalysis of the characteristics of a system of small aspect ratio (length/diameter) dipoles that are spaced at relatively large axial distances

  8. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    Science.gov (United States)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x

  9. CHANGE OF CONNECTION BETWEEN MAGNETIC PARAMETERS OF CAST IRON IN COMPARISON WITH STEEL UNDER INFLUENCE OF INTERNAL DEMAGNETIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirsky

    2014-01-01

    Full Text Available Connection of maximum magnetic permeability µm of cast irons with coercive force Нс and residual magnetism Мr is established in all size of changing of the magnetic characteristics of cast iron. Differences of this connection for steels and cast irons are revealed. Formula for calculation µm of steels by Нс and Мr is corrected for calculation µm of cast irons. As a result of correction the calculation error of cast irons µm is diminished. The results can be used in magnetic structural analysis instead of labor-consuming measurement µm.

  10. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad

    2018-01-30

    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  11. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  12. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II)

    International Nuclear Information System (INIS)

    Chen Changlun; Hu Jun; Shao Dadong; Li Jiaxing; Wang Xiangke

    2009-01-01

    Multiwall carbon nanotube (MWCNT)/iron oxide magnetic composites were prepared, and were characterized by scan electron microscopy using a field emission scanning electron microscope, X-ray diffraction and vibrating sample magnetometer. The adsorptions of Ni(II) and Sr(II) onto MWCNT/iron oxide magnetic composites were studied as a function of pH and ionic strength. The results show that the adsorptions of Ni(II) and Sr(II) on the magnetic composites is strongly dependent on pH and ionic strength. The adsorption capacity of the magnetic composites is much higher than that of MWCNTs and iron oxides. The solid magnetic composites can be separated from the solution by a magnetic process. The Langmuir model fits the adsorption isotherm data of Ni(II) better than the Freundlich model. Results of desorption study shows that Ni(II) adsorbed onto the magnetic composites can be easily desorbed at pH < 2.0. MWCNT/iron oxide magnetic composites may be a promising candidate for pre-concentration and solidification of heavy metal ions and radionuclides from large volumes of aqueous solution, as required for remediation purposes.

  13. A code for the correction of field imperfections in iron-core superconducting magnets by shimming of iron

    International Nuclear Information System (INIS)

    Pradhan, J.; Bhunia, U.; Dey, M.K.; Mallik, C.; Bhandari, R.K.

    2005-01-01

    The magnetic field measurement of the median plane of K500 superconducting cyclotron at VECC have been carried out. A code has been developed using the mathematical software to calculate the magnetic field distribution for an arbitrary shaped saturated iron piece, and the various harmonics therein

  14. Mossbauer and magnetic study of solid phases formed by dissimilatory iron-reducing bacteria

    Czech Academy of Sciences Publication Activity Database

    Chistyakova, N.I.; Rusakov, V.S.; Shapkin, A.A.; Pigalev, P.A.; Kazakov, A.P.; Zhilina, T.N.; Zavarzina, D.G.; Lančok, Adriana; Kohout, J.; Greneche, J. M.

    2012-01-01

    Roč. 190, JUNE (2012), s. 721-724 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z40320502 Keywords : Mossbauer spectroscopy * dissimilatory iron-reducing bacteria * iron oxides * biomagnetism Subject RIV: CA - Inorganic Chemistry

  15. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  16. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  17. Magnetic resonance on oriented 131I nuclei in iron

    International Nuclear Information System (INIS)

    Visser, D.

    1981-01-01

    In this thesis experiments are described on 131 I implanted into iron single crystals. It is shown that the magnetization behaviour of iron single crystals in an external magnetic field agrees with the macroscopic theory of domain structure in ferromagnets. This knowledge is used to give the influence of the external field on NMR measurements on the iodine. The iodine atoms that end up in regular lattice sites after the implantation give rise to a strong resonance. The discovery of much smaller satelite resonance, due to I nuclei experiencing a hyperfine field of 92% of that of atoms in regular lattice sites is reported. The splitting of this resonance by quadrupole interaction has enabled it to be identified as due to an implanted iodine atom with a missing nearest neighbour iron atom. The author has measured the relaxation of the iodine nuclei in iron single crystals for different crystallographic orientations. For the first time it is shown that the relaxation rate depends strongly on the magneto-crystalline anisotropy; a high rate results at a low external field. This behaviour can not be explained with the relaxation mechanisms discussed in the literature up till now. It is very likely that the low-field spin-lattice relaxation is largely determined by spin wave interactions, which are strongly field dependent. The anisotropic dispersion relation for these waves are derived, including the dependence on the state of magnetization of the sample. Finally a simple method is given to measure the power saturation of an NMR-ON resonance, from which the fraction of nuclei contributing to this resonance can be derived. (Auth.)

  18. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light

    International Nuclear Information System (INIS)

    Zhang, Ying; Zhang, Yanrong; Tan, Jue

    2013-01-01

    Highlights: •The AgCl/iron oxide composites were prepared by a chemical precipitation method. •The composites exhibited improved performances in the photodegradation of pollutants. •The visible light photocatalysts could be recycled easily by a magnet. -- Abstract: In this work, AgCl/iron oxide composites were synthesized by a simple chemical precipitation method and calcining process. The composition of the material and magnetic and optical properties of the composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating specimen magnetometer (VSM) techniques, which confirms the high crystalline and magnetic behavior of the composites. UV-vis diffuse reflectance spectral (DRS) studies showed that the AgCl/iron oxide composites were of much higher absorption in longer wavelength region compared to bare iron oxide. The AgCl/iron oxide composites showed better performance in the photodegradation of organic dyes Rhodamin B (RhB) under the fluorescent lamp irradiation, which is remarkably superior to the N-TiO 2 . The degradation of microcystin-LR (MC-LR) and phenol was also found to be good owing to its effective electron-hole separation at AgCl/iron oxide interface. The separation of AgCl/iron oxide composites from the treated water was achieved by an external magnetic field as γ-Fe 2 O 3 exhibits enough magnetic power to facilitate the separation

  19. Iron forms in some egyptian soils

    International Nuclear Information System (INIS)

    EL Kholi, A.F.; Massoud, M.A.; EL-Naggar, H.A.; Gadallah, A.

    1990-01-01

    The present study is an attempt to find out the available forms of iron (Fe 2+ and Fe 3+ ) in five egyptian soils samples, representing alluvial, calcareous and sandy soils. Concerning the iron content of soil either Fe 2+ or Fe 3+ , the tested soil types were relatively arranged in the order alluvial> calcareous> sandy soil. In spite of the considerable variations in the soil content of iron cations, the Fe 2+ /Fe 3+ ratio was almost kept constant around 0.83. The uniformity of the ferrous : ferric ratio in the different tested soil types indicates their similarity in their redox-potential, pH and their environmental conditions, particularly, the aeration and partial O 2 - pressure degree. Fe 2+ /Fe 3+ being less than unity suggests that the Fe 2+ Fe 3+ reaction tends towards the forward direction, i.e., to the Fe 3+ formation. As a result of the pot experiment, significant correlations have been found between the laboratory determined soil Fe 2+ and both of the plant Fe-uptake and the plant dry matter weight

  20. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  1. Forms of iron in soils on basement complex rocks of Kaduna state in ...

    African Journals Online (AJOL)

    The forms of iron extracted by different methods were studied in soils developed on four basement complex rocks within Northern Guinea Savanna of Nigeria namely: migmatite gneisses, older granite, quartzites and mica schists. The study shows that forms of iron generally decreased in the order of total elemental iron ...

  2. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties.

    Science.gov (United States)

    Lartigue, Lenaic; Innocenti, Claudia; Kalaivani, Thangavel; Awwad, Azzam; Sanchez Duque, Maria del Mar; Guari, Yannick; Larionova, Joulia; Guérin, Christian; Montero, Jean-Louis Georges; Barragan-Montero, Véronique; Arosio, Paolo; Lascialfari, Alessandro; Gatteschi, Dante; Sangregorio, Claudio

    2011-07-13

    Synthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated. To this end, iron oxide NPs with average size in the range of 4-35 nm were prepared by thermal decomposition of molecular precursors and then coated with organic ligands bearing a phosphonate group on one side and rhamnose, mannose, or ribose moieties on the other side. In this way a strong anchorage of the organic ligand on the inorganic surface was simply realized by ligand exchange, due to covalent bonding between the Fe(3+) atom and the phosphonate group. These synthesized nanoobjects can be fully dispersed in water forming colloids that are stable over very long periods. Mannose, ribose, and rhamnose were chosen to test the versatility of the method and also because these carbohydrates, in particular rhamnose, which is a substrate of skin lectin, confer targeting properties to the nanosystems. The magnetic, hyperthermal, and relaxometric properties of all the synthesized samples were investigated. Iron oxide NPs of ca. 16-18 nm were found to represent an efficient bifunctional targeting system for theranostic applications, as they have very good transverse relaxivity (three times larger than the best currently available commercial products) and large heat release upon application of radio frequency (RF) electromagnetic radiation with amplitude and frequency close to the human tolerance limit. The results have been rationalized on the basis of the magnetic properties of the investigated samples.

  3. Distribution and forms of iron in the vertisols of Serbia

    Directory of Open Access Journals (Sweden)

    DRAGIŠA S. MILOŠEV

    2011-05-01

    Full Text Available Soil of arable land and meadows from the Ap horizon, taken from ten different localities, were investigated for different forms of Fe, including total (HF, pseudo-total (HNO3, 0.1 M HCl extractable and DTPA (diethylenetriaminepentaacetic acid-extractable. A sequential fractional procedure was employed to separate the Fe into fractions: water soluble and exchangeable Fe (I, Fe specifically adsorbed with carbonates (II, reducibly releasable Fe in oxides (III, Fe bonded with organic matter (IV and Fe structurally bonded in silicates (residual fraction (V. The soil pH, cation exchange capacity, and size fractions (clay and silt had a strongest influence on the distribution of the different forms of Fe. The different extraction methods showed similar patterns of the Fe content in arable and meadow soils. However, the DTPA iron did not correspond with the total iron, which confirms the widespread incidence of iron-deficiency in vertisols is independent of the total iron in soils. The amount of exchangeable (fraction I and specifically adsorbed (II iron showed no dependence on its content in the other fractions, indicating low mobility of iron in vertisols. The strong positive correlation (r = 0.812 and 0.956 between the content of iron in HNO3 and HF and its contents in the primary and secondary minerals (fraction – V indicate a low content of plant accessible iron in the vertisol. The sequential fractional procedure was confirmed as suitable for accessing the content and availability of iron in the vertisols of Serbia.

  4. Magnetically-modified natural biogenic iron oxides for organic xenobiotics removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Filip, J.; Horská, Kateřina; Nowakova, M.; Tuček, J.; Šafaříková, Miroslava; Hashimoto, H.; Takada, J.; Zbořil, R.

    2015-01-01

    Roč. 12, č. 2 (2015), s. 673-682 ISSN 1735-1472 R&D Projects: GA MŠk(CZ) LH11111; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : Biogenic iron oxides * Leptothrix ochracea * Magnetic fluid * Magnetic adsorbents * Xenobiotics Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.344, year: 2015

  5. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  6. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Yar, A., E-mail: asfandyarhargan@gmail.com [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  7. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  8. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  9. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.

    Science.gov (United States)

    Shi, Donglu; Sadat, M E; Dunn, Andrew W; Mast, David B

    2015-05-14

    Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon

  10. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  11. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  12. Enhancement of magnetic coupling between permanent magnets and bulk superconductors through iron embedding

    International Nuclear Information System (INIS)

    Seki, H.; Kurabayashi, H.; Suzuki, A.; Ikeda, M.; Akiyama, S.; Murakami, M.

    2009-01-01

    Magnetic torque can be transferred without contact through the coupling of permanent magnets (PM) and bulk superconductors (BSC). For this purpose, permanent magnets should have multiple pole configuration like NSNS. The magnitude of the transferable torque depends on the field strength and the gap between PM and BSC. It was found that the torque decays quickly with the gap. In order to enhance the strength of transferable magnetic torque, we prepared bulk Y-Ba-Cu-O superconductors for which Fe bars are embedded. Holes about 1 mm in diameter were mechanically drilled into bulk Y-Ba-Cu-O, and Fe bars about 0.9 mm in diameter were inserted followed by impregnation of Bi-Pb-Sn alloys with low melting points. The composite of Y-Ba-Cu-O and Fe bars attract magnetic fields generated from permanent magnet before cooling, and thereby magnetic coupling will be improved. We have found that the magnetic torque force can be greatly enhanced through iron embedding.

  13. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe has...... been formed. The particles exhibit superparamagnetic relaxation above 120 K. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  14. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    International Nuclear Information System (INIS)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-01-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (∼18 nm thick) were deposited on CNTs (∼38 nm diameter and ∼50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ∼50–100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ∼75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ∼10 3 times smaller than other existing work (∼10 5 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT–polymer nanocomposites, through controlled micro-structure and scalable manufacturing. (paper)

  15. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Okoli, Chuka; Sanchez-Dominguez, Margarita; Boutonnet, Magali; Järås, Sven; Civera, Concepción; Solans, Conxita; Kuttuva, Gunaratna Rajarao

    2012-06-05

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 nm were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization ~35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  16. Identification of precipitates formed on zero-valent iron in anaerobic aqueous solutions

    International Nuclear Information System (INIS)

    Schuhmacher, T.; Odziemkowski, M.S.; Reardon, E.J.; Gillham, R.W.

    1997-01-01

    The formation of precipitates has been identified as a possible limitation in the use of granular iron for in situ remediation of groundwater. This study was undertaken to identify the precipitates that form on the iron surfaces under conditions of differing water chemistry. Two laboratory column tests were performed using 100 mesh, 99% pure electrolytic iron. A 120 mg/L calcium carbonate (CaCO 3 ) solution passed through one column and a 40 mg/L potassium bromide (KBr) solution through the other. The CaCO, treated iron formed a whitish gray coating on the first centimeter of the column but the KBr treated iron did not display any visible precipitates. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to identify the precipitates. Calcium carbonate and ferrous carbonate (FeCO 3 ) phases were only present on the surface of the iron removed from the influent end of the column treated with a CaCO 3 solution. Iron surfaces analyzed from both the influent and the effluent end of the KBr treated iron and the effluent end of the CaCO 3 treated iron indicated the presence of magnetite (Fe 3 O 4 ) precipitates

  17. Magnetic field strength dependence of the magnetostriction of rare-earth iron garnets

    International Nuclear Information System (INIS)

    Zvezdin, A.K.; Levitin, R.Z.; Popov, A.I.; Silant'ev, V.I.

    1981-01-01

    The magnetostriction of holmium-yttrium iron garnets Hosub(x)Ysub(3-x)Fesub(5)Osub(12) (x=3 or 1.05) is measured in pulsed magnetic fields up to 200 kOe at 78 K. It is shown that the magnetostriction constants lambda 111 and lambda 100 of these ferrimagnets depends on the magnetic field strength. The magnetostriction constant of the iron garnet Ho 3 Fe 5 O 12 increases and of the iron garnet Hosub(1.05)Ysub(1.95)Fesub(5)Osub(12) decreases with increase of the field strength. The field dependences of the anisotropic magnetostriction constants lambda 111 and lambda 100 for Hosub(1.05)Ysub(1.95)Fesub(5)Osub(12) are fundamentally different. Thus lambda 111 depends quadratically on the total effective field Hsub(eff) whereas lambda 100 depends almost linearly on Hsub(eff). A theoretical analysis of the magneto-elastic interaction in rare-earth iron garnets is carried out [ru

  18. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  19. Magnetic Resonance Cell-Tracking Studies: Spectrophotometry-Based Method for the Quantification of Cellular Iron Content after Loading with Superparamagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ingrid Böhm

    2011-07-01

    Full Text Available The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI. Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT whole-body system. Mean peak wavelengths Λpeak was determined at A720nm (range 719–722 nm. Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10−12. The limit of detection was 0.01 μg Fe/mL (0.1785 mM, and the limit of quantification was 0.04 μg Fe/mL (0.714 mM. Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T2-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside.

  20. The impact of the iron content on the microstructure and magnetic properties of M-type ferrites Sr0.45Ca0.25La0.30FexCo0.25O19

    International Nuclear Information System (INIS)

    Yang, Yujie; Liu, Xiansong; Jin, Dali

    2014-01-01

    Highlights: • Sr 0.45 Ca 0.25 La 0.30 Fe x Co 0.25 O 19 (10.45 ≤ x ≤ 12.25) hexaferrites were prepared by a conventional ceramic method. • The hexagonal structure is observed for the magnets and the particles are distributed evenly. • B r , H cb , H cj , and (BH) max of the magnets first increase with iron content (x) ranging from 10.45 to 11.05 and then decrease when iron content (x) ≥ 11.05. • When iron content (x) = 11.05, B r , H cb , H cj , and (BH) max of the magnets reach the maximum values. - Abstract: M-type ferrite Sr 0.45 Ca 0.25 La 0.30 Fe x Co 0.25 O 19 (10.45 ≤ x ≤ 12.25) magnetic powders and magnets were prepared by a conventional ceramic method. Phase components of the magnetic powders were examined by X-ray diffraction. There is only the magnetoplumbite-type phase in magnetic powders with iron content (x) ranging from 10.45 to 11.65. When iron content (x) ≥ 11.85, hematite (α-Fe 2 O 3 ) phase begins to occur. The morphology of the magnets was investigated by a field emission scanning electron microscopy. The magnets have formed a hexagonal structure and the particles are distributed evenly. Magnetic properties of the magnets and magnetic powders were measured by a permanent magnetic measuring equipment and a vibrating sample magnetometer, respectively. The remanence, intrinsic coercivity, magnetic induction coercivity, and maximum energy product first increase with iron content (x) of range 10.45–11.05 and then decrease when iron content (x) continues to increase. The magnetic properties at x = 11.05 reach the maximum values

  1. Electrical and magnetic behavior of iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lenin, Nayagam; Karthik, Arumugam; Sridharpanday, Mathu; Selvam, Mohanraj; Srither, Saturappan Ravisekaran; Arunmetha, Sundarmoorthy; Paramasivam, Palanisamy; Rajendran, Venkatachalam, E-mail: veerajendran@gmail.com

    2016-01-01

    Iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) ferromagnetic nanoparticles with different concentrations of Fe (0.2, 0.4, and 0.6 mol) were synthesized using precipitation route with precursor source such as nickel nitrate and iron nitrate solutions. The prepared magnetic nanopowders were investigated through X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscope, X-ray fluorescence, Brunauer–Emmett–Teller, vibrating sample magnetometer, and electrochemical impedance spectroscopy to explore the structural, ferromagnetic, and dielectric properties. The obtained XRD pattern shows formation of iron doped nickel titanate in orthorhombic structure. The crystallite size ranges from 57 to 21 nm and specific surface area ranges from 11 to 137 m{sup 2} g{sup −1}. The hysteresis loops of nanomagnetic materials show ferromagnetic behavior with higher magnitude of coercivity (H{sub c}) 867–462 Oe. The impedance analysis of ferromagnetic materials explores the ferro-dielectric behavior with enhanced properties of Fe{sup 3+}/NiTiO{sub 3} nanoparticles at higher Fe content. - Highlights: • Iron doped nickel titanate magnetic nanoparticles. • Ferromagnetic magnetism behavior with higher magnitude of coercivity. • Dielectric behavior of ferromagnetic nanoparticles with increase of Fe content.

  2. Geology, Geochemistry and Ground Magnetic Survey on Kalateh Naser Iron Ore Deposit, Khorasan Jonoubi Province

    Directory of Open Access Journals (Sweden)

    Saeed Saadat

    2017-02-01

    two small magnetic anomalies (Figs 12-A and 12-B. The upward continuation maps were taken with 5m, 10m, 20m, 30m, 40m, and 50m. Smaller anomalies tend to disappear more comparing the 5m to 20m continuation maps respectively, and a homogenous large anomaly starts to form in the 50m map (Fig. 13. Large and clear anomalies continue to be present in the 50m continuation map and only two smaller anomalies are disappeared from the west of the area (Ryahei, 2013. Discussion The results of geological, geochemical and magnetic susceptibility measurements indicate that magnetic anomalies in the Kalate-Naser area is related to the iron mineralization in this area. Lower amount of magnetic susceptibility in intrusive mass outcrops also indicate that these intrusive rocks did not play the main role in iron mineralization and were in fact have been weakly altered. It can only be concluded that the intrusive mass that led to mineralization sits beneath, at a higher depth. The initial geophysical survey results are closely comparable to the powder drilling trials that confirm magnetite mineralization to the named depth (Saadat, 2014. Thus far, 1.5 Million ton of Iron ore deposits have been confirmed in the area and exploration continues during production. The obtained results once again highlight the importance of ground magnetic surveys that combined with other exploration methods can reduce costs, increase efficiency and simplify the exploration process. Methodology and results of the magnetic measurements conducted in Kalateh Naser can help to better understand the magnetite bodies in the neighboring areas. Acknowledgement Hereby, I would like to thank my colleagues particularly, Ryahi, Shokri, Madani, Ebrahimzadeh, Salari, Maldar family, Ghoorchi, amongst others that assisted with field visits, mapping, processing and data analysis. References Calagari, A.A., 1992. Principals of geophysics exploration. Tabesh press, Tabriz, 588 pp. Clark. D.A., 1997, Magnetic petrophysics and

  3. Magnetic nanosized rare earth iron garnets R_3Fe_5O_1_2: Sol–gel fabrication, characterization and reinspection

    International Nuclear Information System (INIS)

    Opuchovic, Olga; Kareiva, Aivaras; Mazeika, Kestutis; Baltrunas, Dalis

    2017-01-01

    The magnetic nanosized rare earth iron garnets (R_3Fe_5O_1_2, where R=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were prepared by an aqueous sol–gel method. Herein we present, that all these garnets can be obtained by this effective synthesis method simply by changing the temperature of the final annealing. It was also demonstrated, that a different annealing temperature leads to a different particle size distribution of the final product. The SEM analysis results revealed that the smallest particles were formed in the range of 75–130 nm. The phase purity and structure of the rare earth iron garnets were estimated using XRD analysis and Mössbauer spectroscopy. Magnetic properties were determined by magnetization measurements. The relation between the particle size, composition and magnetic properties of the sol-gel derived garnets were also discussed in this study. - Highlights: • First time series of R_3Fe_5O_1_2 (R=from Sm to Lu) are prepared by sol–gel process. • Different sintering temperature leads to the different particle size distribution. • Correlation between microstructure, composition and magnetic properties is shown.

  4. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  5. Method of forming magnetostrictive rods from rare earth-iron alloys

    Science.gov (United States)

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  6. Nondestructive inspection of ductile cast iron by measurement of minor magnetic hysteresis loops

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan

    2010-01-01

    Roč. 659, č. 9 (2010), 355-360 ISSN 0255-5476 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  8. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    Science.gov (United States)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  9. Magnetic and Structural Properties of Electrodeposited Iron on Copper and Silver

    International Nuclear Information System (INIS)

    Koempe, K.; Kuehl, E.; Nagorny, K.

    2002-01-01

    Electrodeposition of iron on copper or silver leads to the formation of bcc-iron or amorphous iron. Thermal annealing usually results in soluted iron (also γ-iron and clusters) in copper. On silver the insolubility of iron never causes the formation of bcc-iron. Instead on copper as well as on silver fcc-iron states are formed, especially at relatively low temperatures with short times of annealing. Moessbauer spectroscopy accompanied by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) are applied for characterisation of the iron states.

  10. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-01-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties

  11. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shulei; Zheng, Shili; Wang, Zheming; Cui, Wenwen; Zhang, Hailin; Yang, Liangrong; Zhang, Yi; Li, Ping

    2018-01-01

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.

  12. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  13. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  14. Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems

    International Nuclear Information System (INIS)

    Izquierdo, J.; Vega, A.; Balbas, L. C.; Sanchez-Portal, Daniel; Junquera, Javier; Artacho, Emilio; Soler, Jose M.; Ordejon, Pablo

    2000-01-01

    We present a theoretical study of the electronic and magnetic properties of iron systems in different environments: pure iron systems [dimer, bcc bulk, (100) surface, and free-standing iron monolayer], and low-dimensional iron systems deposited on Ag (100) surface (monoatomic linear wires, iron monolayer, planar, and three-dimensional clusters). Electronic and magnetic properties have been calculated using a recently developed total-energy first-principles method based on density-functional theory with numerical atomic orbitals as a basis set for the description of valence electrons and nonlocal pseudopotentials for the atomic core. The Kohn-Sham equations are solved self-consistently within the generalized gradient approximation for the exchange-correlation potential. Tests on the pseudopotential, the basis set, grid spacing, and k sampling are carefully performed. This technique, which has been proved to be very efficient for large nonmagnetic systems, is applied in this paper to calculate electronic and magnetic properties of different iron nanostructures. The results compare well with previous ab initio all-electron calculations and with experimental data. The method predicts the correct trends in the magnetic moments of Fe systems for a great variety of environments and requires a smaller computational effort than other ab initio methods. (c) 2000 The American Physical Society

  15. Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid, (Spain); Vega, A. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid, (Spain); Balbas, L. C. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid, (Spain); Sanchez-Portal, Daniel [Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Junquera, Javier [Departamento de Fisica de la Materia Condensada, C-III, and Institut Nicolas Cabrera, Universidad Autonoma de Madrid, 28049 Madrid, (Spain); Artacho, Emilio [Departamento de Fisica de la Materia Condensada, C-III, and Institut Nicolas Cabrera, Universidad Autonoma de Madrid, 28049 Madrid, (Spain); Soler, Jose M. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Ordejon, Pablo [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la U.A.B., Bellaterra, E-08193 Barcelona, (Spain)

    2000-05-15

    We present a theoretical study of the electronic and magnetic properties of iron systems in different environments: pure iron systems [dimer, bcc bulk, (100) surface, and free-standing iron monolayer], and low-dimensional iron systems deposited on Ag (100) surface (monoatomic linear wires, iron monolayer, planar, and three-dimensional clusters). Electronic and magnetic properties have been calculated using a recently developed total-energy first-principles method based on density-functional theory with numerical atomic orbitals as a basis set for the description of valence electrons and nonlocal pseudopotentials for the atomic core. The Kohn-Sham equations are solved self-consistently within the generalized gradient approximation for the exchange-correlation potential. Tests on the pseudopotential, the basis set, grid spacing, and k sampling are carefully performed. This technique, which has been proved to be very efficient for large nonmagnetic systems, is applied in this paper to calculate electronic and magnetic properties of different iron nanostructures. The results compare well with previous ab initio all-electron calculations and with experimental data. The method predicts the correct trends in the magnetic moments of Fe systems for a great variety of environments and requires a smaller computational effort than other ab initio methods. (c) 2000 The American Physical Society.

  16. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  17. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  18. Synthesis of novel magnetic iron metal-silica (Fe-SBA-15) and magnetite-silica (Fe{sub 3}O{sub 4}-SBA-15) nanocomposites with a high iron content using temperature-programed reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yiu, H H P [Department of Chemistry, University of Liverpool, Liverpool, Merseyside L69 7ZD (United Kingdom); Keane, M A [Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Lethbridge, Z A D [Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Lees, M R [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Haj, A J El; Dobson, J [Institute of Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB (United Kingdom)], E-mail: j.p.dobson@keele.ac.uk

    2008-06-25

    Magnetic iron metal-silica and magnetite-silica nanocomposites have been prepared via temperature-programed reduction (TPR) of an iron oxide-SBA-15 (SBA: Santa Barbara Amorphous) composite. TPR of the starting SBA-15 supported Fe{sub 2}O{sub 3} generated Fe{sub 3}O{sub 4} and FeO as stepwise intermediates in the ultimate formation of Fe-SBA-15. The composite materials have been characterized by means of x-ray diffraction, high resolution transmission electron microscopy and SQUID (superconducting quantum interference device) magnetometry. The Fe oxide and metal components form a core, as nanoscale particles, that is entrapped in the SBA-15 pore network. Fe{sub 3}O{sub 4}-SBA-15 and Fe-SBA-15 exhibited superparamagnetic properties with a total magnetization value of 17 emu g{sup -1}. The magnetite-silica composite (at an Fe{sub 3}O{sub 4} loading of 30% w/w) delivered a magnetization that exceeded values reported in the literature or obtained with commercial samples. Due to the high pore volume of the mesoporous template, the magnetite content can be increased to 83% w/w with a further enhancement of magnetization.

  19. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1991-01-01

    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  20. A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution

    International Nuclear Information System (INIS)

    McCrea, Richard P.E.; Harder, Sheri L.; Martin, Melanie; Buist, Richard; Nichol, Helen

    2008-01-01

    The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1, T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences

  1. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  2. Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver

    International Nuclear Information System (INIS)

    Luciani, Alain; Wilhelm, Claire; Gazeau, Florence; Bruneval, Patrick; Cunin, Patrick; Autret, Gwennhael; Clement, Olivier; Rahmouni, Alain

    2009-01-01

    The purpose of this study was to determine whether an external magnet field can induce preferential trafficking of magnetically labeled Huh7 hepatoma cells to the liver following liver cell transplantation. Huh7 hepatoma cells were labeled with anionic magnetic nanoparticles (AMNP) and tagged with a fluorescent membrane marker (PKH67). Iron-uptake was measured by magnetophoresis. Twenty C57Bl6 mice received an intrasplenic injection of 2 x 10 6 labeled cells. An external magnet (0.29 T; 25 T/m) was placed over the liver of 13 randomly selected animals (magnet group), while the remaining 7 animals served as controls. MRI (1.5 T) and confocal fluorescence microscopy (CFM) were performed 10 days post-transplantation. The presence and location of labeled cells within the livers were compared in the magnet group and controls, and confronted with histological analysis representing the standard of reference. Mean iron content per cell was 6 pg. Based on histology, labeled cells were more frequently present within recipient livers in the magnet group (p < 0.01) where their distribution was preferentially peri-vascular (p<0.05). MRI and CFM gave similar results for the overall detection of transplanted cells (kappa=0.828) and for the identification of peri-vascular cells (kappa=0.78). Application of an external magnet can modify the trafficking of transplanted cells, especially by promoting the formation of perivascular aggregates. (orig.)

  3. Effect of substrate interface on the magnetism of supported iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland); Fraile Rodríguez, A. [Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona (Spain); Vaz, C.A.F.; Kleibert, A.; Nolting, F. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland)

    2015-12-15

    In situ X-ray photo-emission electron microscopy is used to investigate the magnetic properties of iron nanoparticles deposited on different single crystalline substrates, including Si(001), Cu(001), W(110), and NiO(001). We find that, in our room temperature experiments, Fe nanoparticles deposited on Si(001) and Cu(001) show both superparamagnetic and magnetically stable (blocked) ferromagnetic states, while Fe nanoparticles deposited on W(110) and NiO(001) show only superparamagnetic behaviour. The dependence of the magnetic behaviour of the Fe nanoparticles on the contact surface is ascribed to the different interfacial bonding energies, higher for W and NiO, and to a possible relaxation of point defects within the core of the nanoparticles on these substrates, that have been suggested to stabilise the ferromagnetic state at room temperature when deposited on more inert surfaces such as Si and Cu. - Highlights: • In situ X-ray photo-emission electron microscopy study on iron nanoparticles. • Magnetically blocked particles are found on Si(001) and Cu(001). • Superparamagnetic particles are found on W(110) and Ni0(001). • The substrate dependent behavior is ascribed to the different bonding energies.

  4. Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data

    Czech Academy of Sciences Publication Activity Database

    Oliveira, J. S.; Wieczorek, M. A.; Kletetschka, Günther

    2017-01-01

    Roč. 122, č. 12 (2017), s. 2429-2444 ISSN 2169-9097 Institutional support: RVO:67985831 Keywords : Moon * impact basins * crustal magnetic field * unidirectional magnetization model * iron abundances Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.721, year: 2016

  5. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  6. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  7. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Energy Technology Data Exchange (ETDEWEB)

    Smolkova, Ilona S. [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G. Masaryk Sq. 275, 762 72 Zlin (Czech Republic); Kazantseva, Natalia E., E-mail: nekazan@yahoo.com [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Schneeweiss, Oldrich; Pizurova, Nadezda [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2015-01-15

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g{sup −1} to 48 emu g{sup −1}) but does not affect the heating ability of nanoparticles. A 2–7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g{sup −1}. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy. - Highlights: • Mixed phase iron oxide magnetic nanoparticles were obtained by coprecipitation. • A part of nanoparticles was annealed at 300 °C to achieve the single-phase γ-Fe{sub 2}O{sub 3}. • Nanoparticles revealed ferromagnetic-like behavior due to interparticle interactions. • Nanoparticles glycerol

  8. Structural and magnetic order of ThMn12-type rare earth-iron-aluminium intermetallics studied by neutron diffraction

    International Nuclear Information System (INIS)

    Schaefer, W.; Halevy, I.; Gal, J.

    2000-01-01

    neutron powder diffraction data of ThMn 12 -type compounds RFe 4 Al 8 , RFe 5 Al 7 , and RFe 6 Al 6 (R = heavy rare earth) are compared to work out the structural variations and the different magnetic properties of these ternary intermetallics as a function of increasing iron concentrations. The variations of unit cell metric, of atomic coordinations and of interatomic distances are discussed. A magnetic phase diagram is presented showing the increase of the magnetic ordering temperatures from 120 K to 340 K and the change of the magnetic order from two separate magnetic phase transitions of rare earth and iron sublattices to one common ferrimagnetic transition of both sublattices, when changing the ratio of Fe/Al atoms from 4/8 to 6/6, respectively. Long range order is hampered by frozen spins. Magnetically ordered rare earth and iron moments are given. (orig.)

  9. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    ... in numerous synthesis processes. This review outlines the work being carried out on synthesis of iron oxides in nano form and their various applications. Keywords: nano iron oxides, synthesis, catalysts, magnetic properties, biomedical application. International Journal of Engineering, Science and Technology, Vol. 2, No.

  10. Iron-borosilicate soft magnetic composites: The correlation between processing parameters and magnetic properties for high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Gheiratmand, T., E-mail: t.gheiratmand@yahoo.com; Madaah Hosseini, H.R., E-mail: Madaah@sharif.edu; Seyed Reihani, S.M.

    2017-05-01

    Iron-borosilicate soft magnetic composites are suitable magnetic materials for high temperature and high frequency applications. In this research two different techniques have been applied to fabricate these composites: uniaxial pressing following by sintering and spark plasma sintering. Different processing parameters including the content of borosilicate, the amount of compaction pressure and the size of iron particles have been evaluated through the study of microstructure and magnetic properties. The microstructural observations showed that the borosilicate is distributed on the iron grain boundaries enhancing the resistivity and causing the loss of eddy currents. Increasing the compaction pressure was led to the decrease of electrical resistivity. By increasing the frequency both real and imaginary parts of permeability decreased. The use of higher content of borosilicate resulted in the lower decreasing slop of permeability. Best combination of density, permeability and electrical resistivity was obtained in the sample with 2 wt% of borosilicate. In addition, the densification of powders with fine particles was more difficult than coarse particles due to the inter particles friction and bridging effects. Furthermore, as the particles size increases the size of open porosities before sintering where the borosilicate could aggregate enhances. This could yields to the increase in the electrical resistivity. The high ratio of surface to the volume in the powders with fine particles results in the developing the demagnetizing fields and subsequently, decreasing the permeability. The highest relative density (99.99% of theoretical density) with best distribution of borosilicate was achieved in the composites produced by spark plasma sintering (SPS). The relaxation frequency, obtained from imaginary part of permeability, was found as 340 Hz in the composites made by SPS. - Highlights: • Iron-borosilicate SMC was produced for high temperature and frequency

  11. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...... independent of temperature. Ms increases with decreasing temperature according to an effective Bloch law with an exponent larger than 1.5, as expected for fine magnetic particles. The model of magnetic particles with uniaxial anisotropy and the actual size distribution gives a consistent description...... of independent measurements of the temperature dependence of the hyperfine field and the isothermal magnetization versus field. From this an effective anisotropy constant of about 4.5x10 4 J m-3 is estimated for a particle with diameter 7.5 nm. The magnetic relaxation, as observed in zero...

  12. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  13. Evaluation of iron oxide nanoparticle micelles for Magnetic Particle Imaging (MPI) of thrombosis

    NARCIS (Netherlands)

    Starmans, L.W.E.; Moonen, R.P.M.; Aussems-Custers, E.; Daemen, M.J.A.P.; Strijkers, G. J.; Nicolay, K.; Grüll, H.

    2015-01-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality that directly visualizes magnetic particles in a hot-spot like fashion. We recently developed an iron oxide nanoparticle-micelle (ION-Micelle) platform that allows highly sensitive MPI. The goal of this study was to assess the

  14. Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, Alain [Universite Rene Descartes, Hopital Europeen Georges Pompidou, Laboratoire de Recherche en Imagerie, EA 4062, Paris (France); Imagerie Medicale, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France); Wilhelm, Claire; Gazeau, Florence [Universite Paris Diderot, Batiment Condorcet, Laboratoire Matiere et Systemes Complexes, CNRS-UMR 7057, Paris Cedex (France); Bruneval, Patrick [Anatomopathologie, Hopital Europeen Georges Pompidou, Paris (France); Cunin, Patrick [Unite de Recherche Clinique, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France); Autret, Gwennhael; Clement, Olivier [Universite Rene Descartes, Hopital Europeen Georges Pompidou, Laboratoire de Recherche en Imagerie, EA 4062, Paris (France); Rahmouni, Alain [Imagerie Medicale, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France)

    2009-05-15

    The purpose of this study was to determine whether an external magnet field can induce preferential trafficking of magnetically labeled Huh7 hepatoma cells to the liver following liver cell transplantation. Huh7 hepatoma cells were labeled with anionic magnetic nanoparticles (AMNP) and tagged with a fluorescent membrane marker (PKH67). Iron-uptake was measured by magnetophoresis. Twenty C57Bl6 mice received an intrasplenic injection of 2 x 10{sup 6} labeled cells. An external magnet (0.29 T; 25 T/m) was placed over the liver of 13 randomly selected animals (magnet group), while the remaining 7 animals served as controls. MRI (1.5 T) and confocal fluorescence microscopy (CFM) were performed 10 days post-transplantation. The presence and location of labeled cells within the livers were compared in the magnet group and controls, and confronted with histological analysis representing the standard of reference. Mean iron content per cell was 6 pg. Based on histology, labeled cells were more frequently present within recipient livers in the magnet group (p < 0.01) where their distribution was preferentially peri-vascular (p<0.05). MRI and CFM gave similar results for the overall detection of transplanted cells (kappa=0.828) and for the identification of peri-vascular cells (kappa=0.78). Application of an external magnet can modify the trafficking of transplanted cells, especially by promoting the formation of perivascular aggregates. (orig.)

  15. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide; Multiband Gutzwiller-Theorie des Bandmagnetismus von LaO-Eisen-Arsenid

    Energy Technology Data Exchange (ETDEWEB)

    Schickling, Tobias

    2012-02-23

    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T{sub c} = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T{sub c} superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  16. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Majid Niaz, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bakar Sulong, Abu [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, G.C. University, Lahore, Pakistan" f Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal Pakistan (Pakistan); Raza, M.R. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal (Pakistan); Raza, R.; Saleem, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Kashif, M. [Department of Physics, Govt. College University Faisalabad (Pakistan)

    2016-03-01

    Yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrite samples were synthesized by microemulsion method. The effect of sintering was examined by heating the samples at 900, 1000, and 1100 °C. The YIG and YAIG samples were then characterized using X-ray diffraction and field-emission scanning electron microscopy. Static and dynamic magnetic properties were measured by evaluating initial permeability, Q factor, and vibrating sample magnetometry properties of YIG and YAIG samples. YIG samples sintered at 1100 °C showed higher initial permeability and Q factor compared with YAIG samples. However, hysteresis loops also showed variations in the saturation magnetization, remanence, and coercivity of YIG and YAIG samples sintered at 900, 1000, and 1100 °C. The observed magnetic parameter such as saturation magnetization, coercivity and initial permeability are strongly affected by increasing temperature. The saturation magnetization and coercivity of YIG and YAIG nanoferrites were found in the range 11.56–19.92 emu/g and 7.30–87.70 Oe respectively. Furthermore, the decreasing trends in the static and magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. Thus, YIG and YAIG sintered at 1100 °C can be used for wide-ranging frequency applications. - Highlights: • Static and dynamic magnetic properties of YIG and YAIG nanoferrites were determined. • Saturation magnetization, Q and initial permeability increased in YIG nanoferites. • Possible use of these nanoferrites for sensing and switching applications.

  17. Effect of shrink fitting and cutting on iron loss of permanent magnet motor

    International Nuclear Information System (INIS)

    Takahashi, N.; Morimoto, H.; Yunoki, Y.; Miyagi, D.

    2008-01-01

    Magnetic properties of a motor core are affected by the distortion due to the compression caused by shrink fitting and the distortion caused by punching, etc. In this paper, the B-H curve and iron loss of stator core of actual motor under shrink fitting are measured. It is shown that the maximum permeability is reduced by about 50%, and the iron loss is increased by about 30% due to the shrink fitting. It is illustrated that the loss of motor is increased by about 10%, 4% and 2% due to the shrink fitting, the cutting stress and the eddy current in rotor magnet, respectively

  18. Vitality of pancreatic islets labeled for magnetic resonance imaging with iron particles.

    Science.gov (United States)

    Berkova, Z; Kriz, J; Girman, P; Zacharovova, K; Koblas, T; Dovolilova, E; Saudek, F

    2005-10-01

    We previously described an in vivo method for pancreatic islet visualization using magnetic resonance imaging with the aid of superparamagnetic nanoparticles of iron oxide (Resovist) or by magnetic beads precoated with antibodies (Dynabeads). The aim of this study was to investigate the in vitro effect of islet labeling on their quality. Isolated rat islets were cultivated for 48 hours with a contrast agent or, in the case of magnetic antibody-coated beads, for only 2 hours. The ability to secrete insulin was tested by a static insulin release assay and the results were expressed as a stimulation index. Staining with propidium iodide and acridine orange was performed to determine the ratio of live to dead cells. Stimulation indices in the Resovist islets (n = 23) vs controls (n = 14) were 15.3 and 15.0, respectively, and in the Dynabeads islets (n = 15) vs controls (n = 12) 21.3 and 19.9, respectively. The vitality of the Resovist islets vs controls determined by live/dead cells ratio was 90.8% and 91.1%, respectively (n = 20), and in the Dynabeads islets vs controls was 89.4% and 91.8%, respectively (n = 11). Islet labeling with the contrast agent as well as with specific antibodies with iron beads did not change the vitality and insulin-secreting capacity assessed in vitro (P > .05). Magnetic resonance using iron nanoparticles represents the only method for in-vivo visualization of transplanted islets so far. Our data represent an important contribution for its clinical use.

  19. Thermal characterization of magnetically aligned carbonyl iron/agar composites.

    Science.gov (United States)

    Diaz-Bleis, D; Vales-Pinzón, C; Freile-Pelegrín, Y; Alvarado-Gil, J J

    2014-01-01

    Composites of magnetic particles into polymeric matrices have received increasing research interest due to their capacity to respond to external magnetic or electromagnetic fields. In this study, agar from Gelidium robustum has been chosen as natural biocompatible polymer to build the matrix of the magnetic carbonyl iron particles (CIP) for their uses in biomedical fields. Heat transfer behavior of the CIP-agar composites containing different concentrations (5, 10, 15, 20, 25 and 30% w/w) of magnetically aligned and non-aligned CIP in the agar matrix was studied using photothermal radiometry (PTR) in the back-propagation emission configuration. The morphology of the CIP-agar composites with aligned and non-aligned CIP under magnetic field was also evaluated by scanning electron microscopy (SEM). The results revealed a dominant effect of CIP concentration over the alignment patterns induced by the magnetic field, which agrees with the behavior of the thermal diffusivity and thermal conductivity. Agar served as a perfect matrix to be used with CIP, and CIP-agar composites magnetically aligned at 20% CIP concentration can be considered as promising 'smart' material for hyperthermia treatments in the biomedical field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles

    Science.gov (United States)

    Zhou, Jie; Zhang, Jian; David, Allan E.; Yang, Victor C.

    2013-09-01

    Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating β-glucosidase (β-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as β-Glu-MNP, using glutaraldehyde as the crosslinker. This β-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated β-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that β-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of β-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered β-Glu in tumor lesions showed as high as 20.123±5.022 mU g-1 tissue with 2.14 of tumor/non-tumor β-Glu activity.

  1. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  2. Safety implications of high-field MRI: actuation of endogenous magnetic iron oxides in the human body.

    Directory of Open Access Journals (Sweden)

    Jon Dobson

    Full Text Available Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body.Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles.Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation.

  3. Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers

    DEFF Research Database (Denmark)

    Bender, Philipp; Fock, Jeppe; Frandsen, Cathrine

    2018-01-01

    We investigated in depth the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which...... we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small angle neutron scattering we unambiguously confirm that on average the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time...... distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us...

  4. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    Science.gov (United States)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to

  5. Theoretical study of the correlation between magnetism and the properties of defects in iron, chromium and their alloys

    International Nuclear Information System (INIS)

    Soulairol, R.

    2011-09-01

    This PhD thesis is devoted to the study of the correlation between the magnetism and the properties of defects in 3d metals, mainly iron- and chromium-based systems, which are used in many technological applications, such as the new-generation nuclear reactors. This work is based on two complementary approaches: the Density Functional Theory (DFT) and a Tight Binding model (TB). We begin this study by the properties of pure materials such as chromium and α-iron. For the first one, we observe that the presence of a spin density wave (SDW) induces an anisotropy in the formation of point defects as well as the migration of vacancies. For the second, the solution energy of various 3d impurities depends on two terms: a chemical contribution mainly linked to the difference between the number of d electrons of iron and solute, and a magnetic contribution that reveals to be predominant in Fe-Cr. In the following parts, we tackle the correlation between magnetism and extended defects. We show in particular that the existence of magnetic frustrations near Fe/Cr interfaces can lead to the creation of non collinear magnetic structures. It also influences the energetic stability of these interfaces. We have noticed, in agreement with experimental findings, the presence of SDW near Fe/Cr interfaces, which is able to decrease those magnetic frustrations at the interface. We have also studied the magnetic structure of iron or chromium clusters embedded in an Fe-Cr alloy. We have finally shown, in the last part of this work, how the TB approach was able to account for the energetic and magnetic properties of defects not only in pure iron or chromium, but also in Fe-Cr alloys. (author)

  6. Uniaxial in-plane magnetization of iron nanolayers grown within an amorphous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, M., E-mail: mohammad.ghafari@kit.edu; Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattheis, R. [Leibniz Institute for Photonic Technology IPHT, Jena (Germany); McCord, J. [Institute for Materials Science, Kiel University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Brand, R. A. [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Macedo, W. A. A. [Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, MG (Brazil)

    2014-08-18

    Conversion electron Mössbauer spectroscopy is used to determine the magnetic ground state at zero magnetic field of four-monolayer thick amorphous iron layers as part of a CoFeB-Fe multilayer stack. By comparing the intensities of the magnetic hyperfine field, an easy in-plane axis of the amorphous embedded Fe layer is verified, which is collinear to the uniaxial anisotropy axis of the neighboring amorphous CoFeB. Despite the soft magnetic character of the Fe layers, external fields up to 4 T perpendicular to the film plane are insufficient to completely align the embedded Fe moments parallel to the magnetic field due to a local disorder of the magnetic moments of the Fe atoms.

  7. Magnetic properties of a single iron atomic chain encapsulated in armchair carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, 25 rue des Martyrs BP 166, 38042 Grenoble cedex 9 (France)

    2017-06-15

    Highlights: • Magnetic properties of Fe atom chain wrapped in armchair carbon nanotubes have been studied. • Transition temperature of iron and carbon have been calculated using Monte Carlo simulations. • The multiples magnetic hysteresis have been found. - Abstract: The magnetic properties have been investigated of FeCu{sub x}C{sub 1−x} for a Fe atom chain wrapped in armchair (N,N) carbon nanotubes (N = 4,6,8,10,12) diluted by Cu{sup 2+} ions using Monte Carlo simulations. The thermal total magnetization and magnetic susceptibility are found. The reduced transition temperatures of iron and carbon have been calculated for different N and the exchange interactions. The total magnetization is obtained for different exchange interactions and crystal field. The Magnetic hysteresis cycles are obtained for different N, the reduced temperatures and exchange interactions. The multiple magnetic hysteresis is found. This system shows it can be used as magnetic nanostructure possessing potential current and future applications in permanent magnetism, magnetic recording and spintronics.

  8. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  9. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Yang Wu

    2008-01-01

    The effects of a 0.4 T horizontal magnetic field (HMF) on the open-circuit corrosion states of iron in static aqueous solutions are studied by in situ monitoring the responses of two electrochemical parameters to the applied magnetic field, i.e. the open-circuit potential (OCP) and the current under potentiostatic polarization. The applied magnetic field makes the OCP shift in the noble direction. Withdrawing the magnetic field causes a negative shift of the OCP in acidic solutions, but it does not cause any significant change of OCP in neutral solutions. Imposing a magnetic field induces a cathodic current for iron that was previously potentiostatically polarized at the OCP without magnetic field. Withdrawing the magnetic field induces an anodic current for iron that was previously potentiostatically polarized at the OCP with the magnetic field. The magnetic field effect is more significant in the acid solutions than in the salt solutions. The magnetic field effects on the oxygen reduction and on the activation-controlled iron dissolution reaction are found to be insignificant. The magnetic field effect on the hydrogen reduction reaction on iron in acidic solutions is demonstrated. Results show the possibility that a magnetic field would affect the hydrogen evolution by enhancing the electron-transfer process that has been categorized in the classical electrochemistry kinetics to be the rate-determining process. The memory effect of the magnetic field on the electrochemical reaction is identified and discussed

  10. Evolution of magnetism on a curved nano-surface.

    Science.gov (United States)

    Merkel, D G; Bessas, D; Zolnai, Z; Rüffer, R; Chumakov, A I; Paddubrouskaya, H; Van Haesendonck, C; Nagy, N; Tóth, A L; Deák, A

    2015-08-14

    To design custom magnetic nanostructures, it is indispensable to acquire precise knowledge about the systems in the nanoscale range where the magnetism forms. In this paper we present the effect of a curved surface on the evolution of magnetism in ultrathin iron films. Nominally 70 Å thick iron films were deposited in 9 steps on 3 different types of templates: (a) a monolayer of silica spheres with 25 nm diameter, (b) a monolayer of silica spheres with 400 nm diameter and (c) for comparison a flat silicon substrate. In situ iron evaporation took place in an ultrahigh vacuum chamber using the molecular beam epitaxy technique. After the evaporation steps, time differential nuclear forward scattering spectra, grazing incidence small angle X-ray scattering images and X-ray reflectivity curves were recorded. In order to reconstruct and visualize the magnetic moment configuration in the iron cap formed on top of the silica spheres, micromagnetic simulations were performed for all iron thicknesses. We found a great influence of the template topography on the onset of magnetism and on the developed magnetic nanostructure. We observed an individual magnetic behaviour for the 400 nm spheres which was modelled by vortex formation and a collective magnetic structure for the 25 nm spheres where magnetic domains spread over several particles. Depth selective nuclear forward scattering measurements showed that the formation of magnetism begins at the top region of the 400 nm spheres in contrast to the 25 nm particles where the magnetism first appears in the region where the spheres are in contact with each other.

  11. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability. - Highlights: ► Uniformly coated Mn–Zn ferrite powder increased the operating frequency of SMCs. ► Compared with epoxy coated, the permeability of SMCs increased by 33.5% at 10 kHz. ► 400 °C is the optimum annealing temperature to attain the desired permeability.

  12. Magnetic transmission gear finite element simulation with iron pole hysteresis

    Science.gov (United States)

    Filippini, Mattia; Alotto, Piergiorgio; Glehn, Gregor; Hameyer, Kay

    2018-04-01

    Ferromagnetic poles in a magnetic transmission gear require particular attention during their design process. Usually, during the numerical simulation of these devices the effects of hysteresis for loss estimation are neglected and considered only during post-processing calculations. Since the literature lacks hysteresis models, this paper adopts a homogenized hysteretic model able to include eddy current and hysteresis losses in 2D laminated materials for iron poles. In this article the results related to the hysteresis in a magnetic gear are presented and compared to the non-hysteretic approach.

  13. Synthesis engineering of iron oxide raspberry-shaped nanostructures.

    Science.gov (United States)

    Gerber, O; Pichon, B P; Ihiawakrim, D; Florea, I; Moldovan, S; Ersen, O; Begin, D; Grenèche, J-M; Lemonnier, S; Barraud, E; Begin-Colin, S

    2017-01-07

    Magnetic porous nanostructures consisting of oriented aggregates of iron oxide nanocrystals display very interesting properties such as a lower oxidation state of magnetite, and enhanced saturation magnetization in comparison with individual nanoparticles of similar sizes and porosity. However, the formation mechanism of these promising nanostructures is not well understood, which hampers the fine tuning of their magnetic properties, for instance by doping them with other elements. Therefore the formation mechanism of porous raspberry shaped nanostructures (RSNs) synthesized by a one-pot polyol solvothermal method has been investigated in detail from the early stages by using a wide panel of characterization techniques, and especially by performing original in situ HR-TEM studies in temperature. A time-resolved study showed the intermediate formation of an amorphous iron alkoxide phase with a plate-like lamellar structure (PLS). Then, the fine investigation of PLS transformation upon heating up to 500 °C confirmed that the synthesis of RSNs involves two iron precursors: the starting one (hydrated iron chlorides) and the in situ formed iron alkoxide precursor which decomposes with time and heating and contributes to the growth step of nanostructures. Such an understanding of the formation mechanism of RSNs is necessary to envision efficient and rational enhancement of their magnetic properties.

  14. Coil and iron design for SSC 50 mm magnet

    International Nuclear Information System (INIS)

    Gupta, R.C.; Kahn, S.A.; Morgan, G.H.

    1990-01-01

    In this paper we present the design of the two dimensional coil and iron cross section, referred to as DSX201/W6733, for the 50 mm aperture dipole magnet being built at the Brookhaven National Laboratory for the Superconducting Super Collider (SSC). The computed values of the allowed field harmonics as a function of current, the quench performance predictions, the stored energy calculations, the effect of random errors on the coil placement and the Lorentz forces on the coil will be presented. The yoke has been optimized to reduce iron saturation effects on the field harmonics. We shall present the summary of this design which will include the expected overall performance of this cross section. 4 refs., 8 figs., 12 tabs

  15. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  16. Ferromagnetic nuclear resonance investigation of the surface magnetization in iron sheets

    International Nuclear Information System (INIS)

    Varga, L.; Tompa, K.

    1977-09-01

    The role of the domain structure and domain properties in ferromagnetic nuclear resonance (FNR) experiments is reconsidered. Using the FNR signal intensity as a measure of surface domain wall volume, it is found that the behaviour of the surface magnetization differs from that of the bulk magnetization of iron sheets. Namely, a critical field below which the FNR signal remains unchanqed is observed in the surface magnetization. This lag of surface domain wall annihilation is sensitive to the given surface conditions and in particular to the rolling deformation. Considering the small skin depth, FNR as a surface testing method is discussed. (D.P.)

  17. Features of photoinduced magnetism in some yttrium–iron-garnet single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vorob’eva, N. V., E-mail: vnv@anrb.ru [Akmulla Bashkir State Pedagogical University (Russian Federation); Mityukhlyaev, V. B. [Investigation Center for Surface and Vacuum (Russian Federation)

    2016-04-15

    Photoinduced magnetic phenomena are considered in yttrium–iron single-crystalline garnets grown from a BaO–B{sub 2}O{sub 3} molten solution with the addition of iridium to the initial melt. The features of the composition and defects of the crystal structure of the samples in the surface layer are determined. In view of this, explanations for features of the photoinduced magnetic phenomena in the investigated crystals are proposed. The determining role of oxygen anions for the photoinduced magnetic phenomena at room temperature is highlighted, and the possible role of a variation in the dopant content and composition is considered.

  18. Optimizing the field distribution of a Halbach type permanent magnet cylinder using the soft iron and superhard magnet

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2018-01-01

    When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.

  19. Iron-Doped (La,Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia.

    Science.gov (United States)

    Shlapa, Yulia; Kulyk, Mykola; Kalita, Viktor; Polek, Taras; Tovstolytkin, Alexandr; Greneche, Jean-Marc; Solopan, Sergii; Belous, Anatolii

    2016-12-01

    Fe-doped La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles have been synthesized by sol-gel method, and ceramic samples based on them were sintered at 1613 K. Crystallographic and magnetic properties of obtained nanoparticles and ceramic samples have been studied. It has been established that cell volume for nanoparticles increases with growing of iron content, while this dependence displays an opposite trend in the case of ceramic samples. Mössbauer investigations have shown that in all samples, the oxidation state of iron is +3. According to magnetic studies, at room temperature, both nanoparticles and ceramic samples with y ≤ 0.06 display superparamagnetic properties and samples with y ≥ 0.08 are paramagnetic. Magnetic fluids based on La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles and aqua solution of agarose have been prepared. It has been established that heating efficiency of nanoparticles under an alternating magnetic field decreases with growing of iron content.

  20. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  1. Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption

    Science.gov (United States)

    Liu, Jiancong; Yu, Yang; Yang, Jiakuan; Song, Jian; Fan, Wei; Yu, Hongbin; Bian, Dejun; Huo, Mingxin

    2018-01-01

    With increasing awareness of reduction of energy and CO2 footprint, more waste is considered recyclable for generating value-added products. Here we reported the negatively-valued iron mud, a waste from groundwater treatment plant, was successfully converted into magnetic adsorbent. Comparing with the conventional calcination method under the high temperature and pressure, the synthesis of the magnetic particles (MPs) by Fe2+/Fe3+ coprecipitation was conducted at environment-friendly condition using ascorbic acid (H2A) as reduction reagent and nitric acid (or acid wastewater) as leaching solution. The MPs with major component of Fe3O4 were synthesized at the molar ratio (called ratio subsequently) of H2A to Fe3+ of iron mud ≥ 0.1; while amorphous ferrihydrite phase was formed at the ratio ≤ 0.05, which were confirmed by vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). With the ratio increased, the crystalline size and the crystallization degree of MPs increased, and thus the Brunauer-Emmett-Teller (BET) surface and the cation-exchange capacity (CEC) decreased. MPs-3 prepared with H2A to Fe3+ ratio of 0.1 demonstrated the highest methylene blue (MB) adsorption of 87.3 mg/g and good magnetic response. The adsorption of MB onto MPs agreed well with the non-linear Langmuir isotherm model and the pseudo-second-order model. Pilot-scale experiment showed that 99% of MB was removed by adding 10 g/L of MPs-3. After five adsorption-desorption cycles, MPs-3 still showed 62% removal efficiency for MB adsorption. When nitric acid was replaced by acid wastewater from a propylene plant, the synthesized MPs-3w showed 3.7 emu/g of saturation magnetization (Ms) and 56.7 mg/g of MB adsorption capacity, 2.8 times of the widely used commercial adsorbent of granular active carbon (GAC). The major mechanism of MPs adsorption for MB was electrostatic attraction and cation exchange. This study synthesized a magnetic adsorbent from

  2. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  3. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells

    International Nuclear Information System (INIS)

    Hohnholt, Michaela C.; Dringen, Ralf

    2011-01-01

    Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA–IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA–IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA–IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA–IONP.

  4. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  5. An analytical electron microscopy characterization of melt-spun iron/rare-earth/boron magnetic materials

    International Nuclear Information System (INIS)

    Dickenson, R.C.; Lawless, K.R.; Hadjipanayis, G.C.

    1986-01-01

    Iron/rare-earth/boron permanent magnet materials have recently been developed to reduce the need for the strategic element cobalt, which was previously the primary component of high-energy magnets. These materials are generally produced by annealing rapidly solidified ribbons or by conventional powder metallurgy techniques. This paper reports results from an analytical electron microscopy characterization undertaken to establish the relationship between the magnetic properties and the microstructure of two iron/rare-earth/boron (Fe/RE/B) alloys. Ribbons of Fe 75 Pr 15 B 10 and Fe 77 Tb 15 B 8 were produced by melt-spinning. To obtain optimum magnetic properties, both alloys were then annealed at 700 0 C, the FePrB ribbons for 6 minutes and the FeTbB ribbons for 90 minutes. Foils for transmission electron microscopy were prepared by ion-milling the ribbons on a cold stage and examined using a Philips 400T TEM/STEM equipped with an energy dispersive x-ray unit

  6. Photoactive nanocomplex formed from chlorophyll assembly on TMA-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Barbaros, Sibel; Meray, Zeynep; Tecim, Tuğba; Genç, Rükan, E-mail: rukangnc@gmail.com [Mersin University, Functional Nanomaterials Laboratory, Chemical Engineering Department, Engineering Faculty (Turkey)

    2016-07-15

    In this study, hierarchical self-assembly of photocatalytic nanodisks through non-covalent interactions between spinach-extracted chlorophyll molecules and trimethylammonium hydroxide-coated magnetic iron oxide nanoparticles was discussed. Combination of chlorophyll molecules with iron oxide nanoparticles generated an alteration in light absorption at both visible and near-IR region with accompanying enhancement in fluorescence emission. Further, photocatalytic role of resulting molecular assembly was studied by means of the photoinduced degradation of methylene blue dye under UV light and direct sun irradiation at neutral pH. In order to enhance the long-term stability of the hybrid nanocatalyst, commercially available cellulose membrane was used as a support and magnetic recovery and reusability was achieved where the nanocatalyst retained more than 90 % of its efficiency even after four cycles. This simple strategy could initiate the development of new materials for wastewater treatment including membrane-based technologies. On the other hand, their sunlight-induced photocatalytic activity could easily be conducted to dye-synthesized solar cells or their enhanced photoluminescence can provide a strong basis for future bioimaging tools.Graphical Abstract.

  7. Preparation of Magnetic Iron Oxide Nanoparticles (MIONs with Improved Saturation Magnetization Using Multifunctional Polymer Ligand

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Majeed

    2016-11-01

    Full Text Available This paper describes the preparation of ultra-small magnetic iron oxide (Fe3O4 nanoparticles (MIONs coated with water-soluble thioether end-functionalized polymer ligand pentaerythritol tetrakis 3-mercaptopropionate-polymethacrylic acid (PTMP-PMAA. The MIONs were prepared by co-precipitation of aqueous iron precursor solution at a high temperature. The polymer modified MIONs were characterized by dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, thermogravimetric analysis (TGA, and vibrating sample magnetometery (VSM. It was found that these MIONs were successfully modified by this water-soluble polymer ligand with a fairly uniform size and narrow size distribution. The dried powder of MIONs could be stored for a long time and re-dispersed well in water without any significant change. Additionally, the polymer concentration showed a significant effect on size and magnetic properties of the MIONs. The saturation magnetization was increased by optimizing the polymer concentration. Furthermore, the 3-(4,5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT-assay demonstrated that these MIONs were highly biocompatible and they could be successfully coupled with fluorescent dye Rhodamine due to the formation of amide bond between carboxylic acid groups of MIONs and amine groups of dye. The obtained results indicated that these multifunctional MIONs with rich surface chemistry exhibit admirable potential in biomedical applications.

  8. The role of equilibrium volume and magnetism on the stability of iron phases at high pressures.

    Science.gov (United States)

    Alnemrat, S; Hooper, J P; Vasiliev, I; Kiefer, B

    2014-01-29

    The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch-Murnaghan equation of state parameters are; bcc: V0 = 11.759 A(3)/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A(3)/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A(3)/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures.

  9. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe{sub 3}O{sub 4} nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired.

  10. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    International Nuclear Information System (INIS)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon

    2014-01-01

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe 3 O 4 nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired

  11. Resource Recovery and Reuse: Recycled Magnetically Separable Iron-based Catalysts for Phosphate Recovery and Arsenic Removal

    Science.gov (United States)

    Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...

  12. Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications

    International Nuclear Information System (INIS)

    Mendoza Zélis, P.; Muraca, D.; Gonzalez, J. S.; Pasquevich, G. A.; Alvarez, V. A.; Pirota, K. R.; Sánchez, F. H.

    2013-01-01

    A study of the magnetic behavior of maghemite nanoparticles (NPs) in polyvinyl alcohol (PVA) polymer matrices prepared by physical cross-linking is reported. The magnetic nanocomposites (ferrogels) were obtained by the in situ co-precipitation of iron salts in the presence of PVA polymer, and subsequently subjected to freezing–thawing cycles. The magnetic behavior of these ferrogels was compared with that of similar systems synthesized using the glutaraldehyde. This type of chemical cross-linking agents presents several disadvantages due to the presence of residual toxic molecules in the gel, which are undesirable for biological applications. Characteristic particle size determined by several techniques are in the range 7.9–9.3 nm. The iron oxidation state in the NPs was studied by X-ray absorption spectroscopy. Mössbauer measurements showed that the NP magnetic moments present collective magnetic excitations and superparamagnetic relaxations. The blocking and irreversibility temperatures of the NPs in the ferrogels, and the magnetic anisotropy constant, were obtained from magnetic measurements. An empirical model including two magnetic contributions (large NPs slightly departed from thermodynamic equilibrium below 200 K, and small NPs at thermodynamic equilibrium) was used to fit the experimental magnetization curves. A deviation from the superparamagnetic regime was observed. This deviation was explained on the basis of an interacting superparamagnetic model. From this model, relevant magnetic and structural properties were obtained, such as the magnitude order of the dipolar interaction energy, the NPs magnetic moment, and the number of NPs per ferrogel mass unit. This study contributes to the understanding of the basic physics of a new class of materials that could emerge from the PVA-based magnetic ferrogels.

  13. Element selective X-ray magnetic circular and linear dichroisms in ferrimagnetic yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Rogalev, A. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Goulon, J. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France)], E-mail: goulon@esrf.fr; Wilhelm, F. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Brouder, Ch. [Institut de Mineralogie et de Physique des Milieux Condenses, UMR-CNRS 7590, Universite Paris VI-VII, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Yaresko, A. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Ben Youssef, J.; Indenbom, M.V. [Laboratoire de Magnetisme de Bretagne, CNRS FRE 2697, UFR Sciences et Techniques, F-29328 Brest Cedex (France)

    2009-12-15

    X-ray magnetic circular dichroism (XMCD) was used to probe the existence of induced magnetic moments in yttrium iron garnet (YIG) films in which yttrium is partly substituted with lanthanum, lutetium or bismuth. Spin polarization of the 4d states of yttrium and of the 5d states of lanthanum or lutetium was clearly demonstrated. Angular momentum resolved d-DOS of yttrium and lanthanun was shown to be split by the crystal field, the two resolved substructures having opposite magnetic polarization. The existence of a weak orbital moment involving the 6p states of bismuth was definitely established with the detection of a small XMCD signal at the Bi M{sub 1}-edge. Difference spectra also enhanced the visibility of subtle changes in the Fe K-edge XMCD spectra of YIG and {l_brace}Y, Bi{r_brace}IG films. Weak natural X-ray linear dichroism signatures were systematically observed with all iron garnet films and with a bulk YIG single crystal cut parallel to the (1 1 1) plane: this proved that, at room temperature, the crystal cannot satisfy all requirements of perfect cubic symmetry (space group: Ia3-bar d), crystal distortions preserving at best trigonal symmetry (R3-bar or R3m). For the first time, a very weak X-ray magnetic linear dichroism (XMLD) was also measured in the iron K-edge pre-peak of YIG and revealed the presence of a tiny electric quadrupole moment in the ground-state charge distribution of iron atoms. Band-structure calculations carried out with fully relativistic LMTO-LSDA methods support our interpretation that ferrimagnetically coupled spins at the iron sites induce a spin polarization of the yttrium d-DOS and reproduce the observed crystal field splitting of the XMCD signal.

  14. Element selective X-ray magnetic circular and linear dichroisms in ferrimagnetic yttrium iron garnet films

    International Nuclear Information System (INIS)

    Rogalev, A.; Goulon, J.; Wilhelm, F.; Brouder, Ch.; Yaresko, A.; Ben Youssef, J.; Indenbom, M.V.

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) was used to probe the existence of induced magnetic moments in yttrium iron garnet (YIG) films in which yttrium is partly substituted with lanthanum, lutetium or bismuth. Spin polarization of the 4d states of yttrium and of the 5d states of lanthanum or lutetium was clearly demonstrated. Angular momentum resolved d-DOS of yttrium and lanthanun was shown to be split by the crystal field, the two resolved substructures having opposite magnetic polarization. The existence of a weak orbital moment involving the 6p states of bismuth was definitely established with the detection of a small XMCD signal at the Bi M 1 -edge. Difference spectra also enhanced the visibility of subtle changes in the Fe K-edge XMCD spectra of YIG and {Y, Bi}IG films. Weak natural X-ray linear dichroism signatures were systematically observed with all iron garnet films and with a bulk YIG single crystal cut parallel to the (1 1 1) plane: this proved that, at room temperature, the crystal cannot satisfy all requirements of perfect cubic symmetry (space group: Ia3-bar d), crystal distortions preserving at best trigonal symmetry (R3-bar or R3m). For the first time, a very weak X-ray magnetic linear dichroism (XMLD) was also measured in the iron K-edge pre-peak of YIG and revealed the presence of a tiny electric quadrupole moment in the ground-state charge distribution of iron atoms. Band-structure calculations carried out with fully relativistic LMTO-LSDA methods support our interpretation that ferrimagnetically coupled spins at the iron sites induce a spin polarization of the yttrium d-DOS and reproduce the observed crystal field splitting of the XMCD signal.

  15. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.

    Science.gov (United States)

    Jin, Hongyue; Afiuny, Peter; Dove, Stephen; Furlan, Gojmir; Zakotnik, Miha; Yih, Yuehwern; Sutherland, John W

    2018-03-20

    Neodymium-iron-boron (NdFeB) magnets offer the strongest magnetic field per unit volume, and thus, are widely used in clean energy applications such as electric vehicle motors. However, rare earth elements (REEs), which are the key materials for creating NdFeB magnets, have been subject to significant supply uncertainty in the past decade. NdFeB magnet-to-magnet recycling has recently emerged as a promising strategy to mitigate this supply risk. This paper assesses the environmental footprint of NdFeB magnet-to-magnet recycling by directly measuring the environmental inputs and outputs from relevant industries and compares the results with production from "virgin" materials, using life cycle assessments. It was found that magnet-to-magnet recycling lowers environmental impacts by 64-96%, depending on the specific impact categories under investigation. With magnet-to-magnet recycling, key processes that contribute 77-95% of the total impacts were identified to be (1) hydrogen mixing and milling (13-52%), (2) sintering and annealing (6-24%), and (3) electroplating (6-75%). The inputs from industrial sphere that play key roles in creating these impacts were electricity (24-93% of the total impact) and nickel (5-75%) for coating. Therefore, alternative energy sources such as wind and hydroelectric power are suggested to further reduce the overall environmental footprint of NdFeB magnet-to-magnet recycling.

  16. Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, F; Muehl, T; Weissker, U; Lipert, K; Schumann, J; Leonhardt, A; Buechner, B, E-mail: f.wolny@ifw-dresden.de, E-mail: t.muehl@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-10-29

    We present a novel ultrahigh stability sensor for quantitative magnetic force microscopy (MFM) based on an iron filled carbon nanotube. In contrast to the complex magnetic structure of conventional MFM probes, this sensor constitutes a nanomagnet with defined properties. The long iron nanowire can be regarded as an extended dipole of which only the monopole close to the sample surface is involved in the imaging process. We demonstrate its potential for high resolution imaging. Moreover, we present an easy routine to determine its monopole moment and prove that this calibration, unlike other approaches, is universally applicable. For the first time this enables straightforward quantitative MFM measurements.

  17. The role of magnetic resonance imaging in the evaluation of transfusional iron overload in myelodysplastic syndromes.

    Science.gov (United States)

    Petrou, Emmanouil; Mavrogeni, Sophie; Karali, Vasiliki; Kolovou, Genovefa; Kyrtsonis, Marie-Christine; Sfikakis, Petros P; Panayiotidis, Panayiotis

    2015-01-01

    Myelodysplastic syndromes represent a group of heterogeneous hematopoietic neoplasms derived from an abnormal multipotent progenitor cell, characterized by a hyperproliferative bone marrow, dysplasia of the cellular hemopoietic elements and ineffective erythropoiesis. Anemia is a common finding in myelodysplastic syndrome patients, and blood transfusions are the only therapeutic option in approximately 40% of cases. The most serious side effect of regular blood transfusion is iron overload. Currently, cardiovascular magnetic resonance using T2 is routinely used to identify patients with myocardial iron overload and to guide chelation therapy, tailored to prevent iron toxicity in the heart. This is a major validated non-invasive measure of myocardial iron overloading and is superior to surrogates such as serum ferritin, liver iron, ventricular ejection fraction and tissue Doppler parameters. The indication for iron chelation therapy in myelodysplastic syndrome patients is currently controversial. However, cardiovascular magnetic resonance may offer an excellent non-invasive, diagnostic tool for iron overload assessment in myelodysplastic syndromes. Further studies are needed to establish the precise indications of chelation therapy and the clinical implications of this treatment on survival in myelodysplastic syndromes. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  18. Aerial gamma ray and magnetic survey: Iron Mountain Quadrangle, Wisconsin/Michigan. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of Iron Mountain Quadrangle in Wisconsin/Michigan are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuch contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  19. Iron-free detector magnet options for the future circular collider

    CERN Document Server

    AUTHOR|(CDS)2092466; Dudarev, Alexey; Pais Da Silva, Helder Filipe; Rolando, Gabriella; Cure, Benoit; Gaddi, Andrea; Klyukhin, Slava; Gerwig, Hubert; Wagner, Udo; Ten Kate, Herman

    2016-01-01

    In this paper, several iron-free solenoid-based designs of a detector magnet for the future circular collider for hadron-hadron collisions (FCC-hh) are presented. The detector magnet designs for FCC-hh aim to provide bending power for particles over a wide pseudorapidity range (0 ≤ jηj ≤ 4). To achieve this goal, the main solenoidal detector magnet is combined with a forward magnet system, such as the previously presented force-and-torque-neutral dipole. Here, a solenoid-based alternative, the so-called balanced forward solenoid, is presented which comprises a larger inner solenoid for providing bending power to particles at jηj ≥ 2.5, in combination with a smaller balancing coil for ensuring that the net force and torque on each individual coil is minimized. The balanced forward solenoid is compared to the force-and-torqueneutral dipole and advantages and disadvantages are discussed. In addition, several conceptual solenoidbased detector magnet designs are shown, and quantitatively compared. The main...

  20. Magnetodielectric coupling in multiferroic holmium iron garnets

    International Nuclear Information System (INIS)

    Malar Selvi, M.; Chakraborty, Deepannita; Venkateswaran, C.

    2017-01-01

    Single phase magneto-electric multiferroics require a large magnetic or electric field for producing magneto-electric (ME) and magnetodielectric (MD) effects. For utilizing these effects in devices investigations on the room temperature and low field MD studies are necessary. Recently, efforts have been largely devoted to the investigation of rare earth iron garnets. In the physical method, the preparation of rare earth iron garnet requires high sintering temperature and processing time. To solve these problems, ball milling assisted microwave sintering technique is used to prepare nanocrystalline holmium iron garnets (Ho_3Fe_5O_1_2). Magnetic and dielectric properties of the prepared sample are investigated. These properties get enhanced in nanocrystalline form when compared to the bulk. The MD coupling of the prepared sample is evident from the anomaly in the temperature dependent dielectric constant plot and the ME coupling susceptibility is derived from the room temperature MD measurements. - Highlights: • Formation of single phase Holmium iron garnet reported. • Ball milling assisted microwave sintering reduces the sintering temperature and time. • Holmium iron garnet shows enhanced magnetic and dielectric properties. • Pyromagnetic and pyroelectric measurements confirm the magnetoelectric coupling. • Room temperature magnetodielectric measurements show the nonlinear behaviour.

  1. Magnetic properties of iron oxide nanoparticles prepared by seeded-growth route

    International Nuclear Information System (INIS)

    Espinosa, A.; Muñoz-Noval, A.; García-Hernández, M.; Serrano, A.; Jiménez de la Morena, J.; Figuerola, A.; Quarta, A.; Pellegrino, T.; Wilhelm, C.; García, M. A.

    2013-01-01

    In this work we investigate the magnetic properties of iron oxide nanoparticles obtained by two-step synthesis (seeded-growth route) with sizes that range from 6 to 18 nm. The initial seeds result monocrystalline and exhibit ferromagnetic behavior with low saturation field. The subsequent growth of a shell enhances the anisotropy inducing magnetic frustration, and, consequently, reducing its magnetization. This increase in anisotropy occurs suddenly at a certain size (∼10 nm). Electronic and structural analysis with X-ray absorption spectroscopy indicates a step reduction in the oxidation state as the particle reaches 10 nm size while keeping its overall structure in spite of the magnetic polydispersity. The formation of antiphase magnetic boundaries due to island percolation in the growing shells is hypothesized to be the mechanism responsible of the magnetic behavior, as a direct consequence of the two-step synthesis route of the nanoparticles.

  2. Fabrication and properties of iron-based soft magnetic composites coated with parylene via chemical vapor deposition polymerization

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Lu, Zhenwen; Cheng, Chuan

    2015-01-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing low friction factor parylene C films to coat iron powder via chemical vapor deposition polymerization. The morphology, magnetic properties, density, and chemical stability of parylene insulated iron particles were investigated. The coated parylene insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The thickness of parylene C film is averagely 300 nm according to the results of transmission electron microscopy. Parylene C film uniformly coated the powder surface resulting in reducing the permeability imaginary part, increasing electrical resistivity and increasing the operating frequency of the synthesized magnets. It was shown that the parylene C coated compacts exhibited noticeably higher density compared to the epoxy resin coated compacts at the same pressure, suppress at 800 MPa increased the density by 17.02%. The result of Tafel curves indicated that the resistance of the iron particles to corrosion by NaCl solution is obviously improved after being insulated with parylene C film. - Highlights: • Parylene C uniformly coated the powder, increased the operating frequency of SMCs. • Compared with epoxy coated, the density of SMCs increased by 17.02% at 800 MPa. • The resistance of the iron particles is obviously improved with parylene film insulated

  3. Consequence of total lepton number violation in strongly magnetized iron white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V.B. [Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Ricci, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Firenze) (Italy); Šimkovic, F. [Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-842 15, Bratislava (Slovakia); Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Adam, J.; Tater, M. [Institute of Nuclear Physics ASCR, CZ-250 68 Řež (Czech Republic); Truhlík, E., E-mail: truhlik@ujf.cas.cz [Institute of Nuclear Physics ASCR, CZ-250 68 Řež (Czech Republic)

    2015-05-15

    The influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied. It is shown that they can be good candidates for soft gamma-ray repeaters and anomalous X-ray pulsars.

  4. Evaluation of sol–gel based magnetic 45S5 bioglass and bioglass–ceramics containing iron oxide

    International Nuclear Information System (INIS)

    Shankhwar, Nisha; Srinivasan, A.

    2016-01-01

    Multicomponent oxide powders with nominal compositions of (45 − x)·SiO_2·24.5CaO·24.5Na_2O·6P_2O_5xFe_2O_3 (in wt.%) were prepared by a modified sol–gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol–gel products show fully amorphous structure for Fe_2O_3 substitutions up to 2 wt.%. Sol–gel derived 43SiO_2·24.5CaO·24.5Na_2O·6P_2O_5·2Fe_2O_3 glass (or bioglass 45S5 with SiO_2 substituted with 2 wt.% Fe_2O_3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1 h revealed the formation of a glass–ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol–gel glass and glass–ceramic samples. Sol–gel derived glass and glass–ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. - Highlights: • Bioglass 45S5 containing 2 wt.% Fe_2O_3 is prepared by sol–gel route. • Fully amorphous bioglass exhibits spontaneous magnetization. • Gel powders with more than 2 wt.% Fe_2O_3 formed glass–ceramics. • γ-Fe_2O_3 in bioglass transformed irreversibly to magnetite upon heat treatment. • In vitro bioactivity of sol–gel samples is superior to their bulk counterparts.

  5. Synthesis of magnetic iron oxide nanoparticles toward arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Starbird Perez, Ricardo; Montero Campos, Virginia

    2015-01-01

    A high contact area material is supplied to be used in the treatment of water contaminated with arsenic. Synthesis of iron nanoparticles is reported with superparamagnetic properties, stabilized with stearic acid. The characterization is performed through spectrophotometric, thermogravimetric and electronic transmission techniques. The presence of an emulsifier is evidenced and determinant for the stabilization of the iron oxide phase (maghemite or magnetite) with magnetic properties. The material is obtained and shows suitable properties to be used in the treatment of water for human consumption. (author) [es

  6. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, E.; Pospíšková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, February (2017), s. 1342-1346 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : Leptothrix * magnetic modification * iron oxide * high aspect ratio material Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Materials engineering Impact factor: 4.164, year: 2016

  7. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    Science.gov (United States)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  8. Design of a 2 Tesla transmission line magnet for the VLHC

    CERN Document Server

    Foster, G W; Novitski, I

    2000-01-01

    A prototype of the transmission line magnet for the Very Large Hadron Collider is being designed at Fermilab. This is a single-turn warm iron superconducting magnet in a "Double-C" configuration. Iron poles form a high quality alternating-gradient magnet field in two 20 mm height beam gaps. Simple magnet construction and manufacturing processes and a room temperature iron yoke give a significant reduction in magnet cost. Open beam gaps simplify magnetic measurements and vacuum chamber installation. The magnet mechanical stability was investigated for several mechanical models. A high field quality over the whole range (0.1 T-2.0 T) of field variation was calculated using correcting holes in the iron poles. The magnet optimization was carried out by POISSON, OPERA 2D and ANSYS codes. The results of magnet design and model tests are presented. (6 refs).

  9. Contribution to the study of magnetic properties of rare-earth iron intermetallic compounds

    International Nuclear Information System (INIS)

    Morariu, M.

    1976-01-01

    The intermetallic binary compounds Ysub(x)Fesub(y)(YFe 2 ,YFe 3 ,Y 6 Fe 23 ,Y 2 Fe 17 ), RFe 2 (R=Gd,Tb,Dy,Ho,Er and Tm) and the intermetallic pseudobinary compounds (Gdsub(x)Ysub(1-x))Fe 2 and Dy(Fesub(x)Nisub(1-x)) 3 were studied, using magnetic measurements and Moessbauer spectroscopy, in order to obtain information on their magnetic behaviour. The different models which describe magnetic interactions in rare-earths with 3d transition element compounds are reviewed. The magnetic hyperfine field Hsub(n) at the Fe 57 nucleus, measured by Moessbauer spectroscopy, depends on the atom position in the lattice, being sensitive to magnetic interactions with neighbouring atoms. The mean value of the magnetic hyperfine field, average Hsub(n) is proportional to the mean magnetic moment of the iron atom: average Hsub(n)/average μsub(Fe) approximately 150 kOe. The comparative study of the temperature dependence of average Hsub(n) and average μsub(Fe) values shows that this relation is valid for the whole range of magnetic ordering (T>Tsub(c)). The mean magnetic hyperfine fields at the Fe 57 nucleus in RFe 2 compounds depend on the rare-earth partner and vary approximative linearly with the Gennes factor. The spin reorientation diagram for the (Gdsub(x)Ysub(1-x))Fe 2 system is obtained. All results on Moessbauer spectroscopy are in good agreement with the magnetic measurements. The magnetic behaviour of iron atoms is justified using a model in which the most electrons are in a narrow band, so they could be considered localized, and the magnetic interactions between these atoms take place through a fraction (<5%) of 3d itinerant electrons. (author)

  10. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Um, Wooyong, E-mail: wooyong.um@pnnl.gov [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Choung, Sungwook [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of)

    2014-09-15

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl–KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl–KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl–KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl–KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  11. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Directory of Open Access Journals (Sweden)

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  12. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    International Nuclear Information System (INIS)

    Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H.

    2009-01-01

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (k b = 0.18) is higher in comparison with double coating layer (k b = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f 2 ) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f 2 ).

  13. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    Science.gov (United States)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  14. Fabrication and Properties of Iron-based Soft Magnetic Composites Coated with NiZnFe2O4

    Directory of Open Access Journals (Sweden)

    WU Shen

    2017-07-01

    Full Text Available This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing the sol-gel method prepared Ni-Zn ferrite particles as insulating compound to coat iron powder, and the influence of NiZnFe2O4 content and molding pressure on the magnetic properties was studied. The morphology, magnetic properties and density of Ni-Zn ferrite insulated compacts were investigated. Scanning electron microscope,line-scan EDX analysis and distribution maps show that the iron particle surface is covered with a thin layer of uniform Ni-Zn ferrites. The existing of the insulating layer can effectively improve the electrical resistivity of soft magnetic composites. Magnetic measurements show that the real part of permeability decreases with the increase of the Ni-Zn ferrite content, and the sample with 3%(mass fraction, the same below Ni-Zn ferrite has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Results show that the addition of NiZnFe2O4 can dramatically decrease the internal magnetic loss, the magnetic loss of coated samples decreases by 83.8% as compared with that of uncoated samples at 100kHz. The density of the Fe-3%NiZnFe2O4 compacts reaches 7.14g/cm3 and the saturation magnetization is 1.47T when the molding pressure is 1000MPa.

  15. Moessbauer and positron annihilation studies of microstructural peculiarities of iron-dextran complexes

    International Nuclear Information System (INIS)

    Oshtrakh, M.I.; Kopelyan, E.A.; Semionkin, V.A.; Livshits, A.B.; Kozlov, A.A.

    1995-01-01

    The microstructural peculiarities of pharmaceutically important iron-dextran complexes were studied by Moessbauer and positron annihilation techniques. The results of Moessbauer spectroscopy showed variations of the iron cores in iron-dextran complexes containing different forms of FeOOH and different electronic and magnetic states of iron. The results of angular correlations of annihilation radiation and positron life-time spectroscopies showed microstructural variations of the dextran shell of the iron-dextran complexes. (author) 19 refs.; 4 tabs

  16. Application of the iron-enriched basalt waste form for immobilizing commercial transuranic waste

    International Nuclear Information System (INIS)

    Owen, D.E.

    1981-08-01

    The principal sources of commercial transuranic (TRU) waste in the United States are identified. The physical and chemical nature of the wastes from these sources are discussed. The fabrication technique and properties of iron-enriched basalt, a rock-like waste form developed for immobilizing defense TRU wastes, are discussed. The application of iron-enriched basalt to commercial TRU wastes is discussed. Review of commercial TRU wastes from mixed-oxide fuel fabrication, light water reactor fuel reprocessing, and miscellaneous medical, research, and industrial sources, indicates that iron-enriched basalt is suitable for most types of commercial TRU wastes. Noncombustible TRU wastes are dissolved in the high temperature, oxidizing iron-enriched basalt melt. Combustible TRU wastes are immobilized in iron-enriched basalt by incinerating the wastes and adding the TRU-bearing ash to the melt. Casting and controlled cooling of the melt produces a devitrified, rock-like iron-enriched basalt monolith. Recommendations are given for testing the applicability of iron-enriched basalt to commercial TRU wastes

  17. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-01-01

    Full Text Available Abstract Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs. Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

  18. Controlling laser-induced magnetization reversal dynamics in a rare-earth iron garnet across the magnetization compensation point

    Science.gov (United States)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2018-04-01

    In this work we explore the ultrafast magnetization dynamics induced by femtosecond laser pulses in a doped film of gadolinium iron garnet over a broad temperature range including the magnetization compensation point TM. By exciting the phonon-assisted 6S→4G and 6S→4P electronic d -d transitions simultaneously by one- and two-photon absorption processes, we find out that the transfer of heat energy from the lattice to the spin has, at a temperature slightly below TM, a large influence on the magnetization dynamics. In particular, we show that the speed and the amplitude of the magnetization dynamics can be strongly increased when increasing either the external magnetic field or the laser energy density. The obtained results are explained by a magnetization reversal process across TM. Furthermore, we find that the dynamics has unusual characteristics which can be understood by considering the weak spin-phonon coupling in magnetic garnets. These results open new perspectives for controlling the magnetic state of magnetic dielectrics using an ultrashort optically induced heat pulse.

  19. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  20. Magnetic form factors of the trinucleons

    Energy Technology Data Exchange (ETDEWEB)

    Schiavilla, R; Pandharipande, V R; Riska, Dan-Olof

    1989-11-01

    The magnetic form factors of 3H and 3He are calculated with the Monte Carlo method from variational ground-state wave functions obtained for the Argonne and Urbana two- and three-nucleon interactions. The electromagnetic current operator contains one- and two-body terms that are constructed so as to satisfy the continuity equation with the two-nucleon potential in the Hamiltonian. The results obtained with the Argonne two-nucleon interaction are in overall agreement with the empirical values. It appears that the remaining theoretical uncertainty, in the calculation of these form factors from a given interaction model, is dominated by that in the electromagnetic form factors of the nucleon. It is found that the isovector magnetic form factors are rather sensitive to the details of the isospin-dependent tensor force, and they are much better reproduced with the Argonne than the Urbana potential. The isoscalar magnetic form factors appear to be sensitive to the spin-orbit interactions, and are better reproduced with the Urbana potential. The Argonne potential has a stronger τ1∙τ2 tensor force, while the Urbana one has a shorter-range spin-orbit interaction.

  1. High purity Fe3O4 from Local Iron Sand Extraction

    Science.gov (United States)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  2. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    Science.gov (United States)

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  3. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    Directory of Open Access Journals (Sweden)

    Yongxiang Xu

    2014-01-01

    Full Text Available Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM. The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  4. Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide.

    Science.gov (United States)

    Shankhwar, Nisha; Srinivasan, A

    2016-05-01

    Multicomponent oxide powders with nominal compositions of (45-x)·SiO2·24.5CaO·24.5Na2O·6P2O5xFe2O3 (in wt.%) were prepared by a modified sol-gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol-gel products show fully amorphous structure for Fe2O3 substitutions up to 2 wt.%. Sol-gel derived 43SiO2·24.5CaO·24.5Na2O·6P2O5·2Fe2O3 glass (or bioglass 45S5 with SiO2 substituted with 2 wt.% Fe2O3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1h revealed the formation of a glass-ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol-gel glass and glass-ceramic samples. Sol-gel derived glass and glass-ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Czech Academy of Sciences Publication Activity Database

    Smolkova, I.S.; Kazantseva, N.E.; Babayan, V.; Smolka, P.; Parmar, H.; Vilcakova, J.; Schneeweiss, Oldřich; Pizúrová, Naděžda

    2015-01-01

    Roč. 374, JAN (2015), s. 508-515 ISSN 0304-8853 Institutional support: RVO:68081723 Keywords : Iron oxide nanoparticles * Coprecipitation * Magnetic interactions * Specific loss power * Hyperthermia Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  6. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  7. APPLICATION OF MAGNETIC SURVEY TO EXPLORE THE IRON ORE DEPOSITS IN THE NUSAWUNGU COASTAL REGENCY OF CILACAP CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    S Sehah

    2017-12-01

    Full Text Available The research aiming to explore the iron ore deposits in the Nusawungu coastal Regency of Cilacap has been conducted using the magnetic survey. The acquisition of magnetic data was conducted in April – Mei 2017, covering the area in the ranges of 109.314° – 109.345°E and 7.691° – 7.709°S. The obtained magnetic field strength data were corrected, reduced, and mapped to obtain the contour map of local magnetic anomaly. The modeling process was carried out along the path extending over the map from the positions of 109.314°E and 7.695°S to 109.335°E and 7.699°S, so that some subsurface anomalous objects are obtained. The lithological interpretation was performed to identify the types of subsurface rocks and their formations based on the magnetic susceptibility value of each anomalous objects and supported by the geological information of the research area. Based on the interpretation results, three rocks deposits of alluvium formations were obtained, which are estimated to contain iron ore. The first deposit has a length of 164.85 m, a depth of 0.57 – 8.43 m, and a magnetic susceptibility value of 0.0097 cgs. The second deposit has a length of 376.28 m, a depth of 2.56 – 19.66 m, and a magnetic susceptibility value of 0.0108 cgs. The third deposit has a length of 1,306.26 m, a depth of 3.70 – 58.69 m, and a magnetic susceptibility value of 0.0235 cgs. Out of the whole rocks deposits, the third rock deposit is interpreted to have the most prospective iron ore. This interpretation based on its high magnetic susceptibility value, which indicates the presence of many magnetic minerals (i.e. iron ores in the rock.

  8. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite-silicone insulation coating

    Science.gov (United States)

    Li, Wangchang; Wang, Wei; Lv, Junjun; Ying, Yao; Yu, Jing; Zheng, Jingwu; Qiao, Liang; Che, Shenglei

    2018-06-01

    This paper investigates the structure and magnetic properties of Ni-Cu-Zn ferrite-silicone coated iron-based soft magnetic composites (SMCs). Scanning electron microscopy coupled with a energy-dispersive spectroscopy (EDS) analysis revealed that the Ni-Cu-Zn ferrite and silicone resin were uniformly coated on the surface of iron powders. By controlling the composition of the coating layer, low total core loss of 97.7 mW/cm3 (eddy current loss of 48 mW/cm3, hysteresis loss of 49.7 mW/cm3, measured at 100 kHz and 0.02 T) and relatively high effective permeability of 72.5 (measured at 100 kHz) were achieved. In addition, the as-prepared SMCs displayed higher electrical resistivity, good magnetic characteristics over a wide range of frequencies (20-200 kHz) and ideal the D-C bias properties (more than 75% at H = 50 Oe). Furthermore, higher elastic modulus and hardness of SMCs, which means that the coating layer has good mechanical properties and is not easily damaged during the pressing process, were obtained in this paper. The results of this work indicate that the Ni-Cu-Zn ferrite-silicone coated SMCs have desirable properties which would make them suitable for application in the fields of the electric-magnetic switching devices, such as inductance coils, transformer cores, synchronous electric motors and resonant inductors.

  9. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  10. Magnetic behavior of iron-modified MCM-41 correlated with clustering processes from the wet impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Cuello, Natalia I.; Elías, Verónica R. [Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba. Maestro López y Cruz Roja Argentina, Ciudad Universitaria, Córdoba 5016 (Argentina); Winkler, Elin [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica – CONICET, Avenue Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Pozo-López, Gabriela; Oliva, Marcos I. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba – IFEG, CONICET, Ciudad Universitaria, Córdoba 5000 (Argentina); Eimer, Griselda A., E-mail: geimer@frc.utn.edu.ar [Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba. Maestro López y Cruz Roja Argentina, Ciudad Universitaria, Córdoba 5016 (Argentina)

    2016-06-01

    Magnetic MCM-41 type mesoporous silica materials were synthetized and modified with different iron loadings by the wet impregnation method. The evolution of iron speciation, depending on the metal loading and associated with a particular magnetic behavior was investigated by M vs. H curves, FC–ZFC curves, EPR spectroscopy and other complementary techniques such as SEM, TEM, and chemisorption of pyridine followed by FT-IR studies. A superparamagnetic contribution was larger for the lower loadings suggesting the high dispersion of very small sized iron nanospecies. However, this contribution decreased with increasing metal loading due to the growth of magnetically blocked nanoparticles (hematite) on the outer surface. Finally, a bimodal size distribution for the superparamagnetic nanospecies could be inferred; then the anisotropy constant for this phase and the corresponding nanospecies sizes were estimated. - Highlights: • All samples showed a main superparamagnetic contribution. • The oxide particles grow at expense of superparamagnetic nanospecies. • Bimodal distribution of nanospecies in superparamagnetic regime was determined. • The anisotropy constant for superparamagnetic nanospecies was calculated.

  11. Iron nitride films formed in a r. f. glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.L.; O' Keefe, T.J.; James, W.J. (Depts. of Chemistry and Metallurgical Engineering and Graduate Center for Materials Research, Univ. of Missouri-Rolla (United States))

    1992-12-30

    Fe[sub 2]N and Fe[sub 3]N films were deposited on an r.f. glow discharge by introducing Fe(CO)[sub 5] and NH[sub 3] into the reactor. The iron nitride films thus formed exhibited sheet conductivities in the range of 10[sup 2]-10[sup 3] ohm[sup -1] cm[sup -1]. They exhibited microhardness ranging from 578 to 659 kg mm[sup -2] on glass slides. The effects of the deposition temperature and the nature of the substrate material on the structure and composition of the films were investigated. An Fe[sub 4]N layer was formed on iron substrates at 400degC in the plasma nitriding process using NH[sub 3] as the gas source. The Fe[sub 4]N layer exhibited a microhardness of 230 kg mm[sup -2]. The effect of the temperature on the formation of the nitrided layer is discussed. (orig.).

  12. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    Science.gov (United States)

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  13. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  14. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  15. Torque decomposition and control in an iron core linear permanent magnet motor.

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Stassen, J.M.; Jansen, J.W.; Lomonova, E.

    2012-01-01

    Abstract—This paper concerns the decomposition and control of the torque produced by an iron core linear permanent magnet motor. The proposed method is based on the dq0-decomposition of the three-phase currents using Park’s transformation. The torque is decomposed into a reluctance component and two

  16. The investigation of the magnetic after-effect in iron-alpha after neutron irradiation at low temperature

    International Nuclear Information System (INIS)

    Mensch, W.

    1986-01-01

    The present thesis investigates the magnetic after-effect for neutron irradiated, polycrystalline iron-alpha for the temperature range 10 to 400 K by means of susceptibility measurements. 24 maxima of magnetic after-effect are found, which are related to different classes of defects. (BHO)

  17. Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings

    DEFF Research Database (Denmark)

    Jia, Chun-Jiang; Sun, Ling-Dong; Luo, Feng

    2008-01-01

    We present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can...... an intriguing three-dimensional magnetic configuration. This work provides an easily scaled-up method for preparing tailor-made iron oxide nanorings that could meet the demands of a variety of applications ranging from medicine to magnetoelectronics....... able to control the size, morphology, and surface architecture to produce a variety of three-dimensional hollow nanostructures. These can then be converted to magnetite (Fe3O4) and maghemite (gamma-Fe2O3) by a reduction or reduction-oxidation process while preserving the same morphology. The structures...

  18. Perturbed angular correlation study of surface magnetization in iron single crystals

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Sawicki, J.A.; Pleiter, F.; Waard, H. de

    1983-01-01

    The behaviour of closure domains at the surface of iron single crystals in an external magnetic field was studied by DPAC on samples implanted with 111 In. It is observed that the surface magnetization does not follow that of the bulk. The movement of both the 90 0 and 180 0 walls of the closure domains is blocked up to a certain 'starting' value of the external field that is related to the demagnetization factor of the sample and also depends on the precise orientation of the crystal axes and on the implanted indium dose. (Auth.)

  19. Comparative study of magnetic properties and the anticancer effect of superparamagnetic and ferromagnetic iron oxide nanoparticles in the nanocomplex with doxorubicin

    International Nuclear Information System (INIS)

    Orel, V.E.; Shevchenko, A.D.; Rikhal's'kij, O.Yu.; Romanov, A.V.; Orel, Yi.V.; Lukyin, S.M.; Burlaka, A.P.; Venger, Je.F.

    2015-01-01

    Mechano-magneto-chemically synthesized magnetic nanocomplex (MNC) of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (NP) and anticancer drug doxorubicin (DR) had significantly lower saturation magnetic moment and magnetic hysteresis loop area as compared to the MNC of ferro- magnetic NP. However, the last was characterized by lower coercivity. MNC of superparamagnetic NP and DR had g-factors of 2.00, 2.30, and 4.00. MNC of ferromagnetic NP and DR had the g-factor of 2.50, and the integrated intensity of electron spin resonance signals was by 61% greater. Superparamagnetic iron oxide Fe 3 O 4 NP in MNC with DR initiated a greater antitumor effect during magnetic nanotherapy of animals with carcinosarcoma Walker-256 as compared to the MNC composed of ferromagnetic NP and DR. In the future, superparamagnetic iron oxide Fe 3 O 4 NP as a part of the nanocomplex with DR can be used in theranostics - a methodology that combines magnetic resonance diagnostics and magnetic nanotherapy using MNC both as therapeutic and diagnostic agents

  20. Charge Ordering, Competing Magnetic Interactions, and Magneto-Resistance Effects in Layered Iron(IV)-Based Oxides

    International Nuclear Information System (INIS)

    Adler, P.; Ghosh, S.

    2002-01-01

    Iron(IV)-based Ruddlesden-Popper-type oxides Sr 3 Fe 2-x Co x O 7-y (0≤x≤1) have been synthesized and studied by various techniques. It is shown that iron-57 Moessbauer spectroscopy is a powerful tool for elucidating the intimate correlations between chemical composition, electron-transport properties, electronic state, magnetism, and the large magneto-resistance effects in this system.

  1. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  2. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

    International Nuclear Information System (INIS)

    Cabrera, David; Camarero, Julio; Ortega, Daniel; Teran, Francisco J.

    2015-01-01

    Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization

  3. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, David; Camarero, Julio; Ortega, Daniel; Teran, Francisco J., E-mail: francisco.teran@imdea.org [Ciudad Universitaria de Cantoblanco, IMDEA Nanociencia (Spain)

    2015-03-15

    Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization.

  4. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull [Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-02-15

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  5. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull

    2016-01-01

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  6. Magnetic resonance microscopy of iron transport in methanogenic granules

    Science.gov (United States)

    Bartacek, Jan; Vergeldt, Frank J.; Gerkema, Edo; Jenicek, Pavel; Lens, Piet N. L.; Van As, Henk

    2009-10-01

    Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.75 mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109 × 109 × 218 μm 3 and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/ T1) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron-EDTA complex ([FeEDTA] 2-) to penetrate into the methanogenic granules (3-4 mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick's equations for diffusion in a sphere, because immobilization of [FeEDTA] 2- in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient ( D ejf) of [FeEDTA] 2- was found to be 2.8 × 10 -11 m 2 s -1, i.e. approximately 4% of D ejf of [FeEDTA] 2- in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3-5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.

  7. Iron: a versatile element to produce materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ana Paula C.; Araujo, Maria H.; Oliveira, Luiz C.A.; Moura, Flavia C.C.; Lago, Rochel M., E-mail: rochel@ufmg.br, E-mail: anapct@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Tristao, Juliana C. [Universidade Federal de Vicosa, Florestal, MG (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Fisica Aplicada; Amorim, Camila C., E-mail: juliana@ufv.br [Departamento de Engenharia Sanitaria e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-15

    Iron is a versatile element forming several phases with different oxidation states and {sup s}tructures, such as Fe{sup 0}, FeO, Fe{sub 3}O{sub 4}, {gamma}-Fe{sub 2}O{sub 3}, {alpha}-Fe{sub 2}O{sub 3} and FeOOH. All these phases have unique physicochemical properties which can be used for different applications. In this work, it is described the use of different iron compounds, synthetic and also from natural and waste sources, in environmental and technological applications. Two main research areas are described. The first one is related to strategies to increase the reactivity of Fe phases, mainly by the formation of Fe{sup 0}/iron oxide composites and by the introduction of new metals in the iron oxide structure to promote new surface reactions. The second area is the use of the magnetic properties of some iron phases to produce versatile magnetic materials with focus in adsorption, catalysis and emulsions. (author)

  8. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  9. Synthesis, structure and magnetism of manganese and iron dipicolinates with N,N '-donor ligands

    Czech Academy of Sciences Publication Activity Database

    Uhrecký, Róbert; Svoboda, I.; Růžičková, Z.; Koman, M.; Dlháň, L.; Pavlík, J.; Moncol, J.; Boca, R.

    2015-01-01

    Roč. 425, JAN (2015), s. 134-144 ISSN 0020-1693 Institutional support: RVO:61388980 Keywords : Manganese * Iron * Dipicolinate complexes * Crystal structure * Magnetism Subject RIV: CA - Inorganic Chemistry Impact factor: 1.918, year: 2015

  10. 2, 3-dimercaptosuccinic acid-modified iron oxide clusters for magnetic resonance imaging.

    Science.gov (United States)

    Xiong, Fei; Yan, Caiyun; Tian, Jilai; Geng, Kunkun; Zhu, Ziyi; Song, Lina; Zhang, Yu; Mulvale, Matthew; Gu, Ning

    2014-12-01

    Over the last decade, various magnetic nanomaterials have been developed as magnetic resonance imaging (MRI) contrast agents; the greatest challenges encountered for clinical application have been insufficient stability. In this paper, a lyophilization method for 2, 3-dimercaptosuccinic acid-modified iron oxide (γ-Fe2 O3 @DMSA) nanoparticles was developed to simultaneously overcome two disadvantages; these include insufficient stability and low-magnetic response. After lyophilization, the clusters of γ-Fe2 O3 @DMSA with the size of 156.7 ± 15.3 nm were formed, and the stability of the lyophilized powder (γ-Fe2 O3 @DMSA-LP) increased up to over 3 years. It was also found that rehydrated γ-Fe2 O3 @DMSA-LP could be ingested by RAW264.7 cells in very large quantities. Results of pharmacokinetics and biodistribution studies in vivo indicated that γ-Fe2 O3 @DMSA-LP is a promising liver-targeted material. Furthermore, it also exhibited higher MRI efficiency and longer imaging time in the liver than the well-known product Feridex(®) . Moreover, results of vascular irritation and long-term toxicity experiments demonstrated γ-Fe2 O3 @DMSA-LP could be a nontoxic, biocompatible contrast agent in vivo. Therefore, the proposed γ-Fe2 O3 @DMSA-LP can be used as a potential MRI contrast agent in clinic for hepatic diseases. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Fuel assembly identification by magnetic scanning

    International Nuclear Information System (INIS)

    Badurek, G.

    1986-09-01

    In order to identify individual fuel assemblies by a magnetic fingerprint, investigations were made on iron inclusions in fuel elements and a method was developed to measure these by magnetically scanning the element. The fuel assembly is drawn with constant speed through a homogeneous magnetic field to magnetize iron inclusions. Resulting inhomogeneous magnetic dipole fields induce a voltage difference in pick up coils which is proportional to the mass of the inclusion. Using lock-in technique 3 mg pieces of steel wire on the surface of the fuel element were detected while the lower limit for the center of an assembly for ferromagnetic spheres was 50 mg. In single rods ferromagnetic samples of 1 mg were detected regardless of geometric form or location. With minor modifications of the measuring procedure the sensitivity limit can be improved to about 10 mg at the center of an assembly. In the KWU-fuel at Zwentendorf no iron inclusions were found

  12. Iron nanoparticle assemblies: structures and magnetic behavior

    International Nuclear Information System (INIS)

    Farrell, D; Cheng, Y; Kan, S; Sachan, M; Ding, Y; Majetich, S A; Yang, L

    2005-01-01

    Self-assembly of spherical, surfactant-coated nanoparticles is discussed, an examples are presented to demonstrate the variety of structures that can be formed, and the conditions that lead to them. The effect of the concentration on the magnetic properties is then examined for 8.5 nm Fe nanoparticles. Dilute dispersions, arrays formed by evaporation of the dispersions, and nanoparticle crystals grown by slow diffusion of a poorly coordinating solvent were characterized by zero field-cooled magnetization, remanent hysteresis loop, and magnetic relaxation measurements. The average spacing between the particles was determined from a combination of transmission electron microscopy and small angle x-ray scattering. In the arrays the spacing was 2.5 nm between the edges of the particle cores, while in the nanoparticle crystals the particles were more tightly packed, with a separation of 1.1 nm. The reduced separation increased the magnetostatic interaction strength in the nanoparticle crystals, which showed distinctly different behavior in the rate of approach to saturation in the remanent hysteresis loops, and in the faster rate of time-dependent magnetic relaxation

  13. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    International Nuclear Information System (INIS)

    Li Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-01-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size

  14. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyan [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Klem, Michael T.; Sebby, Karl B.; Singel, David J. [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Young, Mark [Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Douglas, Trevor [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States)], E-mail: Idzerda@montana.edu

    2009-02-15

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  15. Magnetic Properties of Iron-Cobalt Oxide Nanocomposites Synthesized in Polystyrene Resin Matrix*

    Science.gov (United States)

    Vaishnava, P. P.; Senaratne, U.; Rodak, D.; Kroll, E.; Tsoi, G.; Naik, R.; Naik, V.; Wenger, L. E.; Tao, Qu; Boolchand, P.; Suryanarayanan, R.

    2004-03-01

    Magnetic nanoparticles have potential applications in memory devices and medical technology. Magnetic iron-cobalt oxide nanoparticles were prepared by in situ precipitation in an ion exchange resin using the method of Ziolo et al^1. The ion exchange resin, consisting of sulfonated divinyl benzene cross linked polystyrene, was exposed to different iron and cobalt salt solutions: a) 4FeCl2 + CoCl2 b) 9FeCl2 + CoCl2 c) 4FeCl3 + CoCl2 d) 9FeCl3 + CoCl_2. The ions bound to the resin are then oxidized with hydrogen peroxide in an alkaline media with mild heat. The resulting nanocomposites were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fe^57 Mossbauer Spectroscopy and SQUID magnetometry. It was found that the oxide composition, particle size distribution, magnetic properties including blocking temperature and the amount of superparamagnetic phases are strongly influenced by the stoichiometry of the starting FeCl_2, FeCl_3, and CoCl2 solutions. Three major phases CoFe_2O_4, Fe_3O4 and γ-Fe_2O3 have been identified. The nanocomposites prepared using Fe^2+ and Co^2+ contain larger nanoparticles (10 nm) than those prepared by Fe^3+ and Co^2+ (3 nm) . The details of the structural characterization by XRD and TEM measurements and magnetic characteristics will be presented. *Research supported by NSF grant DGE 980720 ^1Ziolo et al, Science, 257, 5067 (1992).

  16. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2018-01-01

    . Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna

  17. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

    Science.gov (United States)

    Ge, Yuqing; Zhang, Yu; Xia, Jingguang; Ma, Ming; He, Shiying; Nie, Fang; Gu, Ning

    2009-10-15

    We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3+/-4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5+/-6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7+/-72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times T(2)(*), resulting from the different iron load of labeled cells using a 1.5T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.

  18. Evaluation of Iron Loss in Interior Permanent Magnet Synchronous Motor with Consideration of Rotational Field

    Science.gov (United States)

    Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki

    Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.

  19. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  20. Study of iron valence state and position in sub-site by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Lim, Jae Cheong; KIm, Chul Sung; Son, Kwang Jae

    2014-01-01

    The magnetic ordering temperature and the magnitude of the magnetic fields at the iron sites of YIG can be influenced by substituting, either partially or totally, the Fe 3+ ions at the octahedral and/or the tetrahedral sites with magnetic or diamagnetic ions, and/or by substitution the Y 3+ ions at the dodecahedral sites with magnetic rare earth ions. It has been known for some time that Moessbauer spectroscopy is a powerful method by which iron-containing garnets can be studied. We report here on the synthesis of the compounds with garnet-related structures of composition Y 3 Fe 4.5 Cr 0.5 O 12 and its examination by 57 Fe Moessbauer spectroscopy. The chromium in compounds of the Y 3 Fe 4.5 Cr 0.5 O 12 is distributed at an octahedral site. The Moessbauer spectra can be analyzed using 3 or 4 sets of six Lorentzians with increasing amount of Cr 3+ compounds in this system. It results from the distribution ( 4 C n ) of Fe 3+ and Cr 3+ at an octahedral site. A comparative study of ferrous tablets of Dynabi was carried out using Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe 2+ ) gluconate and ferrous fumarate in a sample. This observation is important to better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron. The Cr-containing yttrium iron garnet (YIG), and the exchange interactions and site distributions were studied using 57 Fe Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe 2+ ) gluconate and ferrous fumarate in the sample. This observation is important better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron

  1. Separation of valence forms of chromium(III) and chromium(VI) by coprecipitation with iron(III) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1989-01-01

    The sorption of 9.62·10 -5 M of Cr (III) and Cr (VI) with iron hydroxide in 1 M potassium nitrate and potassium chloride was investigated in relation to the pH of the medium. Experimental data on the sorption of chromium(III) and chromium(VI) with iron(III) hydroxide made it possible to determine the region of practically complete concentration of Cr (III) and Cr (VI) (pH = 3-6.5). The results from spectrophotometric investigations, calculated data on the distribution of the hydroxocationic forms of chromium(III) and the anions of chromium(IV), and their sorption by iron-(III) hydroxide made it possible to characterize the sorbability of the cationic and anionic forms of chromium in various degrees of oxidation. On this basis a method was developed for the separation of chromium(III) and chromium(VI) by coprecipitation on iron(III) hydroxide and their separation from the iron(III) hydroxide support

  2. Preparation and chemical stability of iron-nitride-coated iron microparticles

    International Nuclear Information System (INIS)

    Luo Xin; Liu Shixiong

    2007-01-01

    Iron-nitride-coated iron microparticles were prepared by nitridation of the surface of iron microparticles with ammonia gas at a temperature of 510 deg. C. The phases, composition, morphology, magnetic properties, and chemical stability of the particles were studied. The phases were α-Fe, ε-Fe 3 N, and γ-Fe 4 N. The composition varied from the core to the surface, with 99.8 wt% Fe in the core, and 93.8 wt% Fe and 6 wt% N in the iron-nitride coating. The thickness of the iron-nitride coating was about 0.28 μm. The chemical stability of the microparticles was greatly improved, especially the corrosion resistance in corrosive aqueous media. The saturation magnetization and the coercive force were 17.1x10 3 and 68 kA/m, respectively. It can be concluded that iron-nitride-coated iron microparticles will be very useful in many fields, such as water-based magnetorheological fluids and polishing fluids

  3. A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications

    Directory of Open Access Journals (Sweden)

    Yujun Shi

    2018-01-01

    Full Text Available This paper proposes a novel dual-permanent-magnet-excited (DPME machine. It employs two sets of permanent magnets (PMs. One is on the rotor, the other is on the stator with PM arrays. When compared with the existing DPME machines, not all of the PMs are located in the slots formed by the iron teeth. Specifically, the radially magnetized PMs in the arrays are located under the short iron teeth, while the tangentially magnetized PMs are located in the slots formed by the long stator iron teeth and the radially magnetized PMs. Each long stator iron tooth is sandwiched by two tangentially magnetized PMs with opposite directions, thus resulting in the flux strengthening effect. The simulation analysis indicates that the proposed machine can offer large back EMF with low THD and large torque density with low torque ripple when compared with Machine I from a literature. Meanwhile, by comparison, the proposed machine has great potential in improving the power factor and efficiency.

  4. Mechanism and Influencing Factors of Iron Nuggets Forming in Rotary Hearth Furnace Process at Lower Temperature

    Science.gov (United States)

    Han, Hongliang; Duan, Dongping; Chen, Siming; Yuan, Peng

    2015-10-01

    In order to improve the efficiency of slag and iron separation, a new idea of "the separation of slag (solid state) and iron (molten state) in rotary hearth furnace process at lower temperature" is put forward. In this paper, the forming process of iron nuggets has been investigated. Based on those results, the forming mechanisms and influencing factors of iron nugget at low temperature are discussed experimentally using an electric resistance furnace simulating a rotary hearth furnace process. Results show that the reduction of iron ore, carburization of reduced iron, and the composition and quantity of slag are very important for producing iron nuggets at lower temperature. Reduction reaction of carbon-containing pellets is mainly at 1273 K and 1473 K (1000 °C and 1200 °C). When the temperature is above 1473 K (1200 °C), the metallization rate of carbon-containing pellets exceeds 93 pct, and the reduction reaction is substantially complete. Direct carburization is the main method for carburization of reduced iron. This reaction occurs above 1273 K (1000 °C), with carburization degree increasing greatly at 1473 K and 1573 K (1200 °C and 1300 °C) after particular holding times. Besides, to achieve the "slag (solid state) and iron (molten state) separation," the melting point of the slag phase should be increased. Slag (solid state) and iron (molten state) separation can be achieved below 1573 K (1300 °C), and when the holding time is 20 minutes, C/O is 0.7, basicity is less than 0.5 and a Na2CO3 level of 3 pct, the recovery rate of iron can reach 90 pct, with a proportion of iron nuggets more than 3.15 mm of nearly 90 pct. This study can provide theoretical and technical basis for iron nugget production.

  5. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    International Nuclear Information System (INIS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-01-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe"3"+/Fe"2"+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe"3"+ ions in a nitrate complex with urea ([Fe((CO(NH_2)_2)_6](NO_3)_3) and by using solid Mg(OH)_2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe"3"+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe"3"+ ions prior to the addition of Mg(OH)_2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)_2, the pH increases and at pH ~ 5.7 the Fe"2"+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.Graphical abstract

  6. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging.

    Science.gov (United States)

    Wang, Yi-Xiang J

    2015-12-21

    Five types of superparamagnetic iron oxide (SPIO), i.e. Ferumoxides (Feridex(®) IV, Berlex Laboratories), Ferucarbotran (Resovist(®), Bayer Healthcare), Ferumoxtran-10 (AMI-227 or Code-7227, Combidex(®), AMAG Pharma; Sinerem(®), Guerbet), NC100150 (Clariscan(®), Nycomed,) and (VSOP C184, Ferropharm) have been designed and clinically tested as magnetic resonance contrast agents. However, until now Resovist(®) is current available in only a few countries. The other four agents have been stopped for further development or withdrawn from the market. Another SPIO agent Ferumoxytol (Feraheme(®)) is approved for the treatment of iron deficiency in adult chronic kidney disease patients. Ferumoxytol is comprised of iron oxide particles surrounded by a carbohydrate coat, and it is being explored as a potential imaging approach for evaluating lymph nodes and certain liver tumors.

  7. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  8. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  9. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy.

    Science.gov (United States)

    Zhu, Lei; Zhou, Zhiyang; Mao, Hui; Yang, Lily

    2017-01-01

    Recent advances in the development of magnetic nanoparticles (MNPs) have shown promise in the development of new personalized therapeutic approaches for clinical management of cancer patients. The unique physicochemical properties of MNPs endow them with novel multifunctional capabilities for imaging, drug delivery and therapy, which are referred to as theranostics. To facilitate the translation of those theranostic MNPs into clinical applications, extensive efforts have been made on designing and improving biocompatibility, stability, safety, drug-loading ability, targeted delivery, imaging signal and thermal- or photodynamic response. In this review, we provide an overview of the physicochemical properties, toxicity and theranostic applications of MNPs with a focus on magnetic iron oxide nanoparticles.

  10. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Magnetic excitations in iron chalcogenide superconductors.

    Science.gov (United States)

    Kotegawa, Hisashi; Fujita, Masaki

    2012-10-01

    Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe 1- x Te x and alkali-metal-doped A x Fe 2- y Se 2 ( A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature T c of FeSe increases with Te substitution in FeSe 1- x Te x with small x , and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of T c shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe 1- x Te x and the observation of the resonance mode demonstrate that FeSe 1- x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x , where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped A x Fe 2- y Se 2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that A x Fe 2- y Se 2 has an exceptional superconducting symmetry among Fe-based superconductors.

  12. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h−1) immunomagnetic sorting†

    Science.gov (United States)

    Ko, Jina; Yelleswarapu, Venkata; Singh, Anup; Shah, Nishal

    2016-01-01

    Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h−1) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 µm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h−1) and specifically sort rare tumor cells from white blood cells. PMID:27170379

  13. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    Science.gov (United States)

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  15. SQUID biosusceptometry in the measurement of hepatic iron

    International Nuclear Information System (INIS)

    Sheth, Sujit

    2003-01-01

    Individuals with primary or secondary abnormalities of iron metabolism, such as hereditary hemochromatosis and transfusional iron loading, may develop potentially lethal systemic iron overload. Over time, this excess iron is progressively deposited in the liver, heart, pancreas, and other organs, resulting in cirrhosis, heart disease, diabetes and other disorders. Unless treated, death usually results from cardiac failure. The amount of iron in the liver is the best indicator of the amount of iron in the whole body. At present, the only sure way to measure the amount of iron in the liver is to remove a sample of the liver by biopsy. Iron stored in the liver can be magnetized to a small degree when placed in a magnetic field. The amount of magnetization is measured by our instrument, called a superconducting quantum interference device (SQUID) susceptometer. In patients with iron overload, our previous studies have shown that magnetic measurements of liver iron in patients with iron overload are quantitatively equivalent to biochemical determinations on tissue obtained by biopsy. The safety, ease, rapidity, and comfort of magnetic measurements make frequent, serial studies technically feasible and practically acceptable to patients. (orig.)

  16. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why?

    Directory of Open Access Journals (Sweden)

    Andrey V. Chubukov

    2016-12-01

    Full Text Available Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalization group (RG analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s^{+-} superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s^{+-} superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe_{2}As_{2} and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Our results provide a unifying description of different iron-based materials.

  17. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Paula S. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)], E-mail: pferreira@lnls.br; Martins, Tatiana M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil); Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); D' Souza-Li, Lilia [Laboratorio de Endocrinologia Pediatrica da Faculdade de Ciencias Medicas (FCM), UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Li, Li M. [Departamento de Neurologia da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Metze, Konradin; Adam, Randall L. [Grupo interdisciplinar ' Patologia Analitica Celular' , Departamento de Anatomia Patologica da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Knobel, Marcelo [Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); Zanchet, Daniela [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)

    2008-05-01

    The present work reports the synthesis, characterization and properties of magnetic iron oxide nanoparticles for biomedical applications, correlating the nanoscale tunabilities in terms of size, structure, and magnetism. Magnetic nanoparticles in different conditions were prepared through thermal decomposition of Fe(acac){sub 3} in the presence of 1,2 hexadecanodiol (reducing agent) and oleic acid and oleylamine (ligands) in a hot organic solvent. The 2,3-dimercaptosuccinic acid (DMSA) was exchanged onto the nanocrystal surface making the particles stable in water. Nanoparticles were characterized by X-ray diffraction (XRD) measurements, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Preliminary tests of incorporation of these nanoparticles in cells and their magnetic resonance image (MRI) were also carried out. The magnetization characterizations were made by isothermal magnetic measurements.

  18. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  19. Two dimensional analysis for magnetic flux distribution in electromagnet used for MHD applications

    International Nuclear Information System (INIS)

    Desai, S.V.; Venkatramani, N.; Rohatgi, V.K.

    1984-01-01

    Magnetic flux densities in air and iron region of iron core MHD electromagnet, are calculated based on concept of magnetic vector potential. Numerical solution to the problem is obtained by converting partial differential equations into finite difference form with simplifying assumptions. A computer progrm is developed, giving solution by finite difference method. Over-relaxation technique based on Stoke's theorem is applied. Magnetic induction along the transverse axis of the magnet and plot for magnetic induction lines for current = 2420 A is presented. (author)

  20. Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores

    Science.gov (United States)

    Applegate, Ryan

    This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC

  1. Selective fluorescence response and magnetic separation probe for 2,4,6-trinitrotoluene based on iron oxide magnetic nanoparticles.

    Science.gov (United States)

    Zou, Wen-Sheng; Wang, Ya-Qin; Wang, Feng; Shao, Qun; Zhang, Jun; Liu, Jin

    2013-05-01

    Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC-HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid-base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC-HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC-HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05-1.5 μmol L(-1), with a detection limit of 37.2 nmol L(-1) and RSD of 4.7 % (n = 7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.

  2. Influence of dextran coating on the magnetic behaviour of iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Dutz, Silvio; Andrae, Wilfried; Hergt, Rudolf; Mueller, Robert; Oestreich, Christiane; Schmidt, Christopher; Toepfer, Jorg; Zeisberger, Matthias; Bellemann, Matthias E.

    2007-01-01

    Magnetic iron oxide nanoparticles with mean diameters in the range from 10 to 30 nm were prepared by modified chemical precipitation routes. The particles were suspended in an aqueous solution by coating of the particles with carboxymethyldextran. A stability against agglomeration was achieved over a period of more than 7 days. In the present investigation, the structural and the magnetic properties of the nanoparticles were investigated. The influence of the dextran shell on the strength of the dipole-dipole interactions between the neighbouring particles was determined by investigation of the remanence behaviour (Henkel plot) of coated as well as of uncoated particles

  3. Enhancement the Armor Shielding Properties of CF/epoxy Composite by Addition Nanoparticles of Magnetic Iron Oxide

    Directory of Open Access Journals (Sweden)

    Fouda Hany

    2017-01-01

    Full Text Available In the present investigation, we prepared two types of CF composites. The first prepared composite sample was CF/epoxy resin composite and the second was CF/epoxy resin / with a different weight ratio of magnetic iron oxide. Magnetic iron oxide was prepared by co-precipitation method, with particle sizes measured in range 25:35 nm. The resistance to penetration of high kinetic energy projectile of the prepared composite sample was measured and It was found that addition of 5% nano-particles of magnetic iron oxide to composite material sample decrease the residual velocity of projectile penetrating it by 9%.i.e increasing resistance of the sample to penetration of high kinetic energy projectile.it was found that the Resistance to penetration of sheet of composite material sampleC4 of weight=40.32kg to projectile 7.62×39 mm AP at distance 15m equivalent to resistance of steel sheet of weight =54.6 kg at distance 200m.Resistance to penetration of sheet of composite material sampleC4 to projectile 7.62×39 mm AP at distance 10m equivalent to the resistance of high-quality steel sheet(steel4340 of weight=47.85 kg at distance 25m.

  4. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study

    International Nuclear Information System (INIS)

    Balivada, Sivasai; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L; Rachakatla, Raja Shekar; Wang, Hongwang; Samarakoon, Thilani N; Dani, Raj Kumar; Pyle, Marla; Kroh, Franklin O; Walker, Brandon; Leaym, Xiaoxuan

    2010-01-01

    There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe 3 O 4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands. The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe 3 O 4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection. These results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art

  5. Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehdaoui, B.; Meffre, A.; Lacroix, L.-M. [Universite de Toulouse, INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), 135 avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR 5215, LPCNO, F-31077 Toulouse (France); Carrey, J., E-mail: julian.carrey@insa-toulouse.f [Universite de Toulouse, INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), 135 avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR 5215, LPCNO, F-31077 Toulouse (France); Lachaize, S. [Universite de Toulouse, INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), 135 avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR 5215, LPCNO, F-31077 Toulouse (France); Gougeon, M. [Institut CARNOT-CIRIMAT-UMR 5085, Batiment 2R1, 118 route de Narbonne, F-31062 Toulouse (France); Respaud, M. [Universite de Toulouse, INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets), 135 avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR 5215, LPCNO, F-31077 Toulouse (France); Chaudret, B. [Laboratoire de Chimie de Coordination-CNRS, 205 rte de Narbonne, 31077 Toulouse cedex 4 (France)

    2010-10-15

    We report on the magnetic hyperthermia properties of chemically synthesized ferromagnetic 11 and 16 nm Fe(0) nanoparticles of cubic shape displaying the saturation magnetization of bulk iron. The specific absorption rate measured on 16 nm nanocubes is 1690{+-}160 W/g at 300 kHz and 66 mT. This corresponds to specific losses-per-cycle of 5.6 mJ/g, largely exceeding the ones reported in other systems. A way to quantify the degree of optimization of any system with respect to hyperthermia applications is proposed. Applied here, this method shows that our nanoparticles are not fully optimized, probably due to the strong influence of magnetic interactions on their magnetic response. Once protected from oxidation and further optimized, such nano-objects could constitute efficient magnetic cores for biomedical applications requiring very large heating power.

  6. Modified iron oxide nanomaterials: Functionalization and application

    International Nuclear Information System (INIS)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-01-01

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  7. Modified iron oxide nanomaterials: Functionalization and application

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-10-15

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  8. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    B. Sim

    2015-08-01

    Full Text Available Polyaniline (PANI-coated iron oxide (Fe3O4 sphere particles were fabricated and applied to a dual stimuliresponsive material under electric and magnetic fields, respectively. Sphere Fe3O4 particles were synthesized by a solvothermal process and protonated after acidification. The aniline monomer tended to surround the surface of the Fe3O4 core due to the electrostatic and hydrogen bond interactions. A core-shell structured product was finally formed by the oxidation polymerization of PANI on the surface of Fe3O4. The formation of Fe3O4@PANI particles was examined by scanning electron microscope and transmission electron microscope. The bond between Fe3O4 and PANI was confirmed by Fourier transform-infrared spectroscope and magnetic properties were analyzed by vibration sample magnetometer. A hybrid of a conducting and magnetic particle-based suspension displayed dual stimuli-response under electric and magnetic fields. The suspension exhibited typical electrorheological and magnetorheological behaviors of the shear stress, shear viscosity and dynamic yield stress, as determined using a rotational rheometer. Sedimentation stability was also compared between Fe3O4 and Fe3O4@PANI suspension.

  9. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    Science.gov (United States)

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM−1s−1 in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics. PMID:26251595

  10. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, T.; Wittenborn, T.

    2009-01-01

    following intravenous injection. Biocompatible iron oxide MNPs coated with PEG were prepared by replacing oleic acid with a biocompatible and commercially available silane-PEG to provide an easy and effective method for chemical coating. The colloidal stable PEGylated MNPs were magnetically separated...... into two distinct size subpopulations of 20 and 40 nm mean diameters with increased phagocytic uptake observed for the 40 nm size range in vitro. MRI detection revealed greater iron accumulation in murine tumors for 40 nm nanoparticles after intravenous injection. The enhanced MRI contrast of the larger...

  11. An improved iron loss estimation for permanent magnet brushless machines

    CERN Document Server

    Fang, D

    1999-01-01

    This paper presents an improved approach for predicting iron losses in permanent magnet brushless machines. The new approach is based on the fundamental concept that eddy current losses are proportional to the square of the time rate of change of flux density. Expressions are derived for predicting hysteresis and eddy current losses in the stator teeth and yoke. The so-called anomalous or excess losses, caused by the induced eddy current concentration around moving magnetic domain walls and neglected in the conventional core loss calculation, are also included in the proposed approach. In addition, the model is also capable of accounting for the stator skewing, if present. The core losses obtained from the proposed approach are compared with those measured on an existing PM motor at several operating speeds, showing very good agreement. (14 refs).

  12. Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Karamani, Anna A; Douvalis, Alexios P; Stalikas, Constantine D

    2013-01-04

    A composite magnetic material consisting of zero-valent iron, iron oxide-oxyhydroxide and graphene was synthesized and used successfully as a sorbent for the micro solid-phase extraction of PAHs, PCBs and phthalic acid esters. The components endow the composite with multiple characteristics such as adsorption capability and facile removal due to its magnetic properties. Due to the π-π electrostatic stacking property of graphene, the high specific surface area and the adsorption capability of both components, the resulting black flaky Fe(0)/iron oxide-oxyhydroxide/graphene composite showed high extraction efficiency for the target analytes from water samples. Compared with the neat graphene, the composite material has improved properties in terms of microextraction capabilities as both the hydrophobic graphene and zero-valent iron participate in the adsorption of the hydrophobic molecules. The precision from the extraction of all three groups of compounds was lower than 7% and the recoveries were from 90 to 93% from a spiked lake water sample. The high recoveries in relation to the low final volume of the desorption solvent ensure high preconcentration efficiency and a promising sorbent for analytical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  14. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease.

    Science.gov (United States)

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J; Bain, Peter G; Düzel, Emrah; Husain, Masud

    2013-12-01

    In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The building of a prototype steering magnet

    International Nuclear Information System (INIS)

    Conradie, J.L.; Cornell, J.C.

    1983-01-01

    The report deals with the building of a prototype magnet. The magnet is completely symmetrical, and consists of 4 identical pieces of iron, 167 X 80 X 15 mm each. Magnetic flux density for 4 different magnet coils is given. Information is also given on the magnetic fields and the bending ability of the field through which the particles are supposed to move. The magnet coils and the form of the yoke are described

  16. Role of multiorbital effects in the magnetic phase diagram of iron pnictides

    Science.gov (United States)

    Christensen, Morten H.; Scherer, Daniel D.; Kotetes, Panagiotis; Andersen, Brian M.

    2017-07-01

    We elucidate the pivotal role of the band structure's orbital content in deciding the type of commensurate magnetic order stabilized within the itinerant scenario of iron pnictides. Recent experimental findings in the tetragonal magnetic phase attest to the existence of the so-called charge and spin ordered density wave over the spin-vortex crystal phase, the latter of which tends to be favored in simplified band models of itinerant magnetism. Here we show that employing a multiorbital itinerant Landau approach based on realistic band structures can account for the experimentally observed magnetic phase, and thus shed light on the importance of the orbital content in deciding the magnetic order. In addition, we remark that the presence of a hole pocket centered at the Brillouin zone's M point favors a magnetic stripe rather than a tetragonal magnetic phase. For inferring the symmetry properties of the different magnetic phases, we formulate our theory in terms of magnetic order parameters transforming according to irreducible representations of the ensuing D4 h point group. The latter method not only provides transparent understanding of the symmetry-breaking schemes but also reveals that the leading instabilities always belong to the {A1 g,B1 g} subset of irreducible representations, independently of their C2 or C4 nature.

  17. Study of hyperfine transient field acting on the O16 excited nuclei (6.13 MeV, 3-) crossing iron and gadolinium magnetic foils

    International Nuclear Information System (INIS)

    Dekhissi, H.

    1985-07-01

    Precise measurements of transient magnetic field in iron and gadolinium have been obtained for oxygen ion at velocities from 2 to 8V o . At high recoil velocity, a transient field twice higher in gadolinium than in iron has been observed; this is contradictory with general predictions on transient field proportional growing with matrice polarization density. The degree of polarization can be deduced from transient field with measuring the ion fraction having an unpaired electron in K level. The resulting degree has been compared with theoretical estimations based on spin exchange, molecular orbital method, and polarized electron direct capture, as well as polarization mechanisms of 1s level of O 16 . Empiric forms aimed at the calibration of this field have been also tested [fr

  18. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  19. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  20. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.

    Science.gov (United States)

    Fresno, Teresa; Peñalosa, Jesús M; Santner, Jakob; Puschenreiter, Markus; Prohaska, Thomas; Moreno-Jiménez, Eduardo

    2016-09-01

    Arsenic is a non-threshold carcinogenic metalloid. Thus, human exposure should be minimised, e.g. by chemically stabilizing As in soil. Since iron is a potential As immobiliser, it was investigated whether root iron plaque, formed under aerobic conditions, affects As uptake, metabolism and distribution in Lupinus albus plants. White lupin plants were cultivated in a continuously aerated hydroponic culture containing Fe/EDDHA or FeSO4 and exposed to arsenate (5 or 20 μM). Only FeSO4 induced surficial iron plaque in roots. LA-ICP-MS analysis accomplished on root sections corroborated the association of As to this surficial Fe. Additionally, As(V) was the predominant species in FeSO4-treated roots, suggesting less efficient As uptake in the presence of iron plaque. Fe/EDDHA-exposed roots neither showed such surficial FeAs co-localisation nor As(V) accumulation; in contrast As(III) was the predominant species in root tissue. Furthermore, FeSO4-treated plants showed reduced shoot-to-root As ratios, which were >10-fold lower compared to Fe/EDDHA treatment. Our results highlight the role of an iron plaque formed in roots of white lupin under aerobic conditions on As immobilisation. These findings, to our knowledge, have not been addressed before for this plant and have potential implications on soil remediation (phytostabilisation) and food security (minimising As in crops). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Magnetic resonance imaging (MRI to study striatal iron accumulation in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Ana Virel

    Full Text Available Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson's disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA rat model of Parkinson's disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI. The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.

  2. Magnetic properties of iron/graphite core-shell nanoparticles prepared by annealing of Fe-C-N-based nanocomposite

    Czech Academy of Sciences Publication Activity Database

    David, Bohumil; Pizúrová, Naděžda; Schneeweiss, Oldřich; Bezdička, Petr; Alexandrescu, R.; Morjan, I.; Cruneteanu, A.; Voicu, I.

    290-291, - (2005), s. 179-182 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GA202/04/0221; GA AV ČR(CZ) KSK1010104 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnetism * iron * nanoparticle Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.985, year: 2005

  3. RECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION

    Directory of Open Access Journals (Sweden)

    N. Alavifard

    2016-09-01

    Full Text Available In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron, which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.

  4. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni; Campagnolo, Paola; Perez, Jose E.; Kosel, Jü rgen; Georgiou, Theoni K.; Regoutz, Anna; Payne, David J; Stevens, Molly M.; Ryan, Mary P.; Porter, Alexandra E; Dunlop, Iain E

    2017-01-01

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  5. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni

    2017-10-12

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  6. Magnetostructural study of iron sucrose

    International Nuclear Information System (INIS)

    Gutierrez, Lucia; Puerto Morales, Maria del; Jose Lazaro, Francisco

    2005-01-01

    Magnetic and structural analyses have been performed on an iron sucrose complex used as a haematinic agent. The system contains two-line ferrihydrite particles of about 5 nm that are superparamagnetic above approximately 50 K. The observed low-temperature magnetic dynamics of this compound is closer to simple models than in the case of other iron-containing drugs for intravenous use like iron dextran

  7. Construction techniques for short iron-free dipole magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.

    1983-01-01

    A method was developed for economically fabricating short, wire-wound, steering magnets with maximum length, cosine-distributed, axial elements. This method utilizes multifunctional tooling to precisely flat-wind two-layer dipole halves that are subsequently reformed and encapsulated into semicylindrical form with confinement of the end turns into thin, half discs normal to the magnet axis. This paper addresses the magnet fabrication in detail, highlighting the inherent quality control features of the tooling, overall construction costs, and contemplated manufacturing enhancements

  8. Separation of valent forms of chromium (3) and chromium (6) by coprecipitation with iron (3) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1988-01-01

    Soption 9.62x10 -5 mol/l of 51 Cr radioactive isotope in oxidation states 3 and 6 by iron(3) hydroxide in 1 mol/l of KNO 3 and KCl depending on pH medium is investigated. The region of practically total concentration of Cr(3) and Cr(6 + ) (pH=3-6.5) is determined. The results of spectrophotometric investigations, calculational data on distribution of hydroxocation forms of chromium (3) and of chromium (6) anions and sorption by iron (3) hydroxide permit to characterize sorption of chromium forms in different stages of oxidation. The methods of chromium (3) and chromium (6) separation by coprecipitation of iron (3) hydroxide and their precipitation from it is developed on the above foundation

  9. A/C magnetic hyperthermia of melanoma mediated by iron(0/iron oxide core/shell magnetic nanoparticles: a mouse study

    Directory of Open Access Journals (Sweden)

    Koper Olga B

    2010-03-01

    Full Text Available Abstract Background There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. Methods The influence of bimagnetic nanoparticles (MNPs combined with short external alternating magnetic field (AMF exposure on the growth of subcutaneous mouse melanomas (B16-F10 was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin units were attached to the dopamine-oligoethylene glycol ligands. Results The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection. Conclusions These results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art.

  10. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging.

    Science.gov (United States)

    Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A

    2014-03-03

    Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (Doxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guoliang; Wu, Chen, E-mail: chen_wu@zju.edu.cn; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-02-01

    Fe soft magnetic composites (SMCs) with low core loss were fabricated via surface oxidation of the Fe powders by H{sub 2}O and O{sub 2} at elevated temperatures. Surface oxidation prevents magnetic dilution due to the formation of the ferromagnetic iron oxide coating layer, giving rise to high magnetic flux density and effective permeability of the SMCs compared with those fabricated with traditional phosphate coating. Mechanism of the oxidation process has been investigated where Fe{sub 3}O{sub 4} forms by reactions of Fe with H{sub 2}O and O{sub 2}. The Fe{sub 3}O{sub 4} coating layer tends to convert into γ-Fe{sub 2}O{sub 3} with increased oxidation temperature and time. By controlling composition of the coating layer, low core loss of 688.9 mW/cm{sup 3} (measured at 50 mT and 100 kHz) and higher effective permeability of 88.3 can be achieved for the Fe SMCs. - Highlights: • Surface oxidation as a new method to fabricate Fe Soft magnetic composite (SMCs). • Oxidation mechanism revealed where Fe reacts with H2O and O2 at high temperatures. • Evolution of the iron oxide coating with growth temperature and time investigated. • The iron oxide insulation coating results in improved magnetic performance.

  12. Study of iron valence state and position in sub-site by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Lim, Jae Cheong; KIm, Chul Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Son, Kwang Jae [Kookmin Univ., Seoul (Korea, Republic of)

    2014-05-15

    The magnetic ordering temperature and the magnitude of the magnetic fields at the iron sites of YIG can be influenced by substituting, either partially or totally, the Fe{sup 3+} ions at the octahedral and/or the tetrahedral sites with magnetic or diamagnetic ions, and/or by substitution the Y{sup 3+} ions at the dodecahedral sites with magnetic rare earth ions. It has been known for some time that Moessbauer spectroscopy is a powerful method by which iron-containing garnets can be studied. We report here on the synthesis of the compounds with garnet-related structures of composition Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} and its examination by {sup 57}Fe Moessbauer spectroscopy. The chromium in compounds of the Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} is distributed at an octahedral site. The Moessbauer spectra can be analyzed using 3 or 4 sets of six Lorentzians with increasing amount of Cr{sup 3+} compounds in this system. It results from the distribution ({sub 4}C{sub n}) of Fe{sup 3+} and Cr{sup 3+} at an octahedral site. A comparative study of ferrous tablets of Dynabi was carried out using Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in a sample. This observation is important to better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron. The Cr-containing yttrium iron garnet (YIG), and the exchange interactions and site distributions were studied using {sup 57}Fe Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in the sample. This observation is important better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron.

  13. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  14. The influence of iron oxide nanoparticles upon the adsorption of organic matter on magnetic powdered activated carbon.

    Science.gov (United States)

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2017-10-15

    Combining powdered activated carbon (PAC) with magnetic iron oxides has been proposed in the past to produce adsorbents for natural organic matter (NOM) removal that can be easily separated using a magnetic field. However, the trade-off between the iron oxides' benefits and the reduced carbon content, porosity, and surface area has not yet been investigated systematically. We produced 3 magnetic powdered activated carbons (MPAC) with mass fractions of 10%, 38% and 54% maghemite nanoparticles and compared them to bare PAC and pure nanoparticles with respect to NOM adsorption kinetics and isotherms. While adsorption kinetics were not influenced by the presence of the iron oxide nanoparticles (IONP), as shown by calculated diffusion coefficients from the homogeneous surface diffusion model, nanoparticles reduced the adsorption capacity of NOM due to their lower adsorption capacity. Although the nanoparticles added mesoporosity to the composite materials they blocked intrinsic PAC mesopores at mass fractions >38% as measured by N 2 -adsorption isotherms. Below this mass fraction, the adsorption capacity was mainly dependent on the carbon content in MPAC and mesopore blocking was negligible. If NOM adsorption with MPAC is desired, a highly mesoporous PAC and a low IONP mass fraction should be chosen during MPAC synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen

    2016-11-29

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60 nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~ 534 kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.

  16. Magnetic nanocomposites based on phosphorus-containing polymers—structural characterization and thermal analysis

    Science.gov (United States)

    Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.

    2018-04-01

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  17. Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020)

    Science.gov (United States)

    Phillips, Stephen C.; Johnson, Joel E.; Clyde, William C.; Setera, Jacob B.; Maxbauer, Daniel P.; Severmann, Silke; Riedinger, Natascha

    2017-06-01

    Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore-arc basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3-7 m thick) that are associated with a transition from a terrestrial to marine depositional environment. Within the primary coal-bearing unit (˜2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility variability and characterize the dominant magnetic assemblage throughout the entire cored record, using isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization (ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by very low-coercivity minerals with unblocking temperatures between 350 and 580°C that are interpreted to be magnetite. Samples with lower unblocking temperatures (300-400°C), higher ARM, higher-frequency dependence, and isotopically heavy δ56Fe across a range of lithologies in the coal-bearing unit (between 1925 and 1995 mbsf) indicate the presence of fine-grained authigenic magnetite. We suggest that iron-reducing bacteria facilitated the production of fine-grained magnetite within the coal-bearing unit during burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial, mediated by humic acids, to supply iron-reducing bacteria in the surrounding siliciclastic sediments. These results indicate that coal-bearing sediments may play an important role in iron cycling in subsiding peat environments and if buried deeply through time, within the subsequent deep biosphere.

  18. Magnetic resonance imaging of iron storage diseases

    International Nuclear Information System (INIS)

    Yoshida, Hideo; Mano, Isamu; Asai, Sae; Yashiro, Naofumi; Itai, Yuji; Iio, Masahiro.

    1985-01-01

    We presented MRI findings of four patients of iron storage diseases with hemochromatosis and hemosiderosis. We examined detectavility of iron deposits with in vitro MR and X-CT observations of ferric (Fe 3+ ) solutions. Conculusion are as follows, 1) In detection of small amount of iron deposits, MRI is much better than X-CT. 2) MRI is a unique technique to detect iron deposits in bone marrow. 3) Early estimation of iron storage diseases will be promising using MRI technique. (author)

  19. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J. Zach, E-mail: zach.hilt@uky.edu

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. - Graphical abstract: Novel single step curcumin coated magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers for medical, environmental, and other applications. Display Omitted - Highlights: • A novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles is reported. • The magnetic nanoparticles (MNPs) were characterized using TEM, XRD, FTIR and TGA. • The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB).

  20. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  1. Critical magnetic scattering of polarized neutrons on iron

    International Nuclear Information System (INIS)

    Hetzelt, M.

    1975-01-01

    A new spectrometer has been built and tested. The instrument was designed particularly for small angle scattering of polarized neutrons whereby the degree of polarisation of the scattered neutrons can be measured. The use of polarizing neutron pipes as polarizer and analyser allows the performence with a very broad wavelength spectrum (2 A 7 n/cm 2 sec) with good collimation (Δ theta approximately 0.2 0 ). The instrument is applied for the measurement of the critical magnetic scattering of polarized neutrons on an iron single crystal. For this purpose a special oven with an appropriate magnetic field configuration and a high precision in temperature has been constructed. The measured intensity distributions are in good agreement with other experiments. The critical exponent of the correlation range xi results in 0.65 +- 0.06. Angle and temperature dependence of the scattered neutron polarisation could be determined with good precision. The measurements are partly in extreme contradiction to the only hitherto existing experiment of this kind of Drabkin et al, and to assumptions in the theoretical evaluation. This contradiction is shown to be caused by the influence of multiple scattering. (orig./HPOE) [de

  2. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Paul Seung Soo, E-mail: psk25@drexel.edu [Drexel University, Department of Mechanical Engineering and Mechanics (United States); Becker, Aaron, E-mail: aaron.becker@childrens.harvard.edu [Harvard University, Department of Cardiovascular Surgery (United States); Ou, Yan, E-mail: ouy2@rpi.edu; Julius, Anak Agung, E-mail: agung@rpi.edu [Rensselaer Polytechnic Institute, Department of Electrical, Computer, and Systems Engineering (United States); Kim, Min Jun, E-mail: mkim@coe.drexel.edu [Drexel University, Department of Mechanical Engineering and Mechanics (United States)

    2015-03-15

    Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells’ swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities.

  3. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control

    International Nuclear Information System (INIS)

    Kim, Paul Seung Soo; Becker, Aaron; Ou, Yan; Julius, Anak Agung; Kim, Min Jun

    2015-01-01

    Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells’ swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities

  4. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    Science.gov (United States)

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  6. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Osborne, Elizabeth A; Atkins, Tonya M; Kauzlarich, Susan M; Gilbert, Dustin A; Liu Kai; Louie, Angelique Y

    2012-01-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization. (paper)

  7. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging.

    Science.gov (United States)

    Osborne, Elizabeth A; Atkins, Tonya M; Gilbert, Dustin A; Kauzlarich, Susan M; Liu, Kai; Louie, Angelique Y

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  8. Iron oxide nanoparticles: the Influence of synthesis method and size on composition and magnetic properties

    International Nuclear Information System (INIS)

    Carvalho, M.D.; Henriques, F.; Ferreira, L.P.; Godinho, M.; Cruz, M.M.

    2013-01-01

    Iron oxide nanoparticles with mean diameter ranging from 7 to 20 nm were synthesized using two routes: the precipitation method in controlled atmosphere and a reduction–precipitation method under air, in some cases followed by a hydrothermal treatment. The smallest nanoparticles were obtained by the reduction–precipitation method. In order to establish the composition of the iron oxide nanoparticles and its relation with size, the morphological, structural and magnetic properties of the prepared samples were investigated using X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and SQUID magnetometry. The results allow to conclude that the nanoparticles can be essentially described as Fe 3−x O 4 , x decreasing with the particle size increase. The composition and magnetic behavior of the synthesized iron oxide nanoparticles are directly related with their size. The overall results are compatible with a core@shell structure model, where a magnetite core is surrounded by an oxidized magnetite layer (labeled as maghemite), the magnetite core dimension depending on the average particle size. - Graphical abstract: TEM images and Mössbauer spectroscopy spectra of Fe 3−x O 4 samples with different sizes. Highlights: ► Fe 3−x O 4 nanoparticles with a mean size between 7 and 20 nm were synthesized. ► The smallest nanoparticles were obtained by a reduction precipitation method, under air. ► The increase of particles size was succeeded using a hydrothermal treatment at 150 °C. ► The magnetic properties of the nanoparticles are directly related with their size

  9. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    Science.gov (United States)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  10. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gabbasov, Raul, E-mail: gabbasov-raul@yandex.ru [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Polikarpov, Michael; Cherepanov, Valery [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chuev, Michael; Mischenko, Iliya; Lomov, Andrey [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Wang, Andrew [Ocean NanoTech. Springdale, AR (United States); Panchenko, Vladislav [National Research Center “Kurchatov Institute”, Moscow (Russian Federation)

    2015-04-15

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5–25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results. - Highlights: • KV parameter, obtained from Mössbauer spectra can be used for nanoparticle size characterization. • Mössbauer spectra of 10–25 nm nanoparticles can be effectively described by ferromagnetic model. • Surface impurities can cause incorrect nanoparticle size determination.

  11. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex

    Science.gov (United States)

    Ong, Hun Tiar; Julkapli, Nurhidayatullaili Muhd; Hamid, Sharifah Bee Abd; Boondamnoen, O.; Tai, Mun Foong

    2015-12-01

    Nitrile butadiene rubber (NBR) gloves are one of the most important personal protective equipments but they are possible to tear off and contaminate food or pharmaceutical and healthcare products during manufacturing and packaging process. High tendency of torn glove remaining in food or products due to white or light flesh-coloured glove is not easy to be detected by naked eyes. In this paper, iron oxide nanoparticles (IONs) selected as additive for NBR to improve its detectability by mean of magnetic properties. IONs synthesized via precipitation method and compounded with NBR latex before casting on petri dish. The properties of IONs were investigated by X-ray Diffractometry (XRD), Transmission Electron Microscope (TEM), Raman Spectroscopy and Vibrating Sample Magnetometer (VSM). Meanwhile NBR/IONs composites were studied by Thermogravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Vibrating Sample Magnetometer (VSM). It observed that, synthesized IONs shows of 25.28 nm crystallite with 25.86 nm semipherical (changed as) shape. Meanwhile, Magnetite and maghemite phase are found in range of 670 cm-1 and 700 cm-1 respectively, which it contributes magnetization saturation of 73.96 emu/g at 10,000 G by VSM. Thermal stability and magnetic properties were increased with incorporating IONs into NBR latex up to 20 phr. NBR/IONs 5 phr has the optimum thermal stability, lowest glass transition temperature (-14.83 °C) and acceptable range of magnetization saturation (3.83 emu/g at 10,000 G) to form NBR gloves with magnetic detectability.

  12. Investigation on the effect of lubrication and forming parameters to the green compact generated from iron powder through warm forming route

    International Nuclear Information System (INIS)

    Rahman, M.M.; Nor, S.S.M.; Rahman, H.Y.

    2011-01-01

    In order to generate green compacts of iron ASC 100.29 powder at above ambient temperature and below its recrystallization temperature, a warm compaction rig is designed and fabricated which can be operated at various temperature and load. The aim of this paper is to present the outcomes of an investigation on the effect of lubrication and forming parameters, i.e., load and temperature to the green compacts generated through warm compaction route. The feedstock was prepared by mechanically mixing the main powder constituent, i.e., iron ASC 100.29 powder with different weight percent of zinc stearate at different mixing time. Compaction load was varied from 105 kN to 125 kN using simultaneous compaction mechanism. The microstructures of the green compacts were analyzed by Scanning Electron Microscopy (SEM), and the mechanical properties are measured through density measurement, hardness test and electrical conductivity test. The study found that increase in compaction load as well as forming temperature give improved microstructure and mechanical properties. It is also found that effects of lubrication to the mechanical properties of green compacts are strongly dependant on the lubricant content as well as mixing time of iron powder with the lubricant.

  13. Role of liver magnetic resonance imaging in hyperferritinaemia and the diagnosis of iron overload.

    Science.gov (United States)

    Ruefer, Axel; Bapst, Christine; Benz, Rudolf; Bremerich, Jens; Cantoni, Nathan; Infanti, Laura; Samii, Kaveh; Schmid, Mathias; Vallée, Jean-Paul

    2017-11-09

    Hyperferritinaemia is a frequent clinical problem. Elevated serum ferritin levels can be detected in different genetic and acquired diseases and can occur with or without anaemia. It is therefore important to determine whether hyperferritinaemia is due to iron overload or due to a secondary cause. The main causes of iron overload are intestinal iron hyperabsorption disorders and transfusion-dependent disorders. Iron homeostasis and iron overload are quantified by different diagnostic approaches. The evaluation of serum ferritin and transferrin saturation is the first diagnostic step to identify the cause of hyperferritinaemia. The assessment of liver iron concentration by liver biopsy or magnetic resonance imaging (MRI) may guide the further diagnostic and therapeutic workup. Liver biopsy is invasive and poorly accepted by patients and should only be carried out in selected patients with hereditary haemochromatosis. As a non-invasive approach, MRI is considered the standard method to diagnose and to monitor both hepatic iron overload and the effectiveness of iron chelation therapy in many clinical conditions such as thalassaemia and myelodysplastic syndromes. Accurate evaluation and monitoring of iron overload has major implications regarding adherence, quality of life and prognosis. There are different technical MRI approaches to measuring the liver iron content. Of these, T2 and T2* relaxometry are considered the standard of care. MRI with cardiac T2* mapping is also suitable for the assessment of cardiac iron. Currently there is no consensus which technique should be preferred. The choice depends on local availability and patient population. However, it is important to use the same MRI technique in subsequent visits in the same patient to get comparable results. Signal intensity ratio may be a good adjunct to R2 and R2* methods as it allows easy visual estimation of the liver iron concentration. In this review a group of Swiss haematologists and radiologists

  14. Effects of the substitution of iron for cobalt on the crystal and magnetic properties of PrCo4-xFexM (M=Al and Ga)

    International Nuclear Information System (INIS)

    Zlotea, C.; Isnard, O.

    2003-01-01

    We report on the structural and magnetic properties of PrCo 4-x Fe x M where x=0-4 and M=Al and Ga. The iron solubility limit in these phases is determined by means of X-ray diffraction and scanning electron microscopy. Our study confirms that single phase samples crystallizing in the CaCu 5 -type structure are stabilized for x 5 structure but with a slight preference for the 3g site. The saturation magnetization and the Curie temperature increase upon the iron substitution. The PrCo 4-x Fe x M compounds present spin reorientation transitions, whatever the substituting M and the Fe content. The substitution of iron for cobalt induces a significant increase of the spin reorientation temperature. Neutron and X-ray powder diffraction experiments as well as magnetic measurements are combined in order to clarify the effects of the presence of iron on the magnetocrystalline anisotropy and the spin reorientation transition. Finally, the magnetic phase diagrams of PrCo 4-x Fe x M (M=Al and Ga) have been determined in the whole ordered temperature range

  15. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Energy Technology Data Exchange (ETDEWEB)

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  16. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  17. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hong Jun; Xu Dongmei; Yu Jiahui; Gong Peijun; Ma Hongjuan; Yao Side

    2007-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) with synthetic polymer, based on magnetite core, was synthesized via facile photochemical in situ polymerization. A possible mechanism of photochemical in situ polymerization was proposed. The obtained polymer-enveloped UPSIO was characterized by transmission electron microscopy (TEM), photo-correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and vibrating sampling magnetometer (VSM) measurement. Properties such as ultrasmall particle size, hydrophilicity, strong magnetization and surface characteristics, which are desirable for magnetic resonance imaging (MRI) contrast agents, were evaluated in detail. The resultant USPIO-based MRI contrast agent holds considerable promise in molecular MR tracking, MR immune imaging, cell tracking and targeted intracellular hyperthermia, etc

  18. Decontamination of aqueous effluents containing metallic cations or anions by iron oxides under the action of a magnetic field

    International Nuclear Information System (INIS)

    Goncalves, M. A.; Camilo, R. L.; Cohen, V. H.; Yamaura, M.

    1999-01-01

    This work deals with a review of decontamination processes of aqueous effluents containing metallic cations and anions by using iron oxides as adsorber. Conditions to obtain the different iron oxides and adsorption capacities for cations and anions are presented and precipitation and/or adsorption mechanisms studies under the point of view of oxide-interface phenomena are described. Emphasis will be applied to the magnetite combined with inorganic exchanger or liquid extractants which magnetic properties has been used to enhance metals removal. Experimental results of a synthetic magnetite production and its adsorption capacity as a function of a magnetic field intensity are also showed. (authors)

  19. Magnetic form factors of rare earth ions

    International Nuclear Information System (INIS)

    Deckman, H.W.

    1976-01-01

    The magnetic scattering of neutrons by atoms has been investigated by exploiting its similarity to the radiation problem in spectroscopy. Expressions for the magnetic scattering amplitude were developed for cases in whcih an atom in the l/sup n/ electronic configuration is described either by a relativistic or nonrelativistic Hamiltonian. For each of these cases, it has been shown that the magnetic scattering amplitude can be expressed in terms of relativistic or nonrelativistic matrix elements of magnetic and electric multipole operators. For a nonrelativistic atom, the calculation of these matrix elements has been separated into evaluating radial matrix elements and matrix elements of Racah tensors W/(sup 0,k)k/ and W/(sup 1,k')k/. For a relativistic atom the effective operator approach has been used to define effective multipole operators so that a relativistic result is obtained by taking matrix elements of these effective operators between nonrelativistic states of the atom. The calculation of matrix elements of these effective operators has been reduced to evaluating relativistic radial integrals and matrix elements of the Racah tensors taken between nonrelativistic states of the atom. It is shown tha for the case of elastic scattering by either a relativistic or nonrelativistic atom in single Russel-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(vector q)vector q/sub m/.vector sigma. General expressions for p(vector q) as well as elastic magnetic form factorshave been obtained. The formalism has been illustrated throughout by applying it to the case of scattering by rare earth ions

  20. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2017-05-01

    Full Text Available Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.

  1. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    Science.gov (United States)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  2. Method for Transformation of Weakly Magnetic Minerals (Hematite, Goethite into Strongly Magnetic Mineral (Magnetite to Improve the Efficiency of Technologies for Oxidized Iron Ores Benefication

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.

    2015-03-01

    Full Text Available A new method for relatively simple transformation of weakly magnetic minerals (goethite (α-FeOOH and hematite (α-Fe2O3 into strongly magnetic mineral (magnetite (Fe3O4 was developed. It was shown, that transformation of structure and magnetic characteristics of go ethite and hematite are realized in the presence of starch at relatively low temperatures (in the range of 300—600 °С. Obtained results open up new possibilities for development of effective technologies for oxidized iron ore beneficiation.

  3. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  4. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth-transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co; 20 - 70 atomic percent: at least one of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y; 80 - 30 atomic percent. (author)

  5. Iron clustering in GaSe epilayers grown on GaAs(111)B

    International Nuclear Information System (INIS)

    Moraes, A R de; Mosca, D H; Mattoso, N; Guimaraes, J L; Klein, J J; Schreiner, W H; Souza, P E N de; Oliveira, A J A de; Vasconcellos, M A Z de; Demaille, D; Eddrief, M; Etgens, V H

    2006-01-01

    In this paper we report on the structural, morphological and magnetic properties of semiconducting GaSe epilayers, grown by molecular beam epitaxy, doped to different iron contents (ranging from 1 to 22 at.% Fe). Our results indicate that iron forms metallic Fe nanoparticles with diameters ranging from 1 to 20 nm embedded in the crystalline GaSe matrix. The Fe incorporation proceeds by segregation and agglomeration and induces a progressive disruption of the lamellar GaSe epilayers. The magnetization as a function of the temperature for zero-field cooling with the magnetic field parallel to the surface of the sample provides evidence of superparamagnetic behaviour of the nanoparticles. Cathodoluminescence experiments performed at room temperature reveal semiconducting behaviour even for samples with Fe concentrations as high as 20 at.%

  6. Recovery of iron oxide from coal fly ash

    Science.gov (United States)

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  7. Iron losses evaluation in soft magnetic materials with a sinusoidal voltage supply

    DEFF Research Database (Denmark)

    Nedelcu, Steluţa; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    This paper presents an evaluation method of for specific iron losses in non-oriented laminated steel suitable for electric motors and transformers in the case of a sinusoidal excitation. The model is based on the separation of loss contribution due to hysteresis, eddy currents and excess losses...... (between 0.35 mm and 0.65 mm) and alloy compositions. Hysteresis and eddy currents loss coefficients have been considered as dependent on the frequency. For curve fitting of these coefficients third and fourth polynomials were employed, with good result for all the frequencies and magnetic flux density...... and it is proposing an identification procedure for the model coefficients from multi-frequency single sheet tests. The frequencies used are in the range 10 Hz and 150 Hz and with the values of magnetic flux density in the range 0.1 T and 1.4 T. The model was applied on six magnetic materials of different thicknesses...

  8. Synthesis of a sugar-organometallic compound 1,1′-difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite

    International Nuclear Information System (INIS)

    Zhao Shanyu; Cooper, Daniel C.; Xu, Haixun; Zhu Pinghua; Suggs, J. William

    2013-01-01

    Graphical abstract: In order to synthesize a carbon–metal or metal oxide combination sphere, carbonaceous resource furfural was introduced, which was nucleophilic treated with 1,1′-dilithioferrocene to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1′-difurfurylferrocene, which can be hydrothermally treated in a microwave reactor to give 300–500 nm microspheres with the α-Fe 2 O 3 or Fe 3 O 4 formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses. Highlights: ► We synthesized 1,1′-difurfurylferrocene by nucleophilic treating furfural with 1,1′-dilithioferrocene. ► 1,1′-Difurfurylferrocene can be hydrothermally treated by microwave to give microspheres with iron oxides on the surface. ► 1,1′-Difurfurylferrocene has 2 reactive furanose units, which form carbonspheres and ferrocenyl can give iron oxides. ► REDOX atmosphere influences the coating structures. - Abstract: In order to synthesize a carbon–metal or metal oxide combination sphere, carbonaceous resource furfural 1 was introduced, which was nucleophilic treated with 1,1′-dilithioferrocene 2 to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1′-difurfurylferrocene 3. 1,1′-Difurfurylferrocene 3 can be hydrothermally treated in a microwave reactor to give 300–500 nm microspheres with the α-Fe 2 O 3 or Fe 3 O 4 nanocrystals formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses.

  9. Synthesis of a sugar-organometallic compound 1,1 Prime -difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Shanyu, E-mail: syzhao65@gmail.com [School of Environmental and Safty Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Department of Chemistry, Brown University, Providence, RI 02912-9108 (United States); Cooper, Daniel C. [Department of Chemistry, Brown University, Providence, RI 02912-9108 (United States); Xu, Haixun [Institute of Building Materials, Dalian University of Technology, Dalian, Liaoning 116024 (China); Zhu Pinghua [School of Environmental and Safty Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Suggs, J. William, E-mail: j_suggs@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912-9108 (United States)

    2013-01-01

    Graphical abstract: In order to synthesize a carbon-metal or metal oxide combination sphere, carbonaceous resource furfural was introduced, which was nucleophilic treated with 1,1 Prime -dilithioferrocene to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1 Prime -difurfurylferrocene, which can be hydrothermally treated in a microwave reactor to give 300-500 nm microspheres with the {alpha}-Fe{sub 2}O{sub 3} or Fe{sub 3}O{sub 4} formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses. Highlights: Black-Right-Pointing-Pointer We synthesized 1,1 Prime -difurfurylferrocene by nucleophilic treating furfural with 1,1 Prime -dilithioferrocene. Black-Right-Pointing-Pointer 1,1 Prime -Difurfurylferrocene can be hydrothermally treated by microwave to give microspheres with iron oxides on the surface. Black-Right-Pointing-Pointer 1,1 Prime -Difurfurylferrocene has 2 reactive furanose units, which form carbonspheres and ferrocenyl can give iron oxides. Black-Right-Pointing-Pointer REDOX atmosphere influences the coating structures. - Abstract: In order to synthesize a carbon-metal or metal oxide combination sphere, carbonaceous resource furfural 1 was introduced, which was nucleophilic treated with 1,1 Prime -dilithioferrocene 2 to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1 Prime -difurfurylferrocene 3. 1,1 Prime -Difurfurylferrocene 3 can be hydrothermally treated in a microwave reactor to give 300-500 nm microspheres with the {alpha}-Fe{sub 2}O{sub 3} or Fe{sub 3}O{sub 4} nanocrystals formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses.

  10. Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate

    International Nuclear Information System (INIS)

    Huliselan, Estevanus Kristian; Bijaksana, Satria; Srigutomo, Wahyu; Kardena, Edwan

    2010-01-01

    Leachate sludge samples were taken from two municipal solid waste sites of Jelekong and Sarimukti in Bandung, Indonesia. Their magnetic mineralogy and granulometry were analyzed to discriminate the sources of magnetic minerals using X-ray diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX) and rock magnetism. SEM-EDX analyses infer that the main magnetic minerals in the leachate sludge are iron oxides. In terms of their morphology, the grains from Jelekong are mostly octahedral and angular, which are similar to the general shapes of magnetic grains from the local soils. The grains from Sarimukti, on the other hand, are dominated by imperfect spherule shapes suggesting the product of combustion processes. Hysteresis parameters verify that the predominant magnetic mineral in leachate sludge is low coercivity ferrimagnetic mineral such as magnetite (Fe 3 O 4 ). Furthermore, comparisons of rock magnetic parameters show that the magnetic minerals of soil samples from Jelekong have higher degree of magnetic pedogenesis indicating higher proportion of superparamagnetic/ultrafine particles than those of soil samples from Sarimukti. The plot of susceptibilities ratio versus coercive force has a great potential to be used as a discriminating tool for determining the source of magnetic minerals.

  11. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    Science.gov (United States)

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  12. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  13. Evaluation of cardiac and hepatic iron overload in thalassemia major patients with T2* magnetic resonance imaging.

    Science.gov (United States)

    Wahidiyat, Pustika Amalia; Liauw, Felix; Sekarsari, Damayanti; Putriasih, Siti Ayu; Berdoukas, Vasili; Pennell, Dudley J

    2017-09-01

    Recent advancements have promoted the use of T2* magnetic resonance imaging (MRI) in the non-invasive detection of iron overload in various organs for thalassemia major patients. This study aims to determine the iron load in the heart and liver of patients with thalassemia major using T2* MRI and to evaluate its correlation with serum ferritin level and iron chelation therapy. This cross-sectional study included 162 subjects diagnosed with thalassemia major, who were classified into acceptable, mild, moderate, or severe cardiac and hepatic iron overload following their T2* MRI results, respectively, and these were correlated to their serum ferritin levels and iron chelation therapy. The study found that 85.2% of the subjects had normal cardiac iron stores. In contrast, 70.4% of the subjects had severe liver iron overload. A significant but weak correlation (r = -0.28) was found between cardiac T2* MRI and serum ferritin, and a slightly more significant correlation (r = 0.37) was found between liver iron concentration (LIC) and serum ferritin. The findings of this study are consistent with several other studies, which show that patients generally manifest with liver iron overload prior to cardiac iron overload. Moreover, iron accumulation demonstrated by T2* MRI results also show a significant correlation to serum ferritin levels. This is the first study of its kind conducted in Indonesia, which supports the fact that T2* MRI is undoubtedly valuable in the early detection of cardiac and hepatic iron overload in thalassemia major patients.

  14. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  15. Measurements of magnetic anisotropy in sickle cells

    International Nuclear Information System (INIS)

    Salvo Souza, L.H. de.

    1982-03-01

    Room temperature magnetic measurements in deoxigenated sickle cells showed the existence of magnetic anisotropy, Δchi=1,29 x 10 -3 . This effect was supposed paramagnetic and considered to be due to the iron atoms of the hemoglobin molecules which are one over the other, forming ordered chains inside the erythrocytes. Low temperature (liquid He - 4,2K) measurements of the magnetic anisotropy of sickle cells and normal red blood cells diluted in a cryoprotector was made to confirm the paramagnetic origin of the fenomena. For that purpose it was used a superconductor magnetometer coupled to a SQUID, developed in the 'Laboratorio do Estado Solido do Departamento de Fisica da PUC-RJ'. The results obtained seem to confirm the expected paramagnetic anisotropy and, furthermore, suggest the presence of magnetic interactions among the iron atoms in the sickle cells samples. (Author) [pt

  16. Magnetic iron oxide nanoparticles grafted N-isopropylacrylamide/chitosan copolymer for the extraction and determination of letrozole in human biological samples.

    Science.gov (United States)

    Khalaj Moazen, Mercede; Ahmad Panahi, Homayon

    2017-03-01

    Magnetic iron oxide nanoparticles are used for the extraction of a drug from an aqueous solution. In the current study, the magnetic iron oxide nanoparticles were synthesized via a facile coprecipitation approach, and then modified by (3-mercaptopropyl)trimethoxysilane followed by grafting thermosensitive polymer N-isopropylacrylamide and biopolymer chitosan. Structure, morphology, size, thermal resistance, specific surface area, and magnetic properties of the grafted nanosorbent were characterized by using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, elemental analysis, thermogravimetric analysis, specific surface area analysis and vibrating sample magnetometry. The effective parameters on sorption/desorption of letrozole on grafted magnetic nanosorbent were evaluated. The best sorption of letrozole via the grafted nanosorbent occurred at 20°C at an optimum pH of 7. The extraction of trace letrozole in human biological fluids is investigated and revealed 89.1 and 97.8% recovery in plasma and urine, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  18. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth -transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co (20 to 70 atomic percent); and at least one of Ce, Pr, Na, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y (80 to 30 atomic percent). (author)

  19. Magnetic particle inspection

    Science.gov (United States)

    Sastri, Sankar

    1990-01-01

    The purpose of this experiment is to familiarize the student with magnetic particle inspection and relate it to classification of various defects. Magnetic particle inspection is a method of detecting the presence of cracks, laps, tears, inclusions, and similar discontinuities in ferromagnetic materials such as iron and steel. This method will most clearly show defects that are perpendicular to the magnetic field. The Magnaglo method uses a liquid which is sprayed on the workpiece to be inspected, and the part is magnetized at the same time. The workpiece is then viewed under a black light, and the presence of discontinuity is shown by the formation of a bright indication formed by the magnetic particles over the discontinuity. The equipment and experimental procedures are described.

  20. Property and process correlations for iron-enriched basalt waste forms

    International Nuclear Information System (INIS)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-02-01

    Correlations of thermodynamic properties and process parameters of high-temperature slag for a range of compositions of iron-enriched basalt are presented. The quantification of the properties of this complex mixture can assist in the design and monitoring of high-temperature melting systems for the treatment of radioactive and hazardous wastes at the Idaho National Engineering Laboratory. The buried and stored wastes at the INEL Radioactive Waste Management Complex have a similar composition to iron-enriched basalt after oxidation of organics. The properties correlated are the viscosity, electrical conductivity, refractory corrosion, and recrystallization temperature. The correlations are expressed as a function of input waste-soil mixture composition, alkali concentration, and slag temperature. An application to determine the effect of alkali flux on slag temperature, leach rate, and volume reduction is presented. Though the correlations are for mixtures of soil and waste with average transuranic-contaminated waste compositions, it appears that good approximations for other waste streams and glass-ceramic waste forms can be obtained because of similarities in composition

  1. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  2. Iron(iii) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations.

    Science.gov (United States)

    Gajewska, Małgorzata J; Bieńko, Alina; Herchel, Radovan; Haukka, Matti; Jerzykiewicz, Maria; Ożarowski, Andrzej; Drabent, Krzysztof; Hung, Chen-Hsiung

    2016-09-27

    The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(iii) complex with the formula [Fe 10 (bdtbpza) 10 (μ 2 -OCH 3 ) 20 ] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0-300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(iii) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was proved using a broken-symmetry approach within the density functional method at the B3LYP/def2-TZVP(-f)/def2-SVP level of theory.

  3. Hepatic Iron Quantification on 3 Tesla (3 T Magnetic Resonance (MR: Technical Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Muhammad Anwar

    2013-01-01

    Full Text Available MR has become a reliable and noninvasive method of hepatic iron quantification. Currently, most of the hepatic iron quantification is performed on 1.5 T MR, and the biopsy measurements have been paired with R2 and R2* values for 1.5 T MR. As the use of 3 T MR scanners is steadily increasing in clinical practice, it has become important to evaluate the practicality of calculating iron burden at 3 T MR. Hepatic iron quantification on 3 T MR requires a better understanding of the process and more stringent technical considerations. The purpose of this work is to focus on the technical challenges in establishing a relationship between T2* values at 1.5 T MR and 3 T MR for hepatic iron concentration (HIC and to develop an appropriately optimized MR protocol for the evaluation of T2* values in the liver at 3 T magnetic field strength. We studied 22 sickle cell patients using multiecho fast gradient-echo sequence (MFGRE 3 T MR and compared the results with serum ferritin and liver biopsy results. Our study showed that the quantification of hepatic iron on 3 T MRI in sickle cell disease patients correlates well with clinical blood test results and biopsy results. 3 T MR liver iron quantification based on MFGRE can be used for hepatic iron quantification in transfused patients.

  4. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian [Department of Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren [State Key Lab of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang Biao, E-mail: wuyulian@medmail.com.c, E-mail: yulianwu2003@yahoo.c [Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2009-09-09

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet {beta}-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into {beta}-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  5. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian; Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren; Jiang Biao

    2009-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  6. The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells

    Czech Academy of Sciences Publication Activity Database

    Uzhytchak, M.; Lynnyk, A.; Zablotskyy, V.; Dempsey, N.M.; Dias, A.L.; Bonfim, M.; Lunova, M.; Jirsa, M.; Kubinová, Šárka; Lunov, O.; Dejneka, A.

    2017-01-01

    Roč. 111, č. 24 (2017), s. 243703 ISSN 0003-6951 Institutional support: RVO:68378041 Keywords : pulsed magnetic fields * increase the uptake * iron oxide * living cells Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.411, year: 2016

  7. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, Michail, E-mail: msamouhos@metal.ntua.gr [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Taxiarchou, Maria; Tsakiridis, Petros E. [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Potiriadis, Konstantinos [Greek Atomic Energy Commission (GAEC), Patriarxou Grigoriou and Neapoleos, P.O. Box 60092, 15310 Agia Paraskevi, Athens (Greece)

    2013-06-15

    Highlights: • Microwave reduction of a red mud. •Measurement of real and imaginary permittivity of red mud–lignite mixture. •Red mud was subjected to reductive roasting and magnetic separation processes. •The optimum concentrate contains 31.6% iron with a 69.3% metallization degree. •{sup 226}Ra, {sup 228}Ra, {sup 238}U, {sup 228}Th, {sup 232}Th, {sup 40}K were detected in the magnetic concentrate. -- Abstract: The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.% C{sub fix}), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe{sub 2}O{sub 3} → Fe{sub 3}O{sub 4} → FeO → Fe sequence. The dielectric constants [real (ε′) and imaginary (ε″) permittivities] of red mud–lignite mixture were determined at 2.45 GHz, in the temperature range of 25–1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained.

  8. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-07-01

    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  9. Comparison of Magnetic Characteristics of Powder Magnetic Core and Evaluation of Motor Characteristics

    Science.gov (United States)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Yamazaki, Katsuyuki; Asaka, Kazuo; Ishihara, Chio; Ohiwa, Syoji

    A magnetic characteristic measurement, a motor characteristic forecast, and an experimental evaluation of various powder magnetic cores were performed aiming at a fixed quantity grasp when the powder magnetic core was applied to the motor core as the magnetic material. The manufacturing conditions were changed, and magnetic characteristic compares a direct current magnetization characteristic and an iron disadvantageous characteristic with the silicon steel board for a different powder magnetic core. Therefore, though some permeabilities are low, characteristics almost equal to those of a silicon steel board were obtained in the maximum saturation magnetic induction, which confirms that the powder magnetic core in disadvantageous iron in a certain frequency domain, and to confirm disadvantageous iron lowers. Moreover, it has been shown to obtain characteristics almost equal to the silicon steel board when compared in terms of motor efficiency, though some disadvantageous iron increases since the effect when applying to the motor is verified the silicon steel board and the comparison evaluation for the surface type permanent magnet motor.

  10. Magnetism of iron, cobalt and nickel clusters studied in molecular beams

    International Nuclear Information System (INIS)

    Billas, I.

    1995-01-01

    The magnetic properties of iron, cobalt and nickel clusters in a molecular beam have been studied in a magnetic Stern-Gerlach deflection experiment. The molecular beam apparatus consists of a laser vaporization cluster source with high intensity and stability and a high-resolution time-of-flight mass spectrometer for the deflection measurements. Several novel experimental features have been developed in this work, like a nozzle which can be heated up to 1000 K and a chopper to measure the dwell times of the clusters in the source and their corresponding velocities. These new developments have allowed the measurement and the control of the temperature of the free clusters. The Stern-Gerlach deflection experiments have been performed on Fe, Co and Ni clusters in the mass range from 20 to 700 atoms. All clusters show single-sided deflection toward increasing field. This observation indicates that a spin relaxation process occurs within the isolated clusters. The participation of both the cluster rotational and vibrational degrees of freedom to the spin relaxation has been experimentally demonstrated. The cluster magnetization has been determined as a function of applied magnetic field B and as a function of dwell times of the clusters in the source before the supersonic expansion into vacuum. Superparamagnetic behavior has been observed when the cluster rotational speed is much larger than the Larmor frequency of the cluster magnetic moment μ in the field B. In particular, for μB<< kT, the cluster magnetization depends on B/T. For lower rotational speeds, reduced values of the magnetization have been observed. The magnetic moments of the superparamagnetic Fe, Co and Ni clusters have been measured as a) a function of cluster size N at low temperature and b) as a function of cluster temperature T for various size ranges. (author) figs., tabs., refs

  11. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    Science.gov (United States)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    cuprates, a superconducting 'dome' is formed upon doping the parent compounds, which exhibits antiferromagnetic and structural transitions at temperatures well above the superconducting critical temperature. This special section touches on several key aspects of these new iron-based superconductors. These topics include materials synthesis and basic characterization, the role of impurities and pairing symmetry, and mapping of the superconducting phase diagram as a function of chemical doping and pressure. Studies of transport, magnetic and optical properties account for a substantial portion of this special section. Particular attention is devoted to the role of magnetic excitations and the issue of the possible coexistence of magnetism and superconductivity. Attempts to understand the nature of the superconducting pairing are discussed from several angles, including tunneling spectroscopy and the London penetration depth. The vortex state is probed by magnetization, transport and neutron scattering, while the irreversible state is probed by studies of magnetic and transport critical current density.

  12. Iron impregnated carbon materials with improved physicochemical characteristics

    International Nuclear Information System (INIS)

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    Highlights: • The morphology of raw AC was altered upon Fe impregnation and surface oxidation. • Surface modification had increased the pores diameter and surface functionalities. • Development of iron oxides have been expected on Fe impregnated carbon materials. • The M1, M2 and M3 have revealed magnetic susceptibility in applied magnetic field. • Dyes removal efficiency of M3 was notably higher (90–99%) than the raw AC (60–85%). - Abstract: This paper highlights the effect of iron impregnation and surface oxidation on the physicochemical characteristics of iron impregnated carbon materials. These materials were characterized by various techniques like surface area, pore size distribution, SEM/EDX, CHN, XRD, FTIR, TG/DT, VSM and XPS analyses. The increase in the surface functionalities and pores diameter (3.51–5.49 nm) of the iron-impregnated carbon materials was observed with the increase in iron contents and surface oxidation. The saturated magnetization values (0.029–0.034 emu/g) for the iron-impregnated carbon materials reflected the magnetic tendency due to the development of small size iron oxides on their surfaces. The XPS spectra revealed the existence of different oxidation states of the corresponding metals on the iron impregnated carbon materials. The percentage removal of model dyes (Methylene Blue and Methyl Orange) by iron-impregnated carbon materials was enhanced (>90%) with the increase in iron contents and pores diameters.

  13. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties.

    Science.gov (United States)

    Costo, Rocio; Bello, Valentina; Robic, Caroline; Port, Marc; Marco, Jose F; Puerto Morales, M; Veintemillas-Verdaguer, Sabino

    2012-01-10

    A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.

  14. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    International Nuclear Information System (INIS)

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-01-01

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied

  15. Magnetically triggered clustering of biotinylated iron oxide nanoparticles in the presence of streptavidinylated enzymes

    International Nuclear Information System (INIS)

    Hodenius, Michael; De Cuyper, Marcel; Hieronymus, Thomas; Zenke, Martin; Becker, Christiane; Elling, Lothar; Bornemann, Jörg; Wong, John E; Richtering, Walter; Himmelreich, Uwe

    2012-01-01

    This work deals with the production and characterization of water-compatible, iron oxide based nanoparticles covered with functional poly(ethylene glycol) (PEG)–biotin surface groups (SPIO–PEG–biotin). Synthesis of the functionalized colloids occurred by incubating the oleate coated particles used as precursor magnetic fluid with anionic liposomes containing 14 mol% of a phospholipid–PEG–biotin conjugate. The latter was prepared by coupling dimyristoylphosphatidylethanolamine (DC 14:0 PE) to activated α-biotinylamido-ω –N-hydroxy-succinimidcarbonyl–PEG (NHS–PEG–biotin). Physical characterization of the oleate and PEG–biotin iron oxide nanocolloids revealed that they appear as colloidal stable clusters with a hydrodynamic diameter of 160 nm and zeta potentials of − 39 mV (oleate coated particles) and − 14 mV (PEG–biotin covered particles), respectively, as measured by light scattering techniques. Superconducting quantum interference device (SQUID) measurements revealed specific saturation magnetizations of 62–73 emu g −1 Fe 3 O 4 and no hysteresis was observed at 300 K. MR relaxometry at 3 T revealed very high r 2 relaxivities and moderately high r 1 values. Thus, both nanocolloids can be classified as small, superparamagnetic, negative MR contrast agents. The capacity to functionalize the particles was illustrated by binding streptavidin alkaline phosphatase (SAP). It was found, however, that these complexes become highly aggregated after capturing them on the magnetic filter device during high-gradient magnetophoresis, thereby reducing the accessibility of the SAP. (paper)

  16. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  17. Effects of iron-oxide nanoparticles and magnetic fields on oral biofilms

    Science.gov (United States)

    Alas, Gema; Pagano, Ronald E.; Nguyen, Jane Q.; Bandara, H. M. H. Nihal; Ivanov, Sergei A.; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek

    2017-02-01

    Human mouth is a host of a large gamut of bacteria species, with over 700 of different bacteria strains identified. Most of these bacterial species are harmless, some are beneficial (such as probiotics assisting in food digestion), but some are responsible for various diseases, primarily tooth decay and gum diseases such as gingivitis and periodontitis. For example, Streptococus mutans produces enamel-eroding acids, while Porphyromonas gingivalis is strongly linked to periodontitis. In this paper, we report on the effects of exposure of oral biofilms to iron oxide nanoparticles and static magnetic fields as possible bactericidal agent.

  18. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam

    Science.gov (United States)

    Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie

    2018-03-01

    Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.

  19. Propagation of magnetostatic spin waves in an yttrium iron garnet film for out-of-plane magnetic fields

    Science.gov (United States)

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.

    2018-06-01

    We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.

  20. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    Directory of Open Access Journals (Sweden)

    Uchiyama MK

    2015-07-01

    Full Text Available Mayara Klimuk Uchiyama,1 Sergio Hiroshi Toma,1 Stephen Fernandes de Paula Rodrigues,2 Ana Lucia Borges Shimada,2 Rodrigo Azevedo Loiola,2 Hernán Joel Cervantes Rodríguez,3 Pedro Vitoriano Oliveira,4 Maciel Santos Luz,4 Said Rahnamaye Rabbani,3 Henrique Eisi Toma,1 Sandra Helena Poliselli Farsky,2 Koiti Araki11Laboratory of Supramolecular Chemistry and Nanotechnology, Department of Fundamental Chemistry, Institute of Chemistry, 2Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, 3Magnetic Resonance Laboratory, Department of General Physics, Institute of Physics, 4Analysis and Research Group in Spectrometry, Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, BrazilAbstract: Fully dispersible, cationic ultrasmall (7 nm diameter superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM-1s-1 in 0.47 T and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight, they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy, but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat

  1. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    Science.gov (United States)

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  2. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  3. Approach to magnetic neutron capture therapy

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.; Komissarova, Lubov Kh.; Kuznetsov, Oleg A.

    2005-01-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area of tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity

  4. Influence of iron impurities on defected graphene

    Energy Technology Data Exchange (ETDEWEB)

    Faccio, Ricardo; Pardo, Helena [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay); Araújo-Moreira, Fernando M. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, SP 13565-905 (Brazil); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay)

    2015-03-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism.

  5. Influence of iron impurities on defected graphene

    International Nuclear Information System (INIS)

    Faccio, Ricardo; Pardo, Helena; Araújo-Moreira, Fernando M.; Mombrú, Alvaro W.

    2015-01-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism

  6. Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide–gold nanoparticles

    International Nuclear Information System (INIS)

    Barnett, C. M.; Gueorguieva, M.; Lees, M. R.; McGarvey, D. J.; Darton, R. J.; Hoskins, C.

    2012-01-01

    Hybrid nanoparticles (HNPs) formed from iron oxide cores and gold nano-shells are becoming increasingly applicable in biomedicine. However, little investigation has been carried out on the effects of the constituent components on their physical characteristics. Here we determine the effect of polymer intermediate, gold nano-shell thickness and magnetic iron oxide core diameter on the morphological and physical properties of these nano-hybrids. Our findings suggest that the use of polymer intermediate directly impacts the morphology of the nanostructure formed. Here, we observed the formation of nano-sphere and nano-star structures by varying the cationic polymer intermediate. The nano-stars formed have a larger magnetic coercivity, T 2 relaxivity and exhibited a unique characteristic nano-heating pattern upon laser irradiation. Increasing the iron oxide core diameter resulted in a greater T 2 relaxivity enhanced and nano-heating capabilities due to increased surface area. Increasing the gold nano-shell thickness resulted in a decreased efficiency as a nano-heater along with a decrease in T 2 relaxivity. These results highlight the importance of identifying the key traits required when fabricating HNPs in order to tailor them to specific applications.

  7. Cast iron (CI) based soft magnetic BMG Ci{sub 88.3}Al{sub 2}Ga{sub 1}P{sub 4.35}B{sub 4.35}

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S N; Lee, H J; Jeong, Y H [Department of Physics, Pohang University of Science and Technology (POSTECH), 790-784 Pohang (Korea, Republic of); Varga, L K, E-mail: varga@szfki.h [RISSPO, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest (Hungary)

    2009-01-01

    Thermal stability, structure, and magnetic properties of bulk type Ci{sub 88.3}Al{sub 2}Ga{sub 1}P{sub 4.35}B{sub 4.35} alloy in ribbon form have been studied using differential thermal analysis, x-ray diffraction and magnetic measurements. Results reveal that crystallization peak temperature (T{sub x}) and Curie temperature (T{sub c}) of the as-cast alloy are respectively 513 and 370 deg. C. Crystallization of the specimen starts after annealing at 460 deg. C and alpha-Fe is precipitated out. Annealing at temperatures higher than 515 deg. C, produces apart from alpha-Fe, hard magnetic precipitants (Fe{sub 2}B, Fe{sub 3}B), which deteriorate the soft magnetic properties. Lowest coercive field - 9.8 A/m, highest saturation of induction - 1.55 Tesla and best losses - 0.42 W/kg (at 50 Hz and 0.4 kA/m) were obtained for as-cast specimen. Observed good soft magnetic properties of these low cost cast-iron based alloys suggest perspective applications of these soft magnetic alloys as an alternative to the conventional Fe-Si electrical steel and Mn-Zn ferrites.

  8. Application of in situ digital holography to the study of the effect of a magnetic field on the anodic dissolution of iron in thichloroacetic acid

    Directory of Open Access Journals (Sweden)

    XUEGENG YANG

    2006-01-01

    Full Text Available The effect of a magnetic field on the anodic dissolution of iron in 1.0 mol dm-3 trichloroacetic acid solution was studied by the potentiodynamic polarization method and in situ digital holography. It was found that the magnetohydrodynamic force increased the mass transport, which resulted in a faster anodic dissolution of iron. The effect of the magnetic field was analyzed by holograms and is discussed in terms of the magnetohydrodynamic force.

  9. Spin dynamics on cyclic iron wheels in high magnetic fields

    International Nuclear Information System (INIS)

    Schnelzer, Lars

    2008-01-01

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal

  10. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Akbaba, Hasan; Karagöz, Uğur [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey); Selamet, Yusuf [Izmir Institute of Technology, Faculty of Science, Department of Physics, 35433 Izmir (Turkey); Kantarcı, A. Gülten, E-mail: gulten.kantarci@ege.edu.tr [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey)

    2017-03-15

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15–17 emu g{sup −1} for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting. - Highlights: • A novel iron oxide nanoparticle synthesis method with in-situ surface coating. • Combining advantages of microemulsions and multiple emulsion methods. • Multiple emulsions were used as microreactors for magnetic nanoparticle synthesis. • Superparamagnetic iron oxide particles synthesized in the core of cationic lipids. • Possible delivery systems for nucleic acids, oil soluble compounds or drugs.

  11. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field.

    Science.gov (United States)

    Rajabbeigi, Elham; Ghanati, Faezeh; Abdolmaleki, Parviz; Payez, Atefeh

    2013-12-01

    This study was aimed to evaluate antioxidant response of parsley cells to 21 ppm iron and static magnetic field (SMF; 30 mT). The activity of catalase (CAT) and ascorbate peroxidase (APX) and the contents of malonyldialdehyde, iron and ferritin were measured at 6 and 12 h after treatments. Exposure to SMF increased the activity of CAT in treated cells, while combination of iron and SMF treatments as well as iron supply alone decreased CAT activity, compared to that of control cells. Combination of SMF with iron treatment reduced iron content of the cells and ameliorated mal effect of iron on CAT activity. All treatments reduced APX activity; however, the content of total ascorbate increased in response to iron and SMF+iron. The results showed that among the components of antioxidant system of parsley cells, enhanced activity of CAT in SMF-treated cells and increase of ascorbate in SMF+Fe-treated ones were responsible for the maintenance of membranes integrity. Ferritin contents of SMF- and SMF+Fe-treated cells also decreased significantly 12 h after treatments, compared to those of the control cells. These results cast doubt on the proposed functions of ferritin as a putative reactive oxygen species detoxifying molecule.

  12. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mazhar42pk@yahoo.com; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad [Physics Division, Pinstech, P.O. Nilore, Islamabad (Pakistan); Shah, Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Hasanain, S. Khurshid [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-06-24

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg{sub 2} nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the {sup 57}Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  13. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    International Nuclear Information System (INIS)

    Nazir, Rabia; Mazhar, Muhammad; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad; Shah, Raza; Hasanain, S. Khurshid

    2009-01-01

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg 2 nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the 57 Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  14. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  15. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    Science.gov (United States)

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  16. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  17. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex

    International Nuclear Information System (INIS)

    Ong, Hun Tiar; Julkapli, Nurhidayatullaili Muhd; Hamid, Sharifah Bee Abd; Boondamnoen, O.; Tai, Mun Foong

    2015-01-01

    Nitrile butadiene rubber (NBR) gloves are one of the most important personal protective equipments but they are possible to tear off and contaminate food or pharmaceutical and healthcare products during manufacturing and packaging process. High tendency of torn glove remaining in food or products due to white or light flesh-coloured glove is not easy to be detected by naked eyes. In this paper, iron oxide nanoparticles (IONs) selected as additive for NBR to improve its detectability by mean of magnetic properties. IONs synthesized via precipitation method and compounded with NBR latex before casting on petri dish. The properties of IONs were investigated by X-ray Diffractometry (XRD), Transmission Electron Microscope (TEM), Raman Spectroscopy and Vibrating Sample Magnetometer (VSM). Meanwhile NBR/IONs composites were studied by Thermogravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Vibrating Sample Magnetometer (VSM). It observed that, synthesized IONs shows of 25.28 nm crystallite with 25.86 nm semipherical (changed as) shape. Meanwhile, Magnetite and maghemite phase are found in range of 670 cm −1 and 700 cm −1 respectively, which it contributes magnetization saturation of 73.96 emu/g at 10,000 G by VSM. Thermal stability and magnetic properties were increased with incorporating IONs into NBR latex up to 20 phr. NBR/IONs 5 phr has the optimum thermal stability, lowest glass transition temperature (−14.83 °C) and acceptable range of magnetization saturation (3.83 emu/g at 10,000 G) to form NBR gloves with magnetic detectability. - Highlights: • We synthesized IONs with high magnetization saturation (M s ). • High M s of IONs were incorporated into NBR latex in order to induce magnetic properties in the NBR composite. • Introduction of IONs into NBR latex would improve thermal properties. • The produced NBR/IONs 5 phr composite exceeded the minimum magnetic moment sensor of the detector. • They have high potential for the

  18. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hun Tiar; Julkapli, Nurhidayatullaili Muhd; Hamid, Sharifah Bee Abd, E-mail: sharifahbee@um.edu.my; Boondamnoen, O.; Tai, Mun Foong

    2015-12-01

    Nitrile butadiene rubber (NBR) gloves are one of the most important personal protective equipments but they are possible to tear off and contaminate food or pharmaceutical and healthcare products during manufacturing and packaging process. High tendency of torn glove remaining in food or products due to white or light flesh-coloured glove is not easy to be detected by naked eyes. In this paper, iron oxide nanoparticles (IONs) selected as additive for NBR to improve its detectability by mean of magnetic properties. IONs synthesized via precipitation method and compounded with NBR latex before casting on petri dish. The properties of IONs were investigated by X-ray Diffractometry (XRD), Transmission Electron Microscope (TEM), Raman Spectroscopy and Vibrating Sample Magnetometer (VSM). Meanwhile NBR/IONs composites were studied by Thermogravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Vibrating Sample Magnetometer (VSM). It observed that, synthesized IONs shows of 25.28 nm crystallite with 25.86 nm semipherical (changed as) shape. Meanwhile, Magnetite and maghemite phase are found in range of 670 cm{sup −1} and 700 cm{sup −1} respectively, which it contributes magnetization saturation of 73.96 emu/g at 10,000 G by VSM. Thermal stability and magnetic properties were increased with incorporating IONs into NBR latex up to 20 phr. NBR/IONs 5 phr has the optimum thermal stability, lowest glass transition temperature (−14.83 °C) and acceptable range of magnetization saturation (3.83 emu/g at 10,000 G) to form NBR gloves with magnetic detectability. - Highlights: • We synthesized IONs with high magnetization saturation (M{sub s}). • High M{sub s} of IONs were incorporated into NBR latex in order to induce magnetic properties in the NBR composite. • Introduction of IONs into NBR latex would improve thermal properties. • The produced NBR/IONs 5 phr composite exceeded the minimum magnetic moment sensor of the detector. • They have high

  19. AC relaxation in the iron(8) molecular magnet

    Science.gov (United States)

    Rose, Geordie

    2000-11-01

    We investigate the low energy magnetic relaxation characteristics of the ``iron eight'' (Fe8) molecular magnet. Each molecule in this material contains a cluster of eight Fe 3+ ions surrounded by organic ligands. The molecules arrange themselves into a regular lattice with triclinic symmetry. At sufficiently low energies, the electronic spins of the Fe3+ ions lock together into a ``quantum rotator'' with spin S = 10. We derive a low energy effective Hamiltonian for this system, valid for temperatures less than Tc ~ 360 mK , where Tc is the temperature at which the Fe8 system crosses over into a ``quantum regime'' where relaxation characteristics become temperature independent. We show that in this regime the dominant environmental coupling is to the environmental spin bath in the molecule. We show how to explicitly calculate these couplings, given crystallographic information about the molecule, and do this for Fe8. We use this information to calculate the linewidth, topological decoherence and orthogonality blocking parameters. All of these quantities are shown to exhibit an isotope effect. We demonstrate that orthogonality blocking in Fe8 is significant and suppresses coherent tunneling. We then use our low energy effective Hamiltonian to calculate the single-molecule relaxation rate in the presence of an external magnetic field with both AC and DC components by solving the Landau-Zener problem in the presence of a nuclear spin bath. Both sawtooth and sinusoidal AC fields are analyzed. This single-molecule relaxation rate is then used as input into a master equation in order to take into account the many-molecule nature of the full system. Our results are then compared to quantum regime relaxation experiments performed on the Fe8 system.

  20. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    International Nuclear Information System (INIS)

    Goodwill, Patrick; Konkle, Justin; Lu, Kuan; Zheng, Bo; Conolly, Steven

    2014-01-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  1. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodwill, Patrick [University of California, Dept. of Bioengineering, Berkeley, CA (United States); Konkle, Justin; Lu, Kuan; Zheng, Bo [UC Berkeley (UCSF), Joint Graduate Group in Bioengineering, CA (United States); Conolly, Steven [University of California, Berkeley Bioengineering, Electrical Engineering, and Computer Science, CA (United States)

    2014-07-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  2. Transformation of iron forms during pedogenesis after tree uprooting in a natural beech-dominated forest

    Czech Academy of Sciences Publication Activity Database

    Tejnecký, V.; Šamonil, P.; Matys Grygar, Tomáš; Vašát, R.; Ash, C.; Drahota, P.; Šebek, O.; Němeček, K.; Drábek, O.

    2015-01-01

    Roč. 132, SEP (2015), s. 12-20 ISSN 0341-8162 Institutional support: RVO:61388980 Keywords : Soil formation * Iron forms * Tree uprooting * Pit–mound microtopography * Cambisols * Old -growth temperate forest Subject RIV: DF - Soil Science Impact factor: 2.612, year: 2015

  3. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  4. The use of a relaxation method to calculate the 3D magnetic field contribution of an iron yoke

    International Nuclear Information System (INIS)

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-07-01

    A computational procedure has been developed for calculating the three-dimensional field produced by an axisymmetric iron yoke of high permeability in the presence of a system of conductors. The procedure is particularly applicable to the end regions of multipole magnets of the sort used in particle accelerators. The field produced by the conductors is calculated using the Biot-Savart law. We speak of the field contribution of the yoke as an ''image field'' although it is associated with a distinctly diffuse distribution of image currents or magnetic moments. At every point on the boundary of the yoke the total scalar potential is constant, so V i = -V d where i=image and d=direct contribution from the conductors. If we describe both potentials as a series of ''harmonic components'' with respect to azimuthal dependence, then the nature of the boundary condition is such that a de-coupling of one harmonic component from another is preserved and therefore it is also true that V i (n)=-V d (n) at the iron interface, where n is a harmonic number. If we solve the appropriate individual differential equations for the scalar potential functions V i (n) throughout the iron-free region, with the proper applied boundary condition for the scalar potential of each harmonic number, we shall achieve upon summation the appropriate potential function to describe the field contribution of the surrounding high-permeability iron. 2 refs., 3 figs

  5. Precision formed micro magnets: LDRD project summary report

    Energy Technology Data Exchange (ETDEWEB)

    CHRISTENSON,TODD R.; GARINO,TERRY J.; VENTURINI,EUGENE L.

    2000-02-01

    A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.

  6. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  7. Characterisation of the coke formed during metal dusting of iron in CO-H2-H2O gas mixtures

    International Nuclear Information System (INIS)

    Zhang, J.; Schneider, A.; Inden, G.

    2003-01-01

    Carbon deposits formed on the surface of iron samples during carburisation at 700 deg. C in a gas mixture of 75%CO-24.81%H 2 -0.19%H 2 O were characterised by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Moessbauer spectroscopy and transmission electron microscopy (TEM). Cross-section observation of the iron sample by light optical microscopy revealed the formation of cementite after only 10 min reaction, together with a thin layer of graphite. After 4 h reaction, a thick coke layer was formed on top of the cementite surface. SEM surface observation indicated the formation of filamentous carbon in the coke layer. Further analysis of the coke by XRD and Moessbauer showed the presence of mainly Fe 3 C and small amount of Fe 2 C but no metallic iron in the carbon deposit. TEM analysis of the coke detected very convoluted filaments with iron-containing particles at the tip or along their length. These particles were identified to be cementite by selected area diffraction. Carbon deposits produced at the same temperature but with other gas compositions were also analysed by using XRD. It was found that with a low content of CO, e.g. 5%, both α-Fe and Fe 3 C were detected in the coke. Increasing CO content to more than 30%, iron carbide was the only iron-containing phase

  8. Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Seifan, Mostafa; Sarmah, Ajit K; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-03-01

    Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete.

  9. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, Eva; Pospišková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, FEB (2017), s. 1342-1346 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA14-11516S; GA MŠk(CZ) LD14075 Institutional support: RVO:67179843 Keywords : removal * Leptothrix * Magnetic modification * Iron oxide * High aspect ratio material Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.164, year: 2016

  10. Grand Challenges for Environmental Magnetism

    Science.gov (United States)

    Verosub, K. L.

    2009-05-01

    The development of new, inexpensive, and rapid geochemical methods for determining the ages of geologic materials, their elemental composition, and their isotopic ratios over a broad array of elements puts into sharp focus the question: What information can environmental magnetic methods provide that can't be obtained using these other methods? Because iron is ubiquitous in the Earth's crust and because it exists in so many different forms, a discipline that looks in detail at iron-bearing minerals does have the potential to make significant contributions to the study of surficial processes. However, to reach that potential requires the development of new environmental magnetic methods. I would like to put forward three Grand Challenges for environmental magnetism that have the potential to move the field forward to a new level of scientific sophistication and that will allow environmental magnetists to compete successfully in a world increasingly dominated by geochemists. The first Grand Challenge is the development of new techniques that lead to the direct and unambiguous identification of the full suite of magnetic minerals. For many environmental magnetic applications, the key magnetic minerals are not just magnetite and hematite but also iron oxy-hydroxides (goethite, lepidocrocite, akaganeite, ferrihydrite), carbonates (siderite) and sulfides (pyrrhotite and greigite) as well as compounds involving iron and other transition metals (cobalt and nickel). The second Grand Challenge is the development of new analytical methods that provide specific quantitative values for the amount of each magnetic mineral present in a sample. One promising approach to this problem is the application of two- or three-component multivariate analysis to arrays of downcore environmental magnetic parameters. The third Grand Challenge is the development of new ways of determining, not just the average values, but the actual distributions of grain sizes and coercivities of each mineral

  11. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  12. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    Science.gov (United States)

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  13. Chemical synthesis and characterization of hollow dopamine coated, pentagonal and flower shaped magnetic iron oxide nanoparticles

    Science.gov (United States)

    Riasat, Rabia; Kaynat, Sumbal

    2018-04-01

    Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

  14. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hałupka-Bryl, Magdalena, E-mail: magdalenahalupka@op.pl [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Bednarowicz, Magdalena [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Dobosz, Bernadeta; Krzyminiewski, Ryszard [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Zalewski, Tomasz [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Wereszczyńska, Beata [Department of Macromolecular Physics, Adam Mickiewicz University, Poznań (Poland); Nowaczyk, Grzegorz; Jarek, Marcin [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Nagasaki, Yukio [Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Master’s School of Medicinal Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba (Japan); International Centre for Materials Nanoarchitectonics Satellite (WPI-MANA), National Institute For Materials Sciences (NIMS) and University of Tsukuba (Japan)

    2015-06-15

    Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles with chemiotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer. The aim of this work is to characterize physical and magnetic properties of synthesized nanoparicles. Characterization was carried out using EPR, HRTEM, X-ray diffraction, SQUID and NMR methods. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery. - Highlights: • Synthesized PEG-PIONs/DOX have excellent physical properties. • PEG-PIONs/DOX have a potential to in vivo application. • PEG-PIONs/DOX could be used as drug delivery system as well as contrast agents.

  15. Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field

    Science.gov (United States)

    Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.

    2018-05-01

    A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m 0.0 m) for the spiral muon injection from the iron yoke at top.

  16. Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method

    Science.gov (United States)

    Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.

    2018-04-01

    Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.

  17. Absorption of medicamental iron and iron from food

    International Nuclear Information System (INIS)

    Reizenstein, P.; Carlmark, B.; Ehn, L.; Forsberg, K.; Hoeglund, S.; Terpstra, T.

    1976-01-01

    Methods are reviewed for the measurement of iron absorption. The chemical balance method has been almost entirely supplanted by radioisotope methods, which include notably whole-body counting and measurement of incorporation of radioiron into red cells. A survey is also given of the various conditions that influence iron absorption, including chemical form of iron, amount of iron, accompanying diet. Absorption tests must be conducted under relevant conditions. (author)

  18. Magnetic properties of magnetic glass-like carbon prepared from furan resin alloyed with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazumasa, E-mail: naka@sss.fukushima-u.ac.jp [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Okuyama, Kyoko [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Takase, Tsugiko [Institute of Environmental Radioactivity (IER), Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan)

    2017-03-01

    Magnetic glass-like carbons that were heat-treated at different temperatures or were filled with different magnetic nanoparticle contents were prepared from furan resin alloyed with magnetic fluid (MF) or Fe{sub 3}O{sub 4} powder in their liquid-phase states during mixing. Compared to the Fe{sub 3}O{sub 4} powder-alloyed carbon, the MF-alloyed carbon has highly dispersed the nanoparticles, and has the excellent saturation magnetization and coercivity. It is implied that saturation magnetizations are related to changes in the types of phases for the nanoparticles and the relative intensities of X-ray diffraction peaks for iron and iron-containing compounds in the carbons. Additionally, the coercivities are possibly affected by the size and crystallinity of the nanoparticles, the relative amounts of iron, and the existence of amorphous compounds on the carbon surfaces. - Highlights: • Magnetic glass-like carbons were prepared from furan resin alloyed with magnetic fluid. • The nanoparticles of MF-alloyed GLCs were highly dispersed. • MF-alloyed GLCs had excellent magnetic properties compared to powder-alloyed ones. • The magnetic properties changed with treatment temperature and nanoparticle content. • The changes in magnetic properties were investigated with XRD and FE-SEM.

  19. Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications.

    Science.gov (United States)

    Calero, Macarena; Gutiérrez, Lucía; Salas, Gorka; Luengo, Yurena; Lázaro, Ana; Acedo, Pilar; Morales, M Puerto; Miranda, Rodolfo; Villanueva, Angeles

    2014-05-01

    We have performed a series of in vitro tests proposed for the reliable assessment of safety associated with nanoparticles-cell interaction. A thorough analysis of toxicity of three different coating iron oxide nanoparticles on HeLa cells has been carried out including, methyl thiazol tetrazolium bromide (MTT) and Trypan blue exclusion tests, cell morphology observation by optical and Scanning Electron Microscopy (SEM), study of cytoskeletal components, analysis of cell cycle and the presence of reactive oxygen species (ROS). We have quantified magnetic nanoparticle internalization, determined possible indirect cell damages and related it to the nanoparticle coating. The results confirm a very low toxicity of the analyzed iron oxide nanoparticles into HeLa cells by multiple assays and pave the way for a more successful cancer diagnostic and treatment without secondary effects. In this paper, three different iron oxide nanoparticles are studied and compared from the standpoint of safety and toxicity in HeLa cells, demonstrating low toxicity for each preparation, and paving the way to potential future clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations

    Science.gov (United States)

    Belozerov, A. S.; Leonov, I.; Anisimov, V. I.

    2013-03-01

    We present a rotationally invariant Hirsch-Fye quantum Monte Carlo algorithm in which the spin rotational invariance of Hund's exchange is approximated by averaging over all possible directions of the spin quantization axis. We employ this technique to perform benchmark calculations for the two- and three-band Hubbard models on the infinite-dimensional Bethe lattice. Our results agree quantitatively well with those obtained using the continuous-time quantum Monte Carlo method with rotationally invariant Coulomb interaction. The proposed approach is employed to compute the electronic and magnetic properties of paramagnetic α iron and nickel. The obtained Curie temperatures agree well with experiment. Our results indicate that the magnetic transition temperature is significantly overestimated by using the density-density type of Coulomb interaction.

  1. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications

    Science.gov (United States)

    Wu, Wei; Wu, Zhaohui; Yu, Taekyung; Jiang, Changzhong; Kim, Woo-Sik

    2015-01-01

    This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed. PMID:27877761

  2. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  3. A mathematical model of superparamagnetic iron oxide nanoparticle magnetic behavior to guide the design of novel nanomaterials

    International Nuclear Information System (INIS)

    Ortega, Ryan A.; Giorgio, Todd D.

    2012-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) exhibit unique magnetic properties that make them highly efficacious as MR imaging contrast agents and laboratory diagnostic tools. The complexity of SPION magnetic behavior and the multiple parameters affecting this behavior complicate attempts at fabricating particles suited for a particular purpose. A mathematical model of SPION magnetic properties derived from experimental relationships and first principles can be an effective design tool for predicting particle behavior before materials are fabricated. Here, a novel model of SPION magnetic properties is described, using particle size and applied magnetic field as the primary variable inputs. The model is capable of predicting particle susceptibility and non-linear particle magnetization as well as describing the vector magnetic field produced by a single particle in an applied field. Magnetization values produced by the model agree with recent experimental measurements of particle magnetizations. The model is used to predict the complex magnetic behavior of clustered magnetic particles in simulated in vivo environment; specifically, interactions between the clusters and water molecules. The model shows that larger particles exhibit more linear magnetic behavior and stronger magnetization and that clusters of smaller particles allow for more numerous SPION–water molecule interactions and more uniform cluster magnetizations.

  4. Nonlinear effects in parallel magnetic fields in vanadyl and iron (111) ions solutions

    International Nuclear Information System (INIS)

    Ryzhov, V.A.; Fomichev, V.N.

    1983-01-01

    Nonlinear effects (NE) in vanadyl (VOSO 4 ) and iron (FeCl 3 x6H 2 O) solutions are investigated experimentally in the 268-323 K temperature range in parallel constant and variable linearly polarized magnetic fields, including conditions when EPR spectra are lacking due to strong resonance transition widening. It is shown that nonlinear effects are specified, on the one side, by the effect of a variable field on the relaxation processes and, on the other side, by resonance transitions in parallel fields. The relaxation and resonance effects contribute to different phase components of the second harmonic of magnetization, recorded in the experiment, at low frequences of a variable field (as compared to characteristic frequences of lattice motion). Therefore, separate analysis of the effects is possible. The presence of NE effects under conditions, when the EPR signal is not observed, and the possibility of the inverse problem solution using the variation technique on the base of simple models reveal that NE in parallel magnetic fields may be used for the investigation of paramagnets with a large EPR resonance transitions width

  5. Iron oxide and gold nanoparticles in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Lozhkomoev, Aleksandr S. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  6. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ziming; Sun Hongjing; Gao Faming, E-mail: fmgao@ysu.edu.cn; Hou Li; Li Na [Yanshan University, Key Laboratory of Applied Chemistry (China)

    2012-12-15

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe-Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe-Au process.

  7. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Science.gov (United States)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  8. Problems of Electromagnetic Filtration of Technological Liquid on the Basis of Iron-Containing Particle Deposition in High-Gradient Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. A. Muradova

    2006-01-01

    Full Text Available Conventional methods for separation of liquid systems are out of use for cleaning liquid products of chemical technology from finely dispersed micro-quantity of iron-containing particles. Majority of these impurities is characterized by magneto-receptive behavior, in other words they exhibit a capability for magnetic precipitation; so application of magnetic precipitating filters shows promise for a removal of such particles.

  9. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  10. Magnetic anisotropy in iron thin films evaporated under ultra-high vacuum

    International Nuclear Information System (INIS)

    Dinhut, J.F.; Eymery, J.P.; Krishnan, R.

    1992-01-01

    α-iron thin films with thickness ranging between 20 and 1500 nm have been evaporated using an electron gun under ultra-high vacuum conditions (5.10 -7 P). The columnar structure observed in cross-sectional TEM is related to the large surface diffusion. From Moessbauer spectra the spin orientation is deduced and found to be influenced by the column axis. Spins can be obtained perpendicularly to the film plane by rotating the substrte during the deposition. The magnetization of the samples is reduced by about 30% and the reduction attributed to the interstitial space which increases with the incident angle. The substrate rotation also decreases Ku( parallel ) by a factor 2 and increases Ku( perpendicular to ). (orig.)

  11. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  12. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    Science.gov (United States)

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  13. High Temperature Magneto-Elastic Instability of Dislocations in bcc Iron

    International Nuclear Information System (INIS)

    Dudarev, S.; Bullough, R.; Gilbert, M.; Derlet, P.

    2007-01-01

    Full text of publication follows: Density functional calculations show that the low temperature structure of self-interstitial defects in iron is fundamentally different from the structure of self-interstitial defects in all the other bcc metals. The origin of this anomaly is associated with the magnetic part of the cohesive energy of iron, where the Stoner exchange term stabilizes the body centred cubic phase, and where the magnetic part of energy is strongly affected by the large strain associated with the core region of an interstitial defect. At elevated temperatures magnetic excitations erode the stability of the bcc phase, giving rise to the gradual softening of the 110 transverse acoustic phonon modes and to the α-γ bcc-fcc martensitic phase transition occurring at 912 deg. C at normal pressure. Elastic moduli of bcc iron vary as a function of temperature with c' = (C 11 - c 12 )/2 vanishing at the α-γ transition point. This has significant effects on the magnitude of both the elastic interactions between dislocations and other defects in the material and on the intrinsic structural stability of the dislocations and other defects themselves. To evaluate structural stability of defects at elevated temperatures we investigate elastic self-energies of dislocations in the continuum anisotropic elasticity approximation. We also develop atomistic models of dislocations and point defects based on a generalised form of the magnetic potential. By varying the magnetic part of the potential we are able to reproduce the experimentally observed variation of elastic moduli as a function of temperature, and assess relative stability of various types of defect structures. Our analysis shows that, in complete contrast to other straight dislocations, the elastic self-energy of straight 100 edge dislocations actually sharply decreases as we approach the α-γ transition, indicating that this surprising fact is a probable explanation of the frequent observation of the 100

  14. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  15. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  17. Synthesis, Optical, and Magnetic Properties of Graphene Quantum Dots and Iron Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Sajjad

    2018-01-01

    Full Text Available The combination of nanomaterial graphene quantum dots (GQDs with magnetic nanoparticles offers a unique set of optical and magnetic properties for future energy and medical applications. We report on the synthesis and engineering of GQDs and iron oxide (Fe3O4 nanocomposites (NCs by using a pulsed laser discharge technique. High-resolution transmission electron microscopy (HRTEM images showed a high yield of pure GQDs with 2–10 nm diameter. The hexagonal structures and lattice fringes associated with the C–C bond in GQDs were clearly identifiable. The structural and optical changes in GQDs and GQDs-Fe3O4 NC samples induced by UV light were investigated by the absorption and emission spectroscopy over the deep UV–visible spectral range. The photoluminescence spectra have shown subband π→π∗ transitions in GQDs-Fe3O4 NC. Magnetic properties of the GQDs-Fe3O4 NC samples have shown room temperature ferromagnetism induced by pure Fe3O4 nanoparticles and from the substantial spin polarized edges of GQD nanoparticles. It is concluded that the observed optical and magnetic properties could be further tailored in the studied nanocomposites for prospective medical applications.

  18. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.

    Science.gov (United States)

    Kumar, Anil; Singhal, Aditi

    2009-07-22

    Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  19. Synthesis of colloidal silver iron oxide nanoparticles—study of their optical and magnetic behavior

    Science.gov (United States)

    Kumar, Anil; Singhal, Aditi

    2009-07-01

    Silver iron oxide nanoparticles of fairly small size (average diameter ~1 nm) with narrow size distribution have been synthesized by the interaction of colloidal β- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between AgIO4 and FeIIIO4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm-2, which is more than two times higher than that of colloidal β- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  20. Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Ashwini B. [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Khot, Vishwajeet M. [Department of Physics and Astronomy, University College London (United Kingdom); Ruso, Juan M. [Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-01

    Superparamagnetic nanoparticles of Cobalt iron oxide (CoFe{sub 2}O{sub 4}) are synthesized chemically, and dispersed in an aqueous suspension for hyperthermia therapy application. Different parameters such as magnetic field intensity, particle concentration which regulates the competence of CoFe{sub 2}O{sub 4} nanoparticle as a heating agents in hyperthermia are investigated. Specific absorption rate (SAR) decreases with increase in the particle concentration and increases with increase in applied magnetic field intensity. Highest value of SAR is found to be 91.84 W g{sup −1} for 5 mg. mL{sup −1} concentration. Oleic acid conjugated polyethylene glycol (OA-PEG) coated CoFe{sub 2}O{sub 4} nanoparticles have shown superior cyto-compatibility over uncoated nanoparticles to L929 mice fibroblast cell lines for concentrations below 2 mg. mL{sup −1}. Present work provides the underpinning for the use of CoFe{sub 2}O{sub 4} nanoparticles as a potential heating mediator for magnetic fluid hyperthermia. - Highlights: • Superparamagnetic, water dispersible CoFe{sub 2}O{sub 4} NPs were synthesized by simple and cost effective Co precipitation route. • Effect of coating on various physical and chemical properties of CoFe{sub 2}O{sub 4} NPs were studied. • The effect of coating on induction heating as well as biocompatibility of NPs were studied.

  1. Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron: Batch and semi-continuous flow study.

    Science.gov (United States)

    Fan, Peng; Sun, Yuankui; Qiao, Junlian; Lo, Irene M C; Guan, Xiaohong

    2018-02-05

    The influence of weak magnetic field (WMF) and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron (ZVI) was investigated with batch and semi-continuous reactors. The species analysis of antinomy in aqueous solution and solid precipitates implied that both Sb(III) adsorption preceding its conversion to Sb(V) in solid phase and Sb(III) oxidation to Sb(V) preceding its adsorption in aqueous phase occurred in the process of Sb(III) sequestration by ZVI. The application of WMF greatly increased the rate constants of Sb tot (total Sb) and Sb(III) disappearance during Sb(III)-tartrate and uncomplexed-Sb(III) sequestration by ZVI. The enhancing effect of WMF was primarily due to the accelerated ZVI corrosion in the presence of WMF, as evidenced by the influence of WMF on the change of solution and solid properties with reaction. However, tartrate greatly retarded Sb removal by ZVI. It was because tartrate inhibited ZVI corrosion, competed with Sb(III) and Sb(V) for the active surface sites, increased the negative surface charge of the generated iron (hydr)oxides due to its adsorption, and formed soluble complexes with Fe(III). The positive effect of WMF on Sb(III)-tartrate and uncomplexed-Sb(III) removal by ZVI was also verified with a magnetic semi-continuous reactor. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Challenge to Scavenge IRON from Tailings Produced By FLOTATION A New Approach: The Super-WHIMS & the BigFLUX Magnetic Matrix

    Directory of Open Access Journals (Sweden)

    José Pancrácio Ribeiro

    Full Text Available Abstract Tailings recovery has been a constant challenge for most engineers. Along more than five years, GAUSTEC joined major players in the mining Industry to scavenge Iron from tailings produced by flotation making use of WHIMS (Wet High Intensity Magnetic Separation. In the early 1980s, in USA, the US 4,192,738 patent was granted with promising results. Despite this, thirty years have passed with no significant application worldwide. One main reason is reported: the market missed a really high feed capacity WHIMS in order to avoid the huge number of the WHIMS that were available at that time (such projects would typically require more than 20 WHIMS to scavenge iron from tailings produced by flotation plants. Such a huge asset to scavenge low grade iron tailings would not payback. The Mega sized WHIMS launched by GAUSTEC in 2014, the GHX-1400, improved by the Super-WHIMS Technology (18.000 Gauss and BigFlow Magnetic Matrixes (Gaps smaller than 1.5 mm, faced this challenge. Specially designed ancillary equipment described here also played a decisive role in the scene.

  3. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate.

    Science.gov (United States)

    Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M

    2017-03-17

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  4. Specialty magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-07-01

    A number of basic conceptual designs are explained for magnet systems that use permanent magnet materials. Included are iron free multipoles and hybrid magnets. Also appended is a discussion of the manufacturing process and magnetic properties of some permanent magnet materials

  5. Trapped field properties of a Y–Ba–Cu–O bulk by pulsed field magnetization using a split coil inserted by iron yokes with various geometries and electromagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K., E-mail: t2216017@iwate-u.ac.jp [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Ainslie, M.D. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Fujishiro, H.; Naito, T. [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Shi, Y-H.; Cardwell, D.A. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2017-05-15

    Highlights: • The trapped field characteristics of a standard Y–Ba–Cu–O bulk magnetized by PFM was investigated using a split coil with three kinds of iron yokes inserted in the bores of coil,both experimentally and numerically. • Numerical results encourage better understanding of the role of yoke, including the typical behavior of the magnetic flux, such as a flux jump during PFM. • A higher saturation magnetic flux density of the yoke material was effective to reduce flux flow in the descending stage of the pulsed field. • A conductivity of the yoke material also acts to reduce the velocity of the flux intruding the bulk because of eddy currents that flow in the yoke that oppose the magnetization, which reduces the temperature rise in the bulk. - Abstract: We have investigated, both experimentally and numerically, the trapped field characteristics of a standard Y–Ba–Cu–O bulk of 30 mm in diameter and 14 mm in thickness magnetized by pulsed field magnetization (PFM) using a split coil, in which three kinds of iron yoke are inserted in the bore of the coil: soft iron with a flat surface, soft iron with a taper, and permendur (50Fe + 50Co alloy) with a flat surface. The highest trapped field, B{sub Tmax}, of 2.93 T was achieved at 40 K in the case of the permendur yoke, which was slightly higher than that obtained for the flat soft iron or the tapered soft iron yokes, and was much higher than 2.20 T in the case without the yoke. The insertion effect of the yoke on the trapped field characteristics was also investigated using numerical simulations. The results suggest that the saturation magnetic flux density, B{sub sat}, of the yoke acts to reduce the flux flow due to its hysteretic magnetization curve and the higher electrical conductivity, σ, of the yoke material also acts to suppress the flux increase rate. A flux jump (or flux leap) can be reproduced in the ascending stage of PFM using numerical simulation, using an assumption of relatively

  6. Probing into the effects of a magnetic field on the electrode processes of iron in sulphuric acid solutions with dichromate based on the fundamental electrochemistry kinetics

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Huang Delun; Yang Wu

    2005-01-01

    The effects of an applied magnetic field on the electrode processes of iron in sulphuric acid solutions with dichromate have been investigated by electrochemical measurements. Open circuit potentials, cathodic and anodic polarisation curves, values of polarisation resistance were measured in the presence or absence of a 0.4 T horizontal magnetic field (HMF). A potentiostatic polarisation plus magnetic field perturbation technique was used to study the effect of the magnetic field on open circuit corrosion. Cathodic reaction rates at open circuit potentials for iron in sulphuric acid solutions containing dichromate ions are controlled by both the electron-transfer process and the diffusion process. A magnetic field made the open circuit potential move in the positive direction, and changes of the open circuit potentials due to the magnetic field increase with increasing dichromate concentration. When iron was potentiostatically polarised at open circuit potentials in the absence of a magnetic field, a cathodic current was observed after a magnetic field was imposed. Such cathodic currents induced by the magnetic field increases with increasing dichromate concentration. The positive shifts of open circuit potential, the decrease of polarisation resistance, and the occurrence of cathodic currents induced by the magnetic field are caused by the accelerating effect of magnetic field on the cathodic diffusion process. Measured current densities showed lower, equal, or higher values in the presence of the magnetic field than those in the absence of a magnetic field at certain anodic potentials. This effect of the magnetic field is related to the contribution of the cathodic and anodic reactions to the measured current and the types of rate-determining steps for each reaction at certain potentials. The applied magnetic field significantly decreased the polarisation resistance. The experimental results in this paper are formulated based on the fundamental electrochemistry

  7. The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells

    Czech Academy of Sciences Publication Activity Database

    Uzhytchak, Mariia; Lynnyková, Anna; Zablotskyy, Vitaliy A.; Dempsey, N.M.; Dias, A.L.; Bonfim, M.; Lunova, Mariia; Jirsa, M.; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2017-01-01

    Roč. 111, č. 24 (2017), s. 1-5, č. článku 243703. ISSN 0003-6951 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : pulsed magnetic fields * increase the uptake * iron oxide * living cells Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.411, year: 2016

  8. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  9. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  10. Iron oxides as pedoenvironmental indicators: state of the art, answers and questions (Philippe Duchaufour Medal Lecture)

    Science.gov (United States)

    Torrent, J.

    2012-04-01

    The colour and magnetic properties of soils largely reflect the content and mineralogy of their iron oxides, which in turn relate to the physical, chemical and biological characteristics of the soil environment. For more than 50 years, soil mineralogists and chemists have collected data for iron oxides in soils formed in widely different environments and tried to understand the complex nature of the different suites and formation pathways for these minerals via laboratory experiments. The discovery of ferrihydrite —the poorly crystalline precursor of most Fe oxides— in 1971, and the recognition of its common presence in soils, raised interest in deciphering the environmental factors that affect its transformation into goethite and hematite, the two most abundant crystalline iron oxides in soil. Field observations were consistent with laboratory experiments in which temperature, water activity, pH, foreign ions and organic matter were found to play a key role in the crystallization of ferrihydrite. Thus, the hematite/(hematite + goethite) ratio increased with increasing temperature and also with the likelihood of seasonal soil drying. Exploiting this ratio as a (pedo)environment indicator is, however, not devoid of problems derived from insufficient knowledge of the interactions between the influential chemical variables, difficulties in quantifying the two minerals and changes brought about by reductive dissolution. Soil formation usually leads to magnetic enhancement as a result of the production of magnetite and/or maghemite, which are ferrimagnetic iron oxides, and, possibly, an ordered ferrimagnetic ferrihydrite, as suggested by recent laboratory experiments. The concentration of pedogenic ferrimagnets as estimated via proxies such as magnetic susceptibility or frequency-dependent magnetic susceptibility has been found to relate to climate variables [particularly (paleo)rainfall] in many studies reported over the last 30 years. However, extracting accurate

  11. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  12. Iron oxides in human brain

    International Nuclear Information System (INIS)

    Cesnek, M.; Miglierini, M.; Lancok, A.

    2015-01-01

    It was confirmed that Moessbauer spectroscopy is an useful tool for measurement of biological tissues even if the concentration of iron in the samples is very low. Moessbauer spectra revealed a presence of particles with non-magnetic behaviour at room temperature. At temperature 4.2 K almost all particles exhibit magnetic behaviour. The rest of the particles still exhibits superparamagnetic behaviour what indicates that their blocking temperature is lower than 4.2 K. It was suggested that those might be very small haemosiderin particles. Parameters the sextet-like components suggest possible presence of goethite, akaganeit or ferrihydrite. Using synchrotron assisted XRD, it was not possible to reveal any iron relevant structural information due to very low concentration of iron atoms in samples. Atomic pairs with the highest contribution to PDF were revealed. All these atomic pairs are characteristic for biological materials. XRD measurement of extracted ferritin could reveal some helpful information about the iron structure. (authors)

  13. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders

    NARCIS (Netherlands)

    de Swart, Louise; Hendriks, Jan C. M.; van der Vorm, Lisa N.; Cabantchik, Z. Ioav; Evans, Patricia J.; Hod, Eldad A.; Brittenham, Gary M.; Furman, Yael; Wojczyk, Boguslaw; Janssen, Mirian C. H.; Porter, John B.; Mattijssen, Vera E. J. M.; Biemond, Bart J.; MacKenzie, Marius A.; Origa, Raffaella; Galanello, Renzo; Hider, Robert C.; Swinkels, Dorine W.

    2016-01-01

    Non-transferrin-bound iron and its labile (redox active) plasma iron component are thought to be potentially toxic forms of iron originally identified in the serum of patients with iron overload. We compared ten worldwide leading assays (6 for non-transferrin-bound iron and 4 for labile plasma iron)

  14. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  15. Iron-YBCO heterostructures and their application for trapped field superconducting motor

    International Nuclear Information System (INIS)

    Granados, X; Bartolome, E; Obradors, X; Tornes, M; Rodrigues, L; Gawalek, W; McCulloch, M; Hughes, D Dew; Campbell, A; Coombs, T; Ausloos, M; Cloots, R

    2006-01-01

    In this work we report on the magnetic behavior of the heterostructures formed by bulk based YBCO rings and ferromagnetic yoke. The magnetization cycle has been performed by an In-Field Hall Mapping technique. A video-like recording of the magnetization process makes it possible to obtain the magnetization of selected areas. The current flowing through the superconducting rings can be deduced from the magnetic field maps. The displacement of the peak of magnetization due to the flux reversal produced by the magnetization of the yoke is also considered. These hybrid heterostructures formed by ferromagnetic and superconducting material have been applied in the construction of the rotor for a brushless AC motor. The design and construction of this machine was carried out within the framework of the TMR Network SUPERMACHINES. The rotor has been designed in a quadrupolar configuration by cutting large YBCO 'window frames' from seeded melt-textured single domain YBCO pellets. This rotor has been coupled to a conventional stator of copper coils wound on an iron armature. The stator can be excited both in bipolar or quadrupolar mode. We report on the behaviour of the motor after a field cooling process when excited in quadrupolar mode

  16. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    International Nuclear Information System (INIS)

    Makovec, Darko; Gyergyek, Sašo; Primc, Darinka; Plantan, Ivan

    2015-01-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe 3+ /Fe 2+ ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe 3+ ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles

  17. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Sašo, E-mail: saso.gyergyek@ijs.si [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Primc, Darinka [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Plantan, Ivan [Lek Pharmaceuticals d.d., Mengeš (Slovenia)

    2015-03-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe{sup 3+} ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles.

  18. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    Science.gov (United States)

    de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-06-01

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  19. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica - A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Thomas Martin Doring

    Full Text Available Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO using quantitative susceptibility mapping (QSM, a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y underwent MRI of the brain at 3 Tesla. Quantitative maps of the effective transverse relaxation rate (R2* and magnetic susceptibility were calculated and a blinded ROI-based group comparison analysis was performed. Normality of the data and differences between patients and controls were tested by Kolmogorov-Smirnov and t-test, respectively. Correlation with age was studied using Spearman's rank correlation and an ANCOVA-like analysis. Magnetic susceptibility values were decreased in the red nucleus (p0.95; between -15 and -22 ppb depending on reference region with a trend toward increasing differences with age. R2* revealed significantly decreased relaxation in the optic radiations of five of the 12 patients (p<0.0001; -3.136±0.567 s-1. Decreased relaxation in the optic radiation is indicative for demyelination, which is in line with previous findings. Decreased magnetic susceptibility in the red nucleus is indicative for a lower brain iron concentration, a chemical redistribution of iron into less magnetic forms, or both. Further investigations are necessary to elucidate the pathological cause or consequence of this finding.

  20. Large D-2 theory of superconducting fluctuations in a magnetic field and its application to iron pnictides.

    Science.gov (United States)

    Murray, James M; Tesanović, Zlatko

    2010-07-16

    A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.