WorldWideScience

Sample records for ir-inducible clusterin gene

  1. Clusterin: an IR-inducible protein determining life and death

    Energy Technology Data Exchange (ETDEWEB)

    DAVID A. BOOTHMAN, Ph.D.

    2006-07-11

    The roles of ionizing radiation (IR)-inducible genes/proteins are now being elucidated and the research team will focus on the functions of the clusterin (CLU) proteins after low dose IR exposures. With funding from the DOE, we discovered that x-ray-inducible transcript/protein #8 (xip8) bound to the Ku70 DNA double strand break repair protein using various molecular biology techniques. We showed that translation of the CLU/xip8 transcript was complicated, leading to two classes of proteins separated by their intracellular processing. One set of CLU proteins (a secreted and precursor protein, sCLU and psCLU, respectively) were induced by very low doses of IR (>2.0 cGy) and subsequently secreted from the cell. The functions of sCLU, particularly in bystander effects, are not known; sCLU does not bind Ku70, but can interact with the TGF-ß II receptor. Another intracellular class of CLU proteins was targeted to the cytoplasm and existed in a dormant precursor nuclear form (pnCLU). After higher IR doses (>1.0 Gy), pnCLU was activated via post-translational modification, and translocated to the nucleus, where nuclear CLU (nCLU) interacted with Ku70/Ku80, and signaled cell death. The mechanism(s) of how cells die following nCLU accumulation are unknown. Recent data from our lab indicate that CLU gene transcription is also complicated. Thus far, the data suggest that: (a) p53 is a negative regulator of CLU transcription, however, the mechanisms by which it exerts this negative pressure are not known; and (b) IR induces transcription of the CLU promoter, independent of p53, at regulatory elements that lie between -1403 and -325 bps 5'-from the TATAA box. In this renewal, the research team will investigate three separate, but interrelated hypotheses: (1) p53 negatively regulates the CLU promoter via distinct head to tail p53 half sites, and induction is mediated by the combination of retinoblatoma control elements (RCEs) and NF-∫B sites; (2) sCLU is cytoprotective

  2. Clusterin: an IR-inducible protein determining life and death

    International Nuclear Information System (INIS)

    DAVID A. BOOTHMAN

    2006-01-01

    The roles of ionizing radiation (IR)-inducible genes/proteins are now being elucidated and the research team will focus on the functions of the clusterin (CLU) proteins after low dose IR exposures. With funding from the DOE, we discovered that x-ray-inducible transcript/protein No.8 (xip8) bound to the Ku70 DNA double strand break repair protein using various molecular biology techniques. We showed that translation of the CLU/xip8 transcript was complicated, leading to two classes of proteins separated by their intracellular processing. One set of CLU proteins (a secreted and precursor protein, sCLU and psCLU, respectively) were induced by very low doses of IR (>2.0 cGy) and subsequently secreted from the cell. The functions of sCLU, particularly in bystander effects, are not known; sCLU does not bind Ku70, but can interact with the TGF-? II receptor. Another intracellular class of CLU proteins was targeted to the cytoplasm and existed in a dormant precursor nuclear form (pnCLU). After higher IR doses (>1.0 Gy), pnCLU was activated via post-translational modification, and translocated to the nucleus, where nuclear CLU (nCLU) interacted with Ku70/Ku80, and signaled cell death. The mechanism(s) of how cells die following nCLU accumulation are unknown. Recent data from our lab indicate that CLU gene transcription is also complicated. Thus far, the data suggest that: (a) p53 is a negative regulator of CLU transcription, however, the mechanisms by which it exerts this negative pressure are not known; and (b) IR induces transcription of the CLU promoter, independent of p53, at regulatory elements that lie between -1403 and -325 bps 5'-from the TATAA box. In this renewal, the research team will investigate three separate, but interrelated hypotheses: (1) p53 negatively regulates the CLU promoter via distinct head to tail p53 half sites, and induction is mediated by the combination of retinoblatoma control elements (RCEs) and NF-?B sites; (2) sCLU is cytoprotective and

  3. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  4. Clusterin Reduces Cold Ischemia-Reperfusion Injury in Heart Transplantation Through Regulation of NF-kB Signaling and Bax/Bcl-xL Expression

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2018-02-01

    Full Text Available Background/Aims: Ischemia-reperfusion (I/R injury is an unavoidable event occurring during heart transplantation and is a key factor in graft failure and the long-term survival rate of recipients. Therefore, there is an urgent need for the development of new therapies to prevent I/R injury. Clusterin is a hetero-dimeric glycoprotein with an antiapoptotic function. In this study, we investigated whether clusterin was cardioprotective in heart transplantation against I/R injury using an in vivo rat model and an in vitro cell culture system, and examined the underlying mechanisms of I/R injury. Methods: Heart grafts from wild-type C57BL/6 mice were preserved in UW solution (control or UW solution containing recombinant human apolipoprotein-J (hr clusterin for 24 h. The preserved hearts were implanted into recipient mice of the same strain as the donors for 72 h, and the heart grafts were then taken for histopathological and gene expression analyses. An in vitro ischemia reperfusion model using H9C2 cells or H9C2/clusterin cDNA cells was constructed. The expression of clusterin, p65, Bax, Bcl-xL, IL-1β, and TNF-α protein and mRNA in heart tissue and H9C2 cells was detected by western blot, reverse transcription-polymerase chain reaction (RT-PCR, and quantitative RT-PCR assays; IL-1β and TNF-α protein was detected by enzyme-linked immunosorbent assays; NF-kB activity was detected by an electrophoretic mobility shift assay; cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometric analyses. Results: Cold I/R caused severe morphologic myocardial injury to heart grafts from wild-type C57BL/6 mice, whereas grafts from hr clusterin preservation showed less damage, as demonstrated by decreased cell apoptosis/death, decreased neutrophil infiltration, and the preservation of the normal structure of the heart. Clusterin reduced the expression of p65, pre-inflammatory IL-1β, and TNF-α, and

  5. Clusterin Reduces Cold Ischemia-Reperfusion Injury in Heart Transplantation Through Regulation of NF-kB Signaling and Bax/Bcl-xL Expression.

    Science.gov (United States)

    Liu, Guodong; Zhang, Hongmei; Hao, Fengyun; Hao, Jing; Pan, Lixiao; Zhao, Qing; Wo, Jinshan

    2018-01-01

    Ischemia-reperfusion (I/R) injury is an unavoidable event occurring during heart transplantation and is a key factor in graft failure and the long-term survival rate of recipients. Therefore, there is an urgent need for the development of new therapies to prevent I/R injury. Clusterin is a hetero-dimeric glycoprotein with an antiapoptotic function. In this study, we investigated whether clusterin was cardioprotective in heart transplantation against I/R injury using an in vivo rat model and an in vitro cell culture system, and examined the underlying mechanisms of I/R injury. Heart grafts from wild-type C57BL/6 mice were preserved in UW solution (control) or UW solution containing recombinant human apolipoprotein-J (hr clusterin) for 24 h. The preserved hearts were implanted into recipient mice of the same strain as the donors for 72 h, and the heart grafts were then taken for histopathological and gene expression analyses. An in vitro ischemia reperfusion model using H9C2 cells or H9C2/clusterin cDNA cells was constructed. The expression of clusterin, p65, Bax, Bcl-xL, IL-1β, and TNF-α protein and mRNA in heart tissue and H9C2 cells was detected by western blot, reverse transcription-polymerase chain reaction (RT-PCR), and quantitative RT-PCR assays; IL-1β and TNF-α protein was detected by enzyme-linked immunosorbent assays; NF-kB activity was detected by an electrophoretic mobility shift assay; cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometric analyses. Cold I/R caused severe morphologic myocardial injury to heart grafts from wild-type C57BL/6 mice, whereas grafts from hr clusterin preservation showed less damage, as demonstrated by decreased cell apoptosis/death, decreased neutrophil infiltration, and the preservation of the normal structure of the heart. Clusterin reduced the expression of p65, pre-inflammatory IL-1β, and TNF-α, and the pro-apoptotic gene Bax, while it enhanced the

  6. Chemosensitization of Human Renal Cell Cancer Using Antisense Oligonucleotides Targeting the Antiapoptotic Gene Clusterin

    Directory of Open Access Journals (Sweden)

    Tobias Zellweger

    2001-01-01

    Full Text Available BACKGROUND: Renal cell cancer (RCC is a chemoresistant disease with no active chemotherapeutic agent achieving objective response rates higher than 15%. Clusterin is a cell survival gene that increases in human renal tubular epithelial cells after various states of injury and disease. Downregulation of clusterin, using antisense oligonucleotides (ASO, has recently been shown to increase chemosensitivity in several prostate cancer models. The objectives in this study were to evaluate clusterin expression levels in human RCC and normal kidney tissue, and to test whether clusterin ASO could also enhance chemosensitivity in human RCC Caki-2 cells both in vitro and in vivo. METHODS: Immunohistochemical staining was used to characterize clusterin expression in 67 RCC and normal kidney tissues obtained from radical nephrectomy specimens. Northern blot analysis was used to assess changes in clusterin mRNA expression after ASO and paclitaxel treatment. The effects of combined clusterin ASO and paclitaxel treatment on Caki-2 cell growth was examined using an MTT assay. Athymic mice bearing Caki-2 tumors were treated with clusterin ASO alone, clusterin ASO plus paclitaxel, and mismatch control oligonucleotides plus paclitaxel, over a period of 28 days with measurement of tumor volumes once weekly over 8 weeks. RESULTS: Immunohistochemistry of normal and malignant kidney tissue sections of 67 patients demonstrated positive clusterin staining for almost all RCC (98% and an overexpression, compared to normal tissue, in a majority of RCC (69%. Clusterin ASO, but not mismatch control oligonucleotides, decreased clusterin mRNA expression in Caki-2 cells in a dosedependent and sequence-specific manner. Pretreatment of Caki-2 cells with clusterin ASO significantly enhanced chemosensitivity to paclitaxel in vitro. Characteristic apoptotic DNA laddering was observed after combined treatment with ASO plus paclitaxel, but not with either agent alone. In vivo

  7. Clusterin and Megalin in The Spinal Cord

    OpenAIRE

    Wicher, Grzegorz

    2006-01-01

    Nerve injury induces up-regulation of the chaperone protein clusterin in affected neurons and adjacent astrocytes but the functional significance of this response is unclear. We find that motor neuron survival is significantly greater in clusterin(+/+) compared to (-/-) mice. These results suggest that endogenous expression of clusterin is neuroprotective after nerve injury. However, motor neuron survival in clusterin overexpressing mice was not different from that in wildtype mice. In contra...

  8. Hypothalamic and pituitary clusterin modulates neurohormonal responses to stress.

    Science.gov (United States)

    Shin, Mi-Seon; Chang, Hyukki; Namkoong, Churl; Kang, Gil Myoung; Kim, Hyun-Kyong; Gil, So Young; Yu, Ji Hee; Park, Kyeong Han; Kim, Min-Seon

    2013-01-01

    Clusterin is a sulfated glycoprotein abundantly expressed in the pituitary gland and hypothalamus of mammals. However, its physiological role in neuroendocrine function is largely unknown. In the present study, we investigated the effects of intracerebroventricular (ICV) administration of clusterin on plasma pituitary hormone levels in normal rats. Single ICV injection of clusterin provoked neurohormonal changes seen under acute stress condition: increased plasma adrenocorticotropic hormone (ACTH), corticosterone, GH and prolactin levels and decreased LH and FSH levels. Consistently, hypothalamic and pituitary clusterin expression levels were upregulated following a restraint stress, suggesting an involvement of endogenous clusterin in stress-induced neurohormonal changes. In the pituitary intermediate lobe, clusterin was coexpressed with proopiomelanocortin (POMC), a precursor of ACTH. Treatment of clusterin in POMC expressing AtT-20 pituitary cells increased basal and corticotropin-releasing hormone (CRH)-stimulated POMC promoter activities and intracellular cAMP levels. Furthermore, clusterin treatment triggered ACTH secretion from AtT-20 cells in a CRH-dependent manner, indicating that increased clusterin under stressful conditions may augment CRH-stimulated ACTH production and release. In summary, hypothalamic and pituitary clusterin may function as a modulator of neurohormonal responses under stressful conditions. © 2013 S. Karger AG, Basel.

  9. The role of clusterin in Alzheimer's disease: pathways, pathogenesis, and therapy.

    Science.gov (United States)

    Yu, Jin-Tai; Tan, Lan

    2012-04-01

    Genetic variation in clusterin gene, also known as apolipoprotein J, has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, and plasma clusterin levels are associated with brain atrophy, baseline prevalence and severity, and rapid clinical progression in patients with AD, highlighting the importance of clusterin in AD pathogenesis. Emerging data suggest that clusterin contributes to AD through various pathways, including amyloid-β aggregation and clearance, lipid metabolism, neuroinflammation, and neuronal cell cycle control and apoptosis. Moreover, epigenetic regulation of the clusterin expression also seems to play an important role in the pathogenesis of AD. Emerging knowledge of the contribution of clusterin to the pathogenesis of AD presents new opportunities for AD therapy.

  10. Clusterin expression in elastofibroma dorsi.

    Science.gov (United States)

    Aigelsreiter, Ariane; Pichler, Martin; Pixner, Thomas; Janig, Elke; Schuller, Monika; Lackner, Carolin; Scheipl, Susanne; Beham, Alfred; Regauer, Sigrid

    2013-05-01

    Elastofibroma dorsi is a benign soft tissue lesion composed of abnormal elastic fibers. Degenerated elastic fibers in skin and liver are associated with clusterin, an apoprotein that shares functional properties with small heat shock proteins. We evaluated the staining pattern and possible role of clusterin in elastofibroma dorsi. Twenty-one subcutaneous elastofibromas from the scapular region were evaluated with Elastica van Gieson and Orcein stains, immunohistochemically with antibodies to clusterin, smooth muscle actin, S-100, vimentin and CD34 and correlated with clinical data with respect to physical trauma. Clusterin correlated with the staining pattern of Elastica van Gieson and labelled abnormal broad coarse fibrillar and globular elastic fibers in all elastofibromas. Orcein stains additionally identified fine oxytalan fibers which were not stained by clusterin. Clusterin staining was observed only on the outside of the elastin fibers, while the cores of fibers and globules were unstained. 4/21 elastofibromas showed cellular nodules with a myxoid/collagenous stroma. The round to oval cells showed cytoplasmic staining with vimentin and clusterin; CD34 labelled mostly cell membranes. The cells lacked SMA and S-100 expression. The central areas of the nodules were devoid of elastic fibers, but the periphery contained coarse fibers and globules. 9/ 11 patients, for whom clinical data were available, reported trauma to the scapular region. Many investigated ED were associated with trauma, which supports a reactive/degenerative etiology of ED. The abnormal large elastic fibers in all ED were enveloped by clusterin. Clusterin deposition may protect elastic fibers from degradation and thus contribute indirectly to the tumor-like presentation of ED.

  11. Downregulation of Clusterin Expression in Human Testicular Seminoma

    Directory of Open Access Journals (Sweden)

    Bianjiang Liu

    2013-11-01

    Full Text Available Background: Clusterin, a heterodimeric glycoprotein of approximately 80 kDa, exists extensively in human body fluids. The abnormal expression of clusterin is closely related to the occurrence, progression, and prognosis of tumors. Up to now, few studies have focused on clusterin in human testicular cancer. This study describes an extensive exploration of the presence and expression of clusterin in testicular seminoma. Methods: Tumor tissues and normal testis tissues were collected from 13 patients with testicular seminoma and 16 patients undergoing surgical castration for prostate cancer. Real-time polymerase chain reaction (PCR was performed to detect the expression difference of clusterin mRNA between testicular seminoma and normal testis. Western blot and immunohistochemical analysis were performed to detect the presence and expression difference of clusterin protein between two groups. Results: Real-time PCR showed the expression of clusterin mRNA in testicular seminoma to be significantly lower than in normal testis (only 13% relative quantification. Western blot analysis indicated marked reductions in the expression of clusterin protein in testicular seminoma. Similar results were observed upon immunohistochemical analysis. Conclusion: In testicular seminoma and normal testis, clusterin exists in its heterodimeric secretory isoform. Clusterin expression is significantly lower in testicular seminoma than in normal testis. This is the first comprehensive study of the presence and expression of clusterin in human testicular cancer.

  12. Clusterin silencing sensitizes pancreatic cancer MIA-PaCa-2 cells to gmcitabine via regulation of NF-kB/Bcl-2 signaling.

    Science.gov (United States)

    Xu, Miao; Chen, Xiumei; Han, Yanling; Ma, Chunqing; Ma, Lin; Li, Shirong

    2015-01-01

    Clusterin (CLU) is known as a multifunctional protein involved in a variety of physiological processes including lipid transport, epithelial cell differentiation, tumorigenesis, and apoptosis. Our recent study has demonstrated that knockdown of clusterin sensitizes pancreatic cancer cell lines to gmcitabine treatment. However the details of this survival mechanism remain undefined. Of the various downstream targets of CLU, we examined activation of the NF-kB transcription factor and subsequent transcriptional regulation of BCL-2 gene in pancreatic cancer cell MIA-PaCa-2. The MIA-PaCa-2 cells were transfected with an antisense oligonucleotide (ASO) against clusterin, which led to a decreased protein level of the antiapoptotic gene BCL-2. Furthermore, inhibition of CLU decreased the function of NF-kB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway increased the apoptotic effect of gmcitabine chemotherapy. Re-activated NF-kB resulted in attenuation of ASO-induced effects, followed by the bcl-2 upregulation, and bcl-2 re-inhibition resulted in attenuation of Re-activated NF-kB -induced effects. Animals injected with ASO CLU in MIA-PaCa-2 cells combined with gmcitabine treatment had fewer tumors than gmcitabine or ASO CLU alone. These findings suggest that knockdown of CLU sensitized MIA-PaCa-2 cells to gmcitabine chemotherapy through modulating NF-Kb/bcl-2 pathway.

  13. Radiation-induced secretory protein, clusterin. Its inductive mechanism and biological significance

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Boothman, D.A.

    2007-01-01

    This paper describes biochemistry of secretory clusterin (C), its radiation-inductive mechanism and biological significance. C is a glycoprotein found to be secreted from cells given various stresses like radiation and ultraviolet (UV)-ray, and participates to red cell clustering. Human C gene locates on the chromosome 8p21-p12, C has MW of 60 kDa, its precursor undergoes the degrading processing to α- and β-chains to form their heterodimer before glycosylation, and the C is finally secreted. So many other names have been given to C due to its numerous functions which have been discovered in other fields, such as apolipoprotein J. C is abundant in plasma, milk, urine, cerebrospinal fluid, semen, etc. Within 24 hr after X-ray irradiation, extracellular insulin-like growth factor-1 (IGF-1) level is elevated, and through its binding to the receptor, Src/MAPK signaling participates to C expression. Nuclear C, also induced by radiation, is a splicing variant of C and not secreted from cells. C is induced by radiation with as low dose as 2 cGy, which is different from induction of nuclear C. Secreted C is incorporated in cells by endocytosis and promotes the intracellular survival reaction through IGF-1 receptor/MAPK/Egr-1 pathway, whereas nuclear C induces cell apoptosis via unknown mechanism. Further studies are required for elucidation of the roles of secretory and nuclear C in cellular radiation responses. (R.T.)

  14. Clusterin levels are increased in Alzheimer's disease and influence the regional distribution of Aβ.

    Science.gov (United States)

    Miners, J Scott; Clarke, Polly; Love, Seth

    2017-05-01

    Clusterin, also known as apoJ, is a lipoprotein abundantly expressed within the CNS. It regulates Aβ fibril formation and toxicity and facilitates amyloid-β (Aβ) transport across the blood-brain barrier. Genome-wide association studies have shown variations in the clusterin gene (CLU) to influence the risk of developing sporadic Alzheimer's disease (AD). To explore whether clusterin modulates the regional deposition of Aβ, we measured levels of soluble (NP40-extracted) and insoluble (guanidine-HCl-extracted) clusterin, Aβ40 and Aβ42 by sandwich ELISA in brain regions with a predilection for amyloid pathology-mid-frontal cortex (MF), cingulate cortex (CC), parahippocampal cortex (PH), and regions with little or no pathology-thalamus (TH) and white matter (WM). Clusterin level was highest in regions with plaque pathology (MF, CC, PH and PC), approximately mirroring the regional distribution of Aβ. It was significantly higher in AD than controls, and correlated positively with Aβ42 and insoluble Aβ40. Soluble clusterin level rose significantly with severity of cerebral amyloid angiopathy, and in MF and PC regions was highest in APOE ɛ4 homozygotes. In the TH and WM (areas with little amyloid pathology) clusterin was unaltered in AD and did not correlate with Aβ level. There was a significant positive correlation between the concentration of clusterin and the regional levels of insoluble Aβ42; however, the molar ratio of clusterin : Aβ42 declined with insoluble Aβ42 level in a region-dependent manner, being lowest in regions with predilection for Aβ plaque pathology. Under physiological conditions, clusterin reduces aggregation and promotes clearance of Aβ. Our findings indicate that in AD, clusterin increases, particularly in regions with most abundant Aβ, but because the increase does not match the rising level of Aβ42, the molar ratio of clusterin : Aβ42 in those regions falls, probably contributing to Aβ deposition within the tissue. © 2016

  15. Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations

    NARCIS (Netherlands)

    Bettens, Karolien; Vermeulen, Steven; Van Cauwenberghe, Caroline; Heeman, Bavo; Asselbergh, Bob; Robberecht, Caroline; Engelborghs, Sebastiaan; Vandenbulcke, Mathieu; Vandenberghe, Rik; De Deyn, Peter Paul; Cruts, Marc; Van Broeckhoven, Christine; Sleegers, Kristel

    2015-01-01

    Background: The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer's disease (AD). Although the actual risk-increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small

  16. Extracellular clusterin promotes neuronal network complexity in vitro

    DEFF Research Database (Denmark)

    Wicher, Grzegorz; Velsecchi, Isabel; Charnay, Yves

    2008-01-01

    Clusterin (apolipoprotein J), a highly conserved amphiphatic glycoprotein and chaperone, has been implicated in a wide range of physiological and pathological processes. As a secreted protein, clusterin has been shown to act extracellularly where it is involved in lipid transportation and clearan...

  17. Ketogenic diet change cPLA2/clusterin and autophagy related gene expression and correlate with cognitive deficits and hippocampal MFs sprouting following neonatal seizures.

    Science.gov (United States)

    Ni, Hong; Zhao, Dong-Jing; Tian, Tian

    2016-02-01

    Because the ketogenic diet (KD) was affecting expression of energy metabolism- related genes in hippocampus and because lipid membrane peroxidation and its associated autophagy stress were also found to be involved in energy depletion, we hypothesized that KD might exert its neuroprotective action via lipid membrane peroxidation and autophagic signaling. Here, we tested this hypothesis by examining the long-term expression of lipid membrane peroxidation-related cPLA2 and clusterin, its downstream autophagy marker Beclin-1, LC3 and p62, as well as its execution molecule Cathepsin-E following neonatal seizures and chronic KD treatment. On postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizures group and control group. On P28, they were further randomly divided into the seizure group without ketogenic diet (RS+ND), seizure plus ketogenic diet (RS+KD), the control group without ketogenic diet (NS+ND), and the control plus ketogenic diet (NS+KD). Morris water maze test was performed during P37-P43. Then mossy fiber sprouting and the protein levels were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced RS+ND rats show a long-term lower amount of cPLA2 and LC3II/I, and higher amount of clusterin, Beclin-1, p62 and Cathepsin-E which are in parallel with hippocampal mossy fiber sprouting and cognitive deficits. Furthermore, chronic KD treatment (RS+KD) is effective in restoring these molecular, neuropathological and cognitive changes. The results imply that a lipid membrane peroxidation and autophagy-associated pathway is involved in the aberrant hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures, which might be a potential target of KD for the treatment of neonatal seizure-induced brain damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaobing [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730 (China); Ma, Ben; Lin, Zhi; Qu, Zhe; Huo, Yan; Wang, Jufeng [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Li, Bo, E-mail: libo@nifdc.org.cn [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730 (China)

    2014-10-01

    As kidney is a major target organ affected by drug toxicity, early detection of renal injury is critical in preclinical drug development. In past decades, a series of novel biomarkers of drug-induced nephrotoxicity were discovered and verified in rats. However, limited data regarding the performance of novel biomarkers in non-rodent species are publicly available. To increase the applicability of these biomarkers, we evaluated the performance of 4 urinary biomarkers including neutrophil gelatinase-associated lipocalin (NGAL), clusterin, total protein, and N-acetyl-β-D-glucosaminidase (NAG), relative to histopathology and traditional clinical chemistry in beagle dogs with acute kidney injury (AKI) induced by gentamicin. The results showed that urinary NGAL and clusterin levels were significantly elevated in dogs on days 1 and 3 after administration of gentamicin, respectively. Gene expression analysis further provided mechanistic evidence to support that NGAL and clusterin are potential biomarkers for the early assessment of drug-induced renal damage. Furthermore, the high area (both AUCs = 1.000) under receiver operator characteristics (ROC) curve also indicated that NGAL and clusterin were the most sensitive biomarkers for detection of gentamicin-induced renal proximal tubular toxicity. Our results also suggested that NAG may be used in routine toxicity testing due to its sensitivity and robustness for detection of tissue injury. The present data will provide insights into the preclinical use of these biomarkers for detection of drug-induced AKI in non-rodent species. - Highlights: • Urinary NGAL, clusterin and NAG levels were significantly elevated in canine AKI. • NGAL and clusterin gene expression were increased following treatment with gentamicin. • NGAL and clusterin have high specificity and sensitivity for detection of AKI.

  19. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    International Nuclear Information System (INIS)

    Flanagan, Louise; Whyte, Lorna; Chatterjee, Namita; Tenniswood, Martin

    2010-01-01

    Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s) of the secretory isoform in breast tumor progression and metastasis. To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU) that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells

  20. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    Directory of Open Access Journals (Sweden)

    Chatterjee Namita

    2010-03-01

    Full Text Available Abstract Background Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s of the secretory isoform in breast tumor progression and metastasis. Methods To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. Results In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. Conclusions These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.

  1. Clusterin and chemotherapy sensitivity under normoxic and graded hypoxic conditions in colorectal cancer.

    LENUS (Irish Health Repository)

    Kevans, David

    2012-06-01

    In vitro studies have shown that clusterin modulates treatment sensitivity in a number of human cancers; however, the interaction between clusterin expression and hypoxia in controlling treatment response in CRC has not previously been examined. The aim of this study was to assess the effect of clusterin overexpression in CRC cells on sensitivity to 5-fluorouracil (5-FU), oxaliplatin and FOLFOX treatment under normoxic and graded hypoxic conditions.

  2. High clusterin expression correlates with a poor outcome in stage II colorectal cancers.

    LENUS (Irish Health Repository)

    Kevans, David

    2012-02-01

    The role of clusterin in tumor growth and progression remains unclear. Overexpression of cytoplasmic clusterin has been studied in aggressive colon tumors; however, no correlation between clusterin expression and survival in colorectal cancer has been identified to date. We assessed levels of clusterin expression in a group of stage II colorectal cancer patients to assess its utility as a prognostic marker. The study included 251 patients with stage II colorectal cancer. Tissue microarrays were constructed and immunohistochemistry done and correlated with clinical features and long term outcome. Dual immunofluorescence and confocal microscopy were used with terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling probes and clusterin antibody to assess the degree of co localization. Percentage epithelial cytoplasmic staining was higher in tumor compared with nonadjacent normal mucosa (P < 0.001). Within the stromal compartment, percentage cytoplamic staining and intensity was lower in tumor tissue compared with normal nonadjacent mucosa (P < or = 0.001). Survival was significantly associated with percentage epithelial cytoplasmic staining (P < 0.001), epithelial cytoplasmic staining intensity (P < 0.001), percentage stromal cytoplasmic staining (P = 0.002), and stromal cytoplasmic staining intensity (P < 0.001). Clusterin levels are associated with poor survival in stage II colorectal cancer.

  3. Urinary Clusterin Is Upregulated in Nephropathia Epidemica

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Martynova

    2018-01-01

    Full Text Available Kidney insufficiency is a hallmark of nephropathia epidemica (NE. Little is known about the mechanisms of the NE kidney pathology, with current knowledge mainly based on findings in postmortem tissue. We have analyzed kidney damage biomarkers in urine collected from early- and late-phase NE using Bio-Plex kidney toxicity panels 1 and 2. To determine the disease specificity, kidney damage biomarkers were also analyzed in urine samples from patients diagnosed with gout, type 2 diabetes, systemic lupus erythematosus, and chronic kidney insufficiency. Analysis of 12 biomarkers suggests damage to the kidney proximal tubule at the onset of NE. Also, upregulation of biomarkers of inflammation and leukocyte chemotaxis were detected in NE urine. Furthermore, increased clusterin levels were found in early- and late-phase NE urine. Comparative analysis revealed that clusterin is a biomarker, upregulated in NE urine.

  4. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells.

    Science.gov (United States)

    Verbrugghe, Phebe; Kujala, Pekka; Waelput, Wim; Peters, Peter J; Cuvelier, Claude A

    2008-03-01

    The follicle-associated epithelium (FAE) overlying the follicles of mucosa-associated lymphoid tissue is a key player in the initiation of mucosal immune responses. We recently reported strong clusterin expression in the FAE of murine Peyer's patches. In this study, we examined the expression of clusterin in the human gut-associated lymphoid tissue (GALT) and Waldeyer's ring. Immunohistochemistry for clusterin in human Peyer's patches, appendix and colon lymphoid follicles revealed expression in M cells and in follicular dendritic cells (FDCs). Using cryo-immunogold electron microscopy in Peyer's patches, we observed cytosolic immunoreactivity in M cells and labeling in the ER/Golgi biosynthetic pathway in FDCs. In palatine tonsils and adenoids, we demonstrated clusterin expression in germinal centers and in the lymphoepithelium in the crypts where M cells are localized. In conclusion, clusterin is expressed in M cells and follicular dendritic cells at inductive sites of human mucosa-associated lymphoid tissue suggesting a role for this protein in innate immune responses. Moreover, the use of clusterin as a human M cell marker could prove to be a valuable tool in future M cell research.

  5. Shared effects of the clusterin gene on the default mode network among individuals at risk for Alzheimer's disease.

    Science.gov (United States)

    Ye, Qing; Su, Fan; Shu, Hao; Gong, Liang; Xie, Chun-Ming; Zhou, Hong; Zhang, Zhi-Jun; Bai, Feng

    2017-05-01

    To explore the common effects of the clusterin (CLU) rs11136000 variant on the default mode network (DMN) in amnestic mild cognitive impairment (aMCI) subjects and remitted geriatric depression (RGD) subjects. Fifty-one aMCI subjects, 38 RGD subjects, and 64 cognitively normal elderly subjects underwent resting-state fMRI scans and neuropsychological tests at both baseline and a 35-month follow-up. Posterior cingulate cortex seed-based functional connectivity (FC) analysis was used to obtain the DMN patterns. A CLU gene×disease×time interaction for aMCI subjects was mainly detected in the core cortical midline structures of the DMN, and the interaction for RGD subjects was mainly detected in the limbic system. However, they overlapped in two frontal regions, where consistent effects of the CLU gene on FC alterations were found between aMCI and RGD groups. Furthermore, the alterations of FC with frontal, parietal, and limbic regions compensated for episodic memory impairments in CLU-CT/TT carriers, while no such compensation was found in CLU-CC carriers. The CLU gene could consistently affect the DMN FC with frontal regions among individuals at risk for Alzheimer's disease, and the CLU-T allele was associated with more compensatory neural processes in DMN changes. © 2017 John Wiley & Sons Ltd.

  6. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  7. Identification of novel senescence-associated genes in ionizing radiation-induced senescent carcinoma cells

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Bong Cho; Han, Na Kyung; Hong, Mi Na; Park, Su Min; Yoo, Hee Jung; Chu, In Sun; Lee, Sun Hee

    2009-01-01

    Cellular senescence is considered as a defense mechanism to prevent tumorigenesis. Ionizing radiation (IR) induces stress-induced premature senescence as well as apoptosis in various cancer cells. Senescent cells undergo functional and morphological changes including large and flattened cell shape, senescence-associated β-galactosidase (SA-βGal) activity, and altered gene expressions. Even with the recent findings of several gene expression profiles and supporting functional data, it is obscure that mechanism of IR-induced premature senescence in cancer cells. We performed microarray analysis to identify the common regulated genes in ionizing radiation-induced prematurely senescent human carcinoma cell lines

  8. Isolation and identification of gene mediating radiation-induced apoptosis in human leukemia U937 cells

    International Nuclear Information System (INIS)

    Tong Xin; Luo Ying; Dong Yan; Sun Zhixian

    1998-01-01

    Objective: Increasing evidences suggest that Caspase family proteases play an important role in the effector mechanism of apoptotic cell death. Radiation (IR) can induce apoptosis in tumor cells, so it is very important to isolate and identify the member of the Caspase family proteases involved in IR-induced apoptosis, and this would contribute to the understanding of the mechanism responsible for apoptosis execution. Methods: A PCR approach to isolate genes for IR-induced apoptosis was developed. The approach used degenerated oligonucleotide encoding the highly conserved peptides that were present in all known Caspases. Results: Protease inhibitors special for Caspases could block the apoptotic cell death caused by IR, and Caspase-3 was isolated from irradiated human leukemia U937 cells. Conclusion: Caspases involve in IR-induced apoptosis, and Caspase-3 is the pivotal element of IR-induced apoptosis

  9. Plasma concentrations and subcutaneous adipose tissue mRNA expression of clusterin in obesity and type 2 diabetes mellitus: the effect of short-term hyperinsulinemia, very-low-calorie diet and bariatric surgery.

    Science.gov (United States)

    Kloučková, J; Lacinová, Z; Kaválková, P; Trachta, P; Kasalický, M; Haluzíková, D; Mráz, M; Haluzík, M

    2016-07-18

    Clusterin is a heterodimeric glycoprotein with wide range of functions. To further explore its possible regulatory role in energy homeostasis and in adipose tissue, we measured plasma clusterin and its mRNA expression in subcutaneous adipose tissue (SCAT) of 15 healthy lean women, 15 obese women (OB) and 15 obese women with type 2 diabetes mellitus (T2DM) who underwent a 2-week very low-calorie diet (VLCD), 10 obese women without T2DM who underwent laparoscopic sleeve gastrectomy (LSG) and 8 patients with T2DM, 8 patients with impaired glucose tolerance (IGT) and 8 normoglycemic patients who underwent hyperinsulinemic euglycemic clamp (HEC). VLCD decreased plasma clusterin in OB but not in T2DM patients while LSG and HEC had no effect. Clusterin mRNA expression in SCAT at baseline was increased in OB and T2DM patients compared with controls. Clusterin mRNA expression decreased 6 months after LSG and remained decreased 12 months after LSG. mRNA expression of clusterin was elevated at the end of HEC compared with baseline only in normoglycemic but not in IGT or T2DM patients. In summary, our data suggest a possible local regulatory role for clusterin in the adipose tissue rather than its systemic involvement in the regulation of energy homeostasis.

  10. Changes in gene expression following androgen receptor blockade ...

    Indian Academy of Sciences (India)

    Madhu urs

    of gene expression in the ventral prostate, it is not clear whether all the gene expression ... These include clusterin, methionine adenosyl transferase IIα, and prostate-specific ..... MAGEE1 melanoma antigen and no similarity was found with the ...

  11. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  12. Genistein-induced alterations of radiation-responsive gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Grace, M.B. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: grace@afrri.usuhs.mil; Blakely, W.F.; Landauer, M.R. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    In order to clarify the molecular mechanism of radioprotection and understand biological dosimetry in the presence of medical countermeasure-radioprotectants, their effects on ionizing radiation (IR)-responsive molecular biomarkers must be examined. We used genistein in a radiation model system and measured gene expression by multiplex QRT-PCR assay in drug-treated healthy human blood cultures. Genistein has been demonstrated to be a radiosensitizer of malignant cells and a radioprotector against IR-induced lethality in a mouse model. Whole-blood cultures were supplemented with 50, 100, and 200{mu}M concentrations of genistein, 16 h prior to receiving a 2-Gy ({sup 60}Co-{gamma} rays, 10 cGy/min) dose of IR. Total RNA was isolated from whole blood 24 h postirradiation for assessments. Combination treatments of genistein and IR resulted in no significant genistein effects on ddb2 and bax downstream transcripts to p53, or proliferating cell-nuclear antigen, pcna, necessary for DNA synthesis and cell-cycle progression. Use of these radiation-responsive targets would be recommended for dose-assessment applications. We also observed decreased expression of pro-survival transcript, bcl-2. Genistein and IR-increased expression of cdkn1a and gadd45a, showing that genistein also stimulates p53 transcriptional activity. These results confirm published molecular signatures for genistein in numerous in vitro models. Evaluation of gene biomarkers may be further exploited for devising novel radiation countermeasure and/or therapeutic strategies.

  13. Race/Ethnic Based Genetic Variations in Human Genes: Defining the Genetic Evidence for Disparity of Prostate Cancer Risk and Mortality Between Different Populations

    National Research Council Canada - National Science Library

    Franklin, John

    1999-01-01

    .... The study will evaluate variations in androgen receptor gene, the vitamin D receptor gene, and the APOJ/clusterin gene by amplifying specific DNA segments from certain genes utilizing a commonly used...

  14. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence.

    Science.gov (United States)

    Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R

    2018-04-01

    Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The ionizing radiation inducible gene PARX/ARAP2 participates in Rho and ARF signaling

    International Nuclear Information System (INIS)

    Wong, J.A.; Chen, Z.; Zhao, Y.; Vallis, K.A.; Marignani, P.A.; Randazzo, P.A.

    2003-01-01

    Full text: PARX/ARAP2 is a novel protein that we identified in a gene trap screen for ionizing radiation (IR)-regulated genes. It belongs to a recently described family of proteins that link Rho, ADP-ribosilation factor (ARF) and phosphoinositide 3-kinase (PI3-K) signaling. We have cloned the full length human PARX. Domain analysis of the predicted protein revealed a sterile-alpha motif, five pleckstrin homology domains, a RhoGTPase activating domain (RhoGAP) and an ARF activating domain (ARFGAP). PARX is early inducible by IR in a dose-dependent manner in murine ES cells and in several human B-cell lymphoma lines with up to six-fold induction at the mRNA level at 2 hours (10 Gy). Thus, the kinetics of PARX induction follows the pattern of the rapid response typical of many stress-induced immediate-early genes. PARX expression is also induced in response to other cellular stressors including sorbitol and bleomycin. PARX induction is dependent on PI3-K activity and can be suppressed by the PI3-K inhibitor LY294002. Induction of PARX in response to IR has been observed in cell lines that are p53 mutant indicating up-regulation independent of normal p53 function. The role of p53 in PARX induction is currently being studied using cell lines expressing temperature sensitive p53. Biochemical studies reveal that human PARX has in vivo RhoGAP activity for Rac1 and phosphatidylinositol 3,4,5-trisphosphate dependent ARFGAP activity for ARF1, ARF5 and ARF6. Also, temporal changes in PARX cellular localization following IR are currently being investigated using confocal microscopy. PARX is a gene with a potential role in the cellular response to genotoxic stress, and may illuminate the currently unclear role the small GTPases Rho and ARF play in the radiation response

  16. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals......-treated fibroblasts. Transcriptional differences in basal and radiation-induced gene expression profiles were investigated using 15K cDNA microarrays, and results analyzed by both SAM and PAM. RESULTS: Sixty differentially expressed genes were identified by applying SAM on 10 patients with the highest risk of RIF...

  17. Improved amylose content of rice (IR72) induced through gamma radiation

    International Nuclear Information System (INIS)

    Barrida, Adelaida C.; Rivera, Faye G.; Manrique, Mary Jayne C.; Dimaano, Arvin O.; Costimiano, Eduardo C.

    2015-01-01

    In general grain quality and quality preferences vary across rice growing countries and regions. Filipinos preferres translucent, well milled, long grain rice with aroma and minimal broken grains which is soft after cooling. The amylose content of rice starch is a major eating quality factor. The aim of this study is to develop rice mutants with good eating quality and low to intermediate amylose content through induced mutation using gamma radiation. Low to intermediate amylose content in rice were identified and selected among the advance generation lines irradiated with 200 and 300Gy dose of gamma radiation. Screening was done using qualitative method (Iodine staining method). Selected lines were analyzed quantitatively, to determine the percent amylose content. Percent amylose were group to several categories where; 0-6% is waxy, 6-12% is very low, 12-18% is low, 18-24% is intermediate and >25% is high. Results were further confirmed using molecular marker technique by looking at the waxy gene which code for granule bound starch synthase I (GBSSI) and controls amylose content in rice. Among the 30 lines selcted and anaylzes, 2 lines were confirmed to have a gene base mutation with a low to intermediate amylose content. Thus, induced mutation using gamma radiation has successfully improved amylose content in rice (IR72). (author)

  18. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein

    International Nuclear Information System (INIS)

    Ahn, Byung Chul; Breitenbach, Jonathan E.; Kim, Seong K.; O'Callaghan, Dennis J.

    2007-01-01

    The unique IR3 gene of equine herpesvirus 1 (EHV-1) is expressed as a late 1.0-kb transcript. Previous studies confirmed the IR3 transcription initiation site and tentatively identified other cis-acting elements specific to IR3 such as a TATA box, a 443 base pair 5'untranslated region (UTR), a 285 base pair open reading frame (ORF), and a poly adenylation (A) signal [Holden, V.R., Harty, R.N., Yalamanchili, R.R., O'Callaghan, D.J., 1992. The IR3 gene of equine herpesvirus type 1: a unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 3, 143-152]. Transient transfection assays revealed that the IR3 promoter is strongly trans-activated by the IE protein (IEP) and that coexpression of the IEP with the early EICP0 and IR4 regulatory proteins results in maximal trans-activation of the IR3 promoter. Gel shift assays revealed that the IEP directly binds to the IR3 promoter region. Western blot analysis showed that the IR3 protein produced in E. coli was detected by antibodies to IR3 synthetic peptides; however, the IR3 protein was not detected in EHV-1 infected cell extracts by these same anti-IR3 antibodies, even though the IR3 transcript was detected by northern blot. These findings suggest that the IR3 may not be expressed to a protein. Expression of an IR3/GFP fusion gene was not observed, but expression of a GFP/IR3 fusion gene was detected by fluorescent microscopy. In further attempts to detect the IR3/GFP fusion protein using anti-GFP antibody, western blot analysis showed that the IR3/GFP fusion protein was not detected in vivo. Interestingly, a truncated form of the GFP/IR3 protein was synthesized from the GFP/IR3 fusion gene. However, GFP/IR3 and IR3/GFP fusion proteins of the predicted sizes were synthesized by in vitro coupled transcription and translation of the fusion genes, suggesting poor expression of the IR3 protein in vivo. The possible role of the IR3 transcript in EHV-1 infection is discussed

  19. Dose-effect of ionizing radiation-induced PIG3 gene expression alteration in human lymphoblastoid AHH-1 cells and human peripheral blood lymphocytes.

    Science.gov (United States)

    Liu, Qing-Jie; Zhang, De-Qin; Zhang, Qing-Zhao; Feng, Jiang-Bin; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Li, Shuang; Gao, Ling

    2015-01-01

    To identify new ionizing radiation (IR)-sensitive genes and observe the dose-effect of gene expression alteration (GEA) induced by IR. Microarray was used to screen the differentially expressed genes in human lymphoblastoid cells (AHH-1) using three doses of (60)Co γ-rays (0.5-8 Gy at 1 Gy/min). Given that p53-inducible gene 3 (PIG3) was consistently upregulated, the GEA of PIG3 in AHH-1 cells and human peripheral blood lymphocytes (HPBL) induced by γ-rays (1 Gy/min) was measured at messenger RNA (mRNA) and protein levels. The GEA of PIG3 in AHH-1 cells exposed to neutron radiation (californium-252, 0.073 Gy/min) was also quantified. PIG3 was one of the seven differentially expressed genes found in the microarray analysis. The PIG3 mRNA and protein levels in AHH-1 cells were significantly increased from 1-10 Gy of γ-rays 8-72 h or 8-168 h after exposure, respectively. The enhancement was also observed in AHH-1 cells from 0.4-1.6 Gy of neutrons 48 h post-irradiation. The PIG3 mRNA levels (mRNA copy numbers) in HPBL were significantly increased from 1-8 Gy of γ-rays within 4-24 h post-irradiation, but the highest increase in signal-to-noise responsiveness is approximately two-fold, which was less than that of AHH-1 (approximately 20-fold). IR can upregulate the PIG3 gene expression in AHH-1 and HPBL in the early phase after exposure; however, the IR induced expression levels of PIG3 are greater in AHH-1 than HPBL.

  20. Gene complementation. Neither Ir-GLphi gene need be present in the proliferative I cell to generate an immune response to Poly(Glu55Lys36Phe9)n

    International Nuclear Information System (INIS)

    Longo, D.L.; Schwartz, R.H.

    1980-01-01

    The cellular requirements for immune response (Ir) gene expression in a T cell proliferative response under dual Ir gene control were examined with radiation-induced bone marrow chimeras. The response to poly(Glu55Lys36Phe9)n (GLphi) requires two responder alleles that in the [B10.A x B10.A(18R)]F1 map in I-Ab and I-Ek/Cd. Chimeras in which a mixture of the nonresponder B10.A parental cells and the nonresponder B10.A(18R) parental cells were allowed to mature in a responder F1 environment did not respond to GLphi. When T cells from such A + 18R leads to F1 chimeras were primed in the presence of responder antigen-presenting cells (APC), the chimeric T cells responded to GLphi. When bone marrow cells from (B10.A X B10)F1 responder animals were allowed to mature in a low-responder B10 of B10.A parental environment, neither chimera could respond to GLphi. This demonstrated that the presence of high-responder APC, which derive from the donar bone marrow, was not sufficient to generate a GLphi response. Finally, B10.A(4R) T cells, which possess neither Ir-GLphi responder allele, could be educated to mount a GLphi-proliferative response provided that they matured in a responder environment and were primed with APC expressing both responder alleles. Therefore, the gene products of the complementing Ir-GLphi responder alleles appear to function as a single restriction element at the level of the APC

  1. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway

    DEFF Research Database (Denmark)

    Abdallah, Basem; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-01-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchyma...

  2. Transcription of five p53- and Stat-3-Inducible genes after ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Grace, M.B. [Uniformed Services University (USUHS), Armed Forces Radiobiology Research Institute, Building 42, RM 3321, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: grace@afrri.usuhs.mil; Blakely, W.F. [Uniformed Services University (USUHS), Armed Forces Radiobiology Research Institute, Building 42, RM 3321, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    Ionizing radiation (IR) produces temporal- and dose-dependent changes in multiple gene mRNA targets that are potential biomarkers of radiation dose. We confirmed IR-induced changes in expression of gadd45a, ddb-2, and cdkn1a downstream transcripts of p53 by quantitative reverse transcription-polymerase chain reaction (QRT-PCR) assay in total RNA samples from the whole blood of radiotherapy patients undergoing total-body irradiation [Amundson, S.A., Grace, M.B., McLeland, C.B., Epperly, M.W., Yeager, A., Zhan, Q., Greenberger, J.S., Fornace Jr., A.J., 2004. Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients. Cancer Res. 64, 6368-6371.]. We now confirm dose-dependent up-regulation of bax in addition to these p53-dependent transcripts, and bcl-2, a downstream transcript of Stat-3, in ex vivo irradiated blood samples from healthy unrelated volunteers. Together these biomarkers represent pathways involved in growth arrest, DNA damage, and apoptosis. The objectives of this study were to (1) investigate the relationship between baseline mRNA expression levels, and (2) define expression patterns in response to IR in a large cohort (n=20). Whole-blood samples were irradiated ex vivo to measure gene expression in samples from (i) three healthy donors over a broad dose range (0, 0.25, 0.50, 0.75, 1, 2, and 3 Gy), and (ii) 20 healthy donors at two doses, 0.25 and 2.5 Gy. Expression level variance ({sigma}{sub 2}) of baseline values (0 Gy) showed negligible inter-individual variation with all values {<=}1.0. {sigma}{sub 2}values=0.50bax, 0.25 bcl-2, 0.73 gadd45a, 0.66 cdkn1a, and 1.0 ddb-2. Meaningful IR dose-responses were observed for bax, gadd45a, and ddb-2 profiles and the ratio of bax:bcl-2 mRNA expression over a broad dose range. QRT-PCR studies were extended in the lower dose range (0, 0.1, 0.5, 0.75, and 1 Gy). Results showed that bax:bcl-2 ratio initially favors bax expression at doses of <1Gy, with IR-induced dose responses

  3. Study of genes induced by ionizing radiations at Arabidopsis thaliana: identification and molecular characterization of the ATGR1 gene, a new gene encoding a protein involved in plant cell division

    International Nuclear Information System (INIS)

    Deveaux, Yves

    1999-01-01

    DNA damage, that can be experimentally introduced by ionizing radiation (IR), induces complex signal transduction pathways leading to cell recovery or, alternatively to programmed cell death if damages are too severe. To identify the inducible components of the response to genotoxic stress in plants, we have screened by Differential Display for mRNAs that rapidly and strongly accumulate after IR treatment in A. thaliana cells. We have characterized ATGR1, a new single copy Arabidopsis gene encoding a PEST-box protein of unknown function. In unstressed plant organs the ATGR1 mRNA is hardly detectable, whereas the protein is present in extracts prepared from roots, shoot meristems and inflorescences, that all contain large amounts of actively dividing cells. This pattern is confirmed by immuno localisation on tissue sections that shows constitutive ATGR1 protein expression covering the root elongation zone, the shoot meristem, leaf primordial and the ovules of developing flowers. Histochemical analysis of transgenic plants expressing the GUS reporter gene under the control of the ATGR1 promoter, demonstrate that the developmental and tissue-specific profile of ATGR1 protein expression is conferred by the gene promoter. The massive, transient and dose-dependent accumulation of ATGR1 transcripts after IR treatment observed in all plant organs does not lead to significant changes in ATGR1 protein pattern. Stable ATGR1 protein overexpression, as exemplified by transgenic A. thaliana plants that contain a 35S promoter-ATGR1 gene fusion, does not induce notable changes of the overall ATGR1 protein level, but leads to male and female sterility. The cause of sterility is a lack of correct chromosome assembly and distribution at the stage metaphase II of meiosis. Taken together our results show that i) ATGR1 gene expression is associated to cell division during plant development ii) the ATGR1 protein level is regulated at the transcriptional and post-transcriptional level iii

  4. Apolipoprotein J (clusterin) and Alzheimer's disease.

    Science.gov (United States)

    Calero, M; Rostagno, A; Matsubara, E; Zlokovic, B; Frangione, B; Ghiso, J

    2000-08-15

    Apolipoprotein J (clusterin) is a ubiquitous multifunctional glycoprotein capable of interacting with a broad spectrum of molecules. In pathological conditions, it is an amyloid associated protein, co-localizing with fibrillar deposits in systemic and localized amyloid disorders. In Alzheimer's disease, the most frequent form of amyloidosis in humans and the major cause of dementia in the elderly, apoJ is present in amyloid plaques and cerebrovascular deposits but is rarely seen in NFT-containing neurons. ApoJ expression is up-regulated in a wide variety of insults and may represent a defense response against local damage to neurons. Four different mechanisms of action could be postulated to explain the role of apoJ as a neuroprotectant during cellular stress: (1) function as an anti-apoptotic signal, (2) protection against oxidative stress, (3) inhibition of the membrane attack complex of complement proteins locally activated as a result of inflammation, and (4) binding to hydrophobic regions of partially unfolded, stressed proteins, and therefore avoiding aggregation in a chaperone-like manner. This review focuses on the association of apoJ in biological fluids with Alzheimer's soluble Abeta. This interaction prevents Abeta aggregation and fibrillization and modulates its blood-brain barrier transport at the cerebrovascular endothelium. Copyright 2000 Wiley-Liss, Inc.

  5. Overexpression of IRS2 in isolated pancreatic islets causes proliferation and protects human β-cells from hyperglycemia-induced apoptosis

    International Nuclear Information System (INIS)

    Mohanty, S.; Spinas, G.A.; Maedler, K.; Zuellig, R.A.; Lehmann, R.; Donath, M.Y.; Trueb, T.; Niessen, M.

    2005-01-01

    Studies in vivo indicate that IRS2 plays an important role in maintaining functional β-cell mass. To investigate if IRS2 autonomously affects β-cells, we have studied proliferation, apoptosis, and β-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that β-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a β-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of β-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human β-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve β-cell function. Our results indicate that IRS2 acts autonomously in β-cells in maintenance and expansion of functional β-cell mass in vivo

  6. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2010-04-01

    Full Text Available Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS. By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi, we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen rather than toward carbohydrate (nectar sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources.

  7. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  8. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Directory of Open Access Journals (Sweden)

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  9. No association of the IRS1 and PAX4 genes with type I diabetes

    DEFF Research Database (Denmark)

    Bergholdt, R.; Brorsson, C.; Boehm, B.

    2009-01-01

    To reassess earlier suggested type I diabetes (T1D) associations of the insulin receptor substrate 1 (IRS1) and the paired domain 4 gene (PAX4) genes, the Type I Diabetes Genetics Consortium (T1DGC) evaluated single-nucleotide polymorphisms (SNPs) covering the two genomic regions. Sixteen SNPs we...... of tagging SNPs, more than one genotyping platform in high throughput studies, and sufficient power to draw solid conclusions in genetic studies of human complex diseases. Genes and Immunity (2009) 10, S49-S53; doi:10.1038/gene.2009.91 Udgivelsesdato: 2009/12...

  10. The genetic analysis of heading time in hybrid rice IR54 and its early-maturity mutant-5460

    International Nuclear Information System (INIS)

    Zhou Yuanchang; Cai Junmai; Li Weiming

    1994-01-01

    V 20 A, IR 54 and its early mutant line 5460 were used as parents in three crosses. The heading time of radiation induced 5460 was 35(1986)∼40(1989) days earlier than that of IR 54 , and the F 1 plants of 5460/IR 54 showed a heading time close to that of their middle-parent. The segregation ratio of early-, intermediate- and late heading plants are given. From the segregation patterns, it may be assumed that three dominant genes, A,B and C, are involved and when they are combined, their complementary interaction expresses a late-heading phenotype which is strongly sensitive to photo-period. As V 20 A is previously suggested to have abC, it is expected that IR 54 has ABc, and 5460 has Abc. This means that gene b in 5460 is a single locus recessive mutation for early-maturity from gene B in IR 54

  11. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway.

    Science.gov (United States)

    Abdallah, Basem M; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-05-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hans Prochnow

    Full Text Available Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU, which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.

  13. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2008-06-01

    Full Text Available Abstract Background Neurovirulent Venezuelan equine encephalitis virus (VEEV causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively. Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration.

  14. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  15. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    Science.gov (United States)

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  16. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64.

    Science.gov (United States)

    Nuruzzaman, Mohammed; Sharoni, Akhter Most; Satoh, Kouji; Moumeni, Ali; Venuprasad, Ramiah; Serraj, Rachid; Kumar, Arvind; Leung, Hei; Attia, Kotb; Kikuchi, Shoshi

    2012-05-01

    The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.

  17. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  18. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Science.gov (United States)

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  19. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Directory of Open Access Journals (Sweden)

    Aditi Bauskar

    Full Text Available Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  20. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation

    International Nuclear Information System (INIS)

    Anstett, A.

    2005-09-01

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-κB are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-κB binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-κB specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  1. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  2. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  3. Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans

    International Nuclear Information System (INIS)

    Fujimori, Akira; Yaoi, Takeshi; Ogi, Hiroshi; Wang Bing; Suetomi, Katsutoshi; Sekine, Emiko; Yu Dong; Kato, Takamitsu; Takahashi, Sentaro; Okayasu, Ryuichi; Itoh, Kyoko; Fushiki, Shinji

    2008-01-01

    Microcephaly is a malformation associated with in utero exposed atomic bomb survivors and can be induced in mice by fetal exposure to ionizing radiation (IR). The pathogenesis of IR-induced microcephaly, however, has not been fully understood. Our analyses of high-coverage expression profiling (HiCEP) demonstrated that the abnormal spindle-like microcephaly associated gene (ASPM) was down-regulated in irradiated human diploid fibroblasts. ASPM was recently reported as the causative gene for MCPH-5, the most common type of congenital microcephaly in humans. Here, we show that the expression of the Aspm gene was significantly reduced by IR in various human and murine cells. Additionally, Aspm was found downregulated in the irradiated fetal mouse brain, particularly in the ventricular zones. A similar suppression was observed in the irradiated neurosphere cultures. This is the first report suggesting that the suppression of Aspm by IR could be the initial molecular target leading to the future microcephaly formation

  4. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  5. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells

    International Nuclear Information System (INIS)

    Menaa, F.

    2003-12-01

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 γ-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in γ-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to γ-rays. (author)

  6. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced

  7. Effect of irradiation on the acinar cells of submandibular gland in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To observe the histologic changes and clusterin expression in the acinar cells of the submandibular gland in streptozotocin-induced diabetic rat following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the Sprague-Dawley rats by injecting streptozotocin, while the control rats were injected with citrate buffer only. After 5 days, rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histologic and immunohistochemical methods. Morphologic change of acinar cells was remarkable in the diabetic group, but was not observed in the diabetic-irradiated group. Necrotic tissues were observed in the diabetic-irradiated group. Coloring of toluidine blue stain was most increased at 14 days in the diabetic group, however there were no significant change throughout the period of the experiment in the diabetic-irradiated group. Expression of clusterin was most significant at 14 days in the diabetic group, but gradually decreased with time after 7 days in the diabetic-irradiated group. Degeneration of clusterin was observed in the diabetic-irradiated group. This experiment suggests that the acinar cells of submandibular gland in rats are physiologically apoptosis by the induction of diabetes, but that the apoptosis is inhibited and the acinar cells necrotized after irradiation.

  8. Proteomic profiling reveals α1-antitrypsin, α1-microglobulin, and clusterin as preeclampsia-related serum proteins in pregnant women.

    Science.gov (United States)

    Hsu, Te-Yao; Hsieh, T'sang-T'ang; Yang, Kuender D; Tsai, Ching-Chang; Ou, Chia-Yu; Cheng, Bi-Hua; Wong, Yi-Hsun; Hung, Hsuan-Ning; Chou, An-Kuo; Hsiao, Chang-Chun; Lin, Hao

    2015-10-01

    Preeclampsia is a major cause of mortality in pregnant women but the underlying mechanism remains unclear to date. In this study, we attempted to identify candidate proteins that might be associated with preeclampsia in pregnant women by means of proteomics tools. Differentially expressed proteins in serum samples obtained from pregnant women with severe preeclampsia (n = 8) and control participants (n = 8) were identified using two-dimensional gel electrophoresis (2-DE) followed by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Additional serum samples from 50 normal and 41 pregnant women with severe preeclampsia were analyzed by immunoassay for validation. Ten protein spots were found to be upregulated significantly in women with severe preeclampsia. These protein spots had the peptide mass fingerprints matched to α1-antitrypsin, α1-microglobulin, clusterin, and haptoglobin. Immunoassays in an independent series of serum samples showed that serum α1-antitrypsin, α1-microglobulin, and clusterin levels of severe preeclampsia patients (n = 41) were significantly higher than those in the normal participants (n = 50; α1-antitrypsin 295.95 ± 50.94 mg/dL vs. 259.31 ± 33.90 mg/dL, p = 0.02; α1-microglobulin 0.029 ± 0.004 mg/mL vs. 0.020 ± 0.004 mg/mL, p proteins by proteomics analysis enables further understanding of the pathophysiology of preeclampsia. Further studies are warranted to investigate the role of these biomarkers in prediction of this disease. Copyright © 2015. Published by Elsevier B.V.

  9. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  10. Morphology of IR and UV Laser-induced Structural Changes on Silicon Surfaces

    International Nuclear Information System (INIS)

    Jimenez-Jarquin, J.; Haro-Poniatowski, E.; Fernandez-Guasti, M.; Hernandez-Pozos, J.L.

    2005-01-01

    Using scanning electronic microscopy, we analyze the structural changes induced in silicon (100) wafers by focused IR (1064 nm) and UV (355 nm) nanosecond laser pulses. The experiments were performed in the laser ablation regime. When a silicon surface is irradiated by laser pulses in an O2 atmosphere conical microstructures are obtained. The changes in silicon surface morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however the final result consist of an array of microcones when the experiment is carried out in oxygen. We employ a random scanning technique to irradiate silicon surfaces over large areas. In this form we have obtained large patterned areas

  11. Evaluation of Temporal Changes in Urine-based Metabolomic and Kidney Injury Markers to Detect Compound Induced Acute Kidney Tubular Toxicity in Beagle Dogs.

    Science.gov (United States)

    Wagoner, M P; Yang, Y; McDuffie, J E; Klapczynski, M; Buck, W; Cheatham, L; Eisinger, D; Sace, F; Lynch, K M; Sonee, M; Ma, J-Y; Chen, Y; Marshall, K; Damour, M; Stephen, L; Dragan, Y P; Fikes, J; Snook, S; Kinter, L B

    2017-01-01

    Urinary protein biomarkers and metabolomic markers have been leveraged to detect acute Drug Induced Kidney Injury (DIKI) in rats; however, the utility of these indicators to enable early detection of DIKI in canine models has not been well documented. Therefore, we evaluated temporal changes in biomarkers and metabolites in urine from male and female beagle dogs. Gentamicin- induced kidney lesions in male dogs were characterized by moderate to severe tubular epithelial cell degeneration/necrosis, epithelial cell regeneration and dilation; and a unique urinebased metabolomic fingerprint. These metabolite changes included time and treatment-dependent increases in lactate, taurine, glucose, lactate, alanine, and citrate as well as 9 other known metabolites. As early as 3 days post dose, gentamicin induced increases in urinary albumin, clusterin, neutrophil gelatinase associated protein (NGAL) and total protein concentrations. Urinary albumin, clusterin, and NGAL showed earlier and more robust elevations than traditional kidney safety biomarkers, blood urea nitrogen and serum creatinine. Elevations in urinary kidney injury molecule 1 (KIM-1) were less reliable for detection of gentamicin nephrotoxicity in dogs based on values generated utilizing multiple first-generation, canine-specific KIM-1 immunoassays. The metabolic fingerprint was further evaluated in male and female dogs that received Compound A which induced slightly reversible renal tubular alterations characterized as degeneration/necrosis and concurrent significant increases in urinary taurine amongst other markers. These data support further investigations to demonstrate the value of urinary metabolites, albumin, clusterin, NGAL and taurine as promising markers to enable early detection of DIKI in dogs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Association of IRS1, CAPN10, and PPARG gene polymorphisms with type 2 diabetes mellitus in the high-risk population of Hyderabad, India.

    Science.gov (United States)

    Kommoju, Uma Jyothi; Maruda, Jayaraj; Kadarkarai Samy, Subburaj; Irgam, Kumuda; Kotla, Jaya Prasad; Reddy, Battini Mohan

    2014-11-01

    We attempted to validate earlier findings on the nature of the association of the IRS1, CAPN10, and PPARG genes with type 2 diabetes mellitus (T2DM) in the high-risk population of Hyderabad, India. A sample of 1379 subjects (758 T2DM patients, 621 controls) was genotyped for single nucleotide polymorphisms (SNPs) of the IRS1 (rs1801278), CAPN10 (rs3792267, rs5030952), and PPARG (rs1801282) genes. The allele and genotype frequencies of IRS1 (rs1801278) and CAPN10 (rs3792267) SNPs differed significantly between the patient and control groups. Logistic regression analysis suggested a significant association of these two SNPs (P ≤ 0.007) with T2DM and the strength of association did not alter when adjusted for age, gender, body mass index, and the waist : hip ratio as covariates. The same two SNPs showed significant association in multivariate logistic regression analyses, even after Bonferroni correction for multiple testing, suggesting an independent nature of the role of these genes in the manifestation of T2DM in our population. We replicated the significant association of rs1801278 and rs3792267 SNPs of the IRS1 and CAPN10 genes with T2DM in the population of Hyderabad. Despite the known biological significance of the PPARG gene and a sufficient statistical power of the present study, we could not replicate the association of PPARG with T2DM in our high-risk population. Given the vast ethnic, geographic, and genetic heterogeneity of the Indian population, many more studies are needed covering the ethnic and geographic heterogeneity of India to enable identification of an Indian-specific profile of genes associated with T2DM. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  13. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    International Nuclear Information System (INIS)

    Sarfstein, Rive; Belfiore, Antonino; Werner, Haim

    2010-01-01

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells

  14. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarfstein, Rive [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Belfiore, Antonino [Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro 88100 (Italy); Werner, Haim, E-mail: hwerner@post.tau.ac.il [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-03-25

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells.

  15. BRCA1 is expressed in uterine serous carcinoma (USC) and controls insulin-like growth factor I receptor (IGF-IR) gene expression in USC cell lines.

    Science.gov (United States)

    Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan

    2012-06-01

    The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.

  16. Manipulation of gene expression by infrared laser heat shock and its application to the study of tracheal development in Drosophila.

    Science.gov (United States)

    Miao, Guangxia; Hayashi, Shigeo

    2015-03-01

    Induction of gene expression in a specific cell and a defined time window is desirable to investigate gene function at the cellular level during morphogenesis. To achieve this, we attempted to introduce the infrared laser-evoked gene operator system (IR-LEGO, Kamei et al., 2009) in the Drosophila embryo. In this technique, infrared laser light illumination induces genes to be expressed under the control of heat shock promoters at the single cell level. We applied IR-LEGO to a transgenic fly stock, HS-eGFP, in which the enhanced green fluorescent protein (eGFP) gene is placed under the control of heat shock protein 70 promoter, and showed that eGFP expression can be induced in single cells within 1-2 hr after IR illumination. Furthermore, induction of HS-Branchless transgene encoding the Drosophila fibroblast growth factor (FGF) effectively altered the migration and branching patterns of the tracheal system. Our results indicated that IR-LEGO is a promising choice for the timely control of gene expression in a small group of cells in the Drosophila embryo. By using IR-LEGO, we further demonstrated that the tracheal terminal branching program is sensitive to localized expression of exogenous FGF. © 2014 Wiley Periodicals, Inc.

  17. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  18. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  19. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression.

    Directory of Open Access Journals (Sweden)

    Marta Miró-Murillo

    Full Text Available Von Hippel Lindau (Vhl gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs, have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2. Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed-UBC-Cre-ER(T2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.

  20. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  1. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer.

    Science.gov (United States)

    Kim, Min Jun; Choi, Mee Young; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Wan Sung

    2018-01-12

    O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G 0 /G 1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.

  2. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chin-Rang [National Inst. of Health (NIH), Bethesda, MD (United States). National Heart, Lung and Blood Inst.

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  3. Protective Effect of Curcumin against Ionizing Radiation (IR)-induced Cytotoxicity and Genotoxicity in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Min; Nasir Uddin, S. M.; Ryu, Tae Ho; Kang, Mi Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Ionizing radiation (IR) has many practical applications such as medicine, foods, agricultures, industries, and research laboratories. However, the increasing use of radiation is associated with radiation accidents threatening human health. It is well known that exposure to IR gives rise to genomic alterations, mutagenesis, and cell death. IR is absorbed directly by DNA, leading to various DNA damages (single or double-strand breaks, base damage, and DNA-DNA or DNA-protein cross-linkages) in many living organisms. Therefore, the development of effective and nontoxic radioprotective agents is of considerable interest. Curcumin (C{sub 12}H{sub 20}O{sub 6}, structure is the major yellow component of Curcuma longa with biological activities (antioxidant, anti-proliferative and anti-inflammatory properties). It has been widely used as food and medicine for a long time. The aim of our present study is to investigate the protective effects of curcumin against IR-induced cytotoxicity and genotoxicity in cultured HepG2 cells.

  4. Protective Effect of Curcumin against Ionizing Radiation (IR)-induced Cytotoxicity and Genotoxicity in HepG2 Cells

    International Nuclear Information System (INIS)

    Chung, Dong Min; Nasir Uddin, S. M.; Ryu, Tae Ho; Kang, Mi Young; Kim, Jin Kyu

    2013-01-01

    Ionizing radiation (IR) has many practical applications such as medicine, foods, agricultures, industries, and research laboratories. However, the increasing use of radiation is associated with radiation accidents threatening human health. It is well known that exposure to IR gives rise to genomic alterations, mutagenesis, and cell death. IR is absorbed directly by DNA, leading to various DNA damages (single or double-strand breaks, base damage, and DNA-DNA or DNA-protein cross-linkages) in many living organisms. Therefore, the development of effective and nontoxic radioprotective agents is of considerable interest. Curcumin (C 12 H 20 O 6 , structure is the major yellow component of Curcuma longa with biological activities (antioxidant, anti-proliferative and anti-inflammatory properties). It has been widely used as food and medicine for a long time. The aim of our present study is to investigate the protective effects of curcumin against IR-induced cytotoxicity and genotoxicity in cultured HepG2 cells

  5. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  6. A Prospective Cohort Study on IRS Gene Polymorphisms in Type 2 ...

    African Journals Online (AJOL)

    Insulin resistance status was determined using the homeostatic model assessment for insulin resistance (HOMA-IR) index. Results: IRS1 polymorphisms were associated with increased insulin resistance (X2 = 5.09, p = 0.023) in T2DM patients with severe/acute hyperglycemia. IRS2 polymorphisms were not associated with ...

  7. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-15

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy.

  8. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-01

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy

  9. Study of the influence of Nb buffer layer on the exchange coupling induced at the Co/IrMn interface

    Energy Technology Data Exchange (ETDEWEB)

    Merino, I.L.C., E-mail: isabel5cas@gmail.com [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil); Figueiredo, L.C. [Instituto de Física, Universidade de Brasília, Brasília 70910-900 (Brazil); Passamani, E.C.; Nascimento, V.P. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910 (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia 74560-900 (Brazil); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil)

    2017-06-15

    Highlights: • Nb buffer layer favors smooth/rough Co/IrMn interfaces, depending on its thickness. • Double and single-like hysteresis loop features depend on the Nb thickness. • Co uniaxial anisotropy induced exchange-bias in as-deposited sample. • Uniaxial and exchange-bias anisotropy directions depend on the Nb thickness. • Thicker Nb favors non-collinear anisotropies, while thinner Nb favors collinear. - Abstract: Hybrid Nb(t{sub Nb})/Co(10 nm)/IrMn(15 nm)/Nb(10 nm) heterostructured materials were prepared by DC Magnetron Sputtering and systematically studied by X-ray, magnetization and ferromagnetic resonance techniques. For thinner Nb buffer layer (≤10 nm), it was found that there is an inter-diffusion at Co/IrMn interface, which favors double-like hysteresis loop. For thicker Nb layers, however, a gradual transition from double to single-like hysteresis loops is observed and it is associated with the reduction of the Nb roughness, which also enhances the exchange coupling at the Co/IrMn interface. Nb grown on IrMn layer induces the formation of an NbIrMn alloy layer, while no evidence of inter-diffusion at the Co/Nb interface is observed. For rougher Nb buffer layers (t{sub Nb} < 50 nm), exchange bias and Co uniaxial anisotropies are pointing at the same direction (β∼zero), but for smoother Nb buffer layer (t{sub Nb} = 50 nm) a β angle of 150{sup o} is found. Exchange bias effect was measured in as-prepared and in field-cooled samples; being its presence, in as-prepared sample, attributed to the unidirectional anisotropy of the Co layer (its intensity is modified in case of sample with a CoIrMn alloy layer). Considering that the Si/Nb/Co/IrMn interfaces have different β values (t{sub Nb} = 35 and 50 nm), a study of the influence of magnetization direction, governed by exchange-biased layers, on superconducting properties of Nb films can be successfully done in this hybrid system.

  10. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-01-01

    Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and with...... by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR....... and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...

  11. Use of HOMA-IR in hepatitis C.

    Science.gov (United States)

    Eslam, M; Kawaguchi, T; Del Campo, J A; Sata, M; Khattab, M Abo-Elneen; Romero-Gomez, M

    2011-10-01

    Chronic infection with hepatitis C virus (HCV) can induce insulin resistance (IR) in a genotype-dependent manner and contributes to steatosis, progression of fibrosis and resistance to interferon plus ribavirin therapy. Our understanding of HCV-induced IR has improved considerably over the years, but certain aspects concerning its evaluation still remain elusive to clinical researchers. One of the most important issues is elucidating the ideal method for assessment of IR in the setting of hepatitis C. The hyperinsulinaemic euglycaemic clamp is the gold standard method for determining insulin sensitivity, but is impractical as it is labour intensive and time-consuming. To date, all human studies except for four where IR was evaluated in the HCV setting, an estimation of IR has been used rather than direct measurements of insulin-mediated glucose uptake. The most commonly used estimation in the HCV population is the homeostasis model assessment of insulin resistance (HOMA-IR) which is calculated from a single measurement of fasting insulin and glucose. In this article, we review the use and reporting of HOMA in the literature and provide guidance on its appropriate as well as inappropriate use in the hepatitis setting. © 2011 Blackwell Publishing Ltd.

  12. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats.

    Science.gov (United States)

    Antunes, Luciana C; Elkfury, Jessica L; Jornada, Manoela N; Foletto, Kelly C; Bertoluci, Marcello C

    2016-04-01

    Objective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was determined at baseline and in the 19th week. HOMA-IR was determined between the 18-19th week in three different days and the mean was considered for analysis. Area under the curve (AUC-ITT) of the blood glucose excursion along 120 minutes after intra-peritoneal insulin injection was determined and correlated with the corresponding fasting values for HOMA-IR. Results AUC-ITT and HOMA-IR were significantly greater after 19th week in HFD compared to CD (p HOMA-IR was strongly correlated (Pearson's) with AUC-ITT r = 0.637; p HOMA-IR and AUC-ITT showed similar sensitivity and specificity. Conclusion HOMA-IR is a valid measure to determine insulin-resistance in Wistar rats. Arch Endocrinol Metab. 2016;60(2):138-42.

  14. FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends

    International Nuclear Information System (INIS)

    Ilcin, M.; Hola, O.; Bakajova, B.; Kucerik, J.

    2010-01-01

    Samples of pure polyvinyl alcohol (PVA) and PVA doped with humic acids were exposed to gamma radiation. Gamma rays induced the degradation of the pure polymer. Degradation changes were observed using ATR FT-IR equipment. Dehydration, double bond creation, and their subsequent oxidation (surrounding atmosphere was air) were found out. Also, other degradation reactions (e.g. chain scission, cyclization) occur simultaneously. Formation of C=C and C=O bonds is apparent from FT-IR spectra. In contrast the presence of humic acids in the PVA sample showed stabilizing effect on PVA structure within the concentration range 0.5-10%. (author)

  15. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    International Nuclear Information System (INIS)

    Kim, Seong K.; Kim, Seongman; Dai Gan; Zhang Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2011-01-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: → We examine the functional domains of IR2P that mediates negative regulation. → IR2P inhibits at the transcriptional level. → DNA-binding mutant or TFIIB-binding mutant fails to inhibit. → C-terminal aa 707 to 1116 are required for full inhibition. → Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.

  16. Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice.

    Science.gov (United States)

    Abraham, David; Hess, Jessica A; Mejia, Rojelio; Nolan, Thomas J; Lok, James B; Lustigman, Sara; Nutman, Thomas B

    2011-10-19

    Human intestinal infections with the nematode Strongyloides stercoralis remain a significant problem worldwide and a vaccine would be a useful addition to the tools available to prevent and control this infection. The goal of this study was to test single antigens for their efficacy in a vaccine against S. stercoralis larvae in mice. Alum was used as the adjuvant in these studies and antigens selected for analysis were either recognized by protective human IgG (Ss-TMY-1, Ss-EAT-6, and Ss-LEC-5) or were known to be highly immunogenic in humans (Ss-NIE-1 and Ss-IR). Only mice immunized with the Ss-IR antigen demonstrated a significant decrease of approximately 80% in the survival of larval parasites in the challenge infection. Antibodies, recovered from mice with protective immunity to S. stercoralis after immunization with Ss-IR, were used to locate the antigen in the larvae. Confocal microscopy revealed that IgG from mice immunized with Ss-IR bound to the surface of the parasites and observations by electron microscopy indicated that IgG bound to granules in the glandular esophagus. Serum collected from mice immunized with Ss-IR passively transferred immunity to naïve mice. These studies demonstrate that Ss-IR, in combination with alum, induces high levels of protective immunity through an antibody dependent mechanism and may therefore be suitable for further development as a vaccine against human strongyloidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Genetic variation in candidate obesity genes ADRB2, ADRB3, GHRL, HSD11B1, IRS1, IRS2, and SHC1 and risk for breast cancer in the Cancer Prevention Study II.

    Science.gov (United States)

    Feigelson, Heather Spencer; Teras, Lauren R; Diver, W Ryan; Tang, Weining; Patel, Alpa V; Stevens, Victoria L; Calle, Eugenia E; Thun, Michael J; Bouzyk, Mark

    2008-01-01

    Obesity has consistently been associated with postmenopausal breast cancer risk. Proteins that are secreted by adipose tissue or are involved in regulating body mass may play a role in breast tumor development. We conducted a nested case-control study among postmenopausal women from the American Cancer Society Cancer Prevention Study II Nutrition Cohort to determine whether genes associated with obesity increase risk for breast cancer. Tagging single nucleotide polymorphisms (SNPs) were selected to capture common variation across seven candidate genes that encode adipose-related proteins: ADRB2, ADRB3, GHRL, HSD11B1, IRS1, IRS2, and SHC1. Thirty-nine SNPs were genotyped in 648 cases and 659 controls. Logistic regression models were used to examine the association between each tagging SNP and risk for breast cancer while adjusting for matching factors and potential confounders. We also examined whether these SNPs were associated with measures of adult adiposity. Two out of five tagging SNPs in HSD11B1 were associated with breast cancer (rs11807619, P = 0.006; rs932335, P = 0.0001). rs11807619 and rs932335 were highly correlated (r2 = 0.74) and, when modeled as a haplotype, only haplotypes containing the rs932335 C allele were associated with breast cancer. The rs932335 C allele was associated with a nearly twofold increased risk for breast cancer (odds ratio = 1.83, 95% confidence interval = 1.01-3.33 for C/C versus G/G). Three of the 11 SNPs for IRS2 were associated with breast cancer (rs4773082, P = 0.007; rs2289046, P = 0.016; rs754204, P = 0.03). When these three SNPs were examined as a haplotype, only the haplotype that included the G allele of rs2289046 was associated with breast cancer (odds ratio = 0.76, 95% confidence interval = 0.63-0.92 for TGC versus CAT). IRS2 rs2289046, rs754204, and rs12584136 were also associated with adult weight gain but only among cases. None of the other SNPs in any gene investigated were associated with breast cancer or

  18. Cloning and Expression of TRYP6 Gene from Leishmania major (MRHO/IR/75/ER

    Directory of Open Access Journals (Sweden)

    G Eslami

    2008-06-01

    Full Text Available Background: Leishmania, needs to detoxify the macrophage derived potent peroxides (H2O2. Tryparedoxin path­way contains tryparedoxin peroxidase (TSA or TRYP. The aim of the study was to detect the full-length gene se­quence and its encoded protein of the LmTRYP6 gene (EU251502, and comparison the gene sequence with LmTRYP6 (LmjF15.1140, another previously reported member of this gene family.Methods: L.major (MRHO/IR/75/ER promastigotes were cultured, DNA and RNA were extracted and the inter­ested gene was amplified using PCR and RT-PCR methods.  PCR/ RT-PCR fragments were purified and cloned first in pTZ57R/T and then in pET15b expression vector. The expressed protein was verified using western blot method. Char­acterization of the expressed protein was performed bioinformatically.Results: Molecular evaluation revealed that the cloned LmTRYP6 gene (EU251502 encoded a predicted 184 amino acid long protein with a theoretical isoelectric point of 6.1101. Alignment showed a number of changes in amino acid composition including the replacement of highly conserved Trp177 by Cys in LmTRYP6 (ABX26130.Conclusion: So far no study has been done on this group, i.e.  TRYP6 gene, from tryparedoxin peroxidase family. The low homology with LmTRYP6 (LmjF15.1140 and vast array of differences observed in the gene under study (LmTRYP6; EU251502 could open new windows in the field of anti-Leishmania combat. Based on its important role in the viability and successful establishment of the parasite in the host organism it looks to be very good candi­date for vaccine development and any other sort of novel drug development.

  19. Screening of hypoxia-inducible genes in sporadic ALS.

    LENUS (Irish Health Repository)

    Cronin, Simon

    2008-10-01

    Genetic variations in two hypoxia-inducible angiogenic genes, VEGF and ANG, have been linked with sporadic amyotrophic lateral sclerosis (SALS). Common variations in these genes may reduce the levels or functioning of their products. VEGF and ANG belong to a larger group of angiogenic genes that are up-regulated under hypoxic conditions. We hypothesized that common genetic variation across other members of this group may also predispose to sporadic ALS. To screen other hypoxia-inducible angiogenic genes for association with SALS, we selected 112 tagging single nucleotide polymorphisms (tgSNPs) that captured the common genetic variation across 16 VEGF-like and eight ANG-like hypoxia-inducible genes. Screening for association was performed in 270 Irish individuals with typical SALS and 272 ethnically matched unrelated controls. SNPs showing association in the Irish phase were genotyped in a replication sample of 281 Swedish sporadic ALS patients and 286 Swedish controls. Seven markers showed association in the Irish. The one modest replication signal observed in the Swedish replication sample, at rs3801158 in the gene inhibin beta A, was for the opposite allele vs. the Irish cohort. We failed to detect association of common variation across 24 candidate hypoxia-inducible angiogenic genes with SALS.

  20. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  1. Ionizing Radiation Affects Gene Expression in Mouse Skin and Bone

    Science.gov (United States)

    Terada, Masahiro; Tahimic, Candice; Sowa, Marianne B.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Alwood, Joshua; Globus, Ruth K.

    2017-01-01

    Future long-duration space exploration beyond low earth orbit will increase human exposure to space radiation and microgravity conditions as well as associated risks to skeletal health. In animal studies, radiation exposure (greater than 1 Gy) is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Definitive measurements and detection of bone loss typically require large and specialized equipment which can make their application to long duration space missions logistically challenging. Towards the goal of developing non-invasive and less complicated monitoring methods to predict astronauts' health during spaceflight, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (IR). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and IR (0.5 Gy 56Fe 600 MeV/n and 0.5 Gy 1H 150 MeV/n), euthanized at one and 11 days post-irradiation (IR). To determine the extent of bone loss, tibiae were harvested and cancellous microarchitecture in the proximal tibia quantified ex vivo using microcomputed tomography (microCT). Statistical analysis was performed using Student's t-test. At one day post-IR, expression of FGF18 in skin was significantly greater (3.8X) than sham-irradiated controls, but did not differ at 11 days post IR. Expression levels of other genes associated with antioxidant response (Nfe2l2, FoxO3 and Sod1) and the cell cycle (Trp53, Cdkn1a, Gadd45g) did not significantly differ between the control and IR groups

  2. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  3. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    Science.gov (United States)

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  4. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  5. Identification of novel light-induced genes in the suprachiasmatic nucleus

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2007-11-01

    Full Text Available Abstract Background The transmission of information about the photic environment to the circadian clock involves a complex array of neurotransmitters, receptors, and second messenger systems. Exposure of an animal to light during the subjective night initiates rapid transcription of a number of immediate-early genes in the suprachiasmatic nucleus of the hypothalamus. Some of these genes have known roles in entraining the circadian clock, while others have unknown functions. Using laser capture microscopy, microarray analysis, and quantitative real-time PCR, we performed a comprehensive screen for changes in gene expression immediately following a 30 minute light pulse in suprachiasmatic nucleus of mice. Results The results of the microarray screen successfully identified previously known light-induced genes as well as several novel genes that may be important in the circadian clock. Newly identified light-induced genes include early growth response 2, proviral integration site 3, growth-arrest and DNA-damage-inducible 45 beta, and TCDD-inducible poly(ADP-ribose polymerase. Comparative analysis of promoter sequences revealed the presence of evolutionarily conserved CRE and associated TATA box elements in most of the light-induced genes, while other core clock genes generally lack this combination of promoter elements. Conclusion The photic signalling cascade in the suprachiasmatic nucleus activates an array of immediate-early genes, most of which have unknown functions in the circadian clock. Detected evolutionary conservation of CRE and TATA box elements in promoters of light-induced genes suggest that the functional role of these elements has likely remained the same over evolutionary time across mammalian orders.

  6. Proteomic Profile of Unstable Atheroma Plaque: Increased Neutrophil Defensin 1, Clusterin, and Apolipoprotein E Levels in Carotid Secretome.

    Science.gov (United States)

    Aragonès, Gemma; Auguet, Teresa; Guiu-Jurado, Esther; Berlanga, Alba; Curriu, Marta; Martinez, Salomé; Alibalic, Ajla; Aguilar, Carmen; Hernández, Esteban; Camara, María-Luisa; Canela, Núria; Herrero, Pol; Ruyra, Xavier; Martín-Paredero, Vicente; Richart, Cristóbal

    2016-03-04

    Because of the clinical significance of carotid atherosclerosis, the search for novel biomarkers has become a priority. The aim of the present study was to compare the protein secretion profile of the carotid atherosclerotic plaque (CAP, n = 12) and nonatherosclerotic mammary artery (MA, n = 10) secretomes. We used a nontargeted proteomic approach that incorporated tandem immunoaffinity depletion, iTRAQ labeling, and nanoflow liquid chromatography coupled to high-resolution mass spectrometry. In total, 162 proteins were quantified, of which 25 showed statistically significant differences in secretome levels between carotid atherosclerotic plaque and nondiseased mammary artery. We found increased levels of neutrophil defensin 1, apolipoprotein E, clusterin, and zinc-alpha-2-glycoprotein in CAP secretomes. Results were validated by ELISA assays. Also, differentially secreted proteins are involved in pathways such as focal adhesion and leukocyte transendothelial migration. In conclusion, this study provides a subset of identified proteins that are differently expressed in secretomes of clinical significance.

  7. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla

    2006-01-01

    middle cerebral artery occlusion in the rat. K-means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs-2, Homer1, GPRC5B, Grasp). The first gene...

  8. Role of IRS-2 in insulin and cytokine signalling.

    Science.gov (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  9. Upregulated ATM gene expression and activated DNA crosslink-induced damage response checkpoint in Fanconi anemia: implications for carcinogenesis.

    Science.gov (United States)

    Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M

    2008-01-01

    Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.

  10. Vitamin E and Lycopene Reduce Coal Burning Fluorosis-induced Spermatogenic Cell Apoptosis via Oxidative Stress-mediated JNK and ERK Signaling Pathways.

    Science.gov (United States)

    Tian, Yuan; Xiao, Yuehai; Wang, Bolin; Sun, Chao; Tang, Kaifa; Sun, Fa

    2017-12-22

    Although fluoride has been widely used in toothpaste, mouthwash, and drinking water to prevent dental caries, the excessive intake of fluoride can cause fluorosis which is associated with dental, skeletal, and soft tissue fluorosis. Recent evidences have drawn the attention to its adverse effects on male reproductive system that include spermatogenesis defect, sperm count loss, and sperm maturation impairment. Fluoride induces oxidative stress through the activation of mitogen activated protein kinase (MAPK) cascade which can lead to cell apoptosis. Vitamin E (VE) and lycopene are two common anti-oxidants, being protective to reactive oxygen species (ROS)-induced toxic effects. However, whether and how these two anti-oxidants prevent fluoride-induced spermatogenic cell apoptosis are largely unknown. In the present study, a male rat model for coal burning fluorosis was established and the histological lesions and spermatogenic cell apoptosis in rat testes were observed. The decreased expression of clusterin, a heterodimeric glycoprotein reported to regulate spermatogenic cell apoptosis, is detected in fluoride-treated rat testes. Interestingly, the co-administration with VE or lycopene reduced fluorosis-mediated testicular toxicity and rescued clusterin expression. Further, fluoride caused the enhanced Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) phosphorylation, which was reduced by VE or lycopene. Thus, VE and lycopene prevent coal burning fluorosis-induced spermatogenic cell apoptosis through the suppression of oxidative stress-mediated JNK and ERK signaling pathway, which could be an alternative therapeutic strategy for the treatment of fluorosis. ©2017 The Author(s).

  11. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    Science.gov (United States)

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  12. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  13. Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Tiphanie Durfort

    Full Text Available Insulin-like growth factor I (IGF-I and its type I receptor (IGF-IR play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2'-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD. Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2'-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines.

  14. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    Science.gov (United States)

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  15. IR-induced autophagy plays a role in survival of HeLa cells

    International Nuclear Information System (INIS)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong Min; Kim, Jin Hong; Kim, Jin Kyu

    2014-01-01

    Cells respond to stress with repair, or are diverted into irreversible cell cycle exit (senescence) or are eliminated through programmed cell death. There are two major morphologically distinctive forms of programmed cell death, apoptosis and autophagic cell death. Apoptosis contribute to cell death, whereas autophagy can play a dual role in mediating either cell survival or death in response to various stress stimuli. Here we analysed cellular responses induced by IR. The understanding of an appropriate cellular stress response is of crucial importance in foreseeing the cell fate. Apoptotic feagures were not detected in HeLa under our experimental irradiation condition. Autophagic cell death in HeLa may play an important role in cell protection and can result in cell survival

  16. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  17. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  18. Identification of genomic biomarkers for concurrent diagnosis of drug-induced renal tubular injury using a large-scale toxicogenomics database

    International Nuclear Information System (INIS)

    Kondo, Chiaki; Minowa, Yohsuke; Uehara, Takeki; Okuno, Yasushi; Nakatsu, Noriyuki; Ono, Atsushi; Maruyama, Toshiyuki; Kato, Ikuo; Yamate, Jyoji; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2009-01-01

    Drug-induced renal tubular injury is one of the major concerns in preclinical safety evaluations. Toxicogenomics is becoming a generally accepted approach for identifying chemicals with potential safety problems. In the present study, we analyzed 33 nephrotoxicants and 8 non-nephrotoxic hepatotoxicants to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. The compounds were administered orally or intravenously once daily to male Sprague-Dawley rats. The animals were exposed to four different doses of the compounds, and kidney tissues were collected on days 4, 8, 15, and 29. Gene expression profiles were generated from kidney RNA by using Affymetrix GeneChips and analyzed in conjunction with the histopathological changes. We used the filter-type gene selection algorithm based on t-statistics conjugated with the SVM classifier, and achieved a sensitivity of 90% with a selectivity of 90%. Then, 92 genes were extracted as the genomic biomarker candidates that were used to construct the classifier. The gene list contains well-known biomarkers, such as Kidney injury molecule 1, Ceruloplasmin, Clusterin, Tissue inhibitor of metallopeptidase 1, and also novel biomarker candidates. Most of the genes involved in tissue remodeling, the immune/inflammatory response, cell adhesion/proliferation/migration, and metabolism were predominantly up-regulated. Down-regulated genes participated in cell adhesion/proliferation/migration, membrane transport, and signal transduction. Our classifier has better prediction accuracy than any of the well-known biomarkers. Therefore, the toxicogenomics approach would be useful for concurrent diagnosis of renal tubular injury.

  19. Low doses of neutrons induce changes in gene expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following γ-ray exposure in fibroblasts. Our past work had shown differences in the expression of β-protein kinase C and c-fos genes, both being induced following γ-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not γ-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to γ rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure

  20. Exon-skipping strategy by ratio modulation between cytoprotective versus pro-apoptotic clusterin forms increased sensitivity of LNCaP to cell death.

    Directory of Open Access Journals (Sweden)

    Abdellatif Essabbani

    Full Text Available BACKGROUND: In prostate cancer the secreted form of clusterin (sCLU has been described as an anti-apoptotic protein whose expression is increased after therapeutic intervention, whereas, the nuclear protein form nCLU was reported to have pro-apoptotic properties. METHODOLOGY: In order to provide new therapeutic approaches targeting CLU, we developed a strategy based on exon skipping by using a lentiviral construct to preferentially induce the nuclear spliced form of the protein. The molecular construct was transduced in LNCaP cells for testing the modulation of sensitivity of the transduced cells to pro-apoptotic stress. RESULTS AND CONCLUSIONS: We showed an increase of nCLU/sCLU expression ratio in the prostate cancer cell line "LNCaP" after lentiviral vector-U7 nCLU transduction. Moreover, we showed a significant inhibition of cell proliferation in nCLU-U7 LNCaP cells after treatment with cisplatin and after exposure to ionizing radiation compared to control cells. Finally, we showed that nCLU-U7 LNCaP cells exposure to UV-C significantly reduced an increase of cell death compared to control. Finally, we showed that modulating nCLU expression had profound impact on Ku70/Bax interaction as well as Rad17 expression which could be a key mechanism in sensitizing cells to cell death. In conclusion, this is the first report showing that increasing of nCLU/sCLU expression ratio by using an "on demand alternative splicing" strategy successfully increased sensitivity to radiotherapy and chemotherapy of prostate cancer cells.

  1. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression.

    Science.gov (United States)

    1996-10-01

    AD GRANT NUMBER DAMDI7-94-J-4041 TITLE: Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression PRINCIPAL...October 1996 Annual (1 Sep 95 - 31 Aug 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cloning and Characterizing Genes Involved in Monoterpene Induced... Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method

  2. Specitic gene alterations in radiation-induced tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joo Mee; Kang, Chang Mo; Lee, Seung Sook; Cho, Chul Koo; Bae, Sang Woo; Lee, Su Jae; Lee, Yun Sil [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    To identify a set of genes involved in the development of radiation-induced tumorigenesis, we used DNA microarrays consisting of 1,176 mouse genes and compared expression profiles of radioresistant cells, designated NIH3T3-R1 and -R4. These cells were tumorigenic in a nude mouse grafting system, as compared to the parental NIH3T3 cells. Expressions of MDM2, CDK6 and CDC25B were found to increase more than 3-fold. Entactin protein levels were downregulated in NIH3T3-R1 and -R4 cells. Changes in expression genes were confirmed by reverse transcription-PCR or western blotting. When these genes were transfected to NIH3T3 cells, the CDC25B and MDM2 overexpressing NIH3T3 cells showed radioresistance, while 2 CDK6 overexpressing cells did not. In the case of entactin overexpressing NIH3T3-R1 or R-4 cells were still radioresistant. Furthermore, the CDC25B and MDM2 overexpressing cells grafted to nude mice, were tumorigenic. NIH3T3-R1 and R4 cells showed increased radiation-induced apoptosis, accompanied by faster growth rate, rather than and earlier radiation-induced G2/M phase arrest, suggesting that the radioresistance of NIH3T3-R1 and R4 cells was due to faster growth rate, rather than induction of apoptosis. In the case of MDM2 and CDC25B overexpressing cells, similar phenomena, such as increased apoptosis and faster growth rate, were shown. The above results, therefore, demonstrate involvement of CDC25B and MDM2 overexpression in radiation-induced tumorigenesis and provide novel targets for detection of radiation-induced carcinogenesis.

  3. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  4. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    Science.gov (United States)

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  5. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  6. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  7. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.

    Science.gov (United States)

    Rand, Lucinda; Hinds, Jason; Springer, Burkhard; Sander, Peter; Buxton, Roger S; Davis, Elaine O

    2003-11-01

    In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.

  8. Identification of distinct genes associated with seawater aspiration-induced acute lung injury by gene expression profile analysis

    Science.gov (United States)

    Liu, Wei; Pan, Lei; Zhang, Minlong; Bo, Liyan; Li, Congcong; Liu, Qingqing; Wang, Li; Jin, Faguang

    2016-01-01

    Seawater aspiration-induced acute lung injury (ALI) is a syndrome associated with a high mortality rate, which is characterized by severe hypoxemia, pulmonary edema and inflammation. The present study is the first, to the best of our knowledge, to analyze gene expression profiles from a rat model of seawater aspiration-induced ALI. Adult male Sprague-Dawley rats were instilled with seawater (4 ml/kg) in the seawater aspiration-induced ALI group (S group) or with distilled water (4 ml/kg) in the distilled water negative control group (D group). In the blank control group (C group) the rats' tracheae were exposed without instillation. Subsequently, lung samples were examined by histopathology; total protein concentration was detected in bronchoalveolar lavage fluid (BALF); lung wet/dry weight ratios were determined; and transcript expression was detected by gene sequencing analysis. The results demonstrated that histopathological alterations, pulmonary edema and total protein concentrations in BALF were increased in the S group compared with in the D group. Analysis of differential gene expression identified up and downregulated genes in the S group compared with in the D and C groups. A gene ontology analysis of the differential gene expression revealed enrichment of genes in the functional pathways associated with neutrophil chemotaxis, immune and defense responses, and cytokine activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the cytokine-cytokine receptor interaction pathway was one of the most important pathways involved in seawater aspiration-induced ALI. In conclusion, activation of the cytokine-cytokine receptor interaction pathway may have an essential role in the progression of seawater aspiration-induced ALI, and the downregulation of tumor necrosis factor superfamily member 10 may enhance inflammation. Furthermore, IL-6 may be considered a biomarker in seawater aspiration-induced ALI. PMID:27509884

  9. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  10. Isomeric cross sections of neutron induced reactions on Ge and Ir isotopes

    International Nuclear Information System (INIS)

    Vlastou, R.; Papadopoulos, C.T.; Kokkoris, M.; Perdikakis, G.; Galanopoulos, S.; Patronis, N.; Serris, M.; Perdikakis, G.; Harissopulos, S.; Demetriou, P.

    2008-01-01

    The 72 Ge(n,α) 69m Zn, 74 Ge(n,α) 71m Zn, 76 Ge(n,2n) 75g+m Ge and 191 Ir(n,2n) 190 Ir g+m1 and 191 Ir(n,2n) 190 Ir m2 reaction cross sections were measured from 9.6 to 11.4 MeV relative to the 27 Al(n,α) 24 Na reference reaction via the activation method. The quasi-monoenergetic neutron beams were produced via the 2 H(d,n) 3 He reaction at the 5 MV VdG Tandem T11/25 accelerator of NCSR 'Demokritos'. Statistical model calculations using the codes STAPRE-F and EMPIRE (version 2.19) and taking into account pre-equilibrium emission were performed on the data measured in this work as well as on data reported in literature. (authors)

  11. Competing reaction channels in IR-laser-induced unimolecular reactions

    International Nuclear Information System (INIS)

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO 2 laser was used as the excitation source in all experiments. The dissociation of D 2 CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D 2 CO. MPD yield shows a near cubic dependence in pure D 2 CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 μm ir fluorescence from D 2 CO is proportional to the square of the D 2 CO pressure in pure D 2 CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D 2 CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm 2 at 946.0 cm -1 . The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D 2 CO. In H 2 CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF 4 - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel

  12. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    International Nuclear Information System (INIS)

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko; Ohta, Keisuke; Miura, Masahiko

    2007-01-01

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also found that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis

  13. Association of polymorphisms of interleukin-18 gene promoter region with polycystic ovary syndrome in chinese population

    Directory of Open Access Journals (Sweden)

    Li Mei-zhi

    2010-10-01

    Full Text Available Abstract Background Recent research shows that polycystic ovary syndrome (PCOS may have an association with low-grade chronic inflammation, and that PCOS may induce an increase in serum interleukin-18 (IL-18 levels. Methods To investigate the polymorphisms of the IL-18 gene promoters with PCOS, two single nucleotide polymorphisms (SNPs in the promoter of the IL-18 gene (at positions -607C/A and -137G/C in 118 Chinese women with PCOS and 79 controls were evaluated using polymerase chain reaction (PCR. Results No significant differences were found in the genotype distribution, allele frequency and haplotype frequency between the PCOS and control groups. Further analysis demonstrated a relationship between IL-18 gene promoter polymorphisms and PCOS insulin resistance (IR. Regarding the -137 allele frequency, G and C allele frequencies were 93.5% and 6.5%, respectively, in the PCOS with IR patients; G and C allele frequencies were 85.4% and 14.6%, respectively, in PCOS patients without IR (chi2 = 3.601, P = 0.048. Conclusions The presence of a polymorphism in the IL-18 gene was found to have no correlation with the occurrence of PCOS. Carriage of the C allele at position -137 in the promoter of the IL-18 gene may play a protective role from the development of PCOS IR.

  14. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  15. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  16. Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Hamed Rezaeejam

    2015-01-01

    Full Text Available Understanding of cellular responses to ionizing radiation (IR is essential for the development of predictive markers useful for assessing human exposure. Biological markers of exposure to IR in human populations are of great interest for assessing normal tissue injury in radiation oncology and for biodosimetry in nuclear incidents and accidental radiation exposures. Traditional radiation exposure biomarkers based on cytogenetic assays (biodosimetry, are time-consuming and do not provide results fast enough and requires highly trained personnel for scoring. Hence, the development of rapid biodosimetry methods is one of the highest priorities. Exposure of cells to IR activates multiple signal transduction pathways, which result in complex alterations in gene-expression. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in monitoring the specific genes with more accurately and sensitively. This review evaluates the RT-qPCR as a biodosimetry method and we investigated the papers from 2000 up to now, which identified the genes-expression related the DNA repair, cell cycle checkpoint, and apoptosis induced by ionization radiation in peripheral blood and determined as biodosimeters. In conclusion, it could be say that RT-qPCR technique for determining the specific genes as biodosimeters could be a fully quantitative reliable and sensitive method. Furthermore, the results of the current review will help the researchers to recognize the most expressed genes induced by ionization radiation.

  17. Tetracycline inducible gene manipulation in serotonergic neurons.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA mouse line (TPH2-tTA that allows temporal and spatial control of tetracycline (Ptet controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ. In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox. Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20 were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We

  18. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  19. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  20. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  1. Mechanisms of Ionizing Radiation-Induced Cell Death in Primary Lung Cells

    Science.gov (United States)

    2013-03-05

    lose their capacity to replicate after a certain number       10 of passages. This finite number was termed the “ Hayflick limit ” and cells...Upstream and downstream of mTOR. Genes & development 18:1926-45 78. Hayflick L. 1965. The Limited in Vitro Lifetime of Human Diploid Cell Strains...can lead to death. During the course of radiotherapy, the use of IR for the treatment of thoracic cancers is limited by IR-induced cell death to the

  2. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y [Applied Chemistry Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Okuno, A [Research Department 3, Central Research, Bridgestone Co. Kodaira, Tokyo 187-8531 (Japan); Kato, M, E-mail: taniguti@sk.ritsumei.ac.j [Pharmaceutical Sciences Department, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the {alpha}-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular {beta}-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation ({Delta}V'' = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates ({Delta}V=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular {beta}-sheet is unfavorable under high pressure.

  3. Specific gene mutations induced by heavy ions

    International Nuclear Information System (INIS)

    Freeling, M.; Karoly, C.W.; Cheng, D.S.K.

    1980-01-01

    This report summarizes our heavy-ion research rationale, progress, and plans for the near future. The major project involves selecting a group of maize Adh1 mutants induced by heavy ions and correlating their altered behavior with altered DNA nucleotide sequences and sequence arrangements. This research requires merging the techniques of classical genetics and recombinant DNA technology. Our secondary projects involve (1) the use of the Adh gene in the fruit fly, Drosophila melanogaster, as a second system with which to quantify the sort of specific gene mutants induced by heavy ions as compared to x rays, and (2) the development of a maize Adh1 pollen in situ monitor for environmental mutagens

  4. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  5. Measurement of the Ir-191,193(n,2n)Ir-190,192 Reaction Cross Section Between 9.0 and 16.5 MeV

    Science.gov (United States)

    Wildenhain, Elizabeth; Finch, Sean; Tornow, Werner; Krishichayan, F.

    2017-09-01

    Iridium is one of the elements prioritized by Nonproliferation and Homeland Security agencies. In addition, Ir-192 is being used in various medical treatments. Improved data and corresponding evaluations of neutron-induced reactions on the iridium isotopes are required to meet the demands of several applications of societal interest. This study measured the cross section of the Ir-191,193(n, 2n)Ir-190,192 reactions at energies from 9.0 to 16.5 MeV using the activation technique. Natural Ir samples [Ir-191 37.3%, Ir-193 62.7%] were sandwiched between Au-197 monitor foils and irradiated with monoenergetic neutron beams at the tandem facility of the Triangle Universities Nuclear Laboratory (TUNL). Gamma rays from the irradiated samples were counted in TUNL's low background facility using high-efficient HPGe detectors. Measured cross-section data are compared to previous data and to predictions from nuclear data libraries (e.g. ENDF). Research at TUNL funded by the NSF.

  6. A novel aggregation induced emission active cyclometalated Ir(III) complex as a luminescent probe for detection of copper(II) ion in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei; Yan, Liqiang; Tian, Wenwen; Cui, Xia; Qi, Zhengjian, E-mail: qizhengjian@seu.edu.cn; Sun, Yueming, E-mail: sun@seu.edu.cn

    2016-09-15

    We report the synthesis and characterization of a novel aggregation induced emission (AIE) active cyclometalated Ir(III) complex, namely [Ir(dfppy){sub 2}(phen-DPA)]PF{sub 6}, where dfppy and phen-DPA represent 2-(2,4-difluorophenyl)pyridine and 2-(bis(pyridin-2-ylmethyl)amino)-N-(1,10-phenanthrolin-5-yl)acetamide, respectively. The complex showed remarkable selectivity for copper(II) in aqueous solution over other competitive ions. Furthermore, this sensor showed a rapid and reversible response to copper(II) in aqueous solution with a detection limit of 65 nM.

  7. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function.

    Directory of Open Access Journals (Sweden)

    Jérôme Beaufays

    Full Text Available BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM, similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.

  8. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  9. Comparison of the early response of human embryonic stem cells and human induced pluripotent stem cells to ionizing radiation.

    Science.gov (United States)

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Łukjanow, Magdalena

    2017-04-01

    Despite the well-demonstrated efficacy of stem cell (SC) therapy, this approach has a number of key drawbacks. One important concern is the response of pluripotent SCs to treatment with ionizing radiation (IR), given that SCs used in regenerative medicine will eventually be exposed to IR for diagnostic or treatment‑associated purposes. Therefore, the aim of the present study was to examine and compare early IR‑induced responses of pluripotent SCs to assess their radioresistance and radiosensitivity. In the present study, 3 cell lines; human embryonic SCs (hESCs), human induced pluripotent SCs (hiPSCs) and primary human dermal fibroblasts (PHDFs); were exposed to IR at doses ranging from 0 to 15 gray (Gy). Double strand breaks (DSBs), and the gene expression of the following DNA repair genes were analyzed: P53; RAD51; BRCA2; PRKDC; and XRCC4. hiPSCs demonstrated greater radioresistance, as fewer DSBs were identified, compared with hESCs. Both pluripotent SC lines exhibited distinct gene expression profiles in the most common DNA repair genes that are involved in homologous recombination, non‑homologous end‑joining and enhanced DNA damage response following IR exposure. Although hESCs and hiPSCs are equivalent in terms of capacity for pluripotency and differentiation into 3 germ layers, the results of the present study indicate that these 2 types of SCs differ in gene expression following exposure to IR. Consequently, further research is required to determine whether hiPSCs and hESCs are equally safe for application in clinical practice. The present study contributes to a greater understanding of DNA damage response (DDR) mechanisms activated in pluripotent SCs and may aid in the future development of safe SC‑based clinical protocols.

  10. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  11. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR.

    Science.gov (United States)

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR.

  12. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  13. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  14. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Directory of Open Access Journals (Sweden)

    Naoto Tatewaki

    Full Text Available Ataxia telangiectasia mutated (ATM kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR. The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15 and Chk1 (Ser317 was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  15. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wanlada Klangnurak

    Full Text Available We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm, were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.

  16. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  17. Molecular Characterization of a stress-induced NAC Gene ...

    Indian Academy of Sciences (India)

    lenovo

    1Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China. 2College of Life ... Running title: GhSNAC3 gene in Cotton ... Quantitative RT-PCR analysis indicated that GhSNAC3 was induced by high salinity, drought ..... simple and general method for transferring genes into plants. Science ...

  18. Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots

    International Nuclear Information System (INIS)

    Maxwell, C.A.; Phillips, D.A.

    1990-01-01

    Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4',7-dihydroxyflavanone, 4',7-dihydroxyflavone, and 4,4'-dihydroxy-2'-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with [U- 14 C]-L-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor L-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained 14 C. In the presence of AOPP, 14 C labeling and release of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. The release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth

  19. Photorhabdus luminescens genes induced upon insect infection

    Directory of Open Access Journals (Sweden)

    Jung Kirsten

    2008-05-01

    Full Text Available Abstract Background Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. Results A differential fluorescence induction (DFI approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18 were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known

  20. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  1. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-15

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis.

  2. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-01

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis

  3. A novel IrNi@PdIr/C core-shell electrocatalyst with enhanced activity and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells.

    Science.gov (United States)

    Qin, Bowen; Yu, Hongmei; Jia, Jia; Jun, Chi; Gao, Xueqiang; Yao, Dewei; Sun, Xinye; Song, Wei; Yi, Baolian; Shao, Zhigang

    2018-03-08

    Herein, a novel non-platinum core-shell catalyst, namely, IrNi@PdIr/C was prepared via a galvanic replacement reaction; it exhibits enhanced hydrogen oxidation activity and excellent stability under alkaline conditions. Electrochemical experiments demonstrated that the mass and specific activities at 50 mV of IrNi@PdIr/C are 2.1 and 2.2 times that of commercial Pt/C in 0.1 M KOH at 298 K, respectively. Moreover, accelerated degradation tests have shown that the electrochemically active surface area (ECSA) of IrNi@PdIr/C reduces by only 5.1%, which is almost 4 times less than that of commercial Pt/C and the mass activity at 50 mV of IrNi@PdIr/C after 2000 potential cycles is still 1.8 times higher than that of aged Pt/C. XRD and XPS analysis suggest that the enhanced HOR activity is attributed to the weakening of the hydrogen binding to the PdIr overlayers induced by the IrNi core. The better stability to potential cycling can be associated with the PdIr shell, which inhibits oxide formation. These results suggest that IrNi@PdIr/C is a promising non-platinum anode catalyst for alkaline anion exchange membrane fuel cells.

  4. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    Science.gov (United States)

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis.

    Science.gov (United States)

    Kaur, Surleen; Archer, Kellie J; Devi, M Gouri; Kriplani, Alka; Strauss, Jerome F; Singh, Rita

    2012-10-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous, genetically complex, endocrine disorder of uncertain etiology in women. Our aim was to compare the gene expression profiles in stimulated granulosa cells of PCOS women with and without insulin resistance vs. matched controls. This study included 12 normal ovulatory women (controls), 12 women with PCOS without evidence for insulin resistance (PCOS non-IR), and 16 women with insulin resistance (PCOS-IR) undergoing in vitro fertilization. Granulosa cell gene expression profiling was accomplished using Affymetrix Human Genome-U133 arrays. Differentially expressed genes were classified according to gene ontology using ingenuity pathway analysis tools. Microarray results for selected genes were confirmed by real-time quantitative PCR. A total of 211 genes were differentially expressed in PCOS non-IR and PCOS-IR granulosa cells (fold change≥1.5; P≤0.001) vs. matched controls. Diabetes mellitus and inflammation genes were significantly increased in PCOS-IR patients. Real-time quantitative PCR confirmed higher expression of NCF2 (2.13-fold), TCF7L2 (1.92-fold), and SERPINA1 (5.35-fold). Increased expression of inflammation genes ITGAX (3.68-fold) and TAB2 (1.86-fold) was confirmed in PCOS non-IR. Different cardiometabolic disease genes were differentially expressed in the two groups. Decreased expression of CAV1 (-3.58-fold) in PCOS non-IR and SPARC (-1.88-fold) in PCOS-IR was confirmed. Differential expression of genes involved in TGF-β signaling (IGF2R, increased; and HAS2, decreased), and oxidative stress (TXNIP, increased) was confirmed in both groups. Microarray analysis demonstrated differential expression of genes linked to diabetes mellitus, inflammation, cardiovascular diseases, and infertility in the granulosa cells of PCOS women with and without insulin resistance. Because these dysregulated genes are also involved in oxidative stress, lipid metabolism, and insulin signaling, we hypothesize that these

  6. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    Wang, Tao; Yang, Ping; Zhan, Yibei; Xia, Lin; Hua, Zichun; Zhang, Jianfa

    2013-01-01

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  7. Association between IGF-IR gene polymorphisms and productive and reproductive traits in Holstein cows Associação entre polimorfismos do gene IGF-IR e características produtivas e reprodutivas em fêmeas bovinas da raça Holandesa

    Directory of Open Access Journals (Sweden)

    W. Schoenau

    2005-12-01

    Full Text Available The association between single-strand conformation polymorphism (SSCP in the gene of insulin-like growth factor-I receptor (IGF-IR and age at first calving (AFC, calving interval (CI, lactation length (LL, and milk yield (MY was studied using 106 graded Holstein females. The polimerase chain reaction (PCR with specific initiating oligonucleotides, resulted an amplified fragment of 335pb. The population genotypes frequencies were 82.1% and 17.9%, for AA and AB genotypes, respectively. The frequency of A allele was 0.91 and 0.09 of B allele. No association between the identified polymorphism and AFC, CI, and MY was observed. The LL was positively associated (PEstudou-se a associação entre polimorfismos de conformação de fita simples (SSCP no gene do receptor do fator-I de crescimento semelhante à insulina (IGF-IR e idade ao primeiro parto (IPP, intervalo entre partos (IEP, duração da lactação (DL e produção de leite (PL, em 106 fêmeas puras por cruza da raça Holandesa. A reação em cadeia da polimerase (PCR com oligonucleotídeos iniciadores específicos gerou um fragmento de 335pb. A freqüência genotípica da população para o polimorfismo foi 82,1% de indivíduos homozigotos para o alelo A e 17,9% de heterozigotos (AB. A freqüência do alelo A foi 0,91 e a do alelo B, 0,09. Não foi encontrada associação entre o polimorfismo estudado e as características IPP, IEP e PL. A característica DL foi positivamente associada (P<0,05 à ausência do alelo B. A lactação dos animais portadores do genótipo AA foi mais longa.

  8. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  9. Microarray‑based screening of differentially expressed genes in glucocorticoid‑induced avascular necrosis.

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-06-01

    The underlying mechanisms of glucocorticoid (GC)‑induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC‑induced ANFH. E‑MEXP‑2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid‑induced ANFH rats compared with 5 placebo‑treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC‑induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25‑Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α‑2‑macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC‑induced ANFH via interacting with VDR. A2M may also be involved in the development of GC‑induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC‑induced ANFH may provide novel targets for diagnostics and therapeutic treatment.

  10. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. Premature Senescence Induced by Ionizing Radiation Requires AKT Activity and Reactive Oxygen Species in Glioma

    International Nuclear Information System (INIS)

    Lee, Je Jung; Kim, Bong Cho; Yoo, Hee Jung; Lee, Jae Seon

    2010-01-01

    Loss of PTEN, a tumor suppressor gene has frequently observed in human gliomas, which conferred AKT activation and resistance to ionizing radiation (IR) and anti-cancer drugs. Recent reports have shown that AKT activation induces premature senescence through increase of oxygen consumption and inhibition of expression of ROS scavenging enzymes. In this study, we compared cellular response to IR in the PTEN-deficient U87, U251, U373 or PTEN-proficient LN18, LN428 glioma cells

  12. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke

    2016-02-15

    The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis

  13. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  14. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  15. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    Science.gov (United States)

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  16. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Olivier Sandre

    2017-02-01

    Full Text Available The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.

  17. High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2IrO3

    Science.gov (United States)

    Hermann, V.; Ebad-Allah, J.; Freund, F.; Pietsch, I. M.; Jesche, A.; Tsirlin, A. A.; Deisenhofer, J.; Hanfland, M.; Gegenwart, P.; Kuntscher, C. A.

    2017-11-01

    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2IrO3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2IrO3 is discussed in terms of a Mott-insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev interactions. With increasing Li content x , (Na1 -xLix )2IrO3 moves deeper into the Mott-insulating regime, and there are indications that up to a doping level of 24% the compound comes closer to the Kitaev limit. The optical conductivity spectrum of single-crystalline α -Li2IrO3 does not follow the trends observed for the series up to x =0.24 . There are strong indications that α -Li2IrO3 is not as close to the Kitaev limit as Na2IrO3 and lies closer to the quasimolecular orbital picture instead. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2IrO3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x =0.24 and x =1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.

  18. Pomegranate Intake Protects Against Genomic Instability Induced by Medical X-rays In Vivo in Mice.

    Science.gov (United States)

    Nallanthighal, Sameera; Shirode, Amit B; Judd, Julius A; Reliene, Ramune

    2016-01-01

    Ionizing radiation (IR) is a well-documented human carcinogen. The increased use of IR in medical procedures has doubled the annual radiation dose and may increase cancer risk. Genomic instability is an intermediate lesion in IR-induced cancer. We examined whether pomegranate extract (PE) suppresses genomic instability induced by x-rays. Mice were treated orally with PE and exposed to an x-ray dose of 2 Gy. PE intake suppressed x-ray-induced DNA double-strand breaks (DSBs) in peripheral blood and chromosomal damage in bone marrow. We hypothesized that PE-mediated protection against x-ray-induced damage may be due to the upregulation of DSB repair and antioxidant enzymes and/or increase in glutathione (GSH) levels. We found that expression of DSB repair genes was not altered (Nbs1 and Rad50) or was reduced (Mre11, DNA-PKcs, Ku80, Rad51, Rad52 and Brca2) in the liver of PE-treated mice. Likewise, mRNA levels of antioxidant enzymes were reduced (Gpx1, Cat, and Sod2) or were not altered (HO-1 and Sod1) as a function of PE treatment. In contrast, PE-treated mice with and without IR exposure displayed higher hepatic GSH concentrations than controls. Thus, ingestion of pomegranate polyphenols is associated with inhibition of x-ray-induced genomic instability and elevated GSH, which may reduce cancer risk.

  19. Tetrodotoxin- and resiniferatoxin-induced changes in paracervical ganglion ChAT- and nNOS-IR neurons supplying the urinary bladder in female pigs.

    Science.gov (United States)

    Burliński, Piotr Józef; Gonkowski, Sławomir; Całka, Jarosław

    2011-12-01

    The aim of the present study was to establish the effect of intravesical administration of resiniferatoxin (RTX) and tetrodotoxin (TTX) on the chemical coding of paracervical ganglion (PCG) neurons supplying the urinary bladder in the pig. In order to identify the PCG neurons innervating the bladder, retrograde tracer Fast Blue was injected into the bladder wall prior to intravesical RTX or TTX administration. Consequent application of immunocytochemical methods revealed that in the control group 76.82% of Fast Blue positive PCG neurons contain nitric oxide synthetase (nNOS), and 66.92% contain acetylcholine transferase (ChAT). Intravesical infusion of RTX resulted in a reduction of the nNOS-IR neurons to 57.74% and ChAT-IR to 57.05%. Alternative administration of TTX induced an increase of nNOS-IR neurons up to 79.29% and a reduction of the ChAT-IR population down to 3.73% of the Fast Blue positive PCG cells. Our data show that both neurotoxins affect the chemical coding of PCG cells supplying the porcine urinary bladder, but the effects of their action are different. Moreover, these results shed light on the possible involvement of NO-ergic and cholinergic neurons in the mechanisms of therapeutic action exerted by RTX and TTX in curing the overactive bladder disorder.

  20. Endurance test for IR rig for RI production assembly (test procedure)

    International Nuclear Information System (INIS)

    Chung, Heung June; Ryu, Jeong Soo

    2000-08-01

    This test procedure details the test loop, test method, and test procedure for pressure drop, vibration and endurance test of IR Rig for RI production. From the pressure drop test, the hydraulic design requirements of the capsule are verified. HANARO limit condition is checked and the compatibility with HANARO core is verified. From flow induced vibration test vibration frequency and displacement are investigated. The wear of IR Rig is investigated through endurance test, and these data are used to evaluate the expected wear at maximum resident time of the IR Rig for RI production

  1. Transcriptome analysis of trichothecene-induced gene expression in barley.

    Science.gov (United States)

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  2. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  3. Fast and sensitive detection of indels induced by precise gene targeting

    DEFF Research Database (Denmark)

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect...... and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect...

  4. Genetic and agronomic evaluation of induced semi-dwarf mutants of rice

    International Nuclear Information System (INIS)

    Rutger, J.N.

    1984-01-01

    Induced semi-dwarf mutants have played an important role in California's rapid shift from nearly all tall rice varieties in 1978 to nearly all semi-dwarf varieties at present. In 1981 over half of the California rice area was planted with semi-dwarf varieties carrying the induced mutant semi-dwarfing gene sd 1 , while much of the other half was planted to a variety deriving its semi-dwarfism from IR8. The sd 1 mutant is allelic to the major semi-dwarfing gene in DGWG and IR8. Current objectives are to determine the inheritance of new semi-dwarf mutants, including allelism tests with sd 1 , and to evaluate the agronomic potential of nonallelic sources and of double-dwarfs. To date semi-dwarf mutants from 10 varieties have been partially or completely evaluated. At least three nonallelic semi-dwarfing genes, sd 1 , sd 2 , and sd 4 , have been described. Rather than attempt to determine all possible allelic relationships of new mutants, crosses are being made only to the reference sd 1 source, since sd 1 , still seems to be the most productive semi-dwarfing gene source. However, nonallelic semi-dwarf mutants in the varieties M5 and Labelle may be useful if genetic vulnerability from widespread usage of the sd 1 source becomes a problem. (author)

  5. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    Science.gov (United States)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  6. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    International Nuclear Information System (INIS)

    Chen Guoxun

    2007-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  7. Myeloid cell leukemia-1 (Mc1-1 is a candidate target gene of hypoxia-inducible factor-1 (HIF-1 in the testis

    Directory of Open Access Journals (Sweden)

    Palladino Michael A

    2012-12-01

    Full Text Available Abstract Background Spermatic cord torsion can lead to testis ischemia (I and subsequent ischemia-reperfusion (I/R causing germ cell-specific apoptosis. Previously, we demonstrated that the hypoxia-inducible factor-1 (HIF-1 transcription factor, a key regulator of physiological responses to hypoxia, is abundant in Leydig cells in normoxic and ischemic testes. We hypothesize that testicular HIF-1 activates the expression of antiapoptotic target genes to protect Leydig cells from apoptosis. In silico analysis of testis genes containing a consensus hypoxia response element (HRE, 5’-RCGTG-3’ identified myeloid cell leukemia-1 (Mcl-1 as a potential HIF-1 target gene. The purpose of this study was to determine whether HIF-1 shows DNA-binding activity in normoxic and ischemic testes and whether Mcl-1 is a target gene of testicular HIF-1. Methods The testicular HIF-1 DNA-binding capacity was analyzed in vitro using a quantitative enzyme-linked immunosorbent assay (ELISA and electrophoretic mobility shift assays (EMSA. MCL-1 protein expression was evaluated by immunoblot analysis and immunohistochemistry. The binding of testicular HIF-1 to the Mcl-1 gene was examined via chromatin immunoprecipitation (ChIP analysis. Results The ELISA and EMSA assays demonstrated that testicular HIF-1 from normoxic and ischemic testes binds DNA equally strongly, suggesting physiological roles for HIF-1 in the normoxic testis, unlike most tissues in which HIF-1 is degraded under normoxic conditions and is only activated by hypoxia. MCL-1 protein was determined to be abundant in both normoxic and ischemic testes and expressed in Leydig cells. In a pattern identical to that of HIF-1 expression, the steady-state levels of MCL-1 were not significantly affected by I or I/R and MCL-1 co-localized with HIF-1α in Leydig cells. Chromatin immunoprecipitation (ChIP analysis using a HIF-1 antibody revealed sequences enriched for the Mcl-1 promoter. Conclusions The results

  8. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  9. Gene expression profiling distinguishes between spontaneous and radiation-induced rat mammary carcinomas

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Shimada, Yoshiya; Yamashita, Satoshi; Ushijima, Toshikazu

    2008-01-01

    The ability to distinguish between spontaneous and radiation-induced cancers in humans is expected to improve the resolution of estimated risk from low dose radiation. Mammary carcinomas were obtained from Sprague-Dawley rats that were either untreated (n=45) or acutely γ-irradiated (1 Gy; n=20) at seven weeks of age. Gene expression profiles of three spontaneous and four radiation-induced carcinomas, as well as those of normal mammary glands, were analyzed by microarrays. Differential expression of identified genes of interest was then verified by quantitative polymerase chain reaction (qPCR). Cluster analysis of global gene expression suggested that spontaneous carcinomas were distinguished from a heterogeneous population of radiation-induced carcinomas, though most gene expressions were common. We identified 50 genes that had different expression levels between spontaneous and radiogenic carcinomas. We then selected 18 genes for confirmation of the microarray data by qPCR analysis and obtained the following results: high expression of Plg, Pgr and Wnt4 was characteristic to all spontaneous carcinomas; Tnfsf11, Fgf10, Agtr1a, S100A9 and Pou3f3 showed high expression in a subset of radiation-induced carcinomas; and increased Gp2, Areg and Igf2 expression, as well as decreased expression of Ca3 and noncoding RNA Mg1, were common to all carcinomas. Thus, gene expression analysis distinguished between spontaneous and radiogenic carcinomas, suggesting possible differences in their carcinogenic mechanism. (author)

  10. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, Ohtsura; Enoki, Yoshitaka; Yokoro, Kenjiro

    1989-03-01

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 /alpha/-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author).

  11. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    Purpose: Site-specific activation of gene expression can be achieved by the use of a promoter that is induced by physical agents such as x-rays. The purpose of the present study was to determine whether site-specific activation of gene therapy can also be achieved within the vascular endothelium by use of radiation-inducible promoters. We studied induction of promoter-reporter gene constructs using previously identified radiation-promoters from c-jun, c-fos, Egr-1, ICAM-1, ELAM-1 after transfection into in the vascular endothelium. Methods: The following radiation-inducible genetic constructs were created: The ELAM-1 promoter fragment was cloned into pOGH to obtain the pE-sel(-587 +35)GH reporter construct. The ICAM-1 promoter fragment (-1162/+1) was cloned upstream of the CAT coding region of the pCAT-plasmid (Promega) after removal of the SV40 promoter by Bgl2/Stu1 digestion to create the pBS-CAT plasmid. The 132 to +170 bp segment of the 5' untranslated region of the c-jun promoter was cloned to the CAT reporter gene to create the -132/+170 cjun-CAT. The Egr-1 promoter fragment (-425/+75) was cloned upstream of the CAT coding region to create the pE425-CAT plasmid. Tandem repeats of the AP-1 binding site were cloned upstream of the CAT coding region (3 xTRE-CAT). Tandem repeats of the Egr binding site (EBS) were cloned upstream of the CAT coding region (EBS-CAT). Human vascular endothelial cells from both large vessel and small vessel origin (HUVEC and HMEC), as well as human tumor cell lines were transfected with plasmids -132/+170 cjun-CAT, pE425-CAT, 3 xTRE-CAT, EBS-CAT, pE-sel-GH and pBS-CAT by use of liposomes. Humor tumor cell lines included SQ20B (squamous), RIT3 (sarcoma), and HL525 (leukemia). Each plasmid was cotransfected with a plasmid containing a CMV promoter linked to the LacZ gene (1 μg). Transfected cells were treated with mock irradiation or x-rays. Cell extracts were assayed for reporter gene expression. Results: Radiation-induced gene

  12. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  13. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  14. Structural Changes Induced in Grapevine (Vitis vinifera L. DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study

    Directory of Open Access Journals (Sweden)

    Nicoleta E. Dina

    2016-05-01

    Full Text Available In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L. varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs infrared (IR laser pulse irradiation (λ = 1100 nm are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA, eight different grapevine varieties were discriminated.

  15. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    Science.gov (United States)

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  16. GATA-dependent regulation of TPO-induced c-mpl gene expression during megakaryopoiesis.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2014-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role during megakaryocytopoiesis. Previously, we have shown that the promoter activity of c-mpl induced by TPO is modulated by transcription through a PKC-dependent pathway and that GATA(-77) is involved as a positive regulatory element in TPO-induced c-mpl gene expression in the megakaryoblastic CMK cells. In this research, to examine participating possibility of GATA promoter element in TPO- induced c-mpl gene expression through a PKC-independent pathway, the promoter activity of site-directed mutagenesis and the effect of potein kinase C modulator were measured by a transient transfection assay system. Together with our previous results on the TPO-induced c-mpl promoter, this study indicates destruction of -77GATA in c-mpl promoter decreased the activity by 47.3% under existence of GF109203. These results suggest that GATA promoter element plays significant role in TPO-induced c-mpl gene expression through a PKC-independent pathway.

  17. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    Differential expression of ozone-induced gene during exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. ... PcOZI-1 mRNA in untreated plants was detected at low levels in underground stem, leaves and at higher levels in stem. PcOZI-1 mRNA accumulation was transiently induced ...

  18. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells

    Science.gov (United States)

    Ji, Kaihua; Li, Qing; Shi, Yang; Xu, Chang; Wang, Yan; Du, Liqing

    2017-01-01

    Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent. PMID:29181121

  19. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  20. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  1. Duplication and diversification of the hypoxia-inducible IGFBP-1 gene in zebrafish.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Kamei

    2008-08-01

    Full Text Available Gene duplication is the primary force of new gene evolution. Deciphering whether a pair of duplicated genes has evolved divergent functions is often challenging. The zebrafish is uniquely positioned to provide insight into the process of functional gene evolution due to its amenability to genetic and experimental manipulation and because it possess a large number of duplicated genes.We report the identification and characterization of two hypoxia-inducible genes in zebrafish that are co-ortholgs of human IGF binding protein-1 (IGFBP-1. IGFBP-1 is a secreted protein that binds to IGF and modulates IGF actions in somatic growth, development, and aging. Like their human and mouse counterparts, in adult zebrafish igfbp-1a and igfbp-1b are exclusively expressed in the liver. During embryogenesis, the two genes are expressed in overlapping spatial domains but with distinct temporal patterns. While zebrafish IGFBP-1a mRNA was easily detected throughout embryogenesis, IGFBP-1b mRNA was detectable only in advanced stages. Hypoxia induces igfbp-1a expression in early embryogenesis, but induces the igfbp-1b expression later in embryogenesis. Both IGFBP-1a and -b are capable of IGF binding, but IGFBP-1b has much lower affinities for IGF-I and -II because of greater dissociation rates. Overexpression of IGFBP-1a and -1b in zebrafish embryos caused significant decreases in growth and developmental rates. When tested in cultured zebrafish embryonic cells, IGFBP-1a and -1b both inhibited IGF-1-induced cell proliferation but the activity of IGFBP-1b was significantly weaker.These results indicate subfunction partitioning of the duplicated IGFBP-1 genes at the levels of gene expression, physiological regulation, protein structure, and biological actions. The duplicated IGFBP-1 may provide additional flexibility in fine-tuning IGF signaling activities under hypoxia and other catabolic conditions.

  2. Molecular mechanisms of radiation-induced cell proliferation in human carcinoma cells

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, R.K.; Mikkelsen, R.; Valerie, K.; Todd, D.; Kavanagh, B.; Contessa, J.; Rorrer, K.; Chen, P.

    1996-01-01

    Purpose: At therapeutically applied ionizing radiation (IR) doses of 0.5 to 5 Gy, a certain proportion of cells will undergoes radiation-induced death while a varied proportion of cells will survive and be able of furnishing adaptive responses. One of these adaptive responses has been experimentally and clinically described as repopulation. Despite description of this phenomenon more than 20 years ago, the mechanisms of this response have remained relatively unknown until modern experimental techniques have been applied to studies on cellular radiation responses. materials and Methods: Human mammary, MCF-7 and MDA-MB-231, and squamous, A431, carcinoma cells (MCC and SCC), expressing epidermal growth factor-receptor (EGF-R) at widely varied levels, have been exposed under defined culture conditions to single and repeated IR at doses between 0.5 and 5 Gy. Cellular IR responses of activation and expression changes of growth regulatory genes and activation of signal transduction pathways were linked to IR-induced proliferation responses. Specifically, EGF-R activation and expression were assessed by levels of Tyr phosphorylation (Y p ) of the receptor protein and mRNA, respectively. Phospholipase (PL-C) activation was quantified by Y p levels and production of inositol-triphosphate (IP 3 ), elevation of cytoplasmic Ca 2+ by video-intensified florescence microscopy after Fura-2 loading. Mitogen-activated protein (MAP) kinase activation was measured by a MBP receptor assay. The EGF-R and signal transduction activation events were correlated with a proliferation response of irradiated cells as quantified by MTT assay. Results: The cell lines tested showed an about 3-fold stimulation of EGF-R Y p levels within 5 min of IR which was associated with a 2.5-fold upregulation of EGF-R after 24 hr. Repeated daily 2 Gy exposures of MCF-7 and MDA-cells resulted in up to 9-fold increases in EGF-R mRNA. EGF-R downstream signal transduction was evidenced by activation of the

  3. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  4. Synthesis, structural, X-ray photoelectron spectroscopy (XPS) studies and IR induced anisotropy of Tl{sub 4}HgI{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine); Khyzhun, O.Y. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Piasecki, M. [Institute of Physics, J. Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa (Poland); Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Department, Czestochowa University Technology, Armii Krajowej 17, PL-42-217, Czestochowa (Poland); Lakshminarayana, G. [Wireless and Photonic Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia); Luzhnyi, I. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Fochuk, P.M. [Yuriy Fed’kovych Chernivtsi National University, 2 Kotziubynskoho Str., 58012, Chernivtsi (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska Street 50, 79010, Lviv (Ukraine); Levkovets, S.I.; Yurchenko, O.M.; Piskach, L.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine)

    2017-02-01

    In the present work, we report on the synthesis and structural properties including X-ray protoelectron spectroscopy (XPS) analysis of Tl{sub 4}HgI{sub 6} crystals that were grown by Bridgman-Stockbarger method up to 80 mm in length and 18 mm in diameter. The existence of the ternary compound Tl{sub 4}HgI{sub 6} that melts incongruently at 641 K was confirmed. Phase equilibria and structural properties for the TlI–HgI{sub 2} system were investigated by differential thermal analysis (DTA) and X-ray diffraction (XRD) methods. X-ray photoelectron spectra were measured for both pristine and Ar{sup +} ion-bombarded Tl{sub 4}HgI{sub 6} single crystal surfaces. The data reveal that the Tl{sub 4}HgI{sub 6} single crystal is sensitive with respect to Ar{sup +} ion-bombardment as 3.0 keV Ar{sup +} irradiation over 5 min at an ion current density 14 μA/cm{sup 2} induces changes to the elemental stoichiometry of the Tl{sub 4}HgI{sub 6} surface, leading to a decrease of the mercury content in the topmost surface layers. X-ray photoelectron spectroscopy (XPS) measurements indicate very low hygroscopic nature of the Tl{sub 4}HgI{sub 6} single crystal surface. The IR coherent bicolor laser treatment at wavelengths 10.6/5.3 μm has shown an occurrence of anisotropy at wavelengths 1540 nm of Er:glass laser. This may open the applications of Tl{sub 4}HgI{sub 6} as a material for IR laser triggering. - Highlights: • Phase diagram of the HgI{sub 2}–TlI system was built. • Tl{sub 4}HgI{sub 6} single crystals were grown by Bridgman Stockbarger method. • XRD, XPS analysis was done. • Ir induced anisotropy was established. • The compounds may be proposed as Ir laser operated polarizers.

  5. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  6. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  7. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  8. Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans.

    Science.gov (United States)

    Voruganti, V Saroja; Lopez-Alvarenga, Juan C; Nath, Subrata D; Rainwater, David L; Bauer, Richard; Cole, Shelley A; Maccluer, Jean W; Blangero, John; Comuzzie, Anthony G

    2008-03-01

    Insulin resistance is a major biochemical defect underlying the pathogenesis of cardiovascular disease (CVD). Mexican-Americans are known to have an unfavorable cardiovascular profile. Thus, the aim of this study was to investigate the genetic effect on variation in HOMA-IR and to evaluate its genetic correlations with other phenotypes related to risk of CVD in Mexican-Americans. The homeostatic model assessment method (HOMA-IR) is one of several approaches that are used to measure insulin resistance and was used here to generate a quantitative phenotype for genetic analysis. For 644 adults who had participated in the San Antonio Family Heart Study (SAFHS), estimates of genetic contribution were computed using a variance components method implemented in SOLAR. Traits that exhibited significant heritabilities were body mass index (BMI) (h (2) = 0.43), waist circumference (h (2) = 0.48), systolic blood pressure (h (2) = 0.30), diastolic blood pressure (h (2) = 0.21), pulse pressure (h (2) = 0.32), triglycerides (h (2) = 0.51), LDL cholesterol (h (2) = 0.31), HDL cholesterol (h (2) = 0.24), C-reactive protein (h (2) = 0.17), and HOMA-IR (h (2) = 0.33). A genome-wide scan for HOMA-IR revealed significant evidence of linkage on chromosome 12q24 (close to PAH (phenylalanine hydroxylase), LOD = 3.01, p HOMA-IR with BMI (rho (G) = 0.36), waist circumference (rho (G) = 0.47), pulse pressure (rho (G) = 0.39), and HDL cholesterol (rho (G) = -0.18). Identification of significant linkage for HOMA-IR on chromosome 12q replicates previous family-based studies reporting linkage of phenotypes associated with type 2 diabetes in the same chromosomal region. Significant genetic correlations between HOMA-IR and phenotypes related to CVD risk factors suggest that a common set of gene(s) influence the regulation of these phenotypes.

  9. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  10. ATR-IR spectroscopy for the detection of induced-phase transition in Langmuir-Blodgett monolayer film

    International Nuclear Information System (INIS)

    Widayati, Suci

    1996-01-01

    The rate at which a solid substrate is transferred through the Air/Water interface in the Langmuir-Blodgett process of preparing monomolecular films influences the final structure of the transferred film. This phenomenon has been observed from the attenuated total reflectance infra-red (ATR-IR) spectra of fatty acid monolayer transferred onto germanium substrate. This transfer-induced effect is most evidence when the monolayer is transferred from an expanded region of the surface-pressure-molecular area isotherm, but has limited influence on the hydrocarbon chain conformation of film molecules transferred in the condensed phases at high surface pressure. Such a conformational ordering may due to a kinetically limited phase transition taking place in the meniscus formed between the solid substrate and aqueous sub phase. In addition, these results suggest that the structure of the amphiphilic molecules may modulate the extent and nature of the dipping-speed-induced structural changes taking place in the monomolecular L-B film. In order to use monomolecular L-B films to accurately characterize the structure, orientation and phase properties of monolayers at the Air/Water interface, the L-B transfer must be performed at transfer speeds that minimize this structural phase transition

  11. Regioselective aromatic substitution reactions of cyclometalated Ir(III) complexes: synthesis and photochemical properties of substituted Ir(III) complexes that exhibit blue, green, and red color luminescence emission.

    Science.gov (United States)

    Aoki, Shin; Matsuo, Yasuki; Ogura, Shiori; Ohwada, Hiroki; Hisamatsu, Yosuke; Moromizato, Shinsuke; Shiro, Motoo; Kitamura, Masanori

    2011-02-07

    In this manuscript, the regioselective halogenation, nitration, formylation, and acylation of Ir(tpy)(3) and Ir(ppy)(3) (tpy = 2-(4'-tolyl)pyridine and ppy = 2-phenylpyridine) and the subsequent conversions are described. During attempted bromination of the three methyl groups in fac-Ir(tpy)(3) using N-bromosuccinimide (NBS) and benzoyl peroxide (BPO), three protons at the 5'-position (p-position with respect to the C-Ir bond) of phenyl rings in tpy units were substituted by Br, as confirmed by (1)H NMR spectra, mass spectra, and X-ray crystal structure analysis. It is suggested that such substitution reactions of Ir complexes proceed via an ionic mechanism rather than a radical mechanism. UV-vis and luminescence spectra of the substituted Ir(III) complexes are reported. The introduction of electron-withdrawing groups such as CN and CHO groups at the 5'-position of tpy induces a blue shift of luminescence emission to about 480 nm, and the introduction of electron-donating groups such as an amino group results in a red shift to about 600 nm. A reversible change of emission for the 5'-amino derivative of Ir(tpy)(3), Ir(atpy)(3), between red and green occurs upon protonation and deprotonation.

  12. Liver Status Assessment by Spectrally and Time Resolved IR Detection of Drug Induced Breath Gas Changes

    Directory of Open Access Journals (Sweden)

    Tom Rubin

    2016-05-01

    Full Text Available The actual metabolic capacity of the liver is crucial for disease identification, liver therapy, and liver tumor resection. By combining induced drug metabolism and high sensitivity IR spectroscopy of exhaled air, we provide a method for quantitative liver assessment at bedside within 20 to 60 min. Fast administration of 13C-labelled methacetin induces a fast response of liver metabolism and is tracked in real-time by the increase of 13CO2 in exhaled air. The 13CO2 concentration increase in exhaled air allows the determination of the metabolic liver capacity (LiMAx-test. Fluctuations in CO2 concentration, pressure and temperature are minimized by special gas handling, and tracking of several spectrally resolved CO2 absorption bands with a quantum cascade laser. Absorption measurement of different 12CO2 and 13CO2 rotation-vibration transitions in the same time window allows for multiple referencing and reduction of systematic errors. This FLIP (Fast liver investigation package setup is being successfully used to plan operations and determine the liver status of patients.

  13. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  14. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  15. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  16. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion.

    Science.gov (United States)

    Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An

    2017-09-11

    The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.

  17. Innate immune genes including a mucin-like gene, mul-1, induced by ionizing radiation in Caenorhabditis elegans.

    Science.gov (United States)

    Kimura, Takafumi; Takanami, Takako; Sakashita, Tetsuya; Wada, Seiichi; Kobayashi, Yasuhiko; Higashitani, Atsushi

    2012-10-01

    The effect of radiation on the intestine has been studied for more than one hundred years. It remains unclear, however, whether this organ uses specific defensive mechanisms against ionizing radiation. The infection with Pseudomonas aeruginosa (PA14) in Caenorhabditis elegans induces up-regulation of innate immune response genes. Here, we found that exposure to ionizing radiation also induces certain innate immune response genes such as F49F1.6 (termed mul-1), clec-4, clec-67, lys-1 and lys-2 in the intestine. Moreover, pre-treatment with ionizing radiation before seeding on PA14 lawn plate significantly increased survival rate in the nematode. We also studied transcription pathway of the mul-1 in response to ionizing radiation. Induction of mul-1 gene was highly dependent on the ELT-2 transcription factor and p38 MAPK. Moreover, the insulin/IGF-1 signal pathway works to enhance induction of this gene. The mul-1 gene showed a different induction pattern from the DNA damage response gene, ced-13, which implies that the expression of this gene might be triggered as an indirect effect of radiation. Silencing of the mul-1 gene led to growth retardation after treatment with ionizing radiation. We describe the cross-tolerance between the response to radiation exposure and the innate immune system.

  18. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways.

    Science.gov (United States)

    Hu, Ying; He, Kai; Wang, Dongmei; Yuan, Xinwang; Liu, Yi; Ji, Hongbin; Song, Jianguo

    2013-08-01

    The epithelial-mesenchymal transition (EMT) has been implicated in various pathophysiological processes, including cancer cell migration and distal metastasis. Reactive oxygen species (ROS) and insulin receptor substrate-1 (IRS-1) are important in cancer progression and regulation of EMT. To explore the biological significance and regulatory mechanism of EMT, we determined the expression, the biological function and the signaling pathway of prostate transmembrane protein, androgen induced-1 (TMEPAI), during the induction of EMT and cell migration. Transforming growth factor (TGF)-β1 significantly upregulated the expression of TMEPAI during EMT in human lung adenocarcinoma. Depletion of TMEPAI abolished TGF-β1-induced downregulation of ferritin heavy chain and the subsequent generation of ROS, thus suppressing TGF-β1-induced EMT and cell migration. In addition, increased ROS production and overexpression of TMEPAI downregulated the level of IRS-1. Both the addition of H2O2 and IRS-1 small interfering RNA rescued the ability of TGF-β1 to induce EMT in TMEPAI-depleted cells. Remarkably, the levels of TMEPAI in lung tumor tissues are very high, whereas its expression in normal lung epithelium is very low. Moreover, TMEPAI expression was positively correlated with the cell mesenchymal phenotype and migration potential. Our work reveals that TMEPAI contributes to TGF-β1-induced EMT through ROS production and IRS-1 downregulation in lung cancer cells.

  19. Molecular cytogenetics of radiation-induced gene mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.; Aleksandrova, M.V.; Lapidus, I.L.; Karpovskij, A.L.

    1996-01-01

    The classical paradigm of spatially unrelated lesions for gene mutations and chromosomal exchange breakpoints induced by ionizing radiations in eukaryotic cells was re-examined in the experiments on the mapping of gamma-ray- or neutron-induced breakpoints in and outside of white (w) and vestigial (vg) genes of Drosophila melanogaster using the in situ hybridization of the large fragments of the genes under study with the polythene chromosomes of the relevant mutants. The results for the random sample of 60 inversion and translocation breakpoints analysed to date have shown that (i) 50% of them are mapped as the hot spots within big introns of both the genes, and (ii) 21 of 60 breaks (35%) are located outside of genes. It is important to note that 26% (16/60) of the breakpoints analysed are flanked by the deletions, the sizes of which vary from the quarter to a whole of the gene. It was found that the deletions flank both the inversion and translocation breakpoints and arise more often after action of neutrons than photons. An unexpectedly high frequency of the multiple-damaged w and vg mutants that have the gene/point mutation and additional, but separate, chromosome exchange (the so-called double- or triple-site mutants) has shown that the genetic danger of ionizing radiation is higher than usually accepted on the base of single gene/point mutation assessments. 11 refs., 3 figs

  20. Radiation-induced gene amplification in rodent and human cells

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Gloss, B.; Herrlich, P.

    1990-01-01

    Ionizing and UV radiations induce amplification of SV40 DNA sequences integrated in the genome of Chinese hamster cells and increase amplification of the dihydrofolate reductase (DHFR) gene during methotrexate selection in human skin fibroblasts of a patient with ataxia telangiectasia. Various types of external (60-Co-γ-rays, 241-Am-α-particles, UV) or internal radiation (caused by the decay of 125 I incorporated into DNA in form of I-UdR) were applied. By cell fusion experiments it could be shown that SV40 gene amplification is mediated by one or several diffusible trans-acting factors induced or activated in a dose dependent manner by all types of radiation. One of these factors binds to a 10 bp sequence within the minimal origin of replication of SV40. In vivo competition with an excess of a synthetic oligonucleotide comprising this sequence blocks radiation-induced amplification. (author) 25 refs.; 8 figs

  1. A miR-21 inhibitor enhances apoptosis and reduces G2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiang; Asai, Akio; Kawamoto, Keiji; Zhao Shiguang; Zhen Yunbo; Teng Lei

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Elevated expression of miR-21 has been reported in many types of human cancers. Radiotherapy is a standard adjuvant treatment for patients with glioblastoma. However, the resistance of glioblastoma cells to radiation limits the success of this treatment. In this study, we found that miR-21 expression was upregulated in response to ionizing radiation (IR) in U251 cells, which suggested that miR-21 could be involved in the response of U251 cells to radiation. We showed that a miR-21 inhibitor enhanced IR-induced glioblastoma cell growth arrest and increased the level of apoptosis, which was probably caused by abrogation of the G 2 -M arrest induced by IR. Further research demonstrated that the miR-21 inhibitor induced the upregulation of Cdc25A. Taken together, these findings suggest that miR-21 inhibitor can increase IR-induced growth arrest and apoptosis in U251 glioblastoma cells, at least in part by abrogating G 2 -M arrest, and that Cdc25A is a potential target of miR-21. (author)

  2. Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance

    Science.gov (United States)

    Ensminger, Stephan M.; Spriewald, Bernd M.

    2012-01-01

    Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401

  3. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion.

    Science.gov (United States)

    Haohao, Zhang; Guijun, Qin; Juan, Zheng; Wen, Kong; Lulu, Chen

    2015-03-01

    Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p competence in HFD rats.

  4. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression

    DEFF Research Database (Denmark)

    Pinto, Rita; Hansen, Lars; Hintze, John

    2017-01-01

    to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii......Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven......) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide...

  5. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  6. In vitro selection of mutants: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.; Bastola, D.R.; Deutch, C.E.; Pethe, V.V.; Petrusa, L.

    2001-01-01

    Regulation of differentially expressed genes in plants may be involved in inducing tolerance to stress. Isogenic salt-sensitive and salt-tolerant alfalfa lines were investigated for molecular differences in their response to salt. The genes, which are differentially induced by salt in the salt-tolerant alfalfa cells and are also regulated by salt at the whole plant level, were cloned. Both transcriptional and post- transcriptional mechanisms influenced salt-induced product accumulation in the salt-tolerant alfalfa. The salt-tolerant plants doubled proline concentration rapidly in roots, while salt-sensitive plants showed a delayed response. To understand the regulatory system in the salt-tolerant alfalfa, two genes that are expressed in roots were studied. Alfin1 encodes a zinc-finger type putative DNA transcription factor conserved in alfalfa, rice and Arabidopsis, and MsPRP2 encodes a protein that serves as a cell wall- membrane linker in roots. Recombinant Alfin1 protein was selected, amplified, cloned and its consensus sequence was identified. The recombinant Alfin1 also bound specifically to fragments of the MsPRP2 promoter in vitro, containing the Alfin1 binding consensus sequence. The results show unambiguously binding specificity of Alfin1 DNA, supporting its role in gene regulation. Alfin1 function was tested in transformed alfalfa in vivo by over-expressing Alfin1 from 35S CaMV promoter. The transgenic plants appeared normal. However, plants harboring the anti-sense construct did not grow well in soil, indicating that Alfin1 expression was essential. Alfin1 over-expression in transgenic alfalfa led to enhanced levels of MsPRP2 transcript accumulation, demonstrating that Alfin1 functioned in vivo in gene regulation. Since MsPRP2 gene is also induced by salt, it is likely that Alfin1 is an important transcription factor for gene regulation in salt-tolerant alfalfa, and an excellent target for manipulation to improve salt tolerance. (author)

  7. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    Science.gov (United States)

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium ABSTRACTFormaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  8. Optical Response of Cu1-xZnxIr2S4 Due to Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Chen, L.; Matsunami, M.; Nanba, T.; Cao, G.; Suzuki, H.; Isobe, M.; Matsumoto, T.

    2003-01-01

    The mother material CuIr 2 S 4 of the thiospinel system Cu 1-x Zn x Ir 2 S 4 undergoes a temperature-induced metal--insulator (Mi) transition. We report the temperature dependence of the optical reflection spectra of Cu 1-x Zn x Ir 2 S 4 (x ≤ 0.5) at the temperatures of 8-300 K in the energy regions of 0.005--30 eV in order to study the change in the electronic structure due to the Zn substitution for Cu. Zn substitution induced mainly the splitting of the hybridization band between the Ir-5d(t 2g ) and S-3 p states crossing the E F . Obtained optical conductivity (σ ) spectrum is discussed in relation to the change in the electronic structure close to the E F . (author)

  9. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  10. Infrequent alterations of the P53 gene in rat skin cancers induced by ionising-radiation

    International Nuclear Information System (INIS)

    Jin, Y.; Burns, F.J.; Garte, S.J.; Hosselet, S.; New York Univ., NY

    1996-01-01

    Radiation carcinogenesis almost certainly involves multiple genetic alterations. Identification of such genetic alterations would provide information to help understand better the molecular mechanism or radiation carcinogenesis. The energy released by ionizing radiation has the potential to produce DNA strand breaks, major gene deletions or rearrangements, and other base damages. Alterations of the p53 gene, a common tumour suppressor gene altered in human cancers, were examined in radiation-induced rat skin cancers. Genomic DNA from a total of 33rat skin cancers induced by ionizing radiation was examined by Southern blot hybridization for abnormal restriction fragment patterns in the p53 gene. A abnormal p53 restriction pattern was found in one of 16 cancers induced by electron radiation and in one of nine cancers induced by neon ions. The genomic DNA from representative cancers, including the two with an abnormal restriction pattern was further examined by polymerase chain reaction amplification and direct sequencing in exons 5-8 of the p53 gene. The results showed that one restriction fragment length polymorphism (RFLP)-positive cancer induced by electron radiation had a partial gene deletion which was defined approximately between exons 2-8, while none of the other cancers showed sequence changes. Our results indicate that the alterations in the critical binding region of the p53 gene are infrequent in rat skin cancers induced by either electron or neon ion radiation. (Author)

  11. Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes

    OpenAIRE

    Buhrow, Leann M.; Clark, Shawn M.; Loewen, Michele C.

    2016-01-01

    Background Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which...

  12. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  13. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  14. A gene-brain-cognition pathway for the effect of an Alzheimer׳s risk gene on working memory in young adults.

    Science.gov (United States)

    Stevens, Benson W; DiBattista, Amanda M; William Rebeck, G; Green, Adam E

    2014-08-01

    Identifying pathways by which genetic Alzheimer׳s disease (AD) risk factors exert neurocognitive effects in young adults are essential for the effort to develop early interventions to forestall or prevent AD onset. Here, in a brain-imaging cohort of 59 young adults, we investigated effects of a variant within the clusterin (CLU) gene on working memory function and gray matter volume in cortical areas that support working memory. In addition, we investigated the extent to which effects of CLU genotype on working memory were independent of variation in the strongest AD risk factor gene apolipoprotein E (APOE). CLU is among the strongest genetic AD risk factors and, though it appears to share AD pathogenesis-related features with, APOE, it has been far less well studied. CLU genotype was associated with working memory performance in our study cohort. Notably, we found that variation in gray matter volume in a parietal region, previously implicated in maintenance of information for working memory, mediated the effect of CLU on working memory performance. APOE genotype did not affect working memory within our sample, and did not interact with CLU genotype. To our knowledge, this work represents the first evidence of a behavioral effect of CLU genotype in young people. In addition, this work identifies the first gene-brain-cognition mediation effect pathway for the transmission of the effect of an AD risk factor. Relative to conventional pairwise associations in cognitive neurogenetic research, gene-brain-cognition mediation modeling provides a more integrated understanding of how genetic effects transmit from gene to brain to cognitive function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    Science.gov (United States)

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (pmyostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. CAR expression and inducibility of CYP2B genes in liver of rats treated with PB-like inducers

    International Nuclear Information System (INIS)

    Pustylnyak, Vladimir O.; Gulyaeva, Lyudmila F.; Lyakhovich, Vyacheslav V.

    2005-01-01

    The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca 2+ /calmodulin-dependent kinase II (W 7 ) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W 7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W 7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W 7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes

  17. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    Science.gov (United States)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  18. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  19. Role of X-ray-inducible genes and proteins in adaptive survival responses

    International Nuclear Information System (INIS)

    Meyers, M.; Schea, R.A.; Petrowski, A.E.; Seabury, H.; McLaughlin, P.W.; Lee, I.; Lee, S.W.; Boothman, D.A.

    1992-01-01

    Certain X-ray-inducible genes and their corresponding protein products, appearing following low priming doses of ionizing radiation may subsequently give rise to an adaptive survival response, ultimately leading to increased radioresistance. Further, this adaptive radioresistance may be due to increased DNA repair (or misrepair) processes. Ultimately, the function of low-dose-induced cDNA clones within the cell is hoped to elucidate to follow the effects of specific gene turn-off on adaptive responses. Future research must determine the various functions of adaptive response gene products so that the beneficial or deleterious consequences of adaptive responses, which increases resistance to ionizing radiation, can be determined. (author). 19 refs., 1 fig

  20. Association between IRS1 Gene Polymorphism and Autism Spectrum Disorder: A Pilot Case-Control Study in Korean Males

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2016-07-01

    Full Text Available The insulin-like growth factor (IGF pathway is thought to play an important role in brain development. Altered levels of IGFs and their signaling regulators have been shown in autism spectrum disorder (ASD patients. In this study, we investigated whether coding region single-nucleotide polymorphisms (cSNPs of the insulin receptor substrates (IRS1 and IRS2, key mediators of the IGF pathway, were associated with ASD in Korean males. Two cSNPs (rs1801123 of IRS1, and rs4773092 of IRS2 were genotyped using direct sequencing in 180 male ASD patients and 147 male control subjects. A significant association between rs1801123 of IRS1 and ASD was shown in additive (p = 0.022, odds ratio (OR = 0.66, 95% confidence interval (CI = 0.46–0.95 and dominant models (p = 0.013, OR = 0.57, 95% CI = 0.37–0.89. Allele frequency analysis also showed an association between rs1801123 and ASD (p = 0.022, OR = 0.66, 95% CI = 0.46–0.94. These results suggest that IRS1 may contribute to the susceptibility of ASD in Korean males.

  1. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    International Nuclear Information System (INIS)

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  2. Tetracycline-inducible gene expression system in Leishmania mexicana

    Czech Academy of Sciences Publication Activity Database

    Kraeva, N.; Ishemgulova, A.; Lukeš, Julius; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 198, č. 1 (2014), s. 11-13 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Leishmania mexicana * Gene expression * Tet-inducible system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  3. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    Science.gov (United States)

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (qexpression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into

  4. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    Science.gov (United States)

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. High field Moessbauer study of dilute Ir-(Fe) alloys

    International Nuclear Information System (INIS)

    Takabatake, Toshiro; Mazaki, Hiromasa; Shinjo, Teruya.

    1981-01-01

    The magnetic behavior of very dilute Fe impurities in Ir has been studied by means of Moessbauer measurement in external fields up to 80 kOe at 4.2 K. The saturation hyperfine field increases in proportion to the external field up to the maximum magnetic field available. This means that for a localized spin fluctuation system IrFe, the effective magnetic moment associated with Fe impurities is induced in proportion to the external field. No anomalous spectrum was observed with a very dilute sample (--10 ppm 57 Co), indicating that the interaction between impurities is responsible for the anomalous spectrum previously observed with a less homogeneous sample. (author)

  6. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription.

    Science.gov (United States)

    Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W

    2017-08-10

    DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.

  7. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    International Nuclear Information System (INIS)

    Mizoshiri, N.; Kishida, T.; Yamamoto, K.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mori, Y.; Ejima, A.; Sato, Y.; Arai, Y.; Fujiwara, H.; Yamamoto, T.; Kanamura, N.; Mazda, O.; Kubo, T.

    2015-01-01

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  8. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  9. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    Science.gov (United States)

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  10. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression

    International Nuclear Information System (INIS)

    Carlin, Sean; Pugachev, Andrei; Sun Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C. Clifton; Humm, John L.

    2009-01-01

    Purpose: To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer 18 F-fluoromisonidazole ( 18 F-FMISO). Methods: Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe 124 I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil ( 124 I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between 124 I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe 18 F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with 124 I-FIAU (3 h before sacrifice) and 18 F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between 18 F-FMISO and 124 I-FIAU on a pixel-by-pixel basis was performed. Results: Correlation coefficients between 124 I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between 18 F-FMISO and 124 I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. Conclusions: We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of

  11. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  12. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Padventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  13. IMPACT OF ANGIOTENSIN-CONVERTING ENZYME GENE POLYMORPHISM ON THE DEVELOPMENT OF INSULIN RESISTANCE SYNDROME

    Directory of Open Access Journals (Sweden)

    G. E. Roitberg

    2013-01-01

    Full Text Available Objective: to analyze the distribution of components of insulin resistance (IR syndrome and to study the frequency of their combinations in relation to the genotypes and allelic variants of the angiotensin-converting enzyme (ACE gene.Subjects and methods. A group of clinically healthy patients (50 women and 42 men with different genotypes of the ACE gene was examined.The distribution of IR syndrome components and the frequency of their combinations were analyzed in relation to the genotypes and allelicvariants of the ACE gene.Results. A group of D allele carriers compared to A allele ones showed a pronounced tendency for the frequency of IR to reduce due to thehigher proportion of patients with complete IR syndrome. This observation becomes statistically significant in the assessment of homozygous variants of the ACE gene. At the same time dyslipidemia and hypertension in the presence of IR significantly more frequently occurred in patients with the DD genotype than in those with genotype II.Conclusion. There was a marked predominance of the manifestations of IR syndrome with a complete set of components in the DD genotypicgroup, which confirms the significant strong association between ACE gene polymorphism and IR syndrome.

  14. Translational control is a major contributor to hypoxia induced gene expression

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Jutten, Barry; Seigneuric, Renaud; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of solid tumors that is associated with an aggressive phenotype, resistance to therapy and poor prognosis. Major contributors to these adverse effects are the transcriptional program activated by the HIF family of transcription factors as well as the translational response mediated by PERK-dependent phosphorylation of eIF2α and inhibition of mTORC1 activity. In this study we determined the relative contribution of both transcriptional and translational responses to changes in hypoxia induced gene expression. Material and methods: Total and efficiently translated (polysomal) mRNA was isolated from DU145 prostate carcinoma cells that were exposed for up to 24 h of hypoxia ( 2 ). Changes in transcription and translation were assessed using affymetrix microarray technology. Results: Our data reveal an unexpectedly large contribution of translation control on both induced and repressed gene expression at all hypoxic time points, particularly during acute hypoxia (2-4 h). Gene ontology analysis revealed that gene classes like transcription and signal transduction are stimulated by translational control whereas expression of genes involved in cell growth and protein metabolism are repressed during hypoxic conditions by translational control. Conclusions: Our data indicate that translation influences gene expression during hypoxia on a scale comparable to that of transcription.

  15. Categories and inheritance of resistance to Nilaparvata lugens (Hemiptera: Delphacidae) in mutants of indica rice 'IR64'.

    Science.gov (United States)

    Sangha, Jatinder Singh; Chen, Yolanda H; Palchamy, Kadirvel; Jahn, Gary C; Maheswaran, M; Adalla, Candida B; Leung, Hei

    2008-04-01

    Varietal mutants can be useful for developing durable resistance, understanding categories of resistance, and identifying candidate genes involved in defense responses. We used mutants of rice 'IR64' to isolate new sources of resistance to the planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). We compared two mutants that showed a gain and loss of resistance to N. lugens, to determine the categories of resistance to this pest. Under choice tests, female planthoppers avoided settling and laid fewer eggs on the resistant mutant 'D518' than on the susceptible mutant D1131, susceptible check 'TN1', and wild-type IR64, indicating that antixenosis was the resistance category. Similarly, under no-choice conditions, planthoppers laid 29% fewer eggs in D518 than in IR64, but they oviposited more in 'D1131' and TN1. Honeydew excretion was greater on D1131 seedlings but slightly lower on D518 than on IR64. Nymphal survival and adult female weight did not differ among rice cultivars. D518 showed higher tolerance of N. lugens infestations than IR64. Genetic analysis of the F1, F2, and F3 populations derived from D518 x IR64 revealed that resistance in D518 is dominant and controlled by a single gene. Despite the variation in resistance to N. lugens, both mutants and IR64 performed similarly in the field. The mutant D518 is a new source of durable resistance to N. lugens, mainly due to enhanced antixenosis to female hoppers for settling and oviposition.

  16. Nucleotide Pool Depletion Induces G-Quadruplex-Dependent Perturbation of Gene Expression

    Directory of Open Access Journals (Sweden)

    Charikleia Papadopoulou

    2015-12-01

    Full Text Available Nucleotide pool imbalance has been proposed to drive genetic instability in cancer. Here, we show that slowing replication forks by depleting nucleotide pools with hydroxyurea (HU can also give rise to both transient and permanent epigenetic instability of a reporter locus, BU-1, in DT40 cells. HU induces stochastic formation of Bu-1low variants in dividing cells, which have lost the H3K4me3 present in untreated cells. This instability is potentiated by an intragenic G quadruplex, which also promotes local H2Ax phosphorylation and transient heterochromatinization. Genome-wide, gene expression changes induced by HU significantly overlap with those resulting from loss of the G4-helicases FANCJ, WRN, and BLM. Thus, the effects of global replication stress induced by nucleotide pool depletion can be focused by local replication impediments caused by G quadruplex formation to induce epigenetic instability and changes in gene expression, a mechanism that may contribute to selectable transcriptional changes in cancer.

  17. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    Science.gov (United States)

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  18. The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans.

    Science.gov (United States)

    Kogure, Akiko; Uno, Masaharu; Ikeda, Takako; Nishida, Eisuke

    2017-07-07

    Intermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of Caenorhabditis elegans and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting. To test this proposition, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans We revealed that fasting up-regulated the expression of the miRNA-induced silencing complex (miRISC) components, including Argonaute and GW182, and the miRNA-processing enzyme DRSH-1 (the ortholog of the Drosophila Drosha enzyme). Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knock-out or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector in C. elegans Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1 , a gene encoding GW182, respectively. Moreover, miRNA array analyses revealed that the expression levels of numerous miRNAs changed after 2 days of fasting. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme DRSH-1, play an important role in mediating IF-induced longevity via the regulation of fasting-induced changes in gene expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  20. Superconductivity and magnetism in Ir-doped GdFeAsO

    International Nuclear Information System (INIS)

    Cui, Y.J.; Chen, Y.L.; Cheng, C.H.; Yang, Y.; Jiang, J.; Wang, Y.Z.; Zhang, Y.; Zhao, Y.

    2010-01-01

    The 5d-transition metal, Ir has successfully been doped at Fe site and induced superconductivity in GdFeAsO at T c = 18.9 K and ∼20 atom%. The Ir-doping shortened the c-axis length and stretched the a-axis one, which led to enhance the coupling between the FeAs- and SmO-layer, and to weaken the bonding between Fe and As atom. Paramagnetism was observed in all of the samples, which was resulted from the magnetic Gd ion as in the F-doped GdFeAsO. An upper critical field of GdFe 0.8 Ir 0.2 AsO was extrapolated to around 24 T, much smaller than that of F-doped GdFeAsO owing to a relatively low T c and small value of dH c2 /dT.

  1. Radiation and desiccation response motif mediates radiation induced gene expression in D. radiodurans

    International Nuclear Information System (INIS)

    Anaganti, Narasimha; Basu, Bhakti; Apte, Shree Kumar

    2015-01-01

    Deinococcus radiodurans is an extremophile that withstands lethal doses of several DNA damaging agents such as gamma irradiation, UV rays, desiccation and chemical mutagens. The organism responds to DNA damage by inducing expression of several DNA repair genes. At least 25 radiation inducible gene promoters harbour a 17 bp palindromic sequence known as radiation and desiccation response motif (RDRM) implicated in gamma radiation inducible gene expression. However, mechanistic details of gamma radiation-responsive up-regulation in gene expression remain enigmatic. The promoters of highly radiation induced genes ddrB (DR0070), gyrB (DR0906), gyrA (DR1913), a hypothetical gene (DR1143) and recA (DR2338) from D. radiodurans were cloned in a green fluorescence protein (GFP)-based promoter probe shuttle vector pKG and their promoter activity was assessed in both E. coli as well as in D. radiodurans. The gyrA, gyrB and DR1143 gene promoters were active in E. coli although ddrB and recA promoters showed very weak activity. In D. radiodurans, all the five promoters were induced several fold following 6 kGy gamma irradiation. Highest induction was observed for ddrB promoter (25 fold), followed by DR1143 promoter (15 fold). The induction in the activity of gyrB, gyrA and recA promoters was 5, 3 and 2 fold, respectively. To assess the role of RDRM, the 17 bp palindromic sequence was deleted from these promoters. The promoters devoid of RDRM sequence displayed increase in the basal expression activity, but the radiation-responsive induction in promoter activity was completely lost. The substitution of two conserved bases of RDRM sequence yielded decreased radiation induction of PDR0070 promoter. Deletion of 5 bases from 5'-end of PDR0070 RDRM increased basal promoter activity, but radiation induction was completely abolished. Replacement of RDRM with non specific sequence of PDR0070 resulted in loss of basal expression and radiation induction. The results demonstrate that

  2. Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering.

    Science.gov (United States)

    Dong, Hongjun; Tao, Wenwen; Zhang, Yanping; Li, Yin

    2012-01-01

    Clostridium acetobutylicum is an important solvent (acetone-butanol-ethanol) producing bacterium. However, a stringent, effective, and convenient-to-use inducible gene expression system that can be used for regulating the gene expression strength in C. acetobutylicum is currently not available. Here, we report an anhydrotetracycline-inducible gene expression system for solvent-producing bacterium C. acetobutylicum. This system consists of a functional chloramphenicol acetyltransferase gene promoter containing tet operators (tetO), Pthl promoter (thiolase gene promoter from C. acetobutylicum) controlling TetR repressor expression cassette, and the chemical inducer anhydrotetracycline (aTc). The optimized system, designated as pGusA2-2tetO1, allows gene regulation in an inducer aTc concentration-dependent way, with an inducibility of over two orders of magnitude. The stringency of TetR repression supports the introduction of the genes encoding counterselective marker into C. acetobutylicum, which can be used to increase the mutant screening efficiency. This aTc-inducible gene expression system will thus increase the genetic manipulation capability for engineering C. acetobutylicum. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR.

    Science.gov (United States)

    Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A

    2015-10-01

    Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p HOMA-IR; 846.5 ± 1723.3%, p HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.

  4. Bcl-2 and N-Myc Coexpression Increases IGF-IR and Features of Malignant Growth in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Rama Jasty

    2001-01-01

    Full Text Available The bcl-2 and c-myc oncogenes cooperate to transform multiple cell types. In the pediatric malignancy NB2, Bcl2 is highly expressed. In tumors with a poor prognosis, N-Myc, a protein homologous to c-Myc, is overexpressed as a result of gene amplification. The present study was designed to determine whether Bcl-2 cooperates with N-Myc to bestow a tumorigenic phenotype to neuroblastoma (NB cells. NB cell lines that at baseline express neither Bcl-2 nor N-Myc were stably transfected to express these gene products. In this model, we found Bcl-2 rescues N-Myc-expressing cells from apoptosis induced by serum withdrawal. Coexpression of Bcl-2 and N-Myc supports growth in low serum conditions and anchorage-independent growth in soft agar. Similarly, in vivo tumorigenic and angiogenic activity was dependent on coexpression. Our data further suggests that the mechanism underlying these changes involves the receptor for insulin growth factor type I (IGF-IR.

  5. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    International Nuclear Information System (INIS)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-01-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation

  6. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); He, Xiaoyun; Huang, Kunlun; Luo, Yunbo [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentao@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.

  7. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Furlong, Hayley; Mothersill, Carmel; Lyng, Fiona M.; Howe, Orla

    2013-01-01

    Highlights: ► Molecular mechanisms involved in the production of a radiation induced bystander effect are not well known. ► We investigate gene expression changes in apoptotic genes in both direct and bystander responses. ► We demonstrate initiation of the apoptotic cascade in a bystander response. ► Lower doses reveal a specific but differential response related to apoptosis compared to higher doses. - Abstract: It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade post-exposure to low doses ultimately to remove damaged cells from a population, specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander reporter cells may initiate a similar apoptotic response if exposed to low doses of IR (0.05 Gy and 0.5 Gy) and compared to directly irradiated cells. Key apoptotic genes were selected according to their role in the apoptotic cascade; tumour suppressor gene TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated consolidated the role of apoptosis following direct IR exposure for all doses and time points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and effector caspase 3 and 9 were up-regulated. However, the gene expression profile for the bystander response was quite different and more complex in comparison to the direct response. The 0.05 Gy dose point had a more significant apoptosis gene expression profile compared to the 0.5 Gy dose point and genes were not always expressed within 1 h but were sometimes expressed 24 h later. The bystander data clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of the bystander samples demonstrated down-regulation in their gene expression levels at 0.05 Gy and 0.5 Gy at both time points therefore not

  8. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, Hayley, E-mail: hayley.furlong@dit.ie [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Mothersill, Carmel [Medical Physics and Applied Radiation Sciences, Nuclear Research Building, 1280 Hamilton, Ontario L8S 4K1 (Canada); Lyng, Fiona M. [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Howe, Orla [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland)

    2013-01-15

    Highlights: ► Molecular mechanisms involved in the production of a radiation induced bystander effect are not well known. ► We investigate gene expression changes in apoptotic genes in both direct and bystander responses. ► We demonstrate initiation of the apoptotic cascade in a bystander response. ► Lower doses reveal a specific but differential response related to apoptosis compared to higher doses. - Abstract: It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade post-exposure to low doses ultimately to remove damaged cells from a population, specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander reporter cells may initiate a similar apoptotic response if exposed to low doses of IR (0.05 Gy and 0.5 Gy) and compared to directly irradiated cells. Key apoptotic genes were selected according to their role in the apoptotic cascade; tumour suppressor gene TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated consolidated the role of apoptosis following direct IR exposure for all doses and time points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and effector caspase 3 and 9 were up-regulated. However, the gene expression profile for the bystander response was quite different and more complex in comparison to the direct response. The 0.05 Gy dose point had a more significant apoptosis gene expression profile compared to the 0.5 Gy dose point and genes were not always expressed within 1 h but were sometimes expressed 24 h later. The bystander data clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of the bystander samples demonstrated down-regulation in their gene expression levels at 0.05 Gy and 0.5 Gy at both time points therefore not

  9. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  10. Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface.

    Science.gov (United States)

    Lee, M; Arras, R; Warot-Fonrose, B; Hungria, T; Lippmaa, M; Daimon, H; Casanove, M J

    2017-11-01

    The structure of Ir-doped LaAlO 3 /SrTiO 3 (001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO 3 film as a function of the Ir concentration in the topmost SrTiO 3 layer. It is shown that the LaAlO 3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L 2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.

  11. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  12. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  13. Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

    CERN Document Server

    Iadarola, Giovanni; Rumolo, Giovanni

    2016-01-01

    The expected heat load induced on the beam screens has been evaluated for all the twin-bore magnets in the Insertion Regions (IRs) of the HL-LHC. The contribution from the impedance of the beam screen has been evaluated taking into account the presence of a longitudinal weld in the beam screen and the impact of the temperature and of the magnetic field on the resistivity of the surface. The contribution coming from electron cloud effects has been evaluated for different values of the Secondary Electron Yield of the surface based PyECLOUD build-up simulations.

  14. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  15. Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO 2 resulted in decreased reversion of cyc1-131 in rad6, rad9 and rad15 strains compared to the normal RAD + strains. In addition, rad52 greatly decreased EMS reversion of cyc1-131 but had no effect on HNO 2 -induced reversion; rad18, on the other hand, increased HNO 2 -induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad18, had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2, and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12, and rad16 increased it compared to the RAD + strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on uv mutagenesis. It is concluded that although the nature of the repair pathways may differ for uv- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS, and HNO 2

  16. A Note on UV/IR Mixing and Non-Commutative Instanton Calculus

    CERN Document Server

    Bichl, A A

    2003-01-01

    We estimate the instanton-induced vacuum energy in non-commutative U(1) Yang-Mills theory in four dimensions. In the dilute gas approximation, it is found to be plagued by infrared divergences, as a result of UV/IR mixing.

  17. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    Science.gov (United States)

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  18. Genome-wide identification, characterization and classification of ionotropic glutamate receptor genes (iGluRs) in the malaria vector Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Wang, Ting-Ting; Si, Feng-Ling; He, Zheng-Bo; Chen, Bin

    2018-01-15

    Ionotropic glutamate receptors (iGluRs) are conserved ligand-gated ion channel receptors, and ionotropic receptors (IRs) were revealed as a new family of iGluRs. Their subdivision was unsettled, and their characteristics are little known. Anopheles sinensis is a major malaria vector in eastern Asia, and its genome was recently well sequenced and annotated. We identified iGluR genes in the An. sinensis genome, analyzed their characteristics including gene structure, genome distribution, domains and specific sites by bioinformatic methods, and deduced phylogenetic relationships of all iGluRs in An. sinensis, Anopheles gambiae and Drosophila melanogaster. Based on the characteristics and phylogenetics, we generated the classification of iGluRs, and comparatively analyzed the intron number and selective pressure of three iGluRs subdivisions, iGluR group, Antenna IR and Divergent IR subfamily. A total of 56 iGluR genes were identified and named in the whole-genome of An. sinensis. These genes were located on 18 scaffolds, and 31 of them (29 being IRs) are distributed into 10 clusters that are suggested to form mainly from recent gene duplication. These iGluRs can be divided into four groups: NMDA, non-NMDA, Antenna IR and Divergent IR based on feature comparison and phylogenetic analysis. IR8a and IR25a were suggested to be monophyletic, named as Putative in the study, and moved from the Antenna subfamily in the IR family to the non-NMDA group as a sister of traditional non-NMDA. The generated iGluRs of genes (including NMDA and regenerated non-NMDA) are relatively conserved, and have a more complicated gene structure, smaller ω values and some specific functional sites. The iGluR genes in An. sinensis, An. gambiae and D. melanogaster have amino-terminal domain (ATD), ligand binding domain (LBD) and Lig_Chan domains, except for IR8a that only has the LBD and Lig_Chan domains. However, the new concept IR family of genes (including regenerated Antenna IR, and Divergent

  19. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts.

    Science.gov (United States)

    Mizoshiri, N; Kishida, T; Yamamoto, K; Shirai, T; Terauchi, R; Tsuchida, S; Mori, Y; Ejima, A; Sato, Y; Arai, Y; Fujiwara, H; Yamamoto, T; Kanamura, N; Mazda, O; Kubo, T

    2015-11-27

    Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Superconductivity and magnetism in Ir-doped GdFeAsO

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Y.J.; Chen, Y.L. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia); Yang, Y.; Jiang, J.; Wang, Y.Z.; Zhang, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052 NSW (Australia)

    2010-11-01

    The 5d-transition metal, Ir has successfully been doped at Fe site and induced superconductivity in GdFeAsO at T{sub c} = 18.9 K and {approx}20 atom%. The Ir-doping shortened the c-axis length and stretched the a-axis one, which led to enhance the coupling between the FeAs- and SmO-layer, and to weaken the bonding between Fe and As atom. Paramagnetism was observed in all of the samples, which was resulted from the magnetic Gd ion as in the F-doped GdFeAsO. An upper critical field of GdFe{sub 0.8}Ir{sub 0.2}AsO was extrapolated to around 24 T, much smaller than that of F-doped GdFeAsO owing to a relatively low T{sub c} and small value of dH{sub c2}/dT.

  1. A prognostic profile of hypoxia-induced genes for localised high-grade soft tissue sarcoma

    DEFF Research Database (Denmark)

    Aggerholm-Pedersen, Ninna; Sørensen, Brita Singers; Overgaard, Jens

    2016-01-01

    sarcoma (STS). METHODS: The hypoxia-induced gene quantification was performed by real-time quantitative PCR (RT-qPCR) of formalin-fixed, paraffin-embedded tissue samples. The gene expression cut-points were determined in a test cohort of 55 STS patients and used to allocate each patient into a more......BACKGROUND: For decades, tumour hypoxia has been pursued as a cancer treatment target. However, prognostic and predictive biomarkers are essential for the use of this target in the clinic. This study investigates the prognostic value of a hypoxia-induced gene profile in localised soft tissue...

  2. UVB-induced gene expression in the skin of Xiphophorus maculatus Jp 163 B☆

    Science.gov (United States)

    Yang, Kuan; Boswell, Mikki; Walter, Dylan J.; Downs, Kevin P.; Gaston-Pravia, Kimberly; Garcia, Tzintzuni; Shen, Yingjia; Mitchell, David L.; Walter, Ronald B.

    2014-01-01

    Xiphophorus fish and interspecies hybrids represent long-standing models to study the genetics underlying spontaneous and induced tumorigenesis. The recent release of the Xiphophorus maculatus genome sequence will allow global genetic regulation studies of genes involved in the inherited susceptibility to UVB-induced melanoma within select backcross hybrids. As a first step toward this goal, we report results of an RNA-Seq approach to identify genes and pathways showing modulated transcription within the skin of X. maculatus Jp 163 B upon UVB exposure. X. maculatus Jp 163 B were exposed to various doses of UVB followed by RNA-Seq analysis at each dose to investigate overall gene expression in each sample. A total of 357 genes with a minimum expression change of 4-fold (p-adj fish skin to UVB exposure. PMID:24556253

  3. The potential of virus-induced gene silencing for speeding up functional characterization of plant genes

    NARCIS (Netherlands)

    Benedito, V.A.; Visser, P.B.; Angenent, G.C.; Krens, F.A.

    2004-01-01

    Virus-induced gene silencing (VIGS) has been shown to be of great potential in plant reverse genetics. Advantages of VIGS over other approaches, such as T-DNA or transposon tagging, include the circumvention of plant transformation, methodological simplicity and robustness, and speedy results. These

  4. Functionalized nanoparticles for AMF-induced gene and drug delivery

    Science.gov (United States)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the

  5. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    OpenAIRE

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2008-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and...

  6. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    Science.gov (United States)

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  7. Adaptive response induced by occupational exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Barquinero, J.F.; Caballin, M.R.; Barrios, L.; Egozcue, J.; Miro, R.; Ribas, M.

    1997-01-01

    We have found a significant decreased sensitivity to the cytogenetic effects of both ionizing radiation (IR) (2 Gy of γ rays) and bleomycin (BLM, 0,03 U/ml), in lymphocytes from individuals occupationally exposed to IR when compared with controls. These results suggest that occupational exposures to IR can induce adaptive response that can be detected by a subsequent treatment either by IR or by BLM. When a comparison is made between the cytogenetic effects of both treatments, no correlation was observed at the individual level. On the other hand, the individual frequencies of chromosome aberrations induced by a challenge dose of IR were negatively correlated with the occupationally received doses during the last three years. This correlation was not observed after the challenge treatment of BLM. Moreover, the individual frequencies of chromosome aberrations induced by IR treatment were homogeneous. This is not the case of the individual frequencies of chromatid aberrations induced by BLM, where a great heterogeneity was observed. (authors)

  8. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    Science.gov (United States)

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  9. Construction and identification of double-gene co-expression vector with radiation-inducible human TRAIL and endostatin

    International Nuclear Information System (INIS)

    Li Yanbo; Guo Caixia; Gong Pingsheng; Liu Yang; Liangshuo; Wang Hongfang; Wang Jianfeng; Gong Shouliang

    2010-01-01

    Objective: To construct a recombinant plasmid pshuttle-Egr1-shTRAIL-shES containing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and endostatin double genes. Methods: The secretary endostatin gene (shES) fragment was amplified from the pMD19T-endostatin vector by PCR. The shES gene was ligated to pMD19Tand sequenced. Finally, using the gene recombinant technique, the recombinant plasmid pshuttle-Egr1- shTRAIL-shES with radiation-inducible Egr1 promoter, secretary TRAIL and endostatin double-gene was constructed. Results: The sequence of the shES gene was in concordance with that anticipated indicating shES gene was acquired successfully.Moreover, the results acquired by PCR and restrictive digestion identification of the recombinant plasmid pshuttle-Egr1-shTRAIL-shES and all the vectors refered to its construction confirmed that pshuttle-Egr1-shTRAIL-shES was constructed correctly. Conclusion: The radiation-inducible double-gene co-expression vector pshuttle-Egr1-shTRAIL-shES is constructed successfully, which would set the experimental foundation for further study on the anti-tumor effect of TRAIL and endostatin double-gene-radiotherapy and its related mechanisms. (authors)

  10. Induced resistance and gene expression in wheat against leaf rust ...

    African Journals Online (AJOL)

    uvp

    2013-05-15

    May 15, 2013 ... 2Department of Soil, Crop and Climate Sciences, University of the Free State, P.O Box ... Key words: Wheat leaf rust, induced resistance, priming, gene ..... transformation: susceptibility of transgenic Nicotiana sylvestris plants.

  11. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    Science.gov (United States)

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community. Copyright © 2016

  12. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hiroaki [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Yamazaki, Daiju [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu; Yamamura, Hisao [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2011-07-29

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  13. Elicitor and fusarium-induced expression of NPR-1 like genes in banana

    CSIR Research Space (South Africa)

    Endah, R

    2008-11-01

    Full Text Available NPR1 is an essential positive regulator of salicylic acid-induced PR gene expression and systemic acquired resistance. Two novel full-length NPR1-like genes; MNPR1A and MNPR1B, were isolated by application of the PCR and RACE techniques. The two...

  14. Recurrent Amplification at 13q34 Targets at CUL4A, IRS2, and TFDP1 As an Independent Adverse Prognosticator in Intrahepatic Cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    Full Text Available Amplification of genes at 13q34 has been reported to be associated with tumor proliferation and progression in diverse types of cancers. However, its role in intrahepatic cholangiocarcinoma (iCCA has yet to be explored. We examined two iCCA cell lines and 86 cases of intrahepatic cholangiocarcinoma to analyze copy number of three target genes, including cullin 4A (CUL4A, insulin receptor substrate 2 (IRS2, and transcription factor Dp-1 (TFDP1 at 13q34 by quantitative real-time polymerase chain reaction. The cell lines and all tumor samples were used to test the relationship between copy number (CN alterations and protein expression by western blotting and immunohistochemical assays, respectively. IRS2 was introduced, and each target gene was silenced in cell lines. The mobility potential of cells was compared in the basal condition and after manipulation using cell migration and invasion assays. CN alterations correlated with protein expression levels. The SNU1079 cell line containing deletions of the target genes demonstrated decreased protein expression levels and significantly lower numbers of migratory and invasive cells, as opposed to the RBE cell line, which does not contain CN alterations. Overexpression of IRS2 by introducing IRS2 in SUN1079 cells increased the mobility potential. In contrast, silencing each target gene showed a trend or statistical significance toward inhibition of migratory and invasive capacities in RBE cells. In tumor samples, the amplification of each of these genes was associated with poor disease-free survival. Twelve cases (13.9% demonstrated copy numbers > 4 for all three genes tested (CUL4A, IRS2, and TFDP1, and showed a significant difference in disease-free survival by both univariate and multivariate survival analyses (hazard ratio, 2.69; 95% confidence interval, 1.23 to 5.88; P = 0.013. Our data demonstrate that amplification of genes at 13q34 plays an oncogenic role in iCCA featuring adverse disease

  15. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    Science.gov (United States)

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.

  16. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  17. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  18. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  19. Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke

    2014-11-01

    Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined

  20. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    Science.gov (United States)

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  2. Electronic structure and chemical bonding in LaIrSi-type intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [Bordeaux Univ., Pessac (France). CNRS; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Nakhl, Michel [Univ. Libanaise, Fanar (Lebanon). Ecole Doctorale Sciences et Technologies

    2017-05-01

    The cubic LaIrSi type has 23 representatives in aluminides, gallides, silicides, germanides, phosphides, and arsenides, all with a valence electron count of 16 or 17. The striking structural motif is a three-dimensional network of the transition metal (T) and p element (X) atoms with TX{sub 3/3} respectively XT{sub 3/3} coordination. Alkaline earth or rare earth atoms fill cavities within the polyanionic [TX]{sup δ-} networks. The present work presents a detailed theoretical study of chemical bonding in LaIrSi-type representatives, exemplarily for CaPtSi, BaIrP, BaAuGa, LaIrSi, CeRhSi, and CeIrSi. DFT-GGA-based electronic structure calculations show weakly metallic compounds with itinerant small magnitude DOSs at E{sub F} except for CeRhSi whose large Ce DOS at E{sub F} leads to a finite magnetization on Ce (0.73 μ{sub B}) and induced small moments of opposite sign on Rh and Si in a ferromagnetic ground state. The chemical bonding analyses show dominant bonding within the [TX]{sup δ-} polyanionic networks. Charge transfer magnitudes were found in accordance with the course of the electronegativites of the chemical constituents.

  3. Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury.

    Science.gov (United States)

    Succar, Lena; Pianta, Timothy J; Davidson, Trent; Pickering, John W; Endre, Zoltán H

    2017-09-01

    Extensive structural damage within the kidney must be present before serum creatinine increases. However, a subclinical phase of chronic kidney disease (CKD) usually goes undetected. Here we tested whether experimental subclinical CKD would modify functional and damage biomarker profiles of acute kidney injury (AKI). Subclinical CKD was induced in rats by adenine or aristolochic acid models but without increasing serum creatinine. After prolonged recovery (three to six weeks), AKI was induced with a subnephrotoxic dose of cisplatin. Urinary levels of kidney injury molecule-1 (KIM-1), cytochrome C, monocyte chemotactic protein-1 (MCP-1), clusterin, and interleukin-18 increased during CKD induction, without an increase in serum creatinine. After AKI in adenine-induced CKD, serum creatinine increased more rapidly, while increased urinary KIM-1, clusterin, and MCP-1 were delayed and reduced. Increased serum creatinine and biomarker excretion were associated with diffuse tubulointerstitial injury in the outer stripe of outer medulla coupled with over 50% cortical damage. Following AKI in aristolochic acid-induced CKD, increased serum creatinine, urinary KIM-1, clusterin, MCP-1, cytochrome C, and interleukin-18 concentrations and excretion were greater at day 21 than day 42 and inversely correlated with cortical injury. Subclinical CKD modified functional and damage biomarker profiles in diametrically opposite ways. Functional biomarker profiles were more sensitive, while damage biomarker diagnostic thresholds and increases were diminished and delayed. Damage biomarker concentrations and excretion were inversely linked to the extent of prior cortical damage. Thus, thresholds for AKI biomarkers may need to be lower or sampling delayed in the known presence of CKD. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Science.gov (United States)

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  5. MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence

    International Nuclear Information System (INIS)

    Wang Yong; Scheiber, Melissa N.; Neumann, Carola; Calin, George A.; Zhou Daohong

    2011-01-01

    Purpose: MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. Methods and Materials: In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. Results: We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. Conclusion: Our

  6. Myostatin induces insulin resistance via Casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) protein in response to high calorie diet intake.

    Science.gov (United States)

    Bonala, Sabeera; Lokireddy, Sudarsanareddy; McFarlane, Craig; Patnam, Sreekanth; Sharma, Mridula; Kambadur, Ravi

    2014-03-14

    To date a plethora of evidence has clearly demonstrated that continued high calorie intake leads to insulin resistance and type-2 diabetes with or without obesity. However, the necessary signals that initiate insulin resistance during high calorie intake remain largely unknown. Our results here show that in response to a regimen of high fat or high glucose diets, Mstn levels were induced in muscle and liver of mice. High glucose- or fat-mediated induction of Mstn was controlled at the level of transcription, as highly conserved carbohydrate response and sterol-responsive (E-box) elements were present in the Mstn promoter and were revealed to be critical for ChREBP (carbohydrate-responsive element-binding protein) or SREBP1c (sterol regulatory element-binding protein 1c) regulation of Mstn expression. Further molecular analysis suggested that the increased Mstn levels (due to high glucose or fatty acid loading) resulted in increased expression of Cblb in a Smad3-dependent manner. Casitas B-lineage lymphoma b (Cblb) is an ubiquitin E3 ligase that has been shown to specifically degrade insulin receptor substrate 1 (IRS1) protein. Consistent with this, our results revealed that elevated Mstn levels specifically up-regulated Cblb, resulting in enhanced ubiquitin proteasome-mediated degradation of IRS1. In addition, over expression or knock down of Cblb had a major impact on IRS1 and pAkt levels in the presence or absence of insulin. Collectively, these observations strongly suggest that increased glucose levels and high fat diet, both, result in increased circulatory Mstn levels. The increased Mstn in turn is a potent inducer of insulin resistance by degrading IRS1 protein via the E3 ligase, Cblb, in a Smad3-dependent manner.

  7. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  8. Evaluation of genome damage and transcription profile of DNA damage/repair response genes in peripheral blood mononuclear cells exposed to low dose radiation

    International Nuclear Information System (INIS)

    Soren, D.C.; Saini, Divyalakshmi; Das, Birajalaxmi

    2016-01-01

    Humans are exposed to various physical and chemical mutagens in their life time. Physical mutagens, like ionizing radiation (IR), may induce adverse effect at high acute dose exposures in human cells. However, there are inconsistent results on the effect of low dose radiation exposure in human cells. There are a variety of DNA damage endpoints to evaluate the effect of low dose radiation in human cells. DNA damage response (DDR) may lead to changes in expression profile of many genes. In the present study, an attempt has been made to evaluate genome damage at low dose IR exposure in human blood lymphocytes. Cytochalasin blocked micronuclei (CBMN) assay has been used to determine the frequency of micronuclei in binucleated cells in PBMCs exposed to IR. Transcription profile of ATM, P53, GADD45A, CDKN1A, TRF1 and TRF2 genes was studied using real time quantitative PCR. Venous blood samples collected from 10 random healthy donors were irradiated with different doses of γ-radiation ( 137 Cs) along with sham irradiated control. Whole blood culture was set up using microculture technique. Blood samples were stimulated with phytohemagglutinin, and CBMN assay was performed. An average of 2,500 binucleated cells was scored for each dose point. For gene expression analysis, total RNA was isolated, cDNA was prepared, and gene expression analysis for ATM, P53, CDKN1A, GADD45A, TRF1 and TRF2 was done using real time PCR. Our results revealed no significant increase in the frequency of MN up to 100 mGy as compared to control. However, no significant alteration in gene expression profile was observed. In conclusion, no significant dose response was observed at the frequency of MN as well as the expression profile of DDR/repair genes, suggesting low dose radiation did not induce significant DNA damage at these acute dose exposures. (author)

  9. CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN.

    Science.gov (United States)

    Fardo, David W; Katsumata, Yuriko; Kauwe, John S K; Deming, Yuetiva; Harari, Oscar; Cruchaga, Carlos; Nelson, Peter T

    2017-04-01

    Hippocampal sclerosis of aging (HS-Aging) is a common cause of dementia in older adults. We tested the variability in cerebrospinal fluid (CSF) proteins associated with previously identified HS-Aging risk single nucleotide polymorphisms (SNPs). Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n=237) data, combining both multiplexed proteomics CSF and genotype data, were used to assess the association between CSF analytes and risk SNPs in four genes (SNPs): GRN (rs5848), TMEM106B (rs1990622), ABCC9 (rs704180), and KCNMB2 (rs9637454). For controls, non-HS-Aging SNPs in APOE (rs429358/rs7412) and MAPT (rs8070723) were also analyzed against Aβ1-42 and total tau CSF analytes. The GRN risk SNP (rs5848) status correlated with variation in CSF proteins, with the risk allele (T) associated with increased levels of AXL Receptor Tyrosine Kinase (AXL), TNF-Related Apoptosis-Inducing Ligand Receptor 3 (TRAIL-R3), Vascular Cell Adhesion Molecule-1 (VCAM-1) and clusterin (CLU) (all p<0.05 after Bonferroni correction). The TRAIL-R3 correlation was significant in meta-analysis with an additional dataset (p=5.05×10 -5 ). Further, the rs5848 SNP status was associated with increased CSF tau protein - a marker of neurodegeneration (p=0.015). These data are remarkable since this GRN SNP has been found to be a risk factor for multiple types of dementia-related brain pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... and their genetically identical wild-type controls. For future studies, this cell system can be used to uncover the mechanisms and signalling pathways involved in the TIMP-1-mediated inhibition of apoptosis as well as to investigate the possibility of using TIMP-1 inhibitors to optimise the effect of conventional...

  11. Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Chou-Chin Lan

    Full Text Available Ischemia-reperfusion (IR-induced acute lung injury (ALI is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA, in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group: sham, sham + AZA 200 mg/kg body weight (BW, IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17 and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.

  12. Porcine insulin receptor substrate 4 (IRS4) gene: cloning, polymorphism and association study

    Czech Academy of Sciences Publication Activity Database

    Masopust, Martin; Vykoukalová, Z.; Knoll, Aleš; Bartenschlager, H.; Mileham, A.; Deeb, N.; Rohrer, G. A.; Čepica, Stanislav

    2010-01-01

    Roč. 38, - (2010), 2611-2617 ISSN 0301-4851 R&D Projects: GA ČR GA523/07/0353; GA ČR GAP502/10/1216 Institutional research plan: CEZ:AV0Z50450515 Keywords : PCR cloning * Polymorphism * IRS4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.875, year: 2010

  13. Interferon-induced transcription of a gene encoding a 15-kDA protein depends on an upstream enhancer element

    International Nuclear Information System (INIS)

    Reich, N.; Evans, B.; Levy, D.; Fahey, D.; Knight, E. Jr.; Darnell, J.E. Jr.

    1987-01-01

    A human gene encoding an interferon-induced 15-kDa protein has been isolated from a genomic library. The gene appears to be single-copy and is composed of two exons, the first of which contains the ATG translation initiation codon. In vitro nuclear run-on assays showed that the transcription rate of the gene is stimulated after interferon treatment. To analyze transcriptional regulatory sequences, the authors constructed recombinant plasmids for use in transient transfection assays of HeLa cells. Constructs containing 115 nucleotides 5' to the transcription initiation site were found to be fully inducible by interferon. Assays of deletion mutants identified a critical element for interferon induction located between -115 and -96, just upstream of the CCAAT box. Moreover, a DNA fragment including this region can confer interferon inducibility on a heterologous promoter (thymidine kinase) when cloned in either orientation upstream of the gene or downstream of the gene. These are properties characteristic of an enhancer element that is active only after treatment with interferon. This regulatory sequence may be shared by a group of interferon-induced genes, since a very similar sequence is present within the functional region near the RNA start site of another interferon-induced gene

  14. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  15. Predator-induced defences in Daphnia pulex: Selection and evaluation of internal reference genes for gene expression studies with real-time PCR

    Directory of Open Access Journals (Sweden)

    Gilbert Don

    2010-06-01

    Full Text Available Abstract Background The planktonic microcrustacean Daphnia pulex is among the best-studied animals in ecological, toxicological and evolutionary research. One aspect that has sustained interest in the study system is the ability of D. pulex to develop inducible defence structures when exposed to predators, such as the phantom midge larvae Chaoborus. The available draft genome sequence for D. pulex is accelerating research to identify genes that confer plastic phenotypes that are regularly cued by environmental stimuli. Yet for quantifying gene expression levels, no experimentally validated set of internal control genes exists for the accurate normalization of qRT-PCR data. Results In this study, we tested six candidate reference genes for normalizing transcription levels of D. pulex genes; alpha tubulin (aTub, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, TATA box binding protein (Tbp syntaxin 16 (Stx16, X-box binding protein 1 (Xbp1 and CAPON, a protein associated with the neuronal nitric oxide synthase, were selected on the basis of an earlier study and from microarray studies. One additional gene, a matrix metalloproteinase (MMP, was tested to validate its transcriptional response to Chaoborus, which was earlier observed in a microarray study. The transcription profiles of these seven genes were assessed by qRT-PCR from RNA of juvenile D. pulex that showed induced defences in comparison to untreated control animals. We tested the individual suitability of genes for expression normalization using the programs geNorm, NormFinder and BestKeeper. Intriguingly, Xbp1, Tbp, CAPON and Stx16 were selected as ideal reference genes. Analyses on the relative expression level using the software REST showed that both classical housekeeping candidate genes (aTub and GAPDH were significantly downregulated, whereas the MMP gene was shown to be significantly upregulated, as predicted. aTub is a particularly ill suited reference gene because five copies are

  16. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser

    Science.gov (United States)

    2016-12-15

    chemical/bio weapon signatures in real time. • IR sources and detectors have a wide ranging applications in public sector from night vision cameras on cars...Jeffrey D. Bude, Andy J. Bayramian, Christopher D. Marshall, Thomas M. Spinka, Constantin L. Haefner, Test station development for laser-induced

  17. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  18. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    International Nuclear Information System (INIS)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue

  19. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Science.gov (United States)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Background Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. Objective To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Methods Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's "t" test, p < 0.05). Results The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Conclusion Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue. PMID:24346830

  20. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto [Universidade Federal da Grande Dourados - UFGD, Dourados, MS (Brazil); Teruya, Roberto [Universidade Federal do Mato Grosso do Sul - UFMS, Campo Grande, MS (Brazil); Fagundes, Djalma José, E-mail: fsomaio@cardiol.br; Taha, Murched Omar [Universidade Federal de São Paulo - UNIFESP, São Paulo, SP (Brazil)

    2014-02-15

    Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's 't' test, p < 0.05). The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue.

  1. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  2. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    DEFF Research Database (Denmark)

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile

    2016-01-01

    stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate...... promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly...... the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest...

  3. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  4. Coatings of nanostructured pristine graphene-IrOx hybrids for neural electrodes: Layered stacking and the role of non-oxygenated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E. [Institut Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Bellaterra, Barcelona (Spain); Lichtenstein, M.P.; Suñol, C. [Institut d' Investigacions Biomèdiques de Barcelona (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c/Rosselló 161, 08036 Barcelona (Spain); Casañ-Pastor, N., E-mail: nieves@icmab.es [Institut Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Bellaterra, Barcelona (Spain)

    2015-10-01

    The need to enhance charge capacity in neural stimulation-electrodes is promoting the formation of new materials and coatings. Among all the possible types of graphene, pristine graphene prepared by graphite electrochemical exfoliation, is used in this work to form a new nanostructured IrOx–graphene hybrid (IrOx–eG). Graphene is stabilized in suspension by IrOx nanoparticles without surfactants. Anodic electrodeposition results in coatings with much smaller roughness than IrOx–graphene oxide. Exfoliated pristine graphene (eG), does not electrodeposit in absence of iridium, but IrOx-nanoparticle adhesion on graphene flakes drives the process. IrOx–eG has a significantly different electronic state than graphene oxide, and different coordination for carbon. Electron diffraction shows the reflection features expected for graphene. IrOx 1–2 nm cluster/nanoparticles are oxohydroxo-species and adhere to 10 nm graphene platelets. eG induces charge storage capacity values five times larger than in pure IrOx, and if calculated per carbon atom, this enhancement is one order magnitude larger than the induced by graphene oxide. IrOx–eG coatings show optimal in vitro neural cell viability and function as cell culture substrates. The fully straightforward electrochemical exfoliation and electrodeposition constitutes a step towards the application of graphene in biomedical systems, expanding the knowledge of pristine graphene vs. graphene oxide, in bioelectrodes. - Highlights: • Pristine Graphene is incorporated in coatings as nanostructured IrOx–eG hybrid. • IrOx-nanoparticles drive the electrodeposition of graphene. • Hybrid CSC is one order of magnitude the charge capacity of IrOx. • Per carbon atom, the CSC increase is 35 times larger than for graphene oxide. • Neurons are fully functional on the coating.

  5. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  6. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  7. Neurobehavioral Deficits in a Rat Model of Recurrent Neonatal Seizures Are Prevented by a Ketogenic Diet and Correlate with Hippocampal Zinc/Lipid Transporter Signals.

    Science.gov (United States)

    Tian, Tian; Ni, Hong; Sun, Bao-liang

    2015-10-01

    The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy in adults, but it has not been extensively tested for its efficacy in neonatal seizure-induced brain damage. We have previously shown altered expression of zinc/lipid metabolism-related genes in hippocampus following penicillin-induced developmental model of epilepsy. In this study, we further investigated the effect of KD on the neurobehavioral and cognitive deficits, as well as if KD has any influence in the activity of zinc/lipid transporters such as zinc transporter 3 (ZnT-3), MT-3, ApoE, ApoJ (clusterin), and ACAT-1 activities in neonatal rats submitted to flurothyl-induced recurrent seizures. Postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizure group (EXP) and control group (CONT). On P28, they were further randomly divided into the seizure group without ketogenic diet (EXP1), seizure plus ketogenic diet (EXP2), the control group without ketogenic diet (CONT1), and the control plus ketogenic diet (CONT2). Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed from P35 to P49. Morris water maze test was performed during P51-P57. Then hippocampal mossy fiber sprouting and the protein levels of ZnT3, MT3, ApoE, CLU, and ACAT-1 were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced neurobehavioral toxicology and aberrant mossy fiber sprouting were blocked by KD. In parallel with these behavioral changes, rats treated with KD (EXP2) showed a significant down-regulated expression of ZnT-3, MT-3, ApoE, clusterin, and ACAT-1 in hippocampus when compared with the non-KD-treated EXP1 group. Our findings provide support for zinc/lipid transporter signals being potential targets for the treatment of neonatal seizure-induced brain damage by KD.

  8. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  9. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  10. Repeated exposure to Lutzomyia intermedia sand fly saliva induces local expression of interferon-inducible genes both at the site of injection in mice and in human blood.

    Science.gov (United States)

    Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate

  11. Gene alterations in radiation-induced F344 rat lung tumors

    International Nuclear Information System (INIS)

    Kelly, G.; Hahn, F.F.

    1994-01-01

    The p53 tumor suppressor gene is frequently altered in all major histopathologic types of human lung tumors. Reported p53 mutations include base substitutions, allelic loss, rearrangements, and deletions. Point mutations resulting in base substitutions are clustered within a highly conserved region of the gene encoding exons 508, and mutations in this region substantially extend the half-life of the p53 protein. In addition to its prominent importance in lung carcinogenesis, the p53 gene plays a critical role in the cellular response to genetic damage caused by radiation. Specifically, the protein product of p53 induces a pause or block at the G 1 to S boundary of the cell cycle following radiation-caused DNA damage. This G 1 block may allow the cell time to repair the damaged DNA prior to replication. Cells lacking a functional p53 protein fail to pause for repair and consequently accumulate mutations in the genome at an accelerated rate. p53 has also been implicated as a controlling factor in apoptosis or in programmed cell death induced by DNA-damaging agents, such as ionizing radiation. The p53 gene is mutated in approximately 50% of squamous cell carcinomas from uranium miners who inhaled high doses of radon daughters. The purpose of the present study was to determine if a similar percentage of squamous cell carcinomas with p53 mutations developed in the lungs of rats exposed to aerosols of 239 PuO 2

  12. Effect of ethylene action inhibitors upon wound-induced gene expression in tomato pericarp

    International Nuclear Information System (INIS)

    Henstrand, J.M.; Handa, A.K.

    1989-01-01

    The contribution of wound-ethylene to wound-induced gene expression was investigated in unripe tomato pericarp using inhibitors of ethylene action. Wounded unripe tomato pericarp was treated with 2,5-norbornadiene or silver thiosulfate to inhibit specifically the induction of ethylene-dependent mRNA species. Poly(A) + RNAs isolated from these tissues after 12 hours of wounding were translated in vitro in a rabbit reticulocyte lysate system and [ 35 S]methionine-labeled polypeptides were compared to unwounded controls after separation by one and two-dimensional polyacrylamide gel electrophoresis. Results show that mechanical wounding induces a dramatic shift in gene expression (over 50 mRNA species) but expression of less than 15% of these genes is affected by the treatment with ethylene action inhibitors. A selective decrease in mRNAs coding for a 37 kilodalton doublet and 75 kilodalton polypeptides is observed in 2,5-norbornadiene and silver thiosulfate treated wounded pericarp. Levels of hydroxyproline-rich glycoprotein mRNAs induced in wounded tissue were not influenced by inhibitors of ethylene action

  13. Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Madsen, Christian M; Arfelt, Kristine N

    2013-01-01

    The Epstein-Barr virus induced gene 2 (EBI2) was recently identified as the first oxysterol-activated 7TM receptor. EBI2 is essential for B cell trafficking within lymphoid tissues and thus the humoral immune response in general. Here we characterize the antagonism of the non-peptide molecule GSK...

  14. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  15. Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels.

    Science.gov (United States)

    Hwang, Soojin; Lee, Dong-Hoon; Lee, In-Kyu; Park, Young Mi; Jo, Inho

    2014-04-28

    Far-infrared (FIR) radiation is known to lessen the risk of angiogenesis-related diseases including cancer. Because deficiency of secretory clusterin (sCLU) has been reported to inhibit angiogenesis of endothelial cells (EC), we investigated using human umbilical vein EC (HUVEC) whether sCLU mediates the inhibitory effects of FIR radiation. Although FIR radiation ranging 3-25μm wavelength at room temperature for 60min did not alter EC viability, further incubation in the culture incubator (at 37°C under 5% CO2) after radiation significantly inhibited EC proliferation, in vitro migration, and tube formation in a time-dependent manner. Under these conditions, we found decreased sCLU mRNA and protein expression in HUVEC and decreased sCLU protein secreted in culture medium. Expectedly, the replacement of control culture medium with the FIR-irradiated conditioned medium significantly decreased wound closure and tube formation of HUVEC, and vice versa. Furthermore, neutralization of sCLU with anti-sCLU antibody also mimicked all observed inhibitory effects of FIR radiation. Moreover, treatment with recombinant human sCLU protein completely reversed the inhibitory effects of FIR radiation on EC migration and angiogenesis. Lastly, vascular endothelial growth factor also increased sCLU secretion in the culture medium, and wound closure and tube formation of HUVEC, which were significantly reduced by FIR radiation. Our results demonstrate a novel mechanism by which FIR radiation inhibits the proliferation, migration, and angiogenesis of HUVEC, via decreasing sCLU. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Inhibiting the Ca2+ Influx Induced by Human CSF

    Directory of Open Access Journals (Sweden)

    Anna Drews

    2017-12-01

    Full Text Available One potential therapeutic strategy for Alzheimer’s disease (AD is to use antibodies that bind to small soluble protein aggregates to reduce their toxic effects. However, these therapies are rarely tested in human CSF before clinical trials because of the lack of sensitive methods that enable the measurement of aggregate-induced toxicity at low concentrations. We have developed highly sensitive single vesicle and single-cell-based assays that detect the Ca2+ influx caused by the CSF of individuals affected with AD and healthy controls, and we have found comparable effects for both types of samples. We also show that an extracellular chaperone clusterin; a nanobody specific to the amyloid-β peptide (Aβ; and bapineuzumab, a humanized monoclonal antibody raised against Aβ, could all reduce the Ca2+ influx caused by synthetic Aβ oligomers but are less effective in CSF. These assays could be used to characterize potential therapeutic agents in CSF before clinical trials.

  17. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  18. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  19. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    Science.gov (United States)

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

  20. Identification of an attenuated barley stripe mosaic virus for the virus-induced gene silencing of pathogenesis-related wheat genes.

    Science.gov (United States)

    Buhrow, Leann M; Clark, Shawn M; Loewen, Michele C

    2016-01-01

    Virus-induced gene silencing (VIGS) has become an emerging technology for the rapid, efficient functional genomic screening of monocot and dicot species. The barley stripe mosaic virus (BSMV) has been described as an effective VIGS vehicle for the evaluation of genes involved in wheat and barley phytopathogenesis; however, these studies have been obscured by BSMV-induced phenotypes and defense responses. The utility of BSMV VIGS may be improved using a BSMV genetic background which is more tolerable to the host plant especially upon secondary infection of highly aggressive, necrotrophic pathogens such as Fusarium graminearum. BSMV-induced VIGS in Triticum aestivum (bread wheat) cv. 'Fielder' was assessed for the study of wheat genes putatively related to Fusarium Head Blight (FHB), the necrotrophism of wheat and other cereals by F. graminearum. Due to the lack of 'Fielder' spike viability and increased accumulation of Fusarium-derived deoxynivalenol contamination upon co-infection of BSMV and FHB, an attenuated BSMV construct was generated by the addition of a glycine-rich, C-terminal peptide to the BSMV γ b protein. This attenuated BSMV effectively silenced target wheat genes while limiting disease severity, deoxynivalenol contamination, and yield loss upon Fusarium co-infection compared to the original BSMV construct. The attenuated BSMV-infected tissue exhibited reduced abscisic, jasmonic, and salicylic acid defense phytohormone accumulation upon secondary Fusarium infection. Finally, the attenuated BSMV was used to investigate the role of the salicylic acid-responsive pathogenesis-related 1 in response to FHB. The use of an attenuated BSMV may be advantageous in characterizing wheat genes involved in phytopathogenesis, including Fusarium necrotrophism, where minimal viral background effects on defense are required. Additionally, the attenuated BSMV elicits reduced defense hormone accumulation, suggesting that this genotype may have applications for the

  1. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  2. Deletion of Irs2 causes reduced kidney size in mice: role for inhibition of GSK3beta?

    LENUS (Irish Health Repository)

    Carew, Rosemarie M.

    2010-07-06

    Abstract Background Male Irs2-\\/- mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2-\\/- mice. We identify retarded renal growth in male and female Irs2-\\/- mice, independent of diabetes. Results Kidney size and kidney:body weight ratio were reduced by approximately 20% in Irs2-\\/- mice at postnatal day 5 and was maintained in maturity. Reduced glomerular number but similar glomerular density was detected in Irs2-\\/- kidney compared to wild-type, suggesting intact global kidney structure. Analysis of insulin signalling revealed renal-specific upregulation of PKBβ\\/Akt2, hyperphosphorylation of GSK3β and concomitant accumulation of β-catenin in Irs2-\\/- kidney. Despite this, no significant upregulation of β-catenin targets was detected. Kidney-specific increases in Yes-associated protein (YAP), a key driver of organ size were also detected in the absence of Irs2. YAP phosphorylation on its inhibitory site Ser127 was also increased, with no change in the levels of YAP-regulated genes, suggesting that overall YAP activity was not increased in Irs2-\\/- kidney. Conclusions In summary, deletion of Irs2 causes reduced kidney size early in mouse development. Compensatory mechanisms such as increased β-catenin and YAP levels failed to overcome this developmental defect. These data point to Irs2 as an important novel mediator of kidney size.

  3. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    Science.gov (United States)

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  5. Shock wave induced sonoporation and gene transfer

    Science.gov (United States)

    Miller, Douglas L.

    2003-10-01

    During shockwave (SW) treatment, cavitation activity can be applied for cell killing. A bonus is that some surviving cells appear to be briefly permeabilized, or sonoporated, allowing them to take up large molecules including DNA. In vitro research has indicated that as the number of SW increased, survival declined exponentially but the number of sonoporated cells increased to better than 50% of survivors for 1000 SW. In vivo tests have demonstrated SW-induced tumor ablation could indeed be accompanied by the transfection of marker plasmids into mouse B16 melanoma tumors in vivo. With intratumor injection of plasmid DNA and air bubbles, significant results were obtained for only 400 SW. In a trial of cancer therapy, the effects of 500 SW combined with interleukin-12 immuno-gene therapy was observed on the progression of two mouse tumors, B16 melanoma and RENCA renal carcinoma. The combination of SW and IL-12 plasmid injection provided a statistically significant inhibition of tumor growth relative to SW alone for both tumor models, demonstrating feasibility for this treatment method. In the future, the development of intravenous gene delivery and improved transfection, together with image-guided ultrasound treatment, should lead to the clinical application of ultrasound enhanced gene therapy. [Work supported by NIH Grant No. EB002782.

  6. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    International Nuclear Information System (INIS)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Murawaki, Yoshikazu; Kawasaki, Hironaka; Shiota, Goshi

    2006-01-01

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SRα promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes

  7. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    Science.gov (United States)

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  8. Exercise-Induced Rhabdomyolysis and Stress-Induced Malignant Hyperthermia Events, Association with Malignant Hyperthermia Susceptibility, and RYR1 Gene Sequence Variations

    Directory of Open Access Journals (Sweden)

    Antonella Carsana

    2013-01-01

    Full Text Available Exertional rhabdomyolysis (ER and stress-induced malignant hyperthermia (MH events are syndromes that primarily afflict military recruits in basic training and athletes. Events similar to those occurring in ER and in stress-induced MH events are triggered after exposure to anesthetic agents in MH-susceptible (MHS patients. MH is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed subjects during general anesthesia, induced by commonly used volatile anesthetics and/or the neuromuscular blocking agent succinylcholine. Triggering agents cause an altered intracellular calcium regulation. Mutations in RYR1 gene have been found in about 70% of MH families. The RYR1 gene encodes the skeletal muscle calcium release channel of the sarcoplasmic reticulum, commonly known as ryanodine receptor type 1 (RYR1. The present work reviews the documented cases of ER or of stress-induced MH events in which RYR1 sequence variations, associated or possibly associated to MHS status, have been identified.

  9. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    International Nuclear Information System (INIS)

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO 2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema

  10. Therapy of Prostate Cancer Using a Human Antibody Targeting the Type 1 Insulin-Like Growth Factor Receptor (IGF-IR)

    Science.gov (United States)

    2009-09-01

    delayed Majeed et al., 2005). All these studies suggest an essential role of IGF-IR in cellular transformation. Hongo et al. [1998] have identified...62:2942–2950. Hongo A, Yumet G, Resnicoff M, Romano G, O’Connor R, Baserga R. 1998. Inhibition of tumorigenesis and induc- tion of apoptosis in human...essential role of IGF-IR in cellular transformation. Hongo et al. [1998] have identified specific tyrosine residues on the b-subunit of the IGF-IR that

  11. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  12. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    Science.gov (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  13. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    International Nuclear Information System (INIS)

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m 3 for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease

  14. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants.

    Science.gov (United States)

    Yilamujiang, Ayufu; Reichelt, Michael; Mithöfer, Axel

    2016-08-01

    Carnivorous Nepenthes plants use modified leaves forming pitfall traps to capture and digest prey, mainly insects, for additional nutrient supply. These traps, so called pitchers, contain a plant-derived fluid composed of many hydrolytic enzymes and defence-related proteins. In this study, the prey-induced induction of corresponding genes of those proteins and a role for phytohormones in this process was analysed. Tissue from insect prey-fed, chitin- and phytohormone-challenged pitchers was harvested and analysed for selected gene expressions by a quantitative PCR technique. Phytohormone levels were determined by LC-MS/MS. Nepenthesin proteolytic activities were measured in the digestive fluid using a fluorescence substrate. Insect prey in the pitchers induced the accumulation of phytohormones such as jasmonates as well as the transcription of studied genes encoding a chitinase 3 and a protease (nepenthesin I), whereas a defence-related protein (PR-1) gene was not induced. Treatment with chitin as a component of the insects' exoskeleton triggered the accumulation of jasmonates, the expression of nepenthesin I and chitinase 3 genes similar to jasmonic acid treatment, and induced protease activity in the fluid. All detectable responses were slowly induced. The results suggest that upon insect prey catch a sequence of signals is initiated: (1) insect-derived chitin, (2) jasmonate as endogenous phytohormone signal, (3) the induction of digestive gene expression and (4) protein expression. This resembles a similar hierarchy of events as described from plant pathogen/herbivore interactions, supporting the idea that carnivory evolved from plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    evaluated the periportal fibrosis gene signature in the GEO dataset - GSE13747 [34]. In this dataset, liver fibrosis was induced by bile duct ...dataset, liver fibrosis was induced by bile duct ligation. Figure 10-D shows the observed correlation between log-ratios of periportal fibrosis...at 15 days of exposure obtained from TG-GATEs, and D) liver fibrosis produced by bile duct ligation obtained from GSE13747. doi:10.1371/journal.pone

  16. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

    DEFF Research Database (Denmark)

    Rung, Johan; Cauchi, Stéphane; Albrechtsen, Anders

    2009-01-01

    sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 x 10(-12), OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike...... previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated...... with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies....

  17. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yelin [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Hu, Chen; Cheng, Jun [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Chen, Binquan [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Ke, Qinghong; Lv, Zhen; Wu, Jian [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Zhou, Yanfeng, E-mail: zyfhdj@yahoo.com [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China)

    2014-04-18

    Highlights: • MiR-145 expression is down-regulated in HCC tissues and inversely related with IRS1 levels. • MiR-145 directly targets IRS1 in HCC cells. • Restored expression of miR-145 suppressed HCC cell proliferation and growth. • MiR-145 induced IRS1 under-expression potentially reduced downstream AKT signaling. - Abstract: Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.

  18. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    International Nuclear Information System (INIS)

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-01-01

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C → A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C → T, two C → A, one C → G, and one A → T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab

  19. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  20. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  1. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  2. Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L

    DEFF Research Database (Denmark)

    Lee, Jungmin; Cao, Dang Viet; Kim, Jiwon

    2017-01-01

    Virus-induced gene silencing (VIGS) is known as a rapid and efficient system for studying functions of interesting genes in plants. Tobacco rattle virus (TRV) is widely applied for the gene silencing of many plants. Although spinach is a TRV-susceptible plant, a TRV-based VIGS system has not yet ...

  3. Induced tubulin synthesis is caused by induced gene transcription in Tetrahymena

    International Nuclear Information System (INIS)

    Seyfert, H.M.; Kohle, D.; Jenovai, S.

    1987-01-01

    Tubulin synthesis and tubulin mRNA concentrations increase to variable extents during ciliary regeneration in the ciliate Tetrahymena. Experiments described here were carried out to determine whether the increased tubulin mRNa concentrations are due to induced transcription of tubulin genes or to stabilization of tubulin mRNA. In vivo labeling experiments with [ 3 H]uridine and in vitro transcription assays suggest that under conditions of increased protein and tubulin synthesis the rate of transcription is enhanced. Hybridization assays of in vitro transcribed RNA also demonstrate qualitatively that the tubulin genes are transcribed at higher rates when tubulin synthesis is stimulated during ciliary regeneration. This observation is supported by measurements of the half-life of tubulin mRNA molecules in nondeciliated cells: This is approximately 2 h. Since the concentration of tubulin mRNA in cells engaged in cilia regeneration increases from 5 to 19-fold during the first hour of the regeneration period, even a complete stabilization of the tubulin mRNA molecules could not account for an increase in tubulin mRNA concentration of this magnitude

  4. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    Science.gov (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    International Nuclear Information System (INIS)

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-01-01

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  6. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, Sabarinath, E-mail: csab@bio.psgtech.ac.in [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India); Kandasamy, Krishna Kumar [Max Planck Institute for Biology of Ageing, Cologne (Germany); Dayalan, Pavithra; Ramamurthy, Viraragavan [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India)

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  7. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  8. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Science.gov (United States)

    2011-01-01

    Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on hsp promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells. PMID:21663599

  9. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Directory of Open Access Journals (Sweden)

    Lisowska Katarzyna Marta

    2011-06-01

    Full Text Available Abstract Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1 gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA, Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i some cationic liposomes may not be suitable for functional studies on hsp promoters, ii lipofection may cause unintended changes in global gene expression in the transfected cells.

  10. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  11. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    Science.gov (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  12. Generation of various carbon nanostructures in water using IR/UV laser ablation

    International Nuclear Information System (INIS)

    Mortazavi, Seyedeh Zahra; Parvin, Parviz; Reyhani, Ali; Mirershadi, Soghra; Sadighi-Bonabi, Rasoul

    2013-01-01

    A wide variety of carbon nanostructures were generated by a Q-switched Nd : YAG laser (1064 nm) while mostly nanodiamonds were created by an ArF excimer laser (193 nm) in deionized water. They were characterized by transmission electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy. It was found that the IR laser affected the morphology and structure of the nanostructures due to the higher inverse bremsstrahlung absorption rate within the plasma plume with respect to the UV laser. Moreover, laser-induced breakdown spectroscopy was carried out so that the plasma created by the IR laser was more energetic than that generated by the UV laser. (paper)

  13. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    International Nuclear Information System (INIS)

    Shaikh, M.; Shaygi, B.; Asadi, H.; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M.

    2016-01-01

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  14. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M. [Bradford Royal Infirmary, Department of Radiology, Bradford Teaching Hospital Foundation Trust (United Kingdom); Shaygi, B. [Royal Devon and Exeter Hospital, Interventional Radiology Department (United Kingdom); Asadi, H., E-mail: asadi.hamed@gmail.com; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M., E-mail: mlee@rcsi.ie [Beaumont Hospital, Interventional Radiology Service, Department of Radiology (Ireland)

    2016-04-15

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  15. Ion beam synthesis of IrSi3 by implantation of 2 MeV Ir ions

    International Nuclear Information System (INIS)

    Sjoreen, T.P.; Chisholm, M.F.; Hinneberg, H.J.

    1992-11-01

    Formation of a buried IrSi 3 layer in (111) oriented Si by ion implantation and annealing has been studied at an implantation energy of 2 MeV for substrate temperatures of 450--550C. Rutherford backscattering (RBS), ion channeling and cross-sectional transmission electron microscopy showed that a buried epitaxial IrSi 3 layer is produced at 550C by implanting ≥ 3.4 x 10 17 Ir/cm 2 and subsequently annealing for 1 h at 1000C plus 5 h at 1100C. At a dose of 3.4 x 10 17 Ir/cm 2 , the thickness of the layer varied between 120 and 190 nm and many large IrSi 3 precipitates were present above and below the film. Increasing the dose to 4.4 x 10 17 Ir/cm 2 improved the layer uniformity at the expense of increased lattice damage in the overlying Si. RBS analysis of layer formation as a function of substrate temperature revealed the competition between the mechanisms for optimizing surface crystallinity vs. IrSi 3 layer formation. Little apparent substrate temperature dependence was evident in the as-implanted state but after annealing the crystallinity of the top Si layer was observed to deteriorate with increasing substrate temperature while the precipitate coarsening and coalescence improved

  16. Low-Dose Radiation Induces Genes Promoting Cell Survival

    International Nuclear Information System (INIS)

    Liu, Shu-Zheng; Chen, Dong; Mu, Ying

    1999-01-01

    Apoptosis is an important process controlling homeostasis of the body. It is influenced by stimuli constantly arising from the external and internal environment of the organism. It is well known that radiation could induce apoptosis of cells in vitro and in vivo. However, the dose-effect relationship of apoptosis extending to the low-dose range has scarcely been studied. Here, the molecular basis of the phenomenon is explored by examining the changes in expression of some of the proapoptotic and antiapoptotic genes

  17. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje

    OpenAIRE

    Vijeikis, Juozas; Makštutis, Antanas

    2009-01-01

    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  18. Molecular characterization of a GA-inducible gene, Cvsus1, in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Jun, Sung-Hoon; Kang, Hong-Gyu; Lee, Jinwon; An, Gynheung

    2002-10-31

    To understand the molecular mechanisms that control seed development, we isolated a seed-preferential gene from ESTs of developing watermelon seeds. The gene Cvsus1 encodes a protein that is 86% identical to the Vicia faba sucrose synthase expressed in developing seeds. RNA blot analysis showed that Cvsus1 was preferentially expressed in watermelon seeds. We also investigated gene expression levels both in pollinated seeds and in parthenocarpic seeds, which lack zygotic tissues. Whereas the transcript level of Cvsus1 was rapidly increased during normal seed development, the expression was not significantly increased in the parthenocarpic seeds. However, treating the parthenocarpic fruits with GA3 strongly induced Cvsus1 expression, up to the level accumulated in pollinated seeds. These results suggest that Cvsus1 is induced in maternal tissues via signals from the zygotic tissues, and that GA may be one of those signals.

  19. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  20. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    Science.gov (United States)

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Ionizing radiation induces tumor cell lysyl oxidase secretion

    DEFF Research Database (Denmark)

    Shen, Colette J; Sharma, Ashish; Vuong, Dinh-Van

    2014-01-01

    BACKGROUND: Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor beta and matrix...

  2. Common changes in global gene expression induced by RNA polymerase inhibitors in Shigella flexneri.

    Directory of Open Access Journals (Sweden)

    Hua Fu

    Full Text Available Characterization of expression profile of organisms in response to antimicrobials provides important information on the potential mechanism of action of the drugs. The special expression signature can be used to predict whether other drugs act on the same target. Here, the common response of Shigella flexneri to two inhibitors of RNA polymerase was examined using gene expression profiling. Consistent with similar effects of the two drugs, the gene expression profiles indicated that responses of the bacteria to these drugs were roughly the same, with 225 genes affected commonly. Of them, 88 were induced and 137 were repressed. Real-time PCR was performed for selected genes to verify the microarray results. Analysis of the expression data revealed that more than 30% of the plasmid-encoded genes on the array were up-regulated by the antibiotics including virF regulon, other virulence-related genes, and genes responsible for plasmid replication, maintenance, and transfer. In addition, some chromosome-encoded genes involved in virulence and genes acquired from horizontal transfer were also significantly up-regulated. However, the expression of genes encoding the beta-subunit of RNA polymerase was increased moderately. The repressed genes include those that code for products associated with the ribosome, citrate cycle, glycolysis, thiamine biosynthesis, purine metabolism, fructose metabolism, mannose metabolism, and cold shock proteins. This study demonstrates that the two antibiotics induce rapid cessation of RNA synthesis resulting in inhibition of translation components. It also indicates that the production of virulence factors involved in intercellular dissemination, tissue invasion and inflammatory destruction may be enhanced through derepressing horizontal transfer genes by the drugs.

  3. Time-Dependent Gene Profiling Indicates the Presence of Different Phases for Ischemia/Reperfusion Injury in Retina

    Directory of Open Access Journals (Sweden)

    Kalina Andreeva

    2014-01-01

    Full Text Available Ischemia/reperfusion (IR injury has been associated with several retinal pathologies, and a few genes/gene products have been linked to IR injury. However, the big picture of temporal changes, regarding the affected gene networks, pathways, and processes remains to be determined. The purpose of the present study was to investigate initial, intermediate, and later stages to characterize the etiology of IR injury in terms of the pathways affected over time. Analyses indicated that at the initial stage, 0-hour reperfusion following the ischemic period, the ischemia-associated genes were related to changes in metabolism. In contrast, at the 24-hour time point, the signature events in reperfusion injury include enhanced inflammatory and immune responses as well as cell death indicating that this would be a critical period for the development of any interventional therapeutic strategies. Genes in the signal transduction pathways, particularly transmitter receptors, are downregulated at this time. Activation of the complement system pathway clearly plays an important role in the later stages of reperfusion injury. Together, these results demonstrate that the etiology of injury related to IR is characterized by the appearance of specific patterns of gene expression at any given time point during retinal IR injury. These results indicate that evaluation of treatment strategies with respect to time is very critical.

  4. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    International Nuclear Information System (INIS)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-01-01

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  5. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...

  6. The role of germline promoters and I exons in cytokine-induced gene-specific class switch recombination.

    Science.gov (United States)

    Dunnick, Wesley A; Shi, Jian; Holden, Victoria; Fontaine, Clinton; Collins, John T

    2011-01-01

    Germline transcription precedes class switch recombination (CSR). The promoter regions and I exons of these germline transcripts include binding sites for activation- and cytokine-induced transcription factors, and the promoter regions/I exons are essential for CSR. Therefore, it is a strong hypothesis that the promoter/I exons regions are responsible for much of cytokine-regulated, gene-specific CSR. We tested this hypothesis by swapping the germline promoter and I exons for the murine γ1 and γ2a H chain genes in a transgene of the entire H chain C-region locus. We found that the promoter/I exon for γ1 germline transcripts can direct robust IL-4-induced recombination to the γ2a gene. In contrast, the promoter/I exon for the γ2a germline transcripts works poorly in the context of the γ1 H chain gene, resulting in expression of γ1 H chains that is level. Nevertheless, the small amount of recombination to the chimeric γ1 gene is induced by IFN-γ. These results suggest that cytokine regulation of CSR, but not the magnitude of CSR, is regulated by the promoter/I exons.

  7. Visible-light-induced, Ir-catalyzed reactions of N-methyl-N-((trimethylsilylmethylaniline with cyclic α,β-unsaturated carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Dominik Lenhart

    2014-04-01

    Full Text Available N-Methyl-N-((trimethylsilylmethylaniline was employed as reagent in visible-light-induced, iridium-catalyzed addition reactions to cyclic α,β-unsaturated carbonyl compounds. Typical reaction conditions included the use of one equivalent of the reaction substrate, 1.5 equivalents of the aniline and 2.5 mol % (in MeOH or 1.0 mol % (in CH2Cl2 [Ir(ppy2(dtbbpy]BF4 as the catalyst. Two major reaction products were obtained in combined yields of 30–67%. One product resulted from aminomethyl radical addition, the other product was a tricyclic compound, which is likely formed by attack of the intermediately formed α-carbonyl radical at the phenyl ring. For five-membered α,β-unsaturated lactone and lactam substrates, the latter products were the only products isolated. For the six-membered lactones and lactams and for cyclopentenone the simple addition products prevailed.

  8. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    Science.gov (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  9. Effects of deoxycycline induced lentivirus encoding FasL gene on ...

    African Journals Online (AJOL)

    Abstract. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in deletion of activated T cells. This study aimed to construct the lentivirus encoding FasL gene induced by deoxycycline and evaluate its effects on apoptosis of Th1 cells. A plasmid expression system encoding FasL was constructed through utilizing the ...

  10. Comparison of Nasal Epithelial Smoking-Induced Gene Expression on Affymetrix Exon 1.0 and Gene 1.0 ST Arrays

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2013-01-01

    Full Text Available We have previously defined the impact of tobacco smoking on nasal epithelium gene expression using Affymetrix Exon 1.0 ST arrays. In this paper, we compared the performance of the Affymetrix GeneChip Human Gene 1.0 ST array with the Human Exon 1.0 ST array for detecting nasal smoking-related gene expression changes. RNA collected from the nasal epithelium of five current smokers and five never smokers was hybridized to both arrays. While the intersample correlation within each array platform was relatively higher in the Gene array than that in the Exon array, the majority of the genes most changed by smoking were tightly correlated between platforms. Although neither array dataset was powered to detect differentially expressed genes (DEGs at a false discovery rate (FDR <0.05, we identified more DEGs than expected by chance using the Gene ST array. These findings suggest that while both platforms show a high degree of correlation for detecting smoking-induced differential gene expression changes, the Gene ST array may be a more cost-effective platform in a clinical setting for gene-level genomewide expression profiling and an effective tool for exploring the host response to cigarette smoking and other inhaled toxins.

  11. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Byrne, Susan M; Church, George M

    2015-01-01

    CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.

  12. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  13. BCR-ABL fusion genes are inducible by X-irradiation in vitro

    International Nuclear Information System (INIS)

    Ito, Takashi; Seyama, Toshio; Mizuno, Terumi; Hayashi, Tomonori; Nakamura, Nori; Akiyama, Mitoshi; Dohi, Kiyohiko.

    1992-01-01

    The Philadelphia chromosome consists of a reciprocal translocation between the ABL oncogene at chromosome 9q34 and the BCR gene at chromosome 22q resulting in the expression of chimeric BCR-ABL mRNAs specific to chronic myelogenous leukemia (CML). The presence of the fusion genes can be detected with high specificity and sensitivity by means of reverse transcription and polymerase chain reaction. Using this assay, it was possible to detect BCR-ABL fusion genes induced among HL60 cells after 100 Gy of X-irradiation in vitro. A total of five fusion gene transcripts were obtained. These fusion genes contained not only CML-specific BCR-ABL rearrangements, but also other forms of BCR-ABL fusions. These latter genes had junctions of BCR exon 4/ABL exon 2 intervened by a segment of DNA of unknown origin, BCR exon 5/ABL exon 2, and BCR exon 4/ABL exon 2. The results appear to be the first evidence for the induction of the BCR-ABL fusion gene by X-irradiation. In terms of leukemogenesis, it is suggested that only those cells bearing certain CML-related BCR-ABL fusion genes are positively selected by virtue of a growth advantage in vivo. (author)

  14. [Blue-light induced expression of S-adenosy-L-homocysteine hydrolase-like gene in Mucor amphibiorum RCS1].

    Science.gov (United States)

    Gao, Ya; Wang, Shu; Fu, Mingjia; Zhong, Guolin

    2013-09-04

    To determine blue-light induced expression of S-adenosyl-L-homocysteine hydrolase-like (sahhl) gene in fungus Mucor amphibiorum RCS1. In the random process of PCR, a sequence of 555 bp was obtained from M. amphibiorum RCS1. The 555 bp sequence was labeled with digoxin to prepare the probe for northern hybridization. By northern hybridization, the transcription of sahhl gene was analyzed in M. amphibiorum RCS1 mycelia culture process from darkness to blue light to darkness. Simultaneously real-time PCR method was used to the sahhl gene expression analysis. Compared with the sequence of sahh gene from Homo sapiens, Mus musculus and some fungi species, a high homology of the 555 bp sequence was confirmed. Therefore, the preliminary confirmation has supported that the 555 bp sequence should be sahhl gene from M. amphibiorum RCS1. Under the dark pre-culture in 24 h, a large amounts of transcript of sahhl gene in the mycelia can be detected by northern hybridization and real-time PCR in the condition of 24 h blue light. But a large amounts of transcript of sahhl gene were not found in other detection for the dark pre-culture of 48 h, even though M. amphibiorum RCS1 mycelia were induced by blue light. Blue light can induce the expression of sahhl gene in the vigorous growth of M. amphibiorum RCS1 mycelia.

  15. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  16. Stress-induced and cue-induced craving for alcohol in heavy drinkers: Preliminary evidence of genetic moderation by the OPRM1 and CRH-BP genes.

    Science.gov (United States)

    Ray, Lara A

    2011-01-01

    Neurobiological theories of addiction have highlighted disruption in stress pathways as a central feature of addictive disorders, and pharmacological treatments targeting stress mechanisms hold great promise. This study examines genetic determinants of stress-induced and cue-induced craving in heavy drinkers by testing single-nucleotide polymorphisms (SNPs) of the corticotrophin-releasing hormone binding protein (CRH-BP) gene and the mu-opioid receptor (OPRM1) gene. This study combines guided imagery stress exposure and in vivo alcohol cue exposure in a sample of 64 (23 women) non-treatment-seeking heavy drinkers. Analyses, uncorrected for multiple comparisons, revealed that a tag SNP of the CRH-BP gene (rs10055255) moderated stress-induced craving in this sample. The same SNP predicted greater affective responses to the stress manipulation, including greater levels of subjective tension and negative mood. The Asp40 allele of the OPRM1 was associated with greater cue-induced alcohol craving following the neutral imagery condition. These initial results extend recent preclinical and clinical findings implicating the CRH-BP in stress-related alcoholism and confirm the role of the Asp40 allele of the OPRM1 gene in reward-driven alcohol phenotypes. Human laboratory models of stress and cue-induced craving may be useful in pharmacotherapy development targeting dysregulation of stress systems. Larger studies are needed to validate these preliminary findings, which should also be extended to clinical samples. Copyright © 2010 by the Research Society on Alcoholism.

  17. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    Science.gov (United States)

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  18. Association of angiotensin receptor 2 gene polymorphisms with pregnancy induced hypertension risk.

    Science.gov (United States)

    Li, Chenyang; Peng, Weijun; Zhang, Heng; Yan, Weirong

    2018-05-01

    To investigate the association of polymorphisms and haplotypes of angiotensin receptor 2 (AT2R) gene with pregnancy induced hypertension (PIH) in Chinese Han women. A case-control study was designed with 446 cases (gestational hypertension, GH: 124; pre-eclampsia, PE + eclampsia, E: 322) and 650 controls. rs5193, rs1403543 and rs12710567 of AT2R gene were genotyped. A logistic regression approach was applied to estimate the relationship between the polymorphisms and haplotypes of AT2Rgene with PIH risk. No relationship between AT2R gene polymorphisms and PIH was detected. The haplotype analysis also showed a negative result. rs5193, rs1403543 and rs12710567 of AT2R gene might have no effect on PIH risk among Chinese Han women.

  19. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  20. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  1. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  2. Association study of GABA system genes polymorphisms with amphetamine-induced psychotic disorder in a Han Chinese population.

    Science.gov (United States)

    Zhang, Kai; Zhao, Yan; Wang, Qingzhong; Jiang, Haifeng; Du, Jiang; Yu, Shunying; Zhao, Min

    2016-05-27

    GABA system genes have been implicated in neurotrophy and neurogenesis, which play pivotal roles in an individual's variation in vulnerability to amphetamine addiction or amphetamine-induced psychosis (AIP). We hypothesized that common genetic variants in the GABA system genes may be associated with amphetamine-induced psychotic disorder. In our study, thirty-six single nucleotide polymorphisms (SNPs) within the GABA system genes were genotyped in 400 amphetamine-induced psychotic disorder patients and 400 amphetamine use disorders patients (AUP) (not including those categorized as psychosis) in the Han Chinese population. In this study, 51.88% of the Han Chinese amphetamine-type substance use disorder patients met the criteria of amphetamine-induced psychotic disorder, and 79.5% amphetamine-induced psychotic disorder patients had auditory hallucinations, while 46.5% had delusions of reference. The allele frequency of rs1129647 showed nominal association with AIP in the Han Chinese population (P=0.03). Compared with AUP group patients, T allele frequency of AIP group patients was significantly increased. The adjustment for age and gender factors in the AIP and AUP patients was executed using unconditional logistic regression under five inheritance models. The genotype frequency of rs1129647 showed nominal association with AIP in the log-additive model (P=0.04). The genotype frequency of rs2290733 showed nominal association with AIP in the recessive model (P=0.04). Compared with female AIP patients, male patients were more likely to have the CC genotype of rs17545383 (P=0.04). Moreover, we determined that more male patients carried the T allele of rs2290733 in the AIP group (P=0.004). Unfortunately, the significant differences did not survive Benjamini-Hochberg false discovery rate correction (adjusted P>0.05). No association between the SNPs of the GABA system genes and amphetamine-induced psychotic disorder risk was identified. No haplotype of the GABA system

  3. Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress1

    Science.gov (United States)

    Ezaki, Bunichi; Gardner, Richard C.; Ezaki, Yuka; Matsumoto, Hideaki

    2000-01-01

    To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2′,7′-dichloro fluorescein diacetate (H2DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants. PMID:10712528

  4. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  5. Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR.

    Science.gov (United States)

    Guardado-Alvarez, Tania M; Devi, Lekshmi Sudha; Vabre, Jean-Marie; Pecorelli, Travis A; Schwartz, Benjamin J; Durand, Jean-Olivier; Mongin, Olivier; Blanchard-Desce, Mireille; Zink, Jeffrey I

    2014-05-07

    We report the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes inter-molecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. We describe the operation of the "snap-top" release mechanism by both one- and two-photon activation. This system presents a proof of concept of a near-IR photoredox-induced nanoparticle delivery system that may lead to a new type of photodynamic drug release therapy.

  6. Deletion of the Men1 Gene Prevents Streptozotocin-Induced Hyperglycemia in Mice

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2010-01-01

    Full Text Available Diabetes ultimately results from an inadequate number of functional beta cells in the islets of Langerhans. Enhancing proliferation of functional endogenous beta cells to treat diabetes remains underexplored. Here, we report that excision of the Men1 gene, whose loss-of-function mutation leads to inherited multiple endocrine neoplasia type 1 (MEN1, rendered resistant to streptozotocin-induced hyperglycemia in a tamoxifen-inducible and temporally controlled Men1 excision mouse model as well as in a tissue-specific Men1 excision mouse model. Men1 excision prevented mice from streptozotocin-induced hyperglycemia mainly through increasing the number of functional beta cells. BrdU incorporation by beta cells, islet size, and circulating insulin levels were significantly increased in Men1-excised mice. Membrane localization of glucose transporter 2 was largely preserved in Men1-excised beta cells, but not in Men1-expressing beta cells. Our findings suggest that repression of menin, a protein encoded by the Men1 gene, might be a valuable means to maintain or increase the number of functional endogenous beta cells to prevent or ameliorate diabetes.

  7. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  8. Radio-induced genes

    International Nuclear Information System (INIS)

    Rigaud, O.; Kazmaier, M.

    2000-01-01

    The monitoring system of the DNA integrity of an irradiated cell does not satisfy oneself to recruit the enzymes allowing the repair of detected damages. It sends an alarm signal whom transmission leads to the activation of specific genes in charge of stopping the cell cycle, the time to make the repair works, or to lead to the elimination of a too much damaged cell. Among the numerous genes participating to the monitoring of cell response to irradiation, the target genes of the mammalian P53 protein are particularly studied. Caretaker of the genome, this protein play a central part in the cell response to ionizing radiations. this response is less studied among plants. A way to tackle it is to be interested in the radioinduced genes identification in the vegetal cell, while taking advantage of knowledge got in the animal field. The knowledge of the complete genome of the arabette (arabidopsis thaliana), the model plant and the arising of new techniques allow to lead this research at a previously unknown rhythm in vegetal biology. (N.C.)

  9. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  10. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim Lütken; Dubash, Taronish; Drainas, Alexandros P

    2017-01-01

    overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADs). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate...... intersecting with a TAD boundary mediate de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, resulting in high-level gene activation. Our framework enables systematic inference of CRE rearrangements mediating dysregulation in cancer....

  11. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohui

    2008-05-01

    Full Text Available Abstract Background Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal and intrathoracic (bronchial epithelium in healthy current and never smokers. Results Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome", we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure. Conclusion Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for

  12. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    Science.gov (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  13. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-01-01

    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  14. Radiation-induced gene responses

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-01-01

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5' region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression

  15. Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules

    DEFF Research Database (Denmark)

    Kjær, Gabriela Didina Constantin; Grønlund, Mette; Stougaard, Jens

    2008-01-01

    Virus-induced gene silencing (VIGS) can provide a shortcut to plants with altered expression of specific genes. Here, we report that VIGS of the Nodule inception gene (Nin) can alter the nodulation phenotype and Nin gene expression in Pisum sativum. PsNin was chosen as target because of the disti...

  16. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    Science.gov (United States)

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null

  17. Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α -Li2IrO3 under pressure

    Science.gov (United States)

    Hermann, V.; Altmeyer, M.; Ebad-Allah, J.; Freund, F.; Jesche, A.; Tsirlin, A. A.; Hanfland, M.; Gegenwart, P.; Mazin, I. I.; Khomskii, D. I.; Valentí, R.; Kuntscher, C. A.

    2018-02-01

    Single-crystal x-ray diffraction studies with synchrotron radiation on the honeycomb iridate α -Li2IrO3 reveal a pressure-induced structural phase transition with symmetry lowering from monoclinic to triclinic at a critical pressure of Pc=3.8 GPa. According to the evolution of the lattice parameters with pressure, the transition mainly affects the a b plane and thereby the Ir hexagon network, leading to the formation of Ir-Ir dimers. These observations are independently predicted and corroborated by our ab initio density functional theory calculations where we find that the appearance of Ir-Ir dimers at finite pressure is a consequence of a subtle interplay between magnetism, correlation, spin-orbit coupling, and covalent bonding. Our results further suggest that at Pc the system undergoes a magnetic collapse. Finally we provide a general picture of competing interactions for the honeycomb lattices A2M O3 with A =Li , Na and M =Ir , Ru.

  18. Metformin induces a Senescence-associated gene Signature in Breast Cancer Cells

    Science.gov (United States)

    Williams, Christopher C.; Singleton, Brittany A.; Llopis, Shawn D.; Skripnikova, Elena V.

    2013-01-01

    Diabetic patients taking metformin have lower incidence of breast cancer than those taking other anti-diabetic medications. Additionally, triple negative breast cancer (TNBC), a form of breast cancer disproportionately afflicting premenopausal African American women, shows atypical susceptibility to metformin’s antiproliferative effect. The mechanisms involved in metformin’s function in TNBC has not yet been fully elucidated. Therefore, we sought to identify pathways regulated by metformin in using the MDA-MB-468 TNBC cell model. Metformin dose-dependently caused apoptosis, decreased cell viability, and induced cell morphology/chromatin condensation consistent with the permanent proliferative arrest. Furthermore, gene expression arrays revealed that metformin caused expression of stress markers DDIT3, CYP1A1, and GDF-15 and a concomitant reduction in PTGS1 expression. Our findings show that metformin may affect the viability and proliferative capacity of TNBC by inducing an antiproliferative gene signature, and that metformin may be effective in the treatment/prevention of TNBC. PMID:23395946

  19. An elm EST database for identifying leaf beetle egg-induced defense genes

    Directory of Open Access Journals (Sweden)

    Büchel Kerstin

    2012-06-01

    Full Text Available Abstract Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor, egg laying by the elm leaf beetle ( Xanthogaleruca luteola activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i untreated control elms, and elms treated with (ii egg laying and feeding by elm leaf beetles, (iii feeding, (iv artificial transfer of egg clutches, and (v methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs were identified which clustered into 52,823 unique transcripts (Unitrans and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction

  20. An elm EST database for identifying leaf beetle egg-induced defense genes.

    Science.gov (United States)

    Büchel, Kerstin; McDowell, Eric; Nelson, Will; Descour, Anne; Gershenzon, Jonathan; Hilker, Monika; Soderlund, Carol; Gang, David R; Fenning, Trevor; Meiners, Torsten

    2012-06-15

    Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism

  1. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  2. Inducible, tunable and multiplex human gene regulation using CRISPR-Cpf1-based transcription factors | Office of Cancer Genomics

    Science.gov (United States)

    Targeted and inducible regulation of mammalian gene expression is a broadly important research capability that may also enable development of novel therapeutics for treating human diseases. Here we demonstrate that a catalytically inactive RNA-guided CRISPR-Cpf1 nuclease fused to transcriptional activation domains can up-regulate endogenous human gene expression. We engineered drug-inducible Cpf1-based activators and show how this system can be used to tune the regulation of endogenous gene transcription in human cells.

  3. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  4. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  5. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    Science.gov (United States)

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis

    Science.gov (United States)

    Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins are central regulators of plant growth and development, but little is known about their mode of action. By using differential display, we identified a gene, IBC6 (for induced by cytokinin), from etiolated Arabidopsis seedlings, that is induced rapidly by cytokinin. The steady state level of IBC6 mRNA was elevated within 10 min by the exogenous application of cytokinin, and this induction did not require de novo protein synthesis. IBC6 was not induced by other plant hormones or by light. A second Arabidopsis gene with a sequence highly similar to IBC6 was identified. This IBC7 gene also was induced by cytokinin, although with somewhat slower kinetics and to a lesser extent. The pattern of expression of the two genes was similar, with higher expression in leaves, rachises, and flowers and lower transcript levels in roots and siliques. Sequence analysis revealed that IBC6 and IBC7 are similar to the receiver domain of bacterial two-component response regulators. This homology, coupled with previously published work on the CKI1 histidine kinase homolog, suggests that these proteins may play a role in early cytokinin signaling.

  7. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Measurement and analysis of the excitation function and isomeric cross section ratios for α-induced reaction on Ir, Au, Re and Ta nuclei

    International Nuclear Information System (INIS)

    Ismail, M.

    1998-01-01

    Excitation functions and a few isomeric cross section ratios for production of (1) 192 Au, 193 Au, 194 Au, 195 Au and 192 Ir nuclides in α-induced reactions on 191,193 Ir, (2) 197 Tl, 197m Hg, 198m.g Tl, 199 Tl and 200 Tl nuclides in α-induced reaction in 197 Au and (3) 183 Re and 184m.g Re nuclides in α-induced reaction in 181 Ta and 185 Re are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross section ratios for nuclear reaction 181 Ta (α,n) 184m.g Re are compared with the theoretical calculation using the code Stapre which is based on exciton model for pre-equilibrium phase and Hauser-Feshbach formalism taking angular momentum and parity into account for the equilibrium phase of the nuclear reaction. All other experimental excitation functions are compared with the calculations considering equilibrium as well as pre-equilibrium reaction mechanism according to the geometry dependent hybrid (GDH) model and hybrid model of Blann using the code Alice/91. The high energy part of the excitation functions are dominated by pre-equilibrium reaction mechanism whereas the low energy parts are dominated by equilibrium evaporation with its characteristic peak. The GDH model provides a potentially better description of the physical process (i.e. a higher probability for peripheral collisions to undergo precompound decay than for central collisions) compared to hybrid model. However in the energy range of present measurement most of the excitation functions are fitted reasonably well by both GDH model and hybrid model with initial exciton number N 0 =4 (N n =2, N p =2, N h =0). Barring a few reactions we have found the overall agreement between theory and experiment is reasonably good taking the limitations of the theory into account. (author)

  9. Differential cellular responses to prolonged LDR-IR in MLH1-proficient and MLH1-deficient colorectal cancer HCT116 cells.

    Science.gov (United States)

    Yan, Tao; Seo, Yuji; Kinsella, Timothy J

    2009-11-15

    MLH1 is a key DNA mismatch repair (MMR) protein involved in maintaining genomic stability by participating in the repair of endogenous and exogenous mispairs in the daughter strands during S phase. Exogenous mispairs can result following treatment with several classes of chemotherapeutic drugs, as well as with ionizing radiation. In this study, we investigated the role of the MLH1 protein in determining the cellular and molecular responses to prolonged low-dose rate ionizing radiation (LDR-IR), which is similar to the clinical use of cancer brachytherapy. An isogenic pair of MMR(+) (MLH1(+)) and MMR(-) (MLH1(-)) human colorectal cancer HCT116 cells was exposed to prolonged LDR-IR (1.3-17 cGy/h x 24-96 h). The clonogenic survival and gene mutation rates were examined. Cell cycle distribution was analyzed with flow cytometry. Changes in selected DNA damage repair proteins, DNA damage response proteins, and cell death marker proteins were examined with Western blotting. MLH1(+) HCT116 cells showed greater radiosensitivity with enhanced expression of apoptotic and autophagic markers, a reduced HPRT gene mutation rate, and more pronounced cell cycle alterations (increased late-S population and a G(2)/M arrest) following LDR-IR compared with MLH1(-) HCT116 cells. Importantly, a progressive increase in MLH1 protein levels was found in MLH1(+) cells during prolonged LDR-IR, which was temporally correlated with a progressive decrease in Rad51 protein (involved in homologous recombination) levels. MLH1 status significantly affects cellular responses to prolonged LDR-IR. MLH1 may enhance cell radiosensitivity to prolonged LDR-IR through inhibition of homologous recombination (through inhibition of Rad51).

  10. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  11. Effect of Cudrania tricuspidata and Kaempferol in Endoplasmic Reticulum Stress-Induced Inflammation and Hepatic Insulin Resistance in HepG2 Cells.

    Science.gov (United States)

    Kim, Ok-Kyung; Jun, Woojin; Lee, Jeongmin

    2016-01-21

    In this study, we quantitated kaempferol in water extract from Cudrania tricuspidata leaves (CTL) and investigated its effects on endoplasmic reticulum (ER) stress-induced inflammation and insulin resistance in HepG2 cells. The concentration of kaempferol in the CTL was 5.07 ± 0.08 mg/g. The HepG2 cells were treated with 300 µg/mL of CTL, 500 µg/mL of CTL, 1.5 µg/mL of kaempferol or 2.5 µg/mL of kaempferol, followed immediately by stimulation with 100 nM of thapsigargin for ER stress induction for 24 h. There was a marked increase in the activation of the ER stress and inflammation response in the thapsigargin-stimulated control group. The CTL treatment interrupted the ER stress response and ER stress-induced inflammation. Kaempferol partially inhibited the ER stress response and inflammation. There was a significant increase in serine phosphorylation of insulin receptor substrate (IRS)-1 and the expression of C/EBPα and gluconeogenic genes in the thapsigargin-stimulated control group compared to the normal control. Both CTL and kaempferol suppressed serine phosphorylation of IRS-1, and the treatments did not interrupt the C/EBPα/gluconeogenic gene pathway. These results suggest that kaempferol might be the active compound of CTL and that it might protect against ER stress-induced inflammation and hyperglycemia.

  12. Effect of CLU genetic variants on cerebrospinal fluid and neuroimaging markers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts

    OpenAIRE

    Tan, Lin; Wang, Hui-Fu; Tan, Meng-Shan; Tan, Chen-Chen; Zhu, Xi-Chen; Miao, Dan; Yu, Wan-Jiang; Jiang, Teng; Tan, Lan; Yu, Jin-Tai; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William

    2016-01-01

    The Clusterin (CLU) gene, also known as apolipoprotein J (ApoJ), is currently the third most associated late-onset Alzheimer’s disease (LOAD) risk gene. However, little was known about the possible effect of CLU genetic variants on AD pathology in brain. Here, we evaluated the interaction between 7 CLU SNPs (covering 95% of genetic variations) and the role of CLU in β-amyloid (Aβ) deposition, AD-related structure atrophy, abnormal glucose metabolism on neuroimaging and CSF markers to clarify ...

  13. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  14. Density functional study of the L10-αIrV transition in IrV and RhV

    International Nuclear Information System (INIS)

    Mehl, Michael J.; Hart, Gus L.W.; Curtarolo, Stefano

    2011-01-01

    Research highlights: → The computational determination of the ground state of a material can be a difficult task, particularly if the ground state is uncommon and so not found in usual databases. In this paper we consider the alpha-IrV structure, a low temperature structure found only in two compounds, IrV and RhV. In both cases this structure can be considered as a distorted tetragonal structure, and the tetragonal 'L1 0 ' structure is the high temperature structure for both compounds. We show, however, that the logical path for the transition from the L1 0 to the alpha-IrV structure is energetically forbidden, and find a series of unstable and metastable structures which have a lower energy than the L1 0 phase, but are higher in energy than the alpha-IrV phase. We also consider the possibility of the alpha-IrV structure appearing in neighboring compounds. We find that both IrTi and RhTi are candidates. - Abstract: Both IrV and RhV crystallize in the αIrV structure, with a transition to the higher symmetry L1 0 structure at high temperature, or with the addition of excess Ir or Rh. Here we present evidence that this transition is driven by the lowering of the electronic density of states at the Fermi level of the αIrV structure. The transition has long been thought to be second order, with a simple doubling of the L1 0 unit cell due to an unstable phonon at the R point (0 1/2 1/2). We use first-principles calculations to show that all phonons at the R point are, in fact, stable, but do find a region of reciprocal space where the L1 0 structure has unstable (imaginary frequency) phonons. We use the frozen phonon method to examine two of these modes, relaxing the structures associated with the unstable phonon modes to obtain new structures which are lower in energy than L1 0 but still above αIrV. We examine the phonon spectra of these structures as well, looking for instabilities, and find further instabilities, and more relaxed structures, all of which have

  15. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Young Sang [College of Natural Sciences, Chungnam National University, Daejeon (Korea, Republic of)

    2011-09-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H{sub 2}O{sub 2}-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H{sub 2}O{sub 2}-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-{beta}-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  16. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee; Kim, Young Sang

    2011-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated β-galactosidase (SA-β-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H 2 O 2 -treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H 2 O 2 -treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-β-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  17. CHD1 regulates cell fate determination by activation of differentiation-induced genes

    DEFF Research Database (Denmark)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq

    2017-01-01

    The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start...... site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes....... Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close...

  18. Noise-induced multistability in the regulation of cancer by genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, K. G., E-mail: pkaren@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hu, Chin-Kun, E-mail: huck@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-28

    We extend a previously introduced model of stochastic gene regulation of cancer to a nonlinear case having both gene and pseudogene messenger RNAs (mRNAs) self-regulated. The model consists of stochastic Boolean genetic elements and possesses noise-induced multistability (multimodality). We obtain analytical expressions for probabilities for the case of constant but finite number of microRNA molecules which act as a noise source for the competing gene and pseudogene mRNAs. The probability distribution functions display both the global bistability regime as well as even-odd number oscillations for a certain range of model parameters. Statistical characteristics of the mRNA’s level fluctuations are evaluated. The obtained results of the extended model advance our understanding of the process of stochastic gene and pseudogene expressions that is crucial in regulation of cancer.

  19. PENDIDIKAN AKHLAK MUSLIMAT MELALUISYA’IR : ANALISIS GENDER ATAS AJARAN SYI’IR MUSLIMAT KARYA NYAI WANIFAH KUDUS

    Directory of Open Access Journals (Sweden)

    Nur Said

    2016-03-01

    Full Text Available Penelitian ini difokuskan pada tiga hal: (1 Apakah karakteristik lingkup isi Syi’ir Muslimat?, (2 Bagai-manakah kondisi sosial budaya pada saat naskah ditulis oleh penulis?, (3 Apa nilai-nilai pendidikan moral bagi perempuan Muslim di isi Syi’ir Muslimat dalam perspektif gender?. Penelitian ini menggunakan pendekatan filologi dengan meningkatkan penggunaan analisis gender. Hasil dari penelitian ini adalah: Pertama, Syi’ir Muslimat ditulis oleh Nyai Wanifah, seorang wanita yang hidup pada zaman kolonial Belanda dipesantren tradisi di Kudus, Jawa Tengah. Kedua, beberapa nilai pendidikan moral di Syi’ir Muslimatantara lain: (1 Pentingnya pendidikan moral, (2 Bahaya perempuan bodoh; (3 Pentingnya belajar bagi perempuan di usia dini, (4 Etika menghias diri; (5 Bahaya materialisme, (6 Etika hubungan keluarga; (7 Dari rumah untuk mencapai surga; (8 Berhati-hatilah dengan tipu iblis; (9 Hindari perzinahan; (10 yang penting dari penutupan aurot; (11 yang ditujukan kepada orang tua. Ketiga, meskipun ada beberapa senyawa yang bias gender dalam Syi’ir Muslimat misalnya: (a Ada penjelasan yang menunjukkan bahwa perempuan lebih rendah dibandingkan laki-laki dalam derajat, (2 Pernyataan bahwa wanita bicara dibandingkan laki-laki, (3 wanita hanya cocok di wilayah domestik; Namun secara umum nasihat di syi’ir masih sangat relafen dalam konteks sekarang, terutama untuk memberikan solusi alternatif dalam merespon krisis moral bangsa terutama pada wanita generasi muda. Kata kunci: Syi’ir Muslimat, Pendidikan Karakter, Analisis Gender. This study focused on three things: (1 What is the characteristics of the scope of contents of Syi’ir Muslimat?, (2 What is the socio-cultural conditions at the time the manuscript was written by the author?, (3 What are the moral education values for Muslim women in the content of Syi’ir Muslimat in the perspective of gender?. This research uses a philological approach with enhanced use of gender analysis. The

  20. cDNA cloning and transcriptional controlling of a novel low dose radiation-induced gene and its function analysis

    International Nuclear Information System (INIS)

    Zhou Pingkun; Sui Jianli

    2002-01-01

    Objective: To clone a novel low dose radiation-induced gene (LRIGx) and study its function as well as its transcriptional changes after irradiation. Methods: Its cDNA was obtained by DDRT-PCR and RACE techniques. Northern blot hybridization was used to investigate the gene transcription. Bioinformatics was employed to analysis structure and function of this gene. Results: LRIGx cDNA was cloned. The sequence of LRIGx was identical to a DNA clone located in human chromosome 20 q 11.2-12 Bioinformatics analysis predicted an encoded protein with a conserved helicase domain. Northern analysis revealed a ∼8.5 kb transcript which was induced after 0.2 Gy as well as 0.02 Gy irradiation, and the transcript level was increased 5 times at 4 h after 0.2 Gy irradiation. The induced level of LRIGx transcript by 2.0 Gy high dose was lower than by 0.2 Gy. Conclusion: A novel low dose radiation-induced gene has been cloned. It encodes a protein with a conserved helicase domain that could involve in DNA metabolism in the cellular process of radiation response

  1. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Huai-Juan Xiao

    2014-05-01

    Full Text Available Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.. The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF, and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper.

  2. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    Science.gov (United States)

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  3. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy.

    Science.gov (United States)

    Suzuki, Masatoshi; Boothman, David A

    2008-03-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.

  4. Stress-induced premature senescence (SIPS). Influence of SIPS on radiotherapy

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Boothman, D.A.

    2008-01-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy. (author)

  5. Collateral Effects of Antibiotics: Carbadox and Metronidazole Induce VSH-1 and Facilitate Gene Transfer among Brachyspira hyodysenteriae Strains▿

    Science.gov (United States)

    Stanton, Thaddeus B.; Humphrey, Samuel B.; Sharma, Vijay K.; Zuerner, Richard L.

    2008-01-01

    Brachyspira hyodysenteriae is an anaerobic spirochete and the etiologic agent of swine dysentery. The genome of this spirochete contains a mitomycin C-inducible, prophage-like gene transfer agent designated VSH-1. VSH-1 particles package random 7.5-kb fragments of the B. hyodysenteriae genome and transfer genes between B. hyodysenteriae cells. The chemicals and conditions inducing VSH-1 production are largely unknown. Antibiotics used in swine management and stressors inducing traditional prophages might induce VSH-1 and thereby stimulate lateral gene transfer between B. hyodysenteriae cells. In these studies, VSH-1 induction was initially detected by a quantitative real-time reverse transcriptase PCR assay evaluating increased transcription of hvp38 (VSH-1 head protein gene). VSH-1 induction was confirmed by detecting VSH-1-associated 7.5-kb DNA and VSH-1 particles in B. hyodysenteriae cultures. Nine antibiotics (chlortetracycline, lincomycin, tylosin, tiamulin, virginiamycin, ampicillin, ceftriaxone, vancomycin, and florfenicol) at concentrations affecting B. hyodysenteriae growth did not induce VSH-1 production. By contrast, VSH-1 was detected in B. hyodysenteriae cultures treated with mitomycin C (10 μg/ml), carbadox (0.5 μg/ml), metronidazole (0.5 μg/ml), and H2O2 (300 μM). Carbadox- and metronidazole-induced VSH-1 particles transmitted tylosin and chloramphenicol resistance determinants between B. hyodysenteriae strains. The results of these studies suggest that certain antibiotics may induce the production of prophage or prophage-like elements by intestinal bacteria and thereby impact intestinal microbial ecology. PMID:18359835

  6. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  7. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  8. Recovery From Radiation-induced Bone Marrow Damage by HSP25 Through Tie2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kwon, Hee-Chung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chung, Hee-Yong [College of Medicine, Hanyang University, Seoul (Korea, Republic of); Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yun-Sil, E-mail: yslee0425@ewha.ac.kr [College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Woman' s University, Seoul (Korea, Republic of)

    2012-09-01

    Purpose: Whole-body radiation therapy can cause severe injury to the hematopoietic system, and therefore it is necessary to identify a novel strategy for overcoming this injury. Methods and Materials: Mice were irradiated with 4.5 Gy after heat shock protein 25 (HSP25) gene transfer using an adenoviral vector. Then, peripheral blood cell counts, histopathological analysis, and Western blotting on bone marrow (BM) cells were performed. The interaction of HSP25 with Tie2 was investigated with mouse OP9 and human BM-derived mesenchymal stem cells to determine the mechanism of HSP25 in the hematopoietic system. Results: HSP25 transfer increased BM regeneration and reduced apoptosis following whole-body exposure to ionizing radiation (IR). The decrease in Tie2 protein expression that followed irradiation of the BM was blocked by HSP25 transfer, and Tie2-positive cells were more abundant among the BM cells of HSP25-transferred mice, even after IR exposure. Following systemic RNA interference of Tie2 before IR, HSP25-mediated radioprotective effects were partially blocked in both mice and cell line systems. Stability of Tie2 was increased by HSP25, a response mediated by the interaction of HSP25 with Tie2. IR-induced tyrosine phosphorylation of Tie2 was augmented by HSP25 overexpression; downstream events in the Tie2 signaling pathway, including phosphorylation of AKT and EKR1/2, were also activated. Conclusions: HSP25 protects against radiation-induced BM damage by interacting with and stabilizing Tie2. This may be a novel strategy for HSP25-mediated radioprotection in BM.

  9. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  10. Possible role of calcium dependent protein phosphorylation in the modulation of wound induced HRGP gene activation in potatoes after gamma irradiation

    International Nuclear Information System (INIS)

    Ussuf, K.K.; Laxmi, N.H.; Nair, P.M.

    1996-01-01

    Hydroxyproline rich glycoprotein (HRGP) gene is induced in both control and gamma irradiated potato tubers after wounding. The enhanced RNA synthesis in response to wounding correlated well with the accumulation of both HRGP gene transcripts and protein. Initially, the level of HRGP gene expression in gamma irradiated potatoes in response to wounding was 30% more than the corresponding controls. After post irradiation storage of 3-5 weeks, HRGP gene expression in response to wounding was significantly lower than the unirradiated samples. This low level of HRGP gene expression in irradiated potatoes was partially retrieved by 5 mM Ca 2+ treatment. Prior treatment with trifluoperazine, a calcium channel blocker resulted in 35% reduction in wound induced HRGP gene expression in control potatoes, further providing evidence for the involvement of Ca 2+ dependency for HRGP gene activation. A comparative study on in vivo protein phosphorylation induced by wounding in control and irradiated potatoes exhibited significant differences. A good correlation was observed in the modulation of phosphorylation and HRGP gene expression by Ca 2+ in irradiated potatoes. Wound induced signal transduction system and subsequent Ca 2+ dependent protein phosphorylation for the activation of HRGP gene is affected in potatoes after gamma irradiation, thus impairing the wound healing process adversely. (author). 25 refs., 5 figs

  11. pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.

    Science.gov (United States)

    Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji

    2018-04-03

    A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.

  12. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Directory of Open Access Journals (Sweden)

    S.C.F. Olinto

    2012-11-01

    Full Text Available The amino acid arginine (Arg is a recognized secretagogue of growth hormone (GH, and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO, which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g were removed, divided into two halves, pooled (three hemi-pituitaries and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM, the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM and a cyclic guanosine monophosphate (cGMP analogue (8-Br-cGMP, 1 mM increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS inhibitor, 55 mM abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  13. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Energy Technology Data Exchange (ETDEWEB)

    Olinto, S.C.F. [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG (Brazil); Adrião, M.G. [Departamento de Morfologia e Fisiologia, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  14. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    International Nuclear Information System (INIS)

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression

  15. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    BACKGROUND AND PURPOSE: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  16. Transgene-induced gene silencing is not affected by a change in ploidy level.

    Directory of Open Access Journals (Sweden)

    Daniela Pignatta

    Full Text Available BACKGROUND: Whole genome duplication, which results in polyploidy, is a common feature of plant populations and a recurring event in the evolution of flowering plants. Polyploidy can result in changes to gene expression and epigenetic instability. Several epigenetic phenomena, occurring at the transcriptional or post-transcriptional level, have been documented in allopolyploids (polyploids derived from species hybrids of Arabidopsis thaliana, yet findings in autopolyploids (polyploids derived from the duplication of the genome of a single species are limited. Here, we tested the hypothesis that an increase in ploidy enhances transgene-induced post-transcriptional gene silencing using autopolyploids of A. thaliana. METHODOLOGY/PRINCIPAL FINDINGS: Diploid and tetraploid individuals of four independent homozygous transgenic lines of A. thaliana transformed with chalcone synthase (CHS inverted repeat (hairpin constructs were generated. For each line diploids and tetraploids were compared for efficiency in post-transcriptional silencing of the endogenous CHS gene. The four lines differed substantially in their silencing efficiency. Yet, diploid and tetraploid plants derived from these plants and containing therefore identical transgene insertions showed no difference in the efficiency silencing CHS as assayed by visual scoring, anthocyanin assays and quantification of CHS mRNA. CONCLUSIONS/SIGNIFICANCE: Our results in A. thaliana indicated that there is no effect of ploidy level on transgene-induced post-transcriptional gene silencing. Our findings that post-transcriptional mechanisms were equally effective in diploids and tetraploids supports the use of transgene-driven post-transcriptional gene silencing as a useful mechanism to modify gene expression in polyploid species.

  17. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    Science.gov (United States)

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  18. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  19. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  20. Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line.

    Science.gov (United States)

    Kalajdzic, Predrag; Markaki, Maria; Oehler, Stefan; Savakis, Charalambos

    2013-10-01

    Certain xenobiotics have the capacity to induce the expression of genes involved in various biological phenomena, including insecticide resistance. The induction potential of different chemicals, among them different insecticides, has been documented for a number of insect species. In this study, we have analyzed the induction potential of Imidacloprid, a widely used member of the neonicotinoid insecticide family. Genes Cyp6g1 and Cyp6a2, known to be involved in the resistance of mutant Drosophila melanogaster line MiT[W⁻]3R2 to Imidacloprid and DDT were included in the analyzed sample. We find that Imidacloprid does not induce expression of the analyzed genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    Science.gov (United States)

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  2. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Thys, Ryan G., E-mail: rthys@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Lehman, Christine E., E-mail: clehman@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Pierce, Levi C.T., E-mail: Levipierce@gmail.com [Human Longevity, Inc., San Diego, California 92121 (United States); Wang, Yuh-Hwa, E-mail: yw4b@virginia.edu [Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733 (United States)

    2015-09-15

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  3. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Thys, Ryan G.; Lehman, Christine E.; Pierce, Levi C.T.; Wang, Yuh-Hwa

    2015-01-01

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  4. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  5. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  6. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  7. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  8. Jaunesnių ir vyresnių klasių mokinių konfliktų ir jų sprendimų ypatumai

    OpenAIRE

    Stočkutė, Jovita

    2012-01-01

    Tyrimo objektas – jaunesnių ir vyresnių klasių mokinių konfliktai ir jų sprendimų ypatumai. Tyrimo tikslas – išanalizuoti jaunesnių ir vyresnių klasių mokinių konfliktus ir jų sprendimų ypatumus. Hipotezės – keliame prielaidas, kad - vyresnių klasių mokiniai konfliktuoti pamokose linkę labiau, nei jaunesnių klasių mokiniai. - vyresnių klasių mokiniai naudoja įvairesnes konflikto sprendimo strategijas nei jaunesnių klasių mokiniai. Tyrimo uždaviniai: 1. Atskleisti jaune...

  9. Knockdown of the placental growth factor gene inhibits laser induced choroidal neovascularization in a murine model.

    Science.gov (United States)

    Nourinia, Ramin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Akrami, Hassan; Rezaei Kanavi, Mozhgan; Samiei, Shahram

    2013-01-01

    To evaluate the effect of placental growth factor (PlGF) gene knockdown in a murine model of laser-induced choroidal neovascularization. Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl) corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  10. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study

    Science.gov (United States)

    Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner

    2016-05-01

    Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.

  11. Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia

    NARCIS (Netherlands)

    Pozhidaev, Ivan V; Alifirova, V. M.; Freidin, Maxim B.; Zhukova, I.A.; Fedorenko, Olga Yu; Osmanova, Diana Z; Mironova, Y.S.; Wilffert, Berend; Ivanova, Svetlana A.; Loonen, Antonius

    2017-01-01

    Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia I. Pozhidaev(1), V.M. Alifirova(2), M.B. Freidin(3), I.A. Zhukova(2), O.Y. Fedorenko(1), D.Z. Osmanova(1), Y.S. Mironova(2), B. Wilffert(4), S.A. Ivanova(1), A.J.M. Loonen(5) (1)Mental Health Research

  12. Teaching IR to Medical Students: A Call to Action.

    Science.gov (United States)

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  13. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    Science.gov (United States)

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  14. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  15. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  16. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  17. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  18. Pamokslo ir eseistikos sąveika Juliaus Sasnausko ir Giedrės Kazlauskaitės eseistikoje

    OpenAIRE

    Skirmantienė, Daiva

    2010-01-01

    Jaunosios kartos rašytojų kunigo pamokslininko Juliaus Sasnausko ir pasaulietės Giedrės Kazlauskaitės kūrybos semantinį ir įdėjinį lauką padeda suprasti teologinės literatūros ir literatūrinės teologijos sąveika. Teologinių prasmių paieška jų tekstuose atliepia šiuolaikinio žmogaus pastangas per literatūrą, skelbiančią gyvenamojo laikotarpio aktualijas, rasti kelią į tam tikras krikščioniškąsias tiesas ir bandyti reflektuoti savo tikėjimą bei analizuoti išganymo istoriją. Autorių kūryo...

  19. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages.

    Science.gov (United States)

    Rangel-Salazar, Rubén; Wickström-Lindholm, Marie; Aguilar-Salinas, Carlos A; Alvarado-Caudillo, Yolanda; Døssing, Kristina B V; Esteller, Manel; Labourier, Emmanuel; Lund, Gertrud; Nielsen, Finn C; Rodríguez-Ríos, Dalia; Solís-Martínez, Martha O; Wrobel, Katarzyna; Wrobel, Kazimierz; Zaina, Silvio

    2011-11-25

    We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.

  20. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice.

    Science.gov (United States)

    Chen, Zong; Ding, Tao; Ma, Chuan-Gen

    2017-11-18

    Hepatic ischemia/reperfusion (I/R) injury could arise as a complication of liver surgery and transplantation. No specific therapeutic strategies are available to attenuate I/R injury. NOD-, LRR-and CARD-containing 5 (NLRC5), a member of the NOD-like protein family, has been suggested to negatively regulate nuclear factor kappa B (NF-κB) through interacting with IKKα and blocking their phosphorylation. Dexmedetomidine (DEX) has been shown to attenuate liver injury. In the current study, we investigated the pre-treatment of DEX on hepatic I/R injury in wild type (WT) and NLRC5 knockout (NLRC5 -/- ) mice. Our results indicated that NLRC5 -/- showed significantly stronger histologic damage, inflammatory response, oxidative stress and apoptosis after I/R compared to the WT group of mice, indicating the protective role of NLRC5 against liver I/R injury. Importantly, I/R-induced increase of NLRC5 was reduced by DEX pre-treatment. After hepatic I/R injury, WT and NLRC5 -/- mice pre-treated with DEX exhibited attenuated histological disruption, and reduced pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and inducible nitric oxide synthase (iNOS), which was associated with the inactivated NF-κB pathway. Moreover, suppression of oxidative stress and apoptosis was observed in DEX-treated mice with I/R injury, probably through enhancing nuclear factor erythroid 2-related factor 2 (Nrf2), reducing mitogen-activated protein kinases (MAPKs) and Caspase-3/poly (ADP-ribose) polymerase (PARP) pathways. In vitro, the results were further confirmed in WT and NLRC5 -/- hepatocytes pre-treated with or without DEX. Together, the findings illustrated that lack of NLRC5 resulted in severer liver I/R injury, which could be alleviated by DEX pre-treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pleiotropic effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels

    NARCIS (Netherlands)

    Li, Naishi; van der Sijde, Marijke R; Bakker, Stephan J L; Dullaart, Robin P F; van der Harst, Pim; Gansevoort, Ron T; Elbers, Clara C; Wijmenga, Cisca; Snieder, Harold; Hofker, Marten H; Fu, Jingyuan

    Dyslipidemia is strongly associated with raised plasma glucose levels and insulin resistance (IR), and genome-wide association studies have identified 95 loci that explain a substantial proportion of the variance in blood lipids. However, the loci's effects on glucose-related traits are largely

  2. Influence of induced colour centres on the frequency - angular spectrum of a light bullet of mid-IR radiation in lithium fluoride

    Science.gov (United States)

    Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.

    2017-04-01

    The influence of the occurrence of a structure consisting of long-lived colour centres, formed in an LiF crystal upon filamentation of femtosecond mid-IR radiation, on the supercontinuum characteristics is investigated. With an increase in the number of incident pulses, the length and transverse size of the structure of colour centres induced in LiF increase, and the supercontinuum spectrum in the short-wavelength region is markedly transformed due to the occurrence of the waveguide propagation regime, absorption, and scattering of radiation from the newly formed structure of colour centres. Under these conditions, the intensity of the anti-Stokes wing decreases by two orders of magnitude after several tens of pulses. Spectral components arise in the visible range, the angular divergence of which increases with increasing wavelength.

  3. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models

    Science.gov (United States)

    Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies. PMID:26559822

  4. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  5. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    International Nuclear Information System (INIS)

    Alsner, Jan; Rodningen, Olaug K.; Overgaard, Jens

    2007-01-01

    Background and purpose: Differentially gene expression between patients with either very low or very high risk of radiation-induced fibrosis (RIF) in patient-derived fibroblasts after irradiation has previously been reported. In the present study, we are investigating the robustness of radiation-induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF and changes in radiation-induced gene expression in fibroblasts. Material and methods: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3 x 3.5 Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy. Results: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk, there was no linear correlation between individual risk of RIF and differential expression of the genes investigated. Rather, differential gene expression could divide patients into two clearly separated groups, a larger, sensitive group and a smaller resistant group. Conclusions: Differential gene expression in irradiated fibroblasts might be an important tool in the identification of differences in the genetic background between patients with variable risk of RIF, and in the identification of new targets for prevention and intervention of the fibrotic process

  6. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  7. Piper betle Induced Cytoprotective Genes and Proteins via the Nrf2/ARE Pathway in Aging Mice.

    Science.gov (United States)

    Aliahmat, Nor Syahida; Abdul Sani, Nur Fathiah; Wan Hasan, Wan Nuraini; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2016-01-01

    The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins. Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis. PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes. PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process. © 2016 S. Karger AG, Basel.

  8. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior

    2017-01-01

    BACKGROUND: Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy...

  9. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  10. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges

    Science.gov (United States)

    Seah, Yu Fen Samantha; EL Farran, Chadi A.; Warrier, Tushar; Xu, Jian; Loh, Yuin-Han

    2015-01-01

    Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases. PMID:26633382

  11. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges

    Directory of Open Access Journals (Sweden)

    Yu Fen Samantha Seah

    2015-12-01

    Full Text Available Embryonic stem cells (ESCs are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases.

  12. Defense gene expression in root galls induced by Nacobbus aberrans in CM334 chilli plants

    Directory of Open Access Journals (Sweden)

    Villar-Luna E.

    2015-02-01

    Full Text Available Capsicum annuum L. CM334 is susceptible to Nacobbus aberrans but highly resistant to Phy-tophthora capsici. Resistance to P. capsici is associated with the over-expression of various defense genes such as those encoding pathogenesis-related proteins. The transcriptional alterations of defense-related genes were determined in galls induced by N. aberrans (Na in CM334 chili roots. Transcripts accumulation of WRKY-a, WRKY1, POX (peroxidase, PR-1 (pathogenesis-related protein 1, and EAS (5-epiaristolochene synthase was estimated by qRT-PCR, and they were compared with those recorded in the incompatible CM334- P. capsici (Pc interaction. The levels of all studied genes were significantly (P s 0.05 lower (WRKY1, POX and PR-1 or down-regulated (WRKY-a and EAS in the presence of N. aberrans; in contrast, in the incompatible interaction, all genes were significantly up-regulated. The alterations induced by N. aberrans could be necessary to ensure the successful completion of its life cycle in CM334 chili roots.

  13. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  14. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kristel Kaer

    Full Text Available Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.

  15. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2015-01-01

    Full Text Available Background: Insulin receptor substrate (IRS Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR. We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH and Usual Dietary Advices (UDA on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00. Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05 but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.

  16. Differential effects of multiplicity of infection on Helicobacter pylori-induced signaling pathways and interleukin-8 gene transcription.

    Science.gov (United States)

    Ritter, Birgit; Kilian, Petra; Reboll, Marc Rene; Resch, Klaus; DiStefano, Johanna Kay; Frank, Ronald; Beil, Winfried; Nourbakhsh, Mahtab

    2011-02-01

    Interleukin-8 (IL-8) plays a central role in the pathogenesis of Helicobacter pylori infection. We used four different H. pylori strains isolated from patients with gastritis or duodenal ulcer disease to examine their differential effects on signaling pathways and IL-8 gene response in gastric epithelial cells. IL-8 mRNA level is elevated in response to high (100) multiplicity of infection (MOI) independent of cagA, vacA, and dupA gene characteristics. By lower MOIs (1 or 10), only cagA ( + ) strains significantly induce IL-8 gene expression. This is based on differential regulation of IL-8 promoter activity. Analysis of intracellular signaling pathways indicates that H. pylori clinical isolates induce IL-8 gene transcription through NF-κB p65, but by a MOI-dependent differential activation of MAPK pathways. Thus, the major virulence factors of H. pylori CagA, VacA, and DupA might play a minor role in the level of IL-8 gene response to a high bacterial load.

  17. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  18. Įvairialyčiai lantano ir mangano oksido ir multiferoinio bismuto ferito heterodariniai

    Directory of Open Access Journals (Sweden)

    Bonifacas VENGALIS

    2011-11-01

    Full Text Available Pastaruoju metu naujų elektronikos prietaisų gamyboje buvo pasiekta didelė pažanga auginant, tyrinėjant ir pritaikant plonasluoksnes struktūras, sudarytas iš įvairių daugiakomponenčių funkcinių oksidų. Šiai oksidų grupei priklauso superlaidieji kupratai, mangano oksidai (manganitai, pasižymintys magnetovaržos reiškiniu, taip pat kiti feromagnetiniai, feroelektriniai, multiferoiniai oksidai. Manganitams (jų bendra formulė Ln1-xAxMnO3, kur Ln = La, Nd,..., o A - dvivalentis katijonas, toks kaip Ba, Sr ar Ca skiriama daug dėmesio dėl jų įdomių elektrinių savybių bei tinkamumo įvairiems spintronikos prietaisams kurti. Multiferoikai  (feroelektriniai feromagnetai pasižymi magnetoelektriniu efektu, duodančiu unikalią galimybę elektrinėms ir magnetinėms medžiagos savybėms valdyti panaudoti elektrinius ir magnetinius laukus. Bismuto feritas BiFeO3 (BFO, turintis romboedriškai deformuotą perovskito struktūrą, šiuo metu yra vienas labiausiai tyrinėjamų šios klasės junginių. Organiniai puslaidininkiai (OP taip pat atveria daug naujų galimybių elektronikai. Jų pranašumas yra didelė organinių junginių įvairovė ir palyginti paprasta ir pigi plonų sluoksnių gamybos technologija. Be to, OP pasižymi neįprastai didelėmis sukinių relaksacijos laiko vertėmis, todėl ateityje jie gali būti naudojami naujiems spintronikos prietaisams gaminti. Šiame straipsnyje apžvelgiami pastarųjų metų darbo autorių ir jų kolegų atlikti anksčiau minėtų medžiagų tyrimai. Daugiausia dėmesio skiriama magnetovaržinėmis savybėmis pasižyminčių lantano ir mangano oksidų (manganitų bei multiferoinio  BiFeO3 (BFO junginio plonųjų sluoksnių ir heterodarinių auginimui, tarpfazinių ribų tarp minėtų oksidų, laidžiojo SrTiO3 ir organinio puslaidininkio (Alq3 sudarymui, taip pat elektrinėms heterodarinių savybėms. Plonieji La2/3A1/3MnO3 (A = Ca, Sr, Ba, Ce sluoksniai, kurių storis d

  19. Knockdown of the Placental Growth Factor Gene Inhibits Laser Induced Choroidal Neovascularization in a Murine Model

    Directory of Open Access Journals (Sweden)

    Ramin Nourinia

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of placental growth factor (PlGF gene knockdown in a murine model of laser-induced choroidal neovascularization. Methods: Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. Results: No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Conclusion: Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  20. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left