WorldWideScience

Sample records for iron levels expression

  1. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading

    OpenAIRE

    Makui, Hortence; Soares, Ricardo J.; Jiang, Wenlei; Constante, Marco; Santos, Manuela M.

    2005-01-01

    Hereditary hemochromatosis (HH), an iron overload disease associated with mutations in the HFE gene, is characterized by increased intestinal iron absorption and consequent deposition of excess iron, primarily in the liver. Patients with HH and Hfe-deficient (Hfe−/−) mice manifest inappropriate expression of the iron absorption regulator hepcidin, a peptide hormone produced by the liver in response to iron loading. In this study, we investigated the contribution of Hfe expression in macrophag...

  2. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection.

    Science.gov (United States)

    da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja

    2014-02-01

    We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

  3. Expression of Hepcidin and Growth Differentiation Factor 15 (GDF-15 Levels in Thalassemia Patients with Iron Overload and Positive Anti Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Nuri Dyah Indrasari

    2016-09-01

    Full Text Available Background: Thalassemia patients who undergo life-long recurrent blood transfusion will experience iron overload in various organs including the liver and possibly suffer from chronic hepatitis C infection which may lead to liver impairment. The liver produces hepcidin, a hormone which plays role in the regulation of iron level in the blood. Various factors may influence hepcidin level in the blood. Chronic hepatitis C causes iron overload and liver impairment. Liver impairment and haemolytic anaemia due to haemoglobinopathy will suppress hepcidin production. Anaemia stimulates growth differentiation factor 15 (GDF-15 to increase erythropoiesis and suppress hepcidin production. Iron overload causes increase in hepcidin level. Presence of factors which decrease or increase hepcidin production will express various levels of hepcidin. This study aimed to identify the expression of hepcidin and GDF-15 levels in thalassemia patients with iron overload and positive anti-HCV. Information on hepcidin and GDF-15 levels are beneficial in the management of iron overload in thalassemia with positive anti-HCV. Method: This study was a descriptive analytic study in thalassemia patients who had received recurrent blood transfusion ≥ 12 times, suffered from iron overload (transferrin saturation > 55% and ferritin > 1,000 ng/mL, which consisted of 31 individuals with positive anti-HCV and 27 individuals with negative anti-HCV. This study was performed in Thalassemia Centre Department of Child Health and Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, in October 2011–January 2012. Serum hepcidin and GDF-15 examinations were performed using enzyme-linked immunosorbent assay (ELISA method. Aspartate aminotransferase (AST and alanine aminotransferase (ALT examinations were performed using colorimetry method. Data on ferritin and transferrin saturation were obtained from medical records in the last 3

  4. Identification of genes expressed by Cryptococcus gattii during iron deprivation

    Directory of Open Access Journals (Sweden)

    Daphine Ariadne Jesus de Paula

    2014-09-01

    Full Text Available Cryptococcus neoformans and C. gattii are pathogenic yeasts that cause life-threatening diseases in humans and animals. Iron is an essential nutrient for virtually every organism as it functions as a cofactor in numerous essential enzymatic reactions. In the literature, the competition for iron between microbes and mammalian hosts during infection is well documented. In this study, we used representational difference analysis (RDA in order to gain a better understanding of how C. gattii responds to iron starvation. A total of 15 and 29 genes were identified as having altered expression levels due to iron depletion after 3 h and 12 h, respectively. Of these, eight genes were identified in both libraries. The transcripts were related to many biological processes, such as cell cycle, ergosterol metabolism, cell wall organization, transportation, translation, cell respiration and the stress response. These data suggest a remodeling of C. gattii metabolism during conditions of iron deprivation.

  5. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    Science.gov (United States)

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p HFE and HAMP expressions were elevated only at low 1 g/L treatment (p HFE (p HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  6. The Study of HFE Genotypes and Its Expression Effect on Iron Status of Iranian Haemochromatosis, Iron Deficiency Anemia Patients, Iron-Taker and Non Iron-Taker Controls.

    Science.gov (United States)

    Beiranvand, Elham; Abediankenari, Saeid; Rostamian, Mosayeb; Beiranvand, Behnoush; Naazeri, Saeed

    2015-01-01

    The role of HFE gene mutations or its expression in regulation of iron metabolism of hereditary haemochromatosis (HH) patients is remained controversial. Therefore here the correlation between two common HFE genotype (p.C282Y, p.H63D) and HFE gene expression with iron status in HH, iron deficiency anemia (IDA) and healthy Iranian participants was studied. For this purpose genotype determination was done by polymerase chain reaction--restriction fragment length polymorphism (PCR-RFLP). Real-Time PCR was applied for evaluation of HFE gene expression. Biochemical parameters and iron consumption were also assessed. Homozygote p.H63D mutation was seen in all HH patients and p.C282Y was not observed in any member of the population. A significant correlation was observed between serum ferritin (SF) level and gender or age of HH patients. p.H63D homozygote was seen to be able to significantly increase SF and transferrin saturation (TS) level without affecting on liver function. Our results also showed that iron consumption affects on TS level increasing. HFE gene expression level of IDA patients was significantly higher than other groups. Also the HFE gene expression was negatively correlated with TS. Finally, the main result of our study showed that loss of HFE function in HH is not derived from its gene expression inhibition and much higher HFE gene expression might lead to IDA. However we propose repeating of the study for more approval of our finding.

  7. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Among livestock, domestic pig (Sus scrofa is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  8. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging.

    Science.gov (United States)

    Kumar, Pankaj; Nag, Tapas Chandra; Jha, Kumar Abhiram; Dey, Sanjay Kumar; Kathpalia, Poorti; Maurya, Meenakshi; Gupta, Chandan Lal; Bhatia, Jagriti; Roy, Tara Sankar; Wadhwa, Shashi

    2017-12-01

    Iron is implicated in age-related macular degeneration (AMD). The aim of this study was to see if long-term, experimental iron administration with aging modifies retinal and choroidal structures and expressions of iron handling proteins, to understand some aspects of iron homeostasis. Male Wistar rats were fed with ferrous sulphate heptahydrate (500mg/kg body weight/week, oral; elemental iron availability: 20%) from 2 months of age onward until they were 19.5 month-old. At 8, 14 and 20 months of age, they were sacrificed and serum and retinal iron levels were detected by HPLC. Oxidative stress was analyzed by TBARS method. The retinas were examined for cell death (TUNEL), histology (electron microscopy) and the expressions of transferrin, transferrin receptor-1 [TFR-1], H- and L-ferritin. In control animals, at any age, there was no difference in the serum and retinal iron levels, but the latter increased significantly in 14- and 20 month-old iron-fed rats, indicating that retinal iron accumulation proceeds with progression of aging (>14 months). The serum and retinal TBARS levels increased significantly with progression of aging in experimental but not in control rats. There was significant damage to choriocapillaris, accumulation of phagosomes in retinal pigment epithelium and increased incidence of TUNEL+ cells in outer nuclear layer and vacuolation in inner nuclear layer (INL) of 20 month-aged experimental rats, compared to those in age-matched controls. Vacuolations in INL could indicate a long-term effect of iron accumulation in the inner retina. These events paralleled the increased expression of ferritins and transferrin and a decrease in the expression of TFR-1 in iron-fed rats with aging, thereby maintaining iron homeostasis in the retina. As some of these changes mimic with those happening in eyes with AMD, this model can be utilized to understand iron-induced pathophysiological changes in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  10. Expression of Duodenal Iron Transporter Proteins in Diabetic Patients with and without Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Efrat Broide

    2018-01-01

    Full Text Available The role of iron transport proteins in the pathogenesis of anemia in patients with diabetes mellitus (T2DM is still unclear. We investigated the expression of duodenal transporter proteins in diabetic patients with and without iron deficiency anemia (IDA. Methods. Overall, 39 patients were included: 16 with T2DM and IDA (group A, 11 with T2DM without IDA (group B, and 12 controls (group C. Duodenal mucosal expression of divalent metal transporter 1 (DMT1, ferroportin 1 (FPN, hephaestin (HEPH, and transferrin receptor 1 (TfR was evaluated by Western blotting. Chronic disease activity markers were measured as well. Results. FPN expression was increased in group A compared to group B and controls: 1.17 (0.72–1.46, 0.76 (0.53–1.04, and 0.71 (0.64–0.86, respectively (p=0.011. TfR levels were over expressed in groups A and B compared to controls: 0.39 (0.26–0.61, 0.36 (0.24–0.43, and 0.18 (0.16–0.24, respectively, (p=0.004. The three groups did not differ significantly with regard to cellular HEPH and DMT1 expression. The normal CRP and serum ferritin levels, accompanied with normal FPN among diabetic patients without IDA, do not support the association of IDA with chronic inflammatory state. Conclusion. In patients with T2DM and IDA, duodenal iron transport protein expression might be dependent on body iron stores rather than by chronic inflammation or diabetes per se.

  11. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Directory of Open Access Journals (Sweden)

    Nora Adriana Hernández-Cuevas

    Full Text Available Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron, low-iron medium (around 123 µM iron, iron-deficient medium (around 91 µM iron, and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  12. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Science.gov (United States)

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  13. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  14. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro

    International Nuclear Information System (INIS)

    Habel, Marie-Eve; Jung, Daniel

    2006-01-01

    Burkitt's lymphoma is an aggressive B-cell neoplasm resulting from deregulated c-myc expression. We have previously shown that proliferation of Burkitt's lymphoma cell lines such as Ramos is markedly reduced by iron treatment. It has been shown that iron induces expression of c-myc which, owing to its transcriptional regulatory functions, regulates genes involved in iron metabolism. Transient enhancement of c-myc expression by iron could increase the expression of genes involved in iron incorporation, which could lead to an accumulation of intracellular free iron. Here, we have investigated whether cells with a high basal level of c-Myc were more likely to accumulate free iron. Our results suggest that the basal level of c-Myc in Ramos cells is twofold higher than what is seen in HL-60 cells. Moreover, in Ramos cells, where c-Myc is expressed at a high level, H-ferritin expression is down-regulated, transferrin receptor (CD71) expression is increased, and ferritin translation is inhibited. These modifications in iron metabolism, resulting from the strong basal expression of c-Myc, and amplified by iron addition, could lead to a disruption in homeostasis and consequently to growth arrest

  15. Genomic Organization and Expression of Iron Metabolism Genes in the Emerging Pathogenic Mold Scedosporium apiospermum

    Directory of Open Access Journals (Sweden)

    Yohann Le Govic

    2018-04-01

    Full Text Available The ubiquitous mold Scedosporium apiospermum is increasingly recognized as an emerging pathogen, especially among patients with underlying disorders such as immunodeficiency or cystic fibrosis (CF. Indeed, it ranks the second among the filamentous fungi colonizing the respiratory tract of CF patients. However, our knowledge about virulence factors of this fungus is still limited. The role of iron-uptake systems may be critical for establishment of Scedosporium infections, notably in the iron-rich environment of the CF lung. Two main strategies are employed by fungi to efficiently acquire iron from their host or from their ecological niche: siderophore production and reductive iron assimilation (RIA systems. The aim of this study was to assess the existence of orthologous genes involved in iron metabolism in the recently sequenced genome of S. apiospermum. At first, a tBLASTn analysis using A. fumigatus iron-related proteins as query revealed orthologs of almost all relevant loci in the S. apiospermum genome. Whereas the genes putatively involved in RIA were randomly distributed, siderophore biosynthesis and transport genes were organized in two clusters, each containing a non-ribosomal peptide synthetase (NRPS whose orthologs in A. fumigatus have been described to catalyze hydroxamate siderophore synthesis. Nevertheless, comparative genomic analysis of siderophore-related clusters showed greater similarity between S. apiospermum and phylogenetically close molds than with Aspergillus species. The expression level of these genes was then evaluated by exposing conidia to iron starvation and iron excess. The expression of several orthologs of A. fumigatus genes involved in siderophore-based iron uptake or RIA was significantly induced during iron starvation, and conversely repressed in iron excess conditions. Altogether, these results indicate that S. apiospermum possesses the genetic information required for efficient and competitive iron uptake

  16. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy.

    Science.gov (United States)

    Garcia-Valdes, L; Campoy, C; Hayes, H; Florido, J; Rusanova, I; Miranda, M T; McArdle, H J

    2015-04-01

    Obesity is associated with decreased iron status, possibly due to a rise in hepcidin, an inflammatory protein known to reduce iron absorption. In animals, we have shown that maternal iron deficiency is minimised in the foetus by increased expression of placental transferrin receptor (pTFR1), resulting in increased iron transfer at the expense of maternal iron stores. This study examines the effect of obesity during pregnancy on maternal and neonatal iron status in human cohorts and whether the placenta can compensate for decreased maternal iron stores by increasing pTFR1 expression. A total of 240 women were included in this study. One hundred and fifty-eight placentas (Normal: 90; Overweight: 37; Obese: 31) were collected at delivery. Maternal iron status was measured by determining serum transferrin receptor (sTFR) and ferritin levels at 24 and 34 weeks and at delivery. Hepcidin in maternal and cord blood was measured by ELISA and pTFR1 in placentas by western blotting and real-time RT-PCR. Low iron stores were more common in obese women. Hepcidin levels (ng ml(-1)) at the end of the pregnancy were higher in obese than normal women (26.03±12.95 vs 18.00±10.77, PMaternal hepcidin levels were correlated with maternal iron status (sTFR r=0.2 P=0.025), but not with neonatal values. mRNA and protein levels of pTFR1 were both inversely related to maternal iron status. For mRNA and all women, sTFR r=0.2 P=0.044. Ferritin mRNA levels correlated only in overweight women r=-0.5 P=0.039 with hepcidin (r=0.1 P=0.349), irrespective of maternal body mass index (BMI). The data support the hypothesis that obese pregnant women have a greater risk of iron deficiency and that hepcidin may be a regulatory factor. Further, we show that the placenta responds to decreased maternal iron status by increasing pTFR1 expression.

  17. Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model.

    Science.gov (United States)

    Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida

    2017-02-01

    Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. Copyright© Ferrata Storti Foundation.

  18. Iron-dependent gene expression in Actinomyces oris

    Directory of Open Access Journals (Sweden)

    Matthew P. Mulé

    2015-12-01

    Results: When A. oris was grown under iron-limiting conditions, the genes encoding iron/siderophore transporters fetA and sidD showed increased expression. One of these genes (sidD was mutated, and the sidD::Km strain exhibited a 50% reduction in growth in late log and stationary phase cells in media that contained iron. This growth defect was restored when the sidD gene was provided in a complemented strain. We were able to isolate the AmdR-encoding gene in seven clinical isolates of Actinomyces. When these protein sequences were aligned to the laboratory strain, there was a high degree of sequence similarity. Conclusions: The growth of the sidD::Km mutant in iron-replete medium mirrored the growth of the wild-type strain grown in iron-limiting medium, suggesting that the sidD::Km mutant was compromised in iron uptake. The known iron regulator AmdR is well conserved in clinical isolates of A. oris. This work provides additional insight into iron metabolism in this important oral microbe.

  19. Evaluation of constitutive iron reductase (AtFRO2 expression on mineral accumulation and distribution in soybean (Glycine max. L

    Directory of Open Access Journals (Sweden)

    Marta Wilton Vasconcelos

    2014-04-01

    Full Text Available Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene's expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg and Mo, pod walls (Fe, K, P, Cu and Ni, leaves (Fe, P, Cu, Ca, Ni and Mg and seeds (Fe, Zn, Cu and Ni. Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and

  20. [Peritoneal fluid iron levels in women with endometriosis].

    Science.gov (United States)

    Polak, Grzegorz; Wertel, Iwona; Tarkowski, Rafał; Kotarski, Jan

    2010-01-01

    Endometriosis is characterized by a cyclic hemorrhage within the peritoneal cavity. Accumulating data suggests that iron homeostasis in the peritoneal cavity may be disrupted by endometriosis. The aim of our study was to evaluate iron levels in peritoneal fluid (PF) of women with and without endometriosis. Seventy-five women were studied: 50 women with endometriosis and, as a reference group, 25 patients with functional follicle ovarian cysts. Iron concentrations in the PF were measured using a commercially available colorimetric assay kit. Iron concentrations were significantly higher in PF from women with endometriosis as compared to the reference group. Patients with stages III/IV endometriosis had significantly higher PF iron concentrations than women with stages I/II of the disease. Disrupted iron homeostasis in the peritoneal cavity of women with endometriosis plays a role in the pathogenesis of the disease.

  1. Ferritin and iron levels in children with autistic disorder.

    Science.gov (United States)

    Hergüner, Sabri; Keleşoğlu, Fatih Mehmet; Tanıdır, Cansaran; Cöpür, Mazlum

    2012-01-01

    Iron has an important role on cognitive, behavioral, and motor development. High prevalence of iron deficiency has been reported in autism. The aim of this study was to investigate iron status in a group of children with autistic disorder. The sample was composed of 116 children between 3 and 16 years with a diagnosis of autistic disorder according to DSM-IV criteria. Serum ferritin, iron, hemoglobin, hematocrit, mean corpuscular volume, and red cell distribution width values were measured. We found that 24.1% of subjects had iron deficiency, and 15.5% had anemia. There was a significant positive correlation between age and ferritin and hematological measures. Results of this study confirmed that iron deficiency and anemia are common in children with autistic disorder. These findings suggest that ferritin levels should be measured in subjects with autism as a part of routine investigation.

  2. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  3. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity

    Science.gov (United States)

    Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime

    2015-01-01

    We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes. PMID:26090464

  4. Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors

    Directory of Open Access Journals (Sweden)

    Sara Pizzamiglio

    2017-02-01

    Full Text Available We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA or reverse-phase protein array (RPPA, were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012. The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5, signal transducer and activator of transcription 3 (STAT3, bone morphogenetic protein 6 (BMP6, cluster of differentiation 74 (CD74, transferrin receptor (TFRC, inhibin alpha (INHA, and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88, CD74, iron exporter ferroportin (FPN, high mobility group box 1 (HMGB1, STAT3_pS727, TFRC, ferritin heavy chain (FTH, and ferritin light chain (FTL. Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.

  5. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression and virulence

    Directory of Open Access Journals (Sweden)

    Carlos Adrian Garcia

    2015-09-01

    Full Text Available Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, trough the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS, and virulence. Studies were done on K279 and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF. Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence.

  6. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Figueiredo, Luciana Silva; de Freitas, Betânia Souza; Garcia, Vanessa Athaíde; Dargél, Vinícius Ayub; Köbe, Luiza Machado; Kist, Luiza Wilges; Bogo, Maurício Reis; Schröder, Nadja

    2016-11-01

    Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

  7. Vitreous Humor Changes Expression of Iron-Handling Proteins in Lens Epithelial Cells

    Science.gov (United States)

    Goralska, Malgorzata; Fleisher, Lloyd N.; McGahan, M. Christine

    2017-01-01

    Purpose In humans, vitrectomy is associated with development of nuclear cataracts. Iron catalyzes free radical formation causing oxidative damage, which is implicated in cataract formation. This study was designed to determine if vitreous humor, which can initiate differentiation of lens epithelial cells, would have an effect on iron-handling proteins. Methods Cultured canine lens epithelial cells were treated with collected canine vitreous humor. Lysates of treated and control cells were separated by SDS-PAGE. Ferritin H- and L-chains, transferrin receptor 1, and aquaporin 0 were immunodetected and quantitated with specific antibodies. Morphologic changes in treated cells were assessed. Results Treatment of lens epithelial cells with a 33% (vol/vol) solution of vitreous humor changed the morphology of lens cells and induced expression of aquaporin 0, a marker of fiber cell differentiation that was undetectable in control cells. Treatment did not modify the size of iron-handling proteins but significantly increased content of ferritin from 2.9- to 8.8-fold over control and decreased levels of transferrin receptor by 37% to 59%. Conclusions Vitreous humor may significantly limit iron uptake by transferrin/transferrin receptor pathway, and by increasing ferritin levels could profoundly increase the iron-storage capacity of ferritin in lens cells. Vitreous humor may play a significant protective role against iron-catalyzed oxidative damage of lens epithelial cells and therefore in the formation of cataracts. PMID:28245299

  8. Serum levels of iron in Sør-Varanger, Northern Norway--an iron mining municipality.

    Science.gov (United States)

    Broderstad, Ann R; Smith-Sivertsen, Tone; Dahl, Inger Marie S; Ingebretsen, Ole Christian; Lund, Eiliv

    2006-12-01

    The purpose of this study was to investigate iron status in a population with a high proportion of miners in the northernmost part of Norway. Cross-sectional, population-based study performed in order to investigate possible health effects of pollution in the population living on both sides of the Norwegian-Russian border. All individuals living in the community of Sør-Varanger were invited for screening in 1994. In 2000, blood samples from 2949 participants (response rate 66.8 %), age range 30-69 years, were defrosted. S-ferritin and transferrin saturation were analysed in samples from 1548 women and 1401 men. About 30 % (n = 893) were employed in the iron mining industry, 476 of whom were miners and 417 had other tasks in the company. Type and duration of employment and time since last day of work at the company were used as indicators of exposure. Both s-ferritin levels and transferrin saturation were higher in men than in women. S-ferritin increased with increasing age in women, while the opposite was true for men. Iron deficiency occurred with higher frequencies in women (16 %) than in men (4 %). Iron overload was uncommon in both sexes. Adjustment for smoking and self-reported pulmonary diseases did not show any effect on iron levels. Miners had non-significant higher mean s-ferritin and transferrin saturation than non-miners. Neither duration, nor time since employment in the mine, had any impact on iron status. Our analyses did not show any associations between being a miner in the iron mining industry and serum iron levels compared to the general population.

  9. Hamp1 mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice.

    Science.gov (United States)

    McLachlan, Stela; Page, Kathryn E; Lee, Seung-Min; Loguinov, Alex; Valore, Erika; Hui, Simon T; Jung, Grace; Zhou, Jie; Lusis, Aldons J; Fuqua, Brie; Ganz, Tomas; Nemeth, Elizabeta; Vulpe, Chris D

    2017-11-01

    Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin ( Hamp1 ) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels. NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least

  10. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  11. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic macrophage... TNFalpha expression. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha expres

  12. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  13. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.

    Directory of Open Access Journals (Sweden)

    Arnab Pradhan

    2017-05-01

    Full Text Available Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1. We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an

  14. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.

    Science.gov (United States)

    Pradhan, Arnab; Herrero-de-Dios, Carmen; Belmonte, Rodrigo; Budge, Susan; Lopez Garcia, Angela; Kolmogorova, Aljona; Lee, Keunsook K; Martin, Brennan D; Ribeiro, Antonio; Bebes, Attila; Yuecel, Raif; Gow, Neil A R; Munro, Carol A; MacCallum, Donna M; Quinn, Janet; Brown, Alistair J P

    2017-05-01

    Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand

  15. Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs.

    Science.gov (United States)

    Zhang, Yiming; Wan, Dan; Zhou, Xihong; Long, Ciming; Wu, Xin; Li, Lan; He, Liuqin; Huang, Pan; Chen, Shuai; Tan, Bie; Yin, Yulong

    2017-09-02

    Diurnal variations in serum iron levels have been well documented in clinical studies, and serum iron is an important diagnostic index for iron-deficiency anemia. However, the underlying mechanism of dynamic iron regulation in response to the circadian rhythm is still unclear. In this study, we investigated daily variations in iron status in the plasma and liver of pigs. The transcripts encoding key factors involved in iron uptake and homeostasis were evaluated. The results showed that iron levels in the plasma and liver exhibited diurnal rhythms. Diurnal variations were also observed in transcript levels of divalent metal transporter 1 (DMT1), membrane-associated ferric reductase 1 (DCYTB), and transferrin receptor (TfR) in the duodenum and jejunum, as well as hepcidin (HAMP) and TfR in the liver. Moreover, the results showed a network in which diurnal variations in systemic iron levels were tightly regulated by hepcidin and Tf/TfR via DCYTB and DMT1. These findings provide new insights into circadian iron homeostasis regulation. The diurnal variations in serum iron levels may also have pathophysiological implications for clinical diagnostics related to iron deficiency anemia in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. CORRELATION OF GALLSTONE FORMATION WITH SERUM IRON LEVELS

    Directory of Open Access Journals (Sweden)

    Rohini Bipin Bhadre

    2016-07-01

    Full Text Available INTRODUCTION Gallstones are one of the most common problem associated with the gallbladder, affecting millions of people throughout the world. Bile is excreted from liver and gallbladder into Duodenum for digestion. After digestion, if the gallbladder is not emptied out completely, the Bile Juice that remains in the gallbladder can become too concentrated with cholesterol leading to gallstone formation. Cholesterol and calcium bilirubinate are the two main substances involved in gallstone formation. Gallstones derived from bile consists of mixture of cholesterol, bilirubin with or without calcium. Based on their chemical composition, gallstones found in the gallbladder are classified as cholesterol, pigmented or mixed stones. Iron deficiency has been shown to alter the activity of several hepatic enzymes, leading to increased gallbladder bile cholesterol saturation and promotion of cholesterol crystal formation. AIMS & OBJECTIVE Attempt to establish a correlation with gallstones and decreased serum iron levels. MATERIAL & METHODS This study was a prospective cohort study which included 100 consecutive patients with imaging studies suggestive of Cholelithiasis. The Gallstone surgically removed was crushed with mortar and pestle and then analysed for cholesterol, calcium, phosphate and bilirubin (pigment. Serum samples were analysed for Cholesterol, iron and iron binding capacity. RESULTS 86% patients had increased cholesterol levels (p=0.04 and 93% had decreased serum Iron levels (p=0.96. The most common type of gallstone was found to be Cholesterol type of gallstone followed by Mixed and Pigment gallstones. CONCLUSION Serum cholesterol levels were found to be raised in majority of the patients and serum iron was found to be low in these majority of the patients indicating iron deficiency may play a role in gallstone formation.

  17. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  18. Nitrogenase activity of Herbaspirillum seropedicae grown under low iron levels requires the products of nifXorf1 genes.

    Science.gov (United States)

    Klassen, Giseli; de Oliveira Pedrosa, Fábio; de Souza, Emanuel M; Yates, M Geoffrey; Rigo, Liu Un

    2003-07-29

    Herbaspirillum seropedicae strains mutated in the nifX or orf1 genes showed 90% or 50% reduction in nitrogenase activity under low levels of iron or molybdenum respectively. Mutations in nifX or orf1 genes did not affect nif gene expression since a nifH::lacZ fusion was fully active in both mutants. nifX and the contiguous gene orf1 are essential for maximum nitrogen fixation under iron limitation and are probably involved in synthesis of nitrogenase iron or iron-molybdenum clusters.

  19. Iron-induced nitric oxide leads to an increase in the expression of ferritin during the senescence of Lotus japonicus nodules.

    Science.gov (United States)

    Chungopast, Sirinapa; Duangkhet, Mallika; Tajima, Shigeyuki; Ma, Jian Feng; Nomura, Mika

    2017-01-01

    Iron is an essential nutrient for legume-rhizobium symbiosis and accumulates abundantly in the nodules. However, the concentration of free iron in the cells is strictly controlled to avoid toxicity. It is known that ferritin accumulates in the cells as an iron storage protein. During nodule senescence, the expression of the ferritin gene, Ljfer1, was induced in Lotus japonicus. We investigated a signal transduction pathway leading to the increase of Ljfer1 in the nodule. The Ljfer1 promoter of L. japonicus contains a conserved Iron-Dependent Regulatory Sequence (IDRS). The expression of Ljfer1 was induced by the application of iron or sodium nitroprusside, which is a nitric oxide (NO) donor. The application of iron to the nodule increased the level of NO. These data strongly suggest that iron-induced NO leads to increased expression of Ljfer1 during the senescence of L. japonicus nodules. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  1. Serum iron and total iron binding capacity levels among the abo ...

    African Journals Online (AJOL)

    Iron deficiency anaemia is a common tropical disease. Iron plays a very important role in the human body. The understanding of the different blood groups ability to retain iron in their system can give an insight into their ability to handle the disease Iron deficiency anaemia. Serum Iron, Total Iron Binding Capacity (TIBC) and ...

  2. Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene

    Science.gov (United States)

    Barbeito, Ana G.; Garringer, Holly J.; Baraibar, Martin A.; Gao, Xiaoying; Arredondo, Miguel; Núñez, Marco T.; Smith, Mark A.; Ghetti, Bernardino; Vidal, Ruben

    2009-01-01

    Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone–protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL-Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates in the brain. PMID:19519778

  3. Serum B/sub 12/ levels in iron definiency anemia

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, L A; Ohki, Keiichi

    1964-04-23

    As part of its research program to study the late effects of radiation in survivors of the atomic bombs, the Atomic Bomb Casualty Commission (ABCC) in conjunction with the Japanese National Institute of Health (JNIH), conducts biennial medical examinations on the selected population which comprises the ABCC-JHIN Adult Health Study sample. The patients herein described as Groups 1 and 2 were selected from among those examined in Nagasaki who had had a hemoglobin value of less than 11.0 g/100 ml at examination 2 years previously and who had responded to iron therapy sufficiently to justify a diagnosis of iron deficiency anemia. Almost all were women of child bearing age. The effect of iron therapy on the level of serum B/sub 12/ was investigated. Of 58 patients so studied, 46 showed some rise in post-treatment levels of B/sub 12/. This is evaluated as indicating that gastric secretion of intrinsic factor is depressed in the majority of iron deficient patients.

  4. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  5. Iron and vitamin D levels among autism spectrum disorders children.

    Science.gov (United States)

    Bener, Abdulbari; Khattab, Azhar O; Bhugra, Dinesh; Hoffmann, Georg F

    2017-01-01

    The aim of this study was to investigate iron deficiency anemia and Vitamin D deficiency among autism children and to assess the importance of risk factors (determinants). This was a case-control study conducted among children suffering from autism at the Hamad Medical Corporation in Qatar. A total of 308 cases and equal number of controls were enrolled. The Autism Diagnostic Observation Schedule-Generic was the instrument used for diagnosis of Autism. The mean age (±standard deviation, in years) for autistic versus control children was 5.39 ± 1.66 versus 5.62 ± 1.81, respectively. The mean value of serum iron levels in autistic children was severely reduced and significantly lower than in control children (74.13 ± 21.61 μg/dL with a median 74 in autistic children 87.59 ± 23.36 μg/dL in controls) (P = 0.003). Similarly, the study revealed that Vitamin D deficiency was considerably more common among autistic children (18.79 ± 8.35 ng/mL) as compared to healthy children (22.18 ± 9.00 ng/mL) (P = 0.004). Finally, mean values of hemoglobin, ferritin, magnesium; potassium, calcium; phosphorous; glucose, alkaline phosphate, hematocrit, white blood cell, and mean corpuscular volume were all statistically significantly higher in healthy control children as compared to autistic children (P < 0.001). Multivariate logistic regression analysis revealed that serum iron deficiency, serum calcium levels, serum Vitamin D levels; ferritin, reduced physical activity; child order, body mass index percentiles, and parental consanguinity can all be considered strong predictors and major factors associated with autism spectrum disorders. This study suggests that deficiency of iron and Vitamin D as well as anemia were more common in autistic compared to control children.

  6. The expression of selected non-ribosomal peptide synthetases in Aspergillus fumigatus is controlled by the availability of free iron.

    Science.gov (United States)

    Reiber, Kathrin; Reeves, Emer P; Neville, Claire M; Winkler, Robert; Gebhardt, Peter; Kavanagh, Kevin; Doyle, Sean

    2005-07-01

    Three non-ribosomal peptide synthetase genes, termed sidD, sidC and sidE, have been identified in Aspergillus fumigatus. Gene expression analysis by RT-PCR confirms that expression of both sidD and C was reduced by up to 90% under iron-replete conditions indicative of a likely role in siderophore biosynthesis. SidE expression was less sensitive to iron levels. In addition, two proteins purified from mycelia grown under iron-limiting conditions corresponded to SidD ( approximately 200 kDa) and SidC (496 kDa) as determined by MALDI ToF peptide mass fingerprinting and MALDI LIFT-ToF/ToF. Siderophore synthetases are unique in bacteria and fungi and represent an attractive target for antimicrobial chemotherapy.

  7. An unusual case of iron deficiency anemia is associated with extremely low level of transferrin receptor.

    Science.gov (United States)

    Hao, Shuangying; Li, Huihui; Sun, Xiaoyan; Li, Juan; Li, Kuanyu

    2015-01-01

    A case study of a female patient, diagnosed with iron deficiency anemia, was unresponsive to oral iron treatment and only partially responsive to parenteral iron therapy, a clinical profile resembling the iron-refractory iron deficiency anemia (IRIDA) disorder. However, the patient failed to exhibit microcytic phenotype, one of the IRIDA hallmarks. Biochemical assays revealed that serum iron, hepcidin, interluekin 6, and transferrin saturation were within the normal range of references or were comparable to her non-anemic offspring. Iron contents in serum and red blood cells and hemoglobin levels were measured, which confirmed the partial improvement of anemia after parenteral iron therapy. Strikingly, serum transferrin receptor in patient was almost undetectable, reflecting the very low activity of bone-marrow erythropoiesis. Our data demonstrate that this is not a case of systemic iron deficiency, but rather cellular iron deficit due to the low level of transferrin receptor, particularly in erythroid tissue.

  8. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  9. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  10. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  11. Iron Supplementation in Suckling Piglets: How to Correct Iron Deficiency Anemia without Affecting Plasma Hepcidin Levels

    NARCIS (Netherlands)

    Starzynski, R.R.; Laarakkers, C.M.; Tjalsma, H.; Swinkels, D.W.; Pieszka, M.; Stys, A.; Mickiewicz, M.; Lipinski, P.

    2013-01-01

    The aim of the study was to establish an optimized protocol of iron dextran administration to pig neonates, which better meets the iron demand for erythropoiesis. Here, we monitored development of red blood cell indices, plasma iron parameters during a 28-day period after birth (till the weaning),

  12. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  13. Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus.

    Science.gov (United States)

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu; He, Chuan

    2012-04-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.

  14. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels

    KAUST Repository

    Tong, Winghang; Sourbier, Carole; Kovtunovych, Gennadiy; Jeong, Suhyoung; Vira, Manish A.; Ghosh, Manik Chandra; Romero, Vladimir Valera; Sougrat, Rachid; Vaulont, Sophie; Viollet, Benoî t; Kim, Yeongsang; Lee, Sunmin; Trepel, Jane B.; Srinivasan, Ramaprasad; Bratslavsky, Gennady; Yang, Youfeng; Linehan, William Marston; Rouault, Tracey A.

    2011-01-01

    Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.

  15. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels

    KAUST Repository

    Tong, Winghang

    2011-09-01

    Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.

  16. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  17. Gene co-expression networks shed light into diseases of brain iron accumulation.

    Science.gov (United States)

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Changes in iron levels, total iron binding capacity, transferrin saturation in race horses, before and after of physical exercise

    Directory of Open Access Journals (Sweden)

    Gláucia Abramovitc

    2014-09-01

    Full Text Available ABSTRACT. Abramovitc G., Parra A.C. & Fernandes W.R. [Changes in iron levels, total iron binding capacity, transferrin saturation in race horses, before and after of physical exercise]. Variação de níveis séricos de ferro, da capacidade total de ligação do ferro e da saturação da transferrina em equinos de corrida, antes e após exercício físico. Revista Brasileira de Medicina Veterinária, 36(3:289-293, 2014. Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, Butantã, São Paulo, SP 05508-270, Brasil. Email: wilsonrf@usp.br The preparation of the horse for physical activities in competition is directly related to important factors such as nutrition, muscle adaptation and blood profile, related to the concentration of serum iron, total capacity total iron binding capacity (TIBC and saturation of transferrin. This study aimed to evaluate the influence of exercise in iron levels, the total iron and transferrin saturation in race horses. One hundred and eleven samples of blood serum were collected from Thoroughbred horses, from the Jockey Club of São Paulo, aged between 3 and 4 years old, male and female, clinically healthy, practitioners turf competition, in sand or grass. The samples were obtained before exercise (control time and 30 minutes after exercise (post exercise. These animals were submitted to gallop training, of high intensity and short duration for this research. As a result, it was observed that the serum concentration of iron (Fe showed a statistically significant lowering post-exercise, due to organic re-balance of iron, while TIBC (total iron binding capacity showed a clear and significant increase in their serum levels due to increased needs of iron during and after exercise. The percentage of transferrin saturation in serum was shown to be lower post-exercise, probably due to the recruitment of

  19. Association between iron deficiency anemia and blood level in egyptian children

    International Nuclear Information System (INIS)

    Nassar, E.M.; Moawad, A.T.; Abd Alla, A.M.

    2003-01-01

    The relationship between iron deficiency and blood lead levels was investigated in a cross-sectional study of 200 children of both sexes, aged 6-12 years with mean of 7.8 +- 2.6 years. They were randomly selected from governmental primary school located near a highly contaminated industrial area. Blood samples were collected for measuring blood lead levels, serum iron serum ferritin, hemoglobin, mean corpuscular volume (MCV) and total iron binding capacity (TIBC) and other hematological indices. According to iron status, children were classified into non-anemic healthy controls(n=37),iron depleted children(n=58)and children with iron deficiency anemia (n=105).Iron deficiency is defined when MCV 10 / dl were significantly lower than those for children with blood lead levels < 10 /dl. Comparison of blood lead concentrations between boys and girls revealed highly significant increase in blood lead level in boys than girls. A strong negative correlation was detected between blood lead levels and serum iron in all subjects. However, such correlation vanished between blood lead concentration and serum ferritin,so, it could be concluded from the present study that the blood lead levels were changed according to changes in iron status. Improving iron status, along with reducing exposure to environmental contamination with lead, may help in reducing blood lead levels among most children especially those living in contaminated environment

  20. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  1. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  2. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

    Science.gov (United States)

    Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole

    2013-01-01

    Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

  3. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at phigh Fe

  4. Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression.

    Science.gov (United States)

    Chaudhary, Kapil; Promsote, Wanwisa; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi; Tawfik, Amany; Arjunan, Pachiappan; Martin, Pamela; Smith, Sylvia B; Thangaraju, Muthusamy; Kisselev, Oleg; Ganapathy, Vadivel; Gnana-Prakasam, Jaya P

    2018-02-14

    Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.

  5. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages

    Directory of Open Access Journals (Sweden)

    Mary Philip

    2016-01-01

    Full Text Available Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body’s iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation.

  6. Urinary hepcidin level as an early predictor of iron deficiency in children: A case control study

    Directory of Open Access Journals (Sweden)

    Gharib Amal F

    2011-08-01

    Full Text Available Abstract Background The ideal screening test would be capable of identifying iron deficiency in the absence of anemia. We tried to detect role of urinary hepcidin-25 level in early prediction of iron deficiency in children. Methods This is a case control study performed on 100 children in Hematology Unit of Pediatric Department, Zagazig University Hospital, Egypt. Our study included 25 cases of iron deficiency (ID stage-1 (iron depletion, 25 cases ID stage-2 (iron-deficient erythropoiesis, 25 cases ID stage-3 (iron deficiency anemia and 25 healthy children as a control group. Estimation of iron status parameters was done. Urinary hepcidin-25 level was detected. Results Urinary hepcidin-25 level was significantly lower in all stages of iron deficiency than in control group, more significant reduction in its level was observed with the progress in severity of iron deficiency. Urinary hepcidin showed significant positive correlation with hemoglobin, mean corpuscular volume, hematocrit value, serum iron and ferritin and transferrin saturation. In contrary, it showed significant negative correlation with serum transferrin and total iron binding capacity. Urinary hepcidin at cutoff point ≤0.94 nmol/mmol Cr could Predict ID stage-1 with sensitivity 88% and specificity 88%. Cutoff point ≤0.42 nmol/mmol Cr could predict ID stage-2 with sensitivity 96% and specificity 92%. Cutoff point ≤0.08 nmol/mmol Cr could Predict ID stage-3 with Sensitivity 96% and specificity 100%. Conclusions We can conclude that detection of urinary hepcidin-25 level was a simple and non invasive test and could predict iron deficiency very early, before appearance of hematological affections.

  7. Serum iron levels and the risk of Parkinson disease: a Mendelian randomization study.

    Directory of Open Access Journals (Sweden)

    Irene Pichler

    Full Text Available Although levels of iron are known to be increased in the brains of patients with Parkinson disease (PD, epidemiological evidence on a possible effect of iron blood levels on PD risk is inconclusive, with effects reported in opposite directions. Epidemiological studies suffer from problems of confounding and reverse causation, and mendelian randomization (MR represents an alternative approach to provide unconfounded estimates of the effects of biomarkers on disease. We performed a MR study where genes known to modify iron levels were used as instruments to estimate the effect of iron on PD risk, based on estimates of the genetic effects on both iron and PD obtained from the largest sample meta-analyzed to date.We used as instrumental variables three genetic variants influencing iron levels, HFE rs1800562, HFE rs1799945, and TMPRSS6 rs855791. Estimates of their effect on serum iron were based on a recent genome-wide meta-analysis of 21,567 individuals, while estimates of their effect on PD risk were obtained through meta-analysis of genome-wide and candidate gene studies with 20,809 PD cases and 88,892 controls. Separate MR estimates of the effect of iron on PD were obtained for each variant and pooled by meta-analysis. We investigated heterogeneity across the three estimates as an indication of possible pleiotropy and found no evidence of it. The combined MR estimate showed a statistically significant protective effect of iron, with a relative risk reduction for PD of 3% (95% CI 1%-6%; p = 0.001 per 10 µg/dl increase in serum iron.Our study suggests that increased iron levels are causally associated with a decreased risk of developing PD. Further studies are needed to understand the pathophysiological mechanism of action of serum iron on PD risk before recommendations can be made.

  8. Iron depletion affects nitrogenase activity and expression of nifH and nifA genes in Herbaspirillum seropedicae.

    Science.gov (United States)

    Rosconi, Federico; Souza, Emanuel M; Pedrosa, Fabio O; Platero, Raúl A; González, Cecilia; González, Marcela; Batista, Silvia; Gill, Paul R; Fabiano, Elena R

    2006-05-01

    Herbaspirillum seropedicae Z67 is a nitrogen-fixing bacterium able to colonize the rhizosphere and the interior of several plants. As iron is a key element for nitrogen fixation, we examined the response of this microorganism to iron deficiency under nitrogen fixing conditions. We identified a H. seropedicae exbD gene that was induced in response to iron limitation and is involved in iron homeostasis. We found that an exbD mutant grown in iron-chelated medium is unable to fix nitrogen. Moreover, we provide evidence that expression of the nifH and nifA genes is iron dependent in a H. seropedicae genetic background.

  9. Ceruloplasmin deficiency reduces levels of iron and BDNF in the cortex and striatum of young mice and increases their vulnerability to stroke.

    Directory of Open Access Journals (Sweden)

    Sarah J Texel

    Full Text Available Ceruloplasmin (Cp is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF, known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.

  10. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  11. Evaluation and association of serum iron and ferritin levels in children with dental caries.

    Science.gov (United States)

    Venkatesh Babu, N S; Bhanushali, Parin Vasant

    2017-01-01

    Iron deficiency anemia accounts for 90% of all types of anemia in the world. Although the prevalence has declined in recent years, it remains an important pediatric public health problem. Iron deficiency has also been associated with dental caries. It impairs salivary gland function causing reduced salivary secretion and buffering capacity leading to increased caries activity. The aim of the study is to explore an association between dental caries and serum levels of iron and ferritin in children aged 3-12 years. Subjectsand Methods: The study group included 120 children, hospitalized for uncomplicated medical problems. Blood reports were evaluated to determine serum iron and ferritin levels. Dental caries experience was assessed using deft index. The collected data were tabulated and analyzed using Student's t-test and Pearson's correlation coefficient. Out of 120 children, 38 children showed low serum iron levels of which 31 children had dental caries and nine out of 15 children in the high serum iron level group showed dental caries. High ferritin levels were seen in three children among which two children were caries-free and only one child had a low ferritin level who also had a positive deft score. Based on the results, it was concluded that there is an inverse association between serum iron levels and dental caries whereas there is no association between serum ferritin levels and dental caries.

  12. Natural radioactivity in iron and steel materials by low-level gamma spectrometry

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, Maria

    2003-01-01

    High resolution low-level gamma spectrometry was applied to perform a radioactivity measurement in iron and steel raw materials (coal, coke, iron ore, pellets, manganese ore, limestone, dolomite), auxiliary materials (scorialite, oxide of Ti, bentonite), and some related final products (cast iron, slag, blast-furnace, flue dust) involved in iron making processing. We control the activity of materials in various kinds of samples and we investigate for transfer of radioactivity during the blast-furnace process. Artificial radioisotopes are rarely encountered. (authors)

  13. Predictors of iron levels in 14,737 Danish blood donors

    DEFF Research Database (Denmark)

    Rigas, Andreas Stribolt; Sørensen, Cecilie Juul; Pedersen, Ole Birger

    2014-01-01

    BACKGROUND: Dietary studies show a relationship between the intake of iron enhancers and inhibitors and iron stores in the general population. However, the impact of dietary factors on the iron stores of blood donors, whose iron status is affected by blood donations, is incompletely understood....... STUDY DESIGN AND METHODS: In the Danish Blood Donor Study, we assessed the effect of blood donation frequency, physiologic factors, lifestyle and supplemental factors, and dietary factors on ferritin levels. We used multiple linear and logistic regression analyses stratified by sex and menopausal status....... RESULTS: Among high-frequency donors (more than nine donations in the past 3 years), we found iron deficiency (ferritin below 15 ng/mL) in 9, 39, and 22% of men, premenopausal women, and postmenopausal women, respectively. The strongest predictors of iron deficiency were sex, menopausal status, the number...

  14. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  15. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  16. Noninvasive analysis of skin iron and zinc levels in beta-thalassemia major and intermedia

    International Nuclear Information System (INIS)

    Gorodetsky, R.; Goldfarb, A.; Dagan, I.; Rachmilewitz, E.A.

    1985-01-01

    Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for noninvasive determination of iron and zinc in two distinct skin areas, representing predominantly dermal and epidermal tissues, in 56 patients with beta-thalassemia major and intermedia. The mean iron levels in the skin of patients with beta-thalassemia major and intermedia were elevated by greater than 200% and greater than 50%, respectively, compared with control values. The zinc levels of both skin areas examined were within the normal range. The data indicate that the rate and number of blood transfusions, which correlated well with serum ferritin levels (r . 0.8), are not the only factors that determine the amount of iron deposition in the skin (r less than 0.6). Other sources of iron intake contribute to the total iron load in the tissues, particularly in patients who are not given multiple transfusions. The noninvasive quantitation of skin levels may reflect the extent of iron deposition in major parenchymal organs. Repeated DXS examinations of the skin could monitor the clearance of iron from the tissues of patients with iron overload in the course of therapy with chelating agents

  17. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryo nic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  18. Serum Albumin Alters the Expression of Pseudomonas Aeruginosa Iron Controlled Genes

    Science.gov (United States)

    The objectives of this study were to examine the effect serum on global transcription within P. aeruginosa at different phases of growth and the role of iron in this regulation. Results presented in this study suggest a novel mechanism through which serum regulates the expression of different P. ae...

  19. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryonic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  20. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle.

    Directory of Open Access Journals (Sweden)

    Wellison Jarles da Silva Diniz

    Full Text Available Iron (Fe is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE genes and metabolic pathways in Longissimus dorsi (LD muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV, were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05 found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology.

  1. Serum levels of iron in Sør-Varanger northern Norway - An iron mining municipality

    OpenAIRE

    Broderstad, Ann R.; Smith-Sivertsen, Tone; Dahl, Inger Marie S.; Ingebretsen, Ole Christian; Lund, Elliv

    2006-01-01

    Objectives. The purpose of this study was to investigate iron status in a population with a high proportion of miners in the northernmost part of Norway. Study Design. Cross-sectional, population-based study performed in order to investigate possible health effects of pollution in the population living on both sides of the Norwegian-Russian border. Methods. All individuals living in the community of Sør-Varanger were invited for screening in 1994. In 2000, blood samples from 2949 participants...

  2. Effect of different iron levels on 65Zn uptake and transport in maize seedlings

    International Nuclear Information System (INIS)

    Rathore, V.S.; Sharma, D.; Kandala, J.C.

    1974-01-01

    Uptake and translocation of 65 Zn was studied in two week old maize seedlings at 0.01, 0.1, 1 and 5 ppm iron levels in half-strength Hoagland's solution. Four different zinc levels viz., 0.04, 0.4, 4 and 8 ppm were taken. Total 65 Zn uptake and translocation to shoots at 2, 4, 6 and 12 hours showed that increasing iron levels in the uptake medium reduced Zn-uptake in all combinations and at all uptake hours studied. This antagnnistic effect of iron on zinc uptake was more pronounced at the initial stages and could be partly inhibited by increasing zinc concentration in the uptake medium. Translocation of 65 Zn to shoots increased with increase in uptake time. Increasing iron levels in the medium decreased zinc dislocation to shoots at all zinc levels. (author)

  3. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels

    Directory of Open Access Journals (Sweden)

    Aya Ishibashi

    2017-07-01

    Full Text Available Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily on the hepcidin-25 (hepcidin level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7 or a placebo condition (Control condition; CON, n = 7. They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1–3. The Fe condition took 12 mg of iron twice daily (24 mg/day, and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise (p < 0.05. In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition (p < 0.05. In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  4. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels.

    Science.gov (United States)

    Ishibashi, Aya; Maeda, Naho; Kamei, Akiko; Goto, Kazushige

    2017-07-30

    Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily) on the hepcidin-25 (hepcidin) level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7) or a placebo condition (Control condition; CON, n = 7). They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1-3). The Fe condition took 12 mg of iron twice daily (24 mg/day), and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise ( p < 0.05). In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition ( p < 0.05). In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.

  5. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

    Science.gov (United States)

    Grettenberger, Christen L; Pearce, Alexandra R; Bibby, Kyle J; Jones, Daniel S; Burgos, William D; Macalady, Jennifer L

    2017-04-01

    Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens , a species that is associated with high rates of Fe(II) oxidation in laboratory studies. IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two

  6. Effect of zinc and/or iron supplementations on ICF-level in prepubertal anaemic girls

    International Nuclear Information System (INIS)

    Ayad, S.K.; Noure Eldin, A.M.

    2003-01-01

    The study was carried out to evaluate the effects of iron and zinc supplementations separated or combined on levels of iron, zinc and insulin like growth factor-1 (IGF-) in prepuberal girls suffering from iron deficiency anaemia. Hematological and biochemical changes of thirty two anaemic prepubertal girls (mean age 10.5 ± 2.01 year) were compared with normal fifteen girls have the same age. The anaemic girls were divided into three groups according to treatment; groupA (iron, group B(zinc) and group C (iron+zinc)and received supplementations for 8 weeks. Significant decreases in erythrocytic counts (RBCs), hemoglobin (Hb), hematocrit % (Hct%) and reticulocytes%(Rt%) were recorded in blood samples of the three groups before supplementations while non-significant differences were detected in the values of other blood indices. Significant decreases were detected in iron, zinc and IGF-1 levels while non-significant decrease in ferritin was detected in group (A). Erythropoietin and total iron binding capacity (TIBC) showed significant increases in the same group. Total iron binding capacity, iron, zinc and IGF-1 levels showed significant decreases while there were significant increases in erythropoetin and ferritin in group (B). The results revealed that ferritin,iron, zinc and IGF-1 levels were significantly decreased while erythropoietin and TIBC were significantly increased in group (C). After treatment, group (B) showed sligh significant increases in the concentration of Hb, Hct% and Rt%. with non-significant increase in RBCs count but in group (C) the results revealed significant increases in RBCs count, Hb, Hct% and Rt%. Non- significant differences were detected in RBCs count, Hb and Hct% in group (A) while significant increase was detected in Rt% in the same group

  7. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    Science.gov (United States)

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.

  8. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  9. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    Science.gov (United States)

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Personalised iron supply for prophylaxis and treatment of pregnant women as a way to ensure normal iron levels in their breast milk.

    Science.gov (United States)

    Marin, G H; Mestorino, N; Errecalde, J; Huber, B; Uriarte, A; Orchuela, J

    2012-02-22

    Because the characteristics of all body fluids depends on patient's health status, is it possible that disadvantaged and socially vulnerable mothers may have lower amounts of iron in their breast milk, and that their babies receive lower content of the mineral for their normal growth and development. Assuring a preventive treatment of the mother might solve this problem. To demonstrate breast milk iron content from disadvantaged mothers and impact of personalized iron supplementation program. cross-sectional study. Breast milk samples were obtained for ferritin analysis. Health's services usually provides free folic acid and iron treatment however, treatment compliance is low. Patients were random in two groups: "A: Controls" that had free iron tablets available from Health Centre; and "B: Intervention" group where patients accepted to be periodically contacted at home by health's team for personalized iron dispensation. 360 patients were included. Profilaxis and treatment compliance were 100% and 97,6% for B group while for "Control" one was 63% and 34%(p0.0001). Higher breast milk iron levels were detected in Intervention's mothers compared with control's patients (p0.007). Personalized iron prophylaxis and treatment increased breast milk iron levels. Public health policy must ensure iron dispensation for each underserved mother in order to reduce children problems associate to iron deficiency during the first year of their life.

  11. Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals.

    Science.gov (United States)

    Momonoi, Kazumi; Tsuji, Toshiaki; Kazuma, Kohei; Yoshida, Kumi

    2012-01-01

    Several flowers of Tulipa gesneriana exhibit a blue color in the bottom segments of the inner perianth. We have previously reported the inner-bottom tissue-specific iron accumulation and expression of the vacuolar iron transporter, TgVit1, in tulip cv. Murasakizuisho. To clarify whether the TgVit1-dependent iron accumulation and blue-color development in tulip petals are universal, we analyzed anthocyanin, its co-pigment components, iron contents and the expression of TgVit1 mRNA in 13 cultivars which show a blue color in the bottom segments of the inner perianth accompanying yellow- and white-colored inner-bottom petals. All of the blue bottom segments contained the same anthocyanin component, delphinidin 3-rutinoside. The flavonol composition varied with cultivar and tissue part. The major flavonol in the bottom segments of the inner perianth was rutin. The iron content in the upper part was less than that in the bottom segments of the inner perianth. The iron content in the yellow and white petals was higher in the bottom segment of the inner perianth than in the upper tissues. TgVit1 mRNA expression was apparent in all of the bottom tissues of the inner perianth. The result of a reproduction experiment by mixing the constituents suggests that the blue coloration in tulip petals is generally caused by iron complexation to delphinidin 3-rutinoside and that the iron complex is solubilized and stabilized by flavonol glycosides. TgVit1-dependent iron accumulation in the bottom segments of the inner perianth might be controlled by an unknown system that differentiated the upper parts and bottom segments of the inner perianth.

  12. Mechanism for iron control of the Vibrio fischeri luminescence system: involvement of cyclic AMP and cyclic AMP receptor protein and modulation of DNA level.

    Science.gov (United States)

    Dunlap, P V

    1992-07-01

    Iron controls luminescence in Vibrio fischeri by an indirect but undefined mechanism. To gain insight into that mechanism, the involvement of cyclic AMP (cAMP) and cAMP receptor protein (CRP) and of modulation of DNA levels in iron control of luminescence were examined in V. fischeri and in Escherichia coli containing the cloned V. fischeri lux genes on plasmids. For V. fischeri and E. coli adenylate cyclase (cya) and CRP (crp) mutants containing intact lux genes (luxR luxICDABEG), presence of the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid) (EDDHA) increased expression of the luminescence system like in the parent strains only in the cya mutants in the presence of added cAMP. In the E. coli strains containing a plasmid with a Mu dl(lacZ) fusion in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the lux operon promoter) were both 2-3-fold higher in the presence of EDDHA in the parent strain, and for the mutants this response to EDDHA was observed only in the cya mutant in the presence of added cAMP. Therefore, cAMP and CRP are required for the iron restriction effect on luminescence, and their involvement in iron control apparently is distinct from the known differential control of transcription from the luxR and luxICDABEG promoters by cAMP-CRP. Furthermore, plasmid and chromosomal DNA levels were higher in E. coli and V. fischeri in the presence of EDDHA. The higher DNA levels correlated with an increase in expression of chromosomally encoded beta-galactosidase in E. coli and with a higher level of autoinducer in cultures of V. fischeri. These results implicate cAMP-CRP and modulation of DNA levels in the mechanism of iron control of the V. fischeri luminescence system.

  13. Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity.

    Science.gov (United States)

    Moreno-Navarrete, José María; Moreno, María; Puig, Josep; Blasco, Gerard; Ortega, Francisco; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel

    2017-10-01

    Serum hepcidin concentration is known to increase in parallel to circulating markers of iron stores. We aimed to investigate whether this is reflected at the tissue level in subjects with obesity. Serum hepcidin and ferritin levels (ELISA) and hepatic iron content (using magnetic resonance imaging) were analyzed longitudinally in 44 participants (19 without obesity and 25 with obesity). In a subgroup of 16 participants with obesity, a weight loss intervention was performed. Serum hepcidin, ferritin and hepatic iron content (HIC) were significantly increased in participants with obesity. Age- and gender-adjusted serum hepcidin was positively correlated with BMI, hsCRP, ferritin and HIC. In addition, age- and gender-adjusted serum hepcidin was positively correlated with ferritin and HIC in both non-obese and obese participants. In multivariate regression analysis, hepatic iron content (p obesity. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  15. Association between iron level, glucose impairment and increased DNA damage during pregnancy.

    Science.gov (United States)

    Zein, Salam; Rachidi, Samar; Shami, Nadine; Sharara, Iman; Cheikh-Ali, Khawla; Gauchez, Anne-Sophie; Moulis, Jean-Marc; Ayoubi, Jean-Marc; Salameh, Pascale; Hininger-Favier, Isabelle

    2017-09-01

    Elevated circulating ferritin has been reported to increase the risk of gestational diabetes mellitus (GDM). When high ferritin translates into high iron stores, iron excess is also a condition leading to free radical damage. We aimed to evaluate the relationship between oxidative stress (OS) induced by iron status and GDM risk in non iron-supplemented pregnant women. This was a pilot observational study conducted on 93 non-anemic pregnant women. Iron status was assessed at the first trimester of gestation. Blood sampling was done at 24-28 weeks' gestation for oral glucose tolerance test (OGTT), insulin and biological markers of oxidative damage tests. A significant increase in DNA damage was found in patients who developed GDM. Women with elevated DNA damage had a six-fold increased risk of developing GDM (Exp (B)=6.851, P=0.038; 95% CI [1.108-42.375]). The serum ferritin levels at first trimester were significantly correlated to lipid peroxidation (rho=0.24, p=0.012). The stratified analysis suggests that ferritin is a modifying factor for the correlation of oxidative stress (OS) and glucose intolerance. Moderate ferritin levels due to iron intake without iron-supplement, at early pregnancy is a modifying factor for the correlation of oxidative damage and glucose intolerance in pregnant women. Larger studies to evaluate the risk of food iron intake induced increased oxidative damage in offspring are warranted to propose nutrition advice regarding iron intake in women with a high risk of GDM. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Milk peptides increase iron solubility in water but do not affect DMT-1 expression in Caco-2 cells

    Science.gov (United States)

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. Our objectives were to investigate whether these fractions a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells b) enhance iron dialyzability when added in meals. Peptid...

  17. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  18. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    Science.gov (United States)

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  19. Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure.

    Directory of Open Access Journals (Sweden)

    Andrew D Govus

    Full Text Available To investigate the influence of daily oral iron supplementation on changes in hemoglobin mass (Hbmass and iron parameters after 2-4 weeks of moderate altitude exposure.Hematological data collected from 178 athletes (98 males, 80 females exposed to moderate altitude (1,350-3,000 m were analysed using linear regression to determine how altitude exposure combined with oral iron supplementation influenced Hbmass, total iron incorporation (TII and blood iron parameters [ferritin and transferrin saturation (TSAT].Altitude exposure (mean ± s: 21 ± 3 days increased Hbmass by 1.1% [-0.4, 2.6], 3.3% [1.7, 4.8], and 4.0% [2.0, 6.1] from pre-altitude levels in athletes who ingested nil, 105 mg and 210 mg respectively, of oral iron supplement daily. Serum ferritin levels decreased by -33.2% [-46.9, -15.9] and 13.8% [-32.2, 9.7] from pre-altitude levels in athletes who supplemented with nil and 105 mg of oral iron supplement daily, but increased by 36.8% [1.3, 84.8] in athletes supplemented with 210 mg of oral iron daily. Finally, athletes who ingested either 105 mg or 210 mg of oral iron supplement daily had a greater TII compared with non-supplemented athletes (0 versus 105 mg: effect size (d = -1.88 [-2.56, -1.17]; 0 versus 210 mg: effect size (d = -2.87 [-3.88, -1.66].Oral iron supplementation during 2-4 weeks of moderate altitude exposure may enhance Hbmass production and assist the maintenance of iron balance in some athletes with low pre-altitude iron stores.

  20. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  1. Iron and ADHD: Time to Move beyond Serum Ferritin Levels

    Science.gov (United States)

    Donfrancesco, Renato; Parisi, Pasquale; Vanacore, Nicola; Martines, Francesca; Sargentini, Vittorio; Cortese, Samuele

    2013-01-01

    Objective: (a) To compare serum ferritin levels in a sample of stimulant-naive children with ADHD and matched controls and (b) to assess the association of serum ferritin to ADHD symptoms severity, ADHD subtypes, and IQ. Method: The ADHD and the control groups included 101 and 93 children, respectively. Serum ferritin levels were determined with…

  2. Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis.

    Science.gov (United States)

    Viscogliosi, E; Delgado-Viscogliosi, P; Gerbod, D; Dauchez, M; Gratepanche, S; Alix, A J; Dive, D

    1998-04-01

    A superoxide dismutase (SOD) gene of the parasitic protist Trichomonas vaginalis was cloned, sequenced, expressed in Escherichia coli, and its gene product characterized. It is an iron-containing dimeric protein with a monomeric mass of 22,067 Da. Southern blots analyses suggested the presence of seven iron-containing (FeSOD) gene copies. Hydrophobic cluster analysis revealed some peculiarities in the 2D structure of the FeSOD from T. vaginalis and a strong structural conservation between prokaryotic and eukaryotic FeSODs. Phylogenetic reconstruction of the SOD sequences confirmed the dichotomy between FeSODs and manganese-containing SODs. FeSODs of protists appeared to group together with homologous proteobacterial enzymes suggesting a possible origin of eukaryotic FeSODs through an endosymbiotic event.

  3. The expression of the soluble HFE corresponding transcript is up-regulated by intracellular iron and inhibits iron absorption in a duodenal cell model

    OpenAIRE

    Silva, Bruno; Ferreira, Joana; Santos, Vera; Baldaia, Cilénia; Serejo, Fátima; Faustino, Paula

    2014-01-01

    Background and aims: Dietary iron absorption regulation is a key-step for the maintenance of body iron homeostasis. Besides the HFE full-length protein, the HFE gene codes for alternative splicing variants responsible for the synthesis of a soluble form of HFE protein (sHFE). Here we aimed to determine whether sHFE transcript levels respond to different iron conditions in duodenal, macrophage and hepatic cell models, as well, in vivo, in the liver. Furthermore, we determined the functional ef...

  4. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.; Ehmann, W.D. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levels to those in the pituitary gland of AD and control subjects.

  5. Combined treatment of 3-hydroxypyridine-4-one derivatives and green tea extract to induce hepcidin expression in iron-overloaded β-thalassemic mice

    Directory of Open Access Journals (Sweden)

    Supranee Upanan

    2015-12-01

    Conclusions: The GTE + DFP treatment could ameliorate iron overload and liver oxidative damage in non-transfusion dependent β-thalassemic mice, by chelating toxic iron in plasma and tissues, and increasing hepcidin expression to inhibit duodenal iron absorption and iron release from hepatocytes and macrophages in the spleen. There is probably an advantage in giving GTE with DFP when treating patients with iron overload.

  6. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  7. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  8. ANALYSIS OF BILIARY CHOLESTEROL LEVELS IN IRON-DEFICIENT PATIENTS OPERATED FOR GALLSTONE DISEASE

    Directory of Open Access Journals (Sweden)

    R. Kannan

    2017-01-01

    Full Text Available BACKGROUND Gallstone disease is a common gastrointestinal problem in day-to-day practice. The old concept that a typical gallstone sufferer is fat, fertile, flatulent female of 50. This is partially true as the disease has been found in women soon after their first delivery who are thin and underweight and in males also. Conditions that favour the formation of cholesterol gallstones are super saturation of bile with cholesterol, kinetically favourable nucleation and presence of cholesterol crystals in the gallbladder long enough to agglomerate into a stone. Recent studies have defined the role of trace elements (Fe, Ca, Zn and Cu and defective pH in the formation of gallstones. The aim of the study is to determine the association of iron deficiency in super saturation of bile. This cross-sectional study of 50 patients was conducted over a period of 12 months in the Department of General Surgery, Kilpauk Medical College, Chennai, India. Biliary cholesterol and serum cholesterol were compared in iron deficient and non-iron deficient patients having gallstones. A low serum iron level is a factor in bile super saturation with respect to cholesterol leading to gallstone formation. MATERIALS AND METHODS This study was conducted over a period of 12 months in the Department of General Surgery, Kilpauk Medical College, Chennai, India. 50 patients suffering from cholelithiasis confirmed by USG were divided into two groups based on serum iron values. Group A consists of patients with normal serum iron (non-anaemic and Group B of patients with less than normal serum iron (anaemic. RESULTS Serum total cholesterol of the patients of cholelithiasis was not different among groups categorised based on serum iron levels. There were no significant variations in the serum cholesterol contents of both the groups. Also, there was no significant variation of the above parameter in the male and female patients. CONCLUSION Though, it is difficult to draw a causal

  9. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  10. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R

    2014-03-26

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  11. A promoter-level mammalian expression atlas

    KAUST Repository

    Forest, Alistair R R; Kawaji, Hideya; Rehli, Michael; Baillie, John Kenneth; De Hoon, Michiel Jl L; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha Madhusudan; Jurman, Giuseppe; Kaczkowski, Bogumił; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Mungall, Christopher J.; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Meehan, Terrence F.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, Svend Peter; Knox, Alan; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Schmeier, Sebastian; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F J; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Bertin, Nicolas; Lipovich, Leonard; MacKay-Sim, Alan; Manabe, Riichiroh; Mar, Jessica; Marchand, Benoî t; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison M.; Mizuno, Yosuke; De Morais, David A Lima; Jø rgensen, Mette Christine; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Dimont, Emmanuel; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; Van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Arner, Erik; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert C J J; Patrikakis, Margaret; Schmidl, Christian; Persson, Helena A.; Piazza, Silvano; Prendergast, James G D; Rackham, Owen J L; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Schaefer, Ulf; Rye, Morten Beck; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Medvedeva, Yulia; Schneider, Claudio H.; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Chris M.; Plessy, Charles; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Suzuki, Naoko; Swoboda, Rolf K.; 't Hoen, Peter Ac Chr; Tagami, Michihira; Tagami, Naokotakahashi; Takai, Jun; Tanaka, Hiroshi; Vitezic, Morana; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; Van De Wetering, Marc L.; Van Den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Severin, Jessica M.; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise Natalie; Wolvetang, Ernst Jurgen; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Semple, Colin Am M; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Susan E.; Zhang, Peter; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten Olivier; Kawai, Jun; Ishizu, Yuri; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.; Carninci, Piero; Young, Robert S.; Hayashizaki, Yoshihide Yoshihide; Francescatto, Margherita; Altschuler, Intikhab Alam; Albanese, Davide; Altschule, Gabriel M.; Arakawa, Takahiro; Archer, John A.C.; Arner, Peter; Babina, Magda; Rennie, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James A.; Brombacher, Frank; Burroughs, Alexander Maxwell; Califano, Andrea C.; Cannistraci, Carlo; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie Anne; Detmar, Michael J.; Diehl, Alexander D.; Dohi, Taeko; Drablø s, Finn; Edge, Albert SB B; Edinger, Matthias G.; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey R.; Fang, Hai; Farach-Carson, Mary Cindy; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Junichi; Geijtenbeek, Teunis Bh H; Gibson, Andrew P.; Gingeras, Thomas R.; Goldowitz, Dan; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard F.; Hitchens, Kelly J.; Sui, Shannan J Ho; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Łukasz B.

    2014-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  12. Altered protein and iron levels of patients with active tuberculosis in ...

    African Journals Online (AJOL)

    Backgound: Tuberculosis as a state of chronic inflammation impacts on haematologic functions of the body. Objectives: This study aimed at assessing iron parameters and serum protein levels of ninety tuberculosis patients aged fifteen to sixty years, enrolled from Dr Lawrence Henshaw Memorial Hospital, Calabar, Nigeria.

  13. A study of the levels of vanadium, cadmium, chromium and iron in ...

    African Journals Online (AJOL)

    Background: There is conflicting information on the adverse health effects of photocopier toner powder on operators.This study aims to determine the possible nephrotoxic effects of some commercially available photocopier toners and the levels of selected heavy metals (vanadium, cadmium, chromium and iron) for ...

  14. Analysis of baseline gene expression levels from ...

    Science.gov (United States)

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  15. Effect of iron deficiency anemia and iron supplementation on HbA1c levels - Implications for diagnosis of prediabetes and diabetes mellitus in Asian Indians.

    Science.gov (United States)

    Madhu, S V; Raj, Abhishek; Gupta, Stuti; Giri, S; Rusia, Usha

    2017-05-01

    We investigated the effect of iron deficiency anemia (IDA) on levels of glycated hemoglobin (HbA1c) and to compare its levels before and after iron supplementations. Age and sex matched subjects were enrolled and clustered in 2 groups: IDA (n=62) and healthy controls (HC; n=60). HbA1c levels were estimated by HPLC. Hemogram were estimated by hematology analyser. Serum ferritin (ELISA) and other parameters of iron profile were measured by standard guidelines of ICSH. HbA1c values and iron studies were repeated after 3months of iron supplementation to determine the effect of iron therapy on HbA1c levels. Significantly higher HbA1c levels were observed in IDA subjects compared to HC (5.51±0.696 v/s 4.85±0.461%, pHbA1c and hemoglobin, hematocrit, RBC count, MCH, MCHC and serum ferritin in IDA subjects (r=-0.632, -0.652, -0.384, -0.236, -0.192 and -0.441). Significant decline was noticed in HbA1c levels in IDA subjects after iron supplementation (5.51±0.696 before treatment v/s 5.044±0.603 post-treatment; pHbA1c in pre-diabetes range normalised to normal glucose tolerance (NGT) range and out of 6 patients with pre-treatment HbA1c in diabetes range, 5 reverted to pre-diabetes range while 1 of them reverted to the NGT range. Caution must be exercised in interpreting the results of HbA1c in patients of IDA and iron deficiency must be corrected before diagnosing diabetes and pre-diabetes solely on the basis of HbA1c criteria. Copyright © 2016. Published by Elsevier B.V.

  16. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs.

    Science.gov (United States)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe 2 O 3 -NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe 2 O 3 -NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe 2 O 3 -NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe 2 O 3 -NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe 2 O 3 -NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe 2 O 3 -NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe 2 O 3 -NPs could be an environmental risk factor for reproductive disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants.

    Science.gov (United States)

    García, María J; Romera, Francisco J; Stacey, Minviluz G; Stacey, Gary; Villar, Eduardo; Alcántara, Esteban; Pérez-Vicente, Rafael

    2013-01-01

    Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.

  18. Comparison of Deferoxamine, Activated Charcoal, and Vitamin C in Changing the Serum Level of Fe in Iron Overloaded Rats

    Directory of Open Access Journals (Sweden)

    Reza Ghafari

    2014-02-01

    Full Text Available Background: Iron is an essential mineral for normal cellular physiology but its overload can lead to cell injury. For many years, deferoxamine injection has been used as an iron chelator for treatment of iron overload. The aim of this study is to compare oral deferoxamine, activated charcoal, and vitamin C, as an absorbent factor of Fe, in changing the serum level of iron in iron overload rats. Methods: In this experimental study, all groups were administered 150 mg iron dextran orally by gavage. After eight hours, rats in the first group received oral deferoxamine while those in the second and third groups received oral activated charcoal 1 mg/kg and oral vitamin C 150 mg, respectively. Then, serum levels of iron ware measured in all rats. Results: The mean serum level of iron in rats that received oral deferoxamine was 258.11±10.49 µg/dl, whereas mean levels of iron in charcoal and vitamin C groups were 380.88±11.21 µg/dl and 401.22±13.28 µg/dl, respectively. None of the measurements were within safety limits of serum iron. Conclusion: It seems that oral deferoxamine per se may not help physicians in the management of cases presented with iron toxicity. Activated charcoal did not reduce serum iron significantly in this study and further investigations may be warranted to assess the potential clinical utility of its mixture with oral deferoxamine as an adjunct in the clinical management of iron ingestions.

  19. Weekly iron folic acid supplementation plays differential role in maintaining iron markers level in non-anaemic and anaemic primigravida: A randomized controlled study

    Directory of Open Access Journals (Sweden)

    Hari Shankar

    2016-11-01

    Full Text Available Anaemia during pregnancy is most commonly observed and highly prevalent in South-East Asia. Various effective programmes have been laid down for its management, mainly daily supplementation of iron folic acid (IFA tablets. Following the same, standard obstetrical practice has included the IFA supplementation without requiring the determination of iron deficiency. In this study, a total of 120 primigravida (N = 60; non-anaemic (Hb > 11 g/dl and N = 60 anaemic (Hb = 8–11 g/dl were selected among those attending the Antenatal Clinic in Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India. They were supplemented with daily and weekly IFA tablets till 6 weeks postpartum. Corresponding changes in haemoglobin level on advance of pregnancy, side effects and compliance associated with daily and weekly IFA supplementation and its associations with iron status markers were studied. The inflammatory markers were also estimated. The statistical significance level (p < 0.05 between the groups were assessed by applying unpaired t-test using SPSS (version 16.0. The obtained results publicized the salutary role of daily IFA supplementation in improving the haemoglobin level and iron status markers in anaemic pregnant women though the levels could not reach up to the non-anaemic haemoglobin levels. However, weekly IFA supplementation seems to be a better approach in non-anaemic pregnant women where almost comparable results were obtained in terms of haematological parameters, gestation length and birth weight. Conclusion: Weekly IFA supplementation found to be as effective as daily supplementation in iron sufficient non-anaemic pregnant women whereas anaemic pregnant women should be prescribed daily IFA supplementation irrespective of iron replete/deplete state. Keywords: Anaemia, Iron folic acid supplementation, Iron status markers, Pregnancy

  20. Plasma iron levels appraised 15 days after spinal cord injury in a limb movement animal model.

    Science.gov (United States)

    Reis, F M; Esteves, A M; Tufik, S; de Mello, M T

    2011-03-01

    Experimental, controlled trial. The purpose of this study was to evaluate plasma iron and transferrin levels in a limb movement animal model with spinal cord injury (SCI). Universidade Federal de São Paulo, Departamento de Psicobiologia. In all, 72 male Wistar rats aged 90 days were divided into four groups: (1) acute SCI (1 day, SCI1), (2) 3 days post-SCI (SCI3), (3) 7 days post-SCI (SCI7) and (4) 15 days post-SCI (SCI15). Each of these groups had corresponding control (CTRL) and SHAM groups. Plasma iron and transferrin levels of the different groups were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's test. We found a significant reduction in iron plasma levels after SCI compared with the CTRL group: SCI1 (CTRL: 175±10.58 μg dl(-1); SCI: 108.28±11.7 μg dl(-1)), SCI3 (CTRL: 195.5±11.00 μg dl(-1); SCI: 127.88±12.63 μg dl(-1)), SCI7 (CTRL: 186±2.97 μg dl(-1); SCI: 89.2±15.39 μg dl(-1)) and SCI15 (CTRL: 163±5.48 μg dl(-1); SCI: 124.44±10.30 μg dl(-1)) (P<0.05; ANOVA). The SHAM1 group demonstrated a reduction in iron plasma after acute SCI (CTRL: 175±10.58 μg dl(-1); SHAM: 114.60±7.81 μg dl(-1)) (P<0.05; ANOVA). Reduced iron metabolism after SCI may be one of the mechanisms involved in the pathogenesis of sleep-related movement disorders.

  1. Rethinking Iron Regulation and Assessment in Iron Deficiency, Anemia of Chronic Disease, and Obesity: Introducing Hepcidin

    Science.gov (United States)

    Tussing-Humphreys, Lisa; Pustacioglu, Cenk; Nemeth, Elizabeta; Braunschweig, Carol

    2012-01-01

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins, has a pivotal role in cellular metabolism, and is essential to cell growth and differentiation. Inadequate dietary iron intake, chronic and acute inflammatory conditions, and obesity are each associated with alterations in iron homeostasis. Tight regulation of iron is necessary because iron is highly toxic and human beings can only excrete small amounts through sweat, skin and enterocyte sloughing, and fecal and menstrual blood loss. Hepcidin, a small peptide hormone produced mainly by the liver, acts as the key regulator of systemic iron homeostasis. Hepcidin controls movement of iron into plasma by regulating the activity of the sole known iron exporter ferroportin-1. Downregulation of the ferroportin-1 exporter results in sequestration of iron within intestinal enterocytes, hepatocytes, and iron-storing macrophages reducing iron bioavailability. Hepcidin expression is increased by higher body iron levels and inflammation and decreased by anemia and hypoxia. Importantly, existing data illustrate that hepcidin may play a significant role in the development of several iron-related disorders, including the anemia of chronic disease and the iron dysregulation observed in obesity. Therefore, the purpose of this article is to discuss iron regulation, with specific emphasis on systemic regulation by hepcidin, and examine the role of hepcidin within several disease states, including iron deficiency, anemia of chronic disease, and obesity. The relationship between obesity and iron depletion and the clinical assessment of iron status will also be reviewed. PMID:22717199

  2. Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain

    DEFF Research Database (Denmark)

    Neal, Andrew L; Geraki, Kalotina; Borg, Søren

    2013-01-01

    of modified complexation of both metals in transgenic grain overexpressing wheat ferritin. For zinc, there is a consistent doubling of the number of complexing phosphorus atoms. Although there is some EXAFS evidence for iron phytate in ferritin-expressing grain, there is also evidence of a structure lacking......We have used synchrotron-based X-ray fluorescence and absorption techniques to establish both metal distribution and complexation in mature wheat grains. In planta, extended X-ray absorption fine structure (EXAFS) spectroscopy reveals iron phytate and zinc phytate structures in aleurone cells...... of ferritin-expressing grains is quite different from that in wild-type grain. This may explain why the raised levels of minerals transported to the developing grain accumulate within the crease region of the transgenic grain....

  3. Influence of HLA-C Expression Level on HIV Control

    Science.gov (United States)

    Apps, Richard; Qi, Ying; Carlson, Jonathan M.; Chen, Haoyan; Gao, Xiaojiang; Thomas, Rasmi; Yuki, Yuko; Del Prete, Greg Q.; Goulder, Philip; Brumme, Zabrina L.; Brumme, Chanson J.; John, Mina; Mallal, Simon; Nelson, George; Bosch, Ronald; Heckerman, David; Stein, Judy L.; Soderberg, Kelly A.; Moody, M. Anthony; Denny, Thomas N.; Zeng, Xue; Fang, Jingyuan; Moffett, Ashley; Lifson, Jeffrey D.; Goedert, James J.; Buchbinder, Susan; Kirk, Gregory D.; Fellay, Jacques; McLaren, Paul; Deeks, Steven G.; Pereyra, Florencia; Walker, Bruce; Michael, Nelson L.; Weintrob, Amy; Wolinsky, Steven; Liao, Wilson; Carrington, Mary

    2013-01-01

    A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn’s disease, suggesting a broader influence of HLA expression levels in human disease. PMID:23559252

  4. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  5. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: Influence of elevated dietary iron

    International Nuclear Information System (INIS)

    Kwong, Raymond W.M.; Andres, Jose A.; Niyogi, Som

    2011-01-01

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine > kidney > stomach > liver > gill > carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  6. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: Influence of elevated dietary iron

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Raymond W.M. [Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3 (Canada); Andres, Jose A. [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada); Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada)

    2011-03-15

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine > kidney > stomach > liver > gill > carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  7. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khoshfetrat

    2014-01-01

    Full Text Available Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements and Group II (50 mg elemental iron + 500 mg ascorbic acid. Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student′s t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001 in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01 in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01 in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01 to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001 in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the

  8. Level densities of iron isotopes and lower-energy enhancement of y-strength function

    International Nuclear Information System (INIS)

    Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S

    2005-01-01

    The neutron spectrum from the 55 Mn(d,n) 56 Fe reaction has been measured at E d = 7 MeV. The level density of 56 Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type 57 Fe( 3 He, aγ) 56 Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the γ-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy

  9. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Monika Burns

    Full Text Available Helicobacter pylori (H.pylori, a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA, enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40 were used; half were placed on a moderately iron deficient (ID diet immediately post-weaning, and the other half were maintained on an iron replete (IR diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet. All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (p<0.001. Hippocampal gene expression of myelination markers and dopamine receptor 1 was significantly downregulated in mice on an ID diet (both p<0.05, independent of infection status. At 12 months postinfection, hematocrit (Hct and hemoglobin (Hgb concentration were significantly lower in +Hp, ID diet mice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA.

  10. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram, E-mail: ekas2009@buc.edu.in

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe{sub 2}O{sub 3}-NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe{sub 2}O{sub 3}-NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe{sub 2}O{sub 3}-NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe{sub 2}O{sub 3}-NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe{sub 2}O{sub 3}-NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe{sub 2}O{sub 3}-NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe{sub 2}O{sub 3}-NPs could be an environmental risk factor for reproductive disease. - Highlights: • Fe{sub 2}O{sub 3}-NPs caused adverse effects on the seminal vesicle and prostate gland of mice • Heat shock proteins (Hsp60, 70 and 90) were

  11. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Mehmet Akin

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS: 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5 mg kg-1 propofol, 1 mg kg-1 lidocaine and 0.6 mg kg-1 rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4 L min-1, 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4 L min-1 6 mg kg h-1 propofol and 1 µg kg h-1 fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS: It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION: According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.

  12. Pyrimethanil degradation by photo-Fenton process: Influence of iron and irradiance level on treatment cost.

    Science.gov (United States)

    Cabrera Reina, A; Miralles-Cuevas, S; Casas López, J L; Sánchez Pérez, J A

    2017-12-15

    This study evaluates the combined effect of photo-catalyst concentration and irradiance level on photo-Fenton efficiency when this treatment is applied to industrial wastewater decontamination. Three levels of irradiance (18, 32 and 46W/m 2 ) and three iron concentrations (8, 20 and 32mg/L) were selected and their influence over the process studied using a raceway pond reactor placed inside a solar box. For 8mg/L, it was found that there was a lack of catalyst to make use of all the available photons. For 20mg/L, the treatment always improved with irradiance indicating that the process was photo-limited. For 32mg/L, the excess of iron caused an excess of radicals production which proved to be counter-productive for the overall process efficiency. The economic assessment showed that acquisition and maintenance costs represent the lowest relative values. The highest cost was found to be the cost of the reagents consumed. Both sulfuric acid and sodium hydroxide are negligible in terms of costs. Iron cost percentages were also very low and never higher than 10.5% while the highest cost was always that of hydrogen peroxide, representing at least 85% of the reagent costs. Thus, the total costs were between 0.76 and 1.39€/m 3 . Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of Dissolved Oxygen Concentration and Iron Addition on Immediate-early Gene Expression of Magnetospirillum gryphiswaldense MSR-1

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Anyaogu, Diana Chinyere; Kasama, Takeshi

    2017-01-01

    in cultures at 0.5% O2 compared to those at higher oxygen tensions. Moreover, expression of katG (catalase-peroxidase gene) and feoB2 (ferrous transport protein B2 gene) was reduced markedly by iron addition, regardless of oxygen conditions. The data provides a greater understanding of molecular response...

  14. Expression of the iron hormone hepcidin distinguished different types of anemia in African children

    NARCIS (Netherlands)

    Pasricha, S.R.; Atkinson, S.H.; Armitage, A.E.; Khandwala, S.; Veenemans, J.; Cox, S.E.; Eddowes, L.A.; Hayes, T.; Doherty, C.P.; Demir, A.Y.; Tijhaar, E.J.; Verhoef, H.; Prentice, A.M.; Drakesmith, H.

    2014-01-01

    Childhood anemia is a major global health problem resulting from multiple causes. Iron supplementation addresses iron deficiency anemia but is undesirable for other types of anemia and may exacerbate infections. The peptide hormone hepcidin governs iron absorption; hepcidin transcription is mediated

  15. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    Science.gov (United States)

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    International Nuclear Information System (INIS)

    Jin, C.; Li, Y.; Li, Y.L.; Zou, Y.; Zhang, G.L.; Normura, M.; Zhu, G.Y.

    2008-01-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 A and the Fe-Np bond length slightly increases, but the Fe-N ε bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases

  18. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.

    Science.gov (United States)

    Yu, Wen-Bang; Ye, Bang-Ce

    2016-05-01

    Fusaricidins are a class of cyclic lipopeptide antibiotics that have strong antifungal activities against plant pathogenic fungi and excellent bactericidal activities against Gram-positive bacteria. The mechanism through which fusaricidin exerts its action is not yet entirely clear. To investigate the mode of action of fusaricidin, we determined the physiological and transcriptional responses of Bacillus subtilis to fusaricidin treatment by using a systems-level approach. Our data show that fusaricidin rapidly induced the expression of σ(W) regulon and caused membrane damage in B. subtilis. We further demonstrated that ferric ions play multiple roles in the action of fusaricidin on B. subtilis. Iron deprivation blocked the formation of hydroxyl radical in the cells and significantly inhibited the bactericidal activity of fusaricidin. Conversely, high levels of iron (>2 mM) repressed the expression of BkdR regulon, resulting in a smaller cellular pool of branched-chain precursors for iso- and anteiso-branched fatty acids, which in turn led to a decrease in the proportion of branched-chain fatty acids in the membrane of B. subtilis. This change in membrane composition reduced its bilayer fluidity and increased its resistance to antimicrobial agents. In conclusion, our experiments uncovered some novel interactions and a synergism between cellular iron levels and drug resistance in Gram-positive bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Estrogen-dependent changes in serum iron levels as a translator of the adverse effects of estrogen during infection: a conceptual framework.

    Science.gov (United States)

    Hamad, Mawieh; Awadallah, Samir

    2013-12-01

    Elevated levels of estrogen often associate with increased susceptibility to infection. This has been attributed to the ability of estrogen to concomitantly enhance the growth and virulence of pathogens and suppress host immunity. But the exact mechanism of how estrogen mediates such effects, especially in cases where the pathogen and/or the immune components in question do not express estrogen receptors, has yet to be elucidated. Here we propose that translating the adverse effects of estrogen during infection is dependent to a significant degree upon its ability to manipulate iron homeostasis. For elevated levels of estrogen alter the synthesis and/or activity of several factors involved in iron metabolism including hypoxia inducible factor 1α (HIF-1α) and hepcidin among others. This leads to the inhibition of hepcidin synthesis in hepatocytes and the maintenance of ferroportin (FPN) integrity on the surface of iron-releasing duodenal enterocytes, hepatocytes, and macrophages. Intact FPN permits the continuous efflux of dietary and stored iron into the circulation, which further enhances pathogen growth and virulence on the one hand and suppresses host immunity on the other. This new conceptual framework may help explain a multitude of disparate clinical and experimental observations pertinent to the relationship between estrogen and infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Analysis of serum copper and iron levels in oral submucous fibrosis patients: A case–control study

    Directory of Open Access Journals (Sweden)

    Harshal Kumar

    2016-01-01

    Full Text Available Background: Oral submucous fibrosis (OSF is a chronic debilitating disease and a potentially malignant disorder of the oral cavity. The pathogenesis of the disease is not well established. Trace elements such as copper and iron play an important role in the pathogenesis of OSF. Estimation of these elements in serum of the patients may be helpful in understanding the pathologic mechanism. Therefore, a study was carried out to analyze the level of serum copper and iron in the population of Central India. Materials and Methods: A case–control study was carried out on 35 patients with clinically diagnosed of OSF and 35 healthy controls. OSF patients were categorized by clinical staging. Serum copper and iron concentrations were measured by atomic absorption spectrophotometry. Results: Results of the study shows that the mean serum copper concentration was greater in study group (133.3 ± 19.2 compared to control group (113.9 ± 22.1 and the mean serum iron was lower in study group (116.0 ± 24.1 compared to control group (128.2 ± 23.4. The result obtained was statistically significant. The serum copper level increases as the clinical staging of OSF progresses, whereas serum iron level decreases as clinical staging progresses. Conclusion: There was an increase in copper level and decrease in iron level in study group compared to control group; this suggests that there is an increase in copper level with the advancement of clinical staging of OSF.

  1. Codon usage and amino acid usage influence genes expression level.

    Science.gov (United States)

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  2. Calcium regulates caveolin-1 expression at the transcriptional level

    International Nuclear Information System (INIS)

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-01-01

    Highlights: ► Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. ► An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. ► Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. ► Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca 2+ /calcineurin/NFAT.

  3. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  4. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe

  5. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  6. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    Science.gov (United States)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  8. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  9. Systemic Assessment of Calcium and Phosphorus Level after Implantation of Porous Iron in Rats

    Science.gov (United States)

    Siallagan, S. F.; Amelia, F.; Utami, N. D.; Ulum, M. F.; Boediono, A.; Estuningsih, S.; Hermawan, H.; Noviana, D.

    2017-07-01

    One of important aspects in bone healing process is physiological level of calcium (Ca), and phosphorus (P) that can be altered by implantation of biodegradable porous iron. Therefore, this study aims to investigate the concentration of Ca, P and Ca/P ratio in the peripheral blood during the implantation period up to 4 months. Forty adult male Sprague Dawley rats were used and divided into 3 groups receiving different pore size of iron implants (pore size 450, 580, 800μm) and one group of sham. The implants (5x2x0.5mm) were inserted into flat bone defects at latero-medial of femoral bone. Blood sample was taken from ventral tail artery before and after 4 month of implantation. Calcium and P concentrations in the blood were determined by BA-88A Semi-Auto Chemistry Analyzer. Results showed that concentration of Ca and P are slightly higher after implantation than before implantation, except for the 450μm group. The Ca/P ratio before and after implantation was increased in the sham group, and decreased in the 450 and 800μm groups. Concentration of Ca, P and Ca/P ratio insignificantly change between before and 4 months after surgery in some groups.

  10. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.

    Science.gov (United States)

    Xu, Yan; Sun, Xiangli; Zhang, Qiqiong; Li, Xiuzhen; Yan, Zhongzheng

    2018-05-30

    Tidal flat elevation in the estuarine wetland determines the tidal flooding time and flooding frequency, which will inevitably affect the formation of iron plaque and accumulations of heavy metals (HMs) in wetland plants. The present study investigated the formation of iron plaque and HM's (copper, zinc, lead, and chromium) accumulation in S. alterniflora, a typical estuarine wetland species, at different tidal flat elevations (low, middle and high) in filed and at different time (3, 6, 9, 12 h per day) of waterlogging treatment in greenhouse conditions. Results showed that the accumulation of copper, zinc, lead, and chromium in S. alterniflora was proportional to the exchangeable fraction of these metals in the sediments, which generally increased with the increase of waterlogging time, whereas the formations of iron plaque in roots decreased with the increase of waterlogging time. Under field conditions, the uptake of copper and zinc in the different parts of the plants generally increased with the tidal levels despite the decrease in the metals' exchangeable fraction with increasing tidal levels. The formation of iron plaque was found to be highest in the middle tidal positions and significantly lower in low and high tidal positions. Longer waterlogging time increased the metals' accumulation but decreased the formation of iron plaque in S. alterniflora. The binding of metal ions on iron plaque helped impede the uptake and accumulation of copper and chromium in S. alterniflora. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Affective State Level Recognition in Naturalistic Facial and Vocal Expressions.

    Science.gov (United States)

    Meng, Hongying; Bianchi-Berthouze, Nadia

    2014-03-01

    Naturalistic affective expressions change at a rate much slower than the typical rate at which video or audio is recorded. This increases the probability that consecutive recorded instants of expressions represent the same affective content. In this paper, we exploit such a relationship to improve the recognition performance of continuous naturalistic affective expressions. Using datasets of naturalistic affective expressions (AVEC 2011 audio and video dataset, PAINFUL video dataset) continuously labeled over time and over different dimensions, we analyze the transitions between levels of those dimensions (e.g., transitions in pain intensity level). We use an information theory approach to show that the transitions occur very slowly and hence suggest modeling them as first-order Markov models. The dimension levels are considered to be the hidden states in the Hidden Markov Model (HMM) framework. Their discrete transition and emission matrices are trained by using the labels provided with the training set. The recognition problem is converted into a best path-finding problem to obtain the best hidden states sequence in HMMs. This is a key difference from previous use of HMMs as classifiers. Modeling of the transitions between dimension levels is integrated in a multistage approach, where the first level performs a mapping between the affective expression features and a soft decision value (e.g., an affective dimension level), and further classification stages are modeled as HMMs that refine that mapping by taking into account the temporal relationships between the output decision labels. The experimental results for each of the unimodal datasets show overall performance to be significantly above that of a standard classification system that does not take into account temporal relationships. In particular, the results on the AVEC 2011 audio dataset outperform all other systems presented at the international competition.

  12. NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY

    Science.gov (United States)

    Normal Nasal Gene Expression Levels Using cDNA Array Technology. The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...

  13. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years

    Directory of Open Access Journals (Sweden)

    Bárbara C.A. Saraiva

    2014-11-01

    Conclusions: Anemia and iron deficiency were associated with low levels of serum retinol in children aged 1 to 5 years, and a positive correlation was verified between serum retinol and serum ferritin and hemoglobin levels. These results indicate the importance of initiatives encouraging the development of new treatments and further research regarding retinol deficiency.

  14. Mechanical properties of ductile cast iron and cast steel for intermediate level waste transport containers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.

    1994-01-01

    UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)

  15. Association between baseline serum hepcidin levels and infection in kidney transplant recipients: Potential role for iron overload.

    Science.gov (United States)

    Fernández-Ruiz, Mario; Parra, Patricia; Ruiz-Merlo, Tamara; López-Medrano, Francisco; San Juan, Rafael; Polanco, Natalia; González, Esther; Andrés, Amado; Aguado, José María

    2018-02-01

    The liver-synthesized peptide hepcidin is a key regulator of iron metabolism and correlates with total iron stores. We analyzed the association between pre-transplant hepcidin-25 levels and infection after kidney transplantation (KT). Serum hepcidin-25 levels were measured at baseline by high-sensitivity ELISA in 91 patients undergoing KT at our institution between December 2011 and March 2013. The impact of this biomarker on the incidence of post-transplant infection (excluding lower urinary tract infection) during the first year was assessed by Cox regression. Mean hepcidin-25 level was 82.3 ± 67.4 ng/mL and strongly correlated with serum ferritin (Spearman's rho = 0.703; P role for iron overload in the individual susceptibility to post-transplant infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  17. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  18. [Iron absorption of the habitual diet in a population of low socioeconomic level].

    Science.gov (United States)

    Morón, C; Kremenchuzky, S; Passamai, M I; D'Andrea de Rivero, S; Pérez de Galíndez, G; Gerschcovich, C

    1985-06-01

    Iron absorption using the extrinsic double-tag method was determined in the habitual diet consumed by a group of 32 volunteers of both sexes, pertaining to the low socioeconomic strata. The diet was made up of bread, spaghetti, vegetables and meat, totalling 2,022 kcal, 65.0 g protein, 17.57 mg iron, and 28.75 mg ascorbic acid. According to our findings, men were found to be neither anemic nor iron-deficient. Among the women, however, 4.8% had anemia and 57.1% suffered from iron deficiency. The non-heme iron absorption was very low: 1.35% at breakfast, 3.29% at lunch, and 3.82% at dinner. Among those subjects found to be normal, the absorption was half the above figures, whereas among those with iron deficiency it was threefold, the differences being highly significant. The absorption of heme-iron for lunch and dinner was 17.53%. The iron deficient group had an absorption value four times greater than the normal group, the differences also being highly significant. The daily availability of non-heme, heme and total iron was 0.44, 1.13 and 1.57 mg, respectively. In the subjects who formed the normal group, total iron available was 1.14 mg, barely covering a man's daily requirements, but not those of a woman. In the iron-deficient group, it was 4.31 mg, that is, four times greater than in the normal group; while this value improves the balance, it does not prevent deficiency in women, with great blood losses. Bearing these results in mind, it is suggested that measures tending to improve dietary iron content and bio-availability, be enforced.

  19. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  20. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  1. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  2. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    Science.gov (United States)

    Ren, Min-Qin; Ong, Wei-Yi; Makjanic, Jagoda; Watt, Frank

    1999-10-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production.

  3. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    International Nuclear Information System (INIS)

    Ren, M.-Q.; Ong, W.-Y.; Makjanic, Jagoda; Watt, Frank

    1999-01-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production

  4. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  5. Mapping organism expression levels at cellular resolution in developing Drosophila

    Science.gov (United States)

    Knowles, David W.; Keranen, Soile; Biggin, Mark D.; Sudar, Damir

    2002-05-01

    The development of an animal embryo is orchestrated by a network of genetically determined, temporal and spatial gene expression patterns that determine the animals final form. To understand such networks, we are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within pregastrula Drosophila. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy. Innovative steps have been made which allow the DNA-image to be automatically segmented to produce a morphological mask of the individual nuclear boundaries. For each stage of development an average morphology is chosen to which images from different embryo are compared. The morphological mask is then used to quantify gene-product on a per nuclei basis. What results is an atlas of the relative amount of the specific gene product expressed within the nucleus of every cell in the embryo at the various stages of development. We are creating a quantitative database of transcription factor and target gene expression patterns in wild-type and factor mutant embryos with single cell resolution. Our goal is to uncover the rules determining how patterns of gene expression are generated.

  6. Pilot scale evaluation of biological and pressure clarification processes for the removal of high level of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Yannoni, C.C.; Kinsley, B.P. [Fay, Spofford & Thorndike, Inc., Burlington, MA (United States); Marston, T.R. [Connecticut Water Company, Clinton, CT (United States)

    1996-11-01

    Iron and manganese originating from groundwater supplies have a long history of causing consumer complaints in water distribution systems. Although iron and manganese are not public health concerns, they are a major concern from an aesthetic standpoint. The elevated awareness of consumers in regard to the quality of drinking water, an increase in regulations requiring additional treatment and the cost associated with developing new sources of supply, has required many utilities to implement improvements to existing facilities. Historical water quality data collected from the Connecticut Water Company`s (CWC) Westbrook Well revealed an increasing trend in iron and manganese concentrations. As a result, the existing greensand filtration facility located at the well, provides insufficient removal rates and inefficient operating cycles. Variations in operating procedures were not successful in correcting these problems. A water treatment feasibility study recommended evaluation of biological and pressure clarification processes to reduce iron (9 mg/l) and manganese (1.5 mg/l) levels below the secondary maximum contaminant levels of 0.30 and 0.05 mg/l, respectively. Assessment of these processes was accomplished through the construction and operation of a 5 gallon per minute (gpm) capacity pilot plant at the Westbrook Water Treatment Plant. Application of biological treatment for iron removal was then piloted on the existing full-scale treatment facility.

  7. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    Science.gov (United States)

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.

  8. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  9. Can iron oxides remove Cr(VI) from drinking water at sub-ppb levels?

    Science.gov (United States)

    Kaprara, Efthymia; Simeonidis, Konstantinos; Samaras, Petros; Zouboulis, Anastasios; Mitrakas, Manassis

    2013-04-01

    Hexavalent chromium [Cr(VI)] has long been recognized as a potential carcinogen via inhalation, in contrast to trivalent chromium [Cr(III)] which is 100 times less toxic and also a necessary nutrient, essential to human glucidic metabolism. Nowadays there is an increasing concern that Cr(VI) is also carcinogenic by the oral route of exposure, while an increased number of publications indicate that Cr(VI) is a common natural pollutant. Hexavalent chromium formation is attributed to natural oxidation of Cr(III) in ultramafic derived soils and ophiolithic rocks. To verify this theory, drinking water samples were collected from targeted areas of Greece e.g. areas in which the geological background is predominated by ultramafic minerals and the water supply depends mainly on groundwater resources. Valuable guide for the samples collection was the geological map of Greece and emphasis was given to regions where the natural occurrence of Cr(VI) is thought to be more possible. A wide range of Cr concentrations (2-100 μg/L) were detected in the areas studied, with most of them ranging below the current limit of 50 μg/L, and the Cr(VI) concentration being more than 90% of the total. Since the Cr(VI) affects significant part of population worldwide, a debate was established concerning the enforcement of stringent regulation, which also demands the drinking water treatment processes re-evaluation in view of Cr(VI) removal at sub-ppb level. In this regard, adsorption has evolved as the front line of defense for chromium removal. The motivation of this work was to investigate the efficiency of iron oxides for the adsorption of Cr(VI) from drinking water and its removal at sub-ppb levels. The adsorbents examined included iron oxy-hydroxides and magnetite prepared using common low cost iron salts. Their effectiveness as Cr(VI) adsorbents was evaluated through the decrease of a Cr(VI) concentration of 100μg/L prepared in NSF water at pH 7. Preliminary batch experiments did not

  10. Effect of food processing of pearl millet (Pennisetum glaucum) IKMP-5 on the level of phenolics, phytate, iron and zinc

    NARCIS (Netherlands)

    Zanabria Eyzaguirre, R.; Nienaltowska, K.; Jong, de L.E.Q.; Hasenack, B.B.E.; Nout, M.J.R.

    2006-01-01

    Pearl millet is consumed as a staple food in semi-arid tropical regions. With a view to upgrading the micronutrient status of pearl millet-based foods, the effects of single operations and of porridge preparation scenarios on levels and in vitro solubility (IVS) of iron and zinc and mineral

  11. Expression and Characterisation of Recombinant Rhodocyclus tenuis High Potential Iron-Sulphur Protein

    DEFF Research Database (Denmark)

    Caspersen, Michael Bjerg; Bennet, K.; Christensen, Hans Erik Mølager

    2000-01-01

    The high potential iron-sulfur protein (HiPIP) from Rhodocyclus tenuis strain 2761 has been overproduced in Escherichia coli from its structural gene, purified to apparent homogeneity, and then characterized by an array of methods. UV-visible spectra of the reduced and oxidized recombinant protein...

  12. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    Science.gov (United States)

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  13. High epitope expression levels increase competition between T cells.

    Directory of Open Access Journals (Sweden)

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  14. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  15. Increased iron level in phytase-supplemented diets reduces performance and nutrient utilisation in broiler chickens.

    Science.gov (United States)

    Akter, Marjina; Iji, P A; Graham, H

    2017-08-01

    1. The effect of different levels of dietary iron on phytase activity and its subsequent effect on broiler performance were investigated in a 3 × 2 factorial arrangement. A total of 360 day-old Ross 308 male broiler chicks were distributed to 6 experimental diets, formulated with three levels of Fe (60, 80 and 100 mg/kg) and two levels of phytase (0 and 500 FTU/kg). 2. Phytase supplemented to mid-Fe diets increased feed consumption more than the non-supplemented diet at d 24. From hatch to d 35, Fe × phytase interaction significantly influenced the feed intake (FI), body weight gain (BWG) and feed conversion ratio (FCR). The high-Fe diet supplemented with phytase significantly reduced FI and BWG of broilers than those supplemented with low- or mid-Fe diets. The overall FCR was significantly better in birds fed on the mid-Fe diets with phytase supplementation. 3. A significant improvement in ileal digestibility of N, P, Mg and Fe was observed in birds feed diets containing 60 mg Fe/kg, with significant interaction between Fe and phytase. 4. Phytase improved the bone breaking strength when supplemented to low- or mid-Fe diets, compared to the non-supplemented diets. There was a significant Fe × phytase interaction effect. Tibia Fe content was higher in birds fed on phytase-free diets with high Fe but the reverse was the case when phytase was added and their interaction was significant. High dietary Fe significantly increased the accumulation of Fe in liver. 5. Phytase improved Ca-Mg-ATPase, Ca-ATPase and Mg-ATPase activities in jejunum when supplemented to the diet containing 80 mg Fe/kg. 6. This study indicates that high (100 mg/kg) dietary Fe inhibited phytase efficacy and subsequently reduced the overall performance and nutrient utilisation of broilers.

  16. Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions

    DEFF Research Database (Denmark)

    Nielsen, K. K.; Boye, Mette

    2005-01-01

    up-regulation under iron-restricted conditions compared to bacteria grown in medium with sufficient iron. The observed expression patterns of the genes of interest were consistent with previous observations. This study therefore lends further support to the use of real-time quantitative RT...... controls, as such controls have not been defined yet for this bacterium. Bacterial gene expression was studied during in vitro exponential and early stationary growth in medium with and without sufficient iron, respectively. First, the stability of expression of five genes, the glyA, tpiA, pykA, rec......F, and rhoAP genes involved in basic housekeeping, was evaluated on the basis of the mean pairwise variation. All the housekeeping genes included were stably expressed under the conditions investigated and consequently were included in the normalization procedure. Next, the geometric mean of the internal...

  17. Stromatolitic iron oxides: Evidence that sea-level changes can cause sedimentary iridium anomalies

    Science.gov (United States)

    Wallace, Malcolm W.; Keays, Reid R.; Gostin, Victor A.

    1991-06-01

    In an attempt to understand the origin of an Ir-rich unit near the Late Devonian Frasnian-Famennian (F/F) boundary in the Canning basin of Western Australia, we have examined two lithologically similar Early Cambrian and late Oligocene age horizons from southeastern Australia. Both consist of stromatolitic iron oxide and carbonate petrographically similar to the Ir-rich Frutexites microstromatolites near the F/F boundary. Significant siderophile and chalcophile element anomalies (Ir, Pt, and Ru up to 1.1, 14, and 1.2 ppb, respectively) at both horizons have a geochemistry similar to that of the F/F Frutexites anomaly. As with the F/F bed, the Cambrian and Oligocene stromatolitic beds are closely associated with synsedimentary hardgrounds that contain evidence of subaerial exposure. We suggest that all of these Ir-rich stromatolitic beds developed in response to relative sea-level change and represent periods of condensed marine sedimentation. It is probable that condensation was produced by rapid drowning following subaerial exposure.

  18. Maternal Cadmium, Iron and Zinc Levels, DNA Methylation and Birth Weight

    Science.gov (United States)

    BACKGROUND:Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationsh...

  19. Expression, immunogenicity and variation of iron-regulated surface protein A from bovine isolates of Staphylococcus aureus.

    Science.gov (United States)

    Misra, Neha; Wines, Tyler F; Knopp, Colton L; McGuire, Mark A; Tinker, Juliette K

    2017-05-01

    Staphylococcus aureus iron-regulated surface protein A (IsdA) is a fibrinogen and fibronectin adhesin that also contributes to iron sequestration and resistance to innate immunity. IsdA is conserved in human isolates and has been investigated as a human vaccine candidate. Here we report the expression of isdA, the efficacy of anti-IsdA responses and the existence of IsdA sequence variants from bovine Staphylococcus. Clinical staphylococci were obtained from US dairy farms and assayed by PCR for the presence and expression of isdA. isdA-positive species from bovines included S. aureus, S. haemolyticus and S. chromogenes. Immunoassays on bovine milk and serum confirmed the induction and opsonophagocytic activity of anti-IsdA humoral responses. The variable region of isdA was sequenced and protein alignments predicted the presence of two main variants consistent with those from human S. aureus. Mouse antibodies against one IsdA variant reduced staphylococcal binding to fibronectin in vitro in an isotype-dependent manner. Purified IsdA variants bound distinctly to fibronectin and fibrinogen. Our findings demonstrate that variability within the C-terminus of this adhesin affects immune reactivity and binding specificity, but are consistent with the significance of IsdA in bovine disease and relevant for vaccine development. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Expression, immunogenicity and variation of iron-regulated surface protein A from bovine isolates of Staphylococcus aureus

    Science.gov (United States)

    Misra, Neha; Wines, Tyler F.; Knopp, Colton L.; McGuire, Mark A.; Tinker, Juliette K.

    2017-01-01

    Abstract Staphylococcus aureus iron-regulated surface protein A (IsdA) is a fibrinogen and fibronectin adhesin that also contributes to iron sequestration and resistance to innate immunity. IsdA is conserved in human isolates and has been investigated as a human vaccine candidate. Here we report the expression of isdA, the efficacy of anti-IsdA responses and the existence of IsdA sequence variants from bovine Staphylococcus. Clinical staphylococci were obtained from US dairy farms and assayed by PCR for the presence and expression of isdA. isdA-positive species from bovines included S. aureus, S. haemolyticus and S. chromogenes. Immunoassays on bovine milk and serum confirmed the induction and opsonophagocytic activity of anti-IsdA humoral responses. The variable region of isdA was sequenced and protein alignments predicted the presence of two main variants consistent with those from human S. aureus. Mouse antibodies against one IsdA variant reduced staphylococcal binding to fibronectin in vitro in an isotype-dependent manner. Purified IsdA variants bound distinctly to fibronectin and fibrinogen. Our findings demonstrate that variability within the C-terminus of this adhesin affects immune reactivity and binding specificity, but are consistent with the significance of IsdA in bovine disease and relevant for vaccine development. PMID:28430959

  1. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton

    Science.gov (United States)

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-01-01

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  2. [2,3-diphosphoglycerate level during the active and maintenance treatment of iron-deficiency anemia patients].

    Science.gov (United States)

    Iordanova, E; Dosheva, I; Lulcheva, F; Tsvetkova, N; Dobrev, K

    1985-01-01

    The objective of the present study was to obtain information about the duration of tissue hypoxia in patients with iron deficiency anemia. That fact is of importance for the determination of the duration of maintenance iron therapy. The level of 2,3-diphosphoglycerate was studied during the treatment, after the correction of anemic syndrome and after 60-day out-patient department treatment. The data obtained revealed that the level of 2,3-diphosphoglycerate was considerably elevated, as compared with the norm, before the treatment. After the active treatment and correction of anemic syndrome it was decreased, but remaining above the norm. By the 60th day of the out-patient department treatment the decrease continued and the level of 2,3-diphosphoglycerate approached the norm.

  3. Obesity Promotes Alterations in Iron Recycling

    Directory of Open Access Journals (Sweden)

    Marta Citelli

    2015-01-01

    Full Text Available Hepcidin is a key hormone that induces the degradation of ferroportin (FPN, a protein that exports iron from reticuloendothelial macrophages and enterocytes. The aim of the present study was to experimentally evaluate if the obesity induced by a high-fat diet (HFD modifies the expression of FPN in macrophages and enterocytes, thus altering the iron bioavailability. In order to directly examine changes associated with iron metabolism in vivo, C57BL/6J mice were fed either a control or a HFD. Serum leptin levels were evaluated. The hepcidin, divalent metal transporter-1 (DMT1, FPN and ferritin genes were analyzed by real-time polymerase chain reaction. The amount of iron present in both the liver and spleen was determined by flame atomic absorption spectrometry. Ferroportin localization within reticuloendothelial macrophages was observed by immunofluorescence microscopy. Obese animals were found to exhibit increased hepcidin gene expression, while iron accumulated in the spleen and liver. They also exhibited changes in the sublocation of splenic cellular FPN and a reduction in the FPN expression in the liver and the spleen, while no changes were observed in enterocytes. Possible explanations for the increased hepcidin expression observed in HFD animals may include: increased leptin levels, the liver iron accumulation or endoplasmic reticulum (ER stress. Together, the results indicated that obesity promotes changes in iron bioavailability, since it altered the iron recycling function.

  4. Iron and its complexes in silicon

    Science.gov (United States)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  5. The Effect of Date (Phoenix dactylifera Juice on Haemoglobin Level An Experimental Study in Iron Supplemented Rats

    Directory of Open Access Journals (Sweden)

    Ady Try Himawan Zen

    2013-06-01

    Full Text Available There has been more research on the iron supplementation. Date juice has been shown to be rich in iron. It has been reported to increase the hemoglobin level in rats. Few studies has been conducted on the effect of date juice on the hemoglobin level in male white Wistar rats fed low iron diet.This research was conducted to evaluate the effect of (Phoenix dactylifera juice on haemoglobin level in iron supplemented rats. In this experimental study using post test control group design, 24 male white Wistar rats were divided into 4 groups. G-I served as the control group (standard diet and aquadest. G II was given the low Fe diet and aquadest for 21 d. G-III,IV were given the low fe diet and aquadest plus date juice at the concentration of 50%, 100% respectively. The treatment was given for 14 days. Spectrophotometer was used to assess the haemoglobin level of rats. One way anova followed by Post Hoc LSD was applied for the data analysis. Mean of hemoglobin (g/dl level for the four groups were 12,03, 7.72, 9.25, 10.35 respectively. Test resulted in p<0.05. Post Hoc LSD test resulted in a significant different between K-I and G-II, G-III, G-IV ;G-II and G-III, G-IV ;G-III and G-IV. In conclusion, date juice increases the haemoglobin level in male white rats fed on the low fe diet.

  6. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    Science.gov (United States)

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  7. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Pengbao Shi

    2017-02-01

    Full Text Available Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines (Vitis vinifera were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe from ferric ethylenediamine di (o-hydroxyphenylacetic acid (Fe-EDDHA in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-(6-O-coumaryl-glucoside, in moderate Fe treatment (46 μM grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, leucoanthocyanidin dioxygenase (LDOX, and anthocyanin O-methyltransferase (AOMT exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  8. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max L.)

    Science.gov (United States)

    Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the...

  9. Identification of iron-regulated genes of Bifidobacterium breve UCC2003 as a basis for controlled gene expression.

    NARCIS (Netherlands)

    Cronin, M.; Zomer, A.L.; Fitzgerald, G.F.; Sinderen, D. van

    2012-01-01

    Iron is an essential growth factor for virtually all organisms. However, iron is not readily available in most environments and microorganisms have evolved specialized mechanisms, such as the use of siderophores and high-affinity transport systems, to acquire iron when confronted with iron-limiting

  10. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels.

    Science.gov (United States)

    Liu, Jitao; Fan, Youwei; Zou, Jing; Fang, Yiqun; Wang, Linghao; Wang, Meng; Jiang, Xinqiang; Liu, Yiqing; Gao, Junping; Zhang, Changqing

    2017-12-01

    Plants often develop the capacity to tolerate moderate and reversible environmental stresses, such as drought, and to re-establish normal development once the stress has been removed. An example of this phenomenon is provided by cut rose (Rosa hybrida) flowers, which experience typical reversible dehydration stresses during post-harvest handling after harvesting at the bud stages. The molecular mechanisms involved in rose flower dehydration tolerance are not known, however. Here, we characterized a dehydration- and abscisic acid (ABA)-induced ferritin gene (RhFer1). Dehydration-induced free ferrous iron (Fe 2+ ) is preferentially sequestered by RhFer1 and not transported outside of the petal cells, to restrict oxidative stresses during dehydration. Free Fe 2+ accumulation resulted in more serious oxidative stresses and the induction of genes encoding antioxidant enzyme in RhFer1-silenced petals, and poorer dehydration tolerance was observed compared with tobacco rattle virus (TRV) controls. We also determined that RhABF2, an AREB/ABF transcription factor involved in the ABA signaling pathway, can activate RhFer1 expression by directly binding to its promoter. The silencing of RhABF2 decreased dehydration tolerance and disrupted Fe homeostasis in rose petals during dehydration, as did the silencing of RhFer1. Although both RhFer1 and Fe transporter genes are induced during flower natural senescence in plants, the silencing of RhABF2 or RhFer1 accelerates the petal senescence processes. These results suggest that the regulatory module RhABF2/RhFer1 contributes to the maintenance of Fe levels and enhances dehydration tolerance through the action of RhFer1 locally sequestering free Fe 2+ under dehydration conditions, and plays synergistic roles with transporter genes during flower senescence. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years

    Directory of Open Access Journals (Sweden)

    Bárbara C.A. Saraiva

    2014-12-01

    Full Text Available OBJECTIVE: To analyze the occurrence of anemia and iron deficiency in children aged 1 to 5 years and the association of these events and retinol deficiency. METHODS: This was an observational analytic cross-sectional study conducted in Vitoria, ES, Brazil, between April and August of 2008, with healthy children aged 1 to 5 years (n = 692 that lived in areas covered by primary healthcare services. Sociodemographic and economic conditions, dietary intake (energy, protein, iron, and vitamin A ingestion, anthropometric data (body mass index-for-age and height-for-age, and biochemical parameters (ferritin, hemoglobin, and retinol serum were collected. RESULTS: The prevalence of anemia, iron deficiency, and retinol deficiency was 15.7%, 28.1%, and 24.7%, respectively. Univariate analysis showed a higher prevalence of anemia (PR: 4.62, 95% CI: 3.36, 6.34, p < 0.001 and iron deficiency (PR: 4.51, 95% CI: 3.30, 6.17, p < 0.001 among children with retinol deficiency. The same results were obtained after adjusting for socioeconomic and demographic conditions, dietary intake, and anthropometric variables. There was a positive association between ferritin vs. retinol serum (r = 0.597; p < 0.001 and hemoglobin vs. retinol serum (r = 0.770; p < 0.001. CONCLUSIONS: Anemia and iron deficiency were associated with low levels of serum retinol in children aged 1 to 5 years, and a positive correlation was verified between serum retinol and serum ferritin and hemoglobin levels. These results indicate the importance of initiatives encouraging the development of new treatments and further research regarding retinol deficiency.

  12. Iron-independent specific protein expression pattern in the liver of HFE-deficient mice

    Czech Academy of Sciences Publication Activity Database

    Petrák, J.; Myslivcová, D.; Halada, Petr; Čmejla, R.; Čmejlová, J.; Vyoral, D.; Vulpe, D. Ch.

    2007-01-01

    Roč. 39, - (2007), s. 1006-1015 ISSN 1357-2725 R&D Projects: GA MŠk LC545 Grant - others:GA ČR(CZ) GA303/04/0003; GA ČR(CZ) GA204/07/0830; GA MZd(CZ) NR8930; GA MŠk(CZ) LC06044; CZ(CZ) 023736 Institutional research plan: CEZ:AV0Z50200510 Keywords : iron overload * hemochromatosis * proteomics Subject RIV: EE - Microbiology, Virology Impact factor: 4.009, year: 2007

  13. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  14. FACTOR-ANALYSIS OF THE LEVEL OF EXPRESSED EMOTION SCALE, A QUESTIONNAIRE INTENDED TO MEASURE PERCEIVED EXPRESSED EMOTION

    NARCIS (Netherlands)

    GERLSMA, C; VANDERLUBBE, PM; VANNIEUWENHUIZEN, C

    When the factor structure and psychometric qualities of the Level of Expressed Emotion scale, an instrument intended to assess patient's perceptions of expressed emotion, were evaluated, three moderately intercorrelated factors emerged, with good internal consistency; these were lack of emotional

  15. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  16. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    Science.gov (United States)

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  17. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2016-09-01

    Full Text Available Iron toxicity is a major nutrient disorder that severely affects crop development and yield. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT members are involved in this process and play essential roles in iron storage and transport. In this study, a rapeseed VIT gene BnMEB2 (BnaC07g30170D was identified. BnMEB2 is a homolog to Arabidopsis MEB2 (At5g24290 and acts as a detoxifier in vacuolar sequestration of divalent metal. Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other vacuolar iron transporter genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.

  18. Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism.

    Directory of Open Access Journals (Sweden)

    Alvaro Machuca

    Full Text Available The intracellular facultative bacteria Piscirickettsia salmonis is one of the most important pathogens of the Chilean aquaculture. However, there is a lack of information regarding the whole genomic transcriptional response according to different extracellular environments. We used next generation sequencing (NGS of RNA (RNA-seq to study the whole transcriptome of an isolate of P. salmonis (FAVET-INBIOGEN using a cell line culture and a modified cell-free liquid medium, with or without iron supplementation. This was done in order to obtain information about the factors there are involved in virulence and iron acquisition. First, the isolate was grown in the Sf21 cell line; then, the bacteria were cultured into a cell-free liquid medium supplemented or not with iron. We identified in the transcriptome, genes associated with type IV secretion systems, genes related to flagellar structure assembly, several proteases and sigma factors, and genes related to the development of drug resistance. Additionally, we identified for the first time several iron-metabolism associated genes including at least two iron uptake pathways (ferrous iron and ferric iron uptake that are actually expressed in the different conditions analyzed. We further describe putative genes that are related with the use and storage of iron in the bacteria, which have not been previously described. Several sets of genes related to virulence were expressed in both the cell line and cell-free culture media (for example those related to flagellar structure; such as basal body, MS-ring, C-ring, proximal and distal rod, and filament, which may play roles in other basic processes rather than been restricted to virulence.

  19. A Heavy Metal-Associated Protein (AcHMA1 from the Halophyte, Atriplex canescens (Pursh Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xin-Hua Sun

    2014-08-01

    Full Text Available Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb, PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.

  20. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  1. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice

    Science.gov (United States)

    Burns, Monika; Amaya, Aldo; Bodi, Caroline; Ge, Zhongming; Bakthavatchalu, Vasudevan; Ennis, Kathleen; Wang, Timothy C.; Georgieff, Michael

    2017-01-01

    Helicobacter pylori (H.pylori), a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA), enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40) were used; half were placed on a moderately iron deficient (ID) diet immediately post-weaning, and the other half were maintained on an iron replete (IR) diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet) as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet). All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (pmice on an ID diet (both pmice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA. PMID:28355210

  2. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  4. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years.

    Science.gov (United States)

    Saraiva, Bárbara C A; Soares, Michele C C; Santos, Luana C dos; Pereira, Simone C L; Horta, Paula M

    2014-01-01

    To analyze the occurrence of anemia and iron deficiency in children aged 1 to 5 years and the association of these events and retinol deficiency. This was an observational analytic cross-sectional study conducted in Vitoria, ES, Brazil, between April and August of 2008, with healthy children aged 1 to 5 years (n=692) that lived in areas covered by primary healthcare services. Sociodemographic and economic conditions, dietary intake (energy, protein, iron, and vitamin A ingestion), anthropometric data (body mass index-for-age and height-for-age), and biochemical parameters (ferritin, hemoglobin, and retinol serum) were collected. The prevalence of anemia, iron deficiency, and retinol deficiency was 15.7%, 28.1%, and 24.7%, respectively. Univariate analysis showed a higher prevalence of anemia (PR: 4.62, 95% CI: 3.36, 6.34, piron deficiency (PR: 4.51, 95% CI: 3.30, 6.17, pdeficiency. The same results were obtained after adjusting for socioeconomic and demographic conditions, dietary intake, and anthropometric variables. There was a positive association between ferritin vs. retinol serum (r=0.597; pAnemia and iron deficiency were associated with low levels of serum retinol in children aged 1 to 5 years, and a positive correlation was verified between serum retinol and serum ferritin and hemoglobin levels. These results indicate the importance of initiatives encouraging the development of new treatments and further research regarding retinol deficiency. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  5. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes.

    Directory of Open Access Journals (Sweden)

    Neritza Campo Beltrán

    Full Text Available Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron.

  6. Divergence of iron metabolism in wild Malaysian yeast.

    Science.gov (United States)

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  7. Immunohistochemical properties of the expression of endothelial nitric oxide synthase in placenta in its dysfunction in women with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    I. A. Ancheva

    2014-08-01

    Full Text Available Aim. The pertinence of the study is related to a large prevalence of dysfunction of the placenta in pregnant women suffering from anemia. To evaluate the immunohistochemical expression characteristics of endothelial NO-synthase (eNOS in the placenta during its dysfunction in women against the background of anemia 30 samples of placental tissue were studied with the use of immunohistochemical and micrometer methods. Materials and results. It was found that the expression of eNOS in patients with iron defi ciency anemia in the cytoplasm of syncytium of villi and fetal capillary endothelium as well as decidual vessels decreases, with the most pronounced changes in the expression of eNOS observed in the presence of the combination of placental dysfunction and iron defi ciency anemia in the form of paradoxical increase in expression. Conclusion. This indicates the necessity for correction of endothelial function in women with anemia during pregnancy.

  8. Effects of toxic levels of sodium, arsenic, iron and aluminum on the rice plant

    Energy Technology Data Exchange (ETDEWEB)

    Lockard, R G; McWalter, A R

    1956-01-01

    The results of two sand culture experiments on rice plants are described. In one, the toxic effects of sodium, as sodium chloride, and of arsenic, as sodium arsenate, were tested; in the other, iron, chelated with the disodium salt of ethylene-diamine-tetra-acetic acid, and aluminium, as aluminium sulfate, were tried out. The former was undertaken because of the existence of these sub

  9. Problems of Understanding English Ironic Expressions by M.A. Students of Applied Linguistics at Mu'tah University in Jordan

    Science.gov (United States)

    Al Khawaldeh, Suhaib

    2015-01-01

    The present study attempts to investigate the problems of understanding English ironic expressions M.A. of Applied Linguistics students at Mu'tah University in Jordan. This quantitative and qualitative study includes 15 of M.A. students of Applied Linguistics at Mu'tah University. The participants were selected randomly. Two research instruments…

  10. Expression levels of parvalbumins determine allergenicity of fish species.

    Science.gov (United States)

    Griesmeier, U; Vázquez-Cortés, S; Bublin, M; Radauer, C; Ma, Y; Briza, P; Fernández-Rivas, M; Breiteneder, H

    2010-02-01

    Parvalbumins are the most important fish allergens. Polysensitization to various fish species is frequently reported and linked to the cross-reactivity of their parvalbumins. Studies on cross-reactivity and its association to the allergenicity of purified natural parvalbumins from different fish species are still lacking. In addition, some studies indicate that dark muscled fish such as tuna are less allergenic. Total protein extracts and purified parvalbumins from cod, whiff, and swordfish, all eaten frequently in Spain, were tested for their IgE-binding properties with 16 fish allergic patients' sera from Madrid. The extent of cross-reactivity of these parvalbumins was investigated by IgE ELISA inhibition assays. Additionally, the cDNA sequences of whiff and swordfish parvalbumins were determined. Extractable amounts of parvalbumins from cod were 20 times and from whiff 30 times higher than from swordfish. Parvalbumins were recognized by 94% of the patients in extracts of cod and whiff, but only by 60% in swordfish extracts. Nevertheless, a high cross-reactivity was determined for all purified parvalbumins by IgE inhibition. The amino acid sequence identities of the three parvalbumins were in a range of 62-74%. The parvalbumins of cod, whiff and swordfish are highly cross-reactive. The high amino acid sequence identity among cod, whiff and swordfish parvalbumins results in the observed IgE cross-reactivity. The low allergenicity of swordfish is due to the low expression levels of its parvalbumin.

  11. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease.

    Science.gov (United States)

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J; Bain, Peter G; Düzel, Emrah; Husain, Masud

    2013-12-01

    In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Iron status of Filipino infants and preschoolers using plasma ferritin and transferrin receptor levels.

    Science.gov (United States)

    Kuizon, M D; Madriaga, J R; Desnacido, J A; Cheong, R L; Perlas, L A

    1996-06-01

    Iron status of 1,861 Filipino infants and preschoolers was evaluated by measurements of plasma ferritin (PF), transferrin receptor (TR) and hemoglobin (Hb). One group of subjects (Group I) consisted of all anemic subjects together with a systematic subsample from the Fourth National Nutrition Survey-Biochemical Phase. Results showed that depleted iron stores based on PF ( 8.5 mg/l) was present in higher proportion (80.0% and 73.7% for infants and preschoolers) which was comparable to the proportion of anemia (80.3%). In a subgroup of subjects from the Country Program for Children IV (Group 2) elevated TR was present in 61.4% of infants and 46.5% of preschoolers. A lower proportion of depleted iron stores of 22.7% in infants and 15.2% in preschoolers was observed. Correlation test showed that there was a closer relationship between Hb and TR (r = -0.42) than Hb and PF (r = 0.20) even if PF was expected to give a higher proportion of values below normal. The occurrence of anemia in the presence of elevated TR without any decrease in PF values suggest that the diagnostic ability of PF could be limited in the presence of infection. Therefore, future studies should include biochemical tests such as C-reactive proteins (CRP) to determine the extent of association between anemia and infection.

  13. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols

    Directory of Open Access Journals (Sweden)

    Sergey I. Dikalov

    2017-11-01

    Full Text Available Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR

  14. FTIR and Mössbauer spectroscopic study of sodium–aluminum–iron phosphate glassy materials for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Remizov, M.B.; Belanova, E.A.; Kozlov, P.V. [FSUE PA Mayak, Central Plant Laboratory, Ozersk, Chelyabinsk Reg. (Russian Federation); Glazkova, Ya.S.; Sobolev, A.V.; Presniakov, I.A. [Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Kalmykov, S.N. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation); Myasoedov, B.F. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation)

    2015-11-15

    Complex sodium-aluminum-iron phosphate glassy materials with various Al{sub 2}O{sub 3} to Fe{sub 2}O{sub 3} ratio containing high level waste (HLW) surrogate were characterized by X-ray diffraction and scanning electron microscopy and studied in details by Fourier transform infrared (FTIR) spectroscopy. The samples with high Al{sub 2}O{sub 3} content and not containing Fe{sub 2}O{sub 3} were predominantly amorphous but subjected to devitrification under annealing. Addition of B{sub 2}O{sub 3} and partial Fe{sub 2}O{sub 3} substitution for Al{sub 2}O{sub 3} in the materials increases their resistance to devitrification whereas further substitution and NiO incorporation significantly increase the tendency to devitrification. FTIR spectra demonstrate changes in the structure of glassy materials caused by both structural variations in the anionic motif and occurrence of crystalline phases in the materials. According to Mössbauer spectroscopy data, iron in the glassy samples is present as octahedrally coordinated Fe{sup 3+} ions while in the partly devitrified samples iron is partitioned among vitreous and crystalline phases entering the vitreous phase mainly as Fe{sup 3+}O{sub 6} units and crystalline phases as major Fe{sup 3+} and minor Fe{sup 2+} ions in a magnetically ordered state and participating in a “fast” electronic exchange.

  15. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome

    DEFF Research Database (Denmark)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R R

    2015-01-01

    that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues...... abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed...

  16. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Blanca Iglesias-Figueroa

    2016-06-01

    Full Text Available In this study, bovine lactoferrin (bLf, an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin demonstrated antibacterial activity against Escherichia coli (E. coli BL21DE3, Staphylococcus aureus (S. aureus FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly.

  17. Serum hepcidin levels, iron status, and HFE gene alterations during the first year of life in healthy Spanish infants.

    Science.gov (United States)

    Aranda, Nuria; Bedmar, Cristina; Arija, Victoria; Jardí, Cristina; Jimenez-Feijoo, Rosa; Ferré, Natalia; Tous, Monica

    2018-06-01

    The aims of this study were to describe hepcidin levels and to assess their associations with iron status and the main variants in the HFE gene in healthy and full-term newborns during the first year of life, as a longitudinal study conducted on 140 infants. Anthropometric and biochemical parameters, hepcidin, hemoglobin (Hb), serum ferritin (SF), transferrin saturation (TS), mean corpuscular volume (MCV), and C-reactive protein (CRP), were assessed in 6- and 12-month-olds. Infants were genotyped for the three main HFE variants: C282Y, H63D, and S65C. Hepcidin levels increased from 6 to 12 months of age (43.7 ± 1.5 to 52.0 ± 1.5 ng/mL; p HFE gene (p = 0.046 and p = 0.048 in 6- and 12-month-olds, respectively). However, this association was not found in HFE-alteration-carrying infants. Hepcidin levels increased in healthy infants during the first year of life and were positively associated with iron levels only in infants with wild-type HFE gene, a situation that requires further investigation.

  18. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  19. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped......Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...

  20. Hypoadiponectinemia, elevated iron and high-sensitivity C-reactive protein levels and their relation with prostate size in benign prostatic hyperplasia.

    Science.gov (United States)

    Nandeesha, H; Eldhose, A; Dorairajan, L N; Anandhi, B

    2017-09-01

    Elevated iron, high-sensitivity C-reactive protein (CRP) and hypoadiponectinemia are known to initiate tumour development. There is paucity of data regarding the above-mentioned parameters and their relation with prostate size in benign prostatic hyperplasia (BPH). The present study was designed to assess the levels of iron, hs-CRP and adiponectin levels and their association with prostate size in BPH patients. A total of 37 BPH cases and 36 controls were enrolled in the study. Iron, hs-CRP and adiponectin were estimated in both the groups. Iron and hs-CRP were significantly increased and adiponectin was significantly reduced in BPH cases when compared with controls. Iron (r = .397, p = .015), hs-CRP (r = .341, p = .039) and adiponectin (r = -.464, p = .004) were significantly associated with prostate size in BPH cases. Multivariate linear regression analysis showed that iron acts as predictor of prostate size in BPH (R 2  = 0.395, β = 0.526, p = .001). We conclude that iron and hs-CRP are elevated and adiponectin is reduced in BPH cases and associated with prostate size. © 2016 Blackwell Verlag GmbH.

  1. Vitamins and iron blood biomarkers are associated with blood pressure levels in European adolescents. The HELENA study.

    Science.gov (United States)

    de Moraes, Augusto César Ferreira; Gracia-Marco, Luis; Iglesia, Iris; González-Gross, Marcela; Breidenassel, Christina; Ferrari, Marika; Molnar, Dénes; Gómez-Martínez, Sonia; Androutsos, Odysseas; Kafatos, Anthony; Cuenca-García, Magdalena; Sjöström, Michael; Gottrand, Frederic; Widhalm, Kurt; Carvalho, Heráclito Barbosa; Moreno, Luis A

    2014-01-01

    Previous research showed that low concentration of biomarkers in the blood during adolescence (i.e., iron status; retinol; and vitamins B6, B12, C, and D) may be involved in the early stages of development of many chronic diseases, such as hypertension. The aim was to evaluate if iron biomarkers and vitamins in the blood are associated with blood pressure in European adolescents. Participants from the Healthy Lifestyle in Europe by Nutrition in Adolescence cross-sectional study (N = 1089; 12.5-17.5 y; 580 girls) were selected by complex sampling. Multilevel linear regression models examined the associations between iron biomarkers and vitamins in the blood and blood pressure; the analyses were stratified by sex and adjusted for contextual and individual potential confounders. A positive association was found in girls between RBC folate concentration and systolic blood pressure (SBP) (β = 3.19; 95% confidence interval [CI], 0.61-5.77), although no association between the vitamin serum biomarkers concentrations and diastolic blood pressure (DBP) was found. In boys, retinol was positively associated with DBP (β = 3.84; 95% CI, 0.51-7.17) and vitamin B6 was positively associated with SBP (β = 3.82; 95% CI, 1.46-6.18). In contrast, holotranscobalamin was inversely associated with SBP (β = -3.74; 95% CI, -7.28 to -0.21). Levels of RBC folate and vitamin B6 in blood may affect BP in adolescents. In this context, programs aimed at avoiding high BP levels should promote healthy eating behavior by focusing on the promotion of vegetable proteins and foods rich in vitamin B12 (i.e., white meat and eggs), which may help to achieve BP blood control in adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    Science.gov (United States)

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  3. Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations

    Science.gov (United States)

    Martínez-Garay, Carlos Andrés; de Llanos, Rosa; Romero, Antonia María; Martínez-Pastor, María Teresa

    2016-01-01

    Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels. PMID:26773083

  4. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This is sometimes used to deliver iron through a blood vessel to increase iron levels in the blood. One benefit of IV iron ... over 65 years of age had low hemoglobin levels. This was associated with a greater risk of death even with mild anemia. ...

  6. High-level expression, purification, polyclonal antibody preparation ...

    African Journals Online (AJOL)

    OprD is a specific porin which can binds imipenem and carbapenems in Pseudomonas aeruginosa. OprD loss plays a central role in mediating carbapenem resistance. Therefore, purification of oprD protein lays a pavement for the study in vivo and in vitro. In our study, the oprD gene was cloned into pQE30 expression ...

  7. Fluctuating levels of reprogramming factor expression in cultured ...

    African Journals Online (AJOL)

    Although human undifferentiated keratinocytes (HUKs) can be reprogrammed to become induced pluripotent stem cells (iPSCs) with high efficiency and rapid kinetics by transducing reprogramming factors (RFs), the endogenous expression of reprogramming factors in cultured HUKs is not clear at different stages. In this ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. ... are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend changes to help you meet the recommended daily amount of iron. If you ... stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron levels, your doctor may ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may be diagnosed with iron-deficiency anemia if you have low iron or ferritin levels in your blood. More testing may be needed to rule out other types of anemia. Tests for gastrointestinal ...

  11. Hepcidin: A Critical Regulator of Iron Metabolism during Hypoxia

    Directory of Open Access Journals (Sweden)

    Korry J. Hintze

    2011-01-01

    Full Text Available Iron status affects cognitive and physical performance in humans. Recent evidence indicates that iron balance is a tightly regulated process affected by a series of factors other than diet, to include hypoxia. Hypoxia has profound effects on iron absorption and results in increased iron acquisition and erythropoiesis when humans move from sea level to altitude. The effects of hypoxia on iron balance have been attributed to hepcidin, a central regulator of iron homeostasis. This paper will focus on the molecular mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF/hypoxia response element (HRE system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may affect hepcidin signaling and organismal iron metabolism.

  12. Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with β-thalassemia major.

    Science.gov (United States)

    Mirlohi, Maryam Sadat; Yaghooti, Hamid; Shirali, Saeed; Aminasnafi, Ali; Olapour, Samaneh

    2018-04-01

    The impaired biosynthesis of the β-globin chain in β-thalassemia leads to the accumulation of unpaired alpha globin chains, failure in hemoglobin formation, and iron overload due to frequent blood transfusion. Iron excess causes oxidative stress and massive tissue injuries. Advanced glycation end products (AGEs) are harmful agents, and their production accelerates in oxidative conditions. This study was conducted on 45 patients with major β-thalassemia who received frequent blood transfusions and chelation therapy and were compared to 40 healthy subjects. Metabolic parameters including glycemic and iron indices, hepatic and renal functions tests, oxidative stress markers, and AGEs (carboxymethyl-lysine and pentosidine) levels were measured. All parameters were significantly increased in β-thalassemia compared to the control except for glutathione levels. Blood glucose, iron, serum ferritin, non-transferrin-bound iron (NTBI), MDA, soluble form of low-density lipoprotein receptor, glutathione peroxidase, total reactive oxygen species (ROS), and AGE levels were significantly higher in the β-thalassemia patients. Iron and ferritin showed a significant positive correlation with pentosidine (P overload in β-thalassemia major patients and highlight the enhanced formation of AGEs, which may play an important role in the pathogenesis of β-thalassemia major.

  13. Iron status and its association with HbA1c levels in Dutch children with diabetes mellitus type 1

    NARCIS (Netherlands)

    Akkermans, Marjolijn D.; Mieke Houdijk, E. C. A.; Bakker, Boudewijn; Clement-de Boers, Agnes; van der Kaay, Daniëlle C. M.; de Vries, Martine C.; Claire Woltering, M.; Mul, Dick; van Goudoever, Johannes B.; Brus, Frank

    2018-01-01

    Children with diabetes mellitus (DM) type 1 may be at risk for iron deficiency (ID) although this has been little studied. ID is either an absolute (depleted iron stores) or a functional (restricted iron stores due to chronic inflammation) deficiency each requiring a different therapeutic approach.

  14. LOX: Inferring level of expression from diverse methods of census sequencing

    KAUST Repository

    Zhang, Zhang

    2010-06-10

    Summary: We present LOX (Level Of eXpression) that estimates the Level Of gene eXpression from high-throughput-expressed sequence datasets with multiple treatments or samples. Unlike most analyses, LOX incorporates a gene bias model that facilitates integration of diverse transcriptomic sequencing data that arises when transcriptomic data have been produced using diverse experimental methodologies. LOX integrates overall sequence count tallies normalized by total expressed sequence count to provide expression levels for each gene relative to all treatments as well as Bayesian credible intervals. © The Author 2010. Published by Oxford University Press. All rights reserved.

  15. LOX: Inferring level of expression from diverse methods of census sequencing

    KAUST Repository

    Zhang, Zhang; Ló pez-Girá ldez, Francesc Francisco; Townsend, Jeffrey P.

    2010-01-01

    Summary: We present LOX (Level Of eXpression) that estimates the Level Of gene eXpression from high-throughput-expressed sequence datasets with multiple treatments or samples. Unlike most analyses, LOX incorporates a gene bias model that facilitates integration of diverse transcriptomic sequencing data that arises when transcriptomic data have been produced using diverse experimental methodologies. LOX integrates overall sequence count tallies normalized by total expressed sequence count to provide expression levels for each gene relative to all treatments as well as Bayesian credible intervals. © The Author 2010. Published by Oxford University Press. All rights reserved.

  16. Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system.

    Science.gov (United States)

    Cheng, L; Chen, G; Ding, G; Zhao, Z; Dong, T; Hu, Z

    2015-04-27

    The Rhodobacter sphaeroides system has been used to express membrane proteins. However, its low yield has substantially limited its application. In order to promote the protein expression capability of this system, the pucC gene, which plays a crucial role in assembling the R. sphaeroides light-harvesting 2 complex (LH2), was overexpressed. To build a pucC overexpression strain, a pucC overexpression vector was constructed and transformed into R. sphaeroides CQU68. The overexpression efficiency was evaluated by quantitative real-time polymerase chain reaction. A well-used reporter β-glucuronidase (GUS) was fusion-expressed with LH2 to evaluate the heterologous protein expression level. As a result, the cell culture and protein in the pucC overexpression strain showed much higher typical spectral absorption peaks at 800 and 850 nm compared with the non-overexpression strain, suggesting a higher expression level of LH2-GUS fusion protein in the pucC overexpression strain. This result was further confirmed by Western blot, which also showed a much higher level of heterologous protein expression in the pucC overexpression strain. We further compared GUS activity in pucC overexpression and non-overexpression strains, the results of which showed that GUS activity in the pucC overexpression strain was approximately ten-fold that in the non-overexpression strain. These results demonstrate that overexpressed pucC can promote heterologous protein expression levels in R. sphaeroides.

  17. Expression of Critical Sulfur- and Iron-Oxidation Genes and the Community Dynamics During Bioleaching of Chalcopyrite Concentrate by Moderate Thermophiles.

    Science.gov (United States)

    Zhou, Dan; Peng, Tangjian; Zhou, Hongbo; Liu, Xueduan; Gu, Guohua; Chen, Miao; Qiu, Guanzhou; Zeng, Weimin

    2015-07-01

    Sulfate adenylyltransferase gene and 4Fe-4S ferredoxin gene are the key genes related to sulfur and iron oxidations during bioleaching system, respectively. In order to better understand the bioleaching and microorganism synergistic mechanism in chalcopyrite bioleaching by mixed culture of moderate thermophiles, expressions of the two energy metabolism genes and community dynamics of free and attached microorganisms were investigated. Specific primers were designed for real-time quantitative PCR to study the expression of these genes. Real-time PCR results showed that sulfate adenylyltransferase gene was more highly expressed in Sulfobacillus thermosulfidooxidans than that in Acidithiobacillus caldus, and expression of 4Fe-4S ferredoxin gene was higher in Ferroplasma thermophilum than that in S. thermosulfidooxidans and Leptospirillum ferriphilum. The results indicated that in the bioleaching system of chalcopyrite concentrate, sulfur and iron oxidations were mainly performed by S. thermosulfidooxidans and F. thermophilum, respectively. The community dynamics results revealed that S. thermosulfidooxidans took up the largest proportion during the whole period, followed by F. thermophilum, A. caldus, and L. ferriphilum. The CCA analysis showed that 4Fe-4S ferredoxin gene expression was mainly affected (positively correlated) by high pH and elevated concentration of ferrous ion, while no factor was observed to prominently influence the expression of sulfate adenylyltransferase gene.

  18. MFehi adipose tissue macrophages compensate for tissue iron pertubations in mice.

    Science.gov (United States)

    Hubler, Merla J; Erikson, Keith M; Kennedy, Arion J; Hasty, Alyssa H

    2018-05-16

    Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess FFAs and regulation of extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe hi ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron handling genes. While studies have demonstrated iron homeostasis is important for adipocyte health, little is known about how MFe hi ATMs may respond to and influence AT iron availability. Two methodologies were used to address this question - dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe hi ATMs accumulated excess iron, while the iron content of MFe lo ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe hi ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe hi ATMs incorporated high levels of iron and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe hi ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe lo ATM incorporation into the MFe hi pool. The MFe hi ATM population maintained its low inflammatory profile and iron cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.

  19. Enhancing arsenic removal from groundwater at household level with naturally occurring iron

    Directory of Open Access Journals (Sweden)

    Anitha Kumari Sharma

    2016-06-01

    Full Text Available A supply of drinking water low in Arsenic (As prevents arsenic poisoning. The presence of high concentrations of iron (Fe in groundwater under the alluvial plains of the large rivers in Southeast Asia is a prerequisite for the simple removal of As. This study investigated the mechanisms and possibilities for enhancing As removal with naturally occurring Fe in a reliable, low cost and sustainable way. The results of the study show that As removal with Fe is greatly enhanced by the addition of an oxidizing agent (preferably KMnO4 immediately after the pumping of groundwater. Further enhancement of As removal in the presence of Fe can be achieved by adding a small volume of a concentrated basic solution of MnO4- and AlO2-, which has a combined oxidation, coagulation and buffering capacity. Best results were obtained when this solution was mixed with the groundwater immediately after its pumping until a pale pink color appeared. Maximum required reaction time was 10 minutes and subsequent filtration of the water was able to reduce the As concentration to near zero. Concentrations of MnO4- and AlO2- can be varied in the solution to achieve sufficient As removal to suit different Fe/As ratios and the presence of interfering co-occurring anions.

  20. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level

    Directory of Open Access Journals (Sweden)

    Athanasia Kostopoulou

    2018-05-01

    Full Text Available Advances in surfactant-assisted chemical approaches have led the way for the exploitation of nanoscale inorganic particles in medical diagnosis and treatment. In this field, magnetically-driven multimodal nanotools that perform both detection and therapy, well-designed in size, shape and composition, are highly advantageous. Such a theranostic material—which entails the controlled assembly of smaller (maghemite nanocrystals in a secondary motif that is highly dispersible in aqueous media—is discussed here. These surface functionalized, pomegranate-like ferrimagnetic nanoclusters (40–85 nm are made of nanocrystal subunits that show a remarkable magnetic resonance imaging contrast efficiency, which is better than that of the superparamagnetic contrast agent Endorem©. Going beyond this attribute and with their demonstrated low cytotoxicity in hand, we examine the critical interaction of such nanoprobes with cells at different physiological environments. The time-dependent in vivo scintigraphic imaging of mice experimental models, combined with a biodistribution study, revealed the accumulation of nanoclusters in the spleen and liver. Moreover, the in vitro proliferation of spleen cells and cytokine production witnessed a size-selective regulation of immune system cells, inferring that smaller clusters induce mainly inflammatory activities, while larger ones induce anti-inflammatory actions. The preliminary findings corroborate that the modular chemistry of magnetic iron oxide nanoclusters stimulates unexplored pathways that could be driven to alter their function in favor of healthcare.

  1. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  2. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level.

    Science.gov (United States)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Fragogeorgi, Eirini; Anthousi, Amalia; Manna, Liberato; Begin-Colin, Sylvie; Billotey, Claire; Ranella, Anthi; Loudos, George; Athanassakis, Irene; Lappas, Alexandros

    2018-05-09

    Advances in surfactant-assisted chemical approaches have led the way for the exploitation of nanoscale inorganic particles in medical diagnosis and treatment. In this field, magnetically-driven multimodal nanotools that perform both detection and therapy, well-designed in size, shape and composition, are highly advantageous. Such a theranostic material—which entails the controlled assembly of smaller (maghemite) nanocrystals in a secondary motif that is highly dispersible in aqueous media—is discussed here. These surface functionalized, pomegranate-like ferrimagnetic nanoclusters (40⁻85 nm) are made of nanocrystal subunits that show a remarkable magnetic resonance imaging contrast efficiency, which is better than that of the superparamagnetic contrast agent Endorem © . Going beyond this attribute and with their demonstrated low cytotoxicity in hand, we examine the critical interaction of such nanoprobes with cells at different physiological environments. The time-dependent in vivo scintigraphic imaging of mice experimental models, combined with a biodistribution study, revealed the accumulation of nanoclusters in the spleen and liver. Moreover, the in vitro proliferation of spleen cells and cytokine production witnessed a size-selective regulation of immune system cells, inferring that smaller clusters induce mainly inflammatory activities, while larger ones induce anti-inflammatory actions. The preliminary findings corroborate that the modular chemistry of magnetic iron oxide nanoclusters stimulates unexplored pathways that could be driven to alter their function in favor of healthcare.

  3. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    Science.gov (United States)

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Serum Iron Protects from Renal Postischemic Injury.

    Science.gov (United States)

    Vaugier, Céline; Amano, Mariane T; Chemouny, Jonathan M; Dussiot, Michael; Berrou, Claire; Matignon, Marie; Ben Mkaddem, Sanae; Wang, Pamella H M; Fricot, Aurélie; Maciel, Thiago T; Grapton, Damien; Mathieu, Jacques R R; Beaumont, Carole; Peraldi, Marie-Noëlle; Peyssonnaux, Carole; Mesnard, Laurent; Daugas, Eric; Vrtovsnik, François; Monteiro, Renato C; Hermine, Olivier; Ginzburg, Yelena Z; Benhamou, Marc; Camara, Niels O S; Flamant, Martin; Moura, Ivan C

    2017-12-01

    Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients ( n =169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF- κ B and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants. Copyright © 2017 by the American Society of Nephrology.

  5. Iron stores and obesity are negatively associated with ovarian volume and anti-Müllerian hormone levels in women with polycystic ovary syndrome.

    Science.gov (United States)

    Yang, Jehn-Hsiahn; Chou, Chia-Hung; Yang, Wei-Shiung; Ho, Hong-Nerng; Yang, Yu-Shih; Chen, Mei-Jou

    2015-12-01

    Obesity and insulin resistance are associated with increased iron stores, but have conflicting effects on ovarian reserve in women with polycystic ovary syndrome (PCOS). Iron-catalyzed oxidative stress might be detrimental to ovarian tissue and granulosa cell function. In this study we determined the association between body iron stores, obesity, and ovarian reserve in women with PCOS. One hundred and fifty-six women diagnosed with PCOS according to Rotterdam criteria and 30 normoweight healthy control women were enrolled in this cross-sectional study. Ovarian volume, total antral follicle count, and the anti-Müllerian hormone (AMH) level were measured as an indicator of ovarian reserve. Ferritin and transferrin-bound iron levels were significantly higher in women with PCOS than normoweight controls. Obese women with PCOS had higher ferritin levels (p = 0.006), but lower AMH levels (p ovarian volume were inversely related to the ferritin level, homeostasis model assessment of insulin resistance, and body mass index in women with PCOS. Body mass index and ferritin level remained significantly correlated with a lower AMH level and reduced ovarian volume, respectively, after considering other confounding variables. An elevated ferritin level and obesity were negatively associated with ovarian volume and the AMH level, respectively, in women with PCOS. Copyright © 2015. Published by Elsevier B.V.

  6. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    Science.gov (United States)

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  7. EFFECT OF ROSELLE (HIBISCUS SABDARIFFA ON CHANGES IN HEMOGLOBIN LEVELS IN PREGNANT WOMEN WITH ANEMIA TAKING IRON SUPPLEMENT

    Directory of Open Access Journals (Sweden)

    Rif’atun Nisa

    2017-12-01

    Full Text Available Background: Anemia during pregnancy is one of the most common disorders in pregnant women in Indonesia. The Government has made efforts to overcome this problem, however, the rate of anemic mothers remains high. Rosella (Hibiscus Sabdariffa is considered able to increase the hemoglobin levels in pregnant mothers. Objective: To analyze the effect of Rosella flower extract (Hibiscus Sabdariffa on the increase of Hemoglobin level in pregnant women with anemia receiving Fe tablet. Methods: This study was a quasy experiment with pretest-posttest control group design conducted in November - December 2016 in the working area of Tlogosari Wetan Community Health Center. Forty-two participants were selected using accidental sampling, which 21 assigned in the experiment and control group. All samples were pregnant women in the second trimester suffering from anemia and receiving iron tablets. Hemoglobin levels were measured using hematology analyzer in laboratory. Independent t-test and paired t-test were used for data analysis. Results: Paired t-test obtained p-value 0.00 (<0.05, indicated that there was an increase of hemoglobin levels in both experiment and control group. The mean increase of hemoglobin levels in the control group was 0.61 gr and in the experiment group was 1.08. The hemoglobin levels in the experiment group were higher than the levels in the control group. Independent t-test obtained p-value 0.000 (<0.05 indicating that there was a significant difference of mean of hemoglobin levels between the control group and the treatment group. Conclusion: The consumption of rosella extract combined with Fe tablet showed a significant increase of hemoglobin levels compared with the consumption of Fe tablet alone. Therefore, it is suggested for midwife to use the result of this research as a evidence practice through counseling for pregnant mother about utilization of rosella extract that can increase hemoglobin level in pregnant woman with anemia.

  8. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVE HIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    International Nuclear Information System (INIS)

    Ketusky, E

    2008-01-01

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned

  9. NCOA4 Deficiency Impairs Systemic Iron Homeostasis

    Directory of Open Access Journals (Sweden)

    Roberto Bellelli

    2016-01-01

    Full Text Available The cargo receptor NCOA4 mediates autophagic ferritin degradation. Here we show that NCOA4 deficiency in a knockout mouse model causes iron accumulation in the liver and spleen, increased levels of transferrin saturation, serum ferritin, and liver hepcidin, and decreased levels of duodenal ferroportin. Despite signs of iron overload, NCOA4-null mice had mild microcytic hypochromic anemia. Under an iron-deprived diet (2–3 mg/kg, mice failed to release iron from ferritin storage and developed severe microcytic hypochromic anemia and ineffective erythropoiesis associated with increased erythropoietin levels. When fed an iron-enriched diet (2 g/kg, mice died prematurely and showed signs of liver damage. Ferritin accumulated in primary embryonic fibroblasts from NCOA4-null mice consequent to impaired autophagic targeting. Adoptive expression of the NCOA4 COOH terminus (aa 239–614 restored this function. In conclusion, NCOA4 prevents iron accumulation and ensures efficient erythropoiesis, playing a central role in balancing iron levels in vivo.

  10. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study.

    Science.gov (United States)

    Kim, Kyoung-Nam; Lee, Mee-Ri; Lim, Youn-Hee; Hong, Yun-Chul

    2017-12-01

    Homocysteine has been causally associated with various adverse health outcomes. Evidence supporting the relationship between lead and homocysteine levels has been accumulating, but most prior studies have not focused on the interaction with genetic polymorphisms. From a community-based prospective cohort, we analysed 386 participants (aged 41-71 years) with information regarding blood lead and plasma homocysteine levels. Blood lead levels were measured between 2001 and 2003, and plasma homocysteine levels were measured in 2007. Interactions of lead levels with 42 genotyped single-nucleotide polymorphisms (SNPs) in five genes ( TF , HFE , CBS , BHMT and MTR ) were assessed via a 2-degree of freedom (df) joint test and a 1-df interaction test. In secondary analyses using imputation, we further assessed 58 imputed SNPs in the TF and MTHFR genes. Blood lead concentrations were positively associated with plasma homocysteine levels (p=0.0276). Six SNPs in the TF and MTR genes were screened using the 2-df joint test, and among them, three SNPs in the TF gene showed interactions with lead with respect to homocysteine levels through the 1-df interaction test (plead levels. Blood lead levels were positively associated with plasma homocysteine levels measured 4-6 years later, and three SNPs in the TF gene modified the association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level.

    Science.gov (United States)

    Huang, Chen-Yu; Ger, Tzong-Rong; Wei, Zung-Hang; Lai, Mei-Feng

    2014-01-01

    Developing methods that evaluate the cellular uptake of magnetic nanoparticles (MNPs) and nanotoxicity effects at single-cellular level are needed. In this study, magnetophoresis combining fluorescence based cytotoxicity assay was proposed to assess the viability and the single-cellular MNPs uptake simultaneously. Malignant cells (SKHep-1, HepG2, HeLa) were incubated with 10 nm anionic iron oxide nanoparticles. Prussian blue stain was performed to visualize the distribution of magnetic nanoparticles. MTT and fluorescence based assay analyzed the cytotoxicity effects of the bulk cell population and single cell, respectively. DAPI/PI stained was applied to evaluate death mechanism. The number of intracellular MNPs was found to be strongly correlated with the cell death. Significant differences between cellular MNP uptake in living and dead cells were observed. The method could be useful for future study of the nanotoxicity induced by MNPs.

  12. Geomorphic expression of late Quaternary sea level changes along ...

    Indian Academy of Sciences (India)

    Department of Geology, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, India. ∗ e-mail: ... referred to as miliolite limestone and shell lime- stone that form coastal ... the bed rocks and corresponding to the prevailing sea level.

  13. High-level expression of the native barley alpha-amylase/subtilisin inhibitor in Pichia pastoris

    DEFF Research Database (Denmark)

    Micheelsen, Pernille Ollendorff; Ostergaard, Peter Rahbek; Lange, Lene

    2008-01-01

    An expression system for high-level expression of the native Hordeum vulgare alpha-amylase/subtilisin inhibitor (BASI) has been developed in Pichia pastoris, using the methanol inducible alcohol oxidase 1 (AOX1) promoter. To optimize expression, two codon-optimized coding regions have been designed...... and expressed alongside the wild-type coding region. To ensure secretion of the native mature protein, a truncated version of the alpha mating factor secretion signal from Saccharomyces cerevisiae was used. In order to be able to compare expression levels from different clones, single insertion transformants...

  14. Hemochromatosis enhances tumor progression via upregulation of intracellular iron in head and neck cancer.

    Directory of Open Access Journals (Sweden)

    Michelle Lenarduzzi

    Full Text Available Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC, outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC.Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS, clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry.In a panel of HNSCC cell lines, hemochromatosis (HFE was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX, significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression.Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management.

  15. Atomic energy levels of the iron-period elements: potassium through nickel

    International Nuclear Information System (INIS)

    Sugar, J.; Corliss, C.

    1985-01-01

    Experimentally derived energy levels of the elements from potassium to nickel in all stages of ionization are critically compiled. The data for each level include its position in /cm (relative to the ground state), configuration, term designation, J-value, and, where available, the g-value and two leading percentages of the eigenvector composition in the most appropriate coupling scheme. For the He I and H I isoelectronic sequences, calculated level positions are given because they are considered more accurate than the measurements presently available. Ionization energies for each ion are derived either from Rydberg series, extrapolation, or calculation. Complete references are given for the compiled data

  16. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.

    Science.gov (United States)

    Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y

    2018-05-01

    Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key

  17. Modulating ectopic gene expression levels by using retroviral vectors equipped with synthetic promoters

    OpenAIRE

    Ferreira, Joshua P.; Peacock, Ryan W. S.; Lawhorn, Ingrid E. B.; Wang, Clifford L.

    2011-01-01

    The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evalua...

  18. Relationship between Legible Handwriting and Level of Success of Third Grade Students in Written Expression

    Science.gov (United States)

    Bayat, Seher; Küçükayar, Hasan

    2016-01-01

    This study aims to identify third-grade students' performance levels for written expression and handwriting and to find the relationship between these performances. The study is based on relational screening model. It is carried out with 110 third grade students. Students' levels of success in handwriting and in written expression are evaluated…

  19. Effects of graded levels of iron-fortified locally produced natural ...

    African Journals Online (AJOL)

    Although, dressing percentage was not affected (P>0.05) by the dietary levels, relative fresh organs and primal cut weights were different (P<0.05) for birds fed the various levels of LPNVP and the control birds fed CVMP-based diets. It was however cheaper (P<0.05) to use LPNVP than CVMP as a source of vitamin for ...

  20. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Quentin Philippot

    Full Text Available Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer's and Parkinson's diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2-3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL cells were obtained from non-smokers, healthy smokers, and GOLD 1-3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor, storage (ferritin and export (ferroportin genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1 and the ratio between FEV1 and forced vital capacity (FEV1/FVC. The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Furthermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively. In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative

  1. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field.

    Science.gov (United States)

    Rajabbeigi, Elham; Ghanati, Faezeh; Abdolmaleki, Parviz; Payez, Atefeh

    2013-12-01

    This study was aimed to evaluate antioxidant response of parsley cells to 21 ppm iron and static magnetic field (SMF; 30 mT). The activity of catalase (CAT) and ascorbate peroxidase (APX) and the contents of malonyldialdehyde, iron and ferritin were measured at 6 and 12 h after treatments. Exposure to SMF increased the activity of CAT in treated cells, while combination of iron and SMF treatments as well as iron supply alone decreased CAT activity, compared to that of control cells. Combination of SMF with iron treatment reduced iron content of the cells and ameliorated mal effect of iron on CAT activity. All treatments reduced APX activity; however, the content of total ascorbate increased in response to iron and SMF+iron. The results showed that among the components of antioxidant system of parsley cells, enhanced activity of CAT in SMF-treated cells and increase of ascorbate in SMF+Fe-treated ones were responsible for the maintenance of membranes integrity. Ferritin contents of SMF- and SMF+Fe-treated cells also decreased significantly 12 h after treatments, compared to those of the control cells. These results cast doubt on the proposed functions of ferritin as a putative reactive oxygen species detoxifying molecule.

  2. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Directory of Open Access Journals (Sweden)

    Laurence D Hurst

    2015-12-01

    Full Text Available X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE and data from the Functional Annotation of the Mammalian Genome (FANTOM5 project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds, as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased

  3. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.

    2015-12-18

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  4. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  5. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report; FINAL

    International Nuclear Information System (INIS)

    Brown, G. E. Jr.; Chambers, S. A.

    1999-01-01

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals

  6. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency.

    Science.gov (United States)

    Liu, Wei; Li, Qiwei; Wang, Yi; Wu, Ting; Yang, Yafei; Zhang, Xinzhong; Han, Zhenhai; Xu, Xuefeng

    2017-09-23

    Ethylene regulates the plant's response to stress caused by iron (Fe) deficiency. However, specific roles of ERF proteins in response to Fe deficiency remain poorly understood. Here, we investigated the role of ERF72 in response to iron deficiency in Arabidopsis thaliana. In this study, the levels of the ethylene response factor AtERF72 increased in leaves and roots induced under the iron deficient conditions. erf72 mutant plants showed increased growth compared to wild type (WT) when grown in iron deficient medium for 5 d. erf72 mutants had increased root H + velocity and the ferric reductase activity, and increase in the expression of the iron deficiency response genes iron-regulated transporter 1 (IRT1) and H + -ATPase (HA2) levels in iron deficient conditions. Compared to WT plants, erf72 mutants retained healthy chloroplast structure with significantly higher Fe and Mg content, and decreased chlorophyll degradation gene pheophorbide a oxygenase (PAO) and chlorophyllase (CLH1) expression when grown in iron deficient media. Yeast one-hybrid analysis showed that ERF72 could directly bind to the promoter regions of iron deficiency responses genes IRT1, HA2 and CLH1. Based on our results, we suggest that ethylene released from plants under iron deficiency stress can activate the expression of ERF72, which responds to iron deficiency in the negative regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. HbA1c and Glycated Albumin Levels Are High in Gastrectomized Subjects with Iron-Deficiency Anemia.

    Science.gov (United States)

    Inada, Shinya; Koga, Masafumi

    2017-01-01

    We report that glycated albumin (GA) is higher relative to HbA1c in non-diabetic, gastrectomized subjects without anemia, and thus is a sign of oxyhyperglycemia. It is known that gastrectomized subjects are prone to iron-deficiency anemia (IDA), and that the HbA1c levels of subjects with IDA are falsely high. In the present study, the HbA1c and GA levels of gastrectomized subjects with IDA were compared with gastrectomized subjects without anemia. Seven non-diabetic gastrectomized subjects with IDA were enrolled in the present study. Twenty-eight non-diabetic gastrectomized subjects without anemia matched with the subjects with IDA in terms of age, gender, and body mass index were used as the controls. Although there were no significant differences in fasting plasma glucose and OGTT 2-hour plasma glucose (2-h PG) between the two groups, the HbA1c and GA levels in gastrectomized subjects with IDA were significantly higher than the controls. For all of the gastrectomized subjects (n=35), ferritin exhibited a significant negative correlation with HbA1c and GA, and a significant positive correlation with 2-h PG. In addition, the HbA1c and GA levels exhibited a significant negative correlation with the mean corpuscular hemoglobin and hemoglobin. The HbA1c and GA levels in gastrectomized subjects with IDA were significantly higher than those in controls. The high GA levels are attributed to a tendency in which patients with total gastrectomy, who are prone to IDA, are susceptible to postprandial hyperglycemia and reactive hypoglycemia, which in turn leads to large fluctuations in plasma glucose. © 2017 by the Association of Clinical Scientists, Inc.

  8. Iron and intrinsic deep level states in Ga2O3

    Science.gov (United States)

    Ingebrigtsen, M. E.; Varley, J. B.; Kuznetsov, A. Yu.; Svensson, B. G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L.

    2018-01-01

    Using a combination of deep level transient spectroscopy, secondary ion mass spectrometry, proton irradiation, and hybrid functional calculations, we identify two similar deep levels that are associated with Fe impurities and intrinsic defects in bulk crystals and molecular beam epitaxy and hydride vapor phase epitaxi-grown epilayers of β-Ga2O3. First, our results indicate that FeGa, and not an intrinsic defect, acts as the deep acceptor responsible for the often dominating E2 level at ˜0.78 eV below the conduction band minimum. Second, by provoking additional intrinsic defect generation via proton irradiation, we identified the emergence of a new level, labeled as E2*, having the ionization energy very close to that of E2, but exhibiting an order of magnitude larger capture cross section. Importantly, the properties of E2* are found to be consistent with its intrinsic origin. As such, contradictory opinions of a long standing literature debate on either extrinsic or intrinsic origin of the deep acceptor in question converge accounting for possible contributions from E2 and E2* in different experimental conditions.

  9. Representational momentum in dynamic facial expressions is modulated by the level of expressed pain: Amplitude and direction effects.

    Science.gov (United States)

    Prigent, Elise; Amorim, Michel-Ange; de Oliveira, Armando Mónica

    2018-01-01

    Humans have developed a specific capacity to rapidly perceive and anticipate other people's facial expressions so as to get an immediate impression of their emotional state of mind. We carried out two experiments to examine the perceptual and memory dynamics of facial expressions of pain. In the first experiment, we investigated how people estimate other people's levels of pain based on the perception of various dynamic facial expressions; these differ both in terms of the amount and intensity of activated action units. A second experiment used a representational momentum (RM) paradigm to study the emotional anticipation (memory bias) elicited by the same facial expressions of pain studied in Experiment 1. Our results highlighted the relationship between the level of perceived pain (in Experiment 1) and the direction and magnitude of memory bias (in Experiment 2): When perceived pain increases, the memory bias tends to be reduced (if positive) and ultimately becomes negative. Dynamic facial expressions of pain may reenact an "immediate perceptual history" in the perceiver before leading to an emotional anticipation of the agent's upcoming state. Thus, a subtle facial expression of pain (i.e., a low contraction around the eyes) that leads to a significant positive anticipation can be considered an adaptive process-one through which we can swiftly and involuntarily detect other people's pain.

  10. Diverse Soil Carbon Dynamics Expressed at the Molecular Level

    Science.gov (United States)

    van der Voort, T. S.; Zell, C. I.; Hagedorn, F.; Feng, X.; McIntyre, C. P.; Haghipour, N.; Graf Pannatier, E.; Eglinton, T. I.

    2017-12-01

    The stability and potential vulnerability of soil organic matter (SOM) to global change remain incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and subalpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change.

  11. Modulating ectopic gene expression levels by using retroviral vectors equipped with synthetic promoters.

    Science.gov (United States)

    Ferreira, Joshua P; Peacock, Ryan W S; Lawhorn, Ingrid E B; Wang, Clifford L

    2011-12-01

    The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines. The online version of this article (doi:10.1007/s11693-011-9089-0) contains supplementary material, which is available to authorized users.

  12. A Course at the Master Level Demonstrating Quality Assurance by Spectrophotometric Determination of Iron in two experiments

    DEFF Research Database (Denmark)

    In two experiments, the first a batch determination of iron, and the second determination of iron by flow injection analysis, the students perform a number of repetitions. The measurements were repeated until it became possible to estimate which one of the two methods exhibited the better perform...

  13. From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Martinez-Pinna, Roxanna; Lindholt, Jes Sanddal; Madrigal-Matute, Julio

    2014-01-01

    Iron deposits are observed in tissue of abdominal aortic aneurysm (AAA) patients, although the underlying mechanisms are not completely elucidated. Therefore we explored circulating markers of iron metabolism in AAA patients, and tested if they could serve as biomarkers of AAA. Increased red bloo...

  14. Studies on the pathogenesis in iron deficiency anemia Part 1. Urinary iron excretion in iron deficiency anemia patients and rats in various iron states

    OpenAIRE

    中西,徳彦

    1991-01-01

    In the "iron excretion test" , urinary iron excretion after injection of saccharated iron oxide has been reported to be accelerated in relapsing idiopathic iron deficiency anemia. To determine the relevance of urinary iron excretion to clinical factors other than iron metabolism, 15 clinical parameters were evaluated. The serum creatinine level was positively and the serum albumin level was negatively correlated with urinary iron excretion, showing coefficients of r=0.97,-0.86 respectively, a...

  15. Anemia in kidney transplants without erythropoietic agents: levels of erythropoietin and iron parameters.

    Science.gov (United States)

    Florit, E A; Hadad, F; Rodriguez Cubillo, B; De la Flor, J C; Valga, F; Perez Flores, I; Calvo Romero, N; Valero San Cecilio, R; Barrientos Guzman, A; Sanchez Fructuoso, A

    2012-11-01

    To study the association between hemoglobin, endogenous erythropoietin (EPO) levels and ferric parameters in kidney recipients not treated with EPO-stimulating agents. Transverse study of 219 kidney transplant outpatients. The median time after transplantation was 54 months (P(25-75), 23-107). We assessed blood counts, ferric parameters, EPO levels, renal function (MDRD-4), and adjuvant treatment. We performed a linear regression analysis to predict hemoglobin. Median EPO values were 14.05 mUI/mL (P(25-75) = 10.2-19.7). Applying the formulas described by Beguin, kidney transplant recipients showed a low observed/expected ratio of erythropoietin and of transferrin. Considering anemia to be an hemoglobin of calculate hemoglobin was: hemoglobin = 11829-0909 log (EPG level) - 0455 (if female) + 0.010 0.013 transferrin + 0.013 creatinine clearance (r = .424, P < .001). Treatment with ACEI and/or ARBs seemed to produce a defect in the synthesis of EPO, while those treated with mTORi, a hyporesponsive state. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels.

    Directory of Open Access Journals (Sweden)

    María Isabel Queipo-Ortuño

    Full Text Available BACKGROUND: FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. OBJECTIVE: In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. METHODS: The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. RESULTS: In obesity FABP4 expression was down-regulated (at both mRNA and protein levels, with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. CONCLUSION: The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.

  17. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    2011-02-01

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  18. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Martínez-Pastor, María Teresa; Perea-García, Ana; Puig, Sergi

    2017-04-01

    Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.

  19. Levels-of-growing-stock cooperative study in Douglas-fir: report no. 19—The Iron Creek study, 1966–2006.

    Science.gov (United States)

    Robert O. Curtis; David D. Marshall

    2009-01-01

    This report documents the history and results of the Iron Creek installation of the cooperative Levels-of-Growing-Stock (LOGS) study in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), over the period 1966–2006 (ages 19 to 59). This is a 1949 plantation on an excellent site, and is one of nine installations in the study. Results are generally...

  20. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2010-01-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and

  1. Serum iron parameters in liver cirrhosis

    Science.gov (United States)

    Siregar, G. A.; Maail, W.

    2018-03-01

    The liver plays a fundamental role in iron homeostasis. Iron parameters change, especially ferritin, need to be evaluated in patients with liver cirrhosis. Serum ferritin could predict the prognosis of patients with decompensated cirrhosis since it reflects immunemediated and infectious stimuli. Ferritin could express the severity of liver disease and possible subsequent complications. Finally, it might reflect an iron overload condition resulting in significant morbidity and early mortality. 70 patients with decompensated liver cirrhosis divided into three Child-Pugh subgroups. Serum iron parameters include serum iron (SI), total iron binding capacity (TIBC) and ferritin was measured in these groups. From these 70 patients, 30 (42.9%) with HbsAg positive, 26 (37.1%) with anti-HCV positive and 14 (20%) with both HbsAg and anti-HCV positive. Of the 70 patients, 14 (20%) had CTP Class A cirrhosis, 17 (24.3%) had CTP Class B cirrhosis, and 39 (55.7%) had CTP C cirrhosis. The median (range) value of serum iron was 36 (10-345) μg/dl, TIBC was 160 (59-520) μg/dl, Ferritin was 253.5 (8-6078) ng/ml and the transferrin saturation was 22.9 (3.65-216.98) %.We found a significant difference in serum ferritin level with CTP score. Ferritin levels increased as Child-Pugh class progressed (p<0.001).

  2. Prion Protein Regulates Iron Transport by Functioning as a Ferrireductase

    Science.gov (United States)

    Singh, Ajay; Haldar, Swati; Horback, Katharine; Tom, Cynthia; Zhou, Lan; Meyerson, Howard; Singh, Neena

    2017-01-01

    Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP−/−). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP−/− mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP−/− mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP−/− mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP−/− BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates. PMID:23478311

  3. [The effect of exogenous iron on levels of adenosinetriphosphate and 2,3-diphosphoglycerate in erythrocytes of men during extreme physical exertion].

    Science.gov (United States)

    Pedzikiewicz, J; Sobiech, K A

    1995-01-01

    Nine men were examined during a three-week training requiring much physical effort. They were given nutrient, "LIVEX", enriched with iron. Hematological parameters as well as concentration of erythrocyte ATP and 2,3-DPG were determined before and after the experiment. Hematological parameters were determined using standard methods while Boehringer's test (Germany) was used for determining ATP and 2,3-DPG. The level of reticular cells was statistically higher after the experiment, and the increase in ATP and 2,3-DPG concentration was insignificant. A positive adaptation of energy metabolism after exogenous iron administration during physical effort was discussed.

  4. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. 'Murasakizuisho'.

    Science.gov (United States)

    Shoji, Kazuaki; Momonoi, Kazumi; Tsuji, Tosiaki

    2010-02-01

    Flowers of tulip cv. 'Murasakizuisho' have a purple perianth except for the bottom region, which is blue in color even though it has the same anthocyanin, delphinidin 3-O-rutinoside, as the entire perianth. The development of the blue coloration in the perianth bottom is due to complexation by anthocyanin, flavonol and iron (Fe), as well as a vacuolar iron transporter, TgVit1. Although transient expression of TgVit1 in the purple cells led to a color change to light blue, the coloration of the transformed cells did not coincide with the dark blue color of the cells of the perianth bottom. We thought that another factor is required for the blue coloration of the cells of perianth bottom. To examine the effect of ferritin (FER), an Fe storage protein, on blue color development, we cloned an FER gene (TgFER1) and performed expression analyses. TgFER1 transcripts were found in the cells located in the upper region of the petals along with purple color development by anthocyanin and were not found in the blue cells of the perianth bottom. This gene expression is in contrast to that of TgVit1, expressed only in the cells of the perianth bottom. Co-expression of TgVIT1 and TgFER-RNAi, constructed for suppressing endogenous TgFER1 by RNA interference (RNAi), changed the purple petal cells to a dark blue color similar to that of the natural perianth bottom. These results strongly suggest that TgVit1 expression and TgFER1 suppression are critical for the development of blue color in the perianth bottom.

  5. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  6. Effects of Iron Concentration Level in Extracting Solutions from Contaminated Soils on the Determination of Zinc by Flame Atomic Absorption Spectrometry with Two Background Correctors

    Directory of Open Access Journals (Sweden)

    Christophe Waterlot

    2012-01-01

    Full Text Available Zinc and iron concentrations were determined after digestion, water, and three-step sequential extractions of contaminated soils. Analyses were carried out using flame absorption spectrometry with two background correctors: a deuterium lamp used as the continuum light source (D2 method and the high-speed self-reversal method (HSSR method. Regarding the preliminary results obtained with synthetic solutions, the D2 method often emerged as an unsuitable configuration for compensating iron spectral interferences. In contrast, the HSSR method appeared as a convenient and powerful configuration and was tested for the determination of zinc in contaminated soils containing high amounts of iron. Simple, fast, and interference-free method, the HSSR method allows zinc determination at the ppb level in the presence of large amounts of iron with high stability, sensitivity, and reproducibility of results. Therefore, the HSSR method is described here as a promising approach for monitoring zinc concentrations in various iron-containing samples without any pretreatment.

  7. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    Science.gov (United States)

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  8. The level of CD147 expression correlates with cyclophilin-induced signalling and chemotaxis

    Directory of Open Access Journals (Sweden)

    Constant Stephanie

    2011-10-01

    Full Text Available Abstract Background Previous studies identified CD147 as the chemotactic receptor on inflammatory leukocytes for extracellular cyclophilins (eCyp. However, CD147 is not known to associate with signal transducing molecules, so other transmembrane proteins, such as proteoglycans, integrins, and CD98, were suggested as receptor or co-receptor for eCyp. CD147 is ubiquitously expressed on many cell types, but relationship between the level of CD147 expression and cellular responses to eCyp has never been analyzed. Given the role of eCyp in pathogenesis of many diseases, it is important to know whether cellular responses to eCyp are regulated at the level of CD147 expression. Results Here, we manipulated CD147 expression levels on HeLa cells using RNAi and investigated the signalling and chemotactic responses to eCypA. Both Erk activation and chemotaxis correlated with the level of CD147 expression, with cells exhibiting low level expression being practically unresponsive to eCypA. Conclusions Our results provide the first demonstration of a chemotactic response of HeLa cells to eCypA, establish a correlation between the level of CD147 expression and the magnitude of cellular responses to eCypA, and indicate that CD147 may be a limiting factor in the receptor complex determining cyclophilin-induced Erk activation and cell migration.

  9. VDAC2 and aldolase A identified as membrane proteins of K562 cells with increased expression under iron deprivation

    Czech Academy of Sciences Publication Activity Database

    Vališ, Karel; Neubauerová, J.; Man, Petr; Pompach, Petr; Vohradský, Jiří; Kovář, J.

    2008-01-01

    Roč. 311, 1-2 (2008), 225-231 ISSN 0300-8177 Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50200510 Keywords : Iron deprivation * aldolase A * VDAC2 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.764, year: 2008

  10. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    Science.gov (United States)

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  11. Performance of surrogate high-level waste glass in the presence of iron corrosion products

    International Nuclear Information System (INIS)

    Jain, V.; Pan, Y.M.

    2004-01-01

    Radionuclide release from a waste package (WP) is a series of processes that depend upon the composition and flux of groundwater contacting the waste-forms (WF); the corrosion rate of WP containers and internal components made of Alloy 22, 316L SS, 304L SS and carbon steel; the dissolution rate of high-level radioactive waste (HLW) glass and spent nuclear fuel (SNF); the solubility of radionuclides; and the retention of radionuclides in secondary mineral phases. In this study, forward reaction rate measurements were made on a surrogate HLW glass in the presence of FeCl 3 species. Results indicate that the forward reaction rate increases with an increase in the FeCl 3 concentration. The addition of FeCl 3 causes the drop in the pH due to hydrolysis of Fe 3+ ions in the solution. Results based on the radionuclide concentrations and dissolution rates for HLW glass and SNF indicate that the contribution from glass is similar to SNF at 75 deg C. (authors)

  12. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    Science.gov (United States)

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics

    Science.gov (United States)

    Murakami, Takashi; Sreenivas, Bulusu; Sharma, Subrata Das; Sugimori, Hirokazu

    2011-07-01

    The increase in atmospheric oxygen during the Precambrian is a key to understand the co-evolution of life and environment and has remained as a debatable topic. Among various proxies for the estimation of atmospheric oxygen levels, paleosols, ancient weathering profiles, can provide a quantitative pattern of atmospheric oxygen increase during the Precambrian period of Earth history. We have re-evaluated the chemical compositions of paleosols, and presented a new method of applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols to decipher the quantitative partial pressure of atmospheric oxygen ( P) between 2.5 and 2.0 Ga. We first estimated the compaction factor ( CF, the fraction of original thickness) using the immobile elements such as Ti, Al and Zr on equal volume basis, which was then used to calculate retention fractions ( M R), a mass ratio of paleosol to parent rock, of redox-sensitive elements. The CF and Fe R values were evaluated for factors such as homogeneity of immobile elements, erosion, and formation time of weathering. Fe R increased gradually within the time window of ˜2.5-2.1 Ga and remained close to 1.0 since ˜2.1 Ga onwards. Mn R also increased gradually similar to Fe R but at a slower rate and near complete retention was observed ˜1.85 Ga, suggesting an almost continuous increase in the oxidation of Fe 2+ and Mn 2+ in paleosols ranging in age between ˜2.5 and 1.9 Ga. We have modeled P variations during the Paleoproterozoic by applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols, which enabled us to derive an Fe 2+ oxidation term referred to as ψ. Possible changes in temperature and P during this time window and their effects on resulting models of P evolution have been also considered. We assumed four cases for the calculations of P variations between 2.5 and 2.0 Ga: no change in either temperature or P, long-term change in only P, long-term changes in both temperature and P

  14. The expression of SLAMF7 levels in malignant B cells: a novel ...

    African Journals Online (AJOL)

    Signalling lymphocyte activation molecule (SLAM) F7 is found on the surface of some immune cells including B-lymphocytes. Its activation leads to the proliferation or differentiation of immune cells. The objectives of the study were to measure SLAMF7 expression levels on B-CLL cells, and to upregulate the expression of ...

  15. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  16. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  17. Determine the Optimal Levels of Bio-fertilizers and Foliar Application of Iron on Yield and Quality Indices of Roselle (Hibiscus sabdariffa L.

    Directory of Open Access Journals (Sweden)

    zahra mir

    2018-02-01

    Full Text Available Introduction In conventional agricultural systems to obtain the highest performance continuous use of chemical fertilizers is inevitable. The health of the plant, soil and living matter depends on the rotation of food elements in the ecosystem. This cycle is disrupted as a result of the loss of soil fertility, its food imbalance and inappropriate cultivation practices. Bio-fertilizers are composed of beneficial microorganisms, each for a specific purpose, such as nitrogen fixation, release of phosphate ions, potassium, iron. It should be noted that most studies in the field for sour Roselle (Hibiscus sabdariffa are based on the use of various chemical fertilizers, but the reaction of this plant to bio-fertilizers and iron solubilization has not been considered. Therefore, this study aimed to investigate the effect of bio fertilizers and iron on yield and quality traits of Roselle in hot and dry weather conditions. Materials and Methods In order to investigate the effects of bio-fertilizers and foliar application iron on yield and quality indicators Roselle (Hibiscus sabdariffa experiment in Research field of Zabol University Agriculture Institute in 2015-2016 years was performed with split-plot based on completely randomized design and three replications. Treatments consisted of four levels of bio-fertilizers: control (without fertilizer, vermicompost, cow manure, seaweed and iron foliar applications include: lack of iron, foliar application at a rate of 3cc per thousand, 6cc per thousand was considered. As a source of bio-fertilizer treatments and foliar application iron levels were considered as sub plots. Before sowing Roselle seeds, vermicompost and manure were added to the soil and inoculation operation . Measurements were: economic yield, biological yield, harvest index, chlorophyll a, b and carotenoids, anthocyanins, carbohydrates and protein. Statistical analysis of data was done with SAS software version 9.1 and mean comparison with

  18. Electronic structure of deep levels in silicon. A study of gold, magnesium, and iron centers in silicon

    International Nuclear Information System (INIS)

    Thilderkvist, A. L.

    1994-02-01

    The electronic structure of gold, magnesium and iron related deep centers in silicon is investigated. Their deep and shallow levels are studied by means of fourier transform spectroscopy, combined with uniaxial stress and Zeeman spectroscopy. The neutral substitutional gold center in silicon is investigated and the center is paramagnetic, S=1/2, with g||≅2.8 and g≅0, and has a static distortion. Reorientation between different equivalent distortions is observed even at 1.9 K. A gold pair center in silicon is studied and several line series, with a zero-phonon line followed by several phonon replicas, are observed. Uniaxial stress and Zeeman results reveal a trigonal symmetry of the center, which together with the high dissociation energy of 1.7 eV suggests that the center consists of two nearest-neighbor substitutional gold atoms. A divacancy model is employed to explain the electronic properties of the center. The interstitial magnesium double donor in silicon in its two charge states Mg o and Mg + is investigated. Deviations in the binding energies of the excited states from those calculated within the effective-mass theory (EMT) are found and explained by a perturbation in the central-cell region. The quadratic Zeeman effect of shallow donors in silicon is analyzed within the framework of the EMT using a numerical approach. The wave functions are calculated in a discrete radial mesh and the Zeeman Hamiltonian has be evaluated for the lowest excited states for fields up to 6 T. The neutral interstitial iron defect in silicon gives rise to two sets of line spectra. The first set arises when an electron is excited to a shallow donor like state where the electron is decoupled from the Fe + core which has a 4 T 1 ground state term. The second set arises when an excited electron of a 1 symmetry is coupled by exchange interaction to the core, yielding at 5 T 1 final state. Experiments determine the multiplet splitting of the 4 T 1 and 5 T 1 states due to spring

  19. A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements

    OpenAIRE

    Kamel, Ayman H.; Moreira, Felismina T. C.; Silva, Tamara I.; Sales, M. Goreti F.

    2011-01-01

    Iron(II)-(1,10-phenanthroline) complex imprinted membrane was prepared by ionic imprinting technology. In the first step, Fe(II) established a coordination linkage with 1,10-phenanthroline and functional monomer 2-vinylpyridine (2-VP). Next, the complex was copolymerized with ethylene glycol dimethacrylate (EGDMA) as a crosslinker in the presence of benzoyl peroxide (BPO) as an initiator. Potentiometric chemical sensors were designed by dispersing the iron(II)-imprinted polymer particles in 2...

  20. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  1. Iron Deposition and Ferritin Heavy Chain (Fth Localization in Rodent Teeth

    Directory of Open Access Journals (Sweden)

    Wen Xin

    2013-01-01

    Full Text Available Abstract Background An iron rich layer on the labial surface is characteristic of the enamel of rodent incisors. In order to address a role for iron content in continuously growing incisors during odontogenesis, we studied iron deposition patterns in enamel and dentine using Perls’ blue staining and ferritin heavy chain (Fth immunolocalization. Fth expression is regulated by iron level; therefore its localization can be used as a sensitive indicator for iron deposition. Results Sagittal sections of 4-week old rat incisors showed a gradual increase in iron level in the enamel organ from secretory to maturation stages. In addition, iron was detected in ameloblasts of erupting third molars of 4-week old rats, suggesting iron plays a role in both incisor and molar development. In odontoblasts, the presence of iron was demonstrated, and this is consistent with iron’s role in collagen synthesis. Using postnatal 3-, 6-, 9-day old mice, the spatial and temporal expression of Fth in tooth development again indicated the presence of iron in mature ameloblasts and odontoblasts. Conclusions While these data do not explain what functional role iron has in tooth formation, it does highlight a significant molecular activity associated with the formation of the rodent dentition.

  2. Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2007-06-01

    Full Text Available Abstract Background The wide use of Affymetrix microarray in broadened fields of biological research has made the probeset annotation an important issue. Standard Affymetrix probeset annotation is at gene level, i.e. a probeset is precisely linked to a gene, and probeset intensity is interpreted as gene expression. The increased knowledge that one gene may have multiple transcript variants clearly brings up the necessity of updating this gene-level annotation to a refined transcript-level. Results Through performing rigorous alignments of the Affymetrix probe sequences against a comprehensive pool of currently available transcript sequences, and further linking the probesets to the International Protein Index, we generated transcript-level or protein-level annotation tables for two popular Affymetrix expression arrays, Mouse Genome 430A 2.0 Array and Human Genome U133A Array. Application of our new annotations in re-examining existing expression data sets shows increased expression consistency among synonymous probesets and strengthened expression correlation between interacting proteins. Conclusion By refining the standard Affymetrix annotation of microarray probesets from the gene level to the transcript level and protein level, one can achieve a more reliable interpretation of their experimental data, which may lead to discovery of more profound regulatory mechanism.

  3. Effect of iron on expression of efflux pump (adeABC) and quorum sensing (luxI, luxR) genes in clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Valibeigi, Behnaz; Mansouri, Shahla

    2015-11-01

    Resistance-nodulation-division efflux system (RND) adeABC contributes to intrinsic resistance to various drug classes in Acinetobacter baumannii. Similarly, quorum sensing (QS) plays an important role in the biofilm formation and pathogenicity of this bacterium. The aims of this study were to evaluate the influence of iron limitation on the expression of efflux pump (adeABC) genes and QS (luxI, luxR) system by relative quantitative real-time polymerase chain reaction (qRT-PCR). In addition, DNA sequence and phylogenetic relatedness of biofilm-associated protein (Bap) gene was also investigated. Sixty-five multidrug-resistant isolates of A. baumannii were recovered from ICU patients of three hospitals in Kerman, Iran. The isolates were highly resistant to at least 11 antibiotics (MIC ≥64 μg/mL); however, 87% and 89% were susceptible to colistin and tigecycline, respectively (MIC 0.05 μg/mL) (p ≤ 0.05). We detected the presence of RND efflux pump, QS, and bap genes with the frequencies of 92% (adeA), 61.5% (adeB), 84.6% (adeC), 80% (luxI), 61% (luxR), and 66% (bap), respectively. qRT-PCR analysis showed that in some isolates, expression of both adeABC and luxI/R was increased more than fourfold in the presence of low iron (20 μm), suggesting the additional regulatory role of iron on both efflux pump and QS system. Alignment and phylogenetic analysis on the strong biofilm forming isolates confirmed that the fragments amplified were indeed part of bap gene and deduced sequence was similar to A. baumannii K9B410. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  4. Development of multigene expression signature maps at the protein level from digitized immunohistochemistry slides.

    Directory of Open Access Journals (Sweden)

    Gregory J Metzger

    Full Text Available Molecular classification of diseases based on multigene expression signatures is increasingly used for diagnosis, prognosis, and prediction of response to therapy. Immunohistochemistry (IHC is an optimal method for validating expression signatures obtained using high-throughput genomics techniques since IHC allows a pathologist to examine gene expression at the protein level within the context of histologically interpretable tissue sections. Additionally, validated IHC assays may be readily implemented as clinical tests since IHC is performed on routinely processed clinical tissue samples. However, methods have not been available for automated n-gene expression profiling at the protein level using IHC data. We have developed methods to compute expression level maps (signature maps of multiple genes from IHC data digitized on a commercial whole slide imaging system. Areas of cancer for these expression level maps are defined by a pathologist on adjacent, co-registered H&E slides, allowing assessment of IHC statistics and heterogeneity within the diseased tissue. This novel way of representing multiple IHC assays as signature maps will allow the development of n-gene expression profiling databases in three dimensions throughout virtual whole organ reconstructions.

  5. Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

    Science.gov (United States)

    Caroca, Rodrigo; Howell, Katharine A; Hasse, Claudia; Ruf, Stephanie; Bock, Ralph

    2013-02-01

    Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. Adaptation Reactions of Siderophilic Cyanobacteria to High and Low Levels Of Environmental Iron: Implications for Biosphere History

    Science.gov (United States)

    Brown, I. I.; Bryant, D.; Sarkisova, S.; Shen, G.; Garrison, D.; McKay, D. S.

    2009-01-01

    Of all extant environments, iron-depositing hot springs may constitute the most appropriate natural models (Pierson and Parenteau, 2000) for analysis of the ecophysiology of ancient cyanobacteria (CB) which may have emerged in association with hydrothermal activity (Brown et al., 2007) and elevated levels of environmental Fe (Rouxel et al., 2005). Elevated environmental Fe2+ posed a significant challenge to the first oxygenic phototrophs - CB - because reduced Fe2+ induces toxic Fenton reactions (Wiedenheft et al., 2005). Ancient CB could have also been stressed by occasional migrations from the Fe2+-rich Ocean to the basaltic land which was almost devoid of dissolved Fe2+. That is why the study of the adaptation reactions of siderophilic CB, which inhabit iron-depositing hot springs, to up and down shifts in levels of dissolved Fe may shed light on the paleophysiology of ancient oxygenic prokaryotes. Methods. Siderophilic CB (Brown et al., 2007) were cultivated in media with different concentrations of added Fe3+. In some cases basaltic rocks were used as a source of Fe and trace elements. The processes of Fe mineralization and rock dissolution were studied using TEM, SEM and EDS techniques. Fluorescence spectroscopy was used for checking chlorophyll-protein complexes. Results. It was found that five siderophilic isolates Chroogloeocystis siderophila, JSC-1, JSC-3, JSC-11 and JSC-12 precipitated Fe-bearing phases on the exopolymeric sheaths of their cells if [Fe3+] was approx. 400-600 M (high Fe). Same [Fe3+] was most optimal one for the cultures proliferation rate (Brown et al., 2005; Brown et al., 2007). Higher concentrations of Fe3+ repressed the growth of some siderophilic CB (Brown et al., 2005). No mineralized Fe3+ was observed on the sheath of freshwater isolates Synechocystis sp. PCC 6803 and Phormidium aa. Scanning TEM in conjunction with thin-window energy dispersive X-ray spectroscopy (EDS) revealed intracellular Fe-rich phases within all three isolates

  7. Limited prognostic value of tissue protein expression levels of cyclin E in Danish ovarian cancer patients

    DEFF Research Database (Denmark)

    Heeran, Mel C; Høgdall, Claus K; Kjaer, Susanne K

    2012-01-01

    The primary objective of this study was to assess the expression of cyclin E in tumour tissues from 661 patients with epithelial ovarian tumours. The second was to evaluate whether cyclin E tissue expression levels correlate with clinico-pathological parameters and prognosis of the disease. Using...... tissue arrays (TA), we analysed the cyclin E expression levels in tissues from 168 women with borderline ovarian tumours (BOT) (147 stage I, 4 stage II, 17 stage III) and 493 Ovarian cancer (OC) patients (127 stage I, 45 stage II, 276 stage III, 45 stage IV). Using a 10% cut-off level for cyclin E......-off value showed that cyclin E had no independent prognostic value. In conclusion, we found cyclin E expression in tumour tissue to be of limited prognostic value to Danish OC patients....

  8. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  9. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    Science.gov (United States)

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  10. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  11. MAP17 and SGLT1 protein expression levels as prognostic markers for cervical tumor patient survival.

    Directory of Open Access Journals (Sweden)

    Marco Perez

    Full Text Available MAP17 is a membrane-associated protein that is overexpressed in human tumors. Because the expression of MAP17 increases reactive oxygen species (ROS generation through SGLT1 in cancer cells, in the present work, we investigated whether MAP17 and/or SGLT1 might be markers for the activity of treatments involving oxidative stress, such as cisplatin or radiotherapy. First, we confirmed transcriptional alterations in genes involved in the oxidative stress induced by MAP17 expression in HeLa cervical tumor cells and found that Hela cells expressing MAP17 were more sensitive to therapies that induce ROS than were parental cells. Furthermore, MAP17 increased glucose uptake through SGLT receptors. We then analyzed MAP17 and SGLT1 expression levels in cervical tumors treated with cisplatin plus radiotherapy and correlated the expression levels with patient survival. MAP17 and SGLT1 were expressed in approximately 70% and 50% of cervical tumors of different types, respectively, but they were not expressed in adenoma tumors. Furthermore, there was a significant correlation between MAP17 and SGLT1 expression levels. High levels of either MAP17 or SGLT1 correlated with improved patient survival after treatment. However, the patients with high levels of both MAP17 and SGLT1 survived through the end of this study. Therefore, the combination of high MAP17 and SGLT1 levels is a marker for good prognosis in patients with cervical tumors after cisplatin plus radiotherapy treatment. These results also suggest that the use of MAP17 and SGLT1 markers may identify patients who are likely to exhibit a better response to treatments that boost oxidative stress in other cancer types.

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... grams per deciliter (g/dl) for men and less than 12 g/dl for women is diagnostic of anemia. In iron-deficiency anemia, ... blood levels of iron will be low, or less than 10 micromoles per liter (mmol/L) for both men and women. Normal levels are 10 to 30 mmol/L. ...

  13. Geminivirus vectors for high-level expression of foreign proteins in plant cells.

    Science.gov (United States)

    Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S

    2003-02-20

    Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.

  14. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host.

    Science.gov (United States)

    Kim, Mina; Jin, Yerin; An, Hyun-Joo; Kim, Jaehan

    2017-07-28

    The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N -acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

  15. [Correlation between RNA Expression Level and Early PMI in Human Brain Tissue].

    Science.gov (United States)

    Lü, Y H; Ma, K J; Li, Z H; Gu, J; Bao, J Y; Yang, Z F; Gao, J; Zeng, Y; Tao, L; Chen, L

    2016-08-01

    To explore the correlation between the expression levels of several RNA markers in human brain tissue and early postmortem interval (PMI). Twelve individuals with known PMI (range from 4.3 to 22.5 h) were selected and total RNA was extracted from brain tissue. Eight commonly used RNA markers were chosen including β -actin, GAPDH, RPS29, 18S rRNA, 5S rRNA, U6 snRNA, miRNA-9 and miRNA-125b, and the expression levels were detected in brain tissue by real-time fluorescent quantitative PCR. The internal reference markers with stable expression in early PMI were screened using geNorm software and the relationship between its expression level and some relevant factors such as age, gender and cause of death were analyzed. RNA markers normalized by internal reference were inserted into the mathematic model established by previous research for PMI estimation using R software. Model quality was judged by the error rate calculated with estimated PMI. 5S rRNA, miRNA-9 and miRNA-125b showed quite stable expression and their expression levels had no relation with age, gender and cause of death. The error rate of estimated PMI using β -actin was 24.6%, while GAPDH was 41.0%. 5S rRNA, miRNA-9 and miRNA-125b are suitable as internal reference markers of human brain tissue owing to their stable expression in early PMI. The expression level of β -actin correlates well with PMI, which can be used as an additional index for early PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  16. Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: Analysis of 2008–2009 Korean National Health and Nutrition Examination Survey data

    International Nuclear Information System (INIS)

    Lee, Byung-Kook; Kim, Yangho

    2012-01-01

    Introduction: We present data from the Korean National Health and Nutrition Examination Survey 2008–2009 on the distribution of blood cadmium levels and their association with iron deficiency in a representative sample of the adult Korean population. Methods: Serum ferritin was categorized into three levels: low (serum ferritin <15.0 μg/L), low normal (15.0–30.0 μg/L for women and 15.0–50.0 for men), and normal (≥30.0 μg/L for women and ≥50.0 for men), and its association with blood cadmium level was assessed after adjustment for various demographic and lifestyle factors. Results: Geometric means of blood cadmium in the low serum ferritin group in women, men, and all participants were significantly higher than in the normal group. Additionally, multiple regression analysis after adjusting for various covariates showed that blood cadmium was significantly higher in the low-ferritin group in women, men, and all participants compared with the normal group. We also found an association between serum ferritin and blood cadmium among never-smoking participants. Discussion: We found, similar to other recent population-based studies, an association between iron deficiency and increased blood cadmium in men and women, independent of smoking status. The results of the present study show that iron deficiency is associated with increased levels of blood cadmium in the general population.

  17. Sex differences in facial emotion recognition across varying expression intensity levels from videos.

    Science.gov (United States)

    Wingenbach, Tanja S H; Ashwin, Chris; Brosnan, Mark

    2018-01-01

    There has been much research on sex differences in the ability to recognise facial expressions of emotions, with results generally showing a female advantage in reading emotional expressions from the face. However, most of the research to date has used static images and/or 'extreme' examples of facial expressions. Therefore, little is known about how expression intensity and dynamic stimuli might affect the commonly reported female advantage in facial emotion recognition. The current study investigated sex differences in accuracy of response (Hu; unbiased hit rates) and response latencies for emotion recognition using short video stimuli (1sec) of 10 different facial emotion expressions (anger, disgust, fear, sadness, surprise, happiness, contempt, pride, embarrassment, neutral) across three variations in the intensity of the emotional expression (low, intermediate, high) in an adolescent and adult sample (N = 111; 51 male, 60 female) aged between 16 and 45 (M = 22.2, SD = 5.7). Overall, females showed more accurate facial emotion recognition compared to males and were faster in correctly recognising facial emotions. The female advantage in reading expressions from the faces of others was unaffected by expression intensity levels and emotion categories used in the study. The effects were specific to recognition of emotions, as males and females did not differ in the recognition of neutral faces. Together, the results showed a robust sex difference favouring females in facial emotion recognition using video stimuli of a wide range of emotions and expression intensity variations.

  18. Sex differences in facial emotion recognition across varying expression intensity levels from videos

    Science.gov (United States)

    2018-01-01

    There has been much research on sex differences in the ability to recognise facial expressions of emotions, with results generally showing a female advantage in reading emotional expressions from the face. However, most of the research to date has used static images and/or ‘extreme’ examples of facial expressions. Therefore, little is known about how expression intensity and dynamic stimuli might affect the commonly reported female advantage in facial emotion recognition. The current study investigated sex differences in accuracy of response (Hu; unbiased hit rates) and response latencies for emotion recognition using short video stimuli (1sec) of 10 different facial emotion expressions (anger, disgust, fear, sadness, surprise, happiness, contempt, pride, embarrassment, neutral) across three variations in the intensity of the emotional expression (low, intermediate, high) in an adolescent and adult sample (N = 111; 51 male, 60 female) aged between 16 and 45 (M = 22.2, SD = 5.7). Overall, females showed more accurate facial emotion recognition compared to males and were faster in correctly recognising facial emotions. The female advantage in reading expressions from the faces of others was unaffected by expression intensity levels and emotion categories used in the study. The effects were specific to recognition of emotions, as males and females did not differ in the recognition of neutral faces. Together, the results showed a robust sex difference favouring females in facial emotion recognition using video stimuli of a wide range of emotions and expression intensity variations. PMID:29293674

  19. Sex differences in facial emotion recognition across varying expression intensity levels from videos.

    Directory of Open Access Journals (Sweden)

    Tanja S H Wingenbach

    Full Text Available There has been much research on sex differences in the ability to recognise facial expressions of emotions, with results generally showing a female advantage in reading emotional expressions from the face. However, most of the research to date has used static images and/or 'extreme' examples of facial expressions. Therefore, little is known about how expression intensity and dynamic stimuli might affect the commonly reported female advantage in facial emotion recognition. The current study investigated sex differences in accuracy of response (Hu; unbiased hit rates and response latencies for emotion recognition using short video stimuli (1sec of 10 different facial emotion expressions (anger, disgust, fear, sadness, surprise, happiness, contempt, pride, embarrassment, neutral across three variations in the intensity of the emotional expression (low, intermediate, high in an adolescent and adult sample (N = 111; 51 male, 60 female aged between 16 and 45 (M = 22.2, SD = 5.7. Overall, females showed more accurate facial emotion recognition compared to males and were faster in correctly recognising facial emotions. The female advantage in reading expressions from the faces of others was unaffected by expression intensity levels and emotion categories used in the study. The effects were specific to recognition of emotions, as males and females did not differ in the recognition of neutral faces. Together, the results showed a robust sex difference favouring females in facial emotion recognition using video stimuli of a wide range of emotions and expression intensity variations.

  20. Low expression levels of hepsin and TMPRSS3 are associated with poor breast cancer survival

    International Nuclear Information System (INIS)

    Pelkonen, Mikko; Luostari, Kaisa; Tengström, Maria; Ahonen, Hermanni; Berdel, Bozena; Kataja, Vesa; Soini, Ylermi; Kosma, Veli-Matti; Mannermaa, Arto

    2015-01-01

    Hepsin, (also called TMPRSS1) and TMPRSS3 are type II transmembrane serine proteases (TTSPs) that are involved in cancer progression. TTSPs can remodel extracellular matrix (ECM) and, when dysregulated, promote tumor progression and metastasis by inducing defects in basement membrane and ECM molecules. This study investigated whether the gene and protein expression levels of these TTSPs were associated with breast cancer characteristics or survival. Immunohistochemical staining was used to evaluate hepsin levels in 372 breast cancer samples and TMPRSS3 levels in 373 samples. TMPRSS1 mRNA expression was determined in 125 invasive and 16 benign breast tumor samples, and TMPRSS3 mRNA expression was determined in 167 invasive and 23 benign breast tumor samples. The gene and protein expression levels were analyzed for associations with breast cancer-specific survival and clinicopathological parameters. Low TMPRSS1 and TMPRSS3 mRNA expression levels were independent prognostic factors for poor breast cancer survival during the 20-year follow-up (TMPRSS1, P = 0.023; HR, 2.065; 95 % CI, 1.106–3.856; TMPRSS3, P = 0.013; HR, 2.106; 95 % CI, 1.167–3.800). Low expression of the two genes at the mRNA and protein levels associated with poorer survival compared to high levels (log rank P-values 0.015–0.042). Low TMPRSS1 mRNA expression was also an independent marker of poor breast cancer prognosis in patients treated with radiotherapy (P = 0.034; HR, 2.344; 95 % CI, 1.065–5.160). Grade III tumors, large tumor size, and metastasis were associated with low mRNA and protein expression levels. The results suggest that the TTSPs hepsin and TMPRSS3 may have similar biological functions in the molecular pathology of breast cancer. Low mRNA and protein expression levels of the studied TTSPs were prognostic markers of poor survival in breast cancer. The online version of this article (doi:10.1186/s12885-015-1440-5) contains supplementary material, which is available to authorized

  1. Association Between Human Hair Loss and the Expression Levels of Nucleolin, Nucleophosmin, and UBTF Genes.

    Science.gov (United States)

    Tasdemir, Sener; Eroz, Recep; Dogan, Hasan; Erdem, Haktan Bagis; Sahin, Ibrahim; Kara, Murat; Engin, Ragip Ismail; Turkez, Hasan

    2016-04-01

    Nucleolar organizer regions, also known as argyrophilic nucleolar organizer regions, are associated with ribosomal genes. The main function of the nucleolus is the rapid production of ribosomal subunits, a process that must be highly regulated to provide the appropriate levels for cellular proliferation and cell growth. There are no studies in the literature addressing the expression and function of nucleolar component proteins, including nucleophosmin, nucleolin and the upstream binding transcription factor (UBTF), in human follicular hair cells. Nineteen healthy males who had normal and sufficient hair follicles on the back of the head, but exhibited hair loss on the frontal/vertex portions of the head and 14 healthy males without hair loss were included in the current study. Gene expression levels were measured by relative quantitative real time polymerase chain reaction. In the individuals suffering from alopecia, the total expression levels of nucleolin, nucleophosmin, and UBTF were lower in normal sites than in hair loss sites. Strong expression level correlations were detected between: nucleophosmin and nucleolin; nucleophosmin and UBTF, and nucleolin and UBTF for both groups. There was an association between human hair loss and the expression levels of nucleolin, nucleophosmin, and UBTF genes.

  2. Iron bioavailibity from a tropical leafy vegetable in anaemic mice

    Directory of Open Access Journals (Sweden)

    Latunde-Dada Gladys O

    2011-02-01

    Full Text Available Abstract Telfairia occidentalis is a vegetable food crop that is indigenous to West Africa. The leaves and seeds are the edible parts of the plant and are used in everyday meals by incorporation into soups and stews. Previous studies have attributed improved haematological indices to the vegetable and have advocated the use of T. occidentalis in the treatment of anemia. This study investigates the ameliorative effects of T. occidentalis when compared to FeSO4 as a reference salt in anaemic mice. It also compares the bioavailability of test iron and hepatic hepcidin expression for the estimation of iron absorption in the mice. Non-haem iron was determined in the liver of mice after the experimental feeding treatments. Hepcidin mRNA expression was carried out by quantitative RT-PCR. Administration of T. occidentalis leaves led to a modest increase in haemoglobin (Hb levels in anaemic mice that were comparable to the Hb repletion in anaemic mice given FeSO4. Hepatic iron increase in the mice given either T. occidentalis or FeSO4 led to a corresponding enhancement of hepcidin mRNA expression. Induced hepcidin mRNA expression was enhanced by the addition of ascorbic acid to the test dose of iron. Hepatic hepcidin mRNA expression was found to be responsive to increase in the relative bioavailability of iron from test diets.

  3. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism

    Czech Academy of Sciences Publication Activity Database

    Rychtarčíková, Zuzana; Lettlová, Sandra; Tomkova, Veronika; Korenková, Vlasta; Langerová, Lucie; Simonova, Ekaterina; Zjablovskaja, Polina; Alberich-Jorda, Meritxell; Neužil, Jiří; Truksa, Jaroslav

    2017-01-01

    Roč. 8, č. 4 (2017), s. 6376-6398 ISSN 1949-2553 R&D Projects: GA ČR GA13-28830S; GA ČR GA15-03796S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 ; RVO:68378050 Keywords : tumor-initiating cells * breast cancer * iron metabolism Subject RIV: FD - Oncology ; Hematology; EB - Genetics ; Molecular Biology (UMG-J) OBOR OECD: Cell biology; Cell biology (UMG-J) Impact factor: 5.168, year: 2016

  4. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    Science.gov (United States)

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  5. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  6. Connection Between the Originality Level of Pupils' Visual Expression in Visual Arts Lessons and Their Level of Tolerance for Diversity

    Directory of Open Access Journals (Sweden)

    Miroslav Huzjak

    2017-09-01

    Full Text Available The aim of this research was to examine the connection between the originality level in children's expression during visual art lessons and their level of tolerance for difference. The participants comprised primary school pupils from grades one, two and three, a total of 110. It was confirmed that there was a statistically significant difference between the pupils who had an introduction to the lesson using the didactic model of visual problembased teaching and those who had not. Learning and setting art terminology, the analysis of motifs and explanation, as well as demonstration of art techniques resulted in a higher level of creativity in visual performance, as well as a higher level of tolerance. It can be concluded that, with the proper choice of didactic models in teaching the visual arts, a wide range of pupil attitudes and beliefs can be improved.

  7. A comparison of brain gene expression levels in domesticated and wild animals.

    Directory of Open Access Journals (Sweden)

    Frank W Albert

    2012-09-01

    Full Text Available Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits. We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1% of expressed genes were differentially expressed, while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.

  8. Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms.

    Science.gov (United States)

    Macchi, Chiara; Steffani, Liliana; Oleari, Roberto; Lettieri, Antonella; Valenti, Luca; Dongiovanni, Paola; Romero-Ruiz, Antonio; Tena-Sempere, Manuel; Cariboni, Anna; Magni, Paolo; Ruscica, Massimiliano

    2017-10-15

    Iron overload leads to multiple organ damage including endocrine organ dysfunctions. Hypogonadism is the most common non-diabetic endocrinopathy in primary and secondary iron overload syndromes. To explore the molecular determinants of iron overload-induced hypogonadism with specific focus on hypothalamic derangements. A dysmetabolic male murine model fed iron-enriched diet (IED) and cell-based models of gonadotropin-releasing hormone (GnRH) neurons were used. Mice fed IED showed severe hypogonadism with a significant reduction of serum levels of testosterone (-83%) and of luteinizing hormone (-86%), as well as reduced body weight gain, body fat and plasma leptin. IED mice had a significant increment in iron concentration in testes and in the pituitary. Even if iron challenge of in vitro neuronal models (GN-11 and GT1-7 GnRH cells) resulted in 10- and 5-fold iron content increments, respectively, no iron content changes were found in vivo in hypothalamus of IED mice. Conversely, mice placed on IED showed a significant increment in hypothalamic GnRH gene expression (+34%) and in the intensity of GnRH-neuron innervation of the median eminence (+1.5-fold); similar changes were found in the murine model HFE -/- , resembling human hemochromatosis. IED-fed adult male mice show severe impairment of hypothalamus-pituitary-gonadal axis without a relevant contribution of the hypothalamic compartment, which thus appears sufficiently protected from systemic iron overload. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Mencalha, A L; Fonseca, A S; Paoli, F

    2016-01-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases. (paper)

  10. Hepcidin levels are low during pregnancy and increase around delivery in women without iron deficiency - a prospective cohort study

    DEFF Research Database (Denmark)

    Hedengran, Katrine K; Nelson, Dick; Andersen, Malene R

    2015-01-01

    OBJECTIVE: To investigate hepcidin during pregnancy, delivery and postpartum in women with sufficient iron supplementation. METHODS: Hepcidin was measured using LC-MS spectroscopy in 37 women during pregnancy, delivery and postpartum period in this longitudinal study. RESULTS: Hepcidin was low du...

  11. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

    Science.gov (United States)

    Kobayashi, Takanori; Itai, Reiko Nakanishi; Senoura, Takeshi; Oikawa, Takaya; Ishimaru, Yasuhiro; Ueda, Minoru; Nakanishi, Hiromi; Nishizawa, Naoko K

    2016-07-01

    Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.

  12. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    Science.gov (United States)

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. A composite mouse model of aplastic anemia complicated with iron overload.

    Science.gov (United States)

    Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong

    2018-02-01

    Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (Poverload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.

  14. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.

    Science.gov (United States)

    Xue, Gang-Ping; McIntyre, C Lynne; Chapman, Scott; Bower, Neil I; Way, Heather; Reverter, Antonio; Clarke, Bryan; Shorter, Ray

    2006-08-01

    High water use efficiency or transpiration efficiency (TE) in wheat is a desirable physiological trait for increasing grain yield under water-limited environments. The identification of genes associated with this trait would facilitate the selection for genotypes with higher TE using molecular markers. We performed an expression profiling (microarray) analysis of approximately 16,000 unique wheat ESTs to identify genes that were differentially expressed between wheat progeny lines with contrasting TE levels from a cross between Quarrion (high TE) and Genaro 81 (low TE). We also conducted a second microarray analysis to identify genes responsive to drought stress in wheat leaves. Ninety-three genes that were differentially expressed between high and low TE progeny lines were identified. One fifth of these genes were markedly responsive to drought stress. Several potential growth-related regulatory genes, which were down-regulated by drought, were expressed at a higher level in the high TE lines than the low TE lines and are potentially associated with a biomass production component of the Quarrion-derived high TE trait. Eighteen of the TE differentially expressed genes were further analysed using quantitative RT-PCR on a separate set of plant samples from those used for microarray analysis. The expression levels of 11 of the 18 genes were positively correlated with the high TE trait, measured as carbon isotope discrimination (Delta(13)C). These data indicate that some of these TE differentially expressed genes are candidates for investigating processes that underlie the high TE trait or for use as expression quantitative trait loci (eQTLs) for TE.

  15. The actin-binding protein profilin 2 is a novel regulator of iron homeostasis.

    Science.gov (United States)

    Luscieti, Sara; Galy, Bruno; Gutierrez, Lucia; Reinke, Michael; Couso, Jorge; Shvartsman, Maya; Di Pascale, Antonio; Witke, Walter; Hentze, Matthias W; Pilo Boyl, Pietro; Sanchez, Mayka

    2017-10-26

    Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis -regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 ( Pfn2 ) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 3' untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice. © 2017 by The American Society of Hematology.

  16. Molecular and parametric imaging with iron oxides

    International Nuclear Information System (INIS)

    Matuszewski, L.; Bremer, C.; Tombach, B.; Heindel, W.

    2007-01-01

    Superparamagnetic iron oxide (SPIO) contrast agents, clinically established for high resolution magnetic resonance imaging of reticuloendothelial system containing anatomical structures, can additionally be exploited for the non-invasive characterization and quantification of pathology down to the molecular level. In this context, SPIOs can be applied for non-invasive cell tracking, quantification of tissue perfusion and target specific imaging, as well as for the detection of gene expression. This article provides an overview of new applications for clinically approved iron oxides as well of new, modified SPIO contrast agents for parametric and molecular imaging. (orig.) [de

  17. Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction.

    Science.gov (United States)

    Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun

    2015-12-01

    Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. An investigation of air emission levels from distinct iron and steel production processes with the adoption of pollution control and pollution prevention alternatives

    International Nuclear Information System (INIS)

    Costa, M.M.; Schaeffer, R.

    1999-01-01

    This paper aims to investigate environmental aspects from different iron and steel production processes. A methodology based on material flows is developed in order to verify some air emission levels attained by Pollution Control and Pollution Prevention alternatives. The data basis for modeling energy and materials flows in iron and steel production is obtained from a literature review on different technological processes, energy and materials consumption and pollutant releases to the environmental Modeling combines both process analysis and input-output techniques to simulate the different iron and steel production routes and to estimate the resulting total atmospheric pollution releases based on air emission factors for several pollutants by each production step. Processes examined include: (1) Conventional Integrated (100% ore-based and partly scrap-based); (2) Mini-mill with EAF (100% scrap-based and partly DRI-based); and (3) New Integrated based on the COREX smelting reduction process. Among the alternatives considered for air emissions reductions are those related to Pollution Control (mainly gas cleaning systems) and to Pollution Prevention (change/reduction in input materials, operational procedures and housekeeping improvements, on-site recycling and technology innovations and modifications). Results indicate higher air pollution intensity for the Conventional Integrated Route over the Mini-mill with EAF and COREX smelting reduction processes, though pointing out that final figures are strongly affected by the systems' boundaries and the different air emission levels of each production step

  19. Influence of the number of atomic levels on the spectral opacity of low temperature nickel and iron in the spectral range 50-300 eV

    International Nuclear Information System (INIS)

    Busquet, M.; Klapisch, M.; Gilles, D.

    2013-01-01

    Opacity is a fundamental ingredient for the secular evolution of stars. The calculation of the stellar plasma absorption coefficients is complex due to the composition of these plasmas, generally an H /He dominated mixture with a low concentration of partially ionized heavy ions (the iron group). The international collaboration OPAC recently presented extensive comparisons of spectral opacities of iron and nickel for temperatures between 15 and 40 eV and for densities of ∼ 3 mg/cm 3 , relevant to the stellar envelope conditions [1, 2]. The role of Configuration Interaction (CI) and the influence of the number of atomic levels on the opacity using the recently improved version of HULLAC atomic code [3, 4] are illustrated in this article. Comparisons with theoretical predictions already presented in [1] are discussed. (authors)

  20. Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses

    Directory of Open Access Journals (Sweden)

    Kyung-Do Park

    2014-09-01

    Full Text Available Copy number variations (CNVs, important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse.

  1. Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Anja Kafka

    2017-01-01

    Full Text Available The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4% and sFRP3 (52.3%. Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P=6.33×10−5. No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.

  2. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.

    Science.gov (United States)

    Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G

    2004-04-29

    Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  3. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC system

    Directory of Open Access Journals (Sweden)

    Golemis Erica A

    2004-04-01

    Full Text Available Abstract Background Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. Results In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. Conclusion This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  4. Acute loss of the hepatic endo-lysosomal system in vivo causes compensatory changes in iron homeostasis.

    Science.gov (United States)

    Metzendorf, Christoph; Zeigerer, Anja; Seifert, Sarah; Sparla, Richard; Najafi, Bahar; Canonne-Hergaux, François; Zerial, Marino; Muckenthaler, Martina U

    2017-06-22

    Liver cells communicate with the extracellular environment to take up nutrients via endocytosis. Iron uptake is essential for metabolic activities and cell homeostasis. Here, we investigated the role of the endocytic system for maintaining iron homeostasis. We specifically depleted the small GTPase Rab5 in the mouse liver, causing a transient loss of the entire endo-lysosomal system. Strikingly, endosome depletion led to a fast reduction of hepatic iron levels, which was preceded by an increased abundance of the iron exporter ferroportin. Compensatory changes in livers of Rab5-depleted mice include increased expression of transferrin receptor 1 as well as reduced expression of the iron-regulatory hormone hepcidin. Serum iron indices (serum iron, free iron binding capacity and total iron binding capacity) in Rab5-KD mice were increased, consistent with an elevated splenic and hepatic iron export. Our data emphasize the critical importance of the endosomal compartments in hepatocytes to maintain hepatic and systemic iron homeostasis in vivo. The short time period (between day four and five) upon which these changes occur underscore the fast dynamics of the liver iron pool.

  5. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the Eunice Kennedy Shriver National Institute of Child Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. We also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... with the Eunice Kennedy Shriver National Institute of Child Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. We also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children ...

  8. The relationship between iron level and thyroid function during the first trimester of pregnancy: A cross-sectional study in Wuxi, China.

    Science.gov (United States)

    Fu, Jinyan; Yang, Anqiang; Zhao, Jun; Zhu, Yunlong; Gu, Ying; Xu, Yaohui; Chen, Daozhen

    2017-09-01

    Our objective was to evaluate the relationship between iron level and thyroid function during the first trimester of pregnancy in Eastern China. This was a hospital-based, cross-sectional observational study. A total of 1764 pregnant women were enrolled during their first trimester of gestation in Wuxi city. Serum ferritin (SF), hemoglobin (Hb), urinary iodine concentrations (UIC), thyroid-stimulating hormone (TSH), free thyroxine (FT4) and free triiodothyronine (FT3) were measured and evaluated in pregnant women. The median of TSH,FT4 and FT3 were 1.53mIU/L,10.43pmol/L and 4.50pmol/L respectively. The median UIC was 200μg/L and the median Hb was 126g/L. Of all the women, 1.76% of the subjects had iron deficiency anaemia (IDA) (SFiron deficiency (ID) (SF100μg/L group, the FT4 level was significantly lower in SF20μg/L group was significantly higher than that in SF 20-100μg/L group (P=0.038) and SF>100μg/L group(P=0.034). There was an inverse linear relationship between TSH and FT4 after log transformation (r=0.245,P=0.000). Moreover, spearman's correlation analysis showed that UIC were correlated with SF and FT3 (all Piron deficiency and iron deficiency anaemia shoud be evaluated and treated to combat thyroid dysfunction during the first trimester of pregnancy, Meanwhile, an increased attention should be paid on iodine nutritional status among this pregnant women simultaneous iron deficiency and thyroid dysfunction. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Decreased blood riboflavin levels are correlated with defective expression of RFT2 gene in gastric cancer

    Science.gov (United States)

    Eli, Maynur; Li, De-Sheng; Zhang, Wei-Wei; Kong, Bing; Du, Chen-Song; Wumar, Maimaitiaili; Mamtimin, Batur; Sheyhidin, Ilyar; Hasim, Ayshamgul

    2012-01-01

    AIM: To investigate the relationship between blood riboflavin levels and riboflavin transporter 2 (RFT2) gene expression in gastric carcinoma (GC) development. METHODS: High-performance liquid chromatography was used to detect blood riboflavin levels in patients with GC. Real-time fluorogenic quantitative polymerase chain reaction and immunohistochemistry were used to analyze the expression of RFT2 mRNA and protein in samples from 60 GC patients consisting of both tumor and normal tissue. RESULTS: A significant decrease in the RFT2 mRNA levels was detected in GC samples compared with those in the normal mucous membrane (0.398 ± 0.149 vs 1.479 ± 0.587; P = 0.040). Tumors exhibited low RFT2 protein expression (75%, 16.7%, 8.3% and 0% for no RFT2 staining, weak staining, medium staining and strong staining, respectively), which was significantly lower than that in the normal mucous membrane (10%, 16.7%, 26.7% and 46.7% for no RFT2 staining, weak staining, medium staining and strong staining, respectively; P riboflavin levels were reverse correlated with development of GC (1.2000 ± 0.97 569 ng/mL in high tumor stage patients vs 2.5980 ± 1.31 129 ng/mL in low tumor stage patients; P riboflavin levels with defective expression of RFT2 protein was found in GC patients (χ2 = 2.619; P = 0.019). CONCLUSION: Defective expression of RFT2 is associated with the development of GC and this may represent a mechanism underlying the decreased plasma riboflavin levels in GC. PMID:22791947

  10. Iron-responsive repression of urease expression in Helicobacter hepaticus is mediated by the transcriptional regulator Fur

    NARCIS (Netherlands)

    C. Belzer (Clara); B.A.M. van Schendel (Bart A.); E.J. Kuipers (Ernst); J.G. Kusters (Johannes); A.H.M. van Vliet (Arnoud)

    2007-01-01

    textabstractPersistent colonization of mucosal surfaces by bacteria in the mammalian host requires concerted expression of colonization factors, depending on the environmental conditions. Helicobacter hepaticus is a urease-positive pathogen that colonizes the intestinal and hepatobiliary tracts of

  11. Hepatic retinoid levels in seven fish species (teleosts) from a tropical coastal lagoon receiving effluents from iron-ore mining and processing.

    Science.gov (United States)

    Pereira, Adriana A; van Hattum, Bert; Brouwer, Abraham

    2012-02-01

    The present study was undertaken to investigate the possible effects of Fe and trace element exposure on hepatic levels of retinoids in seven fish species. Concentrations of retinoids were measured in fish collected from a coastal lagoon in Brazil that receives effluents from an iron-ore mining and processing plant. Fish from nearby coastal lagoons were also included to assess possible differences related to chemical exposure. Results indicated considerable differences in hepatic retinoid composition among the various species investigated. The most striking differences were in retinol and derivative-specific profiles and in didehydro retinol and derivative-specific profiles. The Perciformes species Geophagus brasiliensis, Tilapia rendalli, Mugil liza, and Cichla ocellaris and the Characiforme Hoplias malabaricus were characterized as retinol and derivative-specific, while the Siluriformes species Hoplosternum littorale and Rhamdia quelen were didehydro retinol and derivative-specific fish species. A negative association was observed between Al, Pb, As, and Cd and hepatic didehydro retinoid levels. Fish with higher levels of hepatic Fe, Cu, and Zn showed unexpectedly significant positive correlations with increased hepatic retinol levels. This finding, associated with the positive relationships between retinol and retinyl palmitate with lipid peroxidation, may suggest that vitamin A is mobilized from other tissues to increase hepatic antioxidant levels for protection against oxidative damage. These data show significant but dissimilar associations between trace element exposure and hepatic retinoid levels in fish species exposed to iron-ore mining and processing effluents, without apparent major impacts on fish health and condition. Copyright © 2011 SETAC.

  12. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways.

    Science.gov (United States)

    García, María J; García-Mateo, María J; Lucena, Carlos; Romera, Francisco J; Rojas, Carmen L; Alcántara, Esteban; Pérez-Vicente, Rafael

    2014-01-01

    In a previous work, it was shown that bicarbonate (one of the most important factors causing Fe chlorosis in Strategy I plants) can limit the expression of several genes involved in Fe acquisition. Hypoxia is considered another important factor causing Fe chlorosis, mainly on calcareous soils. However, to date it is not known whether hypoxia aggravates Fe chlorosis by affecting bicarbonate concentration or by specific negative effects on Fe acquisition. Results found in this work show that hypoxia, generated by eliminating the aeration of the nutrient solution, can limit the expression of several Fe acquisition genes in Fe-deficient Arabidopsis, cucumber and pea plants, like the genes for ferric reductases AtFRO2, PsFRO1 and CsFRO1; iron transporters AtIRT1, PsRIT1 and CsIRT1; H(+) -ATPase CsHA1; and transcription factors AtFIT, AtbHLH38, and AtbHLH39. Interestingly, the limitation of the expression of Fe-acquisition genes by hypoxia did not occur in the Arabidopsis ethylene constitutive mutant ctr1, which suggests that the negative effect of hypoxia is related to ethylene, an hormone involved in the upregulation of Fe acquisition genes. As for hypoxia, results obtained by applying bicarbonate to the nutrient solution suggests that ethylene is also involved in its negative effect, since ACC (1-aminocyclopropane-1-carboxylic acid; ethylene precursor) partially reversed the negative effect of bicarbonate on the expression of Fe acquisition genes. Taken together, the results obtained show that hypoxia and bicarbonate could induce Fe chlorosis by limiting the expression of Fe acquisition genes, probably because each factor negatively affects different steps of ethylene synthesis and/or signaling. © 2013 Scandinavian Plant Physiology Society.

  13. Correlation of Cell Surface Biomarker Expression Levels with Adhesion Contact Angle Measured by Lateral Microscopy.

    Science.gov (United States)

    Walz, Jenna A; Mace, Charles R

    2018-06-05

    Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.

  14. Examination of Anxiety Levels and Anger Expression Manners of Undergraduate Table Tennis Players

    Science.gov (United States)

    Karademir, Tamer; Türkçapar, Ünal

    2016-01-01

    This research was done for the determination of how their anxiety levels' and anger expressions' get shaped according to some variances. For this reason there were 76 female 125 male totally 201 sportsmen, who participated to the table tennis championship between universities in 2016 and ages differ from 18 to 28, were included the research group.…

  15. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R. R.; Huminiecki, Lukasz

    2015-01-01

    to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia

  16. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis.

    Science.gov (United States)

    Lai, Yu-Chang; Fujikawa, Takuro; Maemura, Tadashi; Ando, Takaaki; Kitahara, Go; Endo, Yasuyuki; Yamato, Osamu; Koiwa, Masateru; Kubota, Chikara; Miura, Naoki

    2017-01-01

    MicroRNA (miRNA) in tissue and liquid samples have been shown to be associated with many diseases including inflammation. We aimed to identify inflammation-related miRNA expression level in the bovine mastitis milk. Expression level of inflammation-related miRNA in milk from mastitis-affected and normal cows was analyzed using qPCR. We found that expression level of miR-21, miR-146a, miR-155, miR-222, and miR-383 was significantly upregulated in California mastitis test positive (CMT+) milk. We further analyzed these miRNA using a chip-based QuantStudio Digital PCR System. The digital PCR results correlated with those of qPCR, demonstrating upregulation of miR-21, miR-146a, miR-155, miR-222, and miR-383 in CMT+ milk. In conclusion, we identified miRNA that are upregulated in CMT+ milk. These miRNA exhibited sensitivity and specificity greater than 80% for differentiating between CMT+ milk and normal milk. Our findings suggest that inflammation-related miRNA expression level in the bovine milk was affected by mastitis, and miRNA in milk have potential for use as biomarkers of bovine mastitis.

  17. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  18. A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ayman H. Kamel

    2011-01-01

    Full Text Available Iron(II-(1,10-phenanthroline complex imprinted membrane was prepared by ionic imprinting technology. In the first step, Fe(II established a coordination linkage with 1,10-phenanthroline and functional monomer 2-vinylpyridine (2-VP. Next, the complex was copolymerized with ethylene glycol dimethacrylate (EGDMA as a crosslinker in the presence of benzoyl peroxide (BPO as an initiator. Potentiometric chemical sensors were designed by dispersing the iron(II-imprinted polymer particles in 2-nitrophenyloctyl ether (o-NPOE plasticizer and then embedded in poly vinyl chloride (PVC matrix. The sensors showed a Nernstian response for [Fe(phen3]2+ with limit of detection 3.15 ng mL−1 and a Nernstian slope of 35.7 mV per decade.

  19. Observation of a hidden hole-like band approaching the fermi level in K-doped iron selenide superconductor

    International Nuclear Information System (INIS)

    Sunagawa, Masanori; Terashima, Kensei; Hamada, Takahiro

    2016-01-01

    One of the ultimate goals of the study of iron-based superconductors is to identify the common feature that produces the high critical temperature (T c ). In the early days, based on a weak-coupling viewpoint, the nesting between hole- and electron-like Fermi surfaces (FSs) leading to the so-called s± state was considered to be one such key feature. However, this theory has faced a serious challenge ever since the discovery of alkali-metal-doped FeSe (AFS) superconductors, in which only electron-like FSs with a nodeless superconducting gap are observed. Several theories have been proposed, but a consistent understanding is yet to be achieved. Here we show experimentally that a hole-like band exists in K x Fe 2-y Se 2 , which presumably forms a hole-like Fermi surface. The present study suggests that AFS can be categorized in the same group as iron arsenides with both hole- and electron-like FSs present. This result provides a foundation for a comprehensive understanding of the superconductivity in iron-based superconductors. (author)

  20. First comparative characterization of three distinct ferritin subunits from a teleost: Evidence for immune-responsive mRNA expression and iron depriving activity of seahorse (Hippocampus abdominalis) ferritins.

    Science.gov (United States)

    Oh, Minyoung; Umasuthan, Navaneethaiyer; Elvitigala, Don Anushka Sandaruwan; Wan, Qiang; Jo, Eunyoung; Ko, Jiyeon; Noh, Gyeong Eon; Shin, Sangok; Rho, Sum; Lee, Jehee

    2016-02-01

    Ferritins play an indispensable role in iron homeostasis through their iron-withholding function in living beings. In the current study, cDNA sequences of three distinct ferritin subunits, including a ferritin H, a ferritin M, and a ferritin L, were identified from big belly seahorse, Hippocampus abdominalis, and molecularly characterized. Complete coding sequences (CDS) of seahorse ferritin H (HaFerH), ferritin M (HaFerM), and ferritin L (HaFerL) subunits were comprised of 531, 528, and 522 base pairs (bp), respectively, which encode polypeptides of 177, 176, and 174 amino acids, respectively, with molecular masses of ∼20-21 kDa. Our in silico analyses demonstrate that these three ferritin subunits exhibit the typical characteristics of ferritin superfamily members including iron regulatory elements, domain signatures, and reactive centers. The coding sequences of HaFerH, M, and L were cloned and the corresponding proteins were overexpressed in a bacterial system. Recombinantly expressed HaFer proteins demonstrated detectable in vivo iron sequestrating (ferroxidase) activity, consistent with their putative iron binding capability. Quantification of the basal expression of these three HaFer sequences in selected tissues demonstrated a gene-specific ubiquitous spatial distribution pattern, with abundance of mRNA in HaFerM in the liver and predominant expression of HaFerH and HaFerL in blood. Interestingly, the basal expression of all three ferritin genes was found to be significantly modulated against pathogenic stress mounted by lipopolysaccharides (LPS), poly I:C, Streptococcus iniae, and Edwardsiella tarda. Collectively, our findings suggest that the three HaFer subunits may be involved in iron (II) homeostasis in big belly seahorse and that they are important in its host defense mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Lumei Liu

    2016-07-01

    Full Text Available Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n=5 with varying fat (control/high and iron (control/high/low contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin-H (FtH protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P<0.05. The high-fat diet altered brain iron contents and ferritin-H (FtH protein and mRNA expressions in a regional-specific manner: 1 high-fat diet significantly decreased the brain iron content in the striatum (P<0.05, but not other regions; and 2 thalamus has a more distinct change in FtH mRNA expression compared to other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P<0.05. Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings will lay

  2. Temporal variations in the gene expression levels of cyanobacterial anti-oxidant enzymes through geological history: implications for biological evolution during the Great Oxidation Event

    Science.gov (United States)

    Harada, M.; Furukawa, R.; Yokobori, S. I.; Tajika, E.; Yamagishi, A.

    2016-12-01

    A significant rise in atmospheric O2 levels during the GOE (Great Oxidation Event), ca. 2.45-2.0 Ga, must have caused a great stress to biosphere, enforcing life to adapt to oxic conditions. Cyanobacteria, oxygenic photosynthetic bacteria that had been responsible for the GOE, are at the same time one of the organisms that would have been greatly affected by the rise of O2 level in the surface environments. Knowledge on the evolution of cyanobacteria is not only important to elucidate the cause of the GOE, but also helps us to better understand the adaptive evolution of life in response to the GOE. Here we performed phylogenetic analysis of an anti-oxidant enzyme Fe-SOD (iron superoxide dismutase) of cyanobacteria, to assess the adaptive evolution of life under the GOE. The rise of O2 level must have increased the level of toxic reactive oxygen species in cyanobacterial cells, thus forced them to change activities or the gene expression levels of Fe-SOD. In the present study, we focus on the change in the gene expression levels of the enzyme, which can be estimated from the promoter sequences of the gene. Promoters are DNA sequences found upstream of protein encoding regions, where RNA polymerase binds and initiates transcription. "Strong" promoters that efficiently interact with RNA polymerase induce high rates of transcription, leading to high levels of gene expression. Thus, from the temporal changes in the promoter sequences, we can estimate the variations in the gene expression levels during the geological time. Promoter sequences of Fe-SOD at each ancestral node of cyanobacteria were predicted from phylogenetic analysis, and the ancestral promoter sequences were compared to the promoters of known highly expressed genes. The similarity was low at the time of the emergence of cyanobacteria; however, increased at the branching nodes diverged 2.4 billon years ago. This roughly coincided with the onset of the GOE, implying that the transition from low to high gene

  3. Analysis of gene expression levels in individual bacterial cells without image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, In Hae; Son, Minjun [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States); Hagen, Stephen J., E-mail: sjhagen@ufl.edu [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  4. Analysis of gene expression levels in individual bacterial cells without image segmentation

    International Nuclear Information System (INIS)

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J.

    2012-01-01

    Highlights: ► We present a method for extracting gene expression data from images of bacterial cells. ► The method does not employ cell segmentation and does not require high magnification. ► Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. ► We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  5. SCA-1 Expression Level Identifies Quiescent Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mina N.F. Morcos

    2017-06-01

    Full Text Available Blood cell generation depends on continuous cellular output by the sequential hierarchy of hematopoietic stem cell (HSC and progenitor populations that all contain quiescent and actively cycling cells. Hematopoietic stem and progenitor cells (HSPCs express the surface molecule Stem cell antigen 1 (SCA-1/LY6A. Using histone 2B-red fluorescent fusion protein label retention and cell-cycle reporter mice, we demonstrate that high SCA-1 expression (SCA-1hi identifies not only quiescent HSCs but quiescent cells on all hierarchical levels within the lineage−SCA-1+KIT+ (LSK population. Each transplanted SCA-1hi HSPC population also displayed self-renewal potential superior to that of the respective SCA-1lo population. SCA-1 expression is inducible by type I interferon (IFN. We show, however, that quiescence and high self-renewal capacity of cells with brighter SCA-1 expression at steady state were independent of type I IFN signaling. We conclude that SCA-1 expression levels can be used to prospectively isolate functionally heterogeneous HSPC subpopulations.

  6. High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens.

    Science.gov (United States)

    Tang, Zhiru; Zhang, Youming; Stewart, Adrian Francis; Geng, Meimei; Tang, Xiangsha; Tu, Qiang; Yin, Yulong

    2010-10-01

    Bovine lactoferricin (LFC) and bovine lactoferrampin (LFA) are two active fragments located in the N(1)-domain of bovine lactoferrin. Recent studies suggested that LFC and LFA have broad-spectrum activity against Gram-positive and Gram-negative bacteria. To date, LFC and LFA have usually been produced from milk. We report here the high-level expression, purification and characterization of LFC and LFA using the Photorhabdus luminescens expression system. After the cipA and cipB genes were deleted by ET recombination, the expression host P. luminescens TZR(001) was constructed. A synthetic LFC-LFA gene containing LFC and LFA was fused with the cipB gene to form a cipB-LFC-LFA gene. To obtain the expression vector pBAD-cipB-LFC-LFA, the cipB-LFC-LFA gene was cloned on the L-arabinose-inducible expression vector pBAD24. pBAD-cipB-LFC-LFA was transformed into P. luminescens TZR(001). The cipB-LFC-LFA fusion protein was expressed under the induction of L-arabinose and its yield reached 12 mg L(-1) bacterial culture. Recombinant LFC-LFA was released from cipB by pepsin. The MIC of recombinant LFC-LFA toward E. coli 0149, 0141 and 020 was 6.25, 12.5 and 3.175 microg ml(-1), respectively. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  8. Metal-metal interaction mediates the iron induction of Drosophila MtnB

    International Nuclear Information System (INIS)

    Qiang, Wenjia; Huang, Yunpeng; Wan, Zhihui; Zhou, Bing

    2017-01-01

    Metallothionein (MT) protein families are a class of small and universal proteins rich in cysteine residues. They are synthesized in response to heavy metal stresses to sequester the toxic ions by metal-thiolate bridges. Five MT family members, namely MtnA, MtnB, MtnC, MtnD and MtnE, have been discovered and identified in Drosophila. These five isoforms of MTs are regulated by metal responsive transcription factor dMTF-1 and play differentiated but overlapping roles in detoxification of metal ions. Previous researches have shown that Drosophila MtnB responds to copper (Cu), cadmium (Cd) and zinc (Zn). Interestingly in this study we found that Drosophila MtnB expression also responds to elevated iron levels in the diet. Further investigations revealed that MtnB plays limited roles in iron detoxification, and the direct binding of MtnB to ferrous iron in vitro is also weak. The induction of MtnB by iron turns out to be mediated by iron interference of other metals, because EDTA at even a partial concentration of that of iron can suppress this induction. Indeed, in the presence of iron, zinc homeostasis is altered, as reflected by expression changes of zinc transporters dZIP1 and dZnT1. Thus, iron-mediated MtnB induction appears resulting from interrupted homeostasis of other metals such as zinc, which in turns induced MtnB expression. Metal-metal interaction may more widely exist than we expected. - Highlights: • Metallothionein B expression is regulated by iron in Drosophila melanogaster. • MtnB has limited physiological roles in iron detoxification. • Binding affinity of MtnB to iron is weak in vitro. • Induction of Drosophila MtnB by iron is mediated indirectly through metal-metal interaction.

  9. Inadequate Dietary Phosphorus Levels Cause Skeletal Anomalies and Alter Osteocalcin Gene Expression in Zebrafish

    Directory of Open Access Journals (Sweden)

    Juliana M. Costa

    2018-01-01

    Full Text Available Phosphorus (P is an essential mineral for the development and maintenance of the vertebrate skeletal system. Modulation of P levels is believed to influence metabolism and the physiological responses of gene expression. In this study, we investigated the influence of dietary P on skeletal deformities and osteocalcin gene expression in zebrafish (Danio rerio, and sought to determine appropriate levels in a diet. We analyzed a total of 450 zebrafish within 31 days of hatching. Animals were distributed in a completely randomized experimental design that consisted of five replications. After an eight-week experiment, fish were diaphanized to evaluate cranial and spinal bone deformities. Increases in dietary phosphorus were inversely proportional to the occurrence of partial spine fusions, the absence of spine fusions, absence of parallelism between spines, intervertebral spacing, vertebral compression, scoliosis, lordosis, ankylosis, fin caudal insertion, and craniofacial deformities. Additionally, osteocalcin expression was inversely correlated to P levels, suggesting a physiological recovery response for bone mineralization deficiency. Our data showed that dietary P concentration was a critical factor in the occurrence of zebrafish skeletal abnormalities. We concluded that 1.55% P in the diet significantly reduces the appearance of skeletal deformities and favors adequate bone mineralization through the adjustment of osteocalcin expression.

  10. Experimental Hyperthyroidism Decreases Gene Expression and Serum Levels of Adipokines in Obesity

    Directory of Open Access Journals (Sweden)

    Renata de Azevedo Melo Luvizotto

    2012-01-01

    Full Text Available Aims. To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals. Main Methods. Male Wistar rats were randomly divided into two groups: control (C—fed with commercial chow ad libitum—and obese (OB—fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB and obese with 25 μg triiodothyronine (T3/100 BW (OT. The T3 dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin. Results. T3 treatment was effective, increasing fT3 levels and decreasing fT4 and TSH serum concentration. Administration of T3 promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression. Conclusions. Our results suggest that T3 modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T3 and adipokines in obesity.

  11. Experimental hyperthyroidism decreases gene expression and serum levels of adipokines in obesity.

    Science.gov (United States)

    Luvizotto, Renata de Azevedo Melo; do Nascimento, André Ferreira; de Síbio, Maria Teresa; Olímpio, Regiane Marques Castro; Conde, Sandro José; Lima-Leopoldo, Ana Paula; Leopoldo, André Soares; Cicogna, Antonio Carlos; Nogueira, Célia Regina

    2012-01-01

    To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals. Male Wistar rats were randomly divided into two groups: control (C)-fed with commercial chow ad libitum-and obese (OB)-fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB) and obese with 25 μg triiodothyronine (T(3))/100 BW (OT). The T(3) dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin. T(3) treatment was effective, increasing fT(3) levels and decreasing fT(4) and TSH serum concentration. Administration of T(3) promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression. Our results suggest that T(3) modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T(3) and adipokines in obesity.

  12. Inducible nitric oxide expression correlates with the level of inflammation in periapical cysts.

    Science.gov (United States)

    Matsumoto, Mariza Akemi; Ribeiro, Daniel Araki

    2007-10-01

    In an attempt to elucidate if inducible nitric oxide expression (iNOS) is correlated with the level of inflammation in periapical cysts with accuracy, the goal of this study was to evaluate the expression of iNOS in these ones. 30 cases were included in this study being iNOS evaluated by means of immunohistochemistry. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the post-hoc Dunn's test. iNOS stain was detected throughout the epithelium, subepithelial fibroblasts and macrophages in all cases, indistinctly. Nevertheless, iNOS immunostaining in periapical cysts was different according to the levels of inflammation, being the strongest effect associated with intense inflammatory infiltrate. Taken together, our results indicate that immunoreactivity of iNOS was expressed in several cellular types present in periapical cyst, being positively correlated with the level of inflammation. Therefore, iNOS expression plays an important role in the pathogenesis of periapical cysts.

  13. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    Science.gov (United States)

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  14. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression.

    Science.gov (United States)

    Mohammadi, Asghar; Shabani, Mohamad; Naseri, Faezeh; Hosseni, Bita; Soltanmohammadi, Elham; Piran, Sadegh; Najafi, Mohammad

    2017-07-01

    Cholesterol homeostasis is dependent upon the sterol regulatory element binding protein 2 (SREBP-2) regulatory system and the functioning of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). Many studies have also reported that low density lipoprotein receptor (LDLR) levels in cellular membranes are related to the functioning of these proteins. The aim of this study was to investigate the association of lipid profiles with circulating PCSK9 protein values and SREBP-2 expression levels in normal subjects. The study involved 120 randomly chosen healthy subjects. Their lipid profiles were measured using routine laboratory techniques, and the plasma PCSK9 protein and SREBP-2 expression levels were determined by ELISA and real time quantitative PCR methods, respectively. A statistical analysis was carried out using a statistical software package. Linear regression analyses showed a significant correlation between total cholesterol and PCSK9 (3.54 ± 1.31 ng/mL), as well as between total cholesterol and SREBP-2 (0.1-35.38) (p = 0.002 and p = 0.02, respectively). Furthermore, multiple regression analyses showed strict correlations between PCSK9 and cholesterol-related parameters especially the total cholesterol/HDL-C ratio (β = 3.53, p = 0.001). There was no significant correlation between circulating PCSK9 and SREBP-2 expression levels (r = 1.2, p = 0.3). The study results revealed that serum cholesterol-related parameters are strictly associated with plasma PCSK9 values, suggesting that PCSK9 function has a greater effect on serum total cholesterol levels than SREBP-2 expression does. Furthermore, the total cholesterol/HDL-C ratio was a better indicator for evaluating PCSK9 level than total cholesterol.

  15. Effect of dietary iron loading on recognition memory in growing rats.

    Directory of Open Access Journals (Sweden)

    Murui Han

    Full Text Available While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet or iron-adequate control diet (50 mg/kg for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value than control rats (12% increase; P=0.047. Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002. Furthermore, levels of glutamate receptors (both NMDA and AMPA and nicotinic acetylcholine receptor (nAChR were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR. Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the

  16. Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: a substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial.

    Science.gov (United States)

    Depalma, Ralph G; Hayes, Virginia W; Chow, Bruce K; Shamayeva, Galina; May, Patricia E; Zacharski, Leo R

    2010-06-01

    This study delineated correlations between ferritin, inflammatory biomarkers, and mortality in a cohort of 100 cancer-free patients with peripheral arterial disease (PAD) participating in the Veterans Affairs (VA) Cooperative Study #410, the Iron (Fe) and Atherosclerosis Study (FeAST). FeAST, a prospective, randomized, single-blind clinical trial, tested the hypothesis that reduction of iron stores using phlebotomy would influence clinical outcomes in 1227 PAD patients randomized to iron reduction or control groups. The effects of statin administration were also examined in the Sierra Nevada Health Care (SNHC) cohort by measuring serum ferritin levels at entry and during the 6-year study period. No difference was documented between treatment groups in all-cause mortality and secondary outcomes of death plus nonfatal myocardial infarction and stroke. Iron reduction in the main study caused a significant age-related improvement in cardiovascular disease outcomes, new cancer diagnoses, and cancer-specific death. Tumor necrosis factor (TNF)-alpha, TNF-alpha receptors 1 and 2, interleukin (IL)-2, IL-6, IL-10, and high-sensitivity C reactive protein (hs-CRP) were measured at entry and at 6-month intervals for 6 years. Average levels of ferritin and lipids at entry and at the end of the study were compared. The clinical course and ferritin levels of 23 participants who died during the study were reviewed. At entry, mean age of entry was 67 +/- 9 years for the SNHCS cohort, comparable to FeAST and clinical and laboratory parameters were equivalent in substudy participants randomized to iron reduction (n = 51) or control (n = 49). At baseline, 53 participants on statins had slightly lower mean entry-level ferritin values (114.06 ng/mL; 95% confidence interval [CI] 93.43-134.69) vs the 47 off statins (127.62 ng/mL; 95% CI, 103.21-152.02). Longitudinal analysis of follow-up data, after adjusting for the phlebotomy treatment effect, showed that statin use was associated with

  17. Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression

    DEFF Research Database (Denmark)

    Pouladi, Mahmoud A; Xie, Yuanyun; Skotte, Niels Henning

    2010-01-01

    of the IGF-1 pathway in mediating the effect of htt on body weight. IGF-1 expression was examined in transgenic mouse lines expressing different levels of FL wild-type (WT) htt (YAC18 mice), FL mutant htt (YAC128 and BACHD mice) and truncated mutant htt (shortstop mice). We demonstrate that htt influences...... body weight by modulating the IGF-1 pathway. Plasma IGF-1 levels correlate with body weight and htt levels in the transgenic YAC mice expressing human htt. The effect of htt on IGF-1 expression is independent of CAG size. No effect on body weight is observed in transgenic YAC mice expressing...... and decreases the body weight of YAC128 animals to WT levels. Furthermore, given the ubiquitous expression of IGF-1 within the central nervous system, we also examined the impact of FL htt levels on IGF-1 expression in different regions of the brain, including the striatum, cerebellum of YAC18, YAC128...

  18. A Bi-Level Programming Model for the Railway Express Cargo Service Network Design Problem

    Directory of Open Access Journals (Sweden)

    Boliang Lin

    2018-06-01

    Full Text Available Service network design is fundamentally crucial for railway express cargo transportation. The main challenge is to strike a balance between two conflicting objectives: low network setup costs and high expected operational incomes. Different configurations of these objectives will have different impacts on the quality of freight transportation services. In this paper, a bi-level programming model for the railway express cargo service network design problem is proposed. The upper-level model forms the optimal decisions in terms of the service characteristics, and the low-level model selects the service arcs for each commodity. The rail express cargo is strictly subject to the service commitment, the capacity restriction, flow balance constraints, and logical relationship constraints among the decisions variables. Moreover, linearization techniques are used to convert the lower-level model to a linear one so that it can be directly solved by a standard optimization solver. Finally, a real-world case study based on the Beijing–Guangzhou Railway Line is carried out to demonstrate the effectiveness and efficiency of the proposed solution approach.

  19. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    Science.gov (United States)

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  20. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    Directory of Open Access Journals (Sweden)

    Arno Steinacher

    Full Text Available Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest

  1. Basal HIF-1a expression levels are not predictive for radiosensitivity of human cancer cell lines

    International Nuclear Information System (INIS)

    Schilling, D.; Multhoff, G.; Helmholtz Center Munich, CCG - Innate Immunity in Tumor Biology, Munich; Bayer, C.; Emmerich, K.; Molls, M.; Vaupel, P.; Huber, R.M.

    2012-01-01

    High levels of hypoxia inducible factor (HIF)-1a in tumors are reported to be associated with tumor progression and resistance to therapy. To examine the impact of HIF-1a on radioresistance under normoxia, the sensitivity towards irradiation was measured in human tumor cell lines that differ significantly in their basal HIF-1a levels. HIF-1a levels were quantified in lysates of H1339, EPLC-272H, A549, SAS, XF354, FaDu, BHY, and CX- tumor cell lines by ELISA. Protein levels of HIF-1a, HIF-2a, carbonic anhydrase IX (CA IX), and GAPDH were assessed by Western blot analysis. Knock-down experiments were performed using HIF-1a siRNA. Clonogenic survival after irradiation was determined by the colony forming assay. According to their basal HIF-1a status, the tumor cell lines were divided into low (SAS, XF354, FaDu, A549, CX-), intermediate (EPLC-272H, BHY), and high (H1339) HIF-1a expressors. The functionality of the high basal HIF-1a expression in H1339 cells was proven by reduced CA IX expression after knocking-down HIF-1a. Linear regression analysis revealed no correlation between basal HIF-1a levels and the survival fraction at either 2 or 4 Gy in all tumor cell lines investigated. Our data suggest that basal HIF-1a levels in human tumor cell lines do not predict their radiosensitivity under normoxia. (orig.)

  2. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    2011-04-01

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  3. Correlation Between Preoperative Serum Carcinoembryonic Antigen Levels and Expression on Pancreatic and Rectal Cancer Tissue

    Directory of Open Access Journals (Sweden)

    LSF Boogerd

    2017-05-01

    Full Text Available Carcinoembryonic antigen (CEA–targeted imaging and therapeutic agents are being tested in clinical trials. If CEA overexpression in malignant tissue corresponds with elevated serum CEA, serum CEA could assist in selecting patients who may benefit from CEA-targeted agents. This study aims to assess the relationship between serum CEA and CEA expression in pancreatic (n = 20 and rectal cancer tissues (n = 35 using histopathology. According to local laboratory standards, a serum CEA >3 ng/mL was considered elevated. In pancreatic cancer patients a significant correlation between serum CEA and percentage of CEA-expressing tumor cells was observed ( P  = .04, ρ = .47. All 6 patients with homogeneous CEA expression in the tumor had a serum CEA >3 ng/mL. Most rectal cancer tissues (32/35 showed homogeneous CEA expression, independent of serum CEA levels. This study suggests that selection of pancreatic cancer patients for CEA-targeted agents via serum CEA appears adequate. For selection of rectal cancer patients, serum CEA levels are not informative.

  4. Caveolin-1 expression level in cancer associated fibroblasts predicts outcome in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Xianda Zhao

    Full Text Available AIMS: Altered expression of epithelial or stromal caveolin-1 (Cav-1 is observed in various types of human cancers. However, the clinical significance of Cav-1 expression in gastric cancer (GC remains largely unknown. The present study aims to explore the clinicopathological significance and prognostic value of both tumor cells and cancer associated fibroblasts (CAFs Cav-1 in GC. METHODS AND RESULTS: Quantum dots immunofluorescence histochemistry was performed to examine the expression of Cav-1 in 20 cases of gastritis without intestinal metaplasia (IM, 20 cases of gastritis with IM and 286 cases of GC. Positive rates of epithelial Cav-1 in gastritis without IM, gastritis with IM and GC showed a decreasing trend (P = 0.012. Low expression of Cav-1 in CAFs but not in tumor cells was an independent predictor of poor prognosis in GC patients (P = 0.034 and 0.005 respectively in disease free survival and overall survival. Cav-1 level in tumor cells and CAFs showed no significant correlation with classic clinicopathological features. CONCLUSIONS: Loss of epithelial Cav-1 may promote malignant progression and low CAFs Cav-1 level herald worse outcome of GC patient, suggesting CAFs Cav-1 may be a candidate therapeutic target and a useful prognostic marker of GC.

  5. Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury

    DEFF Research Database (Denmark)

    Schmelzle, Moritz; Splith, Katrin; Wiuff Andersen, Lars

    2013-01-01

    BACKGROUND: We have previously demonstrated that CD133 and CD39 are expressed by hematopoietic stem cells (HSC), which are mobilized after liver injury and target sites of injury, limit vascular inflammation, and boost hepatic regeneration. Plasma microparticles (MP) expressing CD39 can block...... sacrificed and plasma MP were isolated by ultracentrifugation. HSC and CD133 MP levels were analyzed by fluorescence-activated cell sorting. Patients were enrolled with acute (n=5) and acute on chronic (n=5) liver injury with matched controls (n=7). Blood was collected at admission and plasma CD133 and CD39...... MP subsets were analyzed by fluorescence-activated cell sorting. RESULTS: HSC and CD133 MP levels were significantly increased only in the plasma of wild-type mice with acetaminophen hepatotoxicity (P

  6. Mild Maternal Iron Deficiency Anemia Induces Hearing Impairment Associated with Reduction of Ribbon Synapse Density and Dysregulation of VGLUT3, Myosin VIIa, and Prestin Expression in Young Guinea Pigs.

    Science.gov (United States)

    Yu, Fei; Hao, Shuai; Yang, Bo; Zhao, Yue; Zhang, Wenyue; Yang, Jun

    2016-05-01

    Mild maternal iron deficiency anemia (IDA) adversely affects the development of cochlear hair cells of the young offspring, but the mechanisms underlying the association are incompletely understood. The aim of this study was to evaluate whether mild maternal IDA in guinea pigs could interrupt inner hair cell (IHC) ribbon synapse density and outer hair cell motility of the offspring. Here, we established a dietary restriction model that allows us to study quantitative changes in the number of IHC ribbon synapses and hearing impairment in response to mild maternal IDA in young guinea pig. The offspring were weaned on postnatal day (PND) 9 and then were given the iron-sufficient diet. On PND 24, pups were examined the hearing function by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements. Then, the cochleae were harvested for assessment of the number of IHC ribbon synapses by immunofluorescence, the morphology of cochlear hair cells, and spiral ganglion cells (SGCs) by scanning electron microscope and hematoxylin-eosin staining, the location, and expression of vesicular glutamate transporter (VGLUT) 3, myosin VIIa, and prestin by immunofluorescence and blotting. Here, we show that mild maternal IDA in guinea pigs induced elevated ABR threshold shifts, declined DPOAE level shifts, and reduced the number of ribbon synapses, impaired the morphology of cochlear hair cells and SGCs in offsprings. In addition, downregulation of VGLUT3 and myosin VIIa, and upregulation of prestin were observed in the cochlea of offsprings from mild maternal IDA in guinea pigs. These data indicate that mild maternal IDA in guinea pigs induced hearing impairment in offsprings, and this deficit may be attributed to the reduction of ribbon synapse density and dysregulation of VGLUT3, myosin VIIa, and prestin.

  7. Aneuploidy assessed by DNA index influences the effect of iron status on plasma and/or supernatant cytokine levels and progression of cells through the cell cycle in a mouse model.

    Science.gov (United States)

    Kuvibidila, Solo; Porretta, Connie; Baliga, Surendra

    2014-02-01

    Aneuploidy, a condition associated with altered chromosome number, hence DNA index, is frequently seen in many diseases including cancers and affects immunity. Iron, an essential nutrient for humans, modulates the immune function and the proliferation of normal and cancer cells. To determine whether impaired immunity seen in iron-deficient subjects may be related to aneuploidy, we measured spleen cell DNA index, percent of cells in different phases of the cell cycle, plasma and/or supernatant IL-2, IL-10, IL-12, and interferon-gamma in control, pair-fed, iron-deficient, and iron-replete mice (N=20-22/group). The test and control diets differed only in iron content (0.09mmol/kg versus 0.9mmol/kg) and were fed for 68days. Mean levels of hemoglobin and liver iron stores of iron-deficient and iron-replete mice were 40-60% lower than those of control and pair-fed mice (P<0.05). Mean plasma levels of IL-10, interferon-gamma and percent of cells in S+G2/M phases were lower in mice with than in those without aneuploidy (P<0.05). Lowest plasma IL-12 and interferon-gamma concentrations were observed in iron-deficient mice with aneuploidy. Mean percents of cultures with aneuploidy and DNA indexes were higher in iron-deficient and iron-replete than in control and pair-fed mice likely due to delayed cell division (P<0.05). Aneuploidy decreased the concentration of IL-2 and interferon-gamma in baseline cultures while it increased that of interferon-gamma in anti-CD3 treated cultures. Aneuploidic indexes negatively correlated with cytokine levels, percents of cells in S+G2/M phases and indicators of iron status (P<0.05). Although chromosome cytogenetics was not performed, for the first time, we report that increased aneuploidy rate may modulate the immune function during iron-deficiency. Copyright © 2014. Published by Elsevier Ltd.

  8. Novel gene sets improve set-level classification of prokaryotic gene expression data.

    Science.gov (United States)

    Holec, Matěj; Kuželka, Ondřej; Železný, Filip

    2015-10-28

    Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.

  9. Níveis de vitamina C e ferro para tilápia do nilo (Oreochromis niloticus Levels of vitamin C and iron for nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Margarida Maria Barros

    2002-11-01

    Full Text Available Os efeitos de diferentes níveis de vitamina C e ferro no desempenho produtivo e parâmetros fisiológicos da tilápia do Nilo (Oreochromis niloticus foram avaliados por um período de 73 dias. O delineamento foi inteiramente casualizado, com tratamentos dispostos em esquema fatorial com três níveis de vitamina C (125; 375 e 1115 mg/kg e três níveis de ferro (30, 90 e 270 mg/kg, mais um tratamento adicional (0 mg/kg de suplementação de vitamina C e ferro, com quatro repetições cada tratamento, totalizando 10 grupos experimentais. Utilizaram-se 240 alevinos revertidos com peso médio inicial de 7,46 ± 0,49 g, distribuídos aleatoriamente em 40 aquários de 250 L, numa lotação de 6 peixes/aquário. Confeccionou-se dieta purificada com 32,0% de proteína bruta e 3300 kcal/kg de energia digestível. A ausência de vitamina C e ferro nas dietas propiciou o aparecimento de anemia microcítica e hipocrômica aos alevinos. A presença dessa vitamina em dosagens elevadas estimulou a liberação de eritrócitos imaturos na corrente sangüínea. Determinou-se, também, que níveis desses acima das exigências nutricionais descritas para a espécie não determinaram efeito detrimental no desempenho produtivo, na produção de proteínas plasmáticas ou nos aspectos morfológicos do fígado.The effects of different levels of vitamin C and iron on growth performance and physiological parameters on Nile tilapia (Oreochromis niloticus were evaluated for 73 days. A factorial experiment with three levels of vitamin C (125; 375 e 1115 mg/kg and three levels of iron (30, 90 e 270 mg/kg, plus an additional treatment (with 0 mg/kg of vitamin C and iron, was considered on a completely randomized design, with four replicates for each experimental group. It was randomly stocked 240 reverted fingerlings, an average weight of 7.46 ± 0.49 g, into 40, 250L, aquaria at a density of 6 fish/aquarium. A albumin-gelatin-diet was formulated to contain 32.0% of crude

  10. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    Science.gov (United States)

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  11. Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase.

    Science.gov (United States)

    Romero, Lucía Virginia; Targovnik, Alexandra Marisa; Wolman, Federico Javier; Cascone, Osvaldo; Miranda, María Victoria

    2011-05-01

    A process based on orally-infected Rachiplusia nu larvae as biological factories for expression and one-step purification of horseradish peroxidase isozyme C (HRP-C) is described. The process allows obtaining high levels of pure HRP-C by membrane chromatography purification. The introduction of the partial polyhedrin homology sequence element in the target gene increased HRP-C expression level by 2.8-fold whereas it increased 1.8-fold when the larvae were reared at 27 °C instead of at 24 °C, summing up a 4.6-fold overall increase in the expression level. Additionally, HRP-C purification by membrane chromatography at a high flow rate greatly increase D the productivity without affecting the resolution. The V(max) and K(m) values of the recombinant HRP-C were similar to those of the HRP from Armoracia rusticana roots. © Springer Science+Business Media B.V. 2011

  12. Endogenous oxytocin levels are associated with the perception of emotion in dynamic body expressions in schizophrenia.

    Science.gov (United States)

    Strauss, Gregory P; Keller, William R; Koenig, James I; Sullivan, Sara K; Gold, James M; Buchanan, Robert W

    2015-03-01

    Lower endogenous oxytocin levels have been associated with impaired social cognition in schizophrenia, particularly facial affect identification. Little is known about the relationship between oxytocin and other forms of emotion perception. In the current study, 41 individuals with schizophrenia (SZ) and 22 demographically matched healthy controls (CN) completed a forced-choice affective body expression classification task. Stimuli included dynamic videos of male and female actors portraying 4 discrete emotions: happiness, sadness, anger, and neutral. Plasma oxytocin levels were determined via radioimmunoassay. Results indicated that SZ had significantly higher plasma oxytocin concentrations than CN. SZ were also less accurate at identifying expressions of happiness and sadness; however, there were no group differences for anger or neutral stimuli. A group×sex interaction was also present, such that female CN were more accurate than male CN, whereas male SZ were more accurate than female SZ. Higher endogenous oxytocin levels were associated with better total recognition in both SZ and CN; this association was specific to females in SZ. Findings indicate that sex plays an important role in identifying emotional expressions in body gestures in SZ, and that individual differences in endogenous oxytocin predict emotion perception accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Reduction of lns-1 gene expression and tissue insulin levels in n5-STZ rats

    Directory of Open Access Journals (Sweden)

    Belinda Vargas Guerrero

    2013-01-01

    Full Text Available Objective: The high global incidence of type 2 diabetes has challenged researchers to establish animal models that resemble the chronic stage observed in type 2 diabetes patients. One such model is induced by neonatal streptozotocin (n-STZ administration to rat pups at 0, 2, or 5 days after birth. In this study, we assessed lns-1 gene expression and tissue insulin levels as well as serum concentration of glucose and insulin, insulin resistance, and histological changes of the islets of Langerhans in n5-STZ rats after 20-weeks post-induction. Methods: Wistar rat pups were randomly distributed into a control group and a streptozotocin-induced group. Experimental induction involved a single intraperitoneal injection of streptozotocin (150 mg/kg into neonates at five days after birth. Results: At 20 weeks post-induction, streptozotocin-induced rats exhibited increased serum glucose levels, reduced serum insulin levels, impaired glucose metabolism and insulin resistance compared to control rats. Histologically, streptozotocin-induced rats exhibited atrophic islets, vacuolization, and significantly fewer insulin-positive cells. lns-1 gene expression was significantly decreased in n5-STZ rats in comparison to the control group. Conclusion: Our findings support that the n5-STZ model 20 weeks post-induction represents an appropriate experimental tool to study T2D and to evaluate novel therapeutic agents and targets that involve insulin gene expression and secretion, as well as complications caused by chronic diabetes.

  14. Hemochromatosis Enhances Tumor Progression via Upregulation of Intracellular Iron in Head and Neck Cancer

    Science.gov (United States)

    Lenarduzzi, Michelle; Hui, Angela B. Y.; Yue, Shijun; Ito, Emma; Shi, Wei; Williams, Justin; Bruce, Jeff; Sakemura-Nakatsugawa, Noriko; Xu, Wei; Schimmer, Aaron; Liu, Fei-Fei

    2013-01-01

    Introduction Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC. Experimental Design Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry. Results In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression. Conclusions Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management. PMID:23991213

  15. The effect of the OSHA lead exposure in construction standard on blood lead levels among iron workers employed in bridge rehabilitation.

    Science.gov (United States)

    Levin, S M; Goldberg, M; Doucette, J T

    1997-03-01

    Over 50,000 workers are at risk of occupational exposure to lead in the course of renovating the nation's deteriorating infrastructure. In mid-1993, to control exposure to lead in the construction setting OSHA promulgated a Lead in Construction Standard. In this study, we assessed the effect of the mandated changes in exposure conditions which followed the introduction of this new standard. We analyzed changes in baseline and maximum blood lead concentrations and in maximum increments in blood lead levels before and after introduction of the standard among iron workers employed in the renovation of a large, lead-painted, steel bridge in New York City. Results indicated that baseline and maximum blood lead levels fell significantly after the implementation of the provisions of the standard, as did maximum increments in blood lead concentrations. Seventy-six percent of the workers maintained blood lead concentrations below 20 micrograms/dl after the OSHA standard, as compared with 66% prior to its implementation. Increments of 20 micrograms/dl or more occurred considerably more frequently before introduction of the standard (13% before vs. 4% after; p = 0.01). Evidence of decreased exposure to lead was observed among iron workers who were present both before and after the introduction of the OSHA standard, as well as among iron workers newly hired after the OSHA provisions were put in place. These findings document the effectiveness of the OSHA construction lead standard in controlling exposure to lead in this complex and variable environment. The data indicate the utility of blood lead determinations in assessing the outcome of industrial hygiene interventions to reduce exposures to lead in the construction setting.

  16. Elevated temperature inhibits recruitment of transferrin-positive vesicles and induces iron-deficiency genes expression in Aiptasia pulchella host-harbored Symbiodinium.

    Science.gov (United States)

    Song, Po-Ching; Wu, Tsung-Meng; Hong, Ming-Chang; Chen, Ming-Chyuan

    2015-10-01

    Coral bleaching is the consequence of disruption of the mutualistic Cnidaria-dinoflagellate association. Elevated seawater temperatures have been proposed as the most likely cause of coral bleaching whose severity is enhanced by a limitation in the bioavailability of iron. Iron is required by numerous organisms including the zooxanthellae residing inside the symbiosome of cnidarian cells. However, the knowledge of how symbiotic zooxanthellae obtain iron from the host cells and how elevated water temperature affects the association is very limited. Since cellular iron acquisition is known to be mediated through transferrin receptor-mediated endocytosis, a vesicular trafficking pathway specifically regulated by Rab4 and Rab5, we set out to examine the roles of these key proteins in the iron acquisition by the symbiotic Symbiodinium. Thus, we hypothesized that the iron recruitments into symbiotic zooxanthellae-housed symbiosomes may be dependent on rab4/rab5-mediated fusion with vesicles containing iron-bound transferrins and will be retarded under elevated temperature. In this study, we cloned a novel monolobal transferrin (ApTF) gene from the tropical sea anemone Aiptasia pulchella and confirmed that the association of ApTF with A. pulchella Rab4 (ApRab4) or A. pulchella Rab5 (ApRab5) vesicles is inhibited by elevated temperature through immunofluorescence analysis. We confirmed the iron-deficient phenomenon by demonstrating the induced overexpression of iron-deficiency-responsive genes, flavodoxin and high-affinity iron permease 1, and reduced intracellular iron concentration in zooxanthellae under desferrioxamine B (iron chelator) and high temperature treatment. In conclusion, our data are consistent with algal iron deficiency being a contributing factor for the thermal stress-induced bleaching of symbiotic cnidarians. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. New insights into iron deficiency and iron deficiency anemia.

    Science.gov (United States)

    Camaschella, Clara

    2017-07-01

    Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Xanthophylls increased HDLC level and nuclear factor PPARγ, RXRγ and RARα expression in hens and chicks.

    Science.gov (United States)

    Gao, Y-Y; Jin, L; Peng, H; Xu, L-H; Wang, Q-X; Ji, J; Wang, C-K; Bi, Y-Z

    2018-02-01

    This study was designed to investigate effects of xanthophylls on serum lipid profile (triglyceride, TG; cholesterol, CHO; high-density lipoprotein cholesterol, HDLC; and low-density lipoprotein cholesterol, LDLC) and nuclear factor (peroxisome proliferator-activated receptor gamma, PPARγ; PPAR gamma coactivator 1 alpha, PGC1α; retinoid X receptor gamma, RXRγ; and retinoic acid receptor alpha, RARα) gene expression of breeding hens and chicks. In experiment 1, 432 hens were divided into three groups and fed diets supplemented with 0 (as control group), 20 or 40 mg/kg xanthophylls. Blood was sampled at 7, 14, 21, 28 and 35 days of trial. Liver, duodenum, jejunum and ileum were sampled at 35 days of trial. Results showed that serum HDLC level of hens was increased after dietary 40 mg/kg xanthophyll addition for 21, 28 and 35 days, while serum TG, CHO and LDLC were not affected. Xanthophyll addition also increased PPARγ expression in jejunum, RXRγ expression in duodenum and jejunum, and RARα expression in liver and duodenum. Experiment 2 was a 2 × 2 factorial design. Male chicks hatched from 0 or 40 mg/kg xanthophyll diet of hens were fed diet containing either 0 or 40 mg/kg xanthophylls. Liver, duodenum, jejunum and ileum were sampled at 0, 7, 14 and 21 days after hatching. Blood samples were also collected at 21 days. Results showed that in ovo xanthophylls elevated PPARγ in duodenum and jejunum, and RXRγ and RARα in liver of chicks mainly within 1 week after hatching, while dietary xanthophylls increased serum HDLC level and PPARγ and RXRγ in liver from 2 weeks onwards. In conclusion, our research suggested xanthophylls can regulate serum lipid profile and nuclear factor expression in hens and chicks. © 2017 Blackwell Verlag GmbH.

  19. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Montag, Judith; Syring, Mandy; Rose, Julia; Weber, Anna-Lena; Ernstberger, Pia; Mayer, Anne-Kathrin; Becker, Edgar; Keyser, Britta; Dos Remedios, Cristobal; Perrot, Andreas; van der Velden, Jolanda; Francino, Antonio; Navarro-Lopez, Francesco; Ho, Carolyn Yung; Brenner, Bernhard; Kraft, Theresia

    2017-08-01

    HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.

  20. YKL-40 tissue expression and plasma levels in patients with ovarian cancer

    International Nuclear Information System (INIS)

    Høgdall, Estrid VS; Christensen, Lise H; Ringsholt, Merete; Høgdall, Claus K; Christensen, Ib Jarle; Johansen, Julia S; Kjaer, Susanne K; Blaakaer, Jan; Ostenfeld-Møller, Lene; Price, Paul A

    2009-01-01

    YKL-40 (chitinase-3-like-1) is a member of 'mammalian chitinase-like proteins'. The protein is expressed in many types of cancer cells and the highest plasma YKL-40 levels have been found in patients with metastatic disease, short recurrence/progression-free intervals, and short overall survival. The aim of the study was to determine the expression of YKL-40 in tumor tissue and plasma in patients with borderline ovarian tumor or epithelial ovarian cancer (OC), and investigate prognostic value of this marker. YKL-40 protein expression was determined by immunohistochemistry in tissue arrays from 181 borderline tumors and 473 OC. Plasma YKL-40 was determined by ELISA in preoperative samples from 19 patients with borderline tumor and 76 OC patients. YKL-40 protein expression was found in cancer cells, tumor associated macrophages, neutrophils and mast cells. The tumor cell expression was higher in OC than in borderline tumors (p = 0.001), and associated with FIGO stage (p < 0.0001) and histological subtype (p = 0.0009). Positive YKL-40 expression (≥ 5% staining) was not associated with reduced survival. Plasma YKL-40 was also higher in patients with OC than in patients with borderline tumors (p < 0.0001), and it was positively correlated to serum CA-125 (p < 0.0001) and FIGO stage (p = 0.0001). Univariate Cox analysis of plasma YKL-40 showed association with overall survival (p < 0.0001). Multivariate Cox analysis, including plasma YKL-40, serum CA125, FIGO stage, age and radicality after primary surgery as variables, showed that elevated plasma YKL-40 was associated with a shorter survival (HR = 2.13, 95% CI: 1.40–3.25, p = 0.0004). YKL-40 in OC tissue and plasma are related to stage and histology, but only plasma YKL-40 is a prognostic biomarker in patients with OC

  1. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  2. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq

  3. Bioconcentration of manganese and iron in Panaeoloideae Sing

    NARCIS (Netherlands)

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae,

  4. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.

    Science.gov (United States)

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-11-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models

    Directory of Open Access Journals (Sweden)

    Claus Henn Birgit

    2011-11-01

    Full Text Available Abstract Background Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism. Methods Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: HFE [hemochromatosis], TF [transferrin], and ALAD [δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data. Results Percentage of participants carrying at least one copy of HFE C282Y, HFE H63D, TF P570S, and ALAD K59N variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either C282Y or H63D allele in HFE gene was 19.6%. Geometric mean (geometric standard deviation manganese concentrations were 17.0 (1.5 μg/l. Women with any HFE variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]. TF and ALAD variants were not significant predictors of blood manganese. In animal models, Hfe-/- mice displayed a significant reduction in blood manganese compared with Hfe+/+ mice, replicating the altered manganese metabolism found in our human research. Conclusions Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements.

  6. Analysis of gene expression levels in individual bacterial cells without image segmentation.

    Science.gov (United States)

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J

    2012-05-11

    Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Electric Sensors for Express-Method Checking of Liquid Quality Level Monitoring

    Directory of Open Access Journals (Sweden)

    Petro STOLYARCHUK

    2010-02-01

    Full Text Available The research covered in the suggested article is meant for ecological monitoring in the broad sense. The express-method of water solution quality level estimation and the technique of fast response to the quality level of industrial, agricultural and domestic wastewaters along with food products are proposed. The novelty of the proposed technique roots in the implementation of suggested methods and means of electric parameter measurement aimed at the quality index controlling of nonelectric qualimetry objects. Relevant research includes the exploration of water-solutions as well as different-level purification of industrial and domestic spillage waters, colloid solutions (cream, milk with the known contaminants, mixtures of superficially active substances and chlorine-containing substances.

  8. Targeting, Monitoring and Effect of Oral Iron Therapy on Haemoglobin Levels in Older Patients Discharged to Primary Care from Inpatient Rehabilitation: A Cohort Study Using Routinely Collected Data.

    Science.gov (United States)

    Thomson, Zach; Hands, Katherine J; Witham, Miles D

    2016-08-01

    Oral iron is commonly prescribed to older patients with suspected or confirmed iron-deficiency anaemia; however, few studies have examined the effectiveness of oral iron therapy in the real world in this population. We therefore determined the prevalence of iron deficiency in older people prescribed oral iron, examined the response mounted to therapy and ascertained predictors of response to oral iron. We analysed a routinely collected, linked dataset from older patients who had undergone inpatient rehabilitation between 1999 and 2011. An initial analysis examined patients within this cohort who were prescribed iron after rehabilitation and derived three groups based upon their ferritin and transferrin indices: probably, possibly and not iron deficient. A second analysis compared pre- and post-treatment haemoglobin to determine the degree of response to iron therapy across each category of deficiency. Finally, patient demographics, linked biochemistry data and comorbid disease based on International Classification of Disease (ICD-10) codes from previous hospital admissions were used in regression modelling to evaluate factors affecting response to therapy. A total of 490 patients were prescribed oral iron within 90 days of rehabilitation discharge. Of these, 413 (84 %) had iron indices performed; 94 (23 %) were possibly deficient, 224 (54 %) were probably deficient, and 95 (23 %) were not deficient. Of the 490 patients, 360 had both pre- and post-treatment haemoglobin data and iron indices; probably deficient patients mounted a slightly greater response to oral iron (17 vs. 12 g/L for not deficient; p < 0.05). Only pre-treatment haemoglobin, mean cell volume and lower gastrointestinal pathology were significant predictors of a response to oral iron therapy. Notably, acid-suppressant use was not a predictor of response. We conclude that many older patients are exposed to oral iron without good evidence of either iron deficiency or a significant response to

  9. Level of CYP4G19 Expression Is Associated with Pyrethroid Resistance in Blattella germanica

    Directory of Open Access Journals (Sweden)

    Guang-zhou Guo

    2010-01-01

    Full Text Available German cockroaches have become a large problem in the Shenzhen area because of their pesticide resistance, especially to pyrethroid. A pyrethroid called “Jia Chong Qing” to prevent pests for a long time were found to be resistant to “Jia Chong Qing” with resistance index of 3.88 measured using RT-PCR and immunohistochemistry analysis showed that both CYP4G19 mRNA and CYP4G19 protein expression levels in the wild strain were substantially higher than that of a sensitive strain. dsRNA segments derived from the target gene CYP4G19 were prepared using in vitro transcription and were microinjected into abdomens of the wild strain. Two to eight days after injection, the result showed that CYP4G19 mRNA expressions were significantly reduced in the groups injected with dsRNAs.

  10. Combined Effects of Copper and Tin at Intermediate Level of Manganese on the Structure and Properties of As-Cast Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Lacaze J.

    2017-06-01

    Full Text Available Copper, manganese and tin are commonly used as pearlite promoter elements in cast irons. A number of studies have been aimed at quantitatively evaluate the effect of each of these elements, individually or at given levels of the others. As a matter of fact, while tin may be necessary for achieving a fully pearlitic matrix, it is known that when in excess it is detrimental for mechanical properties. As the pearlite promoting effect of each of those elements is totally different, it is of real interest to know the optimum combination of them for a given cooling rate. The present report is a first part of a work dedicated at characterizing the best alloying levels in terms of room temperature mechanical properties of as-cast pearlitic materials.

  11. TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons.

    Science.gov (United States)

    Memon, Tosifa; Chase, Kevin; Leavitt, Lee S; Olivera, Baldomero M; Teichert, Russell W

    2017-06-14

    The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8-/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: (1) cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and (2) voltage-gated potassium (K V ) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking K V channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    Directory of Open Access Journals (Sweden)

    Bendixen Christian

    2007-11-01

    Full Text Available Abstract Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes. Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p Conclusion: This study contributes to the understanding of the complex genetic system controlling and responding to androstenone levels in pig testis. The identification of new pathways and genes involved in the biosynthesis and metabolism of androstenone is an important first step towards finding molecular markers to reduce boar taint.

  13. Effectiveness and feasibility of weekly iron and folic acid supplementation to adolescent girls and boys through peer educators at community level in the tribal area of Gujarat

    Directory of Open Access Journals (Sweden)

    Shobha P Shah

    2016-01-01

    Full Text Available Background: Anemia during adolescence affects growth and development of girls and boys increasing their vulnerability to dropping out-of-school. Hence investing in preventing anemia during adolescence is critical for their survival, growth and development. Objective: To find out the burden of anemia on adolescent age group in the tribal area of Jhagadia block and to assess the change in the hemoglobin level through the weekly Iron and Folic Acid IFA (DOTS directly observed treatment supplementation under Supervision by Peer Educators at Community level among adolescents. Methods: Community based intervention study conducted with adolescents (117 girls and 127 boys aged 10-19 years, through supplementation of IFA (DOTS by trained Peer Educators for 52 weeks in 5 tribal villages of Jhagadia. Hemoglobin level was determined by HemoCue method before and after intervention and sickle cell anemia by Electrophoresis method. Primary data on hemoglobin and number of tablets consumed was collected and statistically analyzed in SPSS 16.0 software by applying paired t-test. Results: The overall findings suggest that the prevalence of anemia reduced from 79.5% to 58% among adolescent girls and from 64% to 39% among boys. Mean rise of hemoglobin seen was 1.5 g/dl among adolescent boys and 1.3 g/dl among girls. A significant association was found in change in hemoglobin before and after intervention (P = 0.000 Conclusion: Prevalence of anemia among girls and boys can be reduced in their adolescent phase of life, through weekly supplementation of iron folic acid tablets under direct supervision and Nutrition Education by Peer Educator at community level.

  14. Adiposity in women and children from transition countries predicts decreased iron absorption, iron deficiency and a reduced response to iron fortification

    NARCIS (Netherlands)

    Zimmermann, M.B.; Zeder, C.; Muthayya, S.; Winichagoon, P.; Chaouki, N.; Aeberli, I.; Hurrell, R.F.

    2008-01-01

    Background: Overweight is increasing in transition countries, while iron deficiency remains common. In industrialized countries, greater adiposity increases risk of iron deficiency. Higher hepcidin levels in obesity may reduce dietary iron absorption. Therefore, we investigated the association

  15. Intersections of pathways involving biotin and iron relative to therapeutic mechanisms for progressive multiple sclerosis.

    Science.gov (United States)

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2016-12-01

    While there are a variety of therapies for relapsing remitting multiple sclerosis (MS), there is a lack of treatments for progressive MS. An early study indicated that high dose biotin therapy has beneficial effects in approximately 12-15% of patients with progressive MS. The mechanisms behind the putative improvements seen with biotin therapy are not well understood, but have been postulated to include: 1) improving mitochondrial function which is impaired in MS, 2) increasing synthesis of lipids and cholesterol to facilitate remyelination, and 3) affecting gene expression. We suggest one reason that a greater percentage of patients with MS didn't respond to biotin therapy is the inaccessibility or lack of other nutrients, such as iron. In addition to biotin, iron (or heme) is necessary for energy production, biosynthesis of cholesterol and lipids, and for some protective mechanisms. Both biotin and iron are required for myelination during development, and by inference, remyelination. However, iron can also play a role in the pathology of MS. Increased deposition of iron can occur in some CNS structures possibly promoting oxidative damage while low iron levels can occur in other areas. Thus, the potential, detrimental effects of iron need to be considered together with the need for iron to support metabolic demands associated with repair and/or protective processes. We propose the optimal utilization of iron may be necessary to maximize the beneficial effects of biotin. This review will examine the interactions between biotin and iron in pathways that may have therapeutic or pathogenic implications for MS.

  16. Gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions.

    Science.gov (United States)

    Sivrikoz, Emre; Timirci-Kahraman, Özlem; Ergen, Arzu; Zeybek, Ümit; Aksoy, Murat; Yanar, Fatih; İsbir, Turgay; Kurtoğlu, Mehmet

    2015-01-01

    The purpose of this study was to investigate the gene expression levels of elastin and fibulin-5 according to differences between carotid plaque regions and to correlate it with clinical features of plaque destabilization. The study included 44 endarterectomy specimens available from operated symptomatic carotid artery stenoses. The specimens were separated according to anatomic location: internal carotid artery (ICA), external carotid artery (ECA) and common carotid artery (CCA), and then stored in liquid nitrogen. The amounts of cDNA for elastin and fibulin-5 were determined by Quantitative real-time PCR (Q-RT-PCR). Target gene copy numbers were normalized using hypoxanthine-guanine phosphoribosyltransferase (HPRT1) gene. The delta-delta CT method was applied for relative quantification. Q-RT-PCR data showed that relative fibulin-5 gene expression was increased in ICA plaque regions when compared to CCA regions but not reaching significance (p=0.061). At the same time, no differences were observed in elastin mRNA level between different anatomic plaque regions (p>0.05). Moreover, elastin and fibulin-5 mRNA expression and clinical parameters were compared in ICA plaques versus CCA and ECA regions, respectively. Up-regulation of elastin and fibulin-5 mRNA levels in ICA were strongly correlated with family history of cardiovascular disease when compared to CCA (p<0.05). Up-regulation of fibulin-5 in ICA was significantly associated with diabetes, and elevated triglycerides and very low density lipoprotein (VLDL) when compared to ECA (p<0.05). The clinical significance is the differences between the proximal and distal regions of the lesion, associated with the ICA, CCA and ECA respectively, with increased fibulin-5 in the ICA region. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Misregulation of iron homeostasis in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Gajowiak

    2016-06-01

    Full Text Available Iron is essential for all mammalian cells, but it is toxic in excess. Our understanding of molecular mechanisms ensuring iron homeostasis at both cellular and systemic levels has dramatically increased over the past 15 years. However, despite major advances in this field, homeostatic regulation of iron in the central nervous system (CNS requires elucidation. It is unclear how iron moves in the CNS and how its transfer to the CNS across the blood-brain and the blood-cerebrospinal fluid barriers, which separate the CNS from the systemic circulation, is regulated. Increasing evidence indicates the role of iron dysregulation in neuronal cell death observed in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS. ALS is a progressive neurodegenerative disorder characterized by selective cortical czynand spinal motor neuron dysfunction that results from a complex interplay among various pathogenic factors including oxidative stress. The latter is known to strongly affect cellular iron balance, creating a vicious circle to exacerbate oxidative injury. The role of iron in the pathogenesis of ALS is confirmed by therapeutic effects of iron chelation in ALS mouse models. These models are of great importance for deciphering molecular mechanisms of iron accumulation in neurons. Most of them consist of transgenic rodents overexpressing the mutated human superoxide dismutase 1 (SOD1 gene. Mutations in the SOD1 gene constituteone of the most common genetic causes of the inherited form of ALS. However, it should beconsidered that overexpression of the SOD1 gene usually leads to increased SOD1 enzymaticactivity, a condition which does not occur in human pathology and which may itself changethe expression of iron metabolism genes.

  18. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.

    Science.gov (United States)

    Lanham, S A; Cagampang, F R; Oreffo, R O C

    2014-12-01

    Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.

  19. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    Science.gov (United States)

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  20. Atomic level simulations of interaction between edge dislocations and irradiation induced ellipsoidal voids in alpha-iron

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bida [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Huang, Minsheng, E-mail: mshuang@hust.edu.cn [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China); Li, Zhenhuan [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China)

    2017-04-15

    High concentrations of vacancies tend to be formed inside the metal materials under irradiation, and then accumulate and cluster together gradually to promote the formation of nanovoids. Generally, these voids act as obstacles for dislocation glide and thereby change/degrade the mechanical behavior of irradiated materials. In this work, the interaction between ellipsoidal nanovoids with edge dislocations in alpha-iron has been studied by atomic simulations. The results illuminate that the ellipsoidal void’s semi-major axis on the slip plane and parallel to the dislocation line is the dominant factor controlling the obstacle strength of ellipsoidal nanovoids. Two other semi-major axes, which are perpendicular to the glide plane and parallel to the Burgers vector, respectively, can also influence the critical resolved shear stress (CRSS) for dislocation shearing the ellipsoidal void. The intrinsic atomic mechanisms controlling above phenomena, such as nanovoid-geometry spatial constraint and nanovoid-surface curvature on dislocation evolution, have been discussed carefully. The classical continuum model has been amended to describe the dislocation-ellipsoidal nanovoid interaction base on current results. In addition, the influence of temperature on the CRSS of ellipsoidal nanovoids has also been investigated.

  1. Molecular-level spectroscopic investigations of the complexation and photodegradation of catechol to/by iron(III)

    Science.gov (United States)

    Al-Abadleh, Hind; Tofan-Lazar, Julia; Situm, Arthur; Slikboer, Samantha

    2014-05-01

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.

  2. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  3. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe

    Science.gov (United States)

    Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.

    2011-01-01

    Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449

  4. Nasal associated lymphoid tissue of the Syrian golden hamster expresses high levels of PrPC.

    Directory of Open Access Journals (Sweden)

    Melissa D Clouse

    Full Text Available The key event in the pathogenesis of the transmissible spongiform encephalopathies is a template-dependent misfolding event where an infectious isoform of the prion protein (PrPSc comes into contact with native prion protein (PrPC and changes its conformation to PrPSc. In many extraneurally inoculated models of prion disease this PrPC misfolding event occurs in lymphoid tissues prior to neuroinvasion. The primary objective of this study was to compare levels of total PrPC in hamster lymphoid tissues involved in the early pathogenesis of prion disease. Lymphoid tissues were collected from golden Syrian hamsters and Western blot analysis was performed to quantify PrPC levels. PrPC immunohistochemistry (IHC of paraffin embedded tissue sections was performed to identify PrPC distribution in tissues of the lymphoreticular system. Nasal associated lymphoid tissue contained the highest amount of total PrPC followed by Peyer's patches, mesenteric and submandibular lymph nodes, and spleen. The relative levels of PrPC expression in IHC processed tissue correlated strongly with the Western blot data, with high levels of PrPC corresponding with a higher percentage of PrPC positive B cell follicles. High levels of PrPC in lymphoid tissues closely associated with the nasal cavity could contribute to the relative increased efficiency of the nasal route of entry of prions, compared to other routes of infection.

  5. Nasal associated lymphoid tissue of the Syrian golden hamster expresses high levels of PrPC.

    Science.gov (United States)

    Clouse, Melissa D; Shikiya, Ronald A; Bartz, Jason C; Kincaid, Anthony E

    2015-01-01

    The key event in the pathogenesis of the transmissible spongiform encephalopathies is a template-dependent misfolding event where an infectious isoform of the prion protein (PrPSc) comes into contact with native prion protein (PrPC) and changes its conformation to PrPSc. In many extraneurally inoculated models of prion disease this PrPC misfolding event occurs in lymphoid tissues prior to neuroinvasion. The primary objective of this study was to compare levels of total PrPC in hamster lymphoid tissues involved in the early pathogenesis of prion disease. Lymphoid tissues were collected from golden Syrian hamsters and Western blot analysis was performed to quantify PrPC levels. PrPC immunohistochemistry (IHC) of paraffin embedded tissue sections was performed to identify PrPC distribution in tissues of the lymphoreticular system. Nasal associated lymphoid tissue contained the highest amount of total PrPC followed by Peyer's patches, mesenteric and submandibular lymph nodes, and spleen. The relative levels of PrPC expression in IHC processed tissue correlated strongly with the Western blot data, with high levels of PrPC corresponding with a higher percentage of PrPC positive B cell follicles. High levels of PrPC in lymphoid tissues closely associated with the nasal cavity could contribute to the relative increased efficiency of the nasal route of entry of prions, compared to other routes of infection.

  6. Role of the Irr protein in the regulation of iron metabolism in Rhodobacter sphaeroides.

    Directory of Open Access Journals (Sweden)

    Verena Peuser

    Full Text Available In Rhizobia the Irr protein is an important regulator for iron-dependent gene expression. We studied the role of the Irr homolog RSP_3179 in the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides. While Irr had little effect on growth under iron-limiting or non-limiting conditions its deletion resulted in increased resistance to hydrogen peroxide and singlet oxygen. This correlates with an elevated expression of katE for catalase in the Irr mutant compared to the wild type under non-stress conditions. Transcriptome studies revealed that Irr affects the expression of genes for iron metabolism, but also has some influence on genes involved in stress response, citric acid cycle, oxidative phosphorylation, transport, and photosynthesis. Most genes showed higher expression levels in the wild type than in the mutant under normal growth conditions indicating an activator function of Irr. Irr was however not required to activate genes of the iron metabolism in response to iron limitation, which showed even stronger induction in the absence of Irr. This was also true for genes mbfA and ccpA, which were verified as direct targets for Irr. Our results suggest that in R. sphaeroides Irr diminishes the strong induction of genes for iron metabolism under iron starvation.

  7. High-level expression and efficient purification of bioactive swollenin in Aspergillus oryzae.

    Science.gov (United States)

    Wang, Meihua; Cai, Jin; Huang, Lei; Lv, Zhengbin; Zhang, Yaozhou; Xu, Zhinan

    2010-11-01

    The bioactivity of swollenin is beneficial to cellulose decomposition by cellulase despite the lack of hydrolytic activity itself. In order to improve the productivity of swollenin, the effects of culture conditions on the expression level in recombinant Aspergillus oryzae were investigated systematically. With regard to the bioactivity of swollenin, glycerin and peanut meal were the optimal carbon or nitrogen source, respectively. The highest level production of swollenin (50 mg L(-1)) was attained after 88 h cultivation with the initial pH of 5.6 in the culture medium. Then the soluble swollenin was effectively purified from the cultural supernatant by ammonium sulfate precipitation and cationic exchange chromatography with recovery yield of 53.2%. The purified swollenin was fully bioactive due to its strong synergistic activity with cellulose.

  8. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Kumar, Vinod; Sane, Vidhu A

    2017-10-01

    Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Expression of Genes Involved in Iron and Sulfur Respiration in a Novel Thermophilic Crenarchaeon Isolated from Acid-Sulfate-Chloride Geothermal Systems

    Science.gov (United States)

    Kozubal, M.; Macur, R.; Inskeep, W. P.

    2007-12-01

    Acidic geothermal springs within Yellowstone National Park (YNP) provide an excellent opportunity to study microbial populations and their relationship with geochemical processes such as redox cycling and biomineralization of iron. Fourteen acid-sulfate-chloride (ASC) and acid-sulfate (AS) geothermal springs located in (YNP) have been extensively characterized for aqueous chemistry, solid phase mineral deposition and microbial diversity and distribution. The oxidation of Fe(II) with oxygen as an electron acceptor is exergonic under these conditions, consequently, Fe(II) may be an important electron donor driving primary production in ASC and AS habitats, and products of biomineralization (e.g. Fe[III]-oxides of varying crystallinity and structure, as well as jarosite in some cases) are common in the outflow channels of these environments. Recently, we isolated a novel Metallosphaera-like microorganism (Metallosphaera strain MK1) from an ASC spring in Norris Geyser Basin, YNP. Clone libraries (16S rRNA gene) from multiple sites suggest that microorganisms closely related to strain MK1 (between 98-100 percent similarity) dominate many spring locations between 55-80 C. The in situ abiotic oxidation rate of Fe(II) has been shown to be very slow in these systems and Metallosphaera strain MK1 has been directly implicated in biotic Fe(II) oxidation. Metallosphaera strain MK1 has been submitted for full genome sequencing and is yielding gene sequences related to the terminal oxidases SOXABC and SOXM super-complex. In addition, sequences from a recently characterized terminal oxidase FOX complex involved in Fe(II) and pyrite oxidation from Sulfolobus metallicus have been found in Metallosphaera strain MK1. A protein complex analogous to Metallosphaera sedula has been identified in strain MK1 and this complex has also been expressed in cells grown on pyrite and Fe(II). Other sequences identified in Metallosphaera strain MK1 that are involved in respiration are the TQO

  10. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  11. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients.

    Science.gov (United States)

    Logozzi, Mariantonia; De Milito, Angelo; Lugini, Luana; Borghi, Martina; Calabrò, Luana; Spada, Massimo; Perdicchio, Maurizio; Marino, Maria Lucia; Federici, Cristina; Iessi, Elisabetta; Brambilla, Daria; Venturi, Giulietta; Lozupone, Francesco; Santinami, Mario; Huber, Veronica; Maio, Michele; Rivoltini, Licia; Fais, Stefano

    2009-01-01

    Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504+/-315) or caveolin-1 (619+/-310) were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.

  12. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients.

    Directory of Open Access Journals (Sweden)

    Mariantonia Logozzi

    Full Text Available BACKGROUND: Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. METHODOLOGY/PRINCIPAL FINDINGS: We designed an in-house sandwich ELISA (Exotest to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b and a tumor-associated marker (caveolin-1. Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90 and healthy donors (n = 58. Consistently, plasma exosomes expressing CD63 (504+/-315 or caveolin-1 (619+/-310 were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively. While the Exotest for CD63+ plasma exosomes had limited sensitivity (43% the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%. Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. CONCLUSIONS/SIGNIFICANCE: We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.

  13. Expression of DMP-1 in the human pulp tissue using low level laser therapy

    International Nuclear Information System (INIS)

    Neto, Natalino Lourenço; Teixeira Marques, Nádia Carolina; Fernandes, Ana Paula; Silva, Thiago Cruvinel; Andrade Moreira Machado, Maria Aparecida; Oliveira, Thais Marchini; Rodini, Camila Oliveira

    2015-01-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) on DMP-1 expression in pulp tissue repair of human primary teeth. Twenty mandibular primary molars were randomly assigned into the following groups: Group I—Buckley’s Formocresol (FC); Group II—Calcium Hydroxide (CH); Group III—LLLT + CH and Group IV—LLLT + Zinc oxide/Eugenol. The teeth at the regular exfoliation period were extracted for histological analysis and immunolocalization of DMP-1. Descriptive analysis was performed on the dentin pulp complex. Histopathological assessment showed internal resorption in group FC. Groups CH and LLLT + CH provided better pulpal repair due to the absence of inflammation and the formation of hard tissue barrier. These two groups presented odontoblastic layer expressing DMP-1. According to this study, low level laser therapy preceding the use of calcium hydroxide exhibited satisfactory bio-inductive activity on pulp tissue repair of human primary teeth. However, other histological and cellular studies are needed to confirm the laser tissue action and efficacy. (paper)

  14. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  15. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats.

    Science.gov (United States)

    Wang, Dingfa; Zhou, Luli; Zhou, Hanlin; Hou, Guanyu; Shi, Liguang; Li, Mao; Huang, Xianzhou; Guan, Song

    2015-02-01

    The present study investigated the effects of the nutritional levels of diets on meat quality and related gene expression in Hainan black goat. Twenty-four goats were divided into six dietary treatments and were fed a concentrate-based diet with two levels of crude protein (CP) (15% or 17%) and three levels of digestive energy (DE) (11.72, 12.55 or 13.39 MJ/kg DM) for 90 days. Goats fed the concentrate-based diet with 17% CP had significantly (P meat quality and expression levels of genes associated with meat quality in Hainan black goats. © 2014 Japanese Society of Animal Science.

  16. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    Science.gov (United States)

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  17. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation.

    Science.gov (United States)

    Li, Changyan; Luo, Chao; Zhou, Zaihui; Wang, Rui; Ling, Fei; Xiao, Langtao; Lin, Yongjun; Chen, Hao

    2017-02-28

    The brown planthopper (BPH; Nilaparvata lugens Stål) is a destructive piercing-sucking insect pest of rice. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play important roles in plant-pest interactions. Many isolated rice genes that modulate BPH resistance are involved in the metabolism or signaling pathways of SA, JA and ethylene. 'Rathu Heenati' (RH) is a rice cultivar with a high-level, broad-spectrum resistance to all BPH biotypes. Here, RH was used as the research material, while a BPH-susceptible rice cultivar 'Taichung Native 1' (TN1) was the control. A cDNA microarray analysis illuminated the resistance response at the genome level of RH under BPH infestation. The levels of SA and JA in RH and TN1 seedlings after BPH infestation were also determined. The expression pattern clustering indicated that 1467 differential probe sets may be associated with constitutive resistance and 67 with the BPH infestation-responsive resistance of RH. A Venn diagram analysis revealed 192 RH-specific and BPH-inducible probe sets. Finally, 23 BPH resistance-related gene candidates were selected based on the expression pattern clustering and Venn diagram analysis. In RH, the SA content significantly increased and the JA content significantly decreased after BPH infestation, with the former occurring prior to the latter. In RH, the differential genes in the SA pathway were synthesis-related and were up-regulated after BPH infestation. The differential genes in the JA pathway were also up-regulated. They were jasmonate ZIM-domain transcription factors, which are important negative regulators of the JA pathway. Comparatively, genes involved in the ET pathway were less affected by a BPH infestation in RH. DNA sequence analysis revealed that most BPH infestation-inducible genes may be regulated by the genetic background in a trans-acting manner, instead of by their promoters. We profiled the analysis of the global gene expression in RH and TN1 under BPH infestation

  18. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    Science.gov (United States)

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  19. Final feasibility study of possibilities and potentials of the disused iron ore mine Konrad (FRG) for low-level waste and decommissioning waste disposal

    International Nuclear Information System (INIS)

    Brewitz, W.; Stippler, R.

    1982-01-01

    The ''Institut fur Tieflagerung'' of the Gesellschaft fur Strahlen- and Umweltforschung, in collaboration with the Kernforschungszentrum Karlsruhe, carries out geoscientific and technical investigations in the disused iron ore mine Konrad. The aim is to prove the mine's feasibility for the disposal of low-level radioactive waste and decommissioning waste as well as the use of the existing mining installations. The investigations were initiated in 1975 and are being financed by the Minister for Research and Technology of the Federal Republic of Germany. Since 1978 the work is being supported as well by the Commission of the European Community in the scope of two years each. So far an amount of 60 mio DM has been spent, 86% for maintenance and further operation of the mine and 14% for research work

  20. Tocopherol levels in different mango varieties correlate with MiHPPD expression and its over-expression elevates tocopherols in transgenic Arabidopsis and tomato.

    Science.gov (United States)

    Singh, Rajesh K; Chaurasia, Akhilesh K; Bari, Rupesh; Sane, Vidhu A

    2017-10-01

    Mango fruit tocopherol levels vary in different varieties during ripening. This study shows that tocopherol accumulation is highly correlated with its p-hydroxyphenyl pyruvate dioxygenase ( MiHPPD ) gene expression during ripening. MiHPPD transcript is ethylene induced and differentially expressed in four mango varieties used in this study. Higher/lower accumulation of tocopherol (mainly α-tocopherol) was achieved by heterologous expression of MiHPPD in Arabidopsis and tomato. The results suggest that tocopherol accumulation in mango fruit is correlated to MiHPPD gene expression. Over-expression of MiHPPD gene channelizes the flux towards tocophreol biosynthesis and could be used as a potential tool for metabolic engineering.

  1. Prevalence, clinical profile, iron status, and subject-specific traits for excessive erythrocytosis in andean adults living permanently at 3,825 meters above sea level.

    Science.gov (United States)

    De Ferrari, Aldo; Miranda, J Jaime; Gilman, Robert H; Dávila-Román, Victor G; León-Velarde, Fabiola; Rivera-Ch, Maria; Huicho, Luis; Bernabé-Ortiz, Antonio; Wise, Robert A; Checkley, William

    2014-11-01

    Excessive erythrocytosis (EE) is a prevalent condition in populations living at high altitudes (> 2,500 m above sea level). Few large population-based studies have explored the association between EE and multiple subject-specific traits including oxygen saturation, iron status indicators, and pulmonary function. We enrolled a sex-stratified and age-stratified sample of 1,065 high-altitude residents aged ≥ 35 years from Puno, Peru (3,825 m above sea level) and conducted a standardized questionnaire and physical examination that included spirometry, pulse oximetry, and a blood sample for multiple clinical markers. Our primary objectives were to estimate the prevalence of EE, characterize the clinical profile and iron status indicators of subjects with EE, and describe subject-specific traits associated with EE. Overall prevalence of EE was 4.5% (95% CI, 3.3%-6.0%). Oxygen saturation was significantly lower among EE than non-EE group subjects (85.3% vs 90.1%, P .09 for all values). In multivariable logistic regression, we found that age ≥ 65 years (OR = 2.45, 95% CI, 1.16-5.09), male sex (3.86, 1.78-9.08), having metabolic syndrome (2.66, 1.27-5.75) or being overweight (5.20, 1.95-16.77), pulse oximetry overweight (26.7%), followed by male sex (21.5%), pulse oximetry overweight or having metabolic syndrome were associated with an important fraction of cases in our study population.

  2. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    International Nuclear Information System (INIS)

    Cavalcanti, M.B.; Fernandes, T.S.; Melo, J.A.; Neves, M.A.B.; Machado, C.G.F

    2005-01-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of pe