WorldWideScience

Sample records for iron fe zinc

  1. Iron and zinc concentrations and 59Fe retention in developing fetuses of zinc-deficient rats

    International Nuclear Information System (INIS)

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.

    1987-01-01

    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of 59 Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing 59 Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for 59 Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of 59 Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more 59 Fe in the plasma fraction

  2. Study of iron-zinc catalysts by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Arriola, S.H.

    1990-01-01

    The Moessbauer parameters were determined on a series of catalyst mixtures of iron and zinc oxides with variable quantities of zinc. A change in the crystal structure of the iron oxide when introducing zinc into the samples was observed. The corundum structure of the α-Fe 2 O 3 phase was transformed into the spinel type of zinc ferrite when zinc oxide was present in any quantity. A strong electronic interaction between the zinc ferrite and the zinc oxide present in excess was evident. The catalysts were analyzed using x-ray fluorescence and x-ray diffraction methods. (author) 10 refs.; 4 figs.; 2 tabs

  3. Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe-S cluster assembly centers.

    Science.gov (United States)

    Galeano, B K; Ranatunga, W; Gakh, O; Smith, D Y; Thompson, J R; Isaya, G

    2017-06-21

    Early studies of the bacterial Fe-S cluster assembly system provided structural details for how the scaffold protein and the cysteine desulfurase interact. This work and additional work on the yeast and human systems elucidated a conserved mechanism for sulfur donation but did not provide any conclusive insights into the mechanism for iron delivery from the iron donor, frataxin, to the scaffold. We previously showed that oligomerization is a mechanism by which yeast frataxin (Yfh1) can promote assembly of the core machinery for Fe-S cluster synthesis both in vitro and in cells, in such a manner that the scaffold protein, Isu1, can bind to Yfh1 independent of the presence of the cysteine desulfurase, Nfs1. Here, in the absence of Yfh1, Isu1 was found to exist in two forms, one mostly monomeric with limited tendency to dimerize, and one with a strong propensity to oligomerize. Whereas the monomeric form is stabilized by zinc, the loss of zinc promotes formation of dimer and higher order oligomers. However, upon binding to oligomeric Yfh1, both forms take on a similar symmetrical trimeric configuration that places the Fe-S cluster coordinating residues of Isu1 in close proximity of iron-binding residues of Yfh1. This configuration is suitable for docking of Nfs1 in a manner that provides a structural context for coordinate iron and sulfur donation to the scaffold. Moreover, distinct structural features suggest that in physiological conditions the zinc-regulated abundance of monomeric vs. oligomeric Isu1 yields [Yfh1]·[Isu1] complexes with different Isu1 configurations that afford unique functional properties for Fe-S cluster assembly and delivery.

  4. Iron and zinc availability in maize lines

    Directory of Open Access Journals (Sweden)

    Valéria Aparecida Vieira Queiroz

    2011-09-01

    Full Text Available The aim of this study was to characterize the Zn and Fe availability by phytic acid/Zn and phytic acid/Fe molar ratios, in 22 tropical maize inbred lines with different genetic backgrounds. The Zn and Fe levels were determined by atomic absorption spectrophotometry and the P through colorimetry method. Three screening methods for phytic acid (Phy analysis were tested and one, based on the 2,2'-bipyridine reaction, was select. There was significant variability in the contents of zinc (17.5 to 42 mg.kg-1, iron (12.2 to 36.7 mg.kg-1, phosphorus (230 to 400 mg.100 g-1, phytic acid (484 to 1056 mg.100 g-1, phytic acid P (140 to 293 mg.100 g-1 and available-P (43.5 to 199.5 mg.100 g-1, and in the available-P/total-P ratio (0.14 to 0.50, Phy/Zn (18.0 to 43.5 and Phy/Fe (16.3 to 45.5 molar ratios. Lines 560977, 560978 and 560982 had greater availability of Zn and lines 560975, 560977, 561010 and 5610111 showed better Fe availability. Lines 560975, 560977 and 560978 also showed better available-P/total-P ratio. Thus, the lines 560975, 560977 and 560978 were considered to have the potential for the development of cultivars of maize with high availability of Fe and/or Zn.

  5. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.

    Science.gov (United States)

    Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego

    2017-03-01

    Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with ZnO. These findings suggest that ZnSO 4 may be the preferable zinc cofortificant for optimal iron bioavailability of iron-fortified extruded rice. This trial was registered at

  6. Acute inhibition of iron bioavailability by zinc: studies in humans.

    Science.gov (United States)

    Olivares, Manuel; Pizarro, Fernando; Ruz, Manuel; de Romaña, Daniel López

    2012-08-01

    Iron (Fe) and zinc (Zn) deficiencies constitute two of the most important nutritional and public health problems affecting developing countries. Combined supplementation or fortification with Zn and Fe are strategies that can be used to improve the Zn and Fe status of a population. However, there is concern about potential negative interactions between these two micronutrients due to a competitive binding to DMT1 and Zip14 transporter. Studies performed in humans have shown an inhibitory effect of Zn on Fe absorption when both minerals are given together as a solution in fasting conditions. We found that at low doses of iron (0.5 mg) the threshold for the inhibition of iron bioavailability was at a Zn:Fe wt/wt ratio ≥5.9:1, whereas at higher doses of Fe (10 mg) this inhibition occurred at 1:1 Zn:Fe wt/wt ratio. This differential response could be explained by the variation in the abundance of both cations as they compete for a limited number of shared transporters at the enterocyte. Conflicting results have been obtained when this interaction was studied in different food matrices. A negative interaction was not observed when Fe and Zn were provided in a composite hamburger meal, premature formula, human milk, or cow milk. A decrease on Fe absorption was observed in only 1 of 3 studies when Fe and Zn were supplied in wheat flour. The possibility of a negative interaction should be considered for supplementation or fortification programs with both microminerals.

  7. Maternal Cadmium, Iron and Zinc Levels, DNA Methylation and Birth Weight

    Science.gov (United States)

    BACKGROUND:Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationsh...

  8. Zinc Absorption from Micronutrient Powder Is Low but Is not Affected by Iron in Kenyan Infants

    Directory of Open Access Journals (Sweden)

    Fabian Esamai

    2014-12-01

    Full Text Available Interference with zinc absorption is a proposed explanation for adverse effects of supplemental iron in iron-replete children in malaria endemic settings. We examined the effects of iron in micronutrient powder (MNP on zinc absorption after three months of home fortification with MNP in maize-based diets in rural Kenyan infants. In a double blind design, six-month-old, non-anemic infants were randomized to MNP containing 5 mg zinc, with or without 12.5 mg of iron (MNP + Fe and MNP − Fe, respectively; a control (C group received placebo powder. After three months, duplicate diet collections and zinc stable isotopes were used to measure intake from MNP + non-breast milk foods and fractional absorption of zinc (FAZ by dual isotope ratio method; total absorbed zinc (TAZ, mg/day was calculated from intake × FAZ. Mean (SEM TAZ was not different between MNP + Fe (n = 10 and MNP − Fe (n = 9 groups: 0.85 (0.22 and 0.72 (0.19, respectively, but both were higher than C (n = 9: 0.24 (0.03 (p = 0.04. Iron in MNP did not significantly alter zinc absorption, but despite intakes over double estimated dietary requirement, both MNP groups’ mean TAZ barely approximated the physiologic requirement for age. Impaired zinc absorption may dictate need for higher zinc doses in vulnerable populations.

  9. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  10. Microwave Synthesis of Fe2 O3 and ZnO Nanoparticles and Evaluation Its Application on Grain Iron and Zinc Concentrations of Wheat (Triticum aestivum L. and their Relationships to Grain Yield

    Directory of Open Access Journals (Sweden)

    Shahab Khaghani

    2016-04-01

    Full Text Available Fe2O3 and ZnO nanoparticles were synthesized by a fast microwave method. Nanostructures were characterized by X-ray diffraction  and scanning electron microscopy. The goal of bio-fortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. The micronutrients magnesium (Mg, manganese (Mn and copper (Cu, boron (B and calcium (Ca are essential for plants and the humans and animals that consume plants. Increasing the micronutrient density of staple crops, will greatly improve human nutrition on a global scale. In order to investigate the effect of Iron and Zinc on nutrient uptake of two line of wheat. The experimental design used for this research was a factorial experiment under complete randomized block design with three replications and two variety of wheat including Roshan back cross (V1 and C-78-14 line (V2, three levels of Iron from Fe-EDDHA (Sequestrene138 including no application (F0, Fe sulphate (F1 and Nano Fe2O3 (F2 and three Levels of  Zinc as zinc sulphate (ZnSO4 including no application (Z0, 25 kg/ha-1 (Z1 and 50 kg/ha-1 (Z2 were used. The result is showed that application of nanoparticles increased the study of parameters such as magnesium, manganese, copper, boron and calcium. Highest levels of grain yield with 5.13 ton/ha-1 was obtained in C-78-14 variety.

  11. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  12. A COMMUNITY BASED RANDOMIZED CONTROLLED TRIAL OF IRON AND ZINC SUPPLEMENTATION IN INFANTS: EFFECTS ON GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    T. Lind

    2006-01-01

    Full Text Available Deficiencies of iron and zinc are associated with delayed development, growth faltering, and increased infectious disease morbidity during infancy and childhood. Combined iron and zinc supplementation may therefore be a logical preventive strategy. Objective: the objective of the study was to compare the effects of combined iron and zinc supplementation in infancy with the effects of iron and zinc as single micronutrients on growth, psychomotor development, and incidence of infectious disease. Design: Indonesian infants (n = 680 were randomly assigned to daily supplementation with 10 mg Fe (Fe group, 10 mg Zn (Zn group, 10 mg Fe and 10 mg Zn (Fe + Zn group, or placebo from 6 to 12 mo of age. Anthropometric indexes, developmental indexes (bay ley scales of infant development; sid, and morbidity were recorded. Results: at 12 mo, two factor analysis of variance showed a significant interaction between Iron and Zinc for weight for age z score, knee heel length, and sid psychomotor development. Weight forage z score was higher in the Zn group than in the placebo and Fe + Zn groups, knee heel length was higher in the Zn and Fe groups than in the placebo group, and the sid psychomotor development index was higher in the Fe group than in the placebo group. No significant effect on morbidity was found. Conclusions: single supplementation with zinc significantly improved growth, and single supplementation with iron significantly improved growth and psychomotor development, but combined supplementation with iron and zinc had no significant effect on growth or development. Combined, simultaneous supplementation with iron and zinc to infants cannot be routinely recommended at the iron to zinc ratio used in this study.Key words: infants, growth, knee heel length, development, iron, zinc.

  13. Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.

    Science.gov (United States)

    Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang

    2015-03-01

    NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P sauce does not affect Zn bioavailability in children.

  14. Coprecipitation synthesis of zinc ferrit (FE 2 O 3 /ZNO) nanoparticles ...

    African Journals Online (AJOL)

    Zinc ferrite (Fe2O3/ZnO) nanocomposites were successfully synthesized by simple co-precipitation method via iron (III) nitrate 9-hydrate (Fe(NO3)3.9H2O) and zinc nitrate hexahydrate (Zn(NO3)2.6H2O) as precursor in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The samples were characterized by ...

  15. Crystal structure of a sodium, zinc and iron(III-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67Zn1.67Fe1.33(PO43

    Directory of Open Access Journals (Sweden)

    Jamal Khmiyas

    2015-06-01

    Full Text Available The new title compound, disodium dizinc iron(III tris(phosphate, Na1.67Zn1.67Fe1.33(PO43, which belongs to the alluaudite family, has been synthesized by solid-state reactions. In this structure, all atoms are in general positions except for four, which are located on special positions of the C2/c space group. This structure is characterized by cation substitutional disorder at two sites, one situated on the special position 4e (2 and the other on the general position 8f. The 4e site is partially occupied by Na+ [0.332 (3], whereas the 8f site is entirely filled by a mixture of Fe and Zn. The full-occupancy sodium and zinc atoms are located at the Wyckoff positions on the inversion center 4a (-1 and on the twofold rotation axis 4e, respectively. Refinement of the occupancy ratios, bond-valence analysis and the electrical neutrality requirement of the structure lead to the given composition for the title compound. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octahedra stacked parallel to [10-1]. The chains are formed by a succession of trimers based on [ZnO6] octahedra and the mixed-cation FeIII/ZnII [(Fe/ZnO6] octahedra [FeIII:ZnIII ratio 0.668 (3/0.332 (3]. Continuous chains are held together by PO4 phosphate groups, forming polyhedral sheets perpendicular to [010]. The stacked sheets delimit two types of tunnels parallel to the c axis in which the sodium cations are located. Each Na+ cation is coordinated by eight O atoms. The disorder of Na in the tunnel might presage ionic mobility for this material.

  16. IRON, ZINC, AND FERRITIN ACCUMULATION IN COMMON BEANS

    DEFF Research Database (Denmark)

    Urbanski, Dorian Fabian; Sørensen, Kirsten; Jurkiewicz, Anna Malgorzata

    Iron and zinc malnutrition are major threats to human health and development around the world. The World Health Organization states that over two billion people are affected by iron deficiency. In particular children and pregnant women in developing countries are affected by iron deficiency...... in mature seeds, but the ferritin protein was suggested to be the major iron storing protein in legumes [1]. Both iron and zinc localization, as well as speciation, can have an impact on their nutritional availability. We will present detailed information about iron, zinc, and ferritin distribution...

  17. Effect of Initial Iron Content in a Zinc Bath on the Dissolution Rate of Iron During a Hot Dip Galvanizing Process

    Science.gov (United States)

    Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun

    2017-04-01

    The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.

  18. The Role of Iron and Zinc on Tuber Yield and Yield Components of Potato

    Directory of Open Access Journals (Sweden)

    Elham Jam

    2015-08-01

    Full Text Available The soils of potato production fields in Ardabil due to alkalinity and not having a proper crop rotations are deficient in micronutrients. To evaluate the effect of these micronutrients on the yield and some traits affecting potato tubers an experiment was conducted in a complete randomized block design with three replications in Ardabil during 2012. Micronutrient treatments used were the various concentrations of iron and zinc (0.002, 0.004 and 0.008 concentrations of these elements as Fe1Zn1, Fe1Zn2, Fe1Zn3, Fe2Zn1, Fe2Zn2, Fe2Zn3, Fe3Zn1 and Fe3Zn2 and a control treatment (Fe0Zn0. Analysis of variance of traits under study showed statistically significant differences among treatments in terms of tuber yield, number of tubers per plant, tuber size, skin thickness and volumetric weight and dry weight of tubers. The highest tuber yield (48.10 t.ha-1 and maximum skin thickness were obtained from Fe1Zn3 treatment. The highest tuber number belonged to Fe2Zn1 (0.004 and 0.002 concentrations of iron and zinc and Fe1Zn3 (0.002 and 0.008 concentrations of iron and zinc. Tuber weights higher than 35 grams and higest volumetric tuber weight were produced by using Fe3Zn2. The conclusion is this that using Fe1Zn3 traetment (0.002 and 0.008 concentrations resulted in highest tuber yield and thickness of tuber skin.

  19. Counter diffusion of zinc and iron in alluvial soil

    International Nuclear Information System (INIS)

    Rattan, R.K.; Deb, D.L.

    1980-01-01

    Half cell technique showed that an increase in moisture tension and CaCO 3 content caused reduction in the counter diffusion coefficients of zinc and iron in an alluvial soil. Increases in bulk density, ambient temperature and concentration of synthetic chelating agents e.g. EDTA and DTPA increased the counter diffusion coefficients of both zinc and iron. (author)

  20. Zinc in the prevention of Fe2initiated lipid and protein oxidation

    Directory of Open Access Journals (Sweden)

    M. PAOLA ZAGO

    2000-01-01

    Full Text Available In the present study we characterized the capacity of zinc to protect lipids and proteins from Fe2+-initiated oxidative damage. The effects of zinc on lipid oxidation were investigated in liposomes composed of brain phosphatidylcholine (PC and phosphatidylserine (PS at a molar relationship of 60:40 (PC:PS, 60:40. Lipid oxidation was evaluated as the oxidation of cis-parinaric acid or as the formation of 2-thiobarbituric acid-reactive substances (TBARS. Zinc protected liposomes from Fe2+ (2.5-50 muM-supported lipid oxidation. However, zinc (50 muM did not prevent the oxidative inactivation of glutamine synthelase and glucose 6-phosphate dehydrogenase when rat brain superntants were oxidized in the presence of 5 muM Fe2+ and 0.5 mM H2O2 .We also studied the interactions of zinc with epicatechin in the prevention of liid oxidation in liposomes. The simulaneous addition of 0.5 muM epicatechin (EC and 50 muM zinc or EC separately. Zinc (50 muM also protecte liposomes from the stimulatory effect of aluminum on Fe2+-initiated lipid oxidation. Zinc could play an important role as an antioxidant in biological systems, replacing iron and other metals with pro-oxidant activity from binding sites and interacting with other components of the oxidant defense system.

  1. Effect Of Joint Iron And Zinc Supplementation On Malarial Infection ...

    African Journals Online (AJOL)

    Adjusted geometric mean serum ferritin concentration in the Iron-zinc Group was significantly higher than in the Control Group (22.9 fg/L versus 16.9 fg/L), F (1, 156) = 6.336, p = 0.013. Conclusions: Joint iron and zinc supplementation appears to be a better option than iron-only supplementation in malaria-endemic areas.

  2. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].

    Science.gov (United States)

    Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A

    1978-12-01

    Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.

  3. Nanocompounds of iron and zinc: their potential in nutrition

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hilty, F.M.

    2011-01-01

    Recent studies suggest nanostructured oxides and phosphates of Fe and atomically mixed Fe/Zn may be useful for nutritional applications. These compounds may have several advantages over existing fortificants, such as ferrous sulfate (FeSO(4)), NaFeEDTA and electrolytic iron. Because of their very

  4. Textural and morphological studies on zinc-iron alloy electrodeposits

    Indian Academy of Sciences (India)

    Zinc-iron alloy electrodeposits have industrial significance, since they provide better corrosion resistance and with improved mechanical properties when compared to pure zinc coatings. This is due to the unique phase structure of the alloy formed. But this deposition belongs to anomalous deposition, where the ...

  5. Genome Wide Identification of Orthologous ZIP Genes Associated with Zinc and Iron Translocation in Setaria italica.

    Science.gov (United States)

    Alagarasan, Ganesh; Dubey, Mahima; Aswathy, Kumar S; Chandel, Girish

    2017-01-01

    Genes in the ZIP family encode transcripts to store and transport bivalent metal micronutrient, particularly iron (Fe) and or zinc (Zn). These transcripts are important for a variety of functions involved in the developmental and physiological processes in many plant species, including most, if not all, Poaceae plant species and the model species Arabidopsis. Here, we present the report of a genome wide investigation of orthologous ZIP genes in Setaria italica and the identification of 7 single copy genes. RT-PCR shows 4 of them could be used to increase the bio-availability of zinc and iron content in grains. Of 36 ZIP members, 25 genes have traces of signal peptide based sub-cellular localization, as compared to those of plant species studied previously, yet translocation of ions remains unclear. In silico analysis of gene structure and protein nature suggests that these two were preeminent in shaping the functional diversity of the ZIP gene family in S. italica . NAC, bZIP and bHLH are the predominant Fe and Zn responsive transcription factors present in SiZIP genes. Together, our results provide new insights into the signal peptide based/independent iron and zinc translocation in the plant system and allowed identification of ZIP genes that may be involved in the zinc and iron absorption from the soil, and thus transporting it to the cereal grain underlying high micronutrient accumulation.

  6. Genome Wide Identification of Orthologous ZIP Genes Associated with Zinc and Iron Translocation in Setaria italica

    Directory of Open Access Journals (Sweden)

    Ganesh Alagarasan

    2017-05-01

    Full Text Available Genes in the ZIP family encode transcripts to store and transport bivalent metal micronutrient, particularly iron (Fe and or zinc (Zn. These transcripts are important for a variety of functions involved in the developmental and physiological processes in many plant species, including most, if not all, Poaceae plant species and the model species Arabidopsis. Here, we present the report of a genome wide investigation of orthologous ZIP genes in Setaria italica and the identification of 7 single copy genes. RT-PCR shows 4 of them could be used to increase the bio-availability of zinc and iron content in grains. Of 36 ZIP members, 25 genes have traces of signal peptide based sub-cellular localization, as compared to those of plant species studied previously, yet translocation of ions remains unclear. In silico analysis of gene structure and protein nature suggests that these two were preeminent in shaping the functional diversity of the ZIP gene family in S. italica. NAC, bZIP and bHLH are the predominant Fe and Zn responsive transcription factors present in SiZIP genes. Together, our results provide new insights into the signal peptide based/independent iron and zinc translocation in the plant system and allowed identification of ZIP genes that may be involved in the zinc and iron absorption from the soil, and thus transporting it to the cereal grain underlying high micronutrient accumulation.

  7. Synthesis and structural characterization of new cadmium, zinc and iron based pyrophosphate: (Cd,Zn25Fe(P2O72

    Directory of Open Access Journals (Sweden)

    Khmiyas Jamal

    2018-01-01

    Full Text Available The novel compound with the following nominal formulation (Cd, Zn2.5Fe(P2O72 has been successfully prepared by the solid state reaction and characterized by single-crystal X-ray diffraction. This phosphate crystallizes in the orthorhombic system with the C2221 space group. Its crystal structure is formed by five types of cationic sites and by two unique (P2O74- anionic groups with a staggered conformation. In the structure, three sites are fulfilled by Zn2+ :(Zn(3, Zn(4 and Fe(13+, the fourth site is localized in the Wyckoff position 4a (site symmetry 2 ‥ and is statically occupied by Cd2+ : Zn2+with ratio 0.586(2 : 0.413(8. The last site, localized in 8c Wyckoff position (site symmetry 1 is also occupied by a mixture of the two cations Cd2+ : Zn2+with occupancies of 0.444(6 : 0.555(4.Within this framework, the metallic polyhedra [MOn] (n = 5 or 6 form corrugated layers stacked along the b-axis, and intercalated by P2O7 groups.

  8. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  9. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  10. Effect of Consuming Zinc-fortified Bread on Serum Zinc and Iron Status of Zinc-deficient Women: A Double Blind, Randomized Clinical Trial.

    Science.gov (United States)

    Badii, Akbar; Nekouei, Niloufar; Fazilati, Mohammad; Shahedi, Mohammad; Badiei, Sajad

    2012-03-01

    After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1) a non-fortified bread, (2) a high-zinc bread, and (3) a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05). Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p bread improved iron absorption.

  11. Extraction chromatographic separation of iron from complex liquid samples and the determination of 55Fe

    International Nuclear Information System (INIS)

    Grahek, Z.; Rozmaric Macefat, M.

    2006-01-01

    Iron separation is described from liquid samples with a high concentration of ions that enables simple determination of 55 Fe. One of the described methods consists of iron precipitation from a large volume seawater by sodium hydroxide and/or ammonium carbonate and separation from other elements (Ca, Sr, Cu, Mg, etc.) on a TRU column with 4M HCl or 8M HNO 3 . In the other procedure iron is separated directly from a mixture of seawater samples and HCl on a TRU column. In both methods, the iron recovery is almost 100%. After separation, 55 Fe is determined by counting with a liquid scintillation counter. The binding of Fe and Zn on TEVA, U/TEVA and TRU resins from seawater solutions of HCl and HNO 3 depends on the type of the resin, concentration of acid and other ions. Iron and zinc can be separated from seawater on a U/TEVA column with 2M HCl. (author)

  12. Alkaline Leaching of Low Zinc Content Iron-Bearing Sludges

    Directory of Open Access Journals (Sweden)

    Gargul K.

    2016-03-01

    Full Text Available Various types of waste materials containing zinc (e.g. dusts and sludges from gas dedusting process are obtained in steel industry. The contents of Zn in these materials may vary considerably. Even a low concentration of zinc in recirculated products precludes their recycling in ferrous metallurgy aggregates. Long storage of this type of material can lead to contamination of soil and water by zinc compounds which can be leached out by acid rain, for example. This paper focuses on research involving alkaline leaching tests of low zinc content iron-bearing materials. These tests were preceded by the analysis of the elemental, phase and grain size composition, and analysis of the thermodynamic conditions of the leaching process. The main aim of research was to decrease the content of the zinc in the sludge to the level where it is suitable as an iron-bearing material for iron production (~1% Zn. Leaching at elevated temperatures (368 K, 60 min has led to a decrease in the zinc content in the sludge of about 66%. The research revealed that long hour leaching (298 K, 100 hours carried out at ambient temperatures caused a reduction in zinc content by 60% to the value of 1.15-1.2% Zn.

  13. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    Energy Technology Data Exchange (ETDEWEB)

    Hilty, F M; Hurrell, R F; Zimmermann, M B [Human Nutrition Laboratory, Institute of Food Science and Nutrition, ETH Zurich (Switzerland); Teleki, A; Buechel, R; Pratsinis, S E [Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich (Switzerland); Krumeich, F, E-mail: michael.zimmermann@ilw.agrl.ethz.c [Electron Microscopy Center (EMEZ), ETH Zurich (Switzerland)

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe{sub 2}O{sub 4}) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  14. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    International Nuclear Information System (INIS)

    Hilty, F M; Hurrell, R F; Zimmermann, M B; Teleki, A; Buechel, R; Pratsinis, S E; Krumeich, F

    2009-01-01

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe 2 O 4 ) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  15. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    Science.gov (United States)

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  16. Effect of excess supply of heavy metals on the absorption and translocation of iron (/sup 59/Fe) in barley

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, C P; Bisht, S S; Agarwala, S C [Lucknow Univ. (India). Dept. of Botany

    1978-03-01

    The effects of an excess supply of manganese, copper, zinc, cobalt, and nickel on the absorption and translocation of iron tagged with /sup 59/Fe were xamined in 15 days old barley seedlings raised in solution culture. Excess heavy metal treatments and /sup 59/Fe were administered in three different ways: (i) both excess heavy metals and iron supplied through roots- Series A; (ii) excess heavy metal supplied as foliar spray and iron through roots- Series B; and (iii) excess heavy metal supplied through roots and iron as foliar spray-Series C. Results obtained revealed that excess concentrations of manganese, zinc, cobalt, and a to a lesser extent copper interfered with the absorption of iron from the rooting medium, but excess nickel enhanced the absorption and translocation of iron. Thus, unlike other metals, a toxic supply of nickel does not induce iron deficiency.

  17. Zinc and iron status during pregnancy of Filipino women.

    Science.gov (United States)

    de Jong, Nynke; Romano, Aurora B Ampong; Gibson, Rosalind S

    2002-01-01

    Low birthweight is associated with maternal anaemia and, in some circumstances, with low iron and zinc status, but this relationship has not been investigated in the Philippines. In this study, we assessed the prevalence of anaemia and suboptimal iron and zinc status in pregnant women from three geographical regions (mountain, coast, city) of Zamboanga del Sur province at 24 weeks (n = 305). and again at 36 weeks (n = 127), gestation. At 24 weeks, 34% were anaemic (i.e., haemoglobin values (i.e., 11 x 10(9)/L; 19%) and serum C-reactive protein (> 15 mg/L; 3%). Of the women surveyed, 20% were iron depleted but not anaemic, and 15% were zinc deficient (i.e., serum zinc values at 24 weeks gestation had infants with lower birthweights than those with values > or = 105 g/L and > or = 7.1 micromol/L, respectively. However, in the multivariate model, the contribution of maternal haemoglobin to the variance in birthweight at 24 weeks gestation was non-significant, although modest for serum zinc. Anaemia and/or suboptimal zinc status during pregnancy may be related to low birthweight in the Philippines, and their aetiology deserves further study.

  18. Solubility Measurements and Modeling of Zinc, Lead and Iron Sulfides at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    Solubility measurements of sulfides in aqueous solutions are necessary to understand the behaviour of these scaling minerals in geothermal and oil reservoirs. The low solubility levels of Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) make the solubility measurements a challenging...... oxygen atmosphere to avoid the risk of oxidation of sulfide minerals. The solution is kept in an equilibrium cell at constant temperature and pressure with continuous stirring. The concentration of Zn2+, Pb2+, Fe2+ and S2- are measured using Inductively Coupled Plasma Optical Emission spectrometry (ICP...

  19. Diffusion Coefficient in the Zinc Coating Shaped on the Surface of Cast Iron and Steel Alloys

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2015-06-01

    Full Text Available The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic specimens were prepared, intermetallic layers were measured and diffusion coefficient (D were calculated. It was found that the diffusion coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained on ductile cast iron EN-GJS-500-7.

  20. Impact of sorghum processing on phytate, phenolic compounds and in vitro solubility of iron and zinc in thick porridges

    NARCIS (Netherlands)

    Kayodé, A.P.P.; Linnemann, A.R.; Nout, M.J.R.; Boekel, van M.A.J.S.

    2007-01-01

    This study focussed on the impact of process variables on levels of phytate and phenolic compounds, and in vitro solubility of iron (Fe) and zinc (Zn) in sorghum porridges, a major staple in semi-arid tropics. The aim was to identify practices that enhance the mineral availability in this type of

  1. Effect of consuming zinc-fortified bread on serum zinc and iron status of zinc-deficient women: A double blind, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Akbar Badii

    2012-01-01

    Full Text Available After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1 a non-fortified bread, (2 a high-zinc bread, and (3 a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05. Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p < 0.01. It was concluded that fortification of flour with 50-100 ppm zinc was an effective way to achieve adequate zinc intake and absorption in zinc-deficient people. It also appeared that consuming zinc-fortified bread improved iron absorption.

  2. The solvent extraction of zinc, iron, and indium from chloride solutions by neutral organophosphorus compounds

    International Nuclear Information System (INIS)

    Preston, J.S.; Du Preez, A.C.

    1985-01-01

    The preparation of several neutral organophosphorus compounds and their evaluation as selective extractants for zinc in chloride media are described. The compounds belong to the series trialkyl phosphates (RO) 3 PO, dialkyl alkylphosphonates R'PO(OR) 2 , alkyl dialkylphosphinates R 2 'PO(OR), and trialkyl-phosphine oxides R 3 'PO. They were characterized by measurement of their physical properties (melting and boiling points, refractive indices, and densities), and their purities were confirmed by osmometric determination of their molecular masses; by carbon and hydrogen microanalysis; by the titrimetric determination of acidic impurities; and, for liquid products, by comparison of their experimental molar refractivities with empirical values. Metal-distribution equilibria were determined for solutions of the extractants in xylene and aqueous phase containing 0,5 to 5,0 M sodium chloride. Moderately good selectivities were shown for zinc(II) over iron(III), and excellent selectivities were shown for zinc(II) over iron(II), copper(II), lead(II), and cadmium(II). The extraction of indium(III) was similar to that of zinc(II). The extraction of zinc(III), iron(III), and indium(III) increased markedly through the series. (RO) 3 PO 2 2 'PO(OR) 3 'PO. The incorporation of phenyl groups into the compounds led to weaker extraction. The extracted complexes of zinc(II), iron(III), and indium(III) have the stoichiometries ZnCl 2 L 2 ,FeCl 3 L 2 (H 2 O), and InCl 3 L 2 (H 2 O) respectively, where L represents the neutral organophosphorus compound

  3. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  4. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    Science.gov (United States)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  5. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Jin; Lee, Kang-Lok; Kim, Kyoung-Dong; Roe, Jung-Hye, E-mail: jhroe@snu.ac.kr

    2016-09-09

    Iron homeostasis is tightly regulated since iron is an essential but toxic element in the cell. The GATA-type transcription factor Fep1 and its orthologs contribute to iron homeostasis in many fungi by repressing genes for iron uptake when intracellular iron is high. Even though the function and interaction partners of Fep1 have been elucidated extensively In Schizosaccharomyces pombe, the mechanism behind iron-sensing by Fep1 remains elusive. It has been reported that Fep1 interacts with Fe-S-containing monothiol glutaredoxin Grx4 and Grx4-Fra2 complex. In this study, we demonstrate that Fep1 also binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. The mutation study revealed that the cluster-binding depended on the conserved cysteines located between the two zinc fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. The finding that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 senses intracellular iron environment and modulates the activity of Fep1. - Highlights: • Fep1, a prototype fungal iron uptake regulator, was isolated stably from Schizosaccharomyces pombe. • Fep1 exhibits UV–visible absorption spectrum, characteristic of [Fe-S] proteins. • The iron and sulfide contents in purified or reconstituted Fep1 also support [Fe-S]. • The conserved cysteines are critical for [Fe-S]-binding. • EPR spectra at 5 K and 123 K suggest a mixed population of [Fe-S].

  6. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

    Science.gov (United States)

    Scheers, Nathalie; Rossander-Hulthen, Lena; Torsdottir, Inga; Sandberg, Ann-Sofie

    2016-02-01

    Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.

  7. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  8. Study of Doppler broadened annihilation spectra in zinc and zinc-containing 0.05 at. % iron

    International Nuclear Information System (INIS)

    Troev, T.; Zolov, R.; Dimova, V.; Levay, B.

    1979-01-01

    The Doppler broadening of annihilation gamma spectra obtained from positron-electron annihilation in pure polycrystalline zinc and zinc-containing 0.05 at. % iron have been investigated. The line shapes were measured by a Ge(Li) detector in coincidence with a NaI(Tl) scintillation detector. The results are quite consistent with those expected from the trapping model. The positrons are trapped by impurity atoms and vacancy-impurity pairs in zinc containing 0.05 at. % iron. (author)

  9. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  10. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    Science.gov (United States)

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  11. Zinc and resin bonded NdFeB magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    2002-01-01

    Zinc and resin bonded NdFeB magnets were processed. Basic magnetic parameters as well as compressive strength were evaluated versus annealing temperature and volume fraction of the bonding agent. For the zinc bonded magnets phase composition was investigated. The additional NdZn 5 phase was found in the Zn bonded magnets after annealing. Comparison of the Zn and resin bonded magnets reveals higher remanence for the former and higher coercivity for the latter. For the Zn and resin bonded magnets, 15 wt.% Zn / 370 o C and 7-10 wt.% resin were chosen as the optimal processing parameters. (author)

  12. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  13. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    Science.gov (United States)

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  14. Extraction of copper zinc and iron from hydrochloric acid solutions by means of different extractants

    Energy Technology Data Exchange (ETDEWEB)

    Zhivkova, Svetlana [Institute of Chemical Engineering - Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2011-07-01

    The extraction of copper, zinc and iron from hydrochloric acid solutions has been studied. The experiments have been carried out using various solvents, involving different extraction mechanisms – solvating, anion-exchange, cation-exchange, bifunctional . Mixtures of these extractants have been also used. The extraction properties of these extractant mixtures toward copper, zinc and iron, the effect of used modifiers and diluents have been also investigated. Key words: Copper, Zinc, Iron, Extraction, Extractant, Modifier, Diluent.

  15. Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe.

    Science.gov (United States)

    Gabaza, Molly; Shumoy, Habtu; Muchuweti, Maud; Vandamme, Peter; Raes, Katleen

    2018-01-01

    The present study is an evaluation of iron and zinc bioaccessibility of fermented maize, sorghum, pearl millet and finger millet from five different locations in Zimbabwe. Iron and zinc contents ranged between 3.22 and 49.7 and 1.25-4.39mg/100gdm, respectively. Fermentation caused a reduction of between 20 and 88% of phytic acid (PA) while a general increase in soluble phenolic compounds (PC) and a decrease of the bound (PC) was observed. Bioaccessibility of iron and zinc ranged between 2.77 and 26.1% and 0.45-12.8%, respectively. The contribution of the fermented cereals towards iron and zinc absolute requirements ranged between 25 and 411% and 0.5-23% with higher contribution of iron coming from cereals that were contaminated with extrinsic iron. Populations subsisting on cereals could be more at risk of zinc rather than iron deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench

    Directory of Open Access Journals (Sweden)

    Rahul M. Phuke

    2017-05-01

    Full Text Available The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg−1 and Zinc = 10.2 to 58.7 mg kg−1, across environments and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p < 0.01 indicating possibility of simultaneous effective selection for both the traits. The RIL population showed good variability and high heritabilities (>0.60, in individual environments for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc.

  17. Serum Zinc, Iron and Copper Concentrations in Dogs Infected with Hepatozoon canis

    Directory of Open Access Journals (Sweden)

    Kamil Seyrek

    2009-01-01

    Full Text Available In Turkey, canine hepatozoonosis is an emerging infection with a large number of cases detected during the past five years. In the present study, serum zinc, copper and iron concentrations of dogs infected with Hepatozoon canis were measured for the first time. Compared to the controls (n = 10, serum zinc and iron concentrations in infected animals (n = 14 decreased significantly (p p p Hepatozoon canis infection may cause alterations in serum zinc iron and copper concentrations. Furthermore, in the treatment of infected animals addition of zinc and iron to the ration of infected animals should be taken into consideration.

  18. Effects of iron, tin, and copper on zinc absorption in humans

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Chamberlain, M.J.

    1984-01-01

    Zinc absorption as measured by body retention of [65Zn]zinc chloride or a turkey test meal extrinsically labeled with 65Zn was determined in human subjects by whole body counting after 7 days. Average 65Zn absorption from zinc chloride in persons with a high iron-absorbing capacity was similar to persons with a low capacity to absorb iron. Inorganic iron, 920 mumol (51 mg), or HB iron, 480 mumol (26 mg), inhibited 65Zn absorption from 92 mumol (6 mg) of zinc chloride. When 610 mumol of iron (34 mg) was added to a turkey test meal containing 61 mumol of zinc (4 mg), 65Zn absorption was not inhibited. Tin, 306 mumol (36 mg), given with zinc chloride or turkey test meals (61 mumol, 4 mg, of Zn) significantly reduced 65Zn absorption. Copper, 79 mumol (5 mg), had no significant effect on the 65Zn absorption from 7.9 mumol (0.5 mg) of zinc chloride. In summary, the capacity to absorb iron did not influence 65Zn absorption, but both inorganic iron and heme-iron inhibited 65Zn absorption from zinc chloride. Inorganic iron had no effect, however, on 65Zn absorption from the turkey test meal. Tin in a large dose also inhibited 65Zn absorption from both zinc chloride and the turkey test meal

  19. Impact of sorghum processing on phytate, phenolic compounds and in vitro solubility of iron and zinc in thick porridges

    OpenAIRE

    Kayodé, A.P.P.; Linnemann, A.R.; Nout, M.J.R.; Boekel, van, M.A.J.S.

    2007-01-01

    This study focussed on the impact of process variables on levels of phytate and phenolic compounds, and in vitro solubility of iron (Fe) and zinc (Zn) in sorghum porridges, a major staple in semi-arid tropics. The aim was to identify practices that enhance the mineral availability in this type of staple food. We studied the example of the West African porridge `dibou' for which the processing methods involve grain cleaning, milling, sieving and cooking. Regional variations occur in the proces...

  20. Influence of iron and zinc status on cadmium accumulation in Bangladeshi women

    International Nuclear Information System (INIS)

    Kippler, Maria; Ekstroem, Eva-Charlotte; Loennerdal, Bo; Goessler, Walter; Akesson, Agneta; El Arifeen, Shams; Persson, Lars-Ake; Vahter, Marie

    2007-01-01

    Cadmium is a widespread environmental contaminant present in food. The absorption in the intestine increases in individuals with low iron stores, but the effect of zinc deficiency is not clear. The aim of the present study was to assess the influence of iron and zinc status on cadmium accumulation in pregnant Bangladeshi women. We measured cadmium in urine from 890 women using inductively coupled plasma mass spectrometry (ICPMS). Further, we also measured ferritin and zinc in plasma. The median cadmium concentration in urine was 0.59 μg/L (adjusted to mean specific gravity of 1.012 g/mL). Analysis of covariance (ANCOVA) showed that urinary cadmium was associated with plasma ferritin and plasma zinc via a significant interaction between dichotomized plasma ferritin and plasma zinc. The analysis was adjusted for age and socioeconomic status. Women with low iron stores and adequate zinc status had significantly higher urinary cadmium compared to women with both adequate iron stores and zinc status. There was no difference in urinary cadmium between women with both low iron stores and zinc status compared to those with both adequate iron stores and zinc status. In conclusion, low iron stores were associated with increased cadmium accumulation, but only at adequate zinc status

  1. Cytotoxicity, Intestinal Transport, and Bioavailability of Dispersible Iron and Zinc Supplements

    Directory of Open Access Journals (Sweden)

    Jae-Min Oh

    2017-04-01

    Full Text Available Iron or zinc deficiency is one of the most important nutritional disorders which causes health problem. However, food fortification with minerals often induces unacceptable organoleptic changes during preparation process and storage, has low bioavailability and solubility, and is expensive. Nanotechnology surface modification to obtain novel characteristics can be a useful tool to overcome these problems. In this study, the efficacy and potential toxicity of dispersible Fe or Zn supplement coated in dextrin and glycerides (SunActive FeTM and SunActive ZnTM were evaluated in terms of cytotoxicity, intestinal transport, and bioavailability, as compared with each counterpart without coating, ferric pyrophosphate (FePP and zinc oxide (ZnO nanoparticles (NPs, respectively. The results demonstrate that the cytotoxicity of FePP was not significantly affected by surface modification (SunActive FeTM, while SunActive ZnTM was more cytotoxic than ZnO-NPs. Cellular uptake and intestinal transport efficiency of SunActive FeTM were significantly higher than those of its counterpart material, which was in good agreement with enhanced oral absorption efficacy after a single-dose oral administration to rats. These results seem to be related to dissolution, particle dispersibility, and coating stability of materials depending on suspending media. Both SunActiveTM products and their counterpart materials were determined to be primarily transported by microfold (M cells through the intestinal epithelium. It was, therefore, concluded that surface modification of food fortification will be a useful strategy to enhance oral absorption efficiency at safe levels.

  2. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  3. The Practical Realisation of Zinc-Iron CMA Coatings

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    1998-01-01

    A detailed study of the production opportunities for composition modulated alloy electrodeposits by pulsed current techniques with Zinc-Iron alloys is reported. It is shown that by using a chloride solution, with the additional capability of variable agitation rates, a full range of alloy...... compositions is possible with nanometre layering attainable using single or double bath methods. Furthermore, by the use of a high concentration of ammonium chloride ostensibly as "conductivity" salt, the mechanism of deposition may be modified through control of a thin cathode oxide/hydroxide film....

  4. Scaling-up biofortified beans high in iron and zinc through the school-feeding program

    NARCIS (Netherlands)

    Beintema, Joni J.S.; Gallego-Castillo, Sonia; Londoño-Hernandez, Luis F.; Restrepo-Manjarres, José; Talsma, Elise F.

    2018-01-01

    Iron and zinc deficiencies are global health problems, affecting mostly pregnant women and young children. In 2016, biofortified iron and zinc beans were introduced in Colombia. The incorporation of biofortified beans into the national school-feeding program could facilitate adoption and potentially

  5. Vitamin A, iron and zinc deficiency in Indonesia : micronutrient interactions and effects of supplementation

    NARCIS (Netherlands)

    Dijkhuizen, M.A.; Wieringa, F.T.

    2001-01-01

    The research described in this thesis was concerned with vitamin A, iron and zinc deficiency in pregnant and lactating women and in infants. The effects of supplementation withβ-carotene, iron and zinc on micronutrient status, growth, pregnancy outcome and immune function, and interactions

  6. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Ju Shaohua; Zhang Yifei; Zhang Yi; Xue Peiyi; Wang Yihui

    2011-01-01

    Highlights: → The extraction fractions of various valuable metals during NH 4 Cl leaching are very high. The sintered residue was leached in 6 mol L -1 aqueous NH 4 Cl solution at 105 o C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. → The process can detoxified the hazardous elements such as Pb, As, Cd thoroughly. Then the NH 4 Cl leaching residue were leached again in 30 wt% aqueous NaOH solution for 1 h at 160 o C, and about 94% of As and 73% of Si were removed from the residue. → The final residue contains about 55 wt% Fe, and have the potential to be used as iron concentrate. - Abstract: A hydrometallurgical process for treating the hazardous jarosite residue from zinc hydrometallurgy was proposed, for not only detoxifying the residue, but also recovering the contained valuable metal components. The jarosite was initially activated and decomposed by sintering at 650 o C for 1 h. The sintered residue was leached in 6 mol L -1 aqueous NH 4 Cl solution at 105 o C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. During reduction with Zn powder, more than 93% of Pb, Cu, Ag and Cd can be simultaneously recovered. Then the NH 4 Cl leaching residue were leached again in 30 wt% aqueous NaOH solution for 1 h at 160 o C, and about 94% of As and 73% of Si were removed from the residue. The final residue was almost completely detoxified, and contains about 55 wt% Fe, which can be used as an iron concentration.

  7. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans.

    Science.gov (United States)

    Knez, Marija; Graham, Robin D; Welch, Ross M; Stangoulis, James C R

    2017-07-03

    Iron deficiency is the most prevalent nutritional deficiency, affecting more than 30% of the total world's population. It is a major public health problem in many countries around the world. Over the years various methods have been used with an effort to try and control iron-deficiency anemia. However, there has only been a marginal reduction in the global prevalence of anemia. Why is this so? Iron and zinc are essential trace elements for humans. These metals influence the transport and absorption of one another across the enterocytes and hepatocytes, due to similar ionic properties. This paper describes the structure and roles of major iron and zinc transport proteins, clarifies iron-zinc interactions at these sites, and provides a model for the mechanism of these interactions both at the local and systemic level. This review provides evidence that much of the massive extent of iron deficiency anemia in the world may be due to an underlying deficiency of zinc. It explains the reasons for predominance of cellular zinc status in determination of iron/zinc interactions and for the first time thoroughly explains mechanisms by which zinc brings about these changes.

  9. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  10. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    Science.gov (United States)

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  11. Iron and Zinc Nutrition in the Economically-Developed World: A Review

    Directory of Open Access Journals (Sweden)

    Alison O. Booth

    2013-08-01

    Full Text Available This review compares iron and zinc food sources, dietary intakes, dietary recommendations, nutritional status, bioavailability and interactions, with a focus on adults in economically-developed countries. The main sources of iron and zinc are cereals and meat, with fortificant iron and zinc potentially making an important contribution. Current fortification practices are concerning as there is little regulation or monitoring of intakes. In the countries included in this review, the proportion of individuals with iron intakes below recommendations was similar to the proportion of individuals with suboptimal iron status. Due to a lack of population zinc status information, similar comparisons cannot be made for zinc intakes and status. Significant data indicate that inhibitors of iron absorption include phytate, polyphenols, soy protein and calcium, and enhancers include animal tissue and ascorbic acid. It appears that of these, only phytate and soy protein also inhibit zinc absorption. Most data are derived from single-meal studies, which tend to amplify impacts on iron absorption in contrast to studies that utilize a realistic food matrix. These interactions need to be substantiated by studies that account for whole diets, however in the interim, it may be prudent for those at risk of iron deficiency to maximize absorption by reducing consumption of inhibitors and including enhancers at mealtimes.

  12. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    Science.gov (United States)

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  13. Determination of iron, copper, manganese and zinc in the soils, grapes and wines of the Azores

    Directory of Open Access Journals (Sweden)

    María Teresa Ribeiro de Lima

    2004-06-01

    Full Text Available This paper describes the determination of iron, copper, manganese and zinc in the soils, grapes and wines of the three viticultural regions of the Azores. Iron, copper and zinc were determined by flame atomic absorption spectrometry and manganese by graphite furnace atomic absorption. The concentrations of the four elements differed in soils of the three regions; there was no difference in the concentration in grapes, whereas significant differences were observed for the wines as regards the amounts of iron, manganese and zinc. The concentrations of these four elements in wine correspond with the mean values observed for other European regions.

  14. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    Science.gov (United States)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  15. Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice

    Directory of Open Access Journals (Sweden)

    Laura Tatiana Moreno-Moyano

    2016-09-01

    Full Text Available Biofortification of rice (Oryza sativa L. with micronutrients is widely recognized as a sustainable strategy to alleviate human iron (Fe and zinc (Zn deficiencies in developing countries where rice is the staple food. Constitutive overexpression of the rice nicotianamine synthase (OsNAS genes has been successfully implemented to increase Fe and Zn concentrations in unpolished and polished rice grain. Intensive research is now needed to couple this high-micronutrient trait with high grain yields. We investigated associations of increased grain Fe and Zn concentrations with agro-morphological traits of backcross twice second filial (BC2F2 transgenic progeny carrying OsNAS1 or OsNAS2 overexpression constructs under indica/japonica and japonica/japonica genetic backgrounds. Thirteen agro-morphological traits were evaluated in BC2F2 transgenic progeny grown under hydroponic conditions. Concentrations of 8 mineral nutrients (Fe, Zn, copper, manganese, calcium, magnesium, potassium and phosphorus in roots, stems/sheaths, non-flag leaves, flag leaves, panicles and grain were also determined. A distance-based linear model (DistLM was utilized to extract plant tissue nutrient predictors accounting for the largest variation in agro-morphological traits differing between transgenic and non-transgenic progeny. Overall, the BC2F2 transgenic progeny contained up to 148% higher Fe and 336% higher Zn concentrations in unpolished grain compared to non-transgenic progeny. However, unpolished grain concentrations surpassing 23 µg Fe g-1 and 40 µg Zn g-1 in BC2F2 indica/japonica progeny, and 36 µg Fe g-1 and 56 µg Zn g1 in BC2F2 japonica/japonica progeny, were associated with significant reductions in grain yield. DistLM analyses identified grain-Zn and panicle-magnesium as the primary nutrient predictors associated with grain yield reductions in the indica/japonica and japonica/japonica progeny, respectively. We subsequently produced polished grain from high

  16. Effect of zinc and/or iron supplementations on ICF-level in prepubertal anaemic girls

    International Nuclear Information System (INIS)

    Ayad, S.K.; Noure Eldin, A.M.

    2003-01-01

    The study was carried out to evaluate the effects of iron and zinc supplementations separated or combined on levels of iron, zinc and insulin like growth factor-1 (IGF-) in prepuberal girls suffering from iron deficiency anaemia. Hematological and biochemical changes of thirty two anaemic prepubertal girls (mean age 10.5 ± 2.01 year) were compared with normal fifteen girls have the same age. The anaemic girls were divided into three groups according to treatment; groupA (iron, group B(zinc) and group C (iron+zinc)and received supplementations for 8 weeks. Significant decreases in erythrocytic counts (RBCs), hemoglobin (Hb), hematocrit % (Hct%) and reticulocytes%(Rt%) were recorded in blood samples of the three groups before supplementations while non-significant differences were detected in the values of other blood indices. Significant decreases were detected in iron, zinc and IGF-1 levels while non-significant decrease in ferritin was detected in group (A). Erythropoietin and total iron binding capacity (TIBC) showed significant increases in the same group. Total iron binding capacity, iron, zinc and IGF-1 levels showed significant decreases while there were significant increases in erythropoetin and ferritin in group (B). The results revealed that ferritin,iron, zinc and IGF-1 levels were significantly decreased while erythropoietin and TIBC were significantly increased in group (C). After treatment, group (B) showed sligh significant increases in the concentration of Hb, Hct% and Rt%. with non-significant increase in RBCs count but in group (C) the results revealed significant increases in RBCs count, Hb, Hct% and Rt%. Non- significant differences were detected in RBCs count, Hb and Hct% in group (A) while significant increase was detected in Rt% in the same group

  17. The Effects of Micro Elements of Iron and Zinc on Morphological Characteristics of Mycorrhized Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Shahab Khaghani

    2016-06-01

    Full Text Available Deficiency of micro-nutrients in human diet may cause health problems. To increase the amount of these elements in the edible parts of the plants would eliminate the incidence of these health problems. Thus, the effects of iron and zinc on seed yield and morphological characteristics of mycorrhized barley (cv. Bahman root was studied in Karaj, Iran, during growing season of 2013-14. It was carried out in afactorial experiment based on randomized complete block design with three replications. Treatments consisted two levels of mycorrhiza, non-inoculation (M0 and inoculation with 10 kg/ha of Glomus intraradices (M1, and three levels of iron from Fe-EDDHA (Sequestrene138 as control (F0, 2.5 kg/ha (F1 and 5kg/ha (F2 and three levels of zinc as zinc sulphate (ZnSO4 as control (Z0, 25 kg/ha (Z1 and 50 kg/ha (Z2. The results showed that application of mycorrhiza increased parameters like total root length (TRL, root length density (RLD, specific root length (SLR, root colonization percentage and grain yield by 900.6 cm, 0.52 cm/cm3, 1738.1 cm/g, 5.41% and 1ton/ha respectively. Mean comparisons also revealed that using iron, mycorrhiza and without Zn application increased levels of root dry weight (RDW by 2.81 g.

  18. Instrumental neutron activation analysis of iron and zinc in compact cosmetic products

    International Nuclear Information System (INIS)

    Kanias, G.D.

    1987-01-01

    An instrumental neutron activation analysis method is described for the determination of iron and zinc in compact eye shadow, compact face powder and compact rouge make-up cosmetic products. The steps of the procedure are: Irradiation of samples with thermal neutrons, counting of gamma-radioactivity of the radioisotopes of iron and zinc produced by this irradiation and calculation of the concentration of these elements from the gamma-ray spectra of samples and standards. Analysis of the I.A.E.A. standard reference material by this procedure give results in close agreement with certified values. The limit of quantitation is 45 μg for iron and 0.35 μg for zinc. The developed procedure could possibly be established as an official method for the simultaneous determination of iron and zinc in compact cosmetic products. (orig.) [de

  19. Isolation and characterization of Lotus japonicus genes involved in iron and zinc homeostasis

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Jensen, Winnie; Sandal, Niels Nørgaard

    . Legumes are frequently grown in soil with limited nutrient availability. Plants use finely tuned mechanisms to keep appropriated levels of iron and zinc in each of their organs. Several genes involved in iron and zinc homeostasis have been described in yeast, and a few orthologs have been studied...... in plants. We have used these sequences to search for L. japonicus ESTs and genomic loci that are likely to be involved in iron and zinc metabolism. We have identified sequences corresponding to ferritins, ferric reductases, metal transport proteins of the ZIP family, and cation transporters of the NRAMP......The goal of this project is to find ways to improve the nutritional value of legumes by identifying genes and proteins important for iron and zinc regulation in the model legume Lotus japonicus. Legumes are important staples in the developing world and are a major source of nutrients in many areas...

  20. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    The toxicological evaluations of cadmium, iron, manganese, lead and zinc were carried out against albino mice model, Mus musculus. On the basis of 96 hrLC50 value, cadmium (0.47 mM) was found to be the most toxic followed by zinc (2.40 mM), lead (2.42 mM), iron (4.25 mM) and manganese (5.70 mM) was least toxic.

  1. Bioavailability of iron and zinc from human diets: Nutrient delivery technology salt fortification in human nutrition

    International Nuclear Information System (INIS)

    Raghuramulu, N.

    1992-01-01

    Iodine deficiency disorders (IDD), iron deficiency anaemia(IDA) and zinc deficiency are common problems in India. The discussions in this paper centers on the selection of the vehicles which could be used to successfully deliver essential nutrients into the daily diet of the general population of india and the identification of compounds which inhibit the intestinal absorption of zinc. 40 refs, 11 tabs

  2. Isotope - aided studies of the bioavailability of iron and zinc from human diets consumed in Poland

    International Nuclear Information System (INIS)

    Rafalski, H.

    1992-01-01

    The main aims of the study were: 1) the evaluation of iron and zinc status in women of Lodz aged 18-45 years, 2) adaptation of the whole body counter to in vivo measurements absorption of iron given to the gastro-intestinal tract of volunteers and 3) in rat model estimation iron bioavailability from fortified wheat flour combined with products usually consumed in Poland. During five months investigations thirty seven women were examined each one twice in two months interval. Following variables were measured: iron and zinc in blood serum, in public and scalp hair and in food, taste acuity score, serum ferritin, hemoglobin, total iron binding capacity, red blood cells, mean corpuscular concentration and corpuscular volume. Prevalence of iron deficiency and iron deficient anemia were assessed by two models in terms of the depression of serum ferritin and hemoglobin concentrations. 64 refs, 6 figs, 23 tabs

  3. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc-iron layered double hydroxides by one-step coprecipitation route

    International Nuclear Information System (INIS)

    Zhang Hui; Wen Xing; Wang Yingxia

    2007-01-01

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Moessbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO 4 2- -containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO 4 2- -containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn 0.435 .Fe II 0.094 .Fe III 0.470 .(OH) 2 ].(SO 4 2- ) 0.235 .1.0H 2 O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO 4 2- -containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS. - Graphical abstract: For Zn 2+ -Fe 2+ -Fe 3+ GR2(SO 4 2- ), according to the derived chemical formula, Fe 3+ was arranged at 1a (0, 0, 0) position, while all Zn 2+ were in 2d position with the occupancy 0.645, and the left part of 2d positions were taken by Fe 2+ /Fe 3+

  4. [The relevance of the trace elements zinc and iron in the milk fever disease of cattle].

    Science.gov (United States)

    Heilig, M; Bäuml, D; Fürll, M

    2014-01-01

    The aim of this study was to analyse the concentrations of Zn and Fe as well as their relationships to metabolic parameters in milk fever cows. A total of 195 Simmental cows, downer cows and clinically healthy control animals were divided into five groups: a) control group (CG, n = 21), b) all cows with milk fever (MF) (n = 174), c) MF cows without additional diseases (n = 145), d) cows with MF and mastitis (n = 10) and e) cows with retained placenta or endometritis (n = 19). Selenium (Se), zinc (Zn), iron (Fe), calcium (Ca), inorganic phosphorus (Pi), tumour necrosis factor α (TNFα), haptoglobin (Hp), antioxidants (Trolox Equivalent Antioxidative Capacity: TEAC), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), bilirubin, urea, creatinine, glucose, cholesterol, gamma-glutamyl transferase (GGT) and alkaline phosphatase (AP) were analysed in the blood serum. The concentrations of Zn, Fe, Ca, Pi and TEAC were lower in groups b) to e) whereas Hp was higher than in the CG (p ≤ 0.05). In group c), lower Ca and Pi concentrations were found when compared to groups d) and e) (p ≤ 0.05). In group e), Zn concentrations were significantly lower than in group c) (p ≤ 0.05). Zn was negatively correlated with K (CG) and positively correlated with TEAC, Cu, Mn and Fe (groups b and c) and with Mn (group e) (p ≤ 0.05). Fe was positively correlated with Ca (group c), Pi (group c), K (groups b and c) and Mg (groups b-d) as well as with Zn, Cu and Se (groups b and c) (p ≤ 0.05). In groups b) and c), TNFα was increased and negatively correlated with Fe (p ≤ 0.05). AP activity in groups b) and e) was lower than in the CG (p ≤ 0.05). These results and literature data support the hypothesis that Zn and Fe could be engaged in bone metabolism and be involved in the pathogenesis of MF. The concentrations of Hp and TEAC support this interpretation. Control of the Zn and Fe status of cows and Zn supplementation should be included in the

  5. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  6. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc iron layered double hydroxides by one-step coprecipitation route

    Science.gov (United States)

    Zhang, Hui; Wen, Xing; Wang, Yingxia

    2007-05-01

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Mössbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO 42--containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO 42--containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn 0.435·Fe II0.094·Fe III0.470·(OH) 2]·(SO 42-) 0.235·1.0H 2O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO 42--containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS.

  7. Isotope aided studies on the bioavailability of iron and zinc from human diets consumed in India

    International Nuclear Information System (INIS)

    Raghuramulu, N.; Das, P.; Prasad, P.

    1994-01-01

    Total iron, and zinc, in-vitro ionizable iron and soluble zinc were estimated by the chemical and extrinsic isotope tag methods for comparison in various foodstuffs as such, and after processing, and also in diets. It has been observed that the values got were more or less similar by both the procedures. The in-vitro ionizable iron in groundnut was low with low total iron as well. Total iron and ionizable iron were also estimated in commonly consumed breakfast preparations. The effect of tea on ionizable iron when taken along with breakfast was also investigated. It was found that different breakfast preparations varied narrowly with regards to total iron (4.6-7.2 mg) and percent ionizable iron (25%-33%). However, tea had a pronounced effect on ionizable iron resulting in inhibition to various extents. Total and soluble zinc were analyzed in green leafy vegetables and groundnut. Though the total zinc was low and similar in both foodstuffs, the percent soluble Zn was found to be high in green leafy vegetables as compared to groundnut. Tannin and ascorbic acid contents were estimated in a few foodstuffs. Tannin content in green leafy vegetables was found to be about 150 mg. Ascorbic acid concentration was high in cereals (except in rice) and whole pulses. The split pulses (dals) were found to be poor sources of ascorbic acid. Ionizable iron and soluble zinc were found to increase to various extents on processing. Germination was found to increase ascorbic acid, whereas it had no effect on tannin. (author). 4 figs, 8 tabs

  8. ENVIRONMENTAL IMPACT OF THE STORED DUST-LIKE ZINC AND IRON CONTAINING WASTES

    Directory of Open Access Journals (Sweden)

    Tatyana A. Lytaeva

    2017-05-01

    On the basis of laboratory research and field observations of the environmental components in the impact area of the storage of dust-like zinc and iron containing wastes, the article describes regularities of formation of hydrogeochemical halos of contamination by heavy metals and iron. Results include also the description of changes in physico-chemical groundwater composition under the storage area.

  9. IRON-ZINC SUPPLEMENTATION AMONG ADOLESCENT GIRLS AT ELEMENTARY SCHOOL IN KUPANG CITY, EAST TIMOR PROVINCE.

    Directory of Open Access Journals (Sweden)

    Yustina Anie Indriastuti Kurniawan

    2014-09-01

    Full Text Available Anemia is the main micronutrient deficiency problem among adolescent girls in Indonesia. Anemia due to iron deficiency often coexists with zinc deficiency. Both iron deficiency anemia and zinc deficiency can increase the risk of obstetric complications among pregnant women i.e. bleeding during labor and post-partum hemorrhage. Iron-folate supplementation among pregnant women had been conducting since long time ago throughout this country; however, effort to improve the nutritional status particularly among adolescent girls prior to pregnancy is still lack behind. Iron and zinc have antagonistic interaction. Therefore it was challenging to alleviate anemia problem among adolescent girls with appropriate ratio of iron-zinc supplementation, and will give a benefit to improve their nutritional status. This study was aimed to investigate the different ratios of ironzinc supplementation on reducing the prevalence of anemia as improving the nutritional status of adolescent school girls.A female elementary school students age 10-12 years old (n= 137 were screened in rural area of Kupang City, East Timor Province. Subjects were assigned randomly to one of the three groups for daily iron-zinc supplementation for 12 weeks; Group 1 (iron; 60 mg/day, Group 2 (iron and zinc; 30 mg and 15 mg/day, Group 3 (iron and zinc; 60 mg and 15 mg/day. Hemoglobin concentration was measured by cyanmethemoglobin method (Hemocue to determine the prevalence of anemia (Hb level < 120 g/L, while anthropometric assessment was conducted for measuring weight and height to determine the nutritional status. General characteristics was assessed through interview. At base line, 29.1% of subjects suffered from anemia and in general, the prevalence was reduced to around 13.1% after they took iron supplements with or without zinc. Hemoglobin concentration was significantly increased among all subjects euther suffered from anemia or not. The result of this study showed that subject who

  10. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showeda heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived.Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  11. The Effect of Ductile Cast Iron Matrix on Zinc Coating During Hot Dip Galvanising of Castings

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2012-12-01

    Full Text Available The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds. Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

  12. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    Science.gov (United States)

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  13. Overexpression of ZmIRT1 and ZmZIP3 Enhances Iron and Zinc Accumulation in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suzhen Li

    Full Text Available Iron and zinc are important micronutrients for both the growth and nutrient availability of crop plants, and their absorption is tightly controlled by a metal uptake system. Zinc-regulated transporters, iron-regulated transporter-like proteins (ZIP, is considered an essential metal transporter for the acquisition of Fe and Zn in graminaceous plants. Several ZIPs have been identified in maize, although their physiological function remains unclear. In this report, ZmIRT1 was shown to be specifically expressed in silk and embryo, whereas ZmZIP3 was a leaf-specific gene. Both ZmIRT1 and ZmZIP3 were shown to be localized to the plasma membrane and endoplasmic reticulum. In addition, transgenic Arabidopsis plants overexpressing ZmIRT1 or ZmZIP3 were generated, and the metal contents in various tissues of transgenic and wild-type plants were examined based on ICP-OES and Zinpyr-1 staining. The Fe and Zn concentration increased in roots and seeds of ZmIRT1-overexpressing plants, while the Fe content in shoots decreased. Overexpressing ZmZIP3 enhanced Zn accumulation in the roots of transgenic plants, while that in shoots was repressed. In addition, the transgenic plants showed altered tolerance to various Fe and Zn conditions compared with wild-type plants. Furthermore, the genes associated with metal uptake were stimulated in ZmIRT1 transgenic plants, while those involved in intra- and inter- cellular translocation were suppressed. In conclusion, ZmIRT1 and ZmZIP3 are functional metal transporters with different ion selectivities. Ectopic overexpression of ZmIRT1 may stimulate endogenous Fe uptake mechanisms, which may facilitate metal uptake and homeostasis. Our results increase our understanding of the functions of ZIP family transporters in maize.

  14. Selectivity in the oxidative dehydrogenation of butene on zinc-iron oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.H.; Kundalkar, B.; Kung, M.C.; Cheng, W.H.

    1980-02-21

    Adsorption, temperature-programed desorption, and pulse reaction studies of cis-2-butene and butadiene on spinel zinc ferrite by previously described methods provided evidence that the selectivity for oxidative dehydrogenation of butenes increases when zinc is added to the iron oxide catalyst because selective oxidation and complete oxidation proceed on separate sites, as they do on pure iron; because the density of sites for selective oxidation is higher and the density of sites for complete combustion is lower than on pure iron oxide; and because the activity of the combustion sites is lower.

  15. Isotope aided studies on the bioavailability of iron and zinc from human diets

    International Nuclear Information System (INIS)

    Raghuramulu, N.

    1992-01-01

    Iron deficiency anaemia is a major public health problem in many developing countries including India. Recent multicentric studies indicated that in rural population of India, 60% of preschool children and 40-60 % of women of child bearing age may suffer from anaemia. Studies by Sood et al indicated that iron stores are generally lower in the population as compared to populations in other countries. It is therefore possible that prelatent iron deficiency may be even higher who look otherwise healthy and adequately nourished. Iron absorption from habitual diets of Indians has been determined in the past by the chemical balance methods. Iron absorption determined by this method may be a gross over estimate. A more reliable estimate of iron absorption from composite meals can be obtained by the radio isotopic methods in which foods are extrinsically or intrinsically tagged with radio iron ( 55 Fe or 59 Fe). Using these methods iron absorption from a few habitual diets was studied. 15 refs

  16. Relation between Omega 3 Fatty Acid, Iron, Zinc and Treatment of ADHD

    Directory of Open Access Journals (Sweden)

    Maryam Shalileh

    2014-10-01

    Full Text Available In some studies, it is suggested that a number of dietary factors including essential fatty acid, iron and zinc deficiency, may be linked to attention-deficit/hyperactivity-disorder (ADHD. However, the exact mechanism of this relationship is yet unclear. The purpose of this study is to investigate the relationship between omega-3 fatty acids, zinc, and iron in etiopathology and management of ADHD. For the purpose of this study, Science Direct, PubMed, and Medline databases were explored and thirty-four relevant articles in english language were collected. Eighteen out of twenty-two studies confirmed the relationship between omega-3 fatty acid and ADHD. In addition, the role of insufficient store of iron in developing ADHD symptoms and the positive effect of iron supplement in improvement of ADHD behavioral symptoms have been shown. Also, plasma zinc concentration in children with ADHD was lower than the normal population, and the effect of zinc supplement on reducing on attentive-deficit symptoms was contradictory. Although polyunsaturated fatty acids (PUFA and iron supplements are not suggested as main treatment for ADHD, but if future studies confirm the positive results of that, use of these supplements as complementary treatment will affect ADHD symptoms. Considering the little amount of studies on zinc, more research is necessary.

  17. Iron and zinc absorption from weaning foods prepared from germinated cereals and legumes

    International Nuclear Information System (INIS)

    Kuizon, M.D.

    1992-01-01

    Iron deficiency anaemia is a public health problem in the Philippines especially in infants, children and pregnant women. The immediate cause is inadequate intake of available iron to meet increased iron requirements. Iron supplementation studies on pregnant women showed improvement in haemoglobin level and reduction of prevalence of anaemia. A project on iron fortification of rice with ferrous sulphate is going on. It is proposed to study iron and zinc absorption from weaning food prepared from germinated rice: mungbean, germinated rice: cowpea, and germinated corn:mungbean to support the finding that these formulations will alleviate not only protein-energy malnutrition but contribute to improvement of iron status as well since iron contents are higher and anti-nutritional factors (phytates and tannin) are either reduced or eliminated. This study aims to measure the iron and zinc absorption from weaning foods prepared from germinated rice-mungbean, germinated rice-cowpea, and germinated corn-mungbean and to indicate usefullness of modifying local foods to improve iron absorption. 24 refs, 4 figs

  18. Iron, folacin, vitamin B12 and zinc status and immune response in the elderly

    International Nuclear Information System (INIS)

    Henry-Christian, J.R.; Johnson, A.A.; Walters, C.S.; Greene, E.J.; Lindsey, A.A.

    1986-01-01

    The relationships of iron, folacin, vitamin B 12 and zinc status to cell-mediated immune response were investigated among 125 healthy, elderly persons (60-87 years of age). Plasma ferritin, plasma and red cell folate, and plasma vitamin B 12 levels were assayed immuno-radiometrically. Plasma and hair zinc levels were determined by atomic absorption spectroscopy. Immune response was determined by transformation of peripheral blood lymphocytes after stimulation with phytohemagglutinin (PHA) and concanavalin A (con A), and in mixed lymphocyte reaction. Deficiencies of iron, folacin vitamin B 12 and zinc were each associated (independently) with significantly lower lymphocyte responses to PHA and con A, and mixed lymphocyte reaction (P 12 or zinc. Further, they suggest that deficiencies of these nutrients may play a role in the depression of cell-mediated immunity with age, which in turn may lead to increased susceptibility to infectious diseases and cancer in the elderly

  19. ARTICLE - Path analysis of iron and zinc contents and others traits in cowpea

    Directory of Open Access Journals (Sweden)

    Jeane de Oliveira Moura

    2012-12-01

    Full Text Available The objective of this study was to estimate the direct and indirect effects of agronomic and culinary traits on iron and zinc contents in 11 cowpea populations. Correlations between traits were estimated and decomposed into direct and indirect effects using path analysis. For the study populations, breeding for larger grain size, higher number of grains per pod, grain yield, reduced cooking time, and number of days to flowering can lead to decreases in the levels of iron and zinc in the grain. Genetic gains for the iron content can be obtained by direct selection for protein content by indirect effects on the number of grains per pod, 100-grain weight and grain yield. The positive direct effect of grain size and protein content on the zinc content indicates the possibility of simultaneous gain by combined selection of these traits.

  20. Iron Isotopic Compositions of Troilite (FeS) Inclusions from Iron Meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch [Institut für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2017-10-01

    We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with those in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.

  1. Zinc toxicity among galvanization workers in the iron and steel industry.

    Science.gov (United States)

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  2. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    International Nuclear Information System (INIS)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan; Chakrabarti, Sampa

    2016-01-01

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with the proposed models.

  3. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.; Ehmann, W.D. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levels to those in the pituitary gland of AD and control subjects.

  4. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population.

    Science.gov (United States)

    Rubio, Carmen; Gutiérrez, Angel José; Revert, Consuelo; Reguera, Juan Ignacio; Burgos, Antonio; Hardisson, Arturo

    2009-11-01

    To evaluate the daily dietary intake of essential metals in the Canary Islands, the iron, copper, zinc and manganese contents in 420 food and drink samples collected in local markets were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The estimated daily dietary intakes of iron, copper, zinc and manganese are 13.161 mg/day, 2.098 mg/day, 8.954 mg/day and 2.372 mg/day, respectively. The iron dietary intake was found to be below the recommendations fixed for adult women, while the copper and manganese dietary intakes fulfilled the Recommended Dietary Allowances. The mean daily intake of zinc was below the Recommended Dietary Allowance. Cereals were found to be the food group that contributed most to the intake of these metals. While the island of El-Hierro presented iron, copper, zinc and manganese mean intakes over the estimated intakes for the whole archipelago, Fuerteventura island showed the lowest intakes. Tenerife and Fuerteventura showed the lowest iron intakes, being below the recommendations.

  5. Binding of zinc and iron to wheat bread, wheat bran, and their components.

    Science.gov (United States)

    Ismail-Beigi, F; Faraji, B; Reinhold, J G

    1977-10-01

    Wholemeal wheat bread decreases the availability and intestinal absorption of divalent metals. To define this action further, binding of zinc in vitro to a wheat wholemeal bread (Tanok), dephytinized Tanok, and cellulose was determined at pH 5.0 to 7.5. Zinc binding by each was highly pH-dependent and reached a maximum at pH 6.5 to 7.5. Removal of phytate from Tanok did not reduce its binding capability. Wheat bran at pH 6.5 and 6.8 bound 72% of iron (0.5 microgram/ml of solution) and 82.5% of zinc (1.43 microgram/ml solution), respectively. Lignin and two of the hemicellulose fractions of wheat bran and high binding capabilities for zinc (85.6, 87.1, and 82.1%, respectively) whereas a third had a lower zinc-binding capability (38.7%). Binding of zinc to various celluloses and dextrans is also demonstrated. Formation of complexes of these metals with wheat fiber can explain, at least in part, the decreased availability of dietary iron and zinc in wholemeal wheat bread.

  6. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  7. Noninvasive analysis of skin iron and zinc levels in beta-thalassemia major and intermedia

    International Nuclear Information System (INIS)

    Gorodetsky, R.; Goldfarb, A.; Dagan, I.; Rachmilewitz, E.A.

    1985-01-01

    Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for noninvasive determination of iron and zinc in two distinct skin areas, representing predominantly dermal and epidermal tissues, in 56 patients with beta-thalassemia major and intermedia. The mean iron levels in the skin of patients with beta-thalassemia major and intermedia were elevated by greater than 200% and greater than 50%, respectively, compared with control values. The zinc levels of both skin areas examined were within the normal range. The data indicate that the rate and number of blood transfusions, which correlated well with serum ferritin levels (r . 0.8), are not the only factors that determine the amount of iron deposition in the skin (r less than 0.6). Other sources of iron intake contribute to the total iron load in the tissues, particularly in patients who are not given multiple transfusions. The noninvasive quantitation of skin levels may reflect the extent of iron deposition in major parenchymal organs. Repeated DXS examinations of the skin could monitor the clearance of iron from the tissues of patients with iron overload in the course of therapy with chelating agents

  8. Iron and zinc deficiencies in China: existing problems and possible solutions

    NARCIS (Netherlands)

    Guansheng Ma,

    2007-01-01

    Micronutrient deficiencies affect the health and development of the population of China as well as its socia] and economic development. Iron and zinc deficiencies are quite prevalent, while insufficient intake and poor bioavailability are the major causes. Phytate is be!ieved to bc a potent

  9. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  10. Micronutrient (provitamin A and iron/zinc) retention in biofortified crops

    African Journals Online (AJOL)

    Degradation also occurs during the storage of dried products (e.g. from sweet potato, maize, cassava) at ambient temperature, and a short shelf life is a constraint that should be considered when foods are biofortified for provitamin A. Iron and zinc retention were high for common beans (Phaseolus vulgaris) and cowpeas ...

  11. Content of zinc, iron, calcium and their absorption inhibitors in foods commonly consumed in Ethiopia

    NARCIS (Netherlands)

    Umeta, M.; West, C.E.; Fufa, H.

    2005-01-01

    The zinc, iron, calcium, phosphorus, phytate, tannin and moisture content of 36 foods consumed in rural Ethiopia were analysed. The foods analysed included those based on cereals, starchy tubers and roots, and legumes and vegetables as well as some fruits. Although many foods were relatively rich in

  12. Iron and zinc absorption from weaning foods prepared from germinated cereals and legumes using isotope tracers

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, D H; Kuizon, M D; Marero, L M; Mallillin, A C; Cruz, E M; Madriaga, J R [Department of Science and Technology, Manila (Philippines). Food and Nutrition Research Inst.

    1994-12-31

    Iron bioavailability from weaning foods prepared from 70:30 combination of germinated rice:mungbean (GRM); germinated rice: cowpea (GRC) and germinated corn:mungbean (GCM) was determined by radioisotopic measurements of iron absorption in human subjects. The gruels were prepared as plain with sugar and flavoring labeled by the extrinsic tag method, and served as hot porridge. It was estimated that iron-deficient infants would absorb 3.5% from GRM, 4.9% from GRC and 5.6% from GCM. Differences between absorption among the weaning foods were not statistically significant. Planning of diets for these age group should include other sources of iron especially heme. Zinc absorption from the weaning food formulations will be studied by the in vitro and in vivo methods. For the in vivo method on human subjects, the absorption of zinc will be determined from the measurement of the whole body retention of the isotope 14 days after intake of the labeled mean. Serum zinc level will be determined to assess the zinc status of the subjects. (author). 23 refs, 1 fig., 4 tabs.

  13. Iron and zinc absorption from weaning foods prepared from germinated cereals and legumes using isotope tracers

    International Nuclear Information System (INIS)

    Valdez, D.H.; Kuizon, M.D.; Marero, L.M.; Mallillin, A.C.; Cruz, E.M.; Madriaga, J.R.

    1994-01-01

    Iron bioavailability from weaning foods prepared from 70:30 combination of germinated rice:mungbean (GRM); germinated rice: cowpea (GRC) and germinated corn:mungbean (GCM) was determined by radioisotopic measurements of iron absorption in human subjects. The gruels were prepared as plain with sugar and flavoring labeled by the extrinsic tag method, and served as hot porridge. It was estimated that iron-deficient infants would absorb 3.5% from GRM, 4.9% from GRC and 5.6% from GCM. Differences between absorption among the weaning foods were not statistically significant. Planning of diets for these age group should include other sources of iron especially heme. Zinc absorption from the weaning food formulations will be studied by the in vitro and in vivo methods. For the in vivo method on human subjects, the absorption of zinc will be determined from the measurement of the whole body retention of the isotope 14 days after intake of the labeled mean. Serum zinc level will be determined to assess the zinc status of the subjects. (author). 23 refs, 1 fig., 4 tabs

  14. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties

    Science.gov (United States)

    Afify, Abd El-Moneim M. R.; El-Beltagi, Hossam S.; Abd El-Salam, Samiha M.; Omran, Azza A.

    2011-01-01

    The changes in phytate, phytase activity and in vitro bioavailability of iron and zinc during soaking and germination of three white sorghum varieties (Sorghum bicolor L. Moench), named Dorado, Shandweel-6, and Giza-15 were investigated. Sorghum varieties were soaked for 20 h and germinated for 72 h after soaking for 20 h to reduce phytate content and increase iron and zinc in vitro bioavailability. The results revealed that iron and zinc content was significantly reduced from 28.16 to 32.16% and 13.78 to 26.69% for soaking treatment and 38.43 to 39.18% and 21.80 to 31.27% for germination treatments, respectively. Phytate content was significantly reduced from 23.59 to 32.40% for soaking treatment and 24.92 to 35.27% for germination treatments, respectively. Phytase enzymes will be activated during drying in equal form in all varieties. The results proved that the main distinct point is the change of phytase activity as well as specific activity during different treatment which showed no significant differences between the varieties used. The in vitro bioavailability of iron and zinc were significantly improved as a result of soaking and germination treatments. PMID:22003395

  15. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains.

    Science.gov (United States)

    Su, Da; Zhou, Lujian; Zhao, Qian; Pan, Gang; Cheng, Fangmin

    2018-02-21

    Development of rice cultivars with low phytic acid (lpa) is considered as a primary strategy for biofortification of zinc (Zn) and iron (Fe). Here, two rice genotypes (XS110 and its lpa mutant) were used to investigate the effect of P supplies on accumulations and distributions of PA, Zn, and Fe in rice grains by using hydroponics and detached panicle culture system. Results showed that higher P level increased grain PA concentration on dry matter basis (g/kg), but it markedly decreased PA accumulation on per grain basis (mg/grain). Meanwhile, more P supply reduced the amounts and bioavailabilities of Zn and Fe both in milled grains and in brown grains. Comparatively, lpa mutant was more susceptive to exogenous P supply than its wild type. Hence, the appropriate P fertilizer application should be highlighted in order to increase grain microelement (Zn and Fe) contents and improve nutritional quality in rice grains.

  16. Trace Elements Iron, Copper and Zinc in Vitreous of Patients with Various Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Sulochana Konerirajapuram

    2004-01-01

    Full Text Available Purpose: To measure the concentrations of iron, copper and zinc in human vitreous and to interpret their levels with various vitreoretinal diseases like proliferative diabetic retinopathy, retinal detachment, intraocular foreign body, Eales′ disease and macular hole. Methods: Undiluted vitreous fluid collected during pars plana vitrectomy was used to measure trace elements using an atomic absorption spectrophotometer. Results: The level of vitreous iron increased threefold in Eales′ disease (1.85 ± 0.36 pg/ml, 2.5-fold in proliferative diabetic retinopathy (1.534 ± 0.17 pg/ml and 2.3-fold in eyes with intraocular foreign body (1.341 ± 0.25 pg/ml when compared with macular hole (0.588 ± 0.16 pg/ml. This was statistically significant (P < 0.05. Zinc was found to be low in Eales′ disease (0.57 ± 0.22 pg/ml when compared with other groups, though the difference was not statistically significant. Conclusion: The increased level of iron with decreased zinc content in Eales′ disease confirms the earlier reported oxidative stress mechanism for the disease. In proliferative diabetic retinopathy and intraocular foreign body the level of iron increases. This is undesirable as iron can augment glycoxidation, which can lead to increased susceptibility to oxidative damage, in turn causing vitreous liquefaction, posterior vitreous detachment and ultimately retinal detachment and vision loss

  17. The kinetics of zinc coating growth on hyper-sandelin steels and ductile cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2007-12-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent E = (Si+2.5P.103, and coating thickness dependences were obtained.

  18. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  19. Interactions of cadmium with copper, zinc, and iron in different organs and tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Julshamn, K.; Utne, F.; Brackkan, O.R.

    1977-01-01

    The effect of cadmium on tissue concentrations of iron, zinc and copper was studied in male rats. Two littermate groups were fed a stock diet with or without a supplement of 100 ..mu..g cadmium per g. Every three weeks ten animals from each group were sampled and the liver, kidneys, heart, lungs, spleen, testes, muscle, fur, feces and urine were individually analyzed. Except for the fur, all the other organs showed highly significantly increased levels of cadmium when compared with the control group. The iron levels were significantly depressed in all organs. As the content in the feces remained unchanged and the urinary excretion showed an increase, it could be concluded that the cadmium supplementation resulted in a depletion of the body stores of iron. The zinc levels showed a significant increase in the liver and testes and a correspondingly significant decrease in the spleen. The levels of copper generally showed no significant changes.

  20. Effects of soil and foliar applications of iron and zinc on flowering and essential oil of chamomile at greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Yousef NASIRI

    2015-11-01

    Full Text Available In order to study the effects of soil and foliar applications of iron (Fe and zinc (Zn on flowering, flower yield and essential oil production of German chamomile a pot experiment was conducted under greenhouse conditions at the Faculty of Agriculture, University of Tabriz, Iran in 2012. The experiment was arranged as completely randomized design with 12 treatments and three replications. Treatments were as follow: T1: control – without Fe or Zn fertilizers, T2: 30 mg FeSO4.7H2O kg-1 dry soil, T3: 22 mg ZnSO4.7H2O kg-1 dry soil, T4: 30 mg FeSO4.7H2O + 22 mg ZnSO4.7H2O kg-1 dry soil, T5: foliar spraying of FeSO4.7H2O (3.5 g L-1, T6: foliar spraying of FeSO4.7H2O (7.0 g L-1, T7: foliar spraying of ZnSO4.7H2O (2.5 g L-1, T8: foliar spraying of ZnSO4.7H2O (5.0 g L-1, T9: T5+T7, T10: T5+T8, T11: T6+T7, T12: T6+T8. The foliar spraying was done two times during the growing period. The results revealed that the flower number, flower yield, essential oil content and essential oil yield were significantly increased by soil and foliar applications of Fe + Zn, compared with the control (untreated. The highest flower number (477 plant-1, flower yield (11.6 g pot-1, essential oil content (0.88 % and essential oil yield (119 mg pot-1 were recorded for the soil application of Fe + Zn (T4 by 58, 68, 21.4 and 105 % increment compared to the control, respectively. Foliar application of Fe + Zn (T12 was placed at the next rank; however this treatment had no significant difference with the soil application of Fe + Zn (T4. Other treatments did not show significant differences with the control. Generally, the results showed that soil or foliar application of Fe + Zn can be effective on increase or improve of quantity and quality of chamomile yield. Moreover, use of foliar application as a low cost method especially in areas with alkaline or calcareous soils can be recommended.

  1. [Tolerability of iron preparation Actiferol Fe® in children treated for iron deficiency anemia].

    Science.gov (United States)

    Jackowska, Teresa; Sapała-Smoczyńska, Alicja; Kamińska, Ewa

    2015-01-01

    Iron de„ciency anemia is the most frequently occurring anemia during the childhood period. Supplementation with adequate doses of iron remains a basic method of prevention and treatment. The various available products containing iron are characterized by a different degree of patient tolerability. Actiferol Fe® is a micronized, dispersible ferric pyrophosphate which improves its water solubility, and therefore it has better absorption and bioavailability. The assessment of tolerability of Actiferol Fe® in children who were administered this product to treat or prevent of iron de„ciency anemia. The methods of administration and the incidence of adverse effects were analyzed. Eighty children (64 boys and 16 girls) aged from one month to 6 years who met the criteria of an indication to be treated with iron were included into the study. The assessment of selected parameters was based on the questionnaire which included questions about tolerability, method of administration, convenience of usage and adverse e#ects. The questionnaire was „lled in by parents (usually by the mother). The study indicated that Actiferol Fe® has very good or good tolerability in 87.5% (70/80) of patients - 46.3% (37/80) and 41.2% (33/80), respectively. The most frequent method of administration was in liquid form after dissolving: in water - 31,3% (25/80), in orange juice - 18.8% (15/80) or in milk formulas - in 17.5% (14/80) of patients. The method of administration was assessed as convenient or very convenient by 84% (67/80) of participants. Out of the adverse effects reported, the most frequent were change in the stool consistency into harder, abdominal pain and constipation - in 20% (16/80), 11.25% (9/80), 10% (8/80) cases, respectively. Diarrhea, pain during defecation occurred occasionally. A dark color of the stool was reported by 55% (44/80) of patients. In only one case (1.25%) the parents resigned from the product administration and replaced it with another iron product (no

  2. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  3. Serum zinc, copper and iron status of children with coeliac disease on three months of gluten-free diet with or without four weeks of zinc supplements: a randomised controlled trial.

    Science.gov (United States)

    Negi, K; Kumar, R; Sharma, L; Datta, S P; Choudhury, M; Kumar, P

    2018-04-01

    Data about the effect of zinc supplementation with gluten-free diet on normalisation of plasma zinc, copper and iron in patients with coeliac disease are scanty. We evaluated the effect of zinc supplementation on serum zinc, copper and iron levels in patients with coeliac disease, by randomising 71 children newly diagnosed with coeliac disease into two groups: Group A = gluten-free diet (GFD); and Group B = gluten-free diet with zinc supplements (GFD +Zn). The rise in iron and zinc was significantly higher in the latter, but the mean rise of copper levels was slightly higher in the former, but the difference was not significant.

  4. Iron-Doped Zinc Selenide: Spectroscopy and Laser Development

    Science.gov (United States)

    2014-03-27

    pulsed and CW platforms have been continuously tuned across the whole gain bandwidth of Cr:ZnSe using dispersive tuning elements [9, 13, 14]. Lasers...induced fluorescence studies of the upper state manifold of Fe:ZnSe. 3.2 Laser-Induced Fluorescence Spectroscoscopy of Fe:ZnSe A Cryo Industries of...that temperature was recorded to provide a basis for calculation of the spectral distribution of gain. The recorded spectrum was black- body

  5. X-ray emission spectroscopy study of iron silicate catalyst FeZSM-5

    International Nuclear Information System (INIS)

    Csencsits, R.; Lyman, C.E.; Gronsky, R.

    1988-03-01

    Iron silicate analogs of the zeolite ZMS-5 may be directly synthesized from iron silicate gels in a manner which differs slightly from the alumino-silicate ZSM-5. The resultant white, crystalline iron silicate is referred to as FeZSM-5 in the as-synthesized form. Thermal treatment removes the organic crystal-directing agent and moves some of the framework iron into non-framework sites producing the calcined form of the molecular sieve FeZSM-5. Homogeneity in the distribution of catalytic iron throughout the particles is desired in an optimal catalyst. Distribution of the iron throughout the framework in the as-synthesized forms would affect the final distribution of catalytic iron in the calcined and steamed forms; thus, the iron distribution throughout the as-synthesized and calcined forms of FeZSM-5 were studied using the high spatial resolution on the analytical electron microscope. 7 refs., 3 figs

  6. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    Science.gov (United States)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  7. Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women

    International Nuclear Information System (INIS)

    Dawson-Hughes, B.; Seligson, F.H.; Hughes, V.A.

    1986-01-01

    We measured the effect of calcium carbonate and hydroxyapatite on whole-body retention of zinc-65 in 11 and iron-59 in 13 healthy, postmenopausal women. In a single-blind, controlled, crossover study, each subject, on three occasions, ingested a standard test meal supplemented with iron-59 or zinc-65 and capsules containing placebo or 500 mg elemental calcium as calcium carbonate or hydroxyapatite. Whole-body countings were performed prior to, 30 min after, and 2 wk after each meal. Mean (SEM) zinc retention was 18.1 +/- 1.0% with placebo (control) and did not vary significantly with calcium carbonate (110.0 +/- 8.6% of control) or hydroxyapatite (106.0 +/- 7.9% of control). Iron retention, 6.3 +/- 2.0% with placebo, was significantly reduced with both calcium carbonate (43.3 +/- 8.8% of control, p = 0.002) and hydroxyapatite (45.9 +/- 10.0% of control, p = 0.003). Iron absorption may be significantly reduced when calcium supplements are taken with meals

  8. Impact of Maternal Helicobacter pylori Infection on Trace Elements (Copper, Iron and Zinc and Pregnancy Outcomes

    Directory of Open Access Journals (Sweden)

    Emmanuel I Akubugwo

    2010-04-01

    Full Text Available Background: H. pylori infection has been suggested to interfere with micronutrient metabolism and influence pregnancy outcomes. Objectives: This study therefore seeks to document the prevalence of H. pylori seroposivity among pregnant women and to determine its impact on some trace element status and pregnancy outcomes. Materials and methods: Three hundred and forty nine consenting pregnant women aged 15-40 years (mean; 27. 04 ± 4. 75 years and gestational age ≤ 25 weeks (mean 21.77 ± 3.14 wks attending antenatal clinic at Federal Medical Centre, Abakaliki, between July 2007 and September 2008 participated in the study. H. Pylori antibody (IgG was determined by a new generation ELISA method. Plasma copper, iron and zinc were analysed using flame atomic absorption spectrophotometer (Bulk Scientific AVG 210 Model while haemoglobin and albumin were analysed using standard haematological and biochemical techniques. Both maternal sociodemographic and anthropometric parameters were recorded at recruitment. The women were followed-up till delivery after which neonatal anthropometrics and other birth outcomes were recorded. Results: H. pylori seroprevalence of 24.1% (84/349 was recorded with higher prevalence in multiparous and older women. H. pylori infected women had significantly higher BMI (29.00 ± 3.89 vs. 26.86 ± 4.10, p = 0.020 and lower (p > 0.05 plasma levels of Cu, Fe, Zn, albumin, and haemoglobin when compared to non-infected women. Also H. pylori infected women had significantly (p < 0.05 higher rates of convulsion and concomitant illnesses than their non-infected counterparts, although there was no difference in the two groups for other pregnancy outcomes. Conclusion: H. pylori infection during pregnancy seems to interfere with trace element metabolism and contribute significantly to increased maternal morbidity. Prior to confirmation of these findings in a well controlled randomised trial, it is suggested that pregnant women be

  9. Hcl extractable minerals (Iron ,Zinc ,Calcium, Lead,Aluminum and ...

    African Journals Online (AJOL)

    Georgette Koduah

    2012-05-07

    http://www.iom.edu/Activities/Nutrition/SummaryDRIs/DRI-Tables.aspx. National Research Council. National Academy of Sciences, 2011. Accessed. May 7, 2012. 29. Coltman CA Pagophagia and Iron lack. JAMA, 1969; 207: 513- 516. 30. Dreyer MJ, Chaushev PG and RF Gledhill Biochemical investigations in geophagia.

  10. Zinc Status in Iron Deficient Anaemic Patients in Sudan

    NARCIS (Netherlands)

    Yagob Mohamed, T.I.; Bode, P.; van de Wiel, A.; Ismail, Fadwa; Wolterbeek, H.T.

    2017-01-01

    Iron deficiency anaemia is a major health problem worldwide, but may be complicated in underdeveloped nations by deficiencies of other micronutrients with consequences for adequate treatment. The World Health Organization (WHO) estimates that 2 billion people – over 30% of the world’s population –

  11. Iron intake by rats using peroral administration of /sup 55/Fe-salts of phosphatidic acids

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, P.; Kas, J. (Inst. of Chemical Technology, Prague (Czechoslovakia)); Tykva, R. (Ceskoslovenska Akademie Ved, Prague. Ustav Organicke Chemie a Biochemie)

    1984-03-15

    The utilization of /sup 55/Fe and its incorporation into rat organs was investigated after peroral administration of various salts of phosphatidic acids (PA). Iron of PA salts is utilized up to 58-94% comparing to /sup 55/Fe/sup 2 +/. The degree of iron utilization depends on the type of PA salts administered. 16 refs.

  12. Adsorption of zinc(II) on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1992-01-01

    The adsorption of Zn 2+ ions on amorphous Fe(OH 3 ) and α-Fe 2 O 3 , as a function of pH, has been investigated. In the pH region corresponding to the formation of positively charged Zn-hydroxy complexes, an abrupt increase in adsorption was observed. The influence of EDTA and glycine on the adsorption of Zn 2+ by α-Fe 2 O 3 has also been investigated. Strong suppression of the adsorption of Zn 2+ was observed for high [EDTA or Gly]/[Zn 2+ ] concentration ratios. The results of the adsorption of Zn 2+ in the presence of an organic ligand were explained by the formation of Zn-EDTA or Zn-glycine complexes and also by the occupation of adsorption sites by the free organic ligand. (author) 26 refs.; 6 figs

  13. Iron fertilization with FeEDDHA : the fate and effectiveness of FeEDDHA chelates in soil-plant systems

    OpenAIRE

    Schenkeveld, W.D.C.

    2010-01-01

    Iron deficiency chlorosis is a nutritional disorder in plants which reduces crop yields both quantitatively and qualitatively, and causes large economic losses. It occurs world-wide, predominantly in plants grown on calcareous soils, as a result of a limited bioavailability of iron related to the poor solubility of iron at high soil-pH (7.5-8.5). Iron fertilizers based on FeEDDHA (iron ethylene diamine-N,N'-bis(hydroxy phenyl acetic acid)) chelates are among the most efficient in preventing a...

  14. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    Science.gov (United States)

    Inglis, Edward C.; Debret, Baptiste; Burton, Kevin W.; Millet, Marc-Alban; Pons, Marie-Laure; Dale, Christopher W.; Bouilhol, Pierre; Cooper, Matthew; Nowell, Geoff M.; McCoy-West, Alex J.; Williams, Helen M.

    2017-07-01

    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.

  15. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  16. Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects.

    Science.gov (United States)

    Jiang, Yumin; Ou, Jun; Zhang, Zhanhe; Qin, Qing-Hua

    2011-03-01

    In this paper, a calcium zinc iron silicon oxide composite (CZIS) was prepared using the sol-gel method. X-ray diffraction (XRD) was then employed to test the CZIS composite. The results from the test showed that the CZIS had three prominent crystalline phases: Ca(2)Fe(1.7)Zn(0.15)Si(0.15)O(5), Ca(2)SiO(4), and ZnFe(2)O(4). Calorimetric measurements were then performed using a magnetic induction furnace. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis were conducted to confirm the growth of a precipitated hydroxyapatite phase after immersion in simulated body fluid (SBF). Cell culture experiments were also carried out, showing that the CZIS composite more visibly promoted osteoblast proliferation than ZnFe(2)O(4) glass ceramic and HA, and osteoblasts adhered and spread well on the surfaces of composite samples.

  17. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Kladova, A. V.; Gavel, O. Yu.; Mukhopaadhyay, A.; Boer, D. R.; Teixeira, S.; Shnyrov, V. L.; Moura, I.; Moura, J. J. G.; Romão, M. J.; Trincão, J.; Bursakov, S. A.

    2009-01-01

    Adenylate kinase (AK) from D. gigas was purified and crystallized in three different metal-bound forms: Zn 2+ –AK, Co 2+ –AK and Fe 2+ –AK. Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 Å resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 Å resolution, respectively. Zn 2+ –AK and Fe 2+ –AK crystallized in space group I222 with similar unit-cell parameters, whereas Co 2+ –AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn 2+ –AK and Fe 2+ –AK forms and a dimer was present for the Co 2+ –AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes

  18. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  19. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops

    Directory of Open Access Journals (Sweden)

    Philippa eBorrill

    2014-02-01

    Full Text Available Wheat, like many other staple cereals, contains low levels of the essential micronutrients iron and zinc. Up to two billion people worldwide suffer from iron and zinc deficiencies, particularly in regions with predominantly cereal-based diets. Although wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which requires developing new varieties of wheat with inherently higher iron and zinc content in their grains. Until now most studies aimed at increasing iron and zinc content in wheat grains have focused on discovering natural variation in progenitor or related species. However, recent developments in genomics and transformation have led to a step change in targeted research on wheat at a molecular level. We discuss promising approaches to improve iron and zinc content in wheat using knowledge gained in model grasses. We explore how the latest resources developed in wheat, including sequenced genomes and mutant populations, can be exploited for biofortification. We also highlight the key research and practical challenges that remain in improving iron and zinc content in wheat.

  20. Microwave digestion for determination content of iron and zinc total in food

    International Nuclear Information System (INIS)

    Silva Trejos, Paulina

    2012-01-01

    The food digestion procedure was optimized by means of a microwave oven, to quantify the iron and total zinc in different matrices by atomic absorption spectroscopy. The optimum amount of concentrated HNO 3 was analyzed at 65% to digest sample mass determined by assessment of the percentage of recovery obtained with different amount of HNO 3 . The results have not differed from those obtained by officially recommended methods of acid digestion in open systems and calcination. (author) [es

  1. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene.

    Science.gov (United States)

    Mhatre, Minal; Srinivas, Lingam; Ganapathi, Thumballi R

    2011-12-01

    Pineapple (Ananas comosus L. Merr., cv. "Queen") leaf bases were transformed with Agrobacterium tumefaciens strain EHA 105 harboring the pSF and pEFESF plasmids with soybean ferritin cDNA. Four to eight percent of the co-cultivated leaf bases produced multiple shoots 6 weeks after transfer to Murashige and Skoog's medium supplemented with α-naphthalene acetic acid 1.8 mg/l, indole-3-butyric acid 2.0 mg/l, kinetin 2.0 mg/l, cefotaxime 400 mg/l, and kanamycin 50 mg/l. Putatively transformed shoots (1-2 cm) were selected and multiplied on medium of the same composition and elongated shoots (5 cm) were rooted on liquid rooting medium supplemented with cefotaxime 400 mg/l and kanamycin 100 mg/l. The rooted plants were analyzed through PCR, genomic Southern analysis, and reverse transcription PCR. The results clearly confirmed the integration and expression of soybean ferritin gene in the transformed plants. Atomic absorption spectroscopic analysis carried out with six independently transformed lines of pSF and pEFE-SF revealed a maximum of 5.03-fold increase in iron and 2.44-fold increase in zinc accumulation in the leaves of pSF-transformed plants. In pEFE-SF-transformed plants, a 3.65-fold increase in iron and 2.05-fold increase in zinc levels was observed. Few of the transgenic plants were hardened in the greenhouse and are being grown to maturity to determine the enhanced iron and zinc accumulation in the fruits. To the best of our knowledge this is the first report on the transformation of pineapple with soybean ferritin for enhanced accumulation of iron and zinc content in the transgenic plants.

  2. Structural characterization of hog iron oxide content glasses obtained from zinc hydrometallurgy wastes

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhujharov, W.

    1997-01-01

    It has been carried out the structural characterization of high oxide content glasses obtained by melting of a goethite industrial waste from the zinc hydrometallurgy with other raw materials as dolomite and glass cullet. The structural characterization has been carried out by X-ray Diffraction (XRD), X-Ray Diffraction by Amorphous Dispersion (RDF) and Mossbauer spectroscopy. It has been determined the interatomic distance, the oxidation state and the coordination of iron atoms in these glasses. (Author) 16 refs

  3. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    OpenAIRE

    Moreira, Daniele Caroline Faria; Sá, Júlia Sommerlatte Manzoli de; Cerqueira, Isabel B.; Oliveira, Ana P. F. de; Morgano, Marcelo Antonio; Quintaes, Késia Diego

    2013-01-01

    Background & aims: Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Methods: Duplicate samples were taken of six daily meals ...

  4. Moessbauer study on the distribution of iron vacancies in iron sulfide Fe sub(1-x)S

    International Nuclear Information System (INIS)

    Igaki, Kenzo; Sato, Masaki; Shinohara, Takeshi.

    1982-01-01

    The distribution of iron vacancies in iron sulfide Fe sub(1-x)S with the controlled compositions was investigated by Moessbauer spectroscopy at room temperature. Moessbauer spectrum was composed of several component spectra. These component spectra were assigned to the iron atoms with different configurations of neighboring iron vacancies. Judging from the composition dependence of intensity of each component, iron vacancies are considered to lie in every second iron layer for specimens with x between 0.125 and 0.10. For specimens with x between 0.10 and 0.09, this arrangement is nearly kept in the sample quenched from a higher temperature than 473 K, but after annealing at a lower temperature than 473 K iron vacancies are considered to lie not only in every second iron layer but also in every third iron layer or in adjacent iron layers. The iron vacancy arrangement lying in every third iron layer or in adjacent iron layers tends to dominate for specimens with x below 0.09. (author)

  5. Zinc recovery from iron and steel making wastes by conventional and microwave assisted leaching

    Directory of Open Access Journals (Sweden)

    Ján Vereš

    2011-12-01

    Full Text Available Significant quantities of sludge and dust are generated as a waste material or byproduct every day from iron and steel industries.Nowadays The occurrence and recovery of metallurgical wastes from steelmaking and iron making processes is a great problem, mainlydue to the big amount and environmental pollution of these wastes by heavy metals. The future technology of fine-grain metallurgicalwastes treatment is mainly the thing of ecological and financial limits. This work explains the removal of zinc from blast furnace sludgeby hydrometallurgical process. The aim of this work was to carry out a chemical, physical, structural, and morphologicalcharacterization of these waste materials and subsequently to find out the best suitable method for the hydrometallurgical treatment.The experimental work includes full plant experiments. Extraction conditions such as the effect of microwave power, leaching agent,acid concentration, S/L ratio and extraction time on the zinc removal efficiency were evaluated. The main goal is to set the bestconditions to transfer zinc into the solution while the iron should to remain in the solid phase.

  6. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years.

    Science.gov (United States)

    Morales-Ruán, Ma del Carmen; Villalpando, Salvador; García-Guerra, Armando; Shamah-Levy, Teresa; Robledo-Pérez, Ricardo; Avila-Arcos, Marco Antonio; Rivera, Juan A

    2012-01-01

    To describe the micronutrient nutritional status of a national sample of 1-11 year old Mexican children surveyed in 2006 in National Health and Nutrition Survey (ENSANUT 2006) and their association with dietary and sociodemographic factors. Serum samples were used (n=5 060) to measure the concentrations of ferritin, transferrin receptor, zinc, copper and magnesium. Prevalence of deficiencies in 1-4 and 5-11y old children were for iron (using low ferritin) 26.0 and 13.0%; zinc, 28.1 and 25.8%, respectively; and copper, ≈30% in both age groups. Magnesium low serum concentrations (MLSC), were found in 12.0% and 28.4% of the children, respectively. Being beneficiary of Liconsa (OR=0.32; C.I.95%, 0.17-0.61) or belonging to higher socioeconomic status (OR=0.63; C.I.95%, 0.41-0.97) were protective against iron deficiency. Increasing age (OR=0.59; C.I.95%, 1.19-1.32) and living in the Central Region (OR=0.59; C.I.95%, 0.36-0.97) were protective against MLSC. Deficiencies of iron and zinc are serious public health problems in Mexican children.

  7. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    Science.gov (United States)

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  8. High purity Fe3O4 from Local Iron Sand Extraction

    Science.gov (United States)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  9. Acceptability of Iron- and Zinc-Biofortified Pearl Millet (ICTP-8203)-Based Complementary Foods among Children in an Urban Slum of Mumbai, India.

    Science.gov (United States)

    Huey, Samantha Lee; Venkatramanan, Sudha; Udipi, Shobha A; Finkelstein, Julia Leigh; Ghugre, Padmini; Haas, Jere Douglas; Thakker, Varsha; Thorat, Aparna; Salvi, Ashwini; Kurpad, Anura V; Mehta, Saurabh

    2017-01-01

    Biofortification, a method for increasing micronutrient content of staple crops, is a promising strategy for combating major global health problems, such as iron and zinc deficiency. We examined the acceptability of recipes prepared using iron- and zinc-biofortified pearl millet (FeZnPM) (~80 ppm Fe, ~34 ppm Zn, varietal ICTP-8203), compared to conventional pearl millet (CPM) (~20 ppm Fe, ~19 ppm Zn) in preparation for an efficacy trial. Our objective was to examine the acceptability of FeZnPM compared to CPM among young children and mothers living in the urban slums of Mumbai. Standardized traditional feeding program recipes ( n  = 18) were prepared with either FeZnPM or CPM flour. The weight (g) of each food product was measured before and after consumption by children ( n  = 125) and the average grams consumed over a 3-day period were recorded. Mothers ( n  = 60) rated recipes using a 9-point hedonic scale. Mean intakes and hedonic scores of each food product were compared using t -tests across the two types of pearl millet. There were no statistically significant differences in consumption by children (FeZnPM: 25.27 ± 13.0 g; CPM: 21.72 ± 6.90 g) across the food products ( P  = 0.28). Overall mean hedonic scores for all recipes were between 7 to 9 points. CPM products were rated higher overall (8.22 ± 0.28) compared to FeZnPM products (7.95 ± 0.35) ( P  = 0.01). FeZnPM and CPM were similarly consumed and had high hedonic scores, demonstrating high acceptability in this population. These results support using these varieties of pearl millet in a proposed trial [http://Clinicaltrials.gov ID: NCT02233764; Clinical Trials Registry of India (CTRI), reference number REF/2014/10/007731, CTRI number CTRI/2015/11/006376] testing the efficacy of FeZnPM for improving iron status and growth.

  10. Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts

    Science.gov (United States)

    Chumarev, V. M.; Selivanov, E. N.

    2013-03-01

    The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.

  11. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  12. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    Science.gov (United States)

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  13. Synthesis of LiFePO{sub 4}/polyacenes using iron oxyhydroxide as an iron source

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guiling; Zhang, Xianfa; Liu, Jing; He, Xingguang; Wang, Jiawei; Xie, Haiming; Wang, Rongshun [Institute of Functional Materials, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); LIB Engineering Laboratory, Materials Science and Technology Center, Changchun, Jilin 130024 (China)

    2010-02-15

    LiFePO{sub 4}/polyacenes (PAS) composite is synthesized by iron oxyhydroxide as a new raw material and phenol-formaldehyde resin as both reducing agent and carbon source. The mechanism of the reaction is outlined by the analysis of XRD, FTIR as well as TG/DSC. The results show that the formation of LiFePO{sub 4} is started at 300 C, and above 550 C, the product can be mainly ascribed to olivine LiFePO{sub 4}. The electrochemical properties of the synthesized composites are investigated by charge-discharge tests. It is found that the prepared sample at 750 C (S750) has a better electrochemical performance than samples prepared at other temperatures. A discharge capacity of 158 mAh g{sup -1} is delivered at 0.2 C. Under high discharge rate of 10 C, a discharge capacity of 145 mAh g{sup -1} and good capacity retention of 93% after 800 cycles are achieved. The morphology of S750 and PAS distribution in it are investigated by SEM and TEM. (author)

  14. Effect of different home-cooking methods on the bioaccessibility of zinc and iron in conventionally bred cowpea (Vigna unguiculata L. Walp) consumed in Brazil.

    Science.gov (United States)

    Pereira, Elenilda J; Carvalho, Lucia M J; Dellamora-Ortiz, Gisela M; Cardoso, Flávio S N; Carvalho, José L V

    2016-01-01

    The cowpea (Vigna unguiculata L. Wap.) is an excellent source of iron and zinc. However, iron from plant sources is poorly absorbed compared with iron from animal sources. The objective of this study was to evaluate iron and zinc bioaccessibility in cowpea cultivars after processing. Zinc and iron bioaccessibilities in cowpea samples were determined based on an in vitro method involving simulated gastrointestinal digestion with suitable modifications. When water-soaked beans were cooked in a regular pan, the highest percentage of bioaccessible iron obtained was 8.92%, whereas when they were cooked in a pressure cooker without previous soaking, the highest percentage was 44.33%. Also, the percentage of bioaccessible zinc was 52.78% when they were cooked in a regular pan without prior soaking. Higher percentages of bioaccessible iron were found when cooking was done in a pressure cooker compared with regular pan cooking. In all cultivars, cooking of cowpea beans in both pressure cooker and in a regular pan yielded higher percentages of bioaccessible zinc compared with availability of bioaccessible iron. Iron bioaccessibility values suggest that cooking in a regular pan did not have a good effect on iron availability, since the percentage of bioaccessible iron was lower than that of zinc. The determination of iron and zinc bioaccessibility makes it possible to find out the actual percentage of absorption of such minerals and allows the development of efficient strategies for low-income groups to access foods with high levels of these micronutrients.

  15. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  16. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  17. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia.

    Science.gov (United States)

    Alarcon, Karl; Kolsteren, Patrick W; Prada, Ana M; Chian, Ana M; Velarde, Ruth E; Pecho, Iris L; Hoeree, Tom F

    2004-11-01

    Anemia is the most prevalent nutritional deficiency in the world. Attempts to improve iron indexes are affected by deficiency of and interaction between other micronutrients. Our goal was to assess whether zinc added to iron treatment alone or with vitamin A improves iron indexes and affects diarrheal episodes. This was a randomized, placebo-controlled, double-blind trial conducted in Peru. Anemic children aged 6-35 mo were assigned to 3 treatment groups: ferrous sulfate (FS; n = 104), ferrous sulfate and zinc sulfate (FSZn; n = 109), and ferrous sulfate, zinc sulfate, and vitamin A (FSZnA; n = 110). Vitamin A or its placebo was supplied only once; iron and zinc were provided under supervision >/=1 h apart 6 d/wk for 18 wk. The prevalence of anemia was 42.97%. The increase in hemoglobin in the FS group (19.5 g/L) was significantly less than that in the other 2 groups (24.0 and 23.8 g/L in the FSZn and FSZnA groups, respectively). The increase in serum ferritin in the FS group (24.5 mug/L) was significantly less than that in the other 2 groups (33.0 and 30.8 mug/L in the FSZn and FSZnA groups, respectively). The median duration of diarrhea and the mean number of stools per day was significantly higher in the FS group than in other 2 groups (P < 0.005). Adding zinc to iron treatment increases hemoglobin response, improves iron indexes, and has positive effects on diarrhea. No additional effect of vitamin A was found.

  18. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.

    Science.gov (United States)

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K; Tafili-Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F; Krachler, Regina; Rompel, Annette

    2016-05-23

    Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe III -HS in oceanic conditions into bioavailable aquatic Fe II forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.

  19. Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(II)

    International Nuclear Information System (INIS)

    Wang, Pei; Tang, Lin; Wei, Xue; Zeng, Guangming; Zhou, Yaoyu; Deng, Yaocheng; Wang, Jingjing; Xie, Zhihong; Fang, Wei

    2017-01-01

    Highlights: • Iron and zinc doped biochar was developed with larger specific surface area, new generated hydroxyl groups, and beneficial magnetism compared with pristine biochar. • Fe/Zn-biochar presented good performance both for PNP and Pb(II) adsorption as well as their simultaneous removal. • Mechanism of the enhanced adsorption for low concentrations of co-existing PNP and Pb(II) was proposed. - Abstract: The modification of biochar as a low-cost adsorbent is essential to improve its surface properties and shows great potential in water decontamination. The iron and zinc doped sawdust biochar (Fe/Zn-biochar) with large apparent surface area (518.54 m 2 /g) proposed in this work showed good performance for p-nitrophenol (PNP) removal compared with the pristine biochar (P-biochar), iron doped biochar (Fe-biochar) and zinc doped biochar (Zn-biochar) respectively. The batch experiments turned out that Fe/Zn-biochar exhibited larger PNP adsorption capacity under acidic pH solution, and the ionic strength had slightly negative impact on PNP adsorption. The adsorption kinetics and isotherms were discussed, and the experimental data fitted well the Pseudo-second-order equation and Langmuir model. The thermodynamic study indicated that the PNP adsorption was a spontaneous endothermic process. Furthermore, the simultaneous removal for PNP and Pb(II) by Fe/Zn-biochar was investigated. It implied that the adsorption of PNP and Pb(II) at their low concentration might be enhanced by the complexing-bridging mechanism of PNP and Pb(II) ascribing to the affinity between PNP and hydrophobic sites, in addition to the affinity between Pb(II) and oxygen-containing hydrophilic sites on Fe/Zn-biochar surface. However, the predominated competition between PNP and Pb(II) at their high concentrations with Fe/Zn-biochar suppressed their adsorption.

  20. Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pei [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, Hunan (China); Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, Hunan (China); Wei, Xue [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, Hunan (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, Hunan (China); Zhou, Yaoyu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, Hunan (China); College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Deng, Yaocheng; Wang, Jingjing; Xie, Zhihong; Fang, Wei [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, Hunan (China)

    2017-01-15

    Highlights: • Iron and zinc doped biochar was developed with larger specific surface area, new generated hydroxyl groups, and beneficial magnetism compared with pristine biochar. • Fe/Zn-biochar presented good performance both for PNP and Pb(II) adsorption as well as their simultaneous removal. • Mechanism of the enhanced adsorption for low concentrations of co-existing PNP and Pb(II) was proposed. - Abstract: The modification of biochar as a low-cost adsorbent is essential to improve its surface properties and shows great potential in water decontamination. The iron and zinc doped sawdust biochar (Fe/Zn-biochar) with large apparent surface area (518.54 m{sup 2}/g) proposed in this work showed good performance for p-nitrophenol (PNP) removal compared with the pristine biochar (P-biochar), iron doped biochar (Fe-biochar) and zinc doped biochar (Zn-biochar) respectively. The batch experiments turned out that Fe/Zn-biochar exhibited larger PNP adsorption capacity under acidic pH solution, and the ionic strength had slightly negative impact on PNP adsorption. The adsorption kinetics and isotherms were discussed, and the experimental data fitted well the Pseudo-second-order equation and Langmuir model. The thermodynamic study indicated that the PNP adsorption was a spontaneous endothermic process. Furthermore, the simultaneous removal for PNP and Pb(II) by Fe/Zn-biochar was investigated. It implied that the adsorption of PNP and Pb(II) at their low concentration might be enhanced by the complexing-bridging mechanism of PNP and Pb(II) ascribing to the affinity between PNP and hydrophobic sites, in addition to the affinity between Pb(II) and oxygen-containing hydrophilic sites on Fe/Zn-biochar surface. However, the predominated competition between PNP and Pb(II) at their high concentrations with Fe/Zn-biochar suppressed their adsorption.

  1. Isotope aided studies of the bioavailability of iron and zinc from human diets consumed in Venezuela

    International Nuclear Information System (INIS)

    Layrisse, M.A.

    1994-01-01

    Previous studies on Venezuelan diets provided information on food consumed in each diet and their nutritional contents. It also showed the comparison of the iron absorption from these diets when given in the morning after over-night fast and when given at the customary time of the day. It was observed that the iron absorption from the lunch given at noon was slightly higher (although not significant) in Zulia and Sucre diets. There were no significant differences between the Zulia lunch given in the morning after over-night fast at noon. Similar results were observed in the Sucre diet lunch repeated twice. From these results we can state that iron absorption from meals is not affected by the time it is administered with the condition that the subjects tested have had a previous fast of three hours before the meal is administered. The significant difference in iron absorption in the first study could be due to a marked physiological daily variation in iron absorption. The results from these studies provide credit to previous reports in which meals were given in the morning after an over-night fast. The iron absorption studies from 11 diets consumed by the Venezuelan population, provided the basic information for the establishment of a programme on iron fortification. The Government of Venezuela, according to the recommendation of the National Nutrition Institute, approved a national programme of iron fortification by enriching precooked maize flour with ferrous fumarate in the proportion of 5 mg Fe/100 g flour, and the enrichment of flour used to produce paste with the same iron compound in the proportion of 3 mg Fe/100 g flour. This year, the Chemical Centre of the Venezuela Scientific Institute of Research discovered an iron compound, now called FERROIVIC. It is an insoluble white powder that, when given as iron fortification, forms part of the nonhaeme iron pool and it is absorbed to the same extent as ferrous sulphate; it is stable for several months. 15 refs, 8

  2. Diffusion of iron in β-iron telluride (Fe1.12Te) by Moessbauer spectroscopy and tracer method

    International Nuclear Information System (INIS)

    Magara, Masaaki; Tsuji, Toshihide; Naito, Keiji

    1993-01-01

    The diffusion coefficient of iron in a β-iron telluride (Fe 1.12 Te) polycrystalline sample was measured by Moessbauer diffusional line broadening method which relates to the collapse of coherence in gamma-ray photon by the atomic jump at local sites. The diffusion coefficient of iron along the c-axis in nearly single crystal of β-iron telluride was also measured by tracer technique which shows the results of an atom transport in long distance. The activation energies for the diffusion of iron in Fe 1.12 Te obtained by the Moessbauer spectroscopy and the tracer method were 91.5±5.4 and 106±23 kJ/mol, respectively. The diffusion coefficients of iron in β-iron telluride obtained by Moessbauer line broadening are in fair agreement with the values averaged from that along c-axis obtained by tracer method and that along a- and b-axes obtained from reaction rate constant between iron and tellurium by the previous study of the present authors. (orig.)

  3. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    Science.gov (United States)

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium

  4. Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India.

    Science.gov (United States)

    Hemalatha, Sreeramaiah; Platel, Kalpana; Srinivasan, Krishnapura

    2007-01-01

    Influence of heat processing on the bioaccessibility of zinc and iron from food grains consumed in India was evaluated. Cereals - rice (Oryza sativa), finger millet (Eleusine coracana), sorghum (Sorghum vulgare), wheat (Triticum aestivum), and maize (Zea mays), and pulses - chickpea (Cicer arietinum) - whole and decorticated, green gram (Phaseolus aureus) - whole and decorticated, decorticated black gram (Phaseolus mungo), decorticated red gram (Cajanus cajan), cowpea (Vigna catjang), and French bean (Phaseolus vulgaris) were examined for zinc and iron bioaccessibility by employing an in vitro dialysability procedure. Both pressure-cooking and microwave heating were tested for their influence on mineral bioaccessibility. Zinc bioaccessibility from food grains was considerably reduced upon pressure-cooking, especially in pulses. Among cereals, pressure-cooking decreased zinc bioaccessibility by 63% and 57% in finger millet and rice, respectively. All the pressure-cooked cereals showed similar percent zinc bioaccessibility with the exception of finger millet. Bioaccessibility of zinc from pulses was generally lower as a result of pressure-cooking or microwave heating. The decrease in bioaccessibility of zinc caused by microwave heating ranged from 11.4% in chickpea (whole) to 63% in cowpea. Decrease in zinc bioaccessibility was 48% in pressure-cooked whole chickpea, 45% and 55% in pressure-cooked or microwave-heated whole green gram, 32% and 22% in pressure-cooked or microwave-heated decorticated green gram, and 45% in microwave-heated black gram. Iron bioaccessibility, on the other hand, was significantly enhanced generally from all the food grains studied upon heat treatment. Thus, heat treatment of grains produced contrasting effect on zinc and iron bioaccessibility.

  5. Interaction genotype by season and its influence on the identification of beans with high content of zinc and iron

    Directory of Open Access Journals (Sweden)

    Camila Andrade Silva

    2012-01-01

    Full Text Available The mineral contents in common bean seeds are influenced, in addition to genetic variation, by environmental crop conditions, especially by the soil type and chemical composition and by the genotype x environment interaction. This study was carried out to verify if the zinc and iron contents are affected by the crop growing period. Ten lines with high iron and zinc contents and ten with low contents were assessed in three seasons: "wet season" of 2009/2010 (sowing in November; "dry season" of 2010 (sowing in February and "winter season" of 2010 (sowing in July, in Lavras, Minas Gerais State, Brazil. The experimental design used was randomized blocks with three replications and plots consisting of two rows of two meters, with a spacing of 0.50 m. The seeds harvested were assessed in regard to iron and zinc mineral contents. The greatest contents were observed in the winter season and the smallest ones in the dry season, with sowing in February. It was observed that in the mean of the three harvests, the lines classified as having high iron and zinc content exhibited an iron quantity 11.0% and a zinc quantity 6.8% above those of low content. The lines by seasons interaction occurs. However, its interference in identification of the groups with high and low content of the two nutrients is not great.

  6. Energy dispersive x-ray fluorescence spectrometric determination of phosphorus, calcium, iron, zinc, and strontium in human bones

    International Nuclear Information System (INIS)

    Ohta, Akishige; Matsubayashi, Takashi; Itoman, Moritoshi

    1981-01-01

    Phosphorus, calcium, iron, zinc and strontium in a human bone extracted by surgery were determined by energy dispersive X-ray fluorescence spectrometry. The bone was decomposed with nitric acid, then diluted with water. A specific quantity of the solution was naturally dried on polyethylene film, and subjected to X-ray analysis. For determining the calibration curves in a mixture of phosphorus, calcium, iron, zinc and strontium, for the analysis of phosphorus and calcium, germanium was used as the secondary target and aluminum as the filter; and for the analysis of iron, zinc and strontium, molybdenum and molybdenum-aluminum were used, respectively. Consequently, the calibration curves were able to be obtained with high precision in the ranges from 5 to 500 μg of phosphorus, from 1 to 50 μg of calcium and from 0.1 to 1.0 μg of iron, zinc and strontium. In this way, in 1 mg of the human bone by wet weight, phosphorus, calcium, iron, zinc and strontium were able to be determined. (J.P.N.)

  7. Bioavailability of iron and zinc in green leafy vegetables growing in river side and local areas of Allahabad district

    Directory of Open Access Journals (Sweden)

    Bhawna Srivastava

    2014-01-01

    Full Text Available Introduction: Green Leafy Vegetables (GLVs are the treasure trove of many micronutrients.Objective: The aim of the study is to find out the commonly growing vegetables in river side and local areas of Allahabad district and to access the bioavailability of iron and zinc in selected green leafy vegetables of river side and local areas of Allahabad district.Methods: Five to four commonly grown green leafy vegetables were selected from the Arailghat, Baluaghat, Gaughat, Mahewa, Muirabad, Rajapur, Rasullabad for the study. Total iron and zinc in sample were estimated by AOAC (2005 and bioavailability of zinc and iron from various food samples was determined in vitro method described by Luten (1996. Appropriate statistical technique was adopted for analysis of study.Result: Soya leaves, Radish leaves, Amaranth, Spinach were grown in both the areas except Kulpha and Karamwa, which are commonly grown in river side area. There was a significant difference between the bioavailability of iron and zinc in GLV grown in local and river side area.Conclusion: Hence it can be concluded that there is a contamination of heavy metals which binds with the iron and zinc and make them less bioavailable in the selected GLV.

  8. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  9. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    Science.gov (United States)

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  10. A study on the formation of iron aluminide (FeAl) from elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Corneliusson, J.; Turba, K.; Iyengar, S.

    2015-07-05

    Highlights: • Fe–40 at.% Al discs with coarse iron powder showed precombustion and combustion peaks. • Loose powder mixtures and discs with fine iron powder showed only combustion peaks. • Slower heating rate and fine aluminum particles promote precombustion. • The major product formed during both the reactions was Fe{sub 2}Al{sub 5}. • Heating the samples to 1000 °C yielded a stable FeAl phase as the final product. - Abstract: The formation of iron aluminide (FeAl) during the heating of Fe–40 at.% Al powder mixture has been studied using a differential scanning calorimeter. The effect of particle size of the reactants, compaction of the powder mixtures as well as the heating rate on combustion behavior has been investigated. On heating compacted discs containing relatively coarser iron powder, DSC data show two consecutive exothermic peaks corresponding to precombustion and combustion reactions. The product formed during both these reactions is Fe{sub 2}Al{sub 5} and there is a volume expansion in the sample. The precombustion reaction could be improved by a slower heating rate as well as a better surface coverage of iron particles using relatively finer aluminum powder. The combustion reaction was observed to be weaker after a strong precombustion stage. Heating the samples to 1000 °C resulted in the formation of a single and stable FeAl phase through the diffusional reaction between Fe{sub 2}Al{sub 5} and residual iron. DSC results for compacted discs containing relatively finer iron powder and for the non-compacted samples showed a single combustion exotherm during heating, with Fe{sub 2}Al{sub 5} as the product and traces of FeAl. X-ray diffraction and EDS data confirmed the formation of FeAl as the final product after heating these samples to 1000 °C.

  11. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    Energy Technology Data Exchange (ETDEWEB)

    Dote, Haruka [Hiroshima University, Graduate School of Science (Japan); Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)

    2012-03-15

    Mixed crystals of cobalt and zinc were synthesized using 1,3-bis(4-pyridyl)propane (bpp) as bridging ligand and NCS{sup - } as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS){sub 2}(bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. {sup 57}Fe Moessbauer spectrum of the red crystals showed a main doublet of Fe{sup II} high-spin state at 78 K, while the spectrum of blue crystals did not show Fe{sup II} high-spin state at 78 K.

  12. Crystal structure and spin state of mixed-crystals of iron with zinc and cobalt for the assembled complexes bridged by 1,3-bis(4-pyridyl)propanes

    International Nuclear Information System (INIS)

    Dote, Haruka; Nakashima, Satoru

    2012-01-01

    Mixed crystals of cobalt and zinc were synthesized using 1,3–bis(4–pyridyl)propane (bpp) as bridging ligand and NCS  −  as anion. Red crystals and blue crystals were obtained. Powder X-ray diffraction patterns showed that the former is in 2D interpenetrated structure, while the latter has the same structure with Zn(NCS) 2 (bpp). Iron ion was introduced both into the red crystals and blue crystals of the mixed crystals of cobalt with zinc. 57 Fe Mössbauer spectrum of the red crystals showed a main doublet of Fe II high-spin state at 78 K, while the spectrum of blue crystals did not show Fe II high-spin state at 78 K.

  13. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Mehmet Akin

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS: 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5 mg kg-1 propofol, 1 mg kg-1 lidocaine and 0.6 mg kg-1 rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4 L min-1, 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4 L min-1 6 mg kg h-1 propofol and 1 µg kg h-1 fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS: It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION: According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.

  14. A Study on Zinc-Iron Alloy Electrodeposition from a Chloride Electrolyte

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    1998-01-01

    The electrodeposition of zinc-iron alloys from a chloride-based electrolyte has been studied using electrochemical polarisation techniques, Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDXA) and Computer Assisted Pulse Plating (CAPP...... this system ideal for production of compositional modulated alloy (CMA) electrodeposits. Chloride content, pH and agitation of the electrolyte have been observed to have a strong influence on the reaction at the cathode surface, just as the use of pulse reversal current during electrodeposition. A theory...

  15. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  16. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    Directory of Open Access Journals (Sweden)

    Shoichi Kawai

    2014-03-01

    Full Text Available Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO4 and Na2S2O3. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  17. Zinc

    Science.gov (United States)

    ... Some early research suggests that zinc supplementation increases sperm count, testosterone levels, and pregnancy rates in infertile men with low testosterone levels. Other research suggests that taking zinc can improve sperm shape in men with moderate enlargement of a ...

  18. The Influence of Iron and Zinc Supplementation on the Bioavailability of Provitamin A Carotenoids from Papaya Following Consumption of a Vitamin A-Deficient Diet.

    Science.gov (United States)

    Kana-Sop, Marie Modestine; Gouado, Inocent; Achu, Mercy Bih; Van Camp, John; Amvam Zollo, Paul Henri; Schweigert, Florian J; Oberleas, Donald; Ekoe, Tetanye

    2015-01-01

    Iron deficiency anemia, zinc and vitamin A deficiencies are serious public health problems in Cameroon, as in many developing countries. Local vegetables which are sources of provitamin A carotenoids (PACs) can be used to improve vitamin A intakes. However, traditional meals are often unable to cover zinc and iron needs. The aim of this study was to determine the bioavailability of 3 PACs (α-carotene, β-carotene, and β-cryptoxanthin) in young men, who were fed with a vitamin A-free diet and received iron and zinc supplementation. Twelve healthy participants were divided into three groups and were supplemented with elemental iron (20 mg of iron fumarate), 20 mg of zinc sulfate or iron+zinc (20 mg of iron in the morning and 20 mg of zinc in the evening) for 11 d. They were given a vitamin A- and PAC-free diet from the 6th to the 11th day, followed by a test meal containing 0.55 kg of freshly peeled papaya as a source of PACs. Blood samples were collected four times successively on the 11th day (the test meal day), at T0 (just after the test meal), after 2 h (T2), after 4 h (T4) and after 7 h (T7). Ultracentrifugation was used to isolate serum chylomicrons. Retinol appearance and PAC postprandial concentrations were determined. The supplementation with zinc, iron and iron+zinc influenced the chylomicron appearance of retinol and PACs differently as reflected by retention times and maximum absorption peaks. Iron led to highest retinol levels in the chylomicron. Zinc and iron+zinc supplements were best for optimal intact appearance of α-carotene, β-carotene and β-cryptoxanthin respectively. Supplementation with iron led to the greatest bioavailability of PACs from papaya and its conversion to retinol.

  19. A Program for Iron Economy during Deficiency Targets Specific Fe Proteins.

    Science.gov (United States)

    Hantzis, Laura J; Kroh, Gretchen E; Jahn, Courtney E; Cantrell, Michael; Peers, Graham; Pilon, Marinus; Ravet, Karl

    2018-01-01

    Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis ( Arabidopsis thaliana ) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome- b 6 f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency. © 2018 American Society of Plant Biologists. All Rights Reserved.

  20. Teneurs en oligo-éléments cuivre (Cu, fer (Fe, manganèse (Mn et zinc (Zn, et rapport fer-manganèse (Fe : Mn des pâturages naturels de la Sous-Région de l'Ituri (République du Zaïre

    Directory of Open Access Journals (Sweden)

    Sikumbili, V.

    1986-01-01

    Full Text Available Copper (Cu. Iron (Fe, Manganese (Mn and Zinc (Zn and Iran to Manganese ratio (Fe/Mn in natural pastures of Ituri region (Republic of Zaire. The concentrations of Copper, Iron, Manganese and Zinc, and the Iron to Manganese ratios were determined in 91 samples of pasture grasses from different parts of Ituri area, in Zaire. The samples were divided into 3 groups or sectors according to their geographic origin (southern, middle and northern, and refer to 20 different species of graminaceae. Analytical results showed normal levels of Copper. Iron and Manganese (Overall mean values of 12.33 ppm DM, 103.75 ppm DM and 81.75 ppm DM respectively. The levels of Zinc were generally very low and the mean value in the whole material was 36.40 ppm DM. The general mean value of the Iron to Manganese ratio of 1.68 was satisfactory in spite of slightly low values in the middle (1.36 and the north (1.25.

  1. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  2. Characterising the reactivity of metallic iron in Fe 0 /As-rock/H 2 O ...

    African Journals Online (AJOL)

    The intrinsic reactivity of 4 metallic iron materials (Fe0) was investigated in batch and column experiments. The Fe0 reactivity was characterised by the extent of aqueous fixation of in-situ leached arsenic (As). Air-homogenised batch experiments were conducted for 1 month with 10.0 g/. of an As-bearing rock (ore material) ...

  3. {Fe6O2}-Based Assembly of a Tetradecanuclear Iron Nanocluster

    Directory of Open Access Journals (Sweden)

    Svetlana G. Baca

    2011-01-01

    Full Text Available The tetradecanuclear FeIII pivalate nanocluster [Fe14O10(OH4(Piv18], comprising a new type of metal oxide framework, has been solvothermally synthesized from a hexanuclear iron pivalate precursor in dichlormethane/acetonitrile solution. Magnetic measurements indicate the presence of very strong antiferromagnetic interactions in the cluster core.

  4. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period

    Energy Technology Data Exchange (ETDEWEB)

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Shin, Chong Hyun; Fahrni, Christoph J.

    2016-01-01

    Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.

  5. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers

    Science.gov (United States)

    Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  6. Probiotics lactobacillus reuteri DSM 17938 and lactobacillus casei CRL 431 modestly increase growth, but non iron and zinc status, among Indonesian children aged 1-6 years

    NARCIS (Netherlands)

    Agustina, R.; Bovee-Oudenhoven, I.M.J.; Lukito, W.; Fahmida, U.; Rest, van de O.; Zimmermann, M.B.; Firmansyah, A.; Wulanti, R.; Albers, R.; Heuvel, van den E.G.H.M.; Kok, F.J.

    2013-01-01

    Probiotics and milk calcium may increase resistance to intestinal infection, but their effect on growth and iron and zinc status of Indonesian children is uncertain. We investigated the hypotheses that cow milk with added probiotics would improve growth and iron and zinc status of Indonesian

  7. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  8. The impact of aqueous washing on the ability of βFeOOH to corrode iron.

    Science.gov (United States)

    Watkinson, D E; Emmerson, N J

    2017-01-01

    Controlling the corrosion of historical and archaeological ferrous metal objects presents a significant challenge to conservators. Chloride is a major corrosion accelerator in coastal areas for historic ferrous metal structures and for the many chloride-containing archaeological objects within museums. Corrosion reactions involve the formation of akaganéite (βFeOOH) which incorporates chloride within its crystal structure and adsorbs it onto its surface. The mobility of the surface-adsorbed chloride in aqueous systems and atmospheric moisture means βFeOOH can itself cause iron to corrode. The extraction of chloride from βFeOOH by aqueous Soxhlet hot wash and aqueous room temperature washing is measured. The impact of this washing on the ability of βFeOOH to corrode iron is quantitatively investigated by determining the oxygen consumption of unwashed, Soxhlet-washed and room temperature-washed samples of βFeOOH mixed with iron powder and exposed to 80 % relative humidity. This acts as a proxy measurement for the corrosion rate of iron. The results are discussed relative to climatic factors for outdoor heritage objects and the treatment of archaeological iron in museums. Delivering better understanding of the properties of βFeOOH supports the development of evidence-based treatments and management procedures in heritage conservation.

  9. Uranium and Iron XRF distribution and Fe speciation results

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset 1: XRF image of U and Fe distribution Dataset 2: Fe linear combination fitting data. This dataset is associated with the following publication: Koster van...

  10. Flow-Injection Solid Phase Partial Least-Squares Spectrophotometric Simultaneous Determination of Iron, Nickel and Zinc

    Directory of Open Access Journals (Sweden)

    Teixeira Leonardo S. G.

    2002-01-01

    Full Text Available A PLS-2 multivariate calibration method has been developed for the simultaneous determination of iron, nickel and zinc in ternary mixtures by solid phase spectrophotometry associated with flow injection analysis. Fe(II, Ni(II and Zn(II form color complexes with 1-(2-thiazolylazo-2-naphthol (TAN, immobilized on a C18 bonded silica support, at pH 6.4. The proposed procedure is based on the different reaction/retention ratios of the studied ions on the solid support. Bilinear spectrophotometric data of the analytes, fixed in the solid support, were recorded in the 400-800 nm wavelength range as a function of time and a partial least squares (PLS-2 algorithm was used to predict results of synthetic samples. The calibration set employed was integrated by 8 ternary mixture standards and a blank solution. Mixtures containing 0.040 to 0.20 mg L-1, of each species, were successfully resolved, using 3 factors for each analyte and a restricted number of absorbance data obtained in the wavelength range from 560 to 650 nm.

  11. Nicotianamine Secretion for Zinc Excess Tolerance

    NARCIS (Netherlands)

    Aarts, M.G.M.

    2014-01-01

    Plants acquire micronutrients such as iron (Fe), zinc (Zn), manganese, or copper from soil. These micronutrients are often not readily available and they need to be mobilized to the proper free ionic form in order to be taken up by plant roots. Perhaps the only exception to this is the uptake of Fe

  12. Isotope-aided studies of the bioavailability of iron and zinc from human diets consumed in Chile and Ecuador

    International Nuclear Information System (INIS)

    Hertrampf, E.; Pizarro, F.; Olivares, M.; Fuenmayor, G.; Yepes, R.; Soria, A.; Walter, T.

    1994-01-01

    Currently it is accepted that iron absorbed from infant formulas is less than 10%. However, the composition of such formulas has changed considerably and there is no recent information on the effects of these modifications. Iron bioavailability from infant formulas with different levels of iron fortification (8 and 12 mg of iron/L) and from a standard meal based on a wheat cream (''farina'' flour) was measured by a double radioisotopic technique (Eakins and Brown) in 13 adult female volunteers. Iron bioavailability in infant formulas was very high. Eighteen and 20.6 percent of the iron was absorbed in the 8 and 12 mg iron/L fortified formulas respectively (geometric means corrected to 40% of reference dose absorption). The corresponding value for iron absorption from the standard meal was 6.7%. These high and non significant differences in iron bioavailability from the two formulas and the fact that daily consumption of 750 ml of formula supplies more iron than recommended would permit a lowering of the current iron fortification level of 12 mg/L. Iron availability of the Standard Meal measured with FLAIR modifications of Miller's in vitro technique was 4.42%. The percentage of dialyzable zinc was 2.04%. Research activities for next year will be based on the validation and application of the in vitro technique in Chilean and Ecuadorian foods. (author). 26 refs, 4 tabs

  13. Isotope-aided studies of the bioavailability of iron and zinc from human diets consumed in Chile and Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Hertrampf, E; Pizarro, F; Olivares, M [Chile Univ., Santiago (Chile). Inst. de Nutricion y Tecnologia de los Alimentos (INTA); Fuenmayor, G; Yepes, R [Universidad Central del Ecuador, Quito (Ecuador). Lab. de Investigaciones en Metabolismo y Nutricion (LIMN); Soria, A [Carabobo Univ., Valencia (Venezuela). Facultad de Ciencias de la Salud; Walter, T

    1994-12-31

    Currently it is accepted that iron absorbed from infant formulas is less than 10%. However, the composition of such formulas has changed considerably and there is no recent information on the effects of these modifications. Iron bioavailability from infant formulas with different levels of iron fortification (8 and 12 mg of iron/L) and from a standard meal based on a wheat cream (``farina`` flour) was measured by a double radioisotopic technique (Eakins and Brown) in 13 adult female volunteers. Iron bioavailability in infant formulas was very high. Eighteen and 20.6 percent of the iron was absorbed in the 8 and 12 mg iron/L fortified formulas respectively (geometric means corrected to 40% of reference dose absorption). The corresponding value for iron absorption from the standard meal was 6.7%. These high and non significant differences in iron bioavailability from the two formulas and the fact that daily consumption of 750 ml of formula supplies more iron than recommended would permit a lowering of the current iron fortification level of 12 mg/L. Iron availability of the Standard Meal measured with FLAIR modifications of Miller`s in vitro technique was 4.42%. The percentage of dialyzable zinc was 2.04%. Research activities for next year will be based on the validation and application of the in vitro technique in Chilean and Ecuadorian foods. (author). 26 refs, 4 tabs.

  14. Formation cross section of iron-60 with reactor neutrons in 59Fe(n, γ)60Fe reaction

    International Nuclear Information System (INIS)

    Sato, T.; Suzuki, T.

    1993-01-01

    Ingrowth of 60 Co radioactivity in an iron sample irradiated in a nuclear reactor has been measured for determination of formation cross section of 60 Fe in the 59 Fe(n, γ) 60 Fe reaction with reactor neutrons. After 5 years cooling, the irradiated iron was purified from 60 Co and other radioactive nuclides by an anion exchange separation method and isopropyl ether extraction in hydrochloric acid. The amount of 60 Co ingrowth was measured by γ-spectrometry using a Ge-detector coupled to a multichannel pulse height analyzer 4 years after the purification of iron. Neutron flux of the irradiation position was calculated from the amount of 55 Fe produced. The observed value of 12.5 ± 2.8 barn is slightly greater than reported value for burnup cross section of 59 Fe(n, x)X, where x refers γ, α, d, p and 2n, and X is any nuclide produced by the above reactions. (author) 8 refs.; 2 tabs

  15. Iron and Vitamin C Co-Supplementation Increased Serum Vitamin C Without Adverse Effect on Zinc Level in Iron Deficient Female Youth

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khoshfetrat

    2014-01-01

    Full Text Available Background: Iron supplementation can decrease the absorption of zinc and influence other antioxidants levels such as vitamin C. This study aimed to investigate the effect of iron supplements alone and in combination with vitamin C on zinc and vitamin C status in iron deficient female students. Methods: In a double-blind randomized clinical trail, 60 iron deficient students were selected from 289 volunteers residing in dormitory. After matching, subjects were randomly assigned into two groups: Group I (50 mg elemental iron supplements and Group II (50 mg elemental iron + 500 mg ascorbic acid. Serum ferritin, iron, serum zinc, and plasma vitamin C concentrations were measured by using enzyme-linked immunosorbent assay, spectrophotometer, atomic absorption spectrometer, and colorimeter, respectively after 6 and 12 weeks supplementation. Student′s t-test and repeated measures analysis of variance were applied to analyze the data using SPSS software. Results: Serum zinc levels had no significant differences between 2 groups at the baseline; however, its concentration decreased from 80.9 ± 4.2-68.9 ± 2.7 μg/dl to 81.2 ± 4.5-66.1 ± 2.9 μg/dl (P < 0.001 in Groups I and II, respectively after 6 weeks of supplementation. Continuous supplementation increased serum zinc concentration to baseline levels (79.0 ± 2.9 μg/dl; P < 0.01 in Group I and 70.5 ± 3.1 μg/dl in Group II following 12 weeks of supplementation. Plasma vitamin C increased from 3 ± 0/1-3.3 ± 0.2 mg/dl to 2.7 ± 0. 1-4.2 ± 0.2 mg/dl (P < 0.01 in Groups I and II, respectively. At the end of study, plasma vitamin C significantly increased from 3.3 ± 0.3-4.7 ± 0.3 (P < 0.01 to 4.2 ± 0.2-7.1 ± 0.2 (P < 0.001 in Groups I and II, respectively. Conclusions: Iron supplementation with and without vitamin C led to reduction in serum Zn in iron-deficient female students after 6 weeks. However, the decreasing trend stops after repletion of iron stores and Zn levels returned to the

  16. [Determination of Total Iron and Fe2+ in Basalt].

    Science.gov (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  17. Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR

    Science.gov (United States)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-03-01

    75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .

  18. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Energy Technology Data Exchange (ETDEWEB)

    Soltanahmadi, Siavash, E-mail: s.soltanahmadi@leeds.ac.uk [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Morina, Ardian [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Eijk, Marcel C.P. van; Nedelcu, Ileana [SKF Engineering and Research Centre, 3430 DT Nieuwegein (Netherlands); Neville, Anne [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom)

    2017-08-31

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  19. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    International Nuclear Information System (INIS)

    Soltanahmadi, Siavash; Morina, Ardian; Eijk, Marcel C.P. van; Nedelcu, Ileana; Neville, Anne

    2017-01-01

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  20. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  1. Micronutrient supplementation adherence and influence on the prevalences of anemia and iron, zinc and vitamin A deficiencies in preemies with a corrected age of six months

    Directory of Open Access Journals (Sweden)

    Brunnella Alcantara Chagas de Freitas

    Full Text Available OBJECTIVE: To analyze adherence to the recommended iron, zinc and multivitamin supplementation guidelines for preemies, the factors associated with this adherence, and the influence of adherence on the occurrence of anemia and iron, zinc and vitamin A deficiencies. METHODS: This prospective cohort study followed 58 preemies born in 2014 until they reached six months corrected age. The preemies were followed at a referral secondary health service and represented 63.7% of the preterm infants born that year. Outcomes of interest included high or low adherence to iron, zinc and multivitamin supplementation guidelines; prevalence of anemia; and prevalences of iron, zinc, and vitamin A deficiencies. The prevalence ratios were calculated by Poisson regression. RESULTS: Thirty-eight (65.5% preemies presented high adherence to micronutrient supplementation guidelines. At six months of corrected age, no preemie had vitamin A deficiency. The prevalences of anemia, iron deficiency and zinc deficiency were higher in the low-adherence group but also concerning in the high-adherence group. Preemies with low adherence to micronutrient supplementation guidelines were 2.5 times more likely to develop anemia and 3.1 times more likely to develop zinc deficiency. Low maternal education level increased the likelihood of nonadherence to all three supplements by 2.2 times. CONCLUSIONS: Low maternal education level was independently associated with low adherence to iron, zinc and vitamin A supplementation guidelines in preemies, which impacted the prevalences of anemia and iron and zinc deficiencies at six months of corrected age.

  2. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    Science.gov (United States)

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  3. Study on iron metabolism in children using double labelling of 51Cr and 59Fe

    International Nuclear Information System (INIS)

    Kobayashi, Masatsura

    1974-01-01

    In the children before and after treatment for iron deficiency anemia and those on ingesting a long-term low caloric and iron diet, life span of Ashby Technique 1/2(AST) red cells, circulatory blood volume (CBV), plasma iron disappearance(PID), red cell-iron utility(RCIU), plasma-iron turnover rate(PITR), and red cell-ironturnover rate(RCITR) were respectively determined using double labeling of 51 Cr and 59 Fe, and the following results and conclusions were obtained: In the patients with iron deficiency anemia, the rate of RCIU was highly increased, and simultaneously the shortening in AST was observed. Among the children with the iron deficiency anemia, five patients were examined immediately after the improvement on the anemia by iron drugs; the serum iron (SFe) averaged 74μg/ml. So the erthropiesis appeared to recover to normal, yet AST has hardly changed, still more has it shortened. In five children with celebral palsy associated with disturbance of physical development, who had ingested a long-term liquid low iron diet no evident increase of RCIU was found except for high calues of RCITR. The shortening in AST was not entirely seen in contrast with that of the simple alimentary iron deficiency anemia. Besides the CBV measured par kg of weight showed the remarkable increase. (Oyama, S.)

  4. Effect of food processing of pearl millet (Pennisetum glaucum) IKMP-5 on the level of phenolics, phytate, iron and zinc

    NARCIS (Netherlands)

    Zanabria Eyzaguirre, R.; Nienaltowska, K.; Jong, de L.E.Q.; Hasenack, B.B.E.; Nout, M.J.R.

    2006-01-01

    Pearl millet is consumed as a staple food in semi-arid tropical regions. With a view to upgrading the micronutrient status of pearl millet-based foods, the effects of single operations and of porridge preparation scenarios on levels and in vitro solubility (IVS) of iron and zinc and mineral

  5. Iron, zinc and phytic acid in rice from China: wet and dry processing towards improved mineral bioavailability

    NARCIS (Netherlands)

    Liang, J.

    2007-01-01

    Rice and rice products supply two thirds of Chinese people with their staple food. Mineral deficiencies, especially of iron and zinc, are prevalent in China, and are caused by insufficient intake and poor bioavailability. Rice and rice products contribute more than 50% of the antinutrient phytic

  6. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Melek, Esra [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-11-30

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 {mu}g L{sup -1} for copper, 2.01 {mu}g L{sup -1} for iron and 0.14 {mu}g L{sup -1} for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples.

  7. Fever and changes in plasma zinc and iron concentrations in the goat: The role of leukocytic pyrogen

    NARCIS (Netherlands)

    Verheijden, J.H.M.; Miert, A. S. J. P. A. M. Van; Duin, C.T.M. van; Schotman, A.J.H.; Nieuwenhuis, J.

    1984-01-01

    In goats with trypanosomiasis (T. vivax or T. congolense) no marked fall in plasma zinc concentration was seen despite high temperature peaks, whereas plasma concentrations of iron tended to undergo some decline. In goats infected with Ehrlichia phagocytophila, there was a marked decline in plasma

  8. Serum and tissue contents of copper, calcium, iron and magnesium elements in cases of acne vulgaris after zinc therapy

    International Nuclear Information System (INIS)

    El-Said, S.M.; El-Bedewi, A.F.

    2002-01-01

    The effect of zinc therapy on some trace elements contents in serum and skin was studied in normal group (forty) and patients group with acne vulgaris (26 males and 14 females) with age ranged between 14-30 year. They were under medical treatment with 330 mg oral zinc sulfate for 12 weeks. Highly significant decreases in both serum and tissue contents of copper and calcium were detected, as well as, highly significant decrease in the serum content of magnesium was recorded. The serum content of iron was highly significantly increased and that for tissue content was slightly significantly increased. It could be concluded that zinc therapy could be valuable through modulation of copper. calcium, iron and magnesium in acne patients

  9. Preparation of cobalt-zinc ferrite (Co0.8Zn0.2Fe2O4) nanopowder via combustion method and investigation of its magnetic properties

    International Nuclear Information System (INIS)

    Yousefi, M.H.; Manouchehri, S.; Arab, A.; Mozaffari, M.; Amiri, Gh. R.; Amighian, J.

    2010-01-01

    Research highlights: → Cobalt-zinc ferrite was prepared by combustion method. → Properties of the sample were characterized by several techniques. → Curie temperature was determined to be 350 o C. -- Abstract: Cobalt-zinc ferrite (Co 0.8 Zn 0.2 Fe 2 O 4 ) was prepared by combustion method, using cobalt, zinc and iron nitrates. The crystallinity of the as-burnt powder was developed by annealing at 700 o C. Crystalline phase was investigated by XRD. Using Williamson-Hall method, the average crystallite sizes for nanoparticles were determined to be about 27 nm before and 37 nm after annealing, and residual stresses for annealed particles were omitted. The morphology of the annealed sample was investigated by TEM and the mean particle size was determined to be about 30 nm. The final stoichiometry of the sample after annealing showed good agreement with the initial stoichiometry using atomic absorption spectrometry. Magnetic properties of the annealed sample such as saturation magnetization, remanence magnetization, and coercivity measured at room temperature were 70 emu/g, 14 emu/g, and 270 Oe, respectively. The Curie temperature of the sample was determined to be 350 o C using AC-susceptibility technique.

  10. Disponibilidad de cobre, hierro, manganeso, zinc en suelos del NO argentino Pant availability of copper, iron, manganesum and zinc in the north west of Agentina

    Directory of Open Access Journals (Sweden)

    Núria Roca

    2007-07-01

    Full Text Available Cobre, hierro, manganeso y zinc son cuatro metales esenciales para el crecimiento vegetal. A pesar de las pequeñas cantidades requeridas por las plantas, los suelos agrícolas suelen ser deficitarios en uno o más micronutrientes de forma que su concentración en los tejidos de los vegetales cae por debajo de los niveles que permiten un crecimiento óptimo. La naturaleza del suelo juega un papel fundamental en la disponibilidad de micronutrientes y en su comportamiento a nivel suelo-planta. Los objetivos planteados en el presente estudio son: a establecer la relación entre los parámetros edáficos y la dinámica de los metales dentro del perfil del suelo, y b determinar la biodisponibilidad y zonas de deficiencia de micronutrientes en suelos agrícolas y suelos con riesgo de salinización. El porcentaje de materia orgánica es el factor determinante en el contenido y distribución de los micronutrientes en el suelo objeto de estudio, siendo el horizonte superficial el de mayor acumulación. Tanto CuDTPA, FeDTPA como MnDTPA tienen cierta movilidad en el perfil, mientras que ZnDTPA permanece adsorbido sin un desplazamiento vertical. El ZnDTPA es el único metal que además, muestra diferencias como consecuencia de la salinidad y granulometría de los suelos. No obstante, las condiciones geoquímicas del suelo implican una baja extractabilidad y una cierta dificultad de absorción de los micronutrientes por parte de las plantas.Copper, iron, manganese and zinc are among the essential elements for plant growth. Despite the small amounts required by plants, agricultural soils are usually deficient in one or more of these micronutrients. Therefore, their concentration in plant tissues falls below the optimum levels. Soil nature plays a fundamental role in the availability of micronutrients and their behavior at a soil-plant level. The aims of this paper were: a to establish the relationship between soil properties and micronutrient dynamics within

  11. Effect of different home-cooking methods on the bioaccessibility of zinc and iron in conventionally bred cowpea (Vigna unguiculata L. Walp consumed in Brazil

    Directory of Open Access Journals (Sweden)

    Elenilda J. Pereira

    2016-03-01

    Full Text Available Background: The cowpea (Vigna unguiculata L. Wap. is an excellent source of iron and zinc. However, iron from plant sources is poorly absorbed compared with iron from animal sources. Objectives: The objective of this study was to evaluate iron and zinc bioaccessibility in cowpea cultivars after processing. Methods: Zinc and iron bioaccessibilities in cowpea samples were determined based on an in vitro method involving simulated gastrointestinal digestion with suitable modifications. Results: When water-soaked beans were cooked in a regular pan, the highest percentage of bioaccessible iron obtained was 8.92%, whereas when they were cooked in a pressure cooker without previous soaking, the highest percentage was 44.33%. Also, the percentage of bioaccessible zinc was 52.78% when they were cooked in a regular pan without prior soaking. Higher percentages of bioaccessible iron were found when cooking was done in a pressure cooker compared with regular pan cooking. In all cultivars, cooking of cowpea beans in both pressure cooker and in a regular pan yielded higher percentages of bioaccessible zinc compared with availability of bioaccessible iron. Conclusions: Iron bioaccessibility values suggest that cooking in a regular pan did not have a good effect on iron availability, since the percentage of bioaccessible iron was lower than that of zinc. The determination of iron and zinc bioaccessibility makes it possible to find out the actual percentage of absorption of such minerals and allows the development of efficient strategies for low-income groups to access foods with high levels of these micronutrients.

  12. Absorption and translocation of 59Fe and 14C-rhodotorulate in iron-stressed tomato

    International Nuclear Information System (INIS)

    Miller, G.W.; Shigematsu, A.; Motoji, N.; Shibabe, S.

    1990-01-01

    Tomato plants, cultivars FER and Earlygirl (both iron efficient and able to use rhodotorulate- 59 Fe), were grown under low Fe conditions for 9 days. Rhodotorulate- 14 C, isolated from Rhodotorula pilimanae cultured with 14 C-sucrose, and rhodotorulate- 59 Fe were added to the Fe-stressed plants for 6-, 24- or 48-h periods. It was evident from autoradiograms and tissue sampling that 59 Fe and 14 C were abundant in roots, stems and leaves. The 14 C autoradiograms showed especially high density in the small, younger leaves, as was found also with 59 Fe. Unlike synthetic chelates, rhodotorulate (or metabolised derivatives) was readily absorbed by the roots and translocated to the leaves. (author)

  13. Preparation and biodistribution of {sup 59}Fe-radiolabelled iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pospisilova, Martina, E-mail: martinapospisilova@gmail.com; Zapotocky, Vojtech; Nesporova, Kristina [Contipro a.s (Czech Republic); Laznicek, Milan; Laznickova, Alice [Charles University, Faculty of Pharmacy in Hradec Králové (Czech Republic); Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir [Contipro a.s (Czech Republic)

    2017-02-15

    We report on the {sup 59}Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange ({sup 59}Fe-IONP{sub ex}) and precursor labelling ({sup 59}Fe-IONP{sub pre}). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—{sup 59}Fe-IONP{sub pre} exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of {sup 59}Fe-IONP{sub pre} coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high {sup 59}Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  14. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean

    NARCIS (Netherlands)

    Bin, Levi M.; Weng, Liping; Bugter, Marcel H.J.

    2016-01-01

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD),

  15. Bimetallic Porous Iron (pFe) Materials for Remediation/Removal of Tc from Aqueous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Remediation of Tc remains an unresolved challenge at SRS and other DOE sites. The objective of this project was to develop novel bimetallic porous iron (pFe) materials for Tc removal from aqueous systems. We showed that the pFe is much more effective in removing TcO4 - (×30) and ReO4 - (×8) from artificial groundwater than granular iron. Tc K-edge XANES spectroscopy indicated that Tc speciation on the pFe was 18% adsorbed TcO4 -, 28% Tc(IV) in Tc dioxide and 54% Tc(IV) into the structure of Fe hydroxide. A variety of catalytic metal nanoparticles (i.e., Ni, Cu, Zn, Ag, Sn and Pd) were successfully deposited on the pFe using scalable chemical reduction methods. The Zn-pFe was outstanding among the six bimetallic pFe materials, with a capacity increase of >100% for TcO4 - removal and of 50% for ReO4 - removal, compared to the pFe. These results provide a highly applicable platform for solving critical DOE and industrial needs related to nuclear environmental stewardship and nuclear power production.

  16. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Ivan, E-mail: ivan.mikhailov@misis.ru [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation); Komarov, Sergey [Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8576 (Japan); Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation)

    2017-01-05

    Highlights: • nZVI is used as Fenton-like reagent for activation of Zn leaching from the BFS. • nZVI has positive effect on kinetics of Zn leaching though with some loss of efficiency. • A complex ultrasonic-assisted method for BFS recycling is proposed. - Abstract: Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1 g/l addition of nZVI and 0.05 M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5 min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15 min treatment with 0.1 M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  17. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration

    Science.gov (United States)

    Flinn, Jane M; Kakalec, Peter; Tappero, Ryan; Jones, Blair F.; Lengyel, Imre

    2014-01-01

    Zinc (Zn) is abundantly enriched in sub-retinal pigment epithelial (RPE) deposits, the hallmarks of age-related macular degeneration (AMD), and is thought to play a role in the formation of these deposits. However, it is not known whether Zn is the only metal relevant for sub-RPE deposit formation. Because of their involvement in the pathogenesis of AMD, we determined the concentration and distribution of calcium (Ca), iron (Fe) and copper (Cu) and compared these with Zn in isolated and sectioned macular (MSD), equatorial (PHD) and far peripheral (FPD) sub-RPE deposits from an 86 year old donor eye with post mortem diagnosis of early AMD. The sections were mounted on Zn free microscopy slides and analyzed by microprobe synchrotron X-ray fluorescence (μSXRF). Metal concentrations were determined using spiked sectioned sheep brain matrix standards, prepared the same way as the samples. The heterogeneity of metal distributions was examined using pixel by pixel comparison. The orders of metal concentrations were Ca ⋙ Zn > Fe in all three types of deposits but Cu levels were not distinguishable from background values. Zinc and Ca were consistently present in all deposits but reached highest concentration in MSD. Iron was present in some but not all deposits and was especially enriched in FPD. Correlation analysis indicated considerable variation in metal distribution within and between sub-RPE deposits. The results suggest that Zn and Ca are the most likely contributors to deposit formation especially in MSD, the characteristic risk factor for the development of AMD in the human eye.

  18. The synthesis, structure and reactivity of iron-bismuth complexes : Potential Molecular Precursors for Multiferroic BiFeO3

    OpenAIRE

    Wójcik, Katarzyna

    2009-01-01

    The thesis presented here is focused on the synthesis of iron-bismuth alkoxides and siloxides as precursors for multiferroic BiFeO3 systems. Spectrum of novel cyclopentadienyl substituted iron-bismuth complexes of the general type [{Cpy(CO)2Fe}BiX2], as potential precursors for cyclopentadienyl iron-bismuth alkoxides or siloxides [{Cpy(CO)2Fe}Bi(OR)2] (R-OtBu, OSiMe2tBu), were obtained and characterised. The use of wide range of cyclopentadienyl rings in the iron carbonyl compounds allowed fo...

  19. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  20. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-04-01

    Full Text Available The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W2B, the rod-like (Fe, W3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W3B phase. The resultant Fe-3.5B-11W (wt % alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper.

  1. Effects of mine drainage on the River Hayle, Cornwall. Factors affecting concentrations of copper, zinc, and iron in water, sediments and dominant invertebrate fauna

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.E.

    1977-02-15

    Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the ''particulate'' fraction whereas 80% of zinc was in the ''soluble'' form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments. Seasonal differences in ''total'' metal content of waters suggested that concentrations of copper, zinc and iron increased during periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal. In the ''free-living'' Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.

  2. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.

    Science.gov (United States)

    Bin, Levi M; Weng, Liping; Bugter, Marcel H J

    2016-11-09

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD), plant dry matter yield, and the mass fractions of important mineral elements in the plant were quantified in a greenhouse pot experiment. All three Fe chelates increased SPAD index and dry matter yield compared to the control. The effect of FeHBED on chlorophyll production was visible over a longer time span than that of FeEDDHA and FeEDDHMA. Additionally, FeHBED did not suppress Mn uptake as much as the other Fe chelates. Compared to the other Fe chelates, total Fe content in the young leaves was lower in the FeHBED treatment; however, total Fe content was not directly related to chlorophyll production and biomass yield. For each chelate, the ortho-ortho isomer was found to be more effective than the other isomers evaluated.

  3. Phase composition of iron-rich R-Fe-Si (R=Dy, Ho, Er) alloys

    International Nuclear Information System (INIS)

    Ivanova, G.V.; Makarova, G.M.; Shcherbakova, E.V.; Belozerov, E.V.

    2005-01-01

    Phase composition is studied in iron-rich alloys of R-Fe-Si (R=Dy, Ho, Er). In the as-cast state R 2 (Fe, Si) 17 of type Th 2 Ni 17 and R(Fe, Si) 12 compounds are observed; in the alloys of rated composition of R(Fe 0.85 Si 0.15 ) 8.5 (R=Dy, Er) a compound R 2 (Fe, Si) 17 of Th 2 Zn 17 -type is revealed as well. The annealing at 1273 K results in formation of Dy 3 (Fe, Si) 29 and also the compounds with the presumed composition of Dy 4 (Fe, Si) 41 and Ho 4 (Fe, Si) 41 . As this takes place the alloys contain a transition structure as well that represents a set of small-sized areas with various type short-range order in mutual displacement of Fe-Fe(Si) dumpbell chains. The process of phase formation at 1273 K is faced with difficulties. Even the annealing for 1000 h does not result in the state of equilibrium [ru

  4. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006.

    Science.gov (United States)

    De la Cruz-Góngora, Vanessa; Gaona, Berenice; Villalpando, Salvador; Shamah-Levy, Teresa; Robledo, Ricardo

    2012-01-01

    To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were 14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.

  5. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India

    International Nuclear Information System (INIS)

    Natesan, M.; Venkatachari, G.; Palaniswamy, N.

    2006-01-01

    As a part of updating Corrosion Map of India project, atmospheric corrosion behaviour of commercially available engineering materials such as mild steel, galvanized iron, zinc and aluminium metals was studied in marine, industrial, urban, and rural environments by weight loss method at 10 exposure stations in India over a period of 5 years. The results of these studies demonstrated that galvanized iron, zinc and aluminium metals were several times more durable than mild steel. Compared to galvanized iron and zinc, aluminium provided superior protection in industrial and marine environment except at Mormugao Port Trust (MPT). It also offered much better resistance to corrosion in rural environments. At certain places, galvanized iron proved to be more durable than aluminium. The results obeyed well with the empirical kinetics equation of the form C = Kt n , where K and C are the corrosion losses in μm after 1 and 't' years of the exposure, respectively, and 'n' is a constant. Based on 'n' values, the corrosion mechanisms of these metals are predicted. The corrosion products formed on the metal samples in Chennai marine atmosphere were identified by X-ray diffraction analysis

  6. Isotope-aided studies of the bioavailability of iron and zinc from human diets consumed in Poland

    International Nuclear Information System (INIS)

    Rafalski, H.; Switoniak, T.

    1994-01-01

    The bioavailability of food iron is affected by a number of physiological and dietary variables and it should be checked for the population living in natural conditions. The primary purpose of this study was to measure in volunteers iron absorption after oral administration of a wheat roll enriched with 15 mg of Fe as FeSO 4· 7H 2 O and 20 μCi of 59 Fe. For assessment of iron absorption whole body counting was used. The secondary purpose was to relate the available iron to iron stores, anthropometric indices, bleeding days and dietary variables. Thirteen female and 7 male healthy subjects aged between 19 and 47 years were observed. Hematological measurements on blood: serum ferritin (SF), serum iron (SI), total iron binding capacity (TIBC), transferrin (ST), transferrin saturation (TS), hemoglobin (Hb), hematocrit (Hct), red blood cell (RBC), mean corpuscular volume (MCV) were made. The subjects were examined by a specialist in internal medicine. Their 24-hour recall food intake was performed by questionnaire. The findings concerning the purposes of the study may be summarized as follows: 1) mean absorbed iron was 1.6 ± 1.2 mg for women, and 0.5±0.2 mg for men; 2) iron stores evaluated from SF were in women 2.6± 1.7 mg/kg body weight and in men 10.4±5.4 mg/kg; 3) blood indices proved iron deficiency anemia in 1 woman, Hb = 9.2 g/dL, SF = 1.8 μg/L, TS = 6%; in 4 women deficient iron stores were observed, Hb > 12g/dL, SF < 12 mg/L; 8 women and 7 men were normal; 4) in women the absorbed iron related inversely to SF (-0.61) and iron stores (-0.61); 5) the iron stores related to the sum of four skinfolds in women (0.55) and in men (0.80), in women it related to body weight (0.77) too; 6) in women the absorbed iron related to bleeding days (0.69); 7) in women ascorbic acid consumption related to iron store indices; SF, SI and TS. (author). 2 figs, 3 tabs

  7. Ferrite formation in the MeO – Fe2O3 (Me - Zn, Cd, Cu) systems and its impact for the zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Boyanov, Boyan S.; Cherkezova-Zheleva, Zara

    2011-01-01

    Study on the solid state interactions between MeO (Me - Zn, Cd, Cu) and α-Fe 2 O 3 is very important for metallurgy as well as for the preparation of magnetic materials and new catalysts. Zinc, copper and cadmium ferrites are obtained by the conventional ceramic technology. Chemical, DTA and TG analyses, Mössbauer spectroscopy and X-ray phase analysis have been used in the study of intermediate and final products of solid state interactions. The kinetics of formation of MeFe 2 O 4 is investigated by different kinetics equations and the activation energy values are obtained. The ferrite formation process in the system ZnO - α-Fe 2 O 3 and the effectiveness of zinc extraction during the hydrometallurgical treatment of the zinc calcine and the fuming of zinc containing slags are discussed. Key words: ferrites, zinc, copper, cadmium, kinetics, zinc concentrate, Mössbauer spectroscopy, Xray phase analysis

  8. Reactions of laser-ablated iron atoms and cations with carbon monoxide: Infrared spectra of FeCO+, Fe(CO)2+, Fe(CO)x, and Fe(CO)x- (x=1-4) in solid neon

    Science.gov (United States)

    Zhou, Mingfei; Andrews, Lester

    1999-06-01

    Laser-ablated iron atoms, cations, and electrons have been reacted with CO molecules during condensation in excess neon. The FeCO molecule is observed at 1933.7 cm-1 in solid neon. Based on isotopic shifts and density functional calculations, the FeCO molecule has the same 3Σ- ground state in solid neon that has been observed at 1946.5 cm-1 in a recent high resolution gas phase investigation [Tanaka et al., J. Chem. Phys. 106, 2118 (1997)]. The C-O stretching vibration of the Fe(CO)2 molecule is observed at 1917.1 cm-1 in solid neon, which is in excellent agreement with the 1928.2 cm-1 gas phase value for the linear molecule. Anions and cations are also produced and trapped, absorptions at 1782.0, 1732.9, 1794.5, and 1859.7 cm-1 are assigned to the linear FeCO-, Fe(CO)2-, trigonal planar Fe(CO)3-, and C3v Fe(CO)4- anions, respectively, and 2123.0, 2134.0 cm-1 absorptions to the linear FeCO+ and Fe(CO)2+ cations. Doping these experiments with CCl4 virtually eliminates the anion absorptions and markedly increases the cation absorptions, which confirms the charge identifications. Higher iron carbonyl Fe(CO)3, Fe(CO)4, and Fe(CO)5 absorptions are produced on photolysis.

  9. Iron chemistry of Hawaiian rainforest soil solution: Biogeochemical implications of multiple Fe redox cycles

    Science.gov (United States)

    Thompson, A.; Chorover, J.; Chadwick, O.

    2003-12-01

    Iron (Fe)-oxides are important sorbents for nutrients, pollutants and natural organic matter (NOM). When flucutations in soil oxygen status exist, Fe can cycle through reduced and oxidized forms and thus greatly affect the aqueous conc. of nutrients and metals. We are examining the influence of oscillating oxic/anoxic conditions on Fe-oxide formation and biogeochemical processes (microbial community composition, and carbon, nutrient and trace metal availability). Our work makes use of a natural rainfall gradient ranging from 2.2 to 4.2 m mean annual precipitation (MAP) on the island of Maui, Hawaii, USA. All sites developed on a 400ky basaltic lava flow and comprise soils under similar vegetation. Solid phase Fe concentration and oxidation state vary systematically across this rainfall gradient with a sharp decrease in pedogenic Fe between 2.8 m and 3.5 m MAP that corresponds with an Eh of 330 mV (1-yr ave.). Fe isotopic composition and Fe-oxide associated rare earth elements (REE) also suggest a shift from ligand-promoted to redutive Fe dissolution with increasing rainfall. To examine the effects of multiple Fe oxidation/reduction cycles, we constructed a set of redox-stat reactors that maintain Eh values within a set range by small Eh-triggered additions of oxygen. Triplicate soil slurry reactors are subjected to redox (Eh) oscillations such that Fe is repeatedly cycled from oxidized to reduced forms. During our current experiment, we measure pH and Eh dynamics and monitor the distribution of Fe(II) and Fe(III), major ion and anion concentrations, a range of trace metals including the REE, and total organic carbon (TOC) in three Stokes-effective particle size fractions (DNA fingerprinting is used to track changes in the microbial community. Prior to implementing the rigorous sampling procedure above, we completed two preliminary reactor experiments focusing only on Fe distribution between aqueous, HCl, and oxalate extractions. These experiments illustrated (1) a

  10. The use of radioisotopes and low abundance stable isotopes for the study of bioavailability and the metabolism of iron, zinc and copper

    International Nuclear Information System (INIS)

    Aggett, P.J.; Fairweather Tait, S.

    1994-01-01

    The use of whole body counting and imaging with ''area of interest'' counting to monitor the metabolism of zinc in healthy volunteers and patients with coeliac diseases and cirrhosis is described as are studies of interaction between iron and copper. Stable isotopes of iron, copper and zinc have been used to investigate the metabolism of these elements in young infants and have proved useful in assessing the validity of current estimated requirements particularly of iron. Stable isotopes have also been used to improve the classic metabolic balance approach to the study of the homeostasis of zinc in zinc deprived volunteers, and have progressed to studies using plasma kinetic curves of the systemic compartmentation of zinc

  11. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  12. Bio-accumulation of copper, zinc, iron and manganese in oyster Saccostrea cucullata, Snail Cerithium rubus and Clam Tellina angulata from the Bombay coast

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R; Moraes, C.

    accumulation was high in S. cucullata, manganese in C. rubus and iron in T. angulata. Similarly, copper and zinc in S. cucullata and copper in C. rubus were found occasionally higher than accepted health standards...

  13. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Optical and structural properties of FeSe2 thin films obtained by selenization of sprayed amorphous iron oxide films

    International Nuclear Information System (INIS)

    Ouertani, B.; Ouerfelli, J.; Saadoun, M.; Zribi, M.; Rabha, M.Ben; Bessais, B.; Ezzaouia, H.

    2006-01-01

    We report in this work the optical and structural properties of iron diselenide films (FeSe 2 ) obtained by selenization under vacuum of amorphous iron oxide films predeposited by spray pyrolysis. The structure of the FeSe 2 films was investigated by scanning electron microscopy (SEM), microprobe analyses, atomic force microscopy (AFM) and X-ray diffraction (XRD). XRD and micro-probe analyses showed that FeSe 2 as well as FeSe 2-x phases begin to appear at a selenization temperature of 500 deg. C. As the selenization temperature rises, the iron diselenide films become more stoichiometric with a dominance of the FeSe 2 phase. At 550 deg. C, a single FeSe 2 phase having good crystallinity was obtained. At 600 deg. C, two phases were detected: the major one corresponds to Fe 3 O 4 , and the minor one to FeSe 2 . SEM surface views show that FeSe 2 films have granular structure with small spherical crystallites. However, layered and clustered FeSe 2 films were found, respectively, at 550 deg. C and 600 deg. C. Absorption measurements show that iron diselenide films have a direct and an indirect gaps of about 1.03 eV and 0.3 eV, which were suggested to be due to the stoichiometric FeSe 2 phase and to a Fe-rich non-stoichiometric phase, respectively

  15. μ(4)-Orthothio-carbonato-tetra-kis-[tri-carbonyl-iron(I)](2 Fe-Fe).

    Science.gov (United States)

    Shi, Yao-Cheng; Cheng, Huan-Ren; Yuan, Li-Min; Li, Qian-Kun

    2011-11-01

    The fused bis-butterfly-shaped title compound, [Fe(4)(CS(4))(CO)(12)], possesses an orthothio-carbonate (CS(4) (4-)) ligand that acts as a bridge between two Fe(2)(CO)(6) units. A short intra-molecular S⋯S contact [2.6984 (8) and 2.6977 (8) Å] occurs in each S(2)Fe(2)(CO)(6) fragment.

  16. Efeito da suplementação com ferro na biodisponibilidade de zinco em uma dieta regional do nordeste do Brasil Effects of supplementation with iron on the bioavailability of zinc in the regional diet of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Lúcia F. C. Pedrosa

    1993-08-01

    Full Text Available Foram investigados os efeitos da suplementação com ferro na biodisponibilidade de zinco de uma dieta "regional" do Nordeste (DRNE, em ratos albinos Wistar, consumindo rações à base da referida dieta (DRNE e rações controle. As rações DRNE, continham 16 mg de Zn/kg e níveis de 35 mg, 70 mg e 140mg Fe/kg. As rações controle foram elaboradas segundo o "Committee on Laboratory Animal Diets", contendo níveis de proteína, ferro e zinco ajustados aos das rações experimentais DRNE. Os parâmetros utilizados para medir a biodisponibilidade do zinco foram: Índice de Absorção Aparente do Zn e nível total de Zn nos fêmures. Os resultados obtidos demonstraram que a suplementação com ferro diminuiu a biodisponibilidade do Zn, e os efeitos dessa interferência foram influenciados pela qualidade da dieta e pelas proporções Fe:Zn. Tal fato deve ser considerado nas práticas que envolvem fortificação de alimentos e/ou suplementos medicamentosos, comuns nas populações com carências nutricionais.The effects of supplementation with iron on the zinc bioavailability of the regional diet of northeastern Brazil (RDN, were investigated. One assay with Wistar rats, feed on RDN and control diets was carried out. The RDN diets contained 16 mg Zn/kg and levels of 35 mg, 70 mg and 140 mg Fe/kg, respectively. The control diets were prepared according to the standards of the Committee on Laboratory Animal Diets, with levels of protein, iron and zinc identical to those of RDN diets. Index of apparent absorption and zinc retained in the femur of the animals were the parameters utilized to measure zinc bioavailability. The results demonstrated that the supplementation with iron decreased the zinc bioavailability, and the effects were seen to affect diet quality and the Fe:Zn ratio. This fact must be taken into consideration in practices such as the fortying of foodstuffs and the administration of vitamin-mineral supplements to populations with

  17. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    Science.gov (United States)

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  18. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co

  19. In-gap bound states induced by interstitial Fe impurities in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Degang, E-mail: degangzhang@yahoo.com

    2015-12-15

    Highlights: • We provide an explanation for the interesting STM observation of the robust zero energy bound state on the interstitial Fe impurities in iron-based superconductors. - Abstract: Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe–Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter Δ{sub I} between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev’s bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and Δ{sub I} are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.

  20. Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH

    Science.gov (United States)

    Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.

    2017-12-01

    In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in

  1. Influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers, Fe/Cr/Fe- and Fe/MgO/Fe multilayers; Untersuchung der Morphologie und magnetische Eigenschaften von ionenstrahl-gesputterten Eisen-Einzelschichten, Fe/Cr/Fe- und Fe/MgO/Fe-Schichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, Alexandra

    2007-04-05

    In this PhD Thesis, the influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers on GaAs is examined. To analyze the structure of the produced iron films, low energy electron diffraction and scanning tunneling microscopy is employed. The utilized methods to investigate the magnetic properties are Kerr- and SQUID-magnetometry and ferromagnetic resonance. It is demonstrated that on untreated as well as on presputtered and heated GaAs substrates the sputtered iron films grow epitaxially. The least surface roughness of 1 A exhibit iron films grown on untreated GaAs, while iron films on heated GaAs have the highest roughness of 30 A. The largest crystal anisotropy constant is found for the presputtered GaAs/Fe-System. For this preparation method, two monolayers of iron are determined to be magnetically dead layers. At a film thickness of 100 A, 83% of the value for saturation magnetization of bulk iron are achieved. The small observed FMR-linewidths confirm the good bulk properties of the ion beam sputtered iron. Furthermore, an antiferromagnetic interlayer exchange coupling in sputtered Fe/Cr/Fe-films was achieved. For a thickness of 12 to 17 A of the chrome interlayer, a coupling strength up to 0.2 mJ/m{sup 2} is found. To account for the small coupling strength, a strong intermixing at the interface is assumed. Finally, epitaxial Fe/MgO/Fe/FeMn multilayers are deposited on GaAs. After the structuring, it is possible to detect tunneling processes in the tunneling contacts with current-voltage measurements. The tunnel magneto resistance values of 2% are small, which can be explained by the absence of sharp, well-defined interfaces between the Fe/FeMn and the Fe/MgO interfaces. These results demonstrate, that analog to MBE the ion beam sputtering method realizes good magnetic bulk properties. However, interface sensitive phenomena are weakened because of a strong intermixing at the interfaces. (orig.)

  2. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  3. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part I – Moulding technologies vs. zinc coating

    Directory of Open Access Journals (Sweden)

    Szczęsny A.

    2017-03-01

    Full Text Available Studies have demonstrated that in the process of hot dip galvanizing the decisive influence on the mechanism of zinc coating formation and properties has the quality of the mechanically untreated (raw surface layer of the galvanized product. The terms “casting surface layer” denote various parameters of the microstructure, including the type of metal matrix, the number of grains and the size of graphite nodules, possible presence of hard spots (the precipitates of eutectic cementite and parameters of the surface condition. The completed research has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing.

  4. Iron, Magnesium, Vitamin D, and Zinc Deficiencies in Children Presenting with Symptoms of Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Amelia Villagomez

    2014-09-01

    Full Text Available Attention-Deficit/Hyperactivity Disorder (ADHD is a neurodevelopmental disorder increasing in prevalence. Although there is limited evidence to support treating ADHD with mineral/vitamin supplements, research does exist showing that patients with ADHD may have reduced levels of vitamin D, zinc, ferritin, and magnesium. These nutrients have important roles in neurologic function, including involvement in neurotransmitter synthesis. The aim of this paper is to discuss the role of each of these nutrients in the brain, the possible altered levels of these nutrients in patients with ADHD, possible reasons for a differential level in children with ADHD, and safety and effect of supplementation. With this knowledge, clinicians may choose in certain patients at high risk of deficiency, to screen for possible deficiencies of magnesium, vitamin D, zinc, and iron by checking RBC-magnesium, 25-OH vitamin D, serum/plasma zinc, and ferritin. Although children with ADHD may be more likely to have lower levels of vitamin D, zinc, magnesium, and iron, it cannot be stated that these lower levels caused ADHD. However, supplementing areas of deficiency may be a safe and justified intervention.

  5. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  6. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries

    Science.gov (United States)

    Yoder, Tara S.; Tussing, Matthew; Cloud, Jacqueline E.; Yang, Yongan

    2015-01-01

    Converting iron pyrite (FeS2) from a non-cyclable to a cyclable cathode material for lithium ion batteries has been an ongoing challenge in recent years. Herein we report a promising mitigation strategy: wet-chemistry based conformal encapsulation of synthetic FeS2 nanocrystals in a resilient carbon (RC) matrix (FeS2@RC). The FeS2@RC composite was fabricated by dispersing autoclave-synthesized FeS2 nanocrystals in an aqueous glucose solution, polymerizing the glucose in a hydrothermal reactor, and finally heating the polymer/FeS2 composite in a tube furnace to partially carbonize the polymer. The FeS2@RC electrodes showed superior cyclability compared with the FeS2 electrodes, that is, 25% versus 1% of retention at the 20th cycle. Based on electrochemical analysis, XRD study, and SEM characterization, the performance enhancement was attributed to RC's ability to accommodate volume fluctuation, enhance charge transfer, alleviate detrimental side reactions, and suppress loss of the active material. Furthermore, the remaining issues associated with the current system were identified and future research directions were proposed.

  7. Phase stability of iron germanate, FeGeO3, to 127 GPa

    Science.gov (United States)

    Dutta, R.; Tracy, S. J.; Stan, C. V.; Prakapenka, V. B.; Cava, R. J.; Duffy, T. S.

    2018-04-01

    The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO3, are limited. Here, we have examined the behavior of FeGeO3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO3 (II)] at 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO3 (III) occurs above 54 GPa at room temperature. Laser-heating experiments ( 1200-2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO2 polymorphs. In all cases, we observe that FeGeO3 dissociates into GeO2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO3, which also dissociates into a mixture of the oxides (FeO + SiO2) at least up to 149 GPa.

  8. Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) Flour and Legume Fractions.

    Science.gov (United States)

    Luo, Yu-Wei; Xie, Wei-Hua; Cui, Qun-Xiang

    2010-02-24

    Simulations of gastrointestinal digestion were used to try to identify the nature of the complexes between antinutritional factors and iron and zinc in faba bean and legume fractions. In digestible residue of raw faba bean flour, simultaneous action of cellulase and phytases made it possible to release about 28% units more iron than that released with the treatment without enzymes. About 49.8% of iron in raw faba bean flour was solubilized after in vitro digestion and simultaneous action of cellulase and phytase. In the hull fraction, the action of phytases and the simultaneous action of cellulase and phytase allowed about 7 and 35% units of additional zinc to be solubilized, respectively. Single enzymatic degradation of phytates from dehulled faba bean allowed solubilization from 65 to 93% of zinc, depending upon the treatment. In dehulled faba bean, iron was chelated by phytates and by fibers, whereas zinc was almost exclusively chelated by phytates. In the hull of faba bean, a high proportion of iron was chelated by iron-tannins, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers.

  9. Recycling of Zn-containing Fe-bearing steelmaking waste by the reducing smelting process in pig iron. I. Laboratory tests

    Directory of Open Access Journals (Sweden)

    Kendera Ján

    1997-09-01

    Full Text Available Results of the laboratory test treatment of the zinc containing steelwork dusts in a hot liquid pig iron are described. These results show that it is necessary to use an external reductant. The zinc content of the dust emission is ca. 20 %. The charge of the steel-works dusts diminished the Si and Mn content of pig iron.

  10. Scanning tunneling microscopy on iron-chalcogenide superconductor Fe(Se, Te) single crystal

    International Nuclear Information System (INIS)

    Ukita, R.; Sugimoto, A.; Ekino, T.

    2011-01-01

    We show scanning tunneling microscopy/spectroscopy (STM/STS) results of Fe(Se, Te). STM topography shows square arrangements of spots with the lattice spacing 0.37 nm. Te and Se atoms are randomly distributed in the STM topography. The STM topography of FeTe exhibits clusters of separated iron atoms. We have investigated the iron-chalcogenide superconductor Fe(Se, Te) using a low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) technique. STM topography at 4.9 K shows clear regular square arrangements of spots with the lattice spacing ∼0.37 nm, from which what we observe are attributed to Se or Te atomic plane. In the topography, brighter and darker atomic spots are randomly distributed, which are most probably due to Te and Se atoms, respectively. For the FeTe compound, the topography exhibits clusters of the bright spots probably arising from separated iron atoms distributing over several Te lattice sites. The STS measurements clarify the existence of the large-size gap with 2Δ = 0.4-0.6 eV.

  11. Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis.

    Science.gov (United States)

    Pain, Debkumar; Dancis, Andrew

    2016-06-01

    Fe-S cluster assembly is an essential process for all cells. Impairment of Fe-S cluster assembly creates diseases in diverse and surprising ways. In one scenario, the loss of function of lipoic acid synthase, an enzyme with Fe-S cluster cofactor in mitochondria, impairs activity of various lipoamide-dependent enzymes with drastic consequences for metabolism. In a second scenario, the heme biosynthetic pathway in red cell precursors is specifically targeted, and iron homeostasis is perturbed, but lipoic acid synthesis is unaffected. In a third scenario, tRNA modifications arising from action of the cysteine desulfurase and/or Fe-S cluster proteins are lost, which may lead to impaired protein synthesis. These defects can then result in cancer, neurologic dysfunction or type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional

    Science.gov (United States)

    Cheng, Ya; Wang, Xianlong; Zhang, Jie; Yang, Kaishuai; Zhang, Chuanguo; Zeng, Zhi; Lin, Haiqin

    2018-04-01

    Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA  +  U functional for describing the strongly correlated Fe–O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1‑x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.

  13. In vitro Antioxidant Activities of Sodium Zinc and Sodium Iron Chlorophyllins from Pine Needles

    Directory of Open Access Journals (Sweden)

    Ruzhen Zhan

    2014-01-01

    Full Text Available Chlorophyll was extracted from pine needles, and then sodium zinc chlorophyllin (SZC and sodium iron chlorophyllin (SIC were synthesised by saponification, purification and substitution reaction, using sodium copper chlorophyllin (SCC as a control. Their crystalline structures were verified by atomic absorbance spectroscopy, UV-VIS spectroscopy and HPLC. Moreover, their antioxidant activities were evaluated and compared with that of ascorbic acid through four biochemical assays: DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, reducing power, inhibition of β-carotene bleaching and O2– scavenging activity. SZC had better antioxidant properties at a lower dosage than SIC and SCC in all assays. In the β-carotene bleaching assay, EC50 of SZC, SIC and SCC was 0.04, 0.38 and 0.90 mg/mL, respectively, much lower than that of ascorbic acid (4.0 mg/mL. SZC showed a better result (p<0.05 than ascorbic acid in the O2 – scavenging activity assay. The results obtained from reducing power determination were also excellent: the absorbance values were all about 1.0 at 0.5 mg/mL, about half of that of ascorbic acid. In the investigation of DPPH radical scavenging activity, all chlorophyllins had lower activities than ascorbic acid. These results demonstrated the potential bioactivities of chlorophyll derivatives and supported their possible role in human health protection and disease prevention.

  14. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    Science.gov (United States)

    Moreira, Daniele C F; de Sá, Júlia S M; Cerqueira, Isabela B; Oliveira, Ana P F; Morgano, Marcelo A; Quintaes, Késia D

    2014-10-01

    Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Duplicate samples were taken of six daily meals and of the OFC on two non-consecutive days from a hospital in Belo Horizonte (MG, Brazil) in May and September of 2010 and January of 2011. The elements were determined by ICP OES. Of the diets, the soft diet showed the highest elements content. Offering the OFC was insufficient to provide adequate levels of the trace elements. The oral hospital diets were inadequate in relation to the RDAs for the trace elements studied and the use of the OFCs was insufficient to compensate the values. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  15. The effect of alcoholic beverages on iron and zinc metabolism in the rat.

    Science.gov (United States)

    Fairweather-Tait, S J; Southon, S; Piper, Z

    1988-09-01

    1. Male Wistar rats (approximately 200 g) were given distilled water and a semi-synthetic control diet for 6 d. On day 7, 37 kBq 65Zn were administered intramuscularly and the rats were given distilled water, beer, cider, red wine, whisky or ethanol as their only source of fluid. The wine, whisky and ethanol were diluted so that each of the beverages contained a similar ethanol concentration (approximately 30 g/l). Food and fluid intake, growth rate and whole-body 65Zn were measured regularly over 11 d, after which animals were killed and blood haemoglobin (Hb) concentration, liver iron stores and the Zn concentration in testes determined. 2. There were no differences in body-weight gain or food intake between groups but fluid intake for the beer group was considerably higher than that for the other groups. 3. There was a significant effect of the type of alcoholic beverage consumed on whole-body 65Zn retention. Rats given whisky had a smaller daily loss of 65Zn than those given water, beer or cider. The ethanol group also showed a lower rate of 65Zn loss compared with the water group. The observed changes in whole-body 65Zn retention could be explained by an adverse influence of ethanol on Zn absorption from the diet. 4. Blood Hb and testes Zn concentration were similar in all groups but the type of liquid consumed influenced liver Fe levels. The cider group had the lowest liver Fe values and the ethanol group the highest values. 5. It is apparent from the present study that ethanol and alcoholic beverages affect Zn and Fe metabolism, but that the effects of ethanol are moderated by other components of the alcoholic beverages.

  16. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    Science.gov (United States)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  17. Does lead use the intestinal absorptive pathways of iron? Impact of iron status on murine 210Pb and 59Fe absorption in duodenum and ileum in vivo

    International Nuclear Information System (INIS)

    Elsenhans, Bernd; Janser, Heinz; Windisch, Wilhelm; Schuemann, Klaus

    2011-01-01

    Highlights: → Absorption of 210 Pb increases much less than that of 59 Fe in murine duodena. → 210 Pb-absorption is almost equally high in murine duodenal and ileal segments. → 59 Fe absorption is much lower in ileal than in duodenal segments. → There must be an additional DMT1-independet pathway for intestinal Pb absorption. -- Abstract: Background: Human isotope studies and epidemiological trials are controversial as to whether lead absorption shares the absorptive pathways of iron and whether body lead content can be reduced by iron supplementation. Aim: To compare the impact of iron-deficiency on 59 Fe- and 210 Pb-absorption rates in duodenal and ileal segments. Methods: 59 Fe- and 210 Pb-absorption was determined in ligated duodenal and ileal segments from juvenile and adult iron-deficient and iron-adequate C57Bl6 wild-type mice (n = 6) in vivo at luminal concentrations corresponding to human exposure (Fe: 1 and 100 μmol/L; Pb: 1 μmol/L). Results and discussion: 59 Fe-absorption increased 10-15-fold in iron-deficient duodena from adult and adolescent mice. Ileal 59 Fe-absorption was 4-6 times lower than in iron-adequate duodena showing no adaptation to iron-deficiency. This in accordance to expectation as the divalent metal transport 1 (DMT1) shows low ileal expression levels. Juvenile 59 Fe-absorption was about twice as high as in adult mice. In contrast, duodenal 210 Pb-absorption was increased only 1.5-1.8-fold in iron-deficiency in juvenile and adult mice and, again in contrast to 59 Fe, ileal 210 Pb-absorption was as high as in iron-adequate duodena. Conclusions: The findings suggest a DMT1-independent pathway to mediate lead absorption along the entire small intestine in addition to DMT1-mediated duodenal uptake. Ileal lead absorption appears substantial, due the much longer residence of ingesta in the distal small intestine. Differences in lead-solubility and -binding to luminal ligands can, thus, explain the conflicting findings regarding the

  18. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands

    Science.gov (United States)

    Johnson, C.A.; Skinner, B.J.

    2003-01-01

    The New Jersey Highlands terrace, which is an exposure of the Middle Proterozoic Grenville orogenic belt located in northeastern United States, contains stratiform zinc oxide-silicate deposits at Franklin and Sterling Hill and numerous massive magnetite deposits. The origins of the zinc and magnetite deposits have rarely been considered together, but a genetic link is suggested by the occurrence of the Furnace magnetite bed and small magnetite lenses immediately beneath the Franklin zinc deposit. The Furnace bed was metamorphosed and deformed along with its enclosing rocks during the Grenvillian orogeny, obscuring the original mineralogy and obliterating the original rock fabrics. The present mineralogy is manganiferous magnetite plus calcite. Trace hydrous silicates, some coexisting with fluorite, have fluorine contents that are among the highest ever observed in natural assemblages. Furnace bed calcite has ??13C values of -5 ?? 1 per mil relative to Peedee belemnite (PDB) and ??18O values of 11 to 20 per mil relative to Vienna-standard mean ocean water (VSMOW). The isotopic compositions do not vary as expected for an original siderite layer that decarbonated during metamorphism, but they are consistent with nearly isochemical metamorphism of an iron oxide + calcite protolith that is chemically and minerlogically similar to iron-rich sediments found near the Red Sea brine pools and isotopically similar to Superior-type banded iron formations. Other magniferous magnite + calcite bodies occur at approximately the same stratigraphic position as far 50 km from the zinc deposits. A model is presented in which the iron and zinc deposits formed along the western edge of a Middle Proterozoic marine basin. Zinc was transported by sulfate-stable brines and was precipitated under sulfate-stable conditions as zincian carbonates and Fe-Mn-Zn oxides and silicates. Whether the zincian assemblages settled from the water column or formed by replacement reactions in shallowly

  19. On the origin of discontinuity of the hyperfine fields at {sup 57}Fe nuclei in bulk iron and aerosol Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.I. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Shafranovsky, E.A., E-mail: shafr@chph.ras.r [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Casas, Ll. [Departament de Geologia, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, 08193 Bellaterra (Spain); Molins, E. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2011-03-14

    Advancing the early work in which a discontinuity of hyperfine fields at {sup 57}Fe nuclei in bulk iron and in aerosol Fe nanoparticles has been revealed by analyzing their Moessbauer spectra the present Letter evidences that the existence of several peaks in the hyperfine distribution (HFD) for bulk Fe is caused with the internal magnetic fields owing to its multidomain structure whereas aerosol Fe nanoparticles are single-domain and show only a unique peak in HFD. This argument has been corroborated by transformation of the HFD pattern for Fe foil after applying the external magnetic field of 0.03 T.

  20. Co-ordinated research programme on isotope-aided studies of the bioavailability of iron and zinc from human diets

    International Nuclear Information System (INIS)

    1992-01-01

    Nutritional deficiencies of essential micronutrients (particularly of iron, but also of zinc and selenium) are known to affect hundreds of millions of people throughout the world, mainly in developing countries. Such deficiencies can lead to significant deficits in mental development, growth, work performance, immune competence and other biological parameters. In many of the population groups that are affected, the deficiencies are thought to be due not to an absolute lack of the element in the diet but rather to is poor bioavailability. Much work has already been done on this subject, particularly in some developed countries and particularly with respect to iron. However, there is still appears to be a need for more research on factors affecting bioavailability and the means to improve it by simple dietary modification and fortification using food products of the kind that may be locally available in developing countries. Isotope techniques potentially have a large role to play in studies of the bioavailability of iron and other trace elements. To support work in this area, the IAEA initiated a Co-ordinated Research Programme (CRP) at the end of 1990 on ''Isotope-Aided Studies of the Bioavailability of Iron and Zinc from Human Diets''. The first Research Co-ordination Meeting (RCM) of participants in this CRP is the subject of the present report. Refs, figs and tabs

  1. Electron impact excitation of the iron peak element Fe II

    International Nuclear Information System (INIS)

    Ramsbottom, C.A.; Scott, M.P.; Bell, K.L.; McLaughlin, B.M.; Burke, P.G.; Keenan, F.P.; Sunderland, A.G.; Burke, V.M.; Noble, C.J.

    2002-01-01

    Effective collision strengths for electron-impact excitation of Fe II are presented for all sextet-to-quartet transitions among the 38 LS states formed from the basis configurations 3d 6 4s, 3d 7 and 3d 6 4p. A total of 112 individual transitions are considered at electron temperatures in the range 30-100,000 K, encompassing values of importance for applications in astrophysics as well as laboratory plasmas. A limited comparison is made with earlier theoretical work and large differences are found to occur at the temperatures considered. In particular, it is found that the inclusion or omission of some (N+1)-bound configurations in the Hamiltonian matrices describing the collision process can have a huge effect on the resulting effective collision strengths, by up to a factor of four in some cases. (author)

  2. Concentration differences between serum and plasma of the elements cobalt, iron, mercury, rubidium, selenium and zinc determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Kasperek, K.; Kiem, J.; Iyengar, G.V.; Feinendegen, L.E.

    1981-01-01

    The differences in concentrations of cesium, cobalt, iron, mercury, rubidium, selenium and zinc between serum and plasma were examined with the aid of instrumental neutron activation analysis. Eighty serum and plasma samples obtained from 13 donors were compared. Serum was prepared in plastic tubes immediately after clotting, and plasma was separated with heparin as anticoagulant. No significant differences in the concentrations of cesium, cobalt, mercury and selenium were observed. However, the concentrations of iron, rubidium and zinc were significantly higher in serum than in plasma. The average differences were 322, 12 and 20 ng/ml for iron, rubidium and zinc, respectively. The average differences found for cesium, rubidium and zinc were far below that which can be expected from a complete, or considerable release of these elements from platelets which aggregate or disintegrate during the clotting process in preparing serum. (orig.)

  3. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Serum sample levels of bromine, iron, scandium and zinc in preschool children of Atayal and Bunun aborigines living in central Taiwan

    International Nuclear Information System (INIS)

    Chien-Yi Chen; Ding-Bang Lin; Yuan-Yaw Wei

    2006-01-01

    This study determined bromine, iron, scandium and zinc serum levels in Taiwanese aboriginal preschool children living in remote mountainous areas to increase the understanding of the social, cultural, nutrient and ethnic background of the Taiwanese children. Seventy-three serum samples were taken from two ethnic groups of preschool children, Atayal aborigines (AAPC) and Bunun aborigines (BAPC). Sera of these children were freeze dried. Trace elements in sera were identified by instrumental neutron activation analysis (INAA). The accuracy and precision of INAA was evaluated using certified reference materials: Tomato Leaves (NIST-SRM 1570a) and Lichen (IAEA-336). Statistical analysis identified several different patterns for ethnic groups, gender and age via the two-tailed Student's t-test. Analytical results showed that the ranges of Br, Fe, Sc and Zn in sera were somewhat wide. The Zn serum levels (p < 0.05) and Br serum levels (p < 0.01) in the AAPC were significantly lower than those in the BAPC. However, there were no significant differences in Fe or Sc serum levels between the two groups. Analytical results were compared to published data for different counties. This study is the first investigating trace elements in Taiwanese aborigines and can be used to establish a much-needed serum element database. (author)

  5. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Yu; Xiao-hui Fan; Min Gan; Xu-ling Chen

    2017-01-01

    As the emission control regulations get stricter, the NOx reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. The NOx emissions from the sintering machine account for 48% of total amount from the iron and steel industry.Thus, it is essential to reduce NOx emissions from the sintering machine, for the achievement of clean production of sinter.Ca-Fe oxides, serving as the main binding phase in the sinter, are therefore used as additives into the sintering mixture to reduce NOx emissions.The results show that the NOx re-duction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ig-nition and inhibit the nitrogen oxidation compared with the conventional condition.Meanwhile, the exist-ence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point com-pounds.The optimal mass fraction of Ca-Fe oxides additives should be less than 8% since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines, inhibiting the mineralization reaction of sintering mixture.Additionally, the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of -0.5 mm and 0.5-3.0 mm in size.

  6. Competing ferromagnetic and anti-ferromagnetic interactions in iron nitride ζ-Fe2N

    Science.gov (United States)

    Rao, K. Sandeep; Salunke, H. G.

    2018-03-01

    The paper discusses the magnetic state of zeta phase of iron nitride viz. ζ-Fe2N on the basis of spin polarized first principles electronic structure calculations together with a review of already published data. Results of our first principles study suggest that the ground state of ζ-Fe2N is ferromagnetic (FM) with a magnetic moment of 1.528μB on the Fe site. The FM ground state is lower than the anti-ferromagnetic (AFM) state by 8.44 meV and non-magnetic (NM) state by 191 meV per formula unit. These results are important in view of reports which claim that ζ-Fe2N undergoes an AFM transition below 10 K and others which do not observe any magnetic transition up to 4.2 K. We argue that the experimental results of AFM transition below 10 K are inconclusive and we propose the presence of competing FM and AFM superexchange interactions between Fe sites mediated by nitrogen atoms, which are consistent with Goodenough-Kanamori-Anderson rules. We find that the anti-ferromagnetically coupled Fe sites are outnumbered by ferromagnetically coupled Fe sites leading to a stable FM ground state. A Stoner analysis of the results also supports our claim of a FM ground state.

  7. Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion

    DEFF Research Database (Denmark)

    Yin, Weizhao; Li, Yongtao; Wu, Jinhua

    2017-01-01

    Abstract A one-pot bio-iron system was established to investigate synergetic abiotic and biotic effects between iron and microorganisms on Cr(VI) removal. More diverse iron corrosion and reactive solids, such as green rusts, lepidocrocite and magnetite were found in the bio-iron system than...... transfer on the solid phase. The results also showed that the reduction of Cr(VI) by microorganisms was insignificant, indicating the adsorption/co-precipitation of Cr by iron oxides on iron surface was responsible for the overall Cr(VI) removal. Our study demonstrated that the bio-amended iron corrosion...... in the Fe0-H2O system, leading to 4.3 times higher Cr(VI) removal efficiency in the bio-iron system than in the Fe0-H2O system. The cycling experiment also showed that the Cr(VI) removal capacity of Fe0 in the bio-iron system was 12.4 times higher than that in the Fe0-H2O system. A 62 days of life...

  8. Predictive modelling of Fe(III) precipitation in iron removal process for bioleaching circuits.

    Science.gov (United States)

    Nurmi, Pauliina; Ozkaya, Bestamin; Kaksonen, Anna H; Tuovinen, Olli H; Puhakka, Jaakko A

    2010-05-01

    In this study, the applicability of three modelling approaches was determined in an effort to describe complex relationships between process parameters and to predict the performance of an integrated process, which consisted of a fluidized bed bioreactor for Fe(3+) regeneration and a gravity settler for precipitative iron removal. Self-organizing maps were used to visually evaluate the associations between variables prior to the comparison of two different modelling methods, the multiple regression modelling and artificial neural network (ANN) modelling, for predicting Fe(III) precipitation. With the ANN model, an excellent match between the predicted and measured data was obtained (R (2) = 0.97). The best-fitting regression model also gave a good fit (R (2) = 0.87). This study demonstrates that ANNs and regression models are robust tools for predicting iron precipitation in the integrated process and can thus be used in the management of such systems.

  9. The Pressure-Volume-Temperature Equation of State of Iron-Rich (Mg,Fe)O

    Science.gov (United States)

    Wicks, J. K.; Jackson, J. M.; Zhuravlev, K. K.; Prakapenka, V.

    2012-12-01

    Seismic observations near the base of the core-mantle boundary (CMB) have detected 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have been interpreted as aggregates of partially molten material (e.g. Williams and Garnero 1996, Hernlund and Jellinek, 2010) or as solid, iron-enriched residues (e.g. Knittle and Jeanloz, 1991; Mao et al., 2006; Wicks et al., 2010), typically based on proposed sources of velocity reduction. The stabilities of these structure types have been explored through dynamic models that have assembled a relationship between ULVZ stability and density (Hernlund and Tackley, 2007; Bower et al., 2010). Now, to constrain the chemistry of ULVZs, more information is needed on the relationship between density and sound velocity of candidate phases. Recently, we have shown that the characteristically low sound speeds of ULVZs can be produced by small amounts of iron-rich (Mg,Fe)O, which is likely to be found in iron-rich assemblages based on current partitioning studies (eg. Sakai et al., 2010; Tange et al., 2009). We determined the Debye velocity (VD) of (Mg.1657Fe.84)O using nuclear resonant inelastic x-ray scattering (NRIXS), and calculated the seismically relevant compressional (VP) and shear (VS) wave velocities up to 120 GPa using an equation of state of a similar composition (Wicks et al., 2010). These densities and sound velocities, in turn, are consistent with reasonable morphologies of modeled solid ULVZs (Bower et al., 2011). To increase the accuracy of density and sound velocity predictions, measurements must be made at elevated temperatures to correctly predict the properties of iron-rich (Mg,Fe)O at mantle conditions. In this study, we present the pressure-volume-temperature equation of state of (Mg.0657Fe.94)O measured up to pressures of 120 GPa and temperatures of 2000 K. Volume was measured with x-ray diffraction at beamline 13-ID-D of the Advanced Photon

  10. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Schothorst, Joep; Zeebroeck, Griet V; Thevelein, Johan M

    2017-03-02

    Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc . We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  11. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Joep Schothort

    2017-03-01

    Full Text Available Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  12. Spin response in LiFeAs and NaFeAs iron-pnictides superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lochner, Felix; Ahn, Felix; Eremin, Ilya [Ruhr-Universitaet Bochum, Bochum (Germany)

    2016-07-01

    We analyze the spin susceptibility in LiFeAs and NaFeAs by using the ten-orbital tight-binding model that we fitted to the electronic band structure measured by recent ARPES experiments. We identify an effective five-band model for a weak k{sub z}-dependence. Besides we present the bare and RPA-susceptibility and its q{sub z} dependencies to study the magnetic instabilities and estimate the strength of intra-orbital and inter-orbital nesting.

  13. Fe phase complexes and their thermal stability in iron phosphate catalysts supported on silica

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@gmail.com; Bharuth-Ram, K.; Harilal, A.; Singh, S.; Friedrich, H. B. [University of KwaZulu-Natal, School of Chemistry and Physics (South Africa)

    2015-04-15

    Comparative XRD and Mössbauer spectroscopy studies have been conducted on the effect of temperature on the phase transformations of an iron phosphate catalyst synthesized using the ammonia gel method (CAT1) and a commercial grade FePO {sub 4} catalyst supported on silica using wet impregnation method (CAT2). The XRD patterns of both catalysts showed the presence of iron phosphate and the tridymite phase of aluminum phosphate. Mössbauer spectra of the catalysts show that the phases present in CAT1 are thermally stable up to 500 {sup ∘}C, but CAT2 shows significant changes with the tridymite phase of iron phosphate increasing from 6 % to 29 % of the spectral area at a temperature of 500 {sup ∘}C.

  14. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (I): Pretreatment of cationic triphenylmethane dyes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Li, Zhaoyong; Kang, Juan; Wang, Xiaoyan; Zhang, Yukui; Fang, Jiande [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-02-11

    Graphical abstract: - Highlights: • Millimetric s-Fe{sup 0} particles effectively reduce BG, MG, CV, and EV dyes. • s-Fe{sup 0} displays similar contaminant removal efficiency compared to nZVI. • s-Fe{sup 0} shows greater economic advantages than nZVI, iron powder, and iron scurf. • The reductive mechanism of BG over s-Fe{sup 0} under US condition is elucidated. - Abstract: To investigate the removal capability of millimetric zero valent iron (mmZVI), sponge iron (s-Fe{sup 0}) particles were characterized with XRD, XPS, TEM, HRSEM and EDS techniques. Moreover, the roles of particle size, catalyst dosage, dye concentration, mixing conditions (e.g. ultrasound (US), stirring or shaking), and regeneration treatment were studied with the removal of cationic triphenylmethane dyes. Notably, the reduction process was also revealed as compared to nanoscale zero valent iron (nZVI), microscale iron power, and iron scurf. Furthermore, the reductive mechanism was exemplified with brilliant green. The results demonstrated that (1) the synergetic effect between US and s-Fe{sup 0} greatly enhanced the removal of dyes, (2) the dosage of preferred s-Fe{sup 0} (1–3 mm) particles was optimized as 30.0 g/L; (3) reuse cycles of s-Fe{sup 0} catalyst were enhanced with the assistance of diluted HCl solution; (4) the main degradation routes included the cleavage of conjugated structure reactions, N-de-ethylation reactions, hydroxylation reactions, the removal of benzene ring reactions, and opening ring reactions. Accordingly, the pretreatment of aqueous solution over s-Fe{sup 0} was hypothesized to achieve mainly through direct reduction reaction by electron transfer and indirect reductive reactions by the highly activated hydrogen atom. Additionally, decoration with noble metals was utilized to reveal the reaction mechanism.

  15. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    Science.gov (United States)

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  16. Ferrous and hemoglobin-59Fe absorption from supplemented cow milk in infants with normal and depleted iron stores

    International Nuclear Information System (INIS)

    Heinrich, H.C.; Gabbe, E.E.; Whang, D.H.; Bender-Goetze, C.; Schaefer, K.H.; Hamburg Univ.

    1975-01-01

    Small amounts of milk do inhibit ferrous iron absorption from a 5 mg 59 Fe 2+ dose in 1- to 18-month-old infants. Only 50 ml of 2/3 cow milk reduced the absorption from 18 to 3.8% in infants with normal iron stores (inhibition index 0.21) and from 26 to 8.5% in [de

  17. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.

    Science.gov (United States)

    Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan

    2017-09-05

    Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.

  18. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  19. Moessbauer study on the formation process of Fe-K composition in iron-based catalyst for dehydrogenation of ethylbenzene

    International Nuclear Information System (INIS)

    Jiang Keyu; Zhao Zhenjie; Yang Xielong

    2001-01-01

    Fe-K spinel structure is the predecessor of active phase of potassium promoted iron-based catalyst for dehydrogenation of ethylbenzene. Moessbauer spectroscopy has been used to study the formation process of Fe-K spinel structure which depends on the catalyst composition and preparing condition. The results may prove useful for production of industrial catalyst

  20. Effects of metformin treatment on Iron, Zinc and Copper status concentration in the serum of female rats with induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Muhsin S. G. Al-Moziel

    2013-07-01

    Full Text Available This study conducted to investigate the effects of metformin drug on serum Iron, Zinc and Copper concentration in Estradiol Valerate(EV induced polycystic ovary syndrome(PCOS in virgin rats. Thirty virgin rats were randomly allotted to constitute Normal control (NC-I group and induced polycystic ovary (PCO-I and PCO-II groups having 10 rats in each group. Rats from NC-I group were administered intramuscularly with 0.2 ml of corn oil whereas polycystic ovary was induced in rats from PCO-I and PCO-II groups by administering single intra-muscular injection of estradiol Valerate 4mg/rat. The rats from PCO-I and PCO-II groups were left for 60 days for development of polycystic ovary syndrome. Animals from PCO-I group were then administered with 0.2 ml normal saline as oral gavage for 15 days, these animals were kept as PCO control group animals whereas those from PCO-II groups received metformin (50mg/kg B.wt as oral gavage for 15 days, these animals served as metformin treated PCO group animals. All the rats were thereafter sacrificed for collecting blood from inferior vena-cava. Serum samples from each rat were assessed for iron, zinc and copper status in each experimental group. The results revealed a significant (p≤0.05 increase in serum Fe and Zn and a significant (p≤0.05 decrease in serum Cu concentration in PCO group 1 compared with control non-treated group. The PCO group2 treated with metformin showed a significant (p≤0.05 decrease in serum Fe concentration as compared with those in animals from group NC-I and PCO-I. While, no significant differences were found in serum Zn concentration between all treated groups. On the other hand, a significant (p≤0.05 increase in serum Cu concentration appeared in metformin treated group compared with PCO group 1 which appears significant decrease compared with control group.

  1. Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment

    NARCIS (Netherlands)

    Croot, Peter L.; Laan, Patrick; Nishioka, Jun; Strass, Volker; Cisewski, Boris; Boye, Marie; Timmermans, Klaas R.; Bellerby, Richard G.; Goldson, Laura; Nightingale, Phil; Baar, Hein J.W. de

    2005-01-01

    Measurements of Fe(II) and H2O2 were carried out in the Atlantic sector of the Southern Ocean during EisenEx, an iron enrichment experiment. Iron was added on three separate occasions, approximately every 8 days, as a ferrous sulfate (FeSO4) solution. Vertical profiles of Fe(II) showed maxima

  2. Protein, Calcium, Zinc, and Iron Contents of Finger Millet Grain Response to Varietal Differences and Phosphorus Application in Kenya

    Directory of Open Access Journals (Sweden)

    Wekha N. Wafula

    2018-02-01

    Full Text Available This study was carried out to investigate the influence of phosphorus fertilizers on the concentrations of nutrients, particularly calcium, protein, zinc, and iron in finger millet grains grown in different agro-ecologies in Kenya. The on-station experiments were carried out at Kiboko (Eastern Kenya, Kakamega, and Alupe (Western Kenya in 2015 during the short and long rainy seasons. The trials were laid out in a randomized complete block design (RCBD in a 4 × 3 factorial arrangement with three replicates. The treatments comprised of four levels of phosphorus (0, 12.5, 25.0 and 37.5 kg ha−1 P2O5 and three finger millet varieties (U-15, P-224 and a local variety. Application of phosphorus significantly (p ≤ 0.05 increased the protein content of finger millet grain in varieties in all the three sites. Variety U-15 had the highest protein content (11.0% at 25 kg ha−1 P2O5 with the control (zero P on variety P-224 eliciting the lowest (4.4% at Kiboko. At Kakamega, the 25 kg ha−1 P2O5 treatment with U-15 variety had the highest protein content (15.3% while the same variety at 12.5 kg ha−1 P2O5 rate elicited the highest protein content (15.0% at Alupe. Phosphorus application significantly enhanced the nutritional quality of finger millet grains specifically protein, calcium, iron, and zinc. Variety P-224 had the highest calcium content in all sites and highest iron content at Kakamega while the local varieties had the highest zinc content in all sites. The varieties responded differently to each quality component but generally, based on the protein content, the 25 kg ha−1 P2O5 is recommended.

  3. Distribution of iron cations in natural chromites at different stages of oxidation: a {sup 57}Fe Moessbauer investigation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Tapan; Mitra, Sachinath [Jadavpur Univ., Calcutta (India). Dept. of Geological Sciences; Moon, Hi-Soo [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Geology

    1994-07-01

    {sup 57}Fe Moessbauer spectroscopic investigation of natural chromites from two chromite deposits of India (Sukinda and Byrapur) documents partly inverse spinel structure arising out of oxidation. The spectral fitting was based on allowing a disordering distribution of Fe{sup 2+} and Fe{sup 3+} ions at tetrahedral (A) and octahedral (B) sites. Moessbauer investigation of the samples taken from the physico-chemically distinct two horizons of Sukinda viz. brown ore and grey ores, and Byrapur area revealed three types of iron ion distribution as: Fe{sup 2+}(A), Fe{sup 3+}(A) and Fe{sup 2+}(B) (GC-group); (b)Fe{sup 3+}(A{sub 1}), Fe{sup 3+}(A{sub 2}) and Fe{sup 2+}(B) (BC-2 group), and (c) Fe{sup 3+}(A{sub 1}), Fe{sup 3+}(B) (BC-1 group). The distribution pattern of iron cations at A and B sites was linked to the degree of oxidation. These stages of oxidation could be modelled from normal to inverse form. A model suggesting `electron localisation` at the B-sites makes the intermediate stage. Iron site occupancy determined by Moessbauer spectroscopy of the presently studied samples indicates that these fall under three groups of oxidation stages. An early stage of oxidation is shown by samples of group GC, intermediate stage by group BC-2 and final stage by BC-1 group of chromite samples. The imprint of progressive oxidation manifested by Fe cation site occupancy has been correlated with the Fe{sup 2+}/{Sigma}Fe ratios, obtained for each group of samples. (author). 39 refs., 2 figs., 3 tabs.

  4. Relative contribution of phytates, fibers, and tannins to low iron and zinc in vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions.

    Science.gov (United States)

    Lestienne, Isabelle; Caporiccio, Bertrand; Besançon, Pierre; Rochette, Isabelle; Trèche, Serge

    2005-10-19

    In vitro digestions were performed on pearl millet flours with decreased phytate contents and on two dephytinized or nondephytinized pearl millet grain fractions, a decorticated fraction, and a bran fraction with low and high fiber and tannin contents, respectively. Insoluble residues of these digestions were then incubated with buffer or enzymatic solutions (xylanases and/or phytases), and the quantities of indigestible iron and zinc released by these different treatments were determined. In decorticated pearl millet grain, iron was chelated by phytates and by insoluble fibers, whereas zinc was almost exclusively chelated by phytates. In the bran of pearl millet grain, a high proportion of iron was chelated by iron-binding phenolic compounds, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers. The low effect of phytase action on iron and zinc solubility of bran of pearl millet grain shows that, in the case of high fiber and tannin contents, the chelating effect of these compounds was higher than that of phytates.

  5. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

    Science.gov (United States)

    Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D

    2015-04-28

    To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.

    Science.gov (United States)

    Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr

    2015-10-21

    The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.

  7. Repletion of Zinc and Iron Deficiencies Improve Cognition of Premenopausal Women

    Science.gov (United States)

    1998-10-01

    Altshuler H. Neonatal and maternal hair zinc levels in a nonhuman primate model of the fetal alcohol syndrome. Alcoholism: Clinical and Research...Coupled Plasma-Mass bpectroscopy ( rCP -MS). Before ICP-MS analysis A sets of plasma were digested with hydrogen peroxide and the zinc extracted, and 10

  8. Iron and zinc partitioning between coexisting stannite and sphalerite: a possible indicator of temperature and sulfur fugacity

    Science.gov (United States)

    Shimizu, M.; Shikazono, N.

    1985-10-01

    Stannite and sphalerite coexisting with iron sulfides (pyrite and/or pyrrhotite) from Japanese ore deposits associated with tin mineralization were analyzed. Based on the iron and zinc partitioning between stannite and sphalerite, the formation temperature and sulfur fugacity for this mineral assemblage were estimated. A good correlation between stannite-sphalerite temperatures and filling temperatures of fluid inclusions and sulfur isotope temperatures was obtained. This good correlation suggests that the stannite-sphalerite pair is a useful indicator of temperature and sulfur fugacity. It is deduced that the formation temperatures are not different for skarn-type, polymetallic vein-type and Sn-W vein-type deposits, whereas the sulfur fugacities are different; sulfur fugacities increase from the skarn-type through the Sn-W vein-type to the polymetallic vein-type deposits.

  9. Grotrian diagrams of highly ionized iron Fe(VIII)-Fe(XXVI)

    International Nuclear Information System (INIS)

    Mori, Kazuo; Otsuka, Masamoto; Kato, Takako.

    1977-08-01

    Energy levels and Grotrian diagrams of Fe(VIII) to Fe(XXVI) are presented. This report summarized the data published recently up to 1976, and the wavelength tables compiled were converted to the Grotrian diagrams. The diagrams showing transition from one energy level to another are called Grotrian diagrams. Typical examples of the diagrams are found in the book by Bashkin et al. In the present diagrams, all lines are drawn in parallel, and connected to the extended lines from lower levels. As the results, locally dense packing of lines and figures is avoided. The ordinate of the diagrams indicates level energy, and the J values are shown on the left side of the levels. The wavelength values in angstrom unit are written in parallel with the vertical transition lines. This vertical lines show the resonance transition having absorption oscillator strength f larger than 0.1. The present diagrams are the combination of the tables of wavelength and energy level. Accordingly, the desired wavelength and level energy are easily found. The figures of wavelength are lined up in various groups, so that the characteristics of the transition can be discriminated at a glance. Wavelength and level energy have been mostly derived from experimental spectra in laboratory or solar plasma, except a few by Fawcett's prediction. (Kato, T.)

  10. One-step synthesis for FeBTC-MOF/iron oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, R.F.F. do; Gentil, G.; Junior, S.A.; Azevedo, W.M. de; Rodrigues, A.R.; Campello, S.L. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: In this work we present the assisted ultrasonic radiation synthesis for f Fe(BTC) (BTC = 1,3,5-benzenetricarboxilic acid) metal organic framework preparation. By definition Metal-organic frameworks (MOFs) belongs to a class of material prepared by the combination of metal ions and organic linkers to form a tridimensional framework which presents defined characteristics like crystallinity, high porosity and the presence of strong metal-ligand interaction. In the last decades the MOFs materials have received considerable attention not only due to scientific interest, but also because of their high potential for applications in several technological areas such as in gas storage, catalysis and drug delivery [1]. Among several Metal-organic frameworks (MOFs) the Fe-BTC structure seems to be one of promising materials, mainly due to their chemical and thermal stability, presents biocompatibility, can be used as drug delivery and as a contrast agent for magnetic resonance. Its functionalization has been reported in the literature by several works where the methods consist to mix the iron oxide Fe3O4 nanoparticles, in the solution contained the MOF'S precursor and the synthesis is prepared by solvothermal method. Typically, it has core-shell Fe3O4@MOF structures and exhibit magnetic properties. Our experimental technique proposed for the synthesis of the composite consists to use iron powder (?-Fe) as a target material dispersed in a solution of DMF/H2O (1:1) containing benzene 1,3,5 tricarboxilic acid and NaNO3. The synthesis was performed using a Ultrasound equipment model GEX500 500 W operating at 80 kHz, pulse 1s intervals for 60 min. The x-ray diffraction patterns and SEM measurements shown that the obtained materials are similar to those found in the literature and presents a rods likes morphology. The BET analysis indicate that the surface area is 1257 m²g-1 and pore volume 1.4 cm³g-1. Also the magnetic measurements indicates a paramagnetic

  11. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children.

    Science.gov (United States)

    Vaz-Tostes, Maria das Graças; Verediano, Thaisa Agrizzi; de Mejia, Elvira Gonzalez; Brunoro Costa, Neuza Maria

    2016-03-15

    Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification. © 2015 Society of Chemical Industry.

  12. Effect of Organic Substances on the Efficiency of Fe(Ii to Fe(Iii Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Directory of Open Access Journals (Sweden)

    Krupińska Izabela

    2017-09-01

    Full Text Available One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3. The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D. It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot], efficiency of Fe(II to Fe(III oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII when used as an oxidizing agent. The application of potassium manganate (VII for oxidation of Fe(II ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  13. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Science.gov (United States)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  14. Influence of Water Deficit on Iron and Zinc Uptake by Matricaria chamomilla L. Influencia del Deficit Hídrico en la Absorción de Hierro y Zinc por Matricaria chamomilla L.

    Directory of Open Access Journals (Sweden)

    Alireza Pirzad

    2012-06-01

    Full Text Available Iron and zinc deficiency are a yield-limiting factor with major implications for field crop production in many agricultural regions of the world; this production is essential source of Fe and Zn in human and animal diets. Two experiments were conducted under greenhouse conditions to evaluate Fe and Zn uptake by German chamomile (Matricaria chamomilla L. grown under several drought conditions. Treatments were arranged in four irrigation regimes (95%, 80%, 65%, and 50% field capacity and six irrigation disruptions (stem formation, flower onset, full bloom, first harvest, second harvest, and control without disruption based on a randomized complete block design with five and four replicates in experiments 1 and 2, respectively. In Experiment 1, the irrigation regimes had no significant effect on Fe and Zn uptake by German chamomile, which reached total means of Fe (39.68 mg kg4 and Zn (29.15 mg kg4. In Experiment 2, the highest amount of Fe (39.0 mg kg4 was obtained from irrigation disruption at first harvest; this is similar to the results of irrigation disruption at flower onset and full bloom. However, irrigation disruption in stem formation (21.3 mg kg4, second harvest (12.95 mg kg4, and the control (7.79 mg kg4 had a decreasing trend of Fe uptake. The maximum value of Zn (40.0 mg kg4 occurred at irrigation disruption at the full bloom stage, which was also similar to irrigation disruption at flower onset and stem formation. However, later irrigation disruptions at the first and second harvest stages caused lower amounts of Zn uptake by chamomile. Therefore, the lowest Zn values were obtained from irrigation disruption at second harvest (5.0 mg kg4 and the control (5.5 mg kg4. Regressions between both Fe or Zn uptake and irrigation showed a binomial function.La deficiencia de hierro y zinc es un factor limitante de la producción con grandes implicaciones para producción de cultivo en terreno en muchas regiones agrícolas del mundo como

  15. Chemical evaluation of HBED/Fe(3+) and the novel HJB/Fe(3+) chelates as fertilizers to alleviate iron chlorosis.

    Science.gov (United States)

    López-Rayo, Sandra; Hernández, Diana; Lucena, Juan J

    2009-09-23

    Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenylacetic) acid (o,o-EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soil. A new chelating agent, HJB (N,N'-bis(2-hydroxy-5-methylphenyl)ethylendiamine-N,N'-diacetic acid) may be an alternative to o,o-EDDHA since its synthesis yields a purer product, but its chemical behavior and efficiency as chlorosis corrector should be evaluated. In this research, a known analogous HBED (N,N'-bis(2-hydroxyphenyl)ethylendiamine-N,N'-diacetic acid) has also been considered. First, an ion-pair high performance liquid chromatography (HPLC) method has been tested for the HJB/Fe(3+) and HBED/Fe(3+) determination. The ability of HJB and HBED to maintain Fe in solution has been compared with respect to o,o-EDDHA. Theoretical modelization for HBED and HJB in agronomic conditions has been done after the determination of the protonation and Ca(II), Mg(II), Fe(III), and Cu(II) stability constants for HJB. Also, batch interaction experiments with soils and soil materials have been conducted. According to our results, HJB/Fe(3+) and HBED/Fe(3+) present high stability, even when competing cations (Cu(2+), Ca(2+)) are present, and have low reactivity with soils and soil components. The chelating agent HJB dissolves a higher amount of Fe than o,o-EDDHA, and it seems as effective as o,o-EDDHA in keeping Fe in solution. These results indicate that these chelates may be very efficient products to correct Fe chlorosis, and additional plant experiments should demonstrate plants' ability to assimilate Fe from HJB/Fe(3+) and HBED/Fe(3+).

  16. Acceptability and solubility of iron and zinc contents of modified Moringa oleifera sauces consumed in the Far-north region of Cameroon.

    Science.gov (United States)

    Mawouma, Saliou; Ponka, Roger; Mbofung, Carl Moses

    2017-03-01

    Consumption of Moringa oleifera leaves is a local and inexpensive solution to iron and zinc deficiencies in the Far-north region of Cameroon. However, traditional household's cooking techniques result in sauces with high pH levels and low leaves incorporation rates that compromise the bioavailability of iron and zinc. The aim of our study was to investigate the effect of modifying a standard Moringa sauce on consumer acceptability and the solubility of iron and zinc, which is an indicator of their bioavailability. Lime juice or tamarind pulp was added to a standard recipe in order to reduce the pH by about one unit, and Moringa leaf powder was incorporated in each acidulated sauce at three levels (1, 2, and 4 g/100 g of sauce). All the formulations were evaluated for their acceptability by 30 housewives using a five-point hedonic scale. The pH was measured by a digital electronic pH-meter. Moisture and ash were determined by AOAC methods. Total iron and zinc contents were determined by atomic absorption spectrophotometry, and soluble iron and zinc by HCl-extractability. The lime juice-acidulated sauce and the tamarind pulp-acidulated sauce enriched with 1 g of Moringa leaf powder were the most acceptable formulations with scores of 3.4 and 3.6, respectively. Their chemical analysis showed a reduced pH (6.4 and 6.1, respectively), compared to the Control (7.2). Lime juice-acidulated sauce improved iron and zinc solubility from 42.19 to 66.38% and 54.03 to 82.03%, respectively. Tamarind pulp-acidulated sauce enriched with 1 g of Moringa leaf powder showed a decrease in iron solubility from 42.19 to 38.26% and an increase in zinc solubility from 54.03 to 72.86%. These results confirm the beneficial effect of lime juice in improving iron and zinc bioavailability.

  17. Wet-chemical synthesis of nanoscale iron boride, XAFS analysis and crystallisation to α-FeB.

    Science.gov (United States)

    Rades, Steffi; Kornowski, Andreas; Weller, Horst; Albert, Barbara

    2011-06-20

    The reaction of lithium tetrahydridoborate and iron bromide in high boiling ether as reaction medium produces an ultrafine, pyrophoric and magnetic precipitate. X-ray and electron diffraction proved the product to be amorphous. According to X-ray absorption fine structure spectroscopy (XAFS) the precipitate has FeB structure up to nearly two coordination spheres around an iron absorber atom. Transmission electron microscopy (TEM) confirms the ultrafine powder to be nanoscale. Subsequent annealing at 450 °C causes the atoms to arrange in a more distinct FeB structure, and further thermal treatment to 1050 °C extends the local structure to the α-modification of FeB. Between 1050 °C and 1500 °C α-FeB is transformed into β-FeB. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Dilute-Limit Heat of Solution of 3d Transition Metals in Iron Studied with 57Fe Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Chojcan, Jan

    2004-01-01

    The room-temperature 57 Fe Moessbauer spectra for binary iron-based solid solutions Fe 1-x D x with D=V, Cr, Mn and Co, were analysed in terms of binding energy E b between two D atoms in the Fe-D system. The extrapolated values of E b for x=0 were used for computation of the dilute-limit heat of solution of D metals in iron. The results were compared with those derived from calorimetric data concerning the heat of formation of the systems mentioned as well as with those resulting from the Miedema's model of alloys. The comparison shows that our Moessbauer spectroscopy findings are in a qualitative agreement with the available calorimetric data and they are at variance with corresponding Miedema's values for Fe-Mn and Fe-Co systems.

  19. Body retention and tissue distribution of 59Fe and 54Mn in newborn rats fed iron-supplemented cow's milk

    International Nuclear Information System (INIS)

    Gruden, Nevenka

    1980-01-01

    The effect of iron-fortified cow's milk on body 59 Fe and 54 Mn retention and selective tissue distribution has been studied in newborn rats. Six-day old rats, divided into three groups were artificially fed for 7 hrs 0,45 ml of cow's milk or cow's milk enriched with either 52 or 103 μg of Fe /ml and marked with 59 Fe and 54 Mn. After 4 days there was no significant difference in whole body or carcass activity between the groups. Iron added to milk in large amounts did not influence body 59 Fe or 54 Mn retention in newborn rats, whereas it enhanced 59 Fe deposition in the liver and the intestinal wall and, to a lesser extent, 54 Mn deposition in the liver

  20. Autoionization resonances in the photoabsorption spectra of Fe{sup n+} iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, A. V., E-mail: alkonvit@yandex.ru; Ipatov, A. N., E-mail: andrei-ipatov@mail.ru [Peter the Great St. Petersburg State Polytechnic University (Russian Federation)

    2016-11-15

    The photoabsorption cross sections of a neutral iron atom, as well as positive Fe{sup +} and Fe{sup 2+} ions, are calculated in the relativistic random-phase approximation with exchange in the energy range 20–160 eV. The wavefunctions of the ground and excited states are calculated in the single-configuration Hartree–Fock–Dirac approximation. The resultant photoabsorption spectra are compared with experimental data and with the results of calculations based on the nonrelativistic spin-polarized version of the random-phase approximation with exchange. Series of autoionization resonance peaks, as well as giant autoionization resonance lines corresponding to discrete transitions 3p → 3d, are clearly observed in the photoabsorption cross sections. The conformity of the positions of calculated peaks of giant autoionization resonances with experimental data is substantially improved by taking into account additionally the correlation electron–electron interaction based on the model of the dynamic polarization potential.

  1. Iron valence in double-perovskite (Ba,Sr,Ca)2FeMoO6: isovalent substitution effect

    International Nuclear Information System (INIS)

    Yasukawa, Y.; Linden, J.; Chan, T.S.; Liu, R.S.; Yamauchi, H.; Karppinen, M.

    2004-01-01

    In the Fe-Mo based B-site ordered double-perovskite, A 2 FeMoO 6.0 , with iron in the mixed-valence II/III state, the valence value of Fe is not precisely fixed at 2.5 but may be fine-tuned by means of applying chemical pressure at the A-cation site. This is shown through a systematic 57 Fe Moessbauer spectroscopy study using a series of A 2 FeMoO 6.0 [A=(Ba,Sr) or (Sr,Ca)] samples with high degree of Fe/Mo order, the same stoichiometric oxygen content and also almost the same grain size. The isomer shift values and other hyperfine parameters obtained from the Moessbauer spectra confirm that Fe remains in the mixed-valence state within the whole range of A constituents. However, upon increasing the average cation size at the A site the precise valence of Fe is found to decrease such that within the A=(Ba,Sr) regime the valence of Fe is closer to II, while within the A=(Sr,Ca) regime it is closer to the actual mixed-valence II/III state. As the valence of Fe approaches II, the difference in charges between Fe and Mo increases, and parallel with this the degree of Fe/Mo order increases. Additionally, for the less-ordered samples an increased tendency of clustering of the antisite Fe atoms is deduced from the Moessbauer data

  2. Effects of Iron Concentration Level in Extracting Solutions from Contaminated Soils on the Determination of Zinc by Flame Atomic Absorption Spectrometry with Two Background Correctors

    Directory of Open Access Journals (Sweden)

    Christophe Waterlot

    2012-01-01

    Full Text Available Zinc and iron concentrations were determined after digestion, water, and three-step sequential extractions of contaminated soils. Analyses were carried out using flame absorption spectrometry with two background correctors: a deuterium lamp used as the continuum light source (D2 method and the high-speed self-reversal method (HSSR method. Regarding the preliminary results obtained with synthetic solutions, the D2 method often emerged as an unsuitable configuration for compensating iron spectral interferences. In contrast, the HSSR method appeared as a convenient and powerful configuration and was tested for the determination of zinc in contaminated soils containing high amounts of iron. Simple, fast, and interference-free method, the HSSR method allows zinc determination at the ppb level in the presence of large amounts of iron with high stability, sensitivity, and reproducibility of results. Therefore, the HSSR method is described here as a promising approach for monitoring zinc concentrations in various iron-containing samples without any pretreatment.

  3. Evaluation of the simultaneous effects of processing parameters on the iron and zinc solubility of infant sorghum porridge by response surface methodology.

    Science.gov (United States)

    Kayodé, A P Polycarpe; Nout, Martinus J R; Bakker, Evert J; Van Boekel, Martinus A J S

    2006-06-14

    The purpose of this study was to improve the micronutrient quality of indigenous African infant flour using traditional techniques available in the region. Response surface methodology was used to study the effect of duration of soaking, germination, and fermentation on phytate and phenolic compounds (PC), pH, viscosity, and the in vitro solubility (IVS) of iron and zinc in infant sorghum flour. The phytate and the PC concentrations of the flour were significantly modified as a result of the duration of germination and fermentation and their mutual interaction. These modifications were accompanied by a significant increase in % IVS Zn after 24 h of sprouting. Except for the interaction of soaking and fermentation, none of the processing parameters exerted a significant effect on the % IVS Fe. The viscosity of the porridge prepared with the flour decreased significantly with the duration of germination, making it possible to produce a porridge with high energy and nutrient density. The use of germination in combination with fermentation is recommended in the processing of cereals for infant feeding in developing countries.

  4. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Studies on iron absorption and retention in malnourished Indian subjects, using Fe-59 and whole-body counting

    International Nuclear Information System (INIS)

    Gopalan, C.; Srikantia, S.G.

    1975-12-01

    The gastrointestinal absorption of iron under various conditions in representatives of the Indian population, and several related matters, have been investigated. Percentage absorption was determined by whole-body counting of 59Fe, or by measuring the concentration of 55Fe in the blood, at about two weeks after administration of the respective tracer. It was confirmed or established that: (1) food or supplemental iron, if available at all, tends to be absorbed from the intestines as if present there in one of two alternative pools: heme and non heme; (2) 30%-50% of iron measured chemically in Indian foods appears to be in an unavailable form, for example as a contaminant in adventitiously present dust; (3) fortification of the diet with iron may be feasible by adding FePO 4 + 2 molar NaHSO 4 to common salt under suitable conditions; (4) monkeys appear to be sufficiently similar to humans in their iron absorption characteristics that they may be the best available non-human model for preliminary experimental investigations of iron absorption; and (5) a promising preparative method for liquid scintillation counting of 55Fe present in blood is to extract it into toluene in the presence of di (2-ethyl-hexyl) phosphate (HDEHP)

  6. Fermi surface deformation in a simple iron-based superconductor, FeSe

    Science.gov (United States)

    Coldea, Amalia; Watson, Matthew; Kim, Timur; Haghighirad, Amir; McCollam, Alix; Hoesch, Moritz; Schofield, Andrew

    2015-03-01

    One of the outstanding problems in the field superconductivity is the identification of the normal state out of which superconductivity emerges. FeSe is one of the simplest and most intriguing iron-based superconductors, since in its bulk form it undergoes a structural transition before it becomes superconducting, whereas its single-layer form is believed to be a high-temperature superconductor. The nature of the structural transition, occurring in the absence of static magnetism, is rather unusual and how the electronic structure is stabilized by breaking of the rotational symmetry is the key to understand the superconductivity in bulk FeSe. Here we report angle-resolved photoemission spectroscopy measurements on FeSe that gives direct access to the band structure and orbital-dependent effects. We complement our studies on bulk FeSe with low-temperature angular-dependent quantum oscillation measurements using applied magnetic fields that are sufficiently strong to suppress superconductivity and reach the normal state. These studies reveal a strong deformation of Fermi surface through the structural transition driven by electronic correlations and orbital-dependent effects. . This work was supported by EPSRC, UK (EP/I004475/1), Diamond Light Source, UK and HFML, Nijmegen.

  7. Environmental application of millimeter-scale sponge iron (s-Fe{sup 0}) particles (II): The effect of surface copper

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio 45221-0012 (United States)

    2015-04-28

    Highlights: • Facile reduction reaction achieves decoration of Cu{sup 0} onto the surface of s-Fe{sup 0}. • The removal efficiency of RhB over Cu{sup 0}–s-Fe{sup 0} was similar to that of Cu{sup 0}–nZVI. • Cu{sup 0}–s-Fe{sup 0} can operate under mild condition with lower cost compared to nZVI. • The reductive mechanism over Cu{sup 0}–s-Fe{sup 0} under US condition is also elucidated. - Abstract: To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe{sup 0}), Cu{sup 2+} ions were deposited on the surface of s-Fe{sup 0} using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu{sup 0} loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3 ∼ 5 millimeter s-Fe{sup 0} particles (s-Fe{sup 0}(3 ∼ 5 mm)) with 5 wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu{sup 0}–s-Fe{sup 0} showed excellent stability after five reuse cycles. Cu{sup 0}–s-Fe{sup 0} possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu{sup 0} apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} played minor role for the removal of RhB.

  8. Effects of Fe-chelate and iron oxide nanoparticles on some of the physiological characteristics of alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Mehri Askary

    2018-06-01

    Full Text Available Introduction Iron is an essential micronutrient for plant growth that plays an important role in plant metabolism. Iron deficiency is an abiotic stress that is often found in plants grown in calcareous and alkaline soils. The solubility of Fe+3 decreases dramatically with increasing pH. 30% of the arable land worldwide consists of calcareous and alkaline soils. Common iron fertilizers used to reduce deficiency syndromes contain iron(II sulfate heptahydrate (FeSO4.7H2O or iron chelates. Iron chelate (for example Fe-EDTA is absorbed by plants, which however depends on soil conditions especially soil pH. Nowadays , nano-Fe fertilizer can be used as a rich source of iron for plants ,because it gradually releases Fe in a wide pH range (pH 3– 11. Nanofertilizer usage leads to increase element efficiency, reduce soil toxicity and negative effects caused by the excessive consumption of chemical fertilizers and reduce the fertilizer’ s application . This research was carried out to determine the suitable type of iron fertilizer and to evaluate the effects of different concentrations of nano-Fe fertilizer on Medicago sativa Materials and methods In order to investigate the effects of Fe-deficiency and different levels of Fe2O3 nanoparticles compared to Fe-EDTA on leaf growth, photosynthetic pigments and antioxidative activity of alfalfa (Medicago sativa cv.Hamadani, an experiment was conducted based on completely randomized design with three replications in Arak University during 2015. After germination of sterilized seeds of alfalfa, 1-day seedlings were cultured in plastic vases contains perlite. Plants were maintained under 25/18°C day/night temperatures with 12-hr photoperiod. Irrigation was done weekly with 100ml complete Hoagland solution (containing iron chelate (Fe-EDTA for control plants or 100ml Hoagland solution without iron chelate and containing different concentrations of ironoxide nanoparticles (0, 5, 10, 20 and 25µM. Plants

  9. Isotope aided studies of the bioavailability of iron and zinc from human diets consumed in Peru

    International Nuclear Information System (INIS)

    Zavaleta, N.; Penny, M.; Berlanga, R.; Espinoza, R.; Lonnerdal, B.

    1992-01-01

    Iron deficiency can produce disturbances in physical and mental health, the most common sign of severe iron deficiency being anaemia. Iron deficiency anaemia can impair work capacity; learning capacity and result in changes in behaviour as well as compromise immunocompetence and causing less resistance to infections. In pregnancy, there is evidence that severe anaemia increases the risk of maternal morbidity and mortality as well as premature delivery. There is thus ample justification for attempting to implement programmes to combat iron deficiency in developing countries such as Peru. In order to determine the most appropriate intervention it is necessary to have data on the prevalence and severity of iron deficiency. The purpose of this study is to develop the necessary steps to implement a fortification programme to combat iron deficiency anaemia in Peru, targeted to pre-school children and pregnant women, who are the risk groups due to their increased requirements of this nutrient. 11 refs, 6 figs, 6 tabs

  10. Effect of excess dietary iron as ferrous sulfate and excess dietary ascorbic acid on liver zinc, copper and sulfhydryl groups and the ovary

    International Nuclear Information System (INIS)

    Edwards, C.H.; Adkins, J.S.; Harrison, B.

    1986-01-01

    Female guinea pigs of the NIH 13/N strain, weighing between 475 and 512 g, were fed diets supplemented with 50 to 2500 mg of iron per kg of diet as ferrous sulfate and 0.2 to 8.0 g of ascorbic acid per kg of diet. A significant effect was observed on tissue copper and zinc, ovary weight and liver protein sulfhydryl groups. The mean ovary weight for guinea pigs fed 2500 mg of iron was significantly less than that of animals fed 50 mg of iron, 0.045 +/- 0.012 g and 0.061 +/- 0.009 g, respectively. Liver zinc content of animals fed 2500 mg of iron and 200 mg of ascorbic acid per kg of diet was significantly less than that of animals fed 50 mg of iron and 200 mg of ascorbic acid, 16.3 +/- 3.3 μg and 19.6 +/- 1.6 μg, respectively. There was no difference in liver copper due to dietary iron, but when dietary ascorbic acid was increased to 8 g per kg of diet, there was a significant decrease (from 22.8 +/- 8.1 μg to 10.5 +/- 4.8 μg) in liver copper. Excess dietary ascorbic acid decreased ovarian zinc significantly when increased to 8 g per kg of diet, 2929 +/- 919 μg vs 1661 +/- 471 μg, respectively, when compared to the control group

  11. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    Science.gov (United States)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  12. Synthesis of novel magnetic iron metal-silica (Fe-SBA-15) and magnetite-silica (Fe{sub 3}O{sub 4}-SBA-15) nanocomposites with a high iron content using temperature-programed reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yiu, H H P [Department of Chemistry, University of Liverpool, Liverpool, Merseyside L69 7ZD (United Kingdom); Keane, M A [Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Lethbridge, Z A D [Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Lees, M R [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Haj, A J El; Dobson, J [Institute of Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB (United Kingdom)], E-mail: j.p.dobson@keele.ac.uk

    2008-06-25

    Magnetic iron metal-silica and magnetite-silica nanocomposites have been prepared via temperature-programed reduction (TPR) of an iron oxide-SBA-15 (SBA: Santa Barbara Amorphous) composite. TPR of the starting SBA-15 supported Fe{sub 2}O{sub 3} generated Fe{sub 3}O{sub 4} and FeO as stepwise intermediates in the ultimate formation of Fe-SBA-15. The composite materials have been characterized by means of x-ray diffraction, high resolution transmission electron microscopy and SQUID (superconducting quantum interference device) magnetometry. The Fe oxide and metal components form a core, as nanoscale particles, that is entrapped in the SBA-15 pore network. Fe{sub 3}O{sub 4}-SBA-15 and Fe-SBA-15 exhibited superparamagnetic properties with a total magnetization value of 17 emu g{sup -1}. The magnetite-silica composite (at an Fe{sub 3}O{sub 4} loading of 30% w/w) delivered a magnetization that exceeded values reported in the literature or obtained with commercial samples. Due to the high pore volume of the mesoporous template, the magnetite content can be increased to 83% w/w with a further enhancement of magnetization.

  13. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  14. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    Energy Technology Data Exchange (ETDEWEB)

    Avraamides, J.; Senanayake, G.; Clegg, R. [A.J. Parker Cooperative Research Centre for Hydrometallurgy, Murdoch University, Perth, WA 6150 (Australia)

    2006-09-22

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25{sup o}C. Alkaline leaching with 6M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30min at 30{sup o}C using 0.1-1.0M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1M to 2M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide. (author)

  15. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    Science.gov (United States)

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Effect of radioactive iron /sup 59/Fe on the embryogeny of sea-trout (Salmo trutta L. )

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, K; Tucholski, S; Czarnocki, J

    1975-01-01

    Accumulation and diffusion of /sup 59/Fe in the eggs of Salmo trutta L. were observed under laboratory conditions. The dynamics of iron budget in the egg with developing embryo were determined. Differences were found in the accumulation and elimination of iron depending on the stage of the embryos development in the eggs at the time when they were put into the radionuclide solution and on the strength of its concentration.

  17. Biofortification with Iron and Zinc Improves Nutritional and Nutraceutical Properties of Common Wheat Flour and Bread.

    Science.gov (United States)

    Ciccolini, Valentina; Pellegrino, Elisa; Coccina, Antonio; Fiaschi, Anna Ida; Cerretani, Daniela; Sgherri, Cristina; Quartacci, Mike Frank; Ercoli, Laura

    2017-07-12

    The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.

  18. Determination of chromium, iron, zinc and calcium contents in pastes commercialized at Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Luizar-Obrigon, Celina; Baruffaldi, Renato

    1999-01-01

    Foods, in particular pastes, in the industrial manufacture process are in contact with equipment made of stainless steel, containing Cr, fe and Zn in their structures. The aim of this study is to verify Cr, Fe and Zn migration from the stainless steel equipment to the food during the industrial process. Instrumental neutron activation analysis was applied to determine the concentrations of Cr, Fe, Zn and Ca in four brands of pastes. Only the migration of chromium was be observed. (author)

  19. Iodine as an oxidant in the topotactic deintercalation of interstitial iron in Fe(1+x)Te.

    Science.gov (United States)

    Rodriguez, Efrain E; Zavalij, Peter; Hsieh, Ping-Yen; Green, Mark A

    2010-07-28

    The layered telluride, Fe(1+x)Te, is a parent compound of the isostructural and superconducting phases, Fe(1+x)(Te, Se, S). Here we show that, through a simple reaction of I(2) vapor with both powder and single crystal samples, the interstitial iron can be removed from the FeTe framework topotactically. Neutron powder diffraction and X-ray single crystal diffraction confirm that the iron being extracted is the partially occupied site that lies between the 2-D blocks of edge-sharing FeTe(4) tetrahedra. The deintercalation process has consequences for both magnetic and crystallographic phase transitions in the compound at low temperatures. This technique could be of use for the tuning of stoichiometry of the superconducting phases and therefore enable more careful studies on how chemical composition affects magnetic and superconducting properties.

  20. Spatially Resolved Distribution of Fe Species around Microbes at the Submicron Scale in Natural Bacteriogenic Iron Oxides.

    Science.gov (United States)

    Suga, Hiroki; Kikuchi, Sakiko; Takeichi, Yasuo; Miyamoto, Chihiro; Miyahara, Masaaki; Mitsunobu, Satoshi; Ohigashi, Takuji; Mase, Kazuhiko; Ono, Kanta; Takahashi, Yoshio

    2017-09-27

    Natural bacteriogenic iron oxides (BIOS) were investigated using local-analyzable synchrotron-based scanning transmission X-ray microscopy (STXM) with a submicron-scale resolution. Cell, cell sheath interface (EPS), and sheath in the BIOS were clearly depicted using C-, N-, and O- near edge X-ray absorption fine structure (NEXAFS) obtained through STXM measurements. Fe-NEXAFS obtained from different regions of BIOS indicated that the most dominant iron mineral species was ferrihydrite. Fe(II)- and/or Fe(III)-acidic polysaccharides accompanied ferrihydrite near the cell and EPS regions. Our STXM/NEXAFS analysis showed that Fe species change continuously between the cell, EPS, and sheath under several 10-nm scales.

  1. Impact of brewing process operations on phytate, phenolic compounds and in vitro solubility of iron and zinc in opaque sorghum beer

    NARCIS (Netherlands)

    Kayodé, A.P.P.; Hounhouigan, J.D.; Nout, M.J.R.

    2007-01-01

    Opaque sorghum beer is a significant component of the diet of millions of poor people in rural Africa. This study reports the effect of traditional brewing operations on its level of micronutrients, especially iron and zinc. The example of a West African sorghum beer, tchoukoutou, in Northern Benin

  2. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2010-01-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and

  3. Method of simultaneous continuous determination of transfer rates of iron and chromium into solution during Fe-Cr alloys dissolution

    International Nuclear Information System (INIS)

    Shirinov, T.I.; Florianovich, G.M.; Skuratnik, Ya.B.

    1978-01-01

    Radiometry method of simultaneous continuous registration of transfer rates of iron and chromium into solution from Fe-Cr alloys with various composition has been developed. Using gamma-spectrometer components of Fe-Cr alloys can be determined with high sensitivity in separate samples according to Fe 59 and Cr 51 radioactive labels, obtained by neutron activation. The above method is applied to estimate Fe and Cr transfer rates into H 2 SO 4 solution at the temperature of 50 deg from Fe - 28% Cr alloy during its active dissolution. It is established, that beginning with some seconds of alloy and solution contact, its components transfer into the solution in the same composition, as in the alloy. The method enables to determine Fe with the accuracy of up to 5% and Cr with that of up to 10%

  4. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    Science.gov (United States)

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  5. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    International Nuclear Information System (INIS)

    Wicks, J.K.; Jackson, J.M.; Sturhahn, W.

    2010-01-01

    The sound velocities of (Mg .16 Fe .84 )O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Moessbauer spectroscopy. We found the sound velocities of (Mg .16 Fe .84 )O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary.

  6. Study of solid state interactions in the systems ZnFe2O4 - CaO, ZnFe2O4 - MgO and zinc cake with CaO and MgO

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2013-01-01

    Full Text Available The solid state interactions of CaO and MgO with synthetic and industrial ZnFe2O4 (in zinc cake have been studied using chemical, XRD analysis and Mössbauer spectroscopy. The exchange reactions in the systems ZnFe2O4 - CaO and ZnFe2O4 - MgO have been investigated in the range of 850-1200ºC and duration up to 180 min. It has been established that Ca2+ and Mg2+ ions exchange Zn2+ in ferrite partially and the solubility of zinc in a 7% sulfuric acid solution increases. The possibilities for utilization of the obtained results in zinc hydrometallurgy have been discussed.

  7. Growth and microstructure of iron nitride layers and pore formation in {epsilon}-Fe{sub 3}N

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, C.; Mader, W. [Univ. Bonn, Inst. fuer Anorganische Chemie, Bonn (Germany)

    2003-03-01

    Layers of {epsilon}-Fe{sub 3}N and {gamma}'-Fe{sub 4}N on ferrite were produced by nitriding iron single crystals or rolled sheets of iron in flowing ammonia at 520 C. The nitride layers were characterised using X-ray diffraction, light microscopy as well as scanning and transmission electron microscopy. The compound layer consists of {epsilon}-Fe{sub 3}N at the surface and of {gamma}'-Fe{sub 4}N facing the ferrite. After 4 h of nitriding, pores develop in the near surface region of {epsilon}-Fe{sub 3}N showing more or less open porosity. Growth of the entire compound layer as well as of the massive and the porous {epsilon}-Fe{sub 3}N sublayer is diffusion-controlled and follows a parabolic growth rate. The {gamma}'-Fe{sub 4}N layer is formed as a transition phase within a narrow interval of nitrogen activity, and it shows little growth in thickness. The transformation of {gamma}'-Fe{sub 4}N to {epsilon}-Fe{sub 3}N is topotactic, where the orientation of the closed-packed iron layers of the crystal structures is preserved. Determination of lattice plane spacings was possible by X-ray diffraction, and this was correlated to the nitrogen content of {epsilon}-Fe{sub 3}N. While the porous layer exhibits an enhanced nitrogen content corresponding to the chemical composition Fe{sub 3}N{sub 1.1}, the massive e Fe{sub 3}N layer corresponds to Fe{sub 3}N{sub 1.0}. The pore formation in {epsilon}-Fe{sub 3}N{sub 1.1} is concluded to be the result of excess nitrogen atoms on non-structural sites, which have a high mobility. Therefore, recombination of excess nitrogen to molecular N{sub 2} at lattice defects is preferred in {epsilon}-Fe{sub 3}N with high nitrogen content compared to stoichiometric {epsilon}-Fe{sub 3}N{sub 1.0} with nitrogen on only structural sites. (orig.)

  8. The Fe-Cr-Zn system in relation with the galvanizing process in chromium-added zinc bath

    Energy Technology Data Exchange (ETDEWEB)

    Reumont, G.; Mathon, M.; Fourmentin, R.; Perrot, P. [LMPGM, UMR CNRS 8517, Univ. de Lille I, Villeneuve d' Ascq (France)

    2003-04-01

    Taking into account new experimental measurements, the Fe-Zn-Cr ternary system is critically modified at 460 C. A continuous solid solution between {zeta}-FeZn{sub 13} and CrZn{sub 13} compounds is shown but is shared at 460 C by the stable CrZn{sub 17} compound containing about 2 wt.% Fe. This ternary system is assessed with the CALPHAD method using the PARROT modulus of the Thermo-Calc software. The liquid and solid solution phases are modeled with Redlich-Kister-Muggianu equations. The intermetallic compounds {zeta}-(Fe,Cr)Zn{sub 13} and CrZn{sub 17} are treated as stoichiometric compounds in the binary systems. The experimental Fe and Cr solubilities at various temperatures modify the shape of the liquidus curve and are satisfying for industrial applications. A set of parameters consistent with most of the available experimental data on both phase diagram and solubility measurements is obtained by optimization. A comparison with previous experimental work is also presented and a reactional model between iron substrate and Zn-Cr bath is proposed. This optimization allows to interpret the growth of intermetallic layers and the formation of dross when galvanizing in Cr-added Zn bath. (orig.)

  9. Different behaviour of 63Ni and 59Fe during absorption in iron-deficient and iron-adequate jejunal rat segments ex vivo

    International Nuclear Information System (INIS)

    Mueller-Fassbender, M.; Elsenhans, B.; McKie, A.T.; Schuemann, K.

    2003-01-01

    Nickel exhibits low oral toxicity. It shares the absorptive pathways for iron, though there are substantial quantitative differences in handling of both metals. To analyse these differences more closely, jejunal segments from iron-deficient and iron-adequate rats were luminally perfused ex vivo with 59 Fe and 63 Ni at six different concentrations (1-500 μmo1/l) under steady state conditions. 59 Fe over-all absorption increased 2.0-4.6-fold in iron-deficiency at luminal concentrations between 1 and 100 μmol/l, while 63 Ni absorption increased to a much lower extent (2.6-fold at 1 μmol/l and 1.5-fold at higher luminal concentrations). Moreover, there was a 5-7-fold higher concentration for 63 Ni in the jejunal tissue than in the absorbate at luminal concentrations above 50 μmol/l which was not observed at 1 μmol 63 Ni/l and not for 59 Fe. 63 Ni tissue load showed a linear and a saturable fraction. In iron-deficiency the saturable 63 Ni fraction increased 4-fold as compared to only 1.5-fold increments for 59 Fe. Moreover, a substantially higher share of 63 Ni was retained in the jejunal tissue at high as compare to low luminal concentrations after perfusion had been continued without luminal radioactivity. This was not found for 59 Fe and suggests a concentration-dependent block of 63 Ni export across the enterocytes' basolateral membrane. To explain these results one may speculate that 63 Ni may bind more tightly to tissue ligands than 59 Fe due to the higher thermodynamic and kinetic stability of nickel complexes. In particular, nickel may bind to a basolateral population of metal carriers and block its own basolateral transfer in a concentration-dependent manner. Tight 63 Ni binding to non-specific jejunal ligands is responsible for the unaltered high linear fraction of jejunal 63 Ni load in iron-deficient and iron-adequate segments. Binding of 63 Ni to food and tissue ligands in the small intestine may, thus, be a likely explanation for the low oral nickel

  10. Comparison of Deferoxamine, Activated Charcoal, and Vitamin C in Changing the Serum Level of Fe in Iron Overloaded Rats

    Directory of Open Access Journals (Sweden)

    Reza Ghafari

    2014-02-01

    Full Text Available Background: Iron is an essential mineral for normal cellular physiology but its overload can lead to cell injury. For many years, deferoxamine injection has been used as an iron chelator for treatment of iron overload. The aim of this study is to compare oral deferoxamine, activated charcoal, and vitamin C, as an absorbent factor of Fe, in changing the serum level of iron in iron overload rats. Methods: In this experimental study, all groups were administered 150 mg iron dextran orally by gavage. After eight hours, rats in the first group received oral deferoxamine while those in the second and third groups received oral activated charcoal 1 mg/kg and oral vitamin C 150 mg, respectively. Then, serum levels of iron ware measured in all rats. Results: The mean serum level of iron in rats that received oral deferoxamine was 258.11±10.49 µg/dl, whereas mean levels of iron in charcoal and vitamin C groups were 380.88±11.21 µg/dl and 401.22±13.28 µg/dl, respectively. None of the measurements were within safety limits of serum iron. Conclusion: It seems that oral deferoxamine per se may not help physicians in the management of cases presented with iron toxicity. Activated charcoal did not reduce serum iron significantly in this study and further investigations may be warranted to assess the potential clinical utility of its mixture with oral deferoxamine as an adjunct in the clinical management of iron ingestions.

  11. Determination of iron, cobalt and zinc in caries teeth by neutron activation analysis

    International Nuclear Information System (INIS)

    Moriwaki, Kazunari; Shimpuku, Yasuhiro; Furuyama, Shunsuke

    1999-01-01

    The concentration of Fe, Zn and Co in caries teeth was determined by neutron activation analysis to compare with those of complete impacted wisdom teeth. In order to investigate the distribution of three elements, molar teeth were separated not by conventional method like precipitation or UV absorption method but by ashing method. Furthermore, the same elements for dental pulp and softened dentin were determined. The following results were obtained: The concentration of three elements (Fe, Zn and Co) in enamel, dentin and cementum of caries teeth was higher than that in control teeth. Enamel contained more Fe and Co than those in dentin or cementum, whereas Zn was found to be evenly distributed in three parts of the teeth. The concentration of the elements was Zn>Fe>Co in softened dentin, Fe>Zn>Co in dental pulp. (author)

  12. Investigation on effect of iron and corundum content on corrosion resistance of the NiFe-Al2O3 coatings

    International Nuclear Information System (INIS)

    Starosta, R.; Zielinski, A.

    1999-01-01

    The alloy NiFe and composite NiFe-Al 2 O 3 coatings, obtained by electrodeposition on the base of cast iron, were investigated. The iron content in alloy coatings was dependent on iron content in galvanic bath, and was estimated by means of X-ray microanalysis at 18.5 wt. pct. and 41.2 wt. pct. No existence of ordered Ni 3 Fe phase was found by diffraction technique. Both potentiodynamic and impedance measurements disclosed that a presence of Al 2 O 3 or increasing iron content in the layer caused the decrease in corrosion resistance. (author)

  13. Long-Term Effect of a Leonardite Iron Humate Improving Fe Nutrition As Revealed in Silico, in Vivo, and in Field Experiments.

    Science.gov (United States)

    Cieschi, María T; Caballero-Molada, Marcos; Menéndez, Nieves; Naranjo, Miguel A; Lucena, Juan J

    2017-08-09

    Novel, cheap and ecofriendly fertilizers that solve the usual iron deficiency problem in calcareous soil are needed. The aim of this work is to study the long-term effect of an iron leonardite fertilizer on citrus nutrition taking into account a properly characterization, kinetic response with a ligand competition experiment, efficiency assessment using Saccharomyces cerevisiae strain and finally, in field conditions with citrus as test plants. Its efficiency was compared with the synthetic iron chelate FeEDDHA. Leonardite iron humate (LIH) is mainly humic acid with a high-condensed structure where iron is present as ferrihydrite and Fe 3+ polynuclear compounds stabilized by organic matter. Iron and humic acids form aggregates that decrease the iron release from these kinds of fertilizers. Furthermore, LIH repressed almost 50% of the expression of FET3, FTR1, SIT1, and TIS11 genes in Saccharomyces cerevisiae cells, indicating increasing iron provided in cells and improved iron nutrition in citrus.

  14. Determination of copper, iron and zinc in spirituous beverages by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Capote, T.; Marcó, L. M.; Alvarado, J.; Greaves, E. D.

    1999-10-01

    The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, 'layer on layer' internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.

  15. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  16. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  17. High-performance characteristics of the bonded magnets produced from the Sm2 Fe17 Nx powder stabilized by photo-induced zinc metal coatings

    International Nuclear Information System (INIS)

    Machida, K.; Izumi, H.; Shiomi, A.; Iguchi, M.; Adachi, G.

    1996-01-01

    Finely and uniformly ground powders of Sm 2 Fe 17 N x were stabilized by surface-coating with the zinc metal produced from Zn (C 2 H 5 ) 2 . The epoxy resin-bonded magnets produced from the Zn/Sm 2 Fe 17 N x composite powder provided high-performance permanent magnetic characteristics: (BH)max=∼ 176 kJm -3 . (author)

  18. Impact of rice fortified with iron, zinc, thiamine and folic acid on laboratory measurements of nutritional status of preschool children

    Directory of Open Access Journals (Sweden)

    Ceres Mattos Della Lucia

    Full Text Available Abstract Fortification of food constitutes an important strategy for the control of micronutrient deficiency and has advantages such as high population coverage and maintenance of eating habits. This study aimed to assess the impact of using fortified rice (Ultra Rice® - UR® on the nutritional status of preschoolers. Ninety-nine children enrolled in two philanthropic preschools participated of the study. Children of one of the preschools were offered UR® mixed with polished rice, as part of school meals (test group and the children of another preschool were offered pure polished rice (control group. Biochemical evaluations were performed before and after 4 months of intervention. Dietary assessment and sensory evaluation of UR® mixed with polished rice were performed during the study. The fortified rice improved the concentrations of zinc (p < 0.001, thiamine (p < 0.001, folic acid (p = 0.003, mean corpuscular hemoglobin (p < 0.001 and mean corpuscular hemoglobin concentration (p < 0.001. The fortified rice showed good acceptability among preschoolers. This study demonstrated the effectiveness of using rice fortified with iron, zinc, thiamine and folic acid on the nutritional status of children.

  19. Removal of free cyanide in waste water through complexation with Fe(II) iron followed by alkaline chlorination. Tetsu (II) ion ni yoru sakka hanno wo maeshori to suru haisuichu no yuri sian no shori

    Energy Technology Data Exchange (ETDEWEB)

    Nishikubo, N; Tanihara, K; Yasuda, S [Government Industrial Research Institute, Kyushu, Fukuoka (Japan)

    1991-11-01

    The removal treatment of free cyanide in waste water was tested by complexation with Fe(2) ion followed by alkaline chlorination and precipitation of residual iron cyano complex to study saving of sodium hypochlorite (NaClO) for alkaline chlorination. The complexation with Fe(2) ion was studied in batch treatment under the coexistence with zinc ion assuming plating waste water, while the relation between the complexation and effective chlorine consumption in alkaline chlorination was studied in continuous treatment. As a result, the effective chlorine consumption was greatly decreased by pretreatment, and a cyanic acid ion (CNO{sup {minus}}) concentration was also lower than that in conventional methods. In the case of free cyanide with lower initial concentration, the total cyanide concentration in final treated water offered sufficiently low values only by adding zinc salt, while in higher initial concentration, it reached 1 ppm or less through precipitation by adding a reductant together with zinc salt. 9 refs., 7 figs., 2 tabs.

  20. Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach

    Science.gov (United States)

    Samperio-Ramos, Guillermo; González-Dávila, Melchor; Santana-Casiano, J. Magdalena

    2018-06-01

    The kinetics of Fe redox transformations are of crucial importance in determining the bioavailability of iron, due to inorganic Fe(II) and Fe weakly organic complexes being the most easily assimilated species by phytoplankton. The role played by the natural organic ligands excreted by the cyanobacteria Synecococcus PCC 7002 on the iron redox chemistry was studied at different stages of growth, considering changes in the organic exudation of the cyanobacteria, associated with growth under two different scenarios of iron availability. The oxidation/reduction processes of iron were studied at nanomolar levels and under different physicochemical conditions of pH (7.2- 8.2), temperature (5- 35 °C) and salinity (10- 37). The presence of natural organic exudates of Synechococcus affected the redox behavior of iron. A pH-dependent and photo-induced Fe(III) reduction process was detected in the presence of exudates produced under Fe-Low conditions. Photolytic reactions also modified the reactivity of those exudates with respect to Fe(II), increasing its lifetime in seawater. Without light mediated processes, organic ligands excreted under iron deficient conditions intensified the Fe(II) oxidation at pH redox constants between iron and the major ligands present in solution. Two organic type ligands for the exudates of Synechococcus PCC 7002, with different iron-chelation properties were included in the model. The Fe(II) speciation was radically affected when organic ligands were considered. The individual contributions to the overall Fe(II) oxidation rate demonstrated that these organic ligands played a key role in the oxidation process, although their contributions were dependent on the prescribed iron conditions. The study, therefore, suggests that the variability in the composition and nature of organic exudates released, due to iron availability conditions, might determine the redox behaviour of iron in seawater.

  1. Studies of the rare earth-iron interactions in the orthoferrites GdFeO3 and HoFeO3

    International Nuclear Information System (INIS)

    Sakata, T.; Enomura, A.

    1979-01-01

    The magnetic behaviour of GdFeO 3 and HoFeO 3 is investigated by means of a Faraday type magnetic balance in a temperature range where rare earth ions are in the paramagnetic state. The results are analyzed in terms of an effective field at a rare earth ion site. Thereby the isotropic exchange field as well as the magnetic dipole field are taken into account. By this means the exchange integral, J/k(K), between an iron ion and a rare earth ion may be estimated to be 0.23 for GdFeO 3 and 0.25 for HoFeO 3 , respectively. (author)

  2. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    International Nuclear Information System (INIS)

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-01-01

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn 0.55 2+ Fe 0.18 3+ ) tet [Zr 0.45 2+ Fe 1.82 3+ ] oct O 4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe 3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  3. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite

    International Nuclear Information System (INIS)

    Min, Dandan; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-01-01

    Highlights: • Flake carbonyl iron/Fe 3 O 4 composites were prepared by surface oxidation technique. • Lower permittivity and modest permeability was obtained by the FCI/Fe 3 O 4 composites. • Enhanced absorption efficiency and broader absorption band were obtained. - Abstract: Flake carbonyl iron/Fe 3 O 4 (FCI/Fe 3 O 4 ) composites with enhanced microwave absorption properties were prepared by a direct and flexible surface oxidation technique. The phase structures, morphology, magnetic properties, frequency-dependent electromagnetic and microwave absorption properties of the composites were investigated. The measurement results showed that lower permittivity as well as modest permeability was obtained by the FCI/Fe 3 O 4 composites. The calculated microwave absorption properties indicated that enhanced absorption efficiency and broader absorption band were obtained by the FCI/Fe 3 O 4 composite comparing with the FCI composite. The absorption frequency range with reflection loss (RL) below −5 dB of FCI/Fe 3 O 4 composites at reaction time of 90 min at thickness of 1.5 mm is 13.3 GHz from 4.7 to 18 GHz, while the bandwidth of the FCI composite is only 5.9 GHz from 2.6 to 8.5 GHz at the same thickness. Thus, such absorbers could act as effective and wide broadband microwave absorbers in the GHz range.

  4. Novel iron complexes bearing N6-substituted adenosine derivatives: Synthesis, magnetic, Fe-57 Mossbauer, DFT, and in vitro cytotoxicity studies

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Mikulík, J.; Čajan, Michal; Zbořil, R.; Popa, Igor

    2008-01-01

    Roč. 16, č. 18 (2008), s. 8719-8728 ISSN 0968-0896 Institutional research plan: CEZ:AV0Z50380511 Keywords : iron complexes * adenosine derivatives * Fe-57 Mossbauer spectroscopy Subject RIV: CE - Biochemistry Impact factor: 3.075, year: 2008

  5. Ionization processes in the Fe 27 region of hot iron plasma in the field of hard gamma radiation

    International Nuclear Information System (INIS)

    Illarionov, A.F.

    1989-01-01

    A highly ionized hot plasma of an iron 26 56 Fe-type heavy element in the field of hard ionizing gamma-ray radiation is considered. The processes of ionization and recombination are discussed for a plasma consisting of the fully ionized Fe 27 and the hydrogen-like Fe 26 ions of iron in the case of large optical depth of the plasma with respect to the photoionization by gamma-ray quanta. The self-ionization process of a hot plasma with the temperature kT ≅ I (I being the ionization potential), due to the production of the own ionizing gamma-ray quanta, by the free-free (ff) and recombination (fb) radiation mechanisms, is investigated. It is noted that in the stationary situation the process of self-ionization of a hot plasma imposes the restriction upon the plasma temperature, kT<1.5 I. It is shown that the ionization of heavy-ion plasma by the impact of thermal electrons is dominating over the processes of ff- and fb-selfionization of plasma only by the large concentration of hydrogen-like iron at the periphery of the region of fully ionized iron Fe 27

  6. Modelling phosphorus (P), sulphur (S) and iron (Fe) interactions during the simulation of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Solon, Kimberly; Kazadi-Mbamba, Christian

    2015-01-01

    This paper examines the effects of different model formulations when describing sludge stabilization processes in wastewater treatment plants by the Anaerobic Digestion Model No. 1 (ADM1). The proposed model extensions describe the interactions amongst phosphorus (P), sulfur (S), iron (Fe......) and their potential effect on total biogas production (CO2, CH4, H2 and H2S). The ADM1 version, implemented in the plant-wide context provided by the Benchmark Simulation Model No. 2 (BSM2), is used as the basic platform (A0). Four (A1 – A4) different model extensions are implemented, simulated and evaluated......2) as the electron donor. Finally, the last evaluated approach (A4) is based on accounting for Multiple Mineral Precipitation. The ADM1 thereby switches from a 2-phase (aqueous-gas) to a 3-phase (aqueous-gas-solid) system. Simulation results show that the implementations of A1 and A2 lead...

  7. Effectiveness of Iron Ethylenediamine-N,N′-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe3+) Formulations with Different Ratios of Meso and d,l-Racemic Isomers as Iron Fertilizers

    OpenAIRE

    Alcañiz Lucas, Sara; Jordá Guijarro, Juana Dolores; Cerdán, Mar

    2017-01-01

    Two o,o-EDDHA/Fe3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe3+ formulations was different depending on the iron nutritional status of plants. T...

  8. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  9. Magneto-optical study of holmium iron garnet Ho3Fe5O12

    Science.gov (United States)

    Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.

    2012-09-01

    Bulk holmium iron garnet Ho3Fe5O12 is a cubic ferrimagnet with Curie temperature TC = 567 K and magnetization compensation point in the range 130-140 K. The magneto-optical data are presented for a holmium iron garnet Ho3Fe5O12 film, ˜10 μm thick, epitaxially grown on a (111)-type gadolinium-gallium garnet Gd3Ga5O12 substrate. A specific feature of this structure is that the parameters of the bulk material, from which the film was grown, closely match the substrate ones. The temperature and field dependences of Faraday rotation as well as the temperature dependence of the domain structure in zero field were investigated. The compensation point of the structure was found to be Tcomp = 127 K. It was shown that the temperature dependence of the characteristic size of domain structure diverges at this point. Based on the obtained results we established that the magnetic anisotropy of the material is determined by both uniaxial and cubic contributions, each characterized by different temperature dependence. A complex shape of hysteresis loops and sharp changes of the domain pattern with temperature indicate the presence of collinear-noncollinear phase transitions. Study of the optical second harmonic generation was carried out using 100 fs laser pulses with central photon energy E = 1.55 eV. The electric dipole contribution (both crystallographic and magnetic) to the second harmonic generation was observed with high reliability despite a small mismatch of the film and substrate parameters.

  10. Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.

    Science.gov (United States)

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-05

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-07-01

    Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.

  12. Resonance Raman detection of iron-ligand vibrations in cyano(pyridine)(octaethylporphinato)iron(III): Effects of pyridine basicity on the Fe-CN bond strength

    International Nuclear Information System (INIS)

    Uno, Tadayuki; Hatano, Keiichiro; Nishimura, Yoshifumi; Arata, Yoji

    1988-01-01

    The influence of axial ligand basicity on the bonding of iron(III) in cyano adducts of octaethylporphyrin has been studied by resonance Raman spectroscopy. In a six-coordinate ferric low-spin complex, cyano(pyridine)(octaethylporphinato)iron(III), Fe(OEP)(CN)(py), Raman lines at 449 and 191 cm -1 were assigned to the ν(Fe-CN) and ν(Fe-py) stretching modes, respectively. When pyridine was displaced with its derivatives, py-X, where X = 4-cyano, 3-acetyl, 3-methyl, 4-methyl, 3,4-dimethyl, and 4-dimethylamino, the ν(Fe-CN) stretching frequency was found to decrease in the complex with a high pyridine basicity. It was concluded that the stronger the trans pyridine basicity, the weaker the iron-carbon (cyanide) bond. A clear frequency shift was observed in the ν 4 model, though most of the porphyrin vibrations were insensitive to the ligand substitution. The frequency of the ν 4 mode, which is the C a -N(pyrrole) breathing vibration of the porphyrin skeleton, was found to increase with an increase in pyridine basicity. This is contrary to what was found in ferrous low-spin hemes as CO complexes. The ν 4 shift in the CN complexes was explained in terms of forward π donation; donation of electrons from the porphyrin π orbital to the d π vacancy of the low-spin iron(III) weakened the C a -N(pyrrole) bonds and hence decreased the ν 4 frequency. 32 references, 8 figures

  13. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite.

    Science.gov (United States)

    Xiao, Wei; Jones, Adele M; Collins, Richard N; Waite, T David

    2018-05-09

    The inorganic core of the iron storage protein, ferritin, is recognized as being analogous to the poorly crystalline iron mineral, ferrihydrite (Fh). Fh is also abundant in soils where it is central to the redox cycling of particular soil contaminants and trace elements. In geochemical circles, it is recognized that Fh can undergo Fe(II)-catalyzed transformation to form more crystalline iron minerals, vastly altering the reactivity of the iron oxide and, in some cases, the redox poise of the system. Of relevance to both geochemical and biological systems, we investigate here if the naturally occurring reducing agent, ascorbate, can effect such an Fe(II)-catalyzed transformation of Fh at 25 °C and circumneutral pH. The transformation of ferrihydrite to possible secondary Fe(III) mineralization products was quantified using Fourier transform infrared (FTIR) spectroscopy, with supporting data obtained using X-ray absorbance spectroscopy (XAS) and X-ray diffraction (XRD). Whilst the amount of Fe(II) formed in the presence of ascorbate has resulted in Fh transformation in previous studies, no transformation of Fh to more crystalline Fe(III) (oxyhydr)oxides was observed in this study. Further experiments indicated this was due to the ability of ascorbate to inhibit the formation of goethite, lepidocrocite and magnetite. The manner in which ascorbate associated with Fh was investigated using FTIR and total organic carbon (TOC) analysis. The majority of ascorbate was found to adsorb to the Fh surface under anoxic conditions but, under oxic conditions, ascorbate was initially adsorbed then became incorporated within the Fe(III) (oxyhydr)oxide structure (i.e., co-precipitated) over time. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  15. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    Science.gov (United States)

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  16. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  17. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  18. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    Science.gov (United States)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  19. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II)

    International Nuclear Information System (INIS)

    Muniz, G.; Fierro, V.; Celzard, A.; Furdin, G.; Gonzalez-Sanchez, G.; Ballinas, M.L.

    2009-01-01

    Arsenic removal from natural well water from the state of Chihuahua (Mexico) is investigated by adsorption using a commercial activated carbon (AC). The latter is used as such, or after oxidation by several chemicals in aqueous solution: nitric acid, hydrogen peroxide, and ammonium persulphate. Raw and oxidised activated carbons are fully characterised (elementary analysis, surface chemistry, pore texture parameters, pH ZC , and TEM observation). Adsorption of As is measured in the aforementioned water, containing ca. 300 ppb of arsenic: removal of As is poor with the raw AC, and only the most oxidised carbons exhibit higher performances. By contrast, iron-doped ACs are much more efficient for that purpose, though their As uptake strongly depends on their preparation conditions: a number of samples were synthesised by impregnation of raw and oxidised ACs with HCl aqueous solutions of either FeCl 3 or FeCl 2 at various concentrations and various pH. It is shown that iron(II) chloride is better for obtaining high iron contents in the resultant ACs (up to 8.34 wt.%), leading to high As uptake, close to 0.036 mg As/g C. In these conditions, 100% of the As initially present in the natural well water is removed, as soon as the Fe content of the adsorbent is higher than 2 wt.%.

  20. Fe-bentonite. Experiments and modelling of the interactions of bentonites with iron

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Horst-Juergen; Xie, Mingliang [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Kasbohm, Joern; Lan, Nguyen T. [Greifswald Univ. (Germany); Hoang Thi Minh Thao [Hanoi Univ. of Science (Viet Nam)

    2011-11-15

    The main objectives of this study were to enhance the understanding of the interactions of bentonites with steel containers in the near field of a repository in salt formations and to determine missing experimental thermo-hydraulical-chemical and mineralogical data needed for the THC modelling of the interactions of bentonites with iron. At the beginning of this project a literature review helped to clarify the state of the art regarding the above mentioned objectives prior to the start of the experimental work. In the following experimental programme the hydraulic changes in the pore space of compacted MX80 bentonites containing metallic iron powder and in contact with three solutions of different ionic strength containing different concentrations of Fe{sup 2+} have been investigated. The alterations of MX80 and several other bentonites have been assessed in contact with the low ionic strength Opalinus Clay Pore Water (OCPW) and the saturated salt solutions NaCl solution and IP21 solution. Under repository relevant boundary conditions we determined on compacted MX80 samples with the raw density of 1.6 g/cm{sup 3} simultaneously interdependent properties like swelling pressures, hydraulic parameters (permeabilities and porosities), mineralogical data (changes of the smectite composition and iron corrosion products), transport parameters (diffusion coefficients) and thermal data (temperature dependent reaction progresses). The information and data resulting from the experiments have been used in geochemical modelling calculations and the existing possibilities and limitations to simulate these very complex near field processes were demonstrated. The main conclusion of this study is that the alteration of bentonites in contact with iron is accentuated and accelerated. Alterations in contact with solutions of different ionic strength identified by the authors in previous studies were found be much more intensive in contact with metallic iron and at elevated

  1. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    Science.gov (United States)

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  2. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3

    Science.gov (United States)

    Sivkov, Alexander; Naiden, Evgenii; Ivashutenko, Alexander; Shanenkov, Ivan

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe3O4, hematite α-Fe2O3 and ε-Fe2O3. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe2O3 is increased up to 50% at the same time with decreasing the Fe3O4 phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe2O3 on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe2O3, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz.

  3. Microwave digestion for determination of iron and zinc content of total food

    OpenAIRE

    Silva-Trejos, Paulina

    2012-01-01

    En el presente estudio se optimizó el procedimiento de digestión de alimentos por medio de un horno de microondas, para cuantificar el hierro y el zinc totales en diferentes matrices por espectroscopía de absorción atómica. Se analizó la cantidad óptima de HNO3 concentrado al 65% para digerir determinada masa de muestra por evaluación del porcentaje de recuperación obtenido con diferente cantidad de HNO3. Los resultados no difieren de los obtenidos por los métodos recomendados oficialmente de...

  4. Genetic and Environmental Impact on Iron, Zinc, and Phytate in Food Sorghum Grown in Benin

    NARCIS (Netherlands)

    Kayodé, A.P.P.; Linnemann, A.R.; Hounhouigan, J.D.; Nout, M.J.R.; Boekel, van M.A.J.S.

    2006-01-01

    Seventy-six farmers' varieties of sorghum from Benin were distinguished by amplified fragment length polymorphism (AFLP) and clustered into 45 distinct genotypes. The genotype clusters were evaluated for their Fe, Zn, and phytate concentrations to assess the impact of genetic and environmental

  5. Differential Tissue Accumulation of Copper, Iron, and Zinc in Bycatch Fish from the Mexican Pacific.

    Science.gov (United States)

    Spanopoulos-Zarco, P; Ruelas-Inzunza, J; Aramburo-Moran, I S; Bojórquez-Leyva, H; Páez-Osuna, F

    2017-03-01

    In order to ascertain if Cu, Fe, and Zn are differentially accumulated in fish tissues, metal concentrations were measured in the muscle and liver of bycatch fish from the states of Sinaloa (189 specimens, 7 species) and Guerrero (152 individuals, 8 species) in the Mexican Pacific Coast during March and November 2011. Additionally, metal levels were compared with the maximum allowable limits set by international legislation and contrasted with similar ichthyofauna from other regions. Liver had more elevated concentrations of Cu (Sinaloa 28.3, Guerrero 16.3 μg g -1 ), Fe (Sinaloa 1098, Guerrero 636 μg g -1 ), and Zn (Sinaloa 226, Guerrero 186 μg g -1 ) than the muscle in fish from both studied areas. The relative abundances of analyzed metals in both tissues was Fe > Zn > Cu. As far as limits set by international legislation (Australia, India, New Zealand, Zambia), measured concentrations of Cu in the edible portion of fish were not found to be above the set values. In the case of Zn, the maximum allowable limits set by international legislation were exceeded by the Peruvian mojarra Diapterus peruvianus from Guerrero state (Mexican Pacific). No limits exist for Fe in the edible portion of fishery products in the national and international legislations.

  6. Diversity, users' perception and food processing of sorghum: implications for dietary iron and zinc supply

    NARCIS (Netherlands)

    Kayodé, A.P.P.

    2006-01-01

    This thesis focuses on the diversity of sorghum and its post-harvest processing into food. We studied the contribution that sorghum can make to Fe and Zn intake by poor people in Africa, using the situation in Benin as a study context. The culinary and sensory characteristics of sorghum crops and

  7. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the

  8. Effect of soaking and phytase treatment on phytic acid, calcium, iron and zinc in rice fractions

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2009-01-01

    With the aim to maximise phytic acid removal and minimise losses of dry matter and minerals (Ca, Fe, Zn) in rice, three products (whole kernels and flour milled from white and brown rice; and bran, all from the same batch of variety Kenjian 90-31) were soaked in demineralized water at 10 °C (SDW),

  9. Polymersomes containing iron sulfide (FeS) as primordial cell model : for the investigation of energy providing redox reactions.

    Science.gov (United States)

    Alpermann, Theodor; Rüdel, Kristin; Rüger, Ronny; Steiniger, Frank; Nietzsche, Sandor; Filiz, Volkan; Förster, Stephan; Fahr, Alfred; Weigand, Wolfgang

    2011-04-01

    According to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today. Wächtershäuser postulated the evolution of chemical pathways as fundamentals of the origin of life on earth. In contrast to the classical Miller-Urey experiment, depending on external energy sources, the "Iron-Sulfur-World" is based on the catalytic and energy reproducing redox system FeS+H2S-->FeS2+H2. The energy release out of this redox reaction (∆RG°=-38 kJ/mol, pH 0) could be the cause for the subsequent synthesis of complex organic molecules and the precondition for the development of more complex units similar to cells known today. Here we show the possibility for precipitating iron sulfide inside vesicles composed of amphiphilic block-copolymers as a model system for a first prebiotic unit. Our findings could be an indication for a chemoautotrophic FeS based origin of life.

  10. High-Performance Epoxy-Resin-Bonded Magnets Produced from the Sm2Fe17Nx Powders Coated by Copper and Zinc Metals

    Science.gov (United States)

    Noguchi, Kenji; Machida, Ken-ichi; Adachi, Gin-ya

    2001-04-01

    Fine powders of Sm2Fe17Nx coated with copper metal reduced from CuCl2 and/or zinc metal subsequently derived by photo-decomposition of diethylzinc [Zn(C2H5)2] were prepared, and their magnetic properties were characterized in addition to those of epoxy-resin-bonded magnets produced from the coated powders (Cu/Sm2Fe17Nx, Zn/Sm2Fe17Nx and Zn/Cu/Sm2Fe17Nx). The remanence (Br) and maximum energy product [(\\mathit{BH})max] of double metal-coated Zn/Cu/Sm2Fe17Nx powders were maintained at higher levels than those of single Zn metal-coated Sm2Fe17Nx ones (Zn/Sm2Fe17Nx) even after heat treatment at 673 K since the oxidation resistance and thermal stability were effectively improved by formation of the thick and uniform protection layer on the surface of Sm2Fe17Nx particles. Moreover, the epoxy-resin-bonded magnets produced from the Zn/Cu/Sm2Fe17Nx powders possessed good corrosion resistance in air at 393 K which it resulted in the smaller thermal irreversible flux loss than that of uncoated and single Zn metal-coated Sm2Fe17Nx powders in the temperature range of above 393 K.

  11. The Effect of Low Dose Iron and Zinc Intake on Child Micronutrient Status and Development during the First 1000 Days of Life: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Nicolai Petry

    2016-11-01

    Full Text Available Adequate supply of micronutrients during the first 1000 days is essential for normal development and healthy life. We aimed to investigate if interventions administering dietary doses up to the recommended nutrient intake (RNI of iron and zinc within the window from conception to age 2 years have the potential to influence nutritional status and development of children. To address this objective, a systematic review and meta-analysis of randomized and quasi-randomized fortification, biofortification, and supplementation trials in women (pregnant and lactating and children (6–23 months delivering iron or zinc in doses up to the recommended nutrient intake (RNI levels was conducted. Supplying iron or zinc during pregnancy had no effects on birth outcomes. There were limited or no data on the effects of iron/zinc during pregnancy and lactation on child iron/zinc status, growth, morbidity, and psychomotor and mental development. Delivering up to 15 mg iron/day during infancy increased mean hemoglobin by 4 g/L (p < 0.001 and mean serum ferritin concentration by 17.6 µg/L (p < 0.001 and reduced the risk for anemia by 41% (p < 0.001, iron deficiency by 78% (ID; p < 0.001 and iron deficiency anemia by 80% (IDA; p < 0.001, but had no effect on growth or psychomotor development. Providing up to 10 mg of additional zinc during infancy increased plasma zinc concentration by 2.03 µmol/L (p < 0.001 and reduced the risk of zinc deficiency by 47% (p < 0.001. Further, we observed positive effects on child weight for age z-score (WAZ (p < 0.05, weight for height z-score (WHZ (p < 0.05, but not on height for age z-score (HAZ or the risk for stunting, wasting, and underweight. There are no studies covering the full 1000 days window and the effects of iron and zinc delivered during pregnancy and lactation on child outcomes are ambiguous, but low dose daily iron and zinc use during 6–23 months of age has a positive effect on child iron and zinc status.

  12. Zoning and contamination rate of magnesium and heavy metals of iron, zinc and copper in the north and northwest aquifer of Khoy (Zourabad based on GIS and determining the contaminated source

    Directory of Open Access Journals (Sweden)

    Fariborz Khodadadi

    2015-04-01

    samples carried out in the chemistry laboratory of the University of Urmia. All water sampling procedures were performed based on standard protocols (SMEWW, 2010. The maximum concentration of heavy metal contamination of drinking water with EPA, WHO and national standards were compared. In this study, the chemical analysis of heavy metals, were used by graphite furnace atomic absorption spectrometry (at ppb for the elements Cu, Mg, Fe and Zn. Concentration of the heavy metals in acidified water samples (pH value of 2, using a flame atomic absorption spectrophotometer were analyzed. Discussion There are enormous amounts of Fe and magnesium in groundwater from the north and northwest Khoy plain, and the amount of Cu and zinc are in the normal range in water resources. The source of iron and magnesium in the groundwater of the study area is ultramafic and mafic rocks of the Khoy ophiolite complex. Weathering of ultramafic and mafic igneous rocks such as peridotite, olivine basalt, gabbro and pillow lava and then soil formation, high concentrations of the elements Mg and Fe were transferred to soil. Ferromagnesian olivine is formed Mg2+ and Fe2+ ions and tetrahedral silicon. If sufficient amount of Mg2+ and Fe3+ ions combine with silicon and oxygen, silicon into the soil, forms silicic acid (H4SiO4, or magnesium or iron smectite (clay minerals (Alexander et al., 2007. Several types of pyroxene are more stable than olivine. Orthopyroxene during weathering decompose into talc and smectite. Magnesite (MgCO3 is present in some serpentine soils. With respect to the empirical relationship (Kierczak et al., 2007 and based on temperature and rainfall, the study area with a drought index of 12.48 places in the category of semi-arid-cold climate between 10 and 19.9. Temperature changes in the condition cause weathering and leaching of serpentine soils, and subsequently can remove large amounts of magnesium. Weathering and leaching serpentine soils, releases immediately magnesium and

  13. Fabrication and Properties of Iron-based Soft Magnetic Composites Coated with NiZnFe2O4

    Directory of Open Access Journals (Sweden)

    WU Shen

    2017-07-01

    Full Text Available This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing the sol-gel method prepared Ni-Zn ferrite particles as insulating compound to coat iron powder, and the influence of NiZnFe2O4 content and molding pressure on the magnetic properties was studied. The morphology, magnetic properties and density of Ni-Zn ferrite insulated compacts were investigated. Scanning electron microscope,line-scan EDX analysis and distribution maps show that the iron particle surface is covered with a thin layer of uniform Ni-Zn ferrites. The existing of the insulating layer can effectively improve the electrical resistivity of soft magnetic composites. Magnetic measurements show that the real part of permeability decreases with the increase of the Ni-Zn ferrite content, and the sample with 3%(mass fraction, the same below Ni-Zn ferrite has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Results show that the addition of NiZnFe2O4 can dramatically decrease the internal magnetic loss, the magnetic loss of coated samples decreases by 83.8% as compared with that of uncoated samples at 100kHz. The density of the Fe-3%NiZnFe2O4 compacts reaches 7.14g/cm3 and the saturation magnetization is 1.47T when the molding pressure is 1000MPa.

  14. Normal iron absorption determined by means of whole body counting and red cell incorporation of 59Fe

    International Nuclear Information System (INIS)

    Larsen, L.; Milman, N.

    1977-01-01

    Gastrointestinal iron absorption was measured in 27 normal subjects (19 females and 8 males) by means of whole body counting. Whole body retention 14 days after oral administration of 10μCi 59 Fe together with a carrier dose of 9.9 mg Fe 2+ (as sulphate), was used as an expression of absorption. The percentage incorporation in the total erythrocyte mass of administered 59 Fe (erythrocyte incorporation) and of absorbed 59 Fe (red cell utilization) was also estimated. Geometric mean iron absorption was 8.3+-2.1 (SD% in females, 9.1+-2.2 % in males and 8.5+-2.1 % in the entire series. The difference between males and females was not significant. Erythrocyte incorporation was 7.7+-2.2 (SD) % (geometric mean) in the entire series and the correlation between iron absorption and erythrocyte incorporation was highly significant (r = 0.96,P < 0.001). Red cell utilization averaged 92.9 +- 4.0 (SEM)% (arithmetic mean) in the entire series. (author)

  15. Development of iron and zinc enriched mungbean (Vigna radiata L.) cultivars with agronomic traits in consideration

    OpenAIRE

    Singh, R.

    2013-01-01

    Malnutrition in India, particularly among women, children and adolescents is an emergency that needs immediate attention in this fast growing and developing country. Micronutrient deficiencies are threatening public health in India more and more. Deficiencies of micronutrients drastically affect growth, metabolism and reproductive phase in humans as it does in plants and animals. Cereal and pulse based Indian diets are qualitatively deficient in micronutrients such as iron, calcium, vitamin ...

  16. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    Directory of Open Access Journals (Sweden)

    Vanessa De la Cruz-Góngora

    2012-04-01

    Full Text Available OBJETIVE: To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. RESULTS: The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. CONCLUSIONS: There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.OBJETIVO: Describir la prevalencia de anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos en la encuesta probabilística ENSANUT 2006. MATERIAL Y MÉTODOS: La muestra incluyó 2447 adolescentes de 12 a 19 años de edad. Se tomó hemoglobina capilar y muestras de sangre venosa para medir las concentraciones séricas de ferritina, sTFR, CRP, zinc, hierro, cobre y magnesio. Se construyeron modelos de regresión logística para evaluar el riesgo de deficiencia de minerales. RESULTADOS: La prevalencia de anemia fue de 11.8% en mujeres y 4.6% en hombres. Las deficiencias de hierro fueron de 18.2 y 7.9% La deficiencia tisular de hierro fue 6.9%; la baja concentración de cobre fue de 14.4 y 12.25% la de zinc de 28.4 y 24.5%, la de magnesio fue 40 y 35.3% en mujeres y hombres, respectivamente. CONCLUSIONES: Existe una alta prevalencia de deficiencia de minerales en los adolescentes; las mujeres tuvieron mayor riesgo. Son necesarias

  17. Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain

    DEFF Research Database (Denmark)

    Neal, Andrew L; Geraki, Kalotina; Borg, Søren

    2013-01-01

    of modified complexation of both metals in transgenic grain overexpressing wheat ferritin. For zinc, there is a consistent doubling of the number of complexing phosphorus atoms. Although there is some EXAFS evidence for iron phytate in ferritin-expressing grain, there is also evidence of a structure lacking......We have used synchrotron-based X-ray fluorescence and absorption techniques to establish both metal distribution and complexation in mature wheat grains. In planta, extended X-ray absorption fine structure (EXAFS) spectroscopy reveals iron phytate and zinc phytate structures in aleurone cells...... of ferritin-expressing grains is quite different from that in wild-type grain. This may explain why the raised levels of minerals transported to the developing grain accumulate within the crease region of the transgenic grain....

  18. Shaping optimal zinc coating on the surface of high-quality ductile iron casting. Part II – Technological formula and value of diffusion coefficient

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2017-03-01

    Full Text Available The completed research presented in the first part of the article has allowed linking the manufacturing technology of ductile iron castings with the process of hot dip galvanizing. On the basis of these data simulations were carried out to examine the behaviour of zinc diffusion coefficient D in the galvanized coating. The adopted model of zinc coating growth helped to explain the cases of excessive growth of the intermetallic phases in this type of coating. The paper analyzes covered the relationship between the roughness and phase composition of the top layer of product and the thickness and kinetics of zinc coating growth referred to individual sub-layers of the intermetallic phases.Roughness and phase composition in the surface layer of product were next related to the diffusion coefficient D examined in respective sublayers of the intermetallic phases.

  19. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits

    Science.gov (United States)

    Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Lundstrom, Craig C.; Gajos, Norbert; Bindeman, Ilya; Barra, Fernando; Munizaga, Rodrigo

    2016-03-01

    Iron oxide-apatite (IOA) ore deposits occur globally and can host millions to billions of tons of Fe in addition to economic reserves of other metals such as rare earth elements, which are critical for the expected growth of technology and renewable energy resources. In this study, we pair the stable Fe and O isotope compositions of magnetite samples from several IOA deposits to constrain the source reservoir of these elements in IOAs. Since magnetite constitutes up to 90 modal% of many IOAs, identifying the source of Fe and O within the magnetite may elucidate high-temperature and/or lower-temperature processes responsible for their formation. Here, we focus on the world-class Los Colorados IOA in the Chilean iron belt (CIB), and present data for magnetite from other Fe oxide deposits in the CIB (El Laco, Mariela). We also report Fe and O isotopic values for other IOA deposits, including Mineville, New York (USA) and the type locale, Kiruna (Sweden). The ranges of Fe isotopic composition (δ56Fe, 56Fe/54Fe relative to IRMM-14) of magnetite from the Chilean deposits are: Los Colorados, δ56Fe (±2σ) = 0.08 ± 0.03‰ to 0.24 ± 0.08‰; El Laco, δ56Fe = 0.20 ± 0.03‰ to 0.53 ± 0.03‰; Mariela, δ56Fe = 0.13 ± 0.03‰. The O isotopic composition (δ18O, 18O/16O relative to VSMOW) of the same Chilean magnetite samples are: Los Colorados, δ18O (±2σ) = 1.92 ± 0.08‰ to 3.17 ± 0.03‰; El Laco, δ18O = 4.00 ± 0.10‰ to 4.34 ± 0.10‰; Mariela, δ18O = (1.48 ± 0.04‰). The δ18O and δ56Fe values for Kiruna magnetite yield an average of 1.76 ± 0.25‰ and 0.16 ± 0.07‰, respectively. The Fe and O isotope data from the Chilean IOAs fit unequivocally within the range of magnetite formed by high-temperature magmatic or magmatic-hydrothermal processes (i.e., δ56Fe 0.06-0.49‰ and δ18O = 1.0-4.5‰), consistent with a high-temperature origin for Chilean IOA deposits. Additionally, minimum formation temperatures calculated by using the measured Δ18O

  20. Comparative studies on acid leaching of zinc waste materials

    Science.gov (United States)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  1. Iron, zinc and selenium status of urban and rural populations in Pakistan, their bioavailability in the diet and their dietary interaction

    International Nuclear Information System (INIS)

    Manser, W.W.T.; Zaki Hasan, K.; Iliyas, M.; Zaidi, Z.

    1992-01-01

    In spite of the diversity of diet for rural and urban populations of Pakistan, anemias are very common. This paper contains a discussion of deficiencies of iron, zinc, selenium and magnesium in the population. Included are discussions on the bioavailability of these elements from the local diet, the various dietary interactions with other elements, and several methods used for identifying the trace element in blood samples from a test group. 28 refs, 7 tabs

  2. Contribution of bioavailable iron and zinc to the diet of Honduran children under 24 month

    Science.gov (United States)

    Fernández-Palacios, Lorena; Ros-Berruezo, Gaspar; Barrientos-Augustinus, Elsa; Jirón de Caballero, Elizabeth; Frontela-Saseta, Carmen

    2017-03-30

    Objective: In the present study we analyzed 18 baby food (10 made from traditional Honduran recipes, and 8 industrial baby food sold in that country) involving the staple food of Honduran excluded infants breast milk and infant formulas. Material and methods: The content and bioaccesibility (soluble and dialysable fractions) of Fe and Zn were determined. For thisin vitro gastrointestinal digestion in a first phase of gastric digestion (pepsin) followed by a second phase of intestinal digestion (with pancreatin and bile salts) was simulated. The atomic absorption spectrometry mineral content measured in soluble and dialyzable fractions. Results: Traditional porridges from Honduras (PTH) showed low density of micronutrients being the PTH prepared based on “rice with beans and greens”, “rice with ground beans” and “beans with banana” which had a higher content values of 1.96, 1.56, and 1.46 mg Fe/100 g, respectively, although in vitroavailability values below 50% of its content. For Zn in these recipes, the values found were very low being below the detection limit. In relation to industrial porridges (PIH), those of “rice”, “wheat with milk” and “5 cereals” they had a higher content of Fe (9.4, 8.53 and 7.56 mg Fe/100 g, respectively). Its availability in vitro was greater than 70% in all cases. PIH Zn showed values of 1.36, and 0.99 mg Zn/100 g samples of “wheat with milk” and “wheat with honey”, respectively, and increased availability of 75%. Conclusions: It is shown that PTH have some limitations in its formulation that makes the selected micronutrients are in fewer and even less bioaccessible, compared with PIH, so review is recommended to avoid supplementation of these micronutrients and help improve the nutritional status of the child population as Honduran model country in Central America.

  3. Iron fertilization with FeEDDHA : the fate and effectiveness of FeEDDHA chelates in soil-plant systems

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.

    2010-01-01

    Iron deficiency chlorosis is a nutritional disorder in plants which reduces crop yields both quantitatively and qualitatively, and causes large economic losses. It occurs world-wide, predominantly in plants grown on calcareous soils, as a result of a limited bioavailability of iron related to the

  4. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific

    International Nuclear Information System (INIS)

    Coale, K.H.

    1991-01-01

    Natural plankton populations from subarctic Pacific surface waters were incubated in 7-d experiments with added concentrations of Fe, Mn, Cu, and Zn. Small additions of metals were used to simulate natural perturbations in metal concentrations potentially experienced by marine plankton. Trace metal concentrations, phytoplankton productivity, Chl a, and the species composition of phytoplankton and microzooplankton were measured over the course of the experiment. Although the controls indicated little growth, increases in phytoplankton productivity, Chl a, and cell densities were dramatic after the addition of 0.89 nM Fe, indicating that it may limit the rates of algal production in these waters. Similar increases were observed in experiments with 3.9 nM Cu added. The Cu effect is attributed to a decrease in the grazing activities of the microzooplankton and increases in the rates of production. Mn enrichment had its greatest effect on diatom biomass, whereas Zn enrichment had its greatest effect on other autofluorescent organisms. The extent of trace metal adsorption onto carboy walls was also evaluated. These results imply that natural systems may be affected as follows: natural levels of Fe and Cu may influence phytoplankton productivity and trophic structure in open-ocean, high-nutrient, low-biomass systems; rates of net production are not limited by one micronutrient alone

  5. Iron, folacin, vitamin B12 and zinc status and immune response in elderly subjects in the Washington D.C. metropolitan area

    International Nuclear Information System (INIS)

    Henry-Christian, J.R.

    1986-01-01

    The iron, folacin, vitamin B 12 , and zinc status of a group of economically and socially disadvantaged elderly persons in the Washington Metropolitan Area was evaluated. Factors related to deficiencies of these nutrients, the relationships between the status of these nutrients and cell-mediated immunity, and the relationships of iron, folacin and vitamin B 12 status to hemoglobin levels in the subjects were also examined. It was also determined whether there were any interactions among iron, folacin, vitamin B 12 and zinc status in their relationships to cell-mediated immunity. Socio-demographic and nutritional data on the subjects were obtained using a questionnaire. Dietary data were obtained using a dietary record. A fasting blood sample was drawn and the levels of ferritin, folate and vitamin B 12 , and the erythrocyte levels of folate were determined by radioassay. Plasma and hair zinc levels were determined by atomic absorption spectrophotometry. Cell-mediated immune response was determined by transformation of peripheral blood lymphocytes after stimulation by mitogens, and by allogenic lymphocytes in the mixed lymphocyte reaction

  6. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.

    Science.gov (United States)

    Gibson, Rosalind S; Bailey, Karl B; Gibbs, Michelle; Ferguson, Elaine L

    2010-06-01

    Plant-based complementary foods often contain high levels of phytate, a potent inhibitor of iron, zinc, and calcium absorption. This review summarizes the concentrations of phytate (as hexa- and penta-inositol phosphate), iron, zinc, and calcium and the corresponding phytate:mineral molar ratios in 26 indigenous and 27 commercially processed plant-based complementary foods sold in low-income countries. Phytate concentrations were highest in complementary foods based on unrefined cereals and legumes (approximately 600 mg/100 g dry weight), followed by refined cereals (approximately 100 mg/100 g dry weight) and then starchy roots and tubers (source foods and/or fortification with minerals. Dephytinization, either in the household or commercially, can potentially enhance mineral absorption in high-phytate complementary foods, although probably not enough to overcome the shortfalls in iron, zinc, and calcium content of plant-based complementary foods used in low-income countries. Instead, to ensure the World Health Organization estimated needs for these minerals from plant-based complementary foods for breastfed infants are met, dephytinization must be combined with enrichment with animal-source foods and/or fortification with appropriate levels and forms of mineral fortificants.

  7. Characterizing the production and retention of dissolved iron as Fe(II) across a natural gradient in chlorophyll concentrations in the Southern Drake Passage - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katherine Barbeau

    2007-04-10

    Recent mesoscale iron fertilization studies in the Southern Ocean (e.g. SOIREE, EisenEx, SOFeX) have demonstrated the importance of iron as a limiting factor for phytoplankton growth in these high nutrient, low-chlorophyll (HNLC) waters. Results of these experiments have demonstrated that factors which influence the biological availability of the iron supplied to phytoplankton are crucial in bloom development, longevity, and generation of carbon export flux. These findings have important implications for the future development of iron fertilization protocols to enhance carbon sequestration in high-latitude oceans. In particular, processes which lead to the mobilization and retention of iron in dissolved form in the upper ocean are important in promoting continued biological availability of iron. Such processes can include photochemical redox cycling, which leads to the formation of soluble reduced iron, Fe(II), within iron-enriched waters. Creation of effective fertilization schemes will thus require more information about Fe(II) photoproduction in Southern Ocean waters as a means to retain new iron within the euphotic zone. To contribute to our knowledge base in this area, this project was funded by DOE with a goal of characterizing the production and retention of dissolved Fe as Fe(II) in an area of the southern Drake Passage near the Shackleton Transverse Ridge, a region with a strong recurrent chlorophyll gradient which is believed to be a site of natural iron enrichment in the Southern Ocean. This area was the focus of a multidisciplinary NSF/OPP-funded investigation in February 2004 (OPP02-30443, lead PI Greg Mitchell, SIO/UCSD) to determine the influence of mesoscale circulation and iron transport with regard to the observed patterns in sea surface chlorophyll in the region near the Shackleton Transverse Ridge. A number of parameters were assessed across this gradient in order to reveal interactions between plankton community structure and iron distributions

  8. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available Application of zero-valent iron nanoparticles (nZVI for Zn²⁺ removal and its mechanism were discussed. It demonstrated that the uptake of Zn²⁺ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn²⁺ could be removed within 2 h. The pH value and dissolved oxygen (DO were the important factors of Zn²⁺ removal by nZVI. The DO enhanced the removal efficiency of Zn²⁺. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxyhydroxide, which could show high adsorption affinity. The removal efficiency of Zn²⁺ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn²⁺ by nZVI because the existing H⁺ inhibited the formation of iron (oxyhydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn²⁺ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn²⁺ were higher than Cd²⁺. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn²⁺.

  9. from Tef as Measured by an Extrinsic Radio ironFe) Tag

    African Journals Online (AJOL)

    "Fe Radioactive: SºFe as ferric chloride in. 0.IM HCi ... Radioactivity (as Fe ... samples was determined by counting aliquots ..... for contamination with soil during the .... elements. Nutr. Res. Rev. 1996: 9:295-. 324. Central Statistical Authority.

  10. Zn-10.2% Fe coating over carbon steel atmospheric corrosion resistance. Comparison with zinc coating

    International Nuclear Information System (INIS)

    Arnau, G.; Gimenez, E.; Rubio, M.V.; Saura, J.J.; Suay, J.J.

    1998-01-01

    Zn-10.2% Fe galvanized coating versus hot galvanized coating over carbon steel corrosion performance has been studied. Different periods of atmospheric exposures in various Valencia Community sites, and salt spray accelerated test have been done. Carbon steel test samples have been used simultaneously in order to classify exposure atmosphere corrosivity, and environmental exposure atmosphere characteristics have been analyzed. Corrosion Velocity versus environmental parameters has been obtained. (Author) 17 refs

  11. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    Science.gov (United States)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  12. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    International Nuclear Information System (INIS)

    Singh, B.N.; Xiaoxu Huang; Taehtinen, S.; Moilamen, P.; Jacquet, P.; Dekeyser, J.

    2007-11-01

    Traditionally, the effect of irradiation on mechanical properties of metals and alloys is determined using post-irradiation tests carried out on pre-irradiated specimens and in the absence of irradiation environment. The results of these tests may not be representative of deformation behaviour of materials used in the structural components of a fission or fusion reactor where the materials will be exposed concurrently to displacement damage and external and/or internal stresses. In an effort to evaluate and understand the dynamic response of materials under these conditions, we have recently performed a series of uniaxial tensile tests on Fe-Cr and pure iron specimens in the BR-2 reactor at Mol (Belgium). The present report first provides a brief description of the test facilities and the procedure used for performing the in-reactor tests. The results on the mechanical response of materials during these tests are presented in the form of stress-displacement dose and the conventional stress-strain curves. For comparison, the results of post-irradiation tests and tests carried out on unirradiated specimens are also presented. Results of microstructural investigations on the unirradiated and deformed, irradiated and undeformed, post-irradiation deformed and the in-reactor deformed specimens are also described. During the in-reactor tests the specimens of both Fe-Cr alloy and pure iron deform in a homogeneous manner and do not exhibit the phenomenon of yield drop. An increase in the pre-yield dose increases the yield stress but not the level of maximum flow stress during the in-reactor deformation of Fe-Cr alloy. Neither the in-reactor nor the post-irradiation deformed specimens of Fe-Cr alloy and pure iron showed any evidence of cleared channel formation. Both in Fe-Cr and pure iron, the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post

  13. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe{sub 3}O{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dandan, E-mail: mdd4776@126.com; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-08-01

    Highlights: • Flake carbonyl iron/Fe{sub 3}O{sub 4} composites were prepared by surface oxidation technique. • Lower permittivity and modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. • Enhanced absorption efficiency and broader absorption band were obtained. - Abstract: Flake carbonyl iron/Fe{sub 3}O{sub 4} (FCI/Fe{sub 3}O{sub 4}) composites with enhanced microwave absorption properties were prepared by a direct and flexible surface oxidation technique. The phase structures, morphology, magnetic properties, frequency-dependent electromagnetic and microwave absorption properties of the composites were investigated. The measurement results showed that lower permittivity as well as modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. The calculated microwave absorption properties indicated that enhanced absorption efficiency and broader absorption band were obtained by the FCI/Fe{sub 3}O{sub 4} composite comparing with the FCI composite. The absorption frequency range with reflection loss (RL) below −5 dB of FCI/Fe{sub 3}O{sub 4} composites at reaction time of 90 min at thickness of 1.5 mm is 13.3 GHz from 4.7 to 18 GHz, while the bandwidth of the FCI composite is only 5.9 GHz from 2.6 to 8.5 GHz at the same thickness. Thus, such absorbers could act as effective and wide broadband microwave absorbers in the GHz range.

  14. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Huang, X.; Tähtinen, S.

    , the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post-irradiation deformation of Fe-Cr and pure iron. Furthermore, in both cases, the slip systems even in the planes with Schmid...... factor value of almost zero get activated during the in-reactor as well as post-irradiation deformation. The main implications of these results are briefly discussed....

  15. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  16. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  17. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  18. Thermal decomposition pathway of undoped and doped zinc layered gallate nanohybrid with Fe 3+, Co 2+ and Ni 2+ to produce mesoporous and high pore volume carbon material

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; bin Hussein, Mohd Zobir; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki

    2009-12-01

    A series of brucite-like materials, undoped and doped zinc layered hydroxide nitrate with 2% (molar) Fe 3+, Co 2+ and Ni 2+ were synthesized. Organic-inorganic nanohybrid material with gallate anion as a guest, and zinc hydroxide nitrate, as an inorganic layered host was prepared by the ion-exchange method. The nanohybrid materials were heat-treated at various temperatures, 400-700 °C. X-ray diffraction, thermal analysis and also Fourier transform infrared results showed that incorporation of the doping agents within the zinc layered hydroxide salt layers has enhanced the heat-resistivity of the nanohybrid materials in the thermal decomposition pathway. Porous carbon materials can be obtained from the heat-treating the nanohybrids at 600 and 700 °C. Calcination of the nanohybrids at 700 °C under nitrogen atmosphere produces mesoporous and high pore volume carbon materials.

  19. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients' sera with newly developed multi-compartment flow cell

    International Nuclear Information System (INIS)

    Teshima, Norio; Gotoh, Shingo; Ida, Kazunori; Sakai, Tadao

    2006-01-01

    We propose here an affordable flow injection method for simultaneous spectrophotometric determination of copper, iron and zinc in patients' sera. The use of a newly designed multi-compartment flow cell allowed the simultaneous determination of the three metals with a single injection ('one-shot') and a double beam spectrophotometer. The chemistry relied on the reactions of these metals with 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) to form corresponding colored complexes. At pH 3.8, only copper-nitro-PAPS complex was formed in the presence of pyrophosphate as a masking agent for iron, and then the copper and iron(II) complexes were formed in the presence of reductant (ascorbic acid) at the same pH, and finally all three metals reacted with nitro-PAPS at pH 8.6. The characteristics were introduced into the flow system to determine each metal selectively and sensitively. Under the optimum conditions, linear calibration curves for the three metals were obtained in the range of 0.01-1 mg L -1 with a sample throughput rate of 20 h -1 . The limits of detection (3σ) were 3.9 μg L -1 for copper, 4.1 μg L -1 for iron and 4.0 μg L -1 for zinc. The proposed method was applied to analysis of some patients' sera

  20. Synthesis, chemical and biological studies on new Fe(3+)-glycosilated beta-diketo complexes for the treatment of iron deficiency.

    Science.gov (United States)

    Arezzini, Beatrice; Ferrali, Marco; Ferrari, Erika; Frassineti, Chiara; Lazzari, Sandra; Marverti, Gaetano; Spagnolo, Ferdinando; Saladini, Monica

    2008-11-01

    A simple synthetic pathway to obtain glycosilated beta-diketo derivatives is proposed. These compounds show a good iron(III) affinity therefore we may suggest the use of their Fe(3+)-complexes as oral iron supplements in the treatment of anaemia. The glycosilated compounds (6-GlcH, 6-GlcOH and 6-GlcOCH(3)) are characterized by means of spectroscopic (UV, (1)H and (13)C NMR) and potentiometric techniques; they have a good water solubility, are kinetically stable in physiological condition (t(1/2)>100h) and show a low cytotoxicity also in high concentrations (IC(50)>400 microM). They are able to bind Fe(3+) ion in acid condition (pH approximately 2) forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. The iron complexes show also a good kinetic stability both in acidic and physiological pH and have a good lypophilicity (logP>-0.7) that suggests an efficient gastrointestinal absorption in view of their possible use in oral therapy. In addition they demonstrate a poor affinity for competitive biological metal ion such as Ca(2+), and in particular 6-GlcOCH(3) is able to inhibit lipid peroxidation.

  1. Effectiveness of Iron Ethylenediamine-N,N'-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe3+) Formulations with Different Ratios of Meso and d,l-Racemic Isomers as Iron Fertilizers.

    Science.gov (United States)

    Alcañiz, Sara; Jordá, Juana D; Cerdán, Mar

    2017-01-18

    Two o,o-EDDHA/Fe 3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe 3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe 3+ formulations was different depending on the iron nutritional status of plants. The three o,o-EDDHA/Fe 3+ formulations tested were effective in preventing iron chlorosis in healthy plants. However, the higher the meso concentration in the formulations, the higher the effectiveness in the recovery of iron chlorotic plants from iron deficiency. Accordingly, o,o-EDDHA/Fe 3+ formulations rich in meso isomer are recommended in hydroponic systems.

  2. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis

    Directory of Open Access Journals (Sweden)

    Saranya S.

    Full Text Available In vitro cytotoxic effects of ZnO, FeO and Cu metallic nanopowders (NPs on Vero (African green monkey kidney cell line, PK 15 (Pig kidney cell line and Madin Darby Bovine Kidney (MDBK cell lines were investigated at different time intervals (24 and 48 h. MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was used to determine the cytotoxic effects of green synthesized (plant based nanopowders. The comparative effects of exposure period and concentration of nanopowders on cell viability were studied. Green synthesized nanopowders showed varying activity on different type of cells and the effect was generally based on the concentration and exposure time. In MDBK cells, only ZnO nanopowder (NP showed significant effect on cell viability. The ZnO NP showed improved cell viability at lower concentration (10 μg/100 μl in all type of cells (Vero, PK 15 and MDBK cells. In contrast, FeO NP showed better activity at the concentration of 10 μg/100 μl, 50 μg/100 μl and 40 μg/100 μl after 24 h exposure time in Vero, PK 15 and MDBK cells respectively. However better cell viability was observed in Cu NP treated Vero, PK 15 and MDBK cells at 40 μg/100 μl, 20 μg/100 μl and 10 μg/100 μl correspondingly. These studies suggested that the activity of green synthesized NPs were highly dependent on concentration, exposure time and type of cells. Keywords: ZnO, FeO, Cu, Nanopowders, MTT, in vitro cytotoxicity

  3. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  4. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, M.S. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales; Arias, D. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales

    1996-04-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe{sub 2}, Zr{sub 6}Fe{sub 23} and ({alpha}Fe). ZrFe{sub 2} is identified as a cubic Laves type phase (C15) and the ZrFe{sub 2}/ZrFe{sub 2}+Zr{sub 6}Fe{sub 23} boundary composition is 73{+-}1 at.% Fe. Zr{sub 6}Fe{sub 23} is a cubic phase of the Th{sub 6}Mn{sub 23} type and its composition is 80.0{+-}1.5 at.% Fe. The eutectic L{r_reversible}Zr{sub 6}Fe{sub 23}+{tau}-Fe transformation temperature and composition are 1325 C and 91{+-}1 at.% Fe, respectively. The solubility of Zr in {tau}-Fe at 1012 C is 500{+-}50 appm and 1000{+-}100 appm close to the eutectic temperature. (orig.).

  5. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    International Nuclear Information System (INIS)

    Granovsky, M.S.; Arias, D.

    1996-01-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe 2 , Zr 6 Fe 23 and (αFe). ZrFe 2 is identified as a cubic Laves type phase (C15) and the ZrFe 2 /ZrFe 2 +Zr 6 Fe 23 boundary composition is 73±1 at.% Fe. Zr 6 Fe 23 is a cubic phase of the Th 6 Mn 23 type and its composition is 80.0±1.5 at.% Fe. The eutectic L↔Zr 6 Fe 23 +τ-Fe transformation temperature and composition are 1325 C and 91±1 at.% Fe, respectively. The solubility of Zr in τ-Fe at 1012 C is 500±50 appm and 1000±100 appm close to the eutectic temperature. (orig.)

  6. Iron, Zinc, Folate, and Vitamin B-12 Status Increased among Women and Children in Yaoundé and Douala, Cameroon, 1 Year after Introducing Fortified Wheat Flour.

    Science.gov (United States)

    Engle-Stone, Reina; Nankap, Martin; Ndjebayi, Alex O; Allen, Lindsay H; Shahab-Ferdows, Setareh; Hampel, Daniela; Killilea, David W; Gimou, Marie-Madeleine; Houghton, Lisa A; Friedman, Avital; Tarini, Ann; Stamm, Rosemary A; Brown, Kenneth H

    2017-07-01

    Background: Few data are available on the effectiveness of large-scale food fortification programs. Objective: We assessed the impact of mandatory wheat flour fortification on micronutrient status in Yaoundé and Douala, Cameroon. Methods: We conducted representative surveys 2 y before and 1 y after the introduction of fortified wheat flour. In each survey, 10 households were selected within each of the same 30 clusters ( n = ∼300 households). Indicators of inflammation, malaria, anemia, and micronutrient status [plasma ferritin, soluble transferrin receptor (sTfR), zinc, folate, and vitamin B-12] were assessed among women aged 15-49 y and children 12-59 mo of age. Results: Wheat flour was consumed in the past 7 d by ≥90% of participants. Postfortification, mean total iron and zinc concentrations of flour samples were 46.2 and 73.6 mg/kg (target added amounts were 60 and 95 mg/kg, respectively). Maternal anemia prevalence was significantly lower postfortification (46.7% compared with 39.1%; adjusted P = 0.01), but mean hemoglobin concentrations and child anemia prevalence did not differ. For both women and children postfortification, mean plasma concentrations were greater for ferritin and lower for sTfR after adjustments for potential confounders. Mean plasma zinc concentrations were greater postfortification and the prevalence of low plasma zinc concentration in women after fortification (21%) was lower than before fortification (39%, P 50% greater postfortification. Conclusion: Although the pre-post survey design limits causal inference, iron, zinc, folate, and vitamin B-12 status increased among women and children in urban Cameroon after mandatory wheat flour fortification.

  7. Magneto-optical imaging of iron-oxypnictide SmFeAsO1-xFx and SmFeAsO1-y

    International Nuclear Information System (INIS)

    Tamegai, T.; Nakajima, Y.; Tsuchiya, Y.; Iyo, A.; Miyazawa, K.; Shirage, P.M.; Kito, H.; Eisaki, H.

    2009-01-01

    We have prepared iron-oxypnictide SmFeAsO 1-x F x by ambient-pressure technique and SmFeAsO 1-y by high-pressure technique, and characterized their bulk and local magnetic properties by using SQUID magnetometer and magneto-optical imaging. While the high-pressure samples have densities close to the theoretical value, the ambient-pressure samples have several small voids. Despite these structural differences between the two kinds of samples, they both have superconducting transition temperature above 50 K. In addition, magneto-optical images for both samples show similar kinds of inhomogeneities with large current concentrated in several grains and with small intergranular current. The estimated intragranular currents for both samples are over 10 5 A/cm 2 at low temperatures and low fields.

  8. ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in E.coli.

    NARCIS (Netherlands)

    Loiseau, L.; Gerez, C.; Bekker, M.; Ollagnier-de Choudens, S.; Py, B.; Sanakis, Y.; Teixeira De Mattos, M.J.; Fontecave, M.; Barras, F.

    2007-01-01

    Understanding the biogenesis of iron-sulfur (Fe-S) proteins is relevant to many fields, including bioenergetics, gene regulation, and cancer research. Several multiprotein complexes assisting Fe-S assembly have been identified in both prokaryotes and eukaryotes. Here, we identify in Escherichia coli

  9. Manganese, iron and copper contents in leaves of maize plants ...

    African Journals Online (AJOL)

    Micronutrients such as boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) play important physiological roles in humans and animals. Zn and B are the micronutrients most often deficient in maize, in Iran. A completely randomized factorial block design experiment was carried out at Fars province of Iran during ...

  10. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    CERN Document Server

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  11. Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage

    International Nuclear Information System (INIS)

    Huang Shan; Zhou Lixiang

    2012-01-01

    During the processes of secondary iron hydroxysulfate mineral formation, Fe 2+ ion was oxidized by the following three methods: (1) biooxidation treatment by Acidithiobacillus ferrooxidans (A. ferrooxidans); (2) rapid abiotic oxidation of Fe 2+ with H 2 O 2 (rapid oxidation treatment); (3) slow abiotic oxidation of Fe 2+ with H 2 O 2 (slow oxidation treatment). X-ray diffraction (XRD) patterns, element composition, precipitate weight and total Fe removal efficiency were analyzed. The XRD patterns and element composition of precipitates synthesized through the biooxidation and the slow oxidation treatments well coincide with those of potassium jarosite, while precipitates formed at the initial stage of incubation in the rapid oxidation treatment showed a similar XRD pattern to schwertmannite. With the ongoing incubation, XRD patterns and element composition of the precipitates that occurred in the rapid oxidation treatment were gradually close to those in the biooxidation and the slow oxidation treatments. Due to the inhibition of A. ferrooxidans itself and its extracellular polymeric substances (EPS) in aggregation of precipitates, the amount of precipitates and soluble Fe removal efficiency were lower in the biooxidation treatment than in the slow oxidation treatment. Therefore, it is concluded that Fe 2+ oxidation rate can greatly affect the mineral phase of precipitates, and slow oxidation of Fe 2+ is helpful in improving jarosite formation. - Highlights: ► Slow oxidation of Fe 2+ is helpful in jarosite formation. ► The already-formed schwertmannite can be gradually transformed to jarosite. ► Precipitates formation can be inhibited probably by EPS from A. ferrooxidans.

  12. Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: A greener approach

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Sarkar, Soumi

    2007-01-01

    An environmentally benign method to separate iron and cobalt has been developed using a safe chemical, polyvinylpyrrolidone (PVP). The method involves dialysis of PVP-Fe and PVP-Co complexes against triple-distilled water. 59 Fe and 60 Co were used as radioactive tracers of iron and cobalt throughout the experiment. No other chemicals are required for clean separation of cobalt from iron. The optimum condition for separation has been obtained at pH 5 using 10% aqueous solution of PVP. The method is applicable from trace scale to macro-scale. Very high separation factors have been obtained

  13. Jendl-3.1 iron validation on the PCA-REPLICA (H2O/Fe) shielding benchmark experiment

    International Nuclear Information System (INIS)

    Pescarini, M.; Borgia, M. G.

    1997-03-01

    The PCA-REPLICA (H 2 O/Fe) neutron shielding benchmarks experiment is analysed using the SN 2-D DOT 3.5-E code and the 3-D-equivalent flux synthesis method. This engineering benchmark reproduces the ex-core radial geometry of a PWR, including a mild steel reactor pressure vessel (RPV) simulator, and is designed to test the accuracy of the calculation of the in-vessel neutron exposure parameters. This accuracy is strongly dependent on the quality of the iron neutron cross sections used to describe the nuclear reactions within the RPV simulator. In particular, in this report, the cross sections based on the JENDL-3.1 iron data files are tested, through a comparison of the calculated integral and spectral results with the corresponding experimental data. In addition, the present results are compared, on the same benchmark experiment, with those of a preceding ENEA-Bologna validation of the ENDF/B VI iron cross sections. The integral result comparison indicates that, for all the threshold detectors considered (Rh-103 (n, n') Rh-103m, In-115 (n, n') In-115m and S-32 (n, p) P-32), the JENDL-3.1 natural iron data produce satisfactory results similar to those obtained with the ENDF/B VI iron data. On the contrary, when the JENDL/3.1 Fe-56 data file is used, strongly underestimated results are obtained for the lower energy threshold detectors, Rh-103 and In-115. This fact, in particular, becomes more evident with increasing the neutron penetration depth in the RPV simulator

  14. Feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify iron-cyanide (Fe-CN) complexes in soil

    Science.gov (United States)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-04-01

    Contaminated sites create a significant risk to human health, by poisoning drinking water, soil, air and as a consequence food. Continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze considerable amount of samples. At the present time quantitative determination of Fe-CN concentration in soil usually requires a time consuming two step process: digestion of the sample (e.g., micro distillation system) and its analytical detection performed, e.g., by automated spectrophotometrical flow injection analysis (FIA). In order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify the Fe-CN complexes in soil matrix, 42 soil samples were collected (8 to 12.520 mg kg-1CN) indicating single symmetrical CN band in the range 2092 - 2084 cm-1. Partial least squares (PLS) calibration-validation model revealed IR response to CNtot exceeding 1268 mg kg-1 (limit of detection, LOD). Subsequently, leave-one-out cross-validation (LOO-CV) was performed on soil samples containing low CNtot (900 mg kg-1 resulted in LOD equal to 3494 mg kg-1. Our results indicate that spectroscopic data in combination with PLS statistics can efficiently be used to predict Fe-CN concentrations in soil. We conclude that the protocol applied in this study can strongly reduce the time and costs essential for the spatial and vertical screening of the site affected by complexed Fe-CN.

  15. Effects of Additives on the Corrosion Resistance of Iron Aluminides(Fe-38at.%AI-5at.%Cr)

    International Nuclear Information System (INIS)

    Choi, H. C.; Kim, C. W.; Joo, S. M.; Choi, D. C.; Kim, K. H.

    2001-01-01

    The effects of additives on the corrosion resistance of iron aluminides(Fe-38at.%AI-5at.%Cr) were investigated using potentiostat. The specimens were cast by vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at 1000 .deg. C for 7 days. The corroded surfaces of the tested specimens were observed using an optical microscope and a scanning electron microscope(SEM) after electrochemical tests were carried out in various solutions. While the Hf addition to Fe-38at.%AI-5at.%Cr resulted in equiaxial microstructure, the Zr addition resulted in dendritic microstructure. However, no change in microstructure was observed when Mo was added. The addition of Mo to Fe-38at.%AI-5at.%Cr intermetallic compound was found to increase the pitting potential, which improved the resistance against the pitting corrosion attack. The addition of Hf and Zr resulted in a higher activation current density and a lower pitting potential. These results may indicate that the dendrite structure played a major role in decreasing the pitting corrosion resistance of Fe-38at.%AI-5at%Cr intermetallic compound. The Mo addition to Fe-38at.%AI-5at.%Cr decreased the number and size of pits. In the case of Zr addition, the pits nucleated and grew remarkably at dendritic branches

  16. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  17. Iron alloy Fischer-tropsch catalysts--1. Oxidation-reduction studies of the Fe-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Unmuth, E.E.; Schwartz, L.H.; Butt, J.B.

    1980-01-01

    Catalysts containing 5% iron, nickel, or 4:1 iron-nickel on silica were hydrogen-reduced at 425/sup 0/C for 12 or 24 hr, reoxidized in air for 2 or 4 hr, reduced again in hydrogen for 12 hr, and studied at each treatment step by Moessbauer spectroscopy, X-ray diffraction, and temperature-programed desorption. The nickel was reduced directly to the metal, redispersed during the oxidation, and gave 20% smaller particles in the second reduction than in the first reduction. The ..cap alpha..-Fe/sub 2/O/sub 3/ reduced via an Fe/sub 3/O/sub 4/ intermediate and yielded approx. 70% metallic iron and the second reduction produced about the same particle size as the first reduction. The alloy catalyst reduced into a mixture of two phases, a face-centered cubic phase containing approx. 37.5% Ni, i.e., the bulk equilibrium value, and a body-centered cubic phase, and the particle sizes obtained in the first and second reductions were similar. The activation energies for the reduction were determined.

  18. Photo-induced antiferromagnetic interlayer coupling in Fe superlattices with iron silicide spacers

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, J.E.; Fullerton, E.E.; Kumar, S.; Lee, S.R.; Sowers, C.H.; Grimsditch, M.; Bader, S.D. [Argonne National Lab., IL (United States); Parker, F.T. [California Univ., San Diego, La Jolla, CA (United States). Center for Magnetic Recording Research

    1993-09-01

    Sputtered Fe/FeSi films possessing antiferromagnetic (AF) interlayer coupling at room temperature develop ferromagnetic remanence when cooled below 100K, but the AF coupling can be restored at low temperature by exposure to visible light of sufficient intensity (>10 mW/mm{sup 2}). We attribute these effects to charge carriers in the FeSi spacer layer which, when thermally or photo-generated, are capable of communicating spin information between the Fe layers.

  19. Molecular orbital study of iron pentacarbonyl and its photochemical fragments Fe(CO) sub(n)

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Saitovitch, E.M.B.; De Paoli, M.-A.; Manella, H.

    1982-01-01

    Self-consistent Molecular Orbital calculations were performed for Fe(CO) 5 and its photofragments Fe(CO) sub(n), 1 5 , photoelectron and optical spectra are analysed, and photochemical behaviour is discussed. The Moessbauer isomer shifts and quadrupole splittings are investigated. In the case of Fe(CO) 5 and Fe(CO) 4 , the values derived for these hyperfine interactions are compared to experimental measurements reported in a polyethylene matrix. (Author) [pt

  20. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    Science.gov (United States)

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Characterization of lithium niobate monocrystals doped with iron (Li Nb O3:Fe)

    International Nuclear Information System (INIS)

    Mastelaro, V.R.; Terrile, N.C.; Nascimento, O.R.; Nicolo, I.

    1988-01-01

    LiNbO 3 :Fe Crystals were analised using EPR Optical absorption spectroscopy and holographic techniques. The site occupied by Fe 3+ is discused and the effect of thermal treatments on Fe 2+ and OH - concentration is studied. The high diffraction efficiency, measure by holographic techniques shows that crystals are particularly good for holographic applications. (author) [pt

  2. Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Barfod, Rasmus; Eriksen, Kim Michael

    2017-01-01

    of the alloy nanoparticles differed depending on the preparation method. When the wet impregnation technique of acetate precursor salts of Fe and Co were used for the synthesis, the size of FeCo alloy nanoparticles was approximately 13 nm. FeCo alloy nanoparticles were characterized by crystallography (XRD...

  3. Study on Renal Anemia: A Double Tracer Study on Metabolism and Red Cell Life Span in Chronic Renal Diseases using Radioactive Iron (59Fe) and Chromium (51Cr)

    International Nuclear Information System (INIS)

    Jung, Kyung Tae; Lee, Mun Ho

    1968-01-01

    The ferrokinetics and red cell life spans of the patients with chronic glomerulonephritis were investigated by the double tracing method using radioactive iron ( 59 Fe) and chromium ( 51 Cr). According to the serum NPN levels, the patients were subdivided into 3 groups: Group 1. 6 patients, had the levels below 40 mg/dl. Group 2. 6 patients, had the levels between 41 mg/dl to 80 mg/dl. Group 3. 10 patients had the levels above 80 mg/dl. The results were as follows: 1) Red blood cell, hematocrit and hemoglobin values were moderately reduced in patients with normal serum NPN levels, while markedly reduced in patients with elevated serum NPN levels. 2) The plasma volume was increased, while the red cell volume was decreased in patients with elevated serum NPN levels, hence, total blood volume was unchanged. 3) The serum iron level was slightly reduced in patients of groups 1 and 2, while was within the normal ranges in patients of group 3. 4) i) In patients with normal serum NPN levels, the plasma iron disappearance rate, red cell iron utilization rate, red cell iron turnover rate, daily red cell iron renewal rate, circulating red cell iron and red cell iron concentration were within the normal ranges, while the plasma iron turnover rate was slightly reduced. ii) In patients with elevated serum NPN levels, the plasma iron disappearance rate was delayed, while the plasma iron turnover rate was within the normal ranges. The red cell iron utilization rate, red cell iron turnover rate and circulating red cell iron were decreased and the period in which the red cell iron utilization rate reached its peak was delayed in Group 3 patients. The daily red cell iron renewal rate and the red cell iron concentration were unchanged. iii) The mean red cell life span was within the normal ranges in patients with normal serum NPN levels, while was shortened in patients with elevated serum NPN levels.

  4. Corrosion characteristics of the Sm2(Fe0.9Co0.1)17N2.9 magnets stabilized by zinc-coating

    International Nuclear Information System (INIS)

    Arlot, R.; Machida, K.; Adachi, G.; Rango, P. de; Fruchart, D.

    1998-01-01

    The effect of powder particle size and of zinc coatings ( 2 (Fe 0.9 Co 0.1 ) 17 N 2.9 magnets has been investigated and compared to those obtained for Sm 2 Fe 17 N 3 and Nd 2 Fe 14 B magnets. Potentiokinetic polarisation behaviour in 0.5 N H 2 SO 4 and in Ringer's solution was studied. It was found that in 0.5 N H 2 SO 4 solution, the corrosion resistance is very weak, whereas in Ringer's solution, Zn coating and epoxy embedding provided a very efficient protection to the magnet. This result is quite unexpected as regarding the very weak amount of Zn (0.73 wt%) and epoxy (2.5-5 wt%) used to stabilize those very reactive ground powders which easily burn in air. Also, we characterized the magnetic properties of severely corroded magnets. (orig.)

  5. Determination of iron in plutonium by extraction of the Fe (2): Bathophenanthroline complex

    International Nuclear Information System (INIS)

    Pichotin, B.; Chasseur, Ph.

    1966-06-01

    The present report describes the method to determine micro quantities of iron in plutonium, by extraction with hexyl alcohol of the complex that give iron (II) with bathophenanthroline (4,7 diphenyl - 1.10 phenanthroline). The reagent has been applied to the determination of amounts of iron ranging from 1 to 10 μg in 20 ml of solvent The determination is made by spectrophotometry at 530 mμ. Others cations present do not interfere. (authors) [fr

  6. Contribution of meat to vitamin B₁₂, iron and zinc intakes in five ethnic groups in the USA: implications for developing food-based dietary guidelines.

    Science.gov (United States)

    Sharma, S; Sheehy, T; Kolonel, L N

    2013-04-01

    To describe the sources of meat and their contributions to vitamin B₁₂, iron and zinc in five ethnic groups in the USA. Dietary data for the Multiethnic Cohort, established in Hawaii and Los Angeles, were collected using a quantitative food frequency questionnaire from more than 215,000 subjects, aged 45-75 years at baseline (1993-1996). Participants included African American, Latino, Japanese American, Native Hawaiian and Caucasian men and women. Servings of meat items were calculated based on the US Department of Agriculture recommendations and their contributions to intakes of total meat, red meat, vitamin B₁₂, iron and zinc were determined. Of all types of meat, poultry contributed the most to meat consumption, followed by red meat and fish among all ethnicities, except for Latino (born in Mexico and Central/South America) men who consumed more beef. Lean beef was the most commonly consumed red meat for all ethnic-sex groups (9.3-14.3%), except for Native Hawaiian and Japanese American men, and Japanese American women whose top contributor was stew/curry with beef/lamb and stir-fried beef/pork with vegetables, respectively. The contribution of meat was most substantial for zinc (11.1-29.3%) and vitamin B₁₂ (19.7-40%) and, to a lesser extent, for iron (4.3-14.2%). This is the first large multiethnic cohort study to describe meat sources and their contributions to selected nutrients among ethnic minorities in the USA. These findings may be used to develop ethnic-specific recommendations for meat consumption aiming to improve dietary quality among these groups. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  7. Contribution of meat to vitamin B-12, iron, and zinc intakes in five ethnic groups in the U.S.: Implications for developing food-based dietary guidelines

    Science.gov (United States)

    Sharma, Sangita; Sheehy, Tony; Kolonel, Laurence N

    2016-01-01

    Background To describe the sources of meat and their contributions to vitamin B-12, iron, and zinc in five ethnic groups in the USA. Methods Dietary data for the Multiethnic Cohort, established in Hawaii and Los Angeles, were collected using a quantitative food frequency questionnaire from more than 215,000 subjects aged 45–75 years at baseline (1993–1996). Participants included African American, Latino, Japanese American (JpAm), Native Hawaiian (NH) and Caucasian men and women. Servings of meat items were calculated based on the USDA recommendations and their contributions to intakes of total meat, red meat, vitamin B-12, iron, and zinc were determined. Results Of all types of meat, poultry contributed the most to meat consumption, followed by red meat and fish among all ethnicities, except for Latino (born in Mexico and Central/South America) men who consumed more beef. Lean beef was the most commonly consumed red meat for all ethnic-sex groups (9.3–14.3%), except for NH and JpAm men, and JpAm women whose top contributor was stew/curry with beef/lamb and stir-fried beef/pork with vegetables respectively. The contribution of meat was most substantial for zinc (11.1–29.3%) and vitamin B-12 (19.7–40%), and to a lesser extent for iron (4.3–14.2%). Conclusions This is the first large multiethnic cohort study to describe meat sources and their contributions to selected nutrients among ethnic minorities in the U.S. These findings may be used to develop ethnic-specific recommendations for meat consumption to improve dietary quality among these groups. PMID:23398393

  8. Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Shiro Kubuki; Jun Iwanuma; Yusuke Takahashi; Kazuhiko Akiyama; Ernoe Kuzmann; Hungarian Academy of Sciences, Budapest; Tetsuaki Nishida

    2014-01-01

    A relationship between local structure and visible light activated catalytic effect of iron containing soda lime silicate glass with the composition of 15Na 2 O·15CaO·xFe 2 O 3 ·(70-x)SiO 2 , x = 5-50 mass %, abbreviated as NCFSx was investigated by means of 57 Fe-Moessbauer spectroscopy, X-ray diffractometry (XRD), small angle X-ray scattering (SAXS), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible light absorption spectroscopy (UV-Vis). Moessbauer spectra of NCFSx glass with 'x' being equal to or larger than 30 after isothermal annealing at 1,000 deg C for 100 min consisted of a paramagnetic doublet and a magnetic sextet. The former had isomer shift (δ) of 0.24 mm s -1 and quadrupole splitting (Δ) of 0.99 mm s -1 due to distorted Fe III O 4 tetrahedra, and the latter had δ of 0.36 mm s -1 and internal magnetic field (H int ) of 51.8 T due to hematite (α-Fe 2 O 3 ). The absorption area (A) of α-Fe 2 O 3 varied from 47.2 to 75.9, 93.1, 64.8 and 47.9 % with 'x' from 30 to 35, 40, 45 and 50, indicating that the amount of precipitated α-Fe 2 O 3 varied with the Fe 2 O 3 content of NCFSx glass. The precipitation of α-Fe 2 O 3 was also confirmed by XRD study of annealed NCFS glass with 'x' larger than 30. A relaxed sexted with δ, H int and Γ of 0.34 mm s -1 and 37.9 T and 1.32 mm s -1 was observed from the Moessbauer spectra of annealed NCFSx glass with 'x' of 45 and 50, implying that the precipitation of non-stoichiometric iron hydroxide oxide with the composition of Fe 1.833 (OH) 0.5 O 2.5 having the similar structure of α-Fe 2 O 3 and α-FeOOH. A remarkable decrease in the concentration of methylene blue (MB) from 10 to 0.0 μmol L -1 with the first-order rate constant (k) of 2.87 × 10 -2 h -1 was observed for 10-day leaching test using annealed NCFS50 glass under visible light irradiation. ESI-MS study indicated that existence of fragments with m/z value of 129, 117 and 207 etc. originating from MB having m/z of 284. This

  9. Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (As{sup III}) uptake: The evolution of the Fe-phases under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Y., E-mail: yiannisgeorgiou@hotmail.com [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Mouzourakis, E., E-mail: emouzou@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, A.B., E-mail: bourlino@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Zboril, R., E-mail: radek.zboril@upol.cz [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Karakassides, M.A., E-mail: mkarakas@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Douvalis, A.P., E-mail: adouval@uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bakas, Th., E-mail: tbakas@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Deligiannakis, Y., E-mail: ideligia@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece)

    2016-07-15

    Highlights: • Novel hybrid based on carbon nitride and iron nanoparticles (gC{sub 3}N{sub 4}-rFe). • gC{sub 3}N{sub 4}-rFe superior As{sup III} sorbent(76.5 mg g{sup −1}). • Surface complexation modeling of As{sup III} adsorption. • Dual mode EPR,monitoring of Fe{sup 2+} and Fe{sup 3+} evolution. - Abstract: A novel hybrid material (gC{sub 3}N{sub 4}-rFe) consisting of amine-rich graphitic carbon nitride (gC{sub 3}N{sub 4}), decorated with reduced iron nanoparticles (rFe) is presented. XRD and TEM show that gC{sub 3}N{sub 4}-rFe bears aggregation-free Fe-nanoparticles (10 nm) uniformly dispersed over the gC{sub 3}N{sub 4} surface. In contrast, non-supported iron nanoparticles are strongly aggregated, with non-uniform size distribution (20–100 nm). {sup 57}Fe-Mössbauer spectroscopy, dual-mode electron paramagnetic resonance (EPR) and magnetization measurements, allow a detailed mapping of the evolution of the Fe-phases after exposure to ambient O{sub 2}. The as-prepared gC{sub 3}N{sub 4}-rFe bears Fe{sup 2+} and Fe° phases, however only after long exposure to ambient O{sub 2}, a Fe-oxide layer is formed around the Fe° core. In this [Fe°/Fe-oxide] core-shell configuration, the gC{sub 3}N{sub 4}-rFe hybrid shows enhanced As{sup III} uptake capacity of 76.5 mg g{sup −1}, i.e., ca 90% higher than the unmodified carbonaceous support, and 300% higher than the non-supported Fe-nanoparticles. gC{sub 3}N{sub 4}-rFe is a superior As{sup III} sorbent i.e., compared to its single counterparts or vs. graphite/graphite oxide or activated carbon analogues (11–36 mg g{sup −1}). The present results demonstrate that the gC{sub 3}N{sub 4} matrix is not simply a net that holds the particles, but rather an active component that determines particle formation dynamics and ultimately their redox profile, size and surface dispersion homogeneity.

  10. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yao, Ke-Fu, E-mail: kfyao@tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-07-15

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe{sub 81}P{sub 8.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe{sub 82}Mo{sub 1}P{sub 6.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications. - Highlights: • Novel Fe-based BAA with no other metallic element except 81 at% Fe was prepared. • Fe-based bulk amorphous alloy (BAA) with the highest Fe content (82%) was prepared. • Very high saturation magnetization of 1.59 T has been achieved. • A new thought for designing Fe-based BAA with high Fe content was provided.

  11. Neutron Elastic Scattering Cross Sections of Iron and Zinc in the Energy Region 2.5 to 8.1 MeV

    International Nuclear Information System (INIS)

    Holmqvist, B.; Johansson, S.G.; Lodin, G.; Wiedling, T.; Kiss, A.

    1966-12-01

    Angular distributions were measured for the elastic scattering of neutrons from iron at five energies between 3.0 and 8. 1 MeV and from zinc at eight energies between 2.5 and 8.1 MeV. Time-of-flight technique was used. Corrections for neutron flux attenuation, multiple elastic scattering, and the finite geometry of the source-sample detector system were made by using a Monte Carlo program. An optical model potential with Saxon-Woods form factors was used to fit theoretical angular distributions to the experimental ones. The parameter values giving the best fits to the experimental distributions were calculated by a computer

  12. Neutron Elastic Scattering Cross Sections of Iron and Zinc in the Energy Region 2.5 to 8.1 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T [AB Atomenergi, Nyko eping (Sweden); Kiss, A [Inst. for Experimental Physics, Univ. of Debrecen, De brecen (Hungary)

    1966-12-15

    Angular distributions were measured for the elastic scattering of neutrons from iron at five energies between 3.0 and 8. 1 MeV and from zinc at eight energies between 2.5 and 8.1 MeV. Time-of-flight technique was used. Corrections for neutron flux attenuation, multiple elastic scattering, and the finite geometry of the source-sample detector system were made by using a Monte Carlo program. An optical model potential with Saxon-Woods form factors was used to fit theoretical angular distributions to the experimental ones. The parameter values giving the best fits to the experimental distributions were calculated by a computer.

  13. Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    International Nuclear Information System (INIS)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-01-01

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe 3 C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures

  14. A complementary and synergistic effect of Fe-Zn binary metal oxide in the process of high-temperature fuel gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    翁斯灏; 吴幼青

    1996-01-01

    57Fe Mossbauer spectroscopy was used to investigate the evolution of Fe-Zn binary metal oxide sorbent in the process of high-temperature fuel gas desulfurization. The results of phase analyses show that Fe-Zn binary metal oxide sorbent is rapidly reduced in hot fuel gas and decomposed to new phases of highly dispersed microcrystalline elemental iron and zinc oxide, both of which become the active desulfurization constituents. A complementary and synergistic effect between active iron acting as a high sulfur capacity constituent and active zinc oxide acting as a deep refining desulfurization constituent exists in this type of sorbent for hot fuel gas desulfurization.

  15. Zinc ferrite nanoparticles as perspective functional materials for applications in casting technologies

    Directory of Open Access Journals (Sweden)

    A. Kmita

    2017-01-01

    Full Text Available In this article it discuss on possible application of magnetic oxide nanoparticles, namely non-stoichiometric zinc ferrite nanoparticles as a functionalizing agent in foundry processes. Thermal analysis showed a weight loss of the sample at 1 273 K in an amount of 7,7 %, which is a result of the following processes taking place in different temperature ranges. Upon its thermal treatment Zn0,4Fe2,6O4 decomposes to zinc oxide and iron (III oxide (first stage and next to iron (II,III oxide and oxygen (second stage. The degree of decomposition was expressed as Fe2+ / Fetotal. Mössbauer spectroscopy showed that the over 30 % of Fe3+ present in starting material was reduced to Fe2+.

  16. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    Science.gov (United States)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the

  17. Electronic Phase Separation in the Slightly Underdoped Iron Pnictide Superconductor Ba1-xKxFe2As2

    DEFF Research Database (Denmark)

    Park, J.T.; Inosov, D.S.; Niedermayer, C.

    2009-01-01

    Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba1-xKxFe2As2 by means of x-ray powder diffraction, neutron scattering, muon-spin rotation (µSR), and magnetic force microscopy (MFM). Static antiferromagnetic order sets in below Tm70 K as inferred from......-state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors....

  18. Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: a substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial.

    Science.gov (United States)

    Depalma, Ralph G; Hayes, Virginia W; Chow, Bruce K; Shamayeva, Galina; May, Patricia E; Zacharski, Leo R

    2010-06-01

    This study delineated correlations between ferritin, inflammatory biomarkers, and mortality in a cohort of 100 cancer-free patients with peripheral arterial disease (PAD) participating in the Veterans Affairs (VA) Cooperative Study #410, the Iron (Fe) and Atherosclerosis Study (FeAST). FeAST, a prospective, randomized, single-blind clinical trial, tested the hypothesis that reduction of iron stores using phlebotomy would influence clinical outcomes in 1227 PAD patients randomized to iron reduction or control groups. The effects of statin administration were also examined in the Sierra Nevada Health Care (SNHC) cohort by measuring serum ferritin levels at entry and during the 6-year study period. No difference was documented between treatment groups in all-cause mortality and secondary outcomes of death plus nonfatal myocardial infarction and stroke. Iron reduction in the main study caused a significant age-related improvement in cardiovascular disease outcomes, new cancer diagnoses, and cancer-specific death. Tumor necrosis factor (TNF)-alpha, TNF-alpha receptors 1 and 2, interleukin (IL)-2, IL-6, IL-10, and high-sensitivity C reactive protein (hs-CRP) were measured at entry and at 6-month intervals for 6 years. Average levels of ferritin and lipids at entry and at the end of the study were compared. The clinical course and ferritin levels of 23 participants who died during the study were reviewed. At entry, mean age of entry was 67 +/- 9 years for the SNHCS cohort, comparable to FeAST and clinical and laboratory parameters were equivalent in substudy participants randomized to iron reduction (n = 51) or control (n = 49). At baseline, 53 participants on statins had slightly lower mean entry-level ferritin values (114.06 ng/mL; 95% confidence interval [CI] 93.43-134.69) vs the 47 off statins (127.62 ng/mL; 95% CI, 103.21-152.02). Longitudinal analysis of follow-up data, after adjusting for the phlebotomy treatment effect, showed that statin use was associated with

  19. Experimental studies on the electronic structure of pyrite FeS2 films prepared by thermally sulfurizing iron films

    International Nuclear Information System (INIS)

    Zhang Hui; Wang Baoyi; Zhang Rengang; Zhang Zhe; Wei Long; Qian Haijie; Su Run; Kui Rexi

    2006-01-01

    Pyrite FeS 2 films have been prepared by thermally sulfurizing iron films deposited by magnetron sputtering. The electronic structures were studies by X-ray absorption near edge structure and X-ray photoemission spectrum. The results show that an S 3p valence band with relatively higher intensity compared to the calculation exists in 2-10 eV range and a high density below the Fermi level of Fe 3d states were detected. A second gap of 2.8 eV in the unoccupied density of states was found above the conduction band which was 2.4 eV by experimentally calculation. The difference between t 2g and e g which were formed in an octahedral crystal field was computed to be 2.1 eV. (authors)

  20. Structural phase transitions in Iron - based superconductors BaFe2-xCrxAs2 under high pressure

    International Nuclear Information System (INIS)

    Uhoya, W.O.; Montgomery, J.M.; Samudrala, G.K.; Tsoi, G.M.; Vohra, Y.K.; Sefar, A.S.

    2011-01-01

    Pure BaFe 2 As 2 with the ThCr 2 Si 2 -type crystal structure under ambient conditions is known to superconduct under high pressure and undergo an isostructural phase transition from tetragonal to collapsed tetragonal phase which is accompanied by anomalous compressibility effects. Presently, there is no reported work on the crystal structure on any of the chemically doped 122- iron based superconductors under high pressure. We have carried out the electrical resistance measurements and high pressure X-ray diffraction studies on Chromium doped samples of BaFe 2-x Cr x As 2 (x = 0, 0.05, 0.15, 0.4, 0.61) to a pressure of 75 GPa and a temperature of 10K using a synchrotron source and designer diamond anvils, so as to investigate the influence of chemical doping and high pressure on crystal structure and superconductivity

  1. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    Science.gov (United States)

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Solon, Kimberly; Kazadi Mbamba, Christian

    2016-01-01

    (SSO4) reduction by XSRB and storage of XPHA by XPAO; and, (2) decrease of acetoclastic and hydrogenotrophic methanogenesis due to ZH2S inhibition. Model A3 shows the potential for iron to remove free SIS (and consequently inhibition) and instead promote iron sulfide (XFeS) precipitation. It also...

  3. Increased cerebral iron uptake in Wilson's disease : A (52)Fe-citrate PET study

    NARCIS (Netherlands)

    Bruehlmeier, M; Leenders, KL; Vontobel, P; Calonder, C; Antonini, A; Weindl, A

    Toxicity of abundant copper is the main cause of brain and liver tissue damage in patients with Wilson's disease (WD). However, there is also evidence of a disturbed iron metabolism in this genetically determined disorder. This PET study was undertaken to assess cerebral iron metabolism in WD

  4. Characterising the reactivity of metallic iron in Fe0/As-rock/H O ...

    African Journals Online (AJOL)

    2011-06-03

    Jun 3, 2011 ... commercial iron for other purposes (e.g. construction steel, iron nails, steel wool), ... materials is to stress them in systems where building of a protective film at .... A stable flow rate was maintained throughout the experiment. .... parameters from such systems could help to develop more reliable models to.

  5. Cadmium uptake by and translocation within rice (oryza sativa l.) seedlings as affected by iron plaque and Fe/sub 2/O/sub 3/

    International Nuclear Information System (INIS)

    Lai, Y.; Xu, B.O.; Mou, S.

    2012-01-01

    A hydroponics culture experiment was carried out to investigate the effect of iron plaque and/or Fe/sub 2/O/sub 3/ on Cadmium (Cd) uptake by and translocation within rice seedlings. Uniform rice seedlings grown in nutrient solution for two weeks were selected and transferred to nutrient solution containing ferrous iron (Fe/sup 2+/) (30 mg/L) for 24 h to induce the formation of iron plaque on the root surface. Then rice seedlings were exposed to different level of Cd (1.0 mg/L and 0.1 mg/L), and simultaneously Fe/sub 2/O/sub 3/ was added into hydroponic system for three days. At harvest Cd content in dithionite-citrate-bicarbonate (DCB) extracts, roots and shoots were determined. The results of this study showed that iron plaque could sequester more Cd on root surfaces of rice seedlings, however, Fe/sub 2/O/sub 3/ reduced Cd adsorbed on root surfaces. Both of iron plaque and/or Fe/sub 2/O/sub 3/ did not block Cd uptake by and translocation within rice seedlings. Although iron plaque could alleviate Cd toxicity to rice seedlings under low concentration of Cd (0.1 mg/L), the root tissue played more important role in reducing Cd translocation into shoot. And the long period experiment of hydroponic and soil culture was still needed to verify the potential effect of iron plaque and/or Fe/sub 2/O/sub 3/ on alleviating Cd toxicity to rice seedlings. (author)

  6. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  7. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial

    International Nuclear Information System (INIS)

    Soofi, Sajid

    2014-01-01

    Full text: Background: Powders containing iron and other micronutrients are recommended as a strategy to prevent nutritional anaemia and other micronutrient deficiencies in children. We assessed the effects of provision of two micronutrient powder formulations, with or without zinc, to children in Pakistan. Methods: We did a cluster randomised trial in urban and rural sites in Sindh, Pakistan. A baseline survey identified 256 clusters, which were randomly assigned (within urban and rural strata, by computer-generated random numbers) to one of three groups: non-supplemented control (group A), micronutrient powder without zinc (group B), or micronutrient powder with 10 mg zinc (group C). Children in the clusters aged 6 months were eligible for inclusion in the study. Powders were to be given daily between 6 and 18 months of age; follow-up was to age 2 years. Micronutrient powder sachets for groups B and C were identical except for colour; investigators and field and supervisory staff were masked to composition of the micronutrient powders until trial completion. Parents knew whether their child was receiving supplementation, but did not know whether the powder contained zinc. Primary outcomes were growth, episodes of diarrhoea, acute lower respiratory tract infection, fever, and incidence of admission to hospital. This trial is registered with ClinicalTrials.gov, number NCT00705445. Results: The trial was done between Nov 1, 2008, and Dec 31, 2011. 947 children were enrolled in group A clusters, 910 in group B clusters, and 889 in group C clusters. Micronutrient powder administration was associated with lower risk of iron-deficiency anaemia at 18 months compared with the control group (odds ratio [OR] for micronutrient powder without zinc = 0•20, 95% CI 0•11–0•36; OR for micronutrient powder with zinc = 0•25, 95% CI 0•14–0•44). Compared with the control group, children in the group receiving micronutrient powder without zinc gained an extra 0•31 cm

  8. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method

    Science.gov (United States)

    Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar

    2017-01-01

    Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.

  10. Is there a strategy I iron uptake mechanism in maize?

    Science.gov (United States)

    Li, Suzhen; Zhou, Xiaojin; Chen, Jingtang; Chen, Rumei

    2018-04-03

    Iron is a metal micronutrient that is essential for plant growth and development. Graminaceous and nongraminaceous plants have evolved different mechanisms to mediate Fe uptake. Generally, strategy I is used by nongraminaceous plants like Arabidopsis, while graminaceous plants, such as rice, barley, and maize, are considered to use strategy II Fe uptake. Upon the functional characterization of OsIRT1 and OsIRT2 in rice, it was suggested that rice, as an exceptional graminaceous plant, utilizes both strategy I and strategy II Fe uptake systems. Similarly, ZmIRT1 and ZmZIP3 were identified as functional zinc and iron transporters in the maize genome, along with the determination of several genes encoding Zn and Fe transporters, raising the possibility that strategy I Fe uptake also occurs in maize. This mini-review integrates previous reports and recent evidence to obtain a better understanding of the mechanisms of Fe uptake in maize.

  11. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.

    Science.gov (United States)

    Bae, Sungjun; Hanna, Khalil

    2015-09-01

    While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).

  12. ENDF/B VI iron validation onpca-replica (H2O/FE) shielding benchmark experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pescarini, M. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energia e Innovazione

    1994-05-01

    The PCA-REPLICA (H2O/Fe) neutron shielding benchmark experiment is analysed using the SN 2-D DOT 3.5 code and the 3-D-equivalent flux synthesis method. This engineering benchmark reproduces the ex-core radial geometry of a PWR, including a mild steel reactor pressure vessel (RPV) simulator, and is dsigned to test the accuracy of the calculation of the in-vessel neutron exposure parameters (fast fluence and iron displacement rates). This accuracy is strongly dependent on the quality of the iron neutron cross section used to describe the nuclear reactions within the RPV simulator. In particular, in this report, the cross sections based on the ENDF/B VI iron data files are tested, through a comparison of the calculated integral and spectral results with the corresponding experimental data. In addition, the present results are compared, on the same benchmark experiment, with those of a preceding ENEA (Italian Agency for Energy, New Technologies and Environment)-Bologna validation of the JEF-2.1 iron cross sections. The integral result comparison indicates that, for all the thresold detectors considered (Rh-103 (n,n) Rh-103m, In-115 (n,n) In-115 (n,n) In-115m and S-32 (n.p) P-32), the ENDF/B VI iron data produce better results than the JEF-2.1 iron data. In particular, in the ENDF/B VI calcultaions, an improvement of the in-vessel C/E (Calculated/Experimental) activity ratios for the lower energy threshold detectors, Rh-103 and In-115, is observed. This improvement becomes more evident with increasing neutron penetration depth in the vessel. This is probably attributable to the fact that the inelastic scattering cross section values of the ENDF/B VI Fe-56 data file, approximately in the 0.86 - 1.5 MeV energy range, are lower then the corresponding values of the JEF-2.1 data file.

  13. Fe3O4 thin films sputter deposited from iron oxide targets

    International Nuclear Information System (INIS)

    Peng, Yingguo; Park, Chandro; Laughlin, David E.

    2003-01-01

    Fe 3 O 4 thin films have been directly sputter deposited from a target consisting of a mixture of Fe 3 O 4 and Fe 2 O 3 onto Si and glass substrates. The magnetic properties and microstructures of the films have been characterized and correlated. The columnar growth of the Fe 3 O 4 grains was found to be initialized from the substrate surface without any critical thickness. Substrate bias was found to be a very effective means of improving the crystal quality and magnetic properties of the thin films. The crystallographic defects revealed by high resolution transmission electron microscopy seem to be a characteristic of the films prepared by this method

  14. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  15. Improvement the nutritional status of pre-school children following intervention with a supplement containing iron, zinc, copper, vitamin A, vitamin C and prebiotic

    Directory of Open Access Journals (Sweden)

    Luiza Carla Vidigal Castro

    Full Text Available Abstract This study investigated the effects of a vitamin and mineral fortified powder product supplemented with inulin, on the iron and vitamin A status of 110 pre-schools childrens in Viçosa, MG, Brazil. The 2 to 5-year-old children were submitted to anthropometric (weight and height, biochemical (erythrocytes, hemoglobin, mean corpuscular volume – MCV, mean corpuscular hemoglobin - MCH, serum iron, ferritin and serum retinol and dietary (direct food weighing, 24 h recall, and food intake record evaluations, at the beginning and at the end of a 45-day intervention. The supplement (30 g was provided daily as part of the afternoon snack, diluted in 100 mL of water, 5 times/week and it supplied 30% of the recommended daily doses of iron, zinc, copper and vitamins A and C. Dietary and biochemical data was compared by the Wilcoxon test, and anthropometric data by the paired t-test. Values of z-scores for weight and height, erythrocytes, hemoglobin, MCV, MCH and ferritin were significantly higher after intervention; no change was observed in serum retinol. The prebiotic-containing supplement significantly increased the intake of energy, macro and micronutrients, and was effective in improving the iron and anthropometric status.

  16. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method

    International Nuclear Information System (INIS)

    Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → We have successfully synthesized nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films on stainless steel substrates using a low temperature chemical bath deposition method. → The surface morphological study showed the compact flakes like morphology. → The as-deposited thin films are hydrophilic (10 o o ) whereas the annealed thin films are super hydrophilic (θ o ) in nature. → Ni 0.8 Zn 0.2 Fe 2 O 4 thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni 0.8 Zn 0.2 Fe 2 O 4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm -1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5 o .The electrochemical supercapacitor study of Ni 0.8 Zn 0.2 Fe 2 O 4 thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm -2 and 19 F g -1 , respectively.

  17. Magnetic Mineralogy of Troilite-Inclusions and their Fe-Ni Host Alloys in IAB Iron Meteorites

    Science.gov (United States)

    Kontny, A. M.; Kramar, U.; Luecke, W.

    2011-12-01

    Iron-nickel meteorites often contain isolated, mostly rounded troilite nodules enclosed in a bulk of Fe-Ni alloy. As sulfur has a low solubility in metal, it is excluded from the crystallization of metal during cooling. Therefore troilite nodules are interpreted to be trapped droplets of residual sulfur-enriched melts. Microscopic examinations of the interface (mm-range) between troilite inclusions and Fe-Ni alloy yield clear mineralogical differences compared to the troilite inclusion. Such rims around troilite nodules seem to occur exclusively in Fe-Ni meteorites with slow cooling rates, and therefore might provide interesting clues on segregation, fractional crystallization and reequilibration processes between the Fe-Ni alloy and the sulfide phases. These interfaces however are also highly sensitive to terrestrial weathering. We present microscopic observations in combination with temperature-dependent magnetic susceptibility (k-T curves) in order to identify the magnetic mineralogy of the Morasko (Poland) and Coahuila (Mexico) meteorites, which both geochemically belong to the non-magmatic IAB or IIICD group. In the k-T curves both, rim and troilite nodule are characterized by Curie temperatures (TC) that can be related to magnetite, daubreelite (FeCr2O4), Fe-hydroxide and sometimes cohenite. Therefore the interface seems to be geochemically more similar to the troilite nodule than the Fe-Ni alloy. Optical microscopy in combination with the ferrofluid method revealed complex microstructures of intergrown magnetic (TC = 780-785 °C) and non-magnetic phases in the Fe-Ni alloy, which differ in their Ni-concentration. Towards the rim of the troilite nodule the concentration of magnetic cohenite ((Fe,Ni)3C) and especially schreibersite ((Fe,Ni)3P), which are both intergrown with the metal, increases. Cohenite is easily identified microscopically by a very characteristic stripe-like magnetic domain structure and it shows a TC at about 200 °C. The carbon-rich, dark

  18. Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method

    Science.gov (United States)

    Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.

    2018-04-01

    Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.

  19. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years Estado nutricio de hierro, zinc, cobre y magnesio en niños mexicanos de 1 a 11 años de edad

    Directory of Open Access Journals (Sweden)

    Ma. del Carmen Morales-Ruán

    2012-04-01

    Full Text Available OBJECTIVE: To describe the micronutrient nutritional status of a national sample of 1-11 year old Mexican children surveyed in 2006 in National Health and Nutrition Survey (ENSANUT 2006 and their association with dietary and sociodemographic factors. MATERIALS AND METHODS: Serum samples were used (n=5 060 to measure the concentrations of ferritin, transferrin receptor, zinc, copper and magnesium. RESULTS: Prevalence of deficiencies in 1-4 and 5-11y old children were for iron (using low ferritin 26.0 and 13.0%; zinc, 28.1 and 25.8%, respectively; and copper, ≈30% in both age groups. Magnesium low serum concentrations (MLSC, were found in 12.0% and 28.4% of the children, respectively. Being beneficiary of Liconsa (OR=0.32; C.I.95%, 0.17-0.61 or belonging to higher socioeconomic status (OR=0.63; C.I.95%, 0.41-0.97 were protective against iron deficiency. Increasing age (OR=0.59; C.I.95%, 1.19-1.32 and living in the Central Region (OR=0.59; C.I.95%, 0.36-0.97 were protective against MLSC. CONCLUSIONS: Deficiencies of iron and zinc are serious public health problems in Mexican children.OBJETIVO: Describir el estado nutricio de micronutrimentos en niños de 1-11 años de edad de la Encuesta Nacional de Salud y Nutrición 2006 y su asociación con factores dietéticos y sociodemográficos. MATERIAL Y MÉTODOS: Se usaron muestras séricas (n=5060 para medir las concentraciones de ferritina, receptor de transferrina, zinc, cobre y magnesio. RESULTADOS: La prevalencias de deficiencias en niños de 1-4 y de 5 a 11 años fueron para ferritina, 26.0 y 13%; zinc, 28.1 y 25.8% respectivamente y cobre ≈30% en ambos grupos. Las concentraciones bajas de magnesio (CBM fueron 12.0 y 28.4%, respectivamente. Ser beneficiario de Liconsa (RM=0.32; IC 95%: 0.17-0.61 y pertenecer al nivel socioeconómico alto (RM=0.63; IC, 95%: 0.41-0.97 fueron protectores para deficiencia de hierro. La edad (RM=1.26; IC, 95%: 1.19-1.32 y vivir en la región Centro (RM=0.59; IC, 95

  20. Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly.

    Science.gov (United States)

    Cai, Kai; Frederick, Ronnie O; Tonelli, Marco; Markley, John L

    2018-06-01

    Frataxin (FXN) is involved in mitochondrial iron‑sulfur (Fe-S) cluster biogenesis and serves to accelerate Fe-S cluster formation. FXN deficiency is associated with Friedreich ataxia, a neurodegenerative disease. We have used a combination of isothermal titration calorimetry and multinuclear NMR spectroscopy to investigate interactions among the components of the biological machine that carries out the assembly of iron‑sulfur clusters in human mitochondria. Our results show that FXN tightly binds a single Fe 2+ but not Fe 3+ . While FXN (with or without bound Fe 2+ ) does not bind the scaffold protein ISCU directly, the two proteins interact mutually when each is bound to the cysteine desulfurase complex ([NFS1] 2 :[ISD11] 2 :[Acp] 2 ), abbreviated as (NIA) 2 , where "N" represents the cysteine desulfurase (NFS1), "I" represents the accessory protein (ISD11), and "A" represents acyl carrier protein (Acp). FXN binds (NIA) 2 weakly in the absence of ISCU but more strongly in its presence. Fe 2+ -FXN binds to the (NIA) 2 -ISCU 2 complex without release of iron. However, upon the addition of both l-cysteine and a reductant (either reduced FDX2 or DTT), Fe 2+ is released from FXN as consistent with Fe 2+ -FXN being the proximal source of iron for Fe-S cluster assembly. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Iron 1s X-ray photoemission of Fe2O3

    NARCIS (Netherlands)

    Miedema, P. S.; Borgatti, F.; Offi, F.; Panaccione, G.; de Groot, F. M. F.

    We present the Is X-ray photoemission spectrum of alpha-Fe2O3 in comparison with its 2p photoemission spectrum. We show that in case of transition metal oxides, because the 1s core hole is not affected by core hole spin-orbit coupling and almost not affected by core-valence multiplet effects, the Fe

  2. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron concentrations of elements in 24-h urine and spot urine in hypertensive patients with healthy renal function.

    Science.gov (United States)

    Zhang, Tianjing; Chang, Xiaoyu; Liu, Wanlu; Li, Xiaoxia; Wang, Faxuan; Huang, Liping; Liao, Sha; Liu, Xiuying; Zhang, Yuhong; Zhao, Yi

    2017-12-01

    Sodium, potassium, calcium, magnesium, zinc, copper and iron are associated with the sequela of hypertension. The most reliable method for testing those elements is by collecting 24-h urine samples. However, this is cumbersome and collection of spot urine is more convenient in some circumstance. The aim of this study was to compare the concentrations of different elements in 24-h urine and spot urine. Data was collected from a sub-study of China Salt Substitute and Stroke Study. 240 participants were recruited randomly from 12 villages in two counties in Ningxia, China. Both spot and 24-h urine specimens were collected from each patient. Routine urine test was conducted, and concentration of elements was measured using microwave digestion and Inductively Coupled Plasma-Optical Emission Spectrometry. Partial correlation analysis and Spearman correlation analysis were used to investigate the concentration of different elements and the relationship between 24- h urine and spot urine. A partial correlation in sodium, potassium, calcium, magnesium and iron was found between paired 24-h urine and spot urine samples except copper and zinc: 0.430, 0.426, 0.550, 0.221 and 0.191 respectively. Spot urine can replace 24-h urine for estimating some of the elements in hypertensive patients with normal renal function. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France)]. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Deves, G. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Guillou, F. [INRA-CNRS-Universite de Tours-Haras nationaux, UMR 6175, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly (France)

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  4. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Guillou, F.

    2005-01-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter

  5. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: Comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution

    Directory of Open Access Journals (Sweden)

    Stojković Aleksandra

    2014-03-01

    Full Text Available Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO42(Cl2(ciprofloxacin2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  6. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    Science.gov (United States)

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  7. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    Science.gov (United States)

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  8. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods.

    Science.gov (United States)

    Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia

    2012-10-24

    Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).

  9. High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones

    Czech Academy of Sciences Publication Activity Database

    Machalová-Šišková, K.; Jančula, Daniel; Drahoš, B.; Machala, L.; Babica, Pavel; Godoy Alonso, Paula; Trávníček, Z.; Tuček, J.; Maršálek, Blahoslav; Sharma, V. K.; Zbořil, R.

    2016-01-01

    Roč. 18, č. 28 (2016), s. 18802-18810 ISSN 1463-9076 R&D Projects: GA MPO FR-TI3/196 Institutional support: RVO:67985939 Keywords : high-valent iron species * estrogenic hormones * oxidative transformation Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.123, year: 2016

  10. High-temperature oxidation of iron, Fe-0.5 wt. % Al and Fe-1 wt% Al alloys in CO2 at atmospheric pressure

    International Nuclear Information System (INIS)

    Hoogewys, Marcel; Paideassi, Jean.

    1978-12-01

    The oxidation of several grades of iron (on being a zone-melting grade) in the poly- and monocrystalline forms between 570 and 1150 0 C proceeds along a linear, then a transitory and a parabolic law in correspondence with the growth of wustite possibly covered with magnetite, whereas in the 400-570 0 C range where the parabolic law is rapidly establishing, the scale is entirely formed of magnetite. The oxidation of the two Fe-A1 alloys follows similarly a quasi linear law after a very short linear period. Their weight gains differ only at 10% at most while remaining close to that of iron (except above 570 0 C where they are much lower). The activation energies correspponding to the parabolic process -and in some cases to the linear one- have been determined for each material. They are in the range 11 to 43 Kcal.mole -1 , such values being rather low. The characteristics of the oxide layers: mode and facies of nucleation and crystal growth -particularly of the ridges at grain boundaries- the evolution of interfaces, precipitation of magnetite within wustite, etc... have been thoroughly investigated. Finally mechanisms concerning the linear, transitory and parabolic oxidation processes have been proposed after a careful discussion of the results [fr

  11. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  12. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal.

    Science.gov (United States)

    Min, Xiaobo; Li, Yangwenjun; Ke, Yong; Shi, Meiqing; Chai, Liyuan; Xue, Ke

    2017-07-01

    Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS 2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal.

  13. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sivkov, Alexander [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Naiden, Evgenii [Faculty of Radiophysics, National Research Tomsk State University, Lenin av., 36, Tomsk 634050 (Russian Federation); Ivashutenko, Alexander [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Shanenkov, Ivan, E-mail: Swordi@list.ru [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation)

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe{sub 3}O{sub 4}, hematite α-Fe{sub 2}O{sub 3} and ε-Fe{sub 2}O{sub 3}. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe{sub 2}O{sub 3} is increased up to ~50% at the same time with decreasing the Fe{sub 3}O{sub 4} phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe{sub 2}O{sub 3} on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe{sub 2}O{sub 3}, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz. - Highlights: • We synthesized iron oxide powder with high content of ε-Fe{sub 2}O{sub 3}. • Synthesis is implemented using iron-containing plasma jet flowing into O{sub 2} atm. • Synthesized powders are heterophase and consist of ε-Fe{sub 2}O{sub 3,} α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}. • ε-Fe{sub 2}O{sub 3} content increases up to 50% with increasing the O{sub 2} volume concentration. • We found the

  14. Oxygen rocking aqueous batteries utilizing reversible topotactic oxygen insertion/extraction in iron-based perovskite oxides Ca(1-x)La(x)FeO(3-δ).

    Science.gov (United States)

    Hibino, Mitsuhiro; Kimura, Takeshi; Suga, Yosuke; Kudo, Tetsuichi; Mizuno, Noritaka

    2012-01-01

    Developments of large-scale energy storages with not only low cost and high safety but also abundant metals are significantly demanded. While lithium ion batteries are the most successful method, they cannot satisfy all conditions. Here we show the principle of novel lithium-free secondary oxygen rocking aqueous batteries, in which oxygen shuttles between the cathode and anode composed of iron-based perovskite-related oxides Ca(0.5)La(0.5)FeO(z) (2.5 ≤ z ≤ 2.75 and 2.75 ≤ z ≤ 3.0). Compound Ca(0.5)La(0.5)FeO(z) can undergo two kinds of reduction and reoxidation of Fe(4+)/Fe(3+) and Fe(3+)/Fe(2+), that are accompanied by reversible and repeatable topotactic oxygen extraction and reinsertion during discharge and charge processes.

  15. Electrical and magnetic behavior of iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lenin, Nayagam; Karthik, Arumugam; Sridharpanday, Mathu; Selvam, Mohanraj; Srither, Saturappan Ravisekaran; Arunmetha, Sundarmoorthy; Paramasivam, Palanisamy; Rajendran, Venkatachalam, E-mail: veerajendran@gmail.com

    2016-01-01

    Iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) ferromagnetic nanoparticles with different concentrations of Fe (0.2, 0.4, and 0.6 mol) were synthesized using precipitation route with precursor source such as nickel nitrate and iron nitrate solutions. The prepared magnetic nanopowders were investigated through X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscope, X-ray fluorescence, Brunauer–Emmett–Teller, vibrating sample magnetometer, and electrochemical impedance spectroscopy to explore the structural, ferromagnetic, and dielectric properties. The obtained XRD pattern shows formation of iron doped nickel titanate in orthorhombic structure. The crystallite size ranges from 57 to 21 nm and specific surface area ranges from 11 to 137 m{sup 2} g{sup −1}. The hysteresis loops of nanomagnetic materials show ferromagnetic behavior with higher magnitude of coercivity (H{sub c}) 867–462 Oe. The impedance analysis of ferromagnetic materials explores the ferro-dielectric behavior with enhanced properties of Fe{sup 3+}/NiTiO{sub 3} nanoparticles at higher Fe content. - Highlights: • Iron doped nickel titanate magnetic nanoparticles. • Ferromagnetic magnetism behavior with higher magnitude of coercivity. • Dielectric behavior of ferromagnetic nanoparticles with increase of Fe content.

  16. Synthesis of novel spherical Fe_3O_4@Ni_3S_2 composite as improved anode material for rechargeable nickel-iron batteries

    International Nuclear Information System (INIS)

    Li, Jing; Guo, Litan; Shangguan, Enbo; Yue, Mingzhu; Xu, Min; Wang, Dong; Chang, Zhaorong; Li, Quanmin

    2017-01-01

    Highlights: • Fe_3O_4@Ni_3S_2 microspheres are fabricated through a facile method for the first time. • Fe_3O_4@Ni_3S_2 is firstly proposed as alkaline anode materials for Ni/Fe batteries. • Fe_3O_4@Ni_3S_2 shows enhanced high-rate capability and improved cycle stability. • Ni_3S_2 can suppress the passivation and hydrogen evolution behavior of the iron anode. - Abstract: Fe_3O_4@Ni_3S_2 microspheres as a novel alkaline anode material have been successfully fabricated through a four-step process for the first time. In this composite, Ni_3S_2 nanoparticles are coated tightly on the surface of Fe_3O_4 microspheres. Compared with the pure Fe_3O_4 and Fe_3O_4@NiO microspheres, the proposed Fe_3O_4@Ni_3S_2 delivers a significantly improved high-rate performance and enhanced cycling stability. At a high discharge rate of 1200 mA g"−"1, the specific capacity of the Fe_3O_4@Ni_3S_2 is ∼481.2 mAh g"−"1 in comparison with ∼83.7 mAh g"−"1 for the pure Fe_3O_4. After 100 cycles at 120 mA g"−"1, the Fe_3O_4@Ni_3S_2 can achieve a capacity retention of 95.1%, while the value for the pure Fe_3O_4 electrode is only 52.5%. The favorable electrochemical performance of the Fe_3O_4@Ni_3S_2 is mainly attributed to the beneficial impact of Ni_3S_2. The Ni_3S_2 layer as a useful additive is significantly conducive to lessening the formation of Fe(OH)_2 passivation layer, enhancing the electronic conductivity, improving the reaction reversibility and suppressing the hydrogen evolution reaction of the alkaline iron anode. Owing to it