WorldWideScience

Sample records for ir spectroscopic studies

  1. 2-Ethynylpyridine dimers: IR spectroscopic and computational study

    Science.gov (United States)

    Bakarić, Danijela; Spanget-Larsen, Jens

    2018-04-01

    2-ethynylpyridine (2-EP) presents a multifunctional system capable of participation in hydrogen-bonded complexes utilizing hydrogen bond donating (tbnd Csbnd H, Aryl-H) and hydrogen bond accepting functions (N-atom, Ctbnd C and pyridine π-systems). In this work, IR spectroscopy and theoretical calculations are used to study possible 2-EP dimer structures as well as their distribution in an inert solvent such as tetrachloroethene. Experimentally, the tbnd Csbnd H stretching vibration of the 2-EP monomer absorbs close to 3300 cm-1, whereas a broad band with maximum around 3215 cm-1 emerges as the concentration rises, indicating the formation of hydrogen-bonded complexes involving the tbnd Csbnd H moiety. The Ctbnd C stretching vibration of monomer 2-EP close to 2120 cm-1 is, using derivative spectroscopy, resolved from the signals of the dimer complexes with maximum around 2112 cm-1. Quantum chemical calculations using the B3LYP + D3 model with counterpoise correction predict that the two most stable dimers are of the π-stacked variety, closely followed by dimers with intermolecular tbnd Csbnd H⋯N hydrogen bonding; the predicted red shifts of the tbnd Csbnd H stretching wavenumbers due to hydrogen bonding are in the range 54-120 cm-1. No species with obvious hydrogen bonding involving the Ctbnd C or pyridine π-systems as acceptors are predicted. Dimerization constant at 25 °C is estimated to be K2 = 0.13 ± 0.01 mol-1 dm3.

  2. Ir Spectroscopic Studies on Microsolvation of HCl by Water

    Science.gov (United States)

    Mani, Devendra; Schwan, Raffael; Fischer, Theo; Dey, Arghya; Kaufmann, Matin; Redlich, Britta; van der Meer, Lex; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Acid dissociation reactions are at the heart of chemistry. These reactions are well understood at the macroscopic level. However, a microscopic level understanding is still in the early stages of development. Questions such as 'how many H_2O molecules are needed to dissociate one HCl molecule?' have been posed and explored both theoretically and experimentally.1-5 Most of the theoretical calculations predict that four H_2O molecules are sufficient to dissociate one HCl molecule, resulting in the formation of a solvent separated H_3O+(H_2O)3Cl- cluster.1-3 IR spectroscopy in helium nanodroplets has earlier been used to study this dissociation process.3-5 However, these studies were carried out in the region of O-H and H-Cl stretch, which is dominated by the spectral features of undissociated (HCl)m-(H_2O)n clusters. This contributed to the ambiguity in assigning the spectral features arising from the dissociated cluster.4,5 Recent predictions from Bowman's group, suggest the presence of a broad spectral feature (1300-1360 wn) for the H_3O+(H_2O)3Cl- cluster, corresponding to the umbrella motion of H_3O+ moiety.6 This region is expected to be free from the spectral features due to the undissociated clusters. In conjunction with the FELIX laboratory, we have performed experiments on the (HCl)m(H_2O)n (m=1-2, n≥4) clusters, aggregated in helium nanodroplets, in the 900-1700 wn region. Mass selective measurements on these clusters revealed the presence of a weak-broad feature which spans between 1000-1450 wn and depends on both HCl as well as H_2O concentration. Measurements are in progress for the different deuterated species. The details will be presented in the talk. References: 1) C.T. Lee et al., J. Chem. Phys., 104, 7081 (1996). 2) H. Forbert et al., J. Am. Chem. Soc., 133, 4062 (2011). 3) A. Gutberlet et al., Science, 324, 1545 (2009). 4) S. D. Flynn et al., J. Phys. Chem. Lett., 1, 2233 (2010). 5) M. Letzner et al., J. Chem. Phys., 139, 154304 (2013). 6) J. M

  3. FT-IR spectroscopic studies of protein secondary structures for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karamancheva, I; Simonova, D.; Milev, A.

    2013-01-01

    Full text: Roughly 14 million new cancer cases and 8 million cancer deaths have occurred worldwide in 2012. At least 30 % of all cancer cases and 40 % of the cancer deaths should be avoided by improving the early detection. Fourier transform infrared (FT-IR) spectroscopy has shown many advantages as a tool for the detection of cancer over the traditional methods such as histopathological analysis, X-ray transmission, ultrasonic and computer tomography techniques. With the aim to establish the FT-IR spectroscopy as an alternative method for the diagnosis of human cancers, we have made several studies to examine in details the spectroscopic properties of normal and carcinomatous tissues. Human breast tissues were obtained immediately after surgical breast resection with the informed patient's consent. In our studies we made extensive use of Fourier self-deconvolution, second-order derivatization, difference spectra, curve-fitting procedures and quantitative determinations according to Beer's law. Cancer is a multi-step process. Characteristic differences in both the frequencies and the intensity ratios of several bands have been revealed. Considerable differences have been found in the spectral patterns. The most important and informative region in the mid-IR for determination of protein secondary structure is the amide I and amide II region. The bands between 1730 and 1600 cm -1 are highly sensitive to conformational changes. Considerable changes were observed in the A1735/A1652 absorbance ratio, which provides a measure for the content of a- helix and P-sheet domains. Our investigations have shown that the major biomarker peaks are in the amide I and amide II regions. In the so called 'fingerprint region' many molecular constituents such as lipids, phospholipids, proteins, DNA and RNA, carbohydrates and metabolites may overlap and the quantitative interpretation is impossible. The spectrum may therefore reflect only the average biochemical composition.; key words

  4. ATR-IR spectroscopic cell for in situ studies at solid-liquid interface at elevated temperatures and pressures

    NARCIS (Netherlands)

    Koichumanova, Kamila; Visan, Aura; Geerdink, Bert; Lammertink, Rob G.H.; Mojet, Barbara; Seshan, Kulathuiyer; Lefferts, Leonardus

    2017-01-01

    An in situ ATR-IR spectroscopic cell suitable for studies at solid-liquid interface is described including the design and experimental details in continuous flow mode at elevated temperatures (230 °C) and pressures (30 bar). The design parameters considered include the cell geometry, the procedure

  5. Combined microcalorimetric and IR spectroscopic study on carbon dioxide adsorption in H-MCM-22

    Energy Technology Data Exchange (ETDEWEB)

    Arean, C.O., E-mail: co.arean@uib.es [Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca (Spain); Delgado, M.R. [Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca (Spain); Bulánek, R.; Frolich, K. [Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice (Czech Republic)

    2014-10-15

    Highlights: • Adsorption calorimetry and variable temperature IR spectroscopy is used to study adsorption of CO{sub 2} in the protonic zeolite H-MCM-22. • By simultaneously recording IR absorbance over a temperature range, temperature and equilibrium pressure, standard adsorption enthalpy and entropy of CO{sub 2} was determined. • The results are discussed in the broader context of carbon dioxide capture from the flue gas of fossil fuel fired power stations. - Abstract: The thermodynamics of carbon dioxide adsorption in the protonic zeolite H-MCM-22 (Si:Al = 16:1) was investigated by means of adsorption calorimetry and variable-temperature IR spectroscopy, a technique that affords determination of standard adsorption enthalpy (ΔH{sup 0}) and entropy (ΔS{sup 0}) from analysis of a series of IR spectra recorded over a temperature range while simultaneously measuring equilibrium pressure inside a closed IR cell. ΔH{sup 0} resulted to be −24.5 (±2) kJ mol{sup −1}, while for the entropy change the value of ΔS{sup 0} = −115 (±10) J mol{sup −1} K{sup −1} was obtained. The obtained ΔH{sup 0} value is compared with those reported in the literature for the adsorption of CO{sub 2} on other zeolites, and discussed in the context of carbon dioxide capture and sequestration.

  6. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy.

    Science.gov (United States)

    Olsztyńska-Janus, Sylwia; Szymborska-Małek, Katarzyna; Gąsior-Głogowska, Marlena; Walski, Tomasz; Komorowska, Małgorzata; Witkiewicz, Wojciech; Pezowicz, Celina; Kobielarz, Magdalena; Szotek, Sylwia

    2012-01-01

    Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.

  7. Spectroscopic study

    International Nuclear Information System (INIS)

    Flores, M.; Rodriguez, R.; Arroyo, R.

    1999-01-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  8. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    Science.gov (United States)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  9. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre-formed Ir metal particles. These solids possess promising properties, in terms of selectivity, as catalysts for propane dehydrogenation to propene. Detailed CO-adsorption DRIFTS, XANES and EXAFS characterization studies have been performed on these systems in order to compare the structural and electronic evolution of systems in relation to the nature of the Ir-Sn bonds present in the precursor compounds and to propose a structural model of the Ir-Sn species present at the silica surface of the final catalyst. © 2013 The Royal Society of Chemistry.

  10. Identifying Residual Structure in Intrinsically Disordered Systems : A 2D IR Spectroscopic Study of the GVGXPGVG Peptide

    NARCIS (Netherlands)

    Lessing, Joshua; Roy, Santanu; Reppert, Mike; Baer, Marcel; Marx, Dominik; Jansen, Thomas La Cour; Knoester, Jasper; Tokmakoff, Andrei

    2012-01-01

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides.

  11. Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide.

    NARCIS (Netherlands)

    Lessing, J.; Roy, S.; Reppert, M.; Baer, M.; Marx, D.; Jansen, T.L.Th.A.; Knoester, J.; Tokmakoff, A.

    2012-01-01

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides.

  12. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro; Psaro, Rinaldo; Guidotti, Matteo; Dal Santo, Vladimiro; Pergola, Roberto Della; Masih, Dilshad; Izumi, Yasuo

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre

  13. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    Science.gov (United States)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  14. Structure and linear spectroscopic properties of near IR polymethine dyes

    International Nuclear Information System (INIS)

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  15. Syntheses, spectroscopic properties and molecular structure of silver phytate complexes - IR, UV-VIS studies and DFT calculations

    Science.gov (United States)

    Zając, A.; Dymińska, L.; Lorenc, J.; Ptak, M.; Hanuza, J.

    2018-03-01

    Silver phytate IP6, IP6Ag, IP6Ag2 and IP6Ag3 complexes in the solid state have been synthesized changing the phosphate to metal mole ratio. The obtained products have been characterized by means of chemical and spectroscopic studies. Attenuated total reflection Fourier transform infrared technique and Raman microscope were used in the measurements. These results were discussed in terms of DFT (Density Functional Theory) quantum chemical calculations using the B3LYP/6-31G(d,p) approach. The molecular structures of these compounds have been proposed on the basis of group theory and geometry optimization taking into account the shape and the number of the observed bands corresponding to the stretching and bending vibrations of the phosphate group and metal-oxygen polyhedron. The role of inter- and intra-hydrogen bonds in stabilization of the structure has been discussed. It was found that three types of hydrogen bonds appear in the studied compounds: terminal, and those engaged in the inter- and intra-molecular interactions. The Fermi resonance as a result of the strong intra-molecular Osbnd H⋯O hydrogen bonds was discovered. Electron absorption spectra have been measured to characterize the electron properties of the studied complexes and their local symmetry.

  16. Variable-Temperature IR Spectroscopic and Theoretical Studies on CO2 Adsorbed in Zeolite K-FER

    Czech Academy of Sciences Publication Activity Database

    Areán, C. O.; Delgado, M. R.; Bibiloni, G. F.; Bludský, Ota; Nachtigall, P.

    2011-01-01

    Roč. 12, č. 8 (2011), s. 1435-1443 ISSN 1439-4235 R&D Projects: GA MŠk(CZ) ME10032; GA MŠk LC512; GA ČR GA203/09/0143 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * carbon dioxide * density functional calculations * IR spectroscopy * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  17. Atomically resolved spectroscopic study of Sr.sub.2./sub.IrO.sub.4./sub.: Experiment and theory

    Czech Academy of Sciences Publication Activity Database

    Li, Q.; Cao, G.; Okamoto, S.; Yi, J.; Lin, W.; Sales, B.C.; Yan, J.; Arita, R.; Kuneš, Jan; Kozhevnikov, A.V.; Eguiluz, A.G.; Imada, M.; Gai, Z.; Pan, M.; Mandrus, D.G.

    2013-01-01

    Roč. 3, OCT (2013), s. 1-7 ISSN 2045-2322 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : Sr 2 IrO 4 * scanning tunneling microscopy * Mott insulator * Slater insulator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.078, year: 2013 http://www.nature.com/srep/2013/131029/srep03073/full/srep03073.html

  18. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations

    Science.gov (United States)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2016-07-01

    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  19. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Cestelli Guidi, M.; Mirri, C.; Marcelli, A. [Laboratori Nazionali di Frascati - INFN, Frascati, Rome (Italy); Fratini, E.; Amendola, R. [ENEA, UT BIORAD-RAB, Rome (Italy); Licursi, V.; Negri, R. [Universita La Sapienza, Dip. Biologia e Biotecnologie ' ' Charles Darwin' ' , Rome (Italy)

    2012-09-15

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation. (orig.)

  20. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study.

    Science.gov (United States)

    Cestelli Guidi, M; Mirri, C; Fratini, E; Licursi, V; Negri, R; Marcelli, A; Amendola, R

    2012-09-01

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 10(11) 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.

  1. Energy profile, spectroscopic (FT-IR, FT-Raman and FT-NMR) and DFT studies of 4-bromoisophthalic acid

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Mohan, S.

    2018-04-01

    The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.

  2. IR and UV spectroscopic analysis of TBP complexes

    International Nuclear Information System (INIS)

    Azzouz, A.; Berrak, A.; Seridi, L.; Attou, M.

    1985-06-01

    The complexity of TBP molecule and the limited number of references stimulated the elaboration of this report. The spectroscopic of TBP and its complexes in the IR and UV fields permitted to elucidate or to confirm certain aspects concerning the solvation phenomenum. In IR spectroscopy, the stretching band of the P→O bond only is characteristic of the complex formed. The position of this band gives sufficient information about the kind and the stability of a complex. The TBP electronic spectra are characterized by two bands (200-220 nm) 1 and (268-290 nm) 2 whose intensity ratio (2/1) is about 0,13. The solvent nature seems to influence the positions of these bands and that of the inflexion point. The band 2 disappears when the TBP is complexed and the position and the intensity of the band 1 depend upon the complex nature

  3. The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory.

    Science.gov (United States)

    Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet

    2016-01-15

    In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1) (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. ((1))H and ((13))C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. ((1))H and ((13))C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. FT-IR spectroscopic and thermodynamic study on the adsorption of carbon dioxide and dinitrogen in the alkaline zeolite K-L

    International Nuclear Information System (INIS)

    Arean, C.O.; Bibiloni, G.F.; Delgado, M.R.

    2012-01-01

    Highlights: ► Variable temperature IR spectroscopy is used to study adsorption of CO 2 and N 2 in the alkaline zeolite K-L. ► By simultaneously recording IR absorbance, temperature and equilibrium pressure, standard adsorption enthalpy and entropy for each gas was determined. ► The results are discussed in the broader context of gas separation using zeolites; focusing on carbon dioxide capture. - Abstract: The thermodynamics of carbon dioxide and dinitrogen adsorption on the zeolite K-L was investigated by means of variable temperature IR spectroscopy, a technique that affords determination of standard adsorption enthalpy (ΔH°) and entropy (ΔS°) from analysis of IR spectra recorded over a temperature range while simultaneously measuring equilibrium pressure inside a closed IR cell. ΔH° resulted to be −42.5 and −20.6 kJ mol −1 for CO 2 and N 2 , respectively. Corresponding values of ΔS° were found to be −182 and −151 J mol −1 K −1 . The obtained adsorption enthalpy values are discussed in the context of carbon dioxide capture and sequestration.

  5. Quantum computational studies, spectroscopic (FT-IR, FT-Raman and UV-Vis) profiling, natural hybrid orbital and molecular docking analysis on 2,4 Dibromoaniline

    Science.gov (United States)

    Abraham, Christina Susan; Prasana, Johanan Christian; Muthu, S.; Rizwana B, Fathima; Raja, M.

    2018-05-01

    The research exploration will comprise of investigating the molecular structure, vibrational assignments, bonding and anti-bonding nature, nonlinear optical, electronic and thermodynamic nature of the molecule. The research is conducted at two levels: First level employs the spectroscopic techniques - FT-IR, FT-Raman and UV-Vis characterizing techniques; at second level the data attained experimentally is analyzed through theoretical methods using and Density Function Theories which involves the basic principle of solving the Schrodinger equation for many body systems. A comparison is drawn between the two levels and discussed. The probability of the title molecule being bio-active theoretically proved by the electrophilicity index leads to further property analyzes of the molecule. The target molecule is found to fit well with Centromere associated protein inhibitor using molecular docking techniques. Higher basis set 6-311++G(d,p) is used to attain results more concurrent to the experimental data. The results of the organic amine 2, 4 Dibromoaniline is analyzed and discussed.

  6. Synthesis, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study and anti-tubercular activity of condensed oxadiazole and pyrazine derivatives

    Science.gov (United States)

    El-Azab, Adel S.; Mary, Y. Sheena; Abdel-Aziz, Alaa A. M.; Miniyar, Pankaj B.; Armaković, Stevan; Armaković, Sanja J.

    2018-03-01

    The Fourier transform infrared spectra of the compounds 2-(5-phenyl-1,3,4-oxadiazol-2-yl)pyrazine (PHOXPY), 2-(5-styryl-1,3,4-oxadiazol-2-yl)pyrazine (STOXPY) and 2-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)pyrazine (FUOXPY) have been recorded and the wavenumbers are computed at the density functional theory level. The assignments of all the fundamental bands of each molecule are made using potential energy distribution. The computed values of dipole moment, polarizability and hyperpolarizability values indicate that the title molecules exhibit NLO properties. The HOMO and LUMO energies demonstrate the chemical stability of the molecules and NBO analysis is made to study the stability of molecules arising from hyper conjugative interactions and charge delocalization. Detailed computational analysis and spectroscopic characterization has been performed for three newly synthesized oxadiazole derivatives. Obtained computational and experimental results have been mutually compared in order to understand the influence of structural parts specific for each derivative. From the MIC determination, MTb H37Rv was found to be sensitive to compounds, PHOXPY, STOXPY and FUOXPY. The results obtained from anti-TB activity are more promising as the compounds were found to be more potent than reference standards, streptomycin and pyrazinamide. Efforts were made in order to predict both global and local reactive properties of the title oxadiazole derivatives, including their sensitivity towards autoxidation mechanism and influence of water. The results obtained from anti-TB activity are more promising for the title compounds. Interaction with representative protein Pterindeaminase inhibitor asricin A was also investigated using the molecular docking procedure. The docked ligands form stable complexes with the receptor ricin A and the docking results suggest that these compounds can be developed as new anti-cancer drugs.

  7. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    Science.gov (United States)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  8. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure

    Science.gov (United States)

    Uludağ, Nesimi; Serdaroğlu, Goncagül

    2018-03-01

    This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.

  9. Synthesis and IR spectroscopic investigation of solvated complexes of dioxomolybdenum (6) with salicylal-S-methyl isothiosemicarbazone

    International Nuclear Information System (INIS)

    Abramenko, V.L.; Sergienko, V.S.

    1996-01-01

    The complex of MoO 2 L (H 2 L-S-methylizothiosemicarbazone of salicyl aldehyde) and its seven solvated derivatives MoO 2 LxSolv, have been synthesized, their IR spectroscopic study being conducted. The conclusions on the structure of the complexes studied are confirmed by ata of x-ray diffraction analysis. Refs. 4, tabs. 1

  10. A Raman scattering and FT-IR spectroscopic study on the effect of the solar radiation in Antarctica on bovine cornea

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Murakami, Naoki; Yoshikiyo, Keisuke; Takahashi, Tetsuya; Yamamoto, Naoyuki

    2010-01-01

    The Raman scattering and FT-IR spectra of the corneas, transported to the Syowa station in Antarctica and exposed to the solar radiation of the mid-summer for four weeks, were studied to reveal that type IV collagen involved in corneas were fragmented. The amide I and III Raman bands were observed at 1660 and 1245 cm -1, respectively, and the amide I and II infrared bands were observed at 1655 and 1545 cm -1, respectively, for original corneas before exposure. The background of Raman signals prominently increased and the ratio of amide II infrared band versus amide I decreased by the solar radiation in Antarctica. The control experiment using an artificial UV lamp was also performed in laboratory. The decline rate of the amide II/amide I was utilized for estimating the degree of fragmentation of collagen, to reveal that the addition of vitamin C suppressed the reaction while the addition of sugars promoted it. The effect of the solar radiation in Antarctica on the corneas was estimated as the same as the artificial UV lamp of four weeks (Raman) or one week (FT-IR) exposure.

  11. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    Science.gov (United States)

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  12. UV-vis, IR and 1H NMR spectroscopic studies of some mono- and bis-azo-compounds based on 2,7-dihydroxynaphthalene and aniline derivatives

    Science.gov (United States)

    Issa, Raafat M.; Fayed, Tarek A.; Awad, Mohammed K.; El-Kony, Sanaa M.

    2005-12-01

    The absorption spectra of mono- and bis-azo-derivatives obtained by coupling the diazonium salts of aromatic amines and 2,7-dihydroxynaphthalene have been studied in six organic solvents. The different absorption bands have been assigned and the effect of solvents on the charge transfer band is also discussed. The diagnostic IR spectral bands and 1H NMR signals are assigned and discussed in relation to molecular structure. Also, semi-empirical molecular orbital calculations using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory have been performed to investigate the molecular and electronic structures of these compounds. According to these calculations, an intramolecular hydrogen bonding is essential for stabilization of such molecules.

  13. IR-spectroscopic study and electrical properties of glasses in the Ba(PO3)2-Ba(Hal)2 systems

    International Nuclear Information System (INIS)

    Sokolov, I.A.; Tarlakov, Yu.P.; Murin, I.V.; Pronkin, A.A.

    2000-01-01

    Temperature-concentration dependence of electric conductivity of glasses in the systems Ba(PO 3 ) 2 -Ba(Hal) 2 , where Hal = Cl, Br, I, is studied by the method of conductometry, the numbers of iodide-ions transfer are determined and their concentration dependence is found. Data of IR spectroscopy permitted ascertained participation of halide ions in formation of anionic constituent of the glass structure at the expense of bridge bonds formation, as well as formation of structural-chemical units of [(Hal) - Ba 2+ O - POO 2/2 ] type, their dissociation giving rise to formation of halide ions their dissociation giving rise to formation of halide ions taking part in electric current transfer [ru

  14. Structural, spectroscopic (FT-IR, NMR, UV-visible), nonlinear optical (NLO), cytotoxic and molecular docking studies of 4-nitro-isonitrosoacetophenone (ninapH) by DFT method

    Science.gov (United States)

    Kucuk, Ilhan; Kaya, Yunus; Kaya, A. Asli

    2017-07-01

    (4-Nitro-phenyl)-oxo-acetaldehyde oxime (ninapH) is a type of oxime, which has a oxime and α-carbonyl groups. This molecule has been synthesized from literature procedure. The structural properties and conformational behaviors were examined using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set. As a result of the conformational studies, the most stable conformer was determined, and then this molecule was optimized with the same basis set. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. The calculated HOMO and LUMO energies show that charge transfer within the molecule. The first order hyperpolarizability and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the ninapH have been calculated at different temperatures, 100-1000 K. In addition, the molecular docking studies have been performed with DNA and protein structures (downloaded from Protein Data Bank).

  15. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    Science.gov (United States)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  16. Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE)

    Science.gov (United States)

    2016-04-22

    biomaterials , and nanocomposites. Based on this base user group it is estimated that...Engineering; and Barbara Calcagno, Department of General Engineering) 5. The Role of Mechanical Stimulus on Collagen Expression During Bone Repair (Paul...Polymeric Biomaterials Laboratory Principal Investigator: Jorge Almodóvar, PhD - The IR spectra

  17. Structural Changes Induced in Grapevine (Vitis vinifera L. DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study

    Directory of Open Access Journals (Sweden)

    Nicoleta E. Dina

    2016-05-01

    Full Text Available In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L. varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs infrared (IR laser pulse irradiation (λ = 1100 nm are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA, eight different grapevine varieties were discriminated.

  18. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  19. IR and NMR spectroscopic correlation of enterobactin by DFT

    Science.gov (United States)

    Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.

    2018-06-01

    Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.

  20. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR, Theoretical and Microbiological Study of trans o-Coumaric Acid and Alkali Metal o-Coumarates

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowczyk-Sadowy

    2015-02-01

    Full Text Available This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR, Raman (FT-Raman, ultraviolet-visible (UV-VIS and nuclear magnetic resonance (1H- and 13C-NMR were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans.

  1. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.

    Science.gov (United States)

    Tobias, Fernando; Keiderling, Timothy A

    2016-05-10

    Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.

  2. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research)

  3. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  4. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R ampersand D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  5. Effect of the nickel precursor on the impregnation and drying of γ-Al2O3 catalyst bodies: a UV-vis and IR micro-spectroscopic study

    NARCIS (Netherlands)

    Espinosa Alonso, L.; de Jong, K.P.; Weckhuysen, B.M.

    2008-01-01

    The elemental preparation steps of impregnation and drying of Ni/g-Al2O3 catalyst bodies have been studied by combining UV-vis and IR microspectroscopy. The influence of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes (with en ) ethylenediamine and x ) 0-3) has been

  6. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1988-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections 2A, 2B, 2C, and 2D, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  7. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1991-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections IIA, IIB, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  8. Mossbauer spectroscopic studies in ferroboron

    Science.gov (United States)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  9. Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob; Mathew, Sheril Ann

    2018-01-01

    Quantum chemical techniques such as density functional theory (DFT) have become a powerful tool in the investigation of the molecular structure and vibrational spectrum and are finding increasing use in application related to biological systems. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) techniques are employed to characterize the title compound. The vibrational frequencies were obtained by DFT/B3LYP calculations with 6-31G(d,p) and 6-311 ++G(d,p) as basis sets. The geometry of the title compound was optimized. The vibrational assignments and the calculation of Potential Energy Distribution (PED) were carried out using the Vibrational Energy Distribution Analysis (VEDA) software. Molecular electrostatic potential was calculated for the title compound to predict the reactive sites for electrophilic and nucleophilic attack. In addition, the first-order hyperpolarizability, HOMO and LUMO energies, Fukui function and NBO were computed. The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. Molecular docking studies were also conducted as part of this study. The paper further explains the experimental results which are in line with the theoretical calculations and provide optimistic evidence through molecular docking that the title compound can act as a good antidepressant. It also provides sufficient justification for the title compound to be selected as a good candidate for further studies related to NLO properties.

  10. Spectroscopic studies (FT-IR, FT-Raman, UV-Visible), normal co-ordinate analysis, first-order hyperpolarizability and HOMO, LUMO studies of 3,4-dichlorobenzophenone by using Density Functional Methods.

    Science.gov (United States)

    Venkata Prasad, K; Samatha, K; Jagadeeswara Rao, D; Santhamma, C; Muthu, S; Mark Heron, B

    2015-01-01

    The vibrational frequencies of 3,4-dichlorobenzophenone (DCLBP) were obtained from the FT-IR and Raman spectral data, and evaluated based on the Density Functional Theory using the standard method B3LYP with 6-311+G(d,p) as the basis set. On the basis of potential energy distribution together with the normal-co-ordinate analysis and following the scaled quantum mechanical force methodology, the assignments for the various frequencies were described. The values of the electric dipole moment (μ) and the first-order hyperpolarizability (β) of the molecule were computed. The UV-absorption spectrum was also recorded to study the electronic transitions. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The NBO analysis, to study the intramolecular hyperconjugative interactions, was carried out. Mulliken's net charges were evaluated. The MEP and thermodynamic properties were also calculated. The electron density-based local reactivity descriptor, such as Fukui functions, was calculated to explain the chemical selectivity or reactivity site in 3,4-dichlorobenzophenone. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Comparative FT-Raman, FT-IR and colour shifts spectroscopic evaluation of gamma irradiated experimental models of oil paintings

    International Nuclear Information System (INIS)

    Manca, M.M.; Virgolici, M.; Cutrubinis, M.; Moise, I.V.; Ponta, C.C.; Negut, C.D.; Stanculescu, I.R.; Bucharest University

    2011-01-01

    Complete text of publication follows. The present study follows the changes of gamma irradiated historic pigments and experimental models of oil paintings with non-destructive and non-contact spectroscopic analytical techniques which are the only ones accepted by the conservators/restorers community. Molecular structure characterization was performed by FT-IR / Raman spectroscopy using a Bruker Vertex 70 class equipped with two mobile probes: a MIR fibre module for MIR probes (with LN2 cooled detector) and a Raman RAM II module (LN2 Ge detector) with a RAMPROBE fibre. Colour was measured by a portable reflectance spectrophotometer (Miniscan XE Plus, HunterLab) in diffuse/8 deg geometry with a beam diameter of 4 mm and specular component included. Correlations between colour shifts and changes in molecular structure induced by gamma irradiation were further investigated.

  12. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  13. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.

    Science.gov (United States)

    Saravanan, S; Balachandran, V

    2014-09-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  15. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  16. FT-IR, NMR spectroscopic and quantum mechanical investigations of two ferrocene derivatives

    Directory of Open Access Journals (Sweden)

    Ö. Alver

    2017-07-01

    Full Text Available New ferrocene derivatives as N-(3-piperidin-1-ylpropylferrocenamide (Fc-3ppa and N-(pyridine-3-ylmethylferrocenamide (Fc-3pica and structural investigations were carried out with 1H, 13C, DEPT 45 or 135, HETCOR, COSY NMR and FT-IR spectroscopic techniques. Characterization of Fc-3ppa (FeC19H26N2O and Fc-3pica (FeC17H16N2O was also supported by density functional theory (DFT used by B3LYP functional and 6-31G(d or 6-311++G(d,p basis sets. From the combination of all the results, it can be clearly seen that syntheses of Fc-3ppa and Fc-3pica have been successfully achieved. Theoretical values are successfully compared against experimental data and B3LYP method is able to provide satisfactory results for predicting NMR properties and vibrational frequencies of the synthesized ferrocene based systems.

  17. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2012-05-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

  18. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    Science.gov (United States)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to π-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  19. Near-IR spectroscopic monitoring of CLASS I protostars: Variability of accretion and wind indicators

    Energy Technology Data Exchange (ETDEWEB)

    Connelley, Michael S. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Greene, Thomas P. [NASA Ames Research Center, M.S. 245-6, Moffett Field, CA 94035 (United States)

    2014-06-01

    We present the results of a program that monitored the near-IR spectroscopic variability of a sample of 19 embedded protostars. Spectra were taken on time intervals from 2 days to 3 yr, over a wavelength range from 0.85 μm to 2.45 μm, for 4-9 epochs of observations per target. We found that the spectra of all targets are variable and that every emission feature observed is also variable (although not for all targets). With one exception, there were no drastic changes in the continua of the spectra, nor did any line completely disappear, nor did any line appear that was not previously apparent. This analysis focuses on understanding the connection between accretion (traced by H Br γ and CO) and the wind (traced by He I, [Fe II], and sometimes H{sub 2}). For both accretion and wind tracers, the median variability was constant versus the time interval between observations; however, the maximum variability that we observed increased with the time interval between observations. Extinction is observed to vary within the minimum sampling time of 2 days, suggesting extinguishing material within a few stellar radii at high disk latitudes. The variability of [Fe II] and H{sub 2} were correlated for most (but not all) of the 7 young stellar objects showing both features, and the amplitude of the variability depends on the veiling. Although the occurrence of CO and Br γ emission are connected, their variability is uncorrelated, suggesting that these emissions originate in separate regions near the protostar (e.g., disk and wind). The variability of Br γ and wind tracers were found to be positively correlated, negatively correlated, or uncorrelated, depending on the target. The variability of Br γ, [Fe II], and H{sub 2} always lies on a plane, although the orientation of the plane in three dimensions depends on the target. While we do not understand all interactions behind the variability that we observed, we have shown that spectroscopic variability is a powerful tool

  20. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide

    Science.gov (United States)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.

    2017-08-01

    The title compound, (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The first order hyperpolarizability, Molecular electrostatic potential (MEP) and Fukui functions were also performed. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antifungal proteins. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 15BHS at different temperatures have been calculated.

  1. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates

    Science.gov (United States)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2018-04-01

    2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.

  2. FT-IR and X-ray spectroscopic investigations of Na-diclofenac-cyclodextrins interactions

    Science.gov (United States)

    Bratu, I.; Astilean, S.; Ionesc, Corina; Indrea, E.; Huvenne, J. P.; Legrand, P.

    1998-01-01

    The association of DCF-Na (the salt of the 2-[(2,6-dichlorophenyl)amino]-phenyl-acetic acid) with β-CD (cyclodextrin) in some therapeutic formulas can contribute to the optimisation of the physico-chemical and pharmaceutical properties of the parent drug. The understanding of the interaction between DCF with β-CD represents the objective of this study. FT-IR spectroscopy is one of the methods which clarify the nature of these interactions in complexes of such type. Therefore the changes in FT-IR spectra of binary dispersed systems DCF/ β-CD in physical mixture and coprecipitate from methanol (molar ratios: 1/1, 1/2, 2/3, 3/4, 7/4) were analysed. The analysis of the broadening of the X-ray powder diffraction line has been applied to investigate the average effective crystallite size, the mean square of the microstrain caused by distortions within β-CD crystallite and the fault probability in the binary dispersed DCF/ β-CD coprecipitate system.

  3. Visible-IR and Raman micro-spectroscopic investigation of three Itokawa particles collected by Hayabusa

    Science.gov (United States)

    Brunetto, R.; Bonal, L.; Beck, P.; Dartois, E.; Dionnet, Z.; Djouadi, Z.; Füri, E.; Kakazu, Y.; Oudayer, P.; Quirico, E.; Engrand, C.

    2014-07-01

    distinct Hayabusa particles [e.g., 1]. The Itokawa materials are compatible with an LL4-6 chondrite classification based on O isotopes and chemical compositions of minerals (e.g., [1,2]). In particular, -0163 might be related to the least metamorphosed particles (LL4), based on the high Fo content of the olivine [1]. The diffuse reflectance VIS-NIR spectra are consistent with the presence of the mineral groups detected via Raman and IR. In particular, the spectra of particles -0163 and -0213 are also compatible with the ground-based observations of the asteroid Itokawa [3] both in terms of the 1-μ m band depth and the spectral slope. Particle -0174 has a similar 1-μ m band depth but higher (redder) spectral slope, possibly indicative of the presence of a larger amount of nanophase metallic iron, a by-product of space weathering induced by solar wind, similarly to what has been detected on other Itokawa particles [4]. Future work: A noble gas study of the particles will be performed. We will determine the noble gas (He-Ne-Ar) and nitrogen abundance and isotope characteristics of the two grains by CO_2 laser heating or UV laser ablation. By identifying and quantifying the proportion of solar and cosmogenic volatiles in Itokawa samples, we will be able to better constrain the residence time of dust particles on the surface of the asteroid, and to determine if any primordial volatile component has survived in the regolith material.

  4. FT-IR spectroscopic analyses of 2-(2-furanylmethylene) propanedinitrile

    Science.gov (United States)

    Soliman, H. S.; Eid, Kh. M.; Ali, H. A. M.; El-Mansy, M. A. M.; Atef, S. M.

    2013-03-01

    In the present work, a computational study for the optimized molecular structural parameters, thermo-chemical parameters, total dipole moment, HOMO-LUMO energy gap and a combined experimental and computational study for FT-IR spectra for 2-(2-furanylmethylene) propanedinitrile have been investigated using B3LYP utilizing 6-31G and 6-311G basis set. Our calculated results showed that the investigated compound possesses a dipole moment of 7.5 D and HOMO-LUMO energy gap of 3.92 eV using B3LYP/6-311G which indicates that our investigated compound is highly applicable for photovoltaic solar cell applications.

  5. Structure, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study on 3,3'-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione), a promising anticancerous bis-lawsone derivative

    Science.gov (United States)

    Yadav, Krishna Kant; Kumar, Abhishek; Kumar, Amarendra; Misra, Neeraj; Brahmachari, Goutam

    2018-02-01

    Lawsone (2-hydroxy-1,4-naphthoquinone)has been evaluated to possess a wide range of biological and pharmacological activities. The interesting structural pattern of lawsone coupled with its so-called multifaceted pharmacological potential have made this scaffolds useful in certain chemical processes, particularly in synthesizing ligands for metal complexations, and also few of its derivatives have shown a number of biological activities. The equilibrium geometry of 3,3‧-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) (1; TPMHD), a promising anticancerous lawsone derivative, has been determined and analyzed at DFT method employingB3LYP/6-311++G(d,p) level of theory. The reactivity descriptors such as Fukui functions and HOMO-LUMO gap are calculated and discussed. The infrared spectra of TPMHD(1) are calculated and compared with the experimentally observed ones. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method. The docking studies reveal that the TPMHD has strong binding affinity toward target protein 2SHP. Thus the compound has a possible use as a drug in cancer therapy. The study suggests further investigation on TPMHD for their in-depth biological and pharmaceutical importance.

  6. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    Science.gov (United States)

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Theoretical (in B3LYP/6-3111++G** level), spectroscopic (FT-IR, FT-Raman) and thermogravimetric studies of gentisic acid and sodium, copper(II) and cadmium(II) gentisates.

    Science.gov (United States)

    Regulska, E; Kalinowska, M; Wojtulewski, S; Korczak, A; Sienkiewicz-Gromiuk, J; Rzączyńska, Z; Swisłocka, R; Lewandowski, W

    2014-11-11

    The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  9. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Indian Academy of Sciences (India)

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  10. UV/IR Filaments for High Resolution Novel Spectroscopic Interrogation of Plumes on Nuclear Materials

    Science.gov (United States)

    2016-06-01

    Raman spectroscopy of plumes created by a laser filament. The molecules to be detected are excited by the short pulse IR pulse, while the co-propagating... spectroscopy of gas samples has been demonstrated in IR filaments [32], using the fs pulse of the filament (800 nm) to vibrationally excite the components...Petit. Isotope ratio determination of uranium by optical emission spectroscopy on a laser -produced plasma; basic investigation and analytical results

  11. Spectroscopic (FT-IR, FT-Raman, and UV-visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole.

    Science.gov (United States)

    Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena

    2014-12-10

    Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Spectroscopic studies on colloid-borne uranium

    International Nuclear Information System (INIS)

    Ulrich, K.U.; Weiss, S.; Foerstendorf, H.; Brendler, V.; Zaenker, H.; Rossberg, A.; Scheinost, A.C.

    2005-01-01

    Full text of publication follows: Information on molecular speciation provides a basis for the reliable assessment of actinide migration in the environment. We use several methods for the separation of colloids from liquids (e.g. ultracentrifugation, ultrafiltration) in combination with spectroscopic techniques (EXAFS, ATR-FTIR, Moessbauer) and modeling of surface complexation reactions. This enables us to investigate the speciation of colloid-borne uranium in waters occurring in or escaping from abandoned uranium mines during the remediation process. Mine flooding was simulated on a 100 L scale by mixing acid mine water of elevated U concentration with oxic, near-neutral groundwater until pH ∼ 5.5 was reached. The freshly formed colloids adsorbed 95% of the total uranium and consisted mainly of 2-line ferri-hydrite (Fh) besides traces of aluminum, sulfur, silica, and carbon compounds. EXAFS analysis at the U-LIII absorption edge suggested a bidentate surface complex of UO 2 2+ on FeO 6 octahedra, but two minor backscattering contributions in close vicinity to the absorber remained unexplained. Since only Al could be excluded as backscattering atom, we studied U sorption on Fh at pH 5.5 in presence and in absence of sulfate, silicate, and atmospheric CO 2 to clarify the bond structure. EXAFS showed the unknown backscattering contributions in all the sorption samples regardless of the presence or absence of the tested components. Contrary to structural models proposed in the literature, bi-dentately complexed carbonate ligands do not explain our experimental EXAFS data. But ATR-IR spectra showed that U-carbonato complexes must be involved in the sorption of uranyl on Fh. These results are not contradictory if the carbonate ligands were bound mono-dentately. Nevertheless, carbon cannot act as backscattering atom in carbonate-free samples prepared in N 2 atmosphere. We propose a new structural model including exclusively Fe, H, and O atoms in which the bi

  13. Spectroscopic, thermal and biological studies of coordination

    Indian Academy of Sciences (India)

    Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal ... The thermal decomposition of the complexes as well as thermodynamic parameters ( *}, *, * and *) were estimated using Coats–Redfern and ...

  14. Quantum mechanical study of the structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H and UV), first order hyperpolarizabilities, NBO and TD-DFT analysis of the 4-methyl-2-cyanobiphenyl.

    Science.gov (United States)

    Sebastian, S; Sundaraganesan, N; Karthikeiyan, B; Srinivasan, V

    2011-02-01

    The Fourier transform infrared (FT-IR) and FT-Raman of 4-methyl-2-cyanobiphenyl (4M2CBP) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2CBP are calculated using HF/6-311G(d,p) method on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    International Nuclear Information System (INIS)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G.; Boffo, Elisangela F.; Figueira, Glyn M.

    2012-01-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, 1 H HR-MAS NMR and 1 H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  16. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  17. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  18. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  19. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Science.gov (United States)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  20. Spectroscopic studies of the transplutonium elements

    International Nuclear Information System (INIS)

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables

  1. PREPARATION, SPECTROSCOPIC STUDIES AND X-RAY ...

    African Journals Online (AJOL)

    Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close proximity of the Van Vleck values. IR studies suggest the coordination of the ligand is through the azomethine, the phenolic oxygen atom and the carbonyl oxygen of the hydrazonic moiety. The nitrate ion is also ...

  2. Spectroscopic studies of hydrogen collisions

    International Nuclear Information System (INIS)

    Kielkopf, J.

    1991-01-01

    Low energy collisions involving neutral excited states of hydrogen are being studied with vacuum ultraviolet spectroscopy. Atomic hydrogen is generated by focusing an energetic pulse of ArF, KrF, or YAG laser light into a cell of molecular hydrogen, where a plasma is created near the focal point. The H 2 molecules in and near this region are dissociated, and the cooling atomic hydrogen gas is examined with laser and dispersive optical spectroscopy. In related experiments, we are also investigating neutral H + O and H + metal - atom collisions in these laser-generated plasmas

  3. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  4. Nuclear spectroscopic studies: Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1989-01-01

    The Nuclear Physics Group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility (HHIRF) and the Niels Bohr Institute Tandem Accelerator. Also, we are active in a collaboration (WA80) to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland. Our experimental work is four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  5. Vibrational spectroscopic (FT-IR, FT-Raman) and quantum mechanical study of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f] [1,2,4]triazolo[4,3-a][1,4] diazepine

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob

    2018-04-01

    The spectroscopic properties of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine were investigated in the present study using FT-IR and FT-Raman techniques. The results obtained were compared with quantum mechanical methods, as it serves as an important tool in interpreting and predicting vibrational spectra. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and Raman scattering were calculated using density functional theory B3LYP method with 6-311++g (d,p) basis set. All the experimental results were in line with the theoretical data. The molecular electrostatic potential (MEP) and HOMO LUMO energies of the title compound were accounted. The results indicated that the title compound has a lower softness value (0.27) and high electrophilicity index (4.98) hence describing its biological activity. Further, natural bond orbital was also analyzed as part of the work. Fukui functions were calculated in order to explain the chemical selectivity or the reactivity site in 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine. The thermodynamic properties of the title compound were closely examined at different temperatures. It revealed the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. The paper further explains that the title compound can act as good antidepressant through molecular docking studies.

  6. Developing the Infrared PAH Emission Bands Into Calibrated Probes of Astrophysical Conditions with The NASA Ames PAH IR Spectroscopic Database

    Science.gov (United States)

    Boersma, Christiaan

    We propose to quantitatively calibrate the PAH band strength ratios that have been traditionally used as qualitative proxies of PAH properties and linking PAH observables with local astrophysical conditions, thus developing PAHs into quantitative probes of astronomical environments. This will culminate in a toolbox (calibration charts) that can be used by PAH experts and non-PAH experts alike to unlock the information hidden in PAH emission sources that are part of the Spitzer and ISO archives. Furthermore, the proposed work is critical to mine the treasure trove of information JWST will return as it will capture, for the first time, the complete mid-infrared (IR) PAH spectrum with fully resolved features, through a single aperture, and along single lines-of-sight; making it possible to fully extract the information contained in the PAH spectra. In short, the work proposed here represents a major step in enabling the astronomical PAH model to reach its full potential as a diagnostic of the physical and chemical conditions in objects spanning the Universe. Polycyclic aromatic hydrocarbons (PAHs), a common and important reservoir of accessible carbon across the Universe, play an intrinsic part in the formation of stars, planets and possibly even life itself. While most PAH spectra appear quite similar, they differ in detail and contain a wealth of untapped information. Thanks to recent advances in laboratory studies and computer-based calculations of PAH spectra, the majority of which have been made at NASA Ames, coupled with the astronomical modeling tools we have developed, we can interpret the spectral details at levels never before possible. This enables us to extract local physical conditions and track subtle changes in these conditions at levels previously impossible. Building upon the tools and paradigms developed as part of the publicly available NASA Ames PAH IR Spectroscopic Database (PAHdb; www.astrochem.org/pahdb/), the purpose of our proposed research is

  7. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    Science.gov (United States)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  8. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  9. Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis

    International Nuclear Information System (INIS)

    Ciobotaru, I.C.; Polosan, S.; Ciobotaru, C.C.

    2014-01-01

    The synthesis of organometallic compound with iridium and two types of ligands, quinoline and phenylpyridine, was done successfully. The absorption spectra of this compound have shown broad peaks in a visible region assigned to metal-to-ligands charge transfer and in UV region assigned to intraligand absorptions. The photoluminescence spectra exhibit dual character in which the red emission is more intense than the green one. In cathodoluminescence measurements, under electron beam, the powder obtained after recrystallization from dichloromethane, shows similar behaviors with photoluminescence spectra. The cathodoluminescence images have shown a luminescent crystalline powder with triclinic structure. This compound exhibits combined vibrational modes, which proves the presence in the same molecule of both ligands. Density Functional Theory calculation was involved in order to identify the main vibrations of this compound. Highlights: • Mixed-ligand of IrQ(ppy) 2 synthesis which gives green and red phosphorescence due to the MCLT processes coming from two types of ligands. • Absorption, photoluminescence, infrared spectroscopy and cathodoluminescence measurements for characterization of IrQ(ppy) 2 organometallic compound. • Experimental results have been compared with the output files obtained from Density Functional Theory by using the Gaussian 03W software

  10. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  11. Vibrational spectroscopic study of fluticasone propionate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  12. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  13. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Directory of Open Access Journals (Sweden)

    Min Yang

    2018-01-01

    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  14. The spectroscopic study of building composites containing natural sorbents.

    Science.gov (United States)

    Król, M; Mozgawa, W

    2011-08-15

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag(+), Pb(2+), Zn(2+), Cd(2+) and Cr(3+)) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm(-1)). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm(-1)--the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm(-1)--the range of the bands originating from OH(-) groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    Science.gov (United States)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  16. Spectroscopic studies of pulsed-power plasmas

    International Nuclear Information System (INIS)

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.

    1993-01-01

    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  17. Spectroscopic and transport studies of Cu 2 ion doped in (40–x ...

    Indian Academy of Sciences (India)

    The preparation of (40 – )Li2O–LiF–60Bi2O3 glassy system and spectroscopic and transport studies of this system are reported. IR results show that this glass consists of [BiO3] units and indicate formation of Bi–F bonds with the addition of LiF. From the ESR spectra of Cu2+ ion, the effective values are found to vary ...

  18. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  19. Infrared spectroscopic and voltammetric study of adsorbed CO on stepped surfaces of copper monocrystalline electrodes

    International Nuclear Information System (INIS)

    Koga, O.; Teruya, S.; Matsuda, K.; Minami, M.; Hoshi, N.; Hori, Y.

    2005-01-01

    Voltammetric and infrared (IR) spectroscopic measurements were carried out to study adsorbed CO on two series of copper single crystal electrodes n(111)-(111) and n(111)-(100) in 0.1M KH 2 PO 4 +0.1M K 2 HPO 4 at 0 o C. Reversible voltammetric waves were observed below -0.55V versus SHE for adsorption of CO which displaces preadsorbed phosphate anions. The electric charge of the redox waves is proportional to the step atom density for both single crystal series. This fact indicates that phosphate anions are specifically adsorbed on the step sites below -0.55V versus SHE. Voltammetric measurements indicated that (111) terrace of Cu is covered with adsorbed CO below -0.5V versus SHE. Nevertheless, no IR absorption band of adsorbed CO is detected from (111) terrace. Presence of adsorbed CO on (111) terrace is presumed which is not visible by the potential difference spectroscopy used in the present work. IR spectroscopic measurements showed that CO is reversibly adsorbed with an on-top manner on copper single crystal electrodes of n(111)-(111) and n(111)-(100) with approximately same wavenumber of C?O stretching vibration of 2070cm -1 . The IR band intensity is proportional to the step atom density. Thus CO is adsorbed on (111) or (100) steps on the single crystal surfaces. An analysis of the IR band intensity suggested that one CO molecule is adsorbed on every two or more Cu step atom of the monocrystalline surface. The spectroscopic data were compared with those reported for uhv system. The C-O stretching wavenumber of adsorbed CO in the electrode-electrolyte system is 30-40cm -1 lower than those in uhv system

  20. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  1. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)

    2001-02-01

    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  2. Spectroscopic study of ohmically heated Tokamak discharges

    International Nuclear Information System (INIS)

    Breton, C.; Michelis, C. de; Mattioli, M.

    1980-07-01

    Tokamak discharges interact strongly with the wall and/or the current aperture limiter producing recycling particles, which penetrate into the discharge and which can be studied spectroscopically. Working gas (hydrogen or deuterium) is usually studied observing visible Balmer lines at several toroidal locations. Absolute measurements allow to obtain both the recycling flux and the global particle confinement time. With sufficiently high resolution the isotopic plasma composition can be obtained. The impurity elements can be divided into desorbed elements (mainly oxygen) and eroded elements (metals from both walls and limiter) according to the plasma-wall interaction processes originating them. Space-and time-resolved emission in the VUV region down to about 20 A will be reviewed for ohmically-heated discharges. The time evolution can be divided into four phases, not always clearly separated in a particular discharge: a) the initial phase, lasting less than 10 ms (the so-called burn-out phase), b) the period of increasing plasma current and electron temperature, lasting typically 10 - 100 ms, c) an eventual steady state (plateau of the plasma current with almost constant density and temperature), d) the increase of the electron density up to or just below the maximum value attainable in a given device. For all these phases the results reported from different devices will be described and compared

  3. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  4. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    Science.gov (United States)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  5. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    Science.gov (United States)

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  6. Solubility and IR studies of gamma-irradiated arabinoxylan

    International Nuclear Information System (INIS)

    Ebringerova, A.; Kacurakova, M.; Hromadkova, Z.; Pruzinec, J.

    1989-01-01

    The structural and solubility changes of a water-insoluble arabinoxylan with a low degree of branching was studied after γ-irradiation by IR spectroscopy and chemical analysis of the polysaccharide and its polymeric fractions. New functional groups like hydroperoxidic, carbonylic and endiolic ones were found after irradiation. The IR spectra shows that the structural changes involved by radiolytic treatment are reflected in the shape of the IR spectra of both polymeric fractions. The ratio of absorbance of the peaks at 1725 and 2920 cm -1 increased with radiation dose. (author) 17 refs.; 2 figs.; 2 tabs

  7. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  8. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    Science.gov (United States)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  9. A UV to mid-IR study of AGN selection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sun Mi; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Jannuzi, Buell T. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  10. Nuclear spectroscopic studies in 162Yb

    International Nuclear Information System (INIS)

    Behrens, H.

    1980-01-01

    The decay of the highly excited 162 Yb nuclei formed in the reaction 150 Sm( 16 O,4n) 162 Yb to the ground state was studied using different gamma detectors and an electron spectrometer, a so called mini-orange. The isotope 162 Yb was moreover produced and spectroscoped by the beta-decay of 162 Lu. For the identification of decay cascades, which were passed after the fusion, and for the determination of the multipolarity of the contributing energy transitions a series of experiments took place: The excitation functions and the angular distributions of the emitted gamma radiation was measured, the conversion coefficients of important transitions were determined, and coincidence events between two detectors occasionally were registrated and analyzed. In the beta decay measurement an assignment of gamma transitions to 162 Yb followed due to the lifetime, under which they occured. The found states of 162 Yb upto spins of 22 h/2π and excitation energies above 5 MeV belong to five rotational bands. The yrast band shows a weak backbending. Corresponding to their spins and parities the bands can be reduced to intrinsic excitation of two quasineutrons. The analysis of the beta-decay of 162 Lu, which takes place from three states in 162 Lu, leads to the lowest levels of the gamma-vibrational band and the band head of the beta band. The microscopic interpretation of the rotational bands and the description of the backbending behaviour are as the interpretation of the states involved at the beta decay in agreement with experimental and theoretical results for neighbouring ytterbium isotopes. (orig.) [de

  11. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome - Brazilian Metabolic Syndrome Study (BRAMS)

    OpenAIRE

    Geloneze, B; Vasques, ACJ; Stabe, CFC; Pareja, JC; Rosado, LEFPD; de Queiroz, EC; Tambascia, MA

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 9011 percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  12. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Allers, K. N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C., E-mail: k.allers@bucknell.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  13. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  14. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    OpenAIRE

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  15. Spectroscopic studies of dynamically compacted monoclinic ZrO2

    NARCIS (Netherlands)

    Maczka, M.; Lutz, E.T.G.; Verbeek, H.J.; Oskam, K.; Meijerink, A.; Hanuza, J.; Stuivinga, M.E.C.

    1999-01-01

    The properties of dynamically compacted monoclinic zirconia have been studied by X-ray powder diffraction, IR, Raman, EPR and luminescence spectroscopy. Compaction introduces a large number of defects into the sample, which leads to a broadening of the X-ray lines, and IR and Raman bands. Besides,

  16. SPECTROSCOPIC STUDIES OF AMINOACIDS COMPLEXES WITH BIOMETALS

    Directory of Open Access Journals (Sweden)

    Andreea Stanila

    2012-06-01

    Full Text Available The [Cu(L2 ]·H2 O, [Co(L2 ]·2H2 O, [Zn(L2 ]·H2 O complexes with methionine (L as ligand, were synthesized in water solution and analyzed by means of: elemental analysis, atomic absorption spectroscopy, thermogravimetry, FT-IR, UV-VIS and EPR spectroscopies. The atomic absorption spectroscopy and elemental measurements confi rm the ratio 1:2 metal ion: methionine composition for the synthesised compounds.The IR spectra show that amino acids act as bidentate ligands with coordination involving the carboxylic oxygen and the nitrogen atom of the amino group. Spectral UV-VIS data confi rmed the covalent metal-ligand bonds, the pseudotetrahedral symmetry around the copper and zinc ions and the octahedral environment for the cobalt ion. Powder ESR spectra at room temperature are typically for monomeric species.

  17. Spectroscopic Studies of the Nucleus GOLD-195

    Science.gov (United States)

    Fischer, Susan Marie

    The nucleus ^{195}Au has been studied via in-beam gamma -ray and electron spectroscopy with the reactions ^{196}Pt(p,2n)^ {195}Au at beam energies of 12 and 16 MeV, and the reaction ^{rm nat }Ir(alpha,2n) ^{195}Au at a beam energy of 26 MeV. All experiments were performed at the University of Notre Dame tandem accelerator facility and utilized elements of the University of Pittsburgh multi-detector gamma-array and ICEBall mini-orange electron spectrometer. Fifty-five new transitions and thirty-six new energy levels have been observed. The U(6/4) supersymmetric algebra has been proposed to provide a simultaneous description for the positive parity states of the pair of nuclei ^{194 }Pt and ^{195}Au. The observed energy spectra for these nuclei show satisfactory agreement with the U(6/4) predicted spectra. The collective properties including relative B(E2) values for the Pt and Au nuclei in this mass region are also consistent with theoretical predictions. However, the measured E2/M1 mixing ratios for transitions in ^{195} Au indicate that the single particle description for the odd-A nucleus is incomplete. The new data for ^{195}Au is further combined with the existing data for ^{194} Pt and ^{195}Pt within the context of the larger U_{ nu}(6/12) otimes U_{pi}(6/4) supersymmetry. A consistent fit to the energy eigenvalue equation is obtained and a modified prediction for the negative parity states in the odd-odd nucleus ^{196} Au is made. Thus, the proposal of an underlying supersymmetry for the quartet of nuclei ^ {194}Pt-^{195} Pt-^{195}Au- ^{196}Au also appears valid. New transitions and levels involved in the negative parity h_{11/2} decoupled band in ^{195}Au have also been observed. The band appears to be much more fragmented at high spins than the analogous structures in the lighter odd-A Au nuclei, but it is unclear what the source of this difference is. It is, however, proposed that a consistent description for both the positive and negative parity

  18. Acid-base titrations of functional groups on the surface of the thermophilic bacterium Anoxybacillus flavithermus: comparing a chemical equilibrium model with ATR-IR spectroscopic data.

    Science.gov (United States)

    Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James

    2007-02-27

    Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.

  19. The Community College IR Shop and Accreditation: A Case Study

    Science.gov (United States)

    Johnston, George

    2011-01-01

    This article presents results of a study the author recently conducted on the role of traditional institutional research (IR) offices in support of accreditation activities and institutional effectiveness. The purpose of the study was to confirm or disconfirm the utility of a theoretical model developed by Brittingham, O'Brien, and Alig (2008) of…

  20. Mord studies in IR region by new dispersion relation

    International Nuclear Information System (INIS)

    Murthy, V.R.; Kumar, R. Jeevan

    1994-01-01

    This is the continuation of the series reporting MORD studies to typical problem in Chemistry and Polymer Science. In our earlier papers the MORDsup1.2 studied only in visible region. In this present investigation we extended the application of the New Dispersion Relation in IR region to determine the MORD and tested to some simple systems

  1. High field Moessbauer study of dilute Ir-(Fe) alloys

    International Nuclear Information System (INIS)

    Takabatake, Toshiro; Mazaki, Hiromasa; Shinjo, Teruya.

    1981-01-01

    The magnetic behavior of very dilute Fe impurities in Ir has been studied by means of Moessbauer measurement in external fields up to 80 kOe at 4.2 K. The saturation hyperfine field increases in proportion to the external field up to the maximum magnetic field available. This means that for a localized spin fluctuation system IrFe, the effective magnetic moment associated with Fe impurities is induced in proportion to the external field. No anomalous spectrum was observed with a very dilute sample (--10 ppm 57 Co), indicating that the interaction between impurities is responsible for the anomalous spectrum previously observed with a less homogeneous sample. (author)

  2. Ft-Ir Spectroscopic Analysis of Potsherds Excavated from the First Settlement Layer of Kuriki Mound, Turkey

    Science.gov (United States)

    Bayazit, Murat; Isik, Iskender; Cereci, Sedat; Issi, Ali; Genc, Elif

    The region covering Southeastern Anatolia takes place in upper Mesopotamia, so it has numerous cultural heritages due to its witness to various social movements of different civilizations in ancient times. Kuruki Mound is located on the junction point of Tigris River and Batman Creek, near Oymatas village which is almost 15 km to Batman, Turkey. The mound is dated back to Late Chalcolithic. Archaeological excavations are carried out on two hills named as “Kuriki Mound-1” and “Kuriki Mound-2” in which 4-layer and 2-layer settlements have been revealed, respectively. This region will be left under the water by the reservoir lake of Ilısu Dam when its construction is completed. Thus, characterization of ancient materials such as potsherds, metals and skeleton ruins should be rapidly done. In this study, 12 potsherds excavated from Layer-1 (the first settlement layer after the surface) in Kuriki Mound-2 were investigated by FT-IR spectrometry. Energy dispersive X-ray fluorescence (EDXRF) and X-ray diffraction (XRD) analyses were used as complementary techniques in order to expose chemical and mineralogical/phase contents, respectively. Obtained results showed that the potteries have been produced with calcareous clays and they include moderate amounts of MgO, K2O, Na2O and Fe2O3 in this context. Additionally, high temperature phases have also been detected with XRD analyses in some samples.

  3. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh

    2017-11-01

    In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.

  4. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)

    Administrator

    IR study of Pb–Sr titanate borosilicate glasses. C R GAUTAM*, DEVENDRA KUMAR. † and OM PARKASH. †. Department of Physics, University of Lucknow, Lucknow 226 007, India. †. Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 3 January ...

  5. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  6. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    Science.gov (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Thermophysical and spectroscopic studies of room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate in Tritons

    International Nuclear Information System (INIS)

    Chaudhary, Ganga Ram; Bansal, Shafila; Mehta, S.K.; Ahluwalia, A.S.

    2012-01-01

    Highlights: ► Thermophysical studies of new formulations of [BMIM][PF 6 ]+TX(45,100) have been made. ► Strong intermolecular interactions between [BMIM][PF 6 ] and TX (45, 100) is observed. ► Magnitude of interactions increases with the addition of oxyethylene groups in TX. ► With rise in temperature, intermolecular interactions increases. ► Spectroscopic studies show that interactions are via aromatic rings of RTIL and TX. - Abstract: The thermophysical properties viz. density ρ, speed of sound u, and specific conductivity κ of pure room temperature ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and its binary formulations with Triton X-45 and Triton X-100 have been studied over the entire composition range at different temperatures (293.15 to 323.15) K. Excess molar volume V E , deviation in isentropic compressibility ΔK S , partial molar excess volume V i E , deviation in partial molar isentropic compressibility ΔK S,i , deviation in specific conductivity Δκ have also been estimated and analysed. Spectroscopic properties (IR, 1 H and 13 C NMR) of these mixtures have been investigated in order to understand the structural and interactional behaviour of formulations studied. The magnitude of interactions between the two components increases with addition of number of oxyethylene groups in Tritons and with rise in temperature. Spectroscopic measurements indicate that interactions are mainly taking place through the five member ring of room temperature ionic liquid and six member ring of Tritons.

  8. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  9. Nonlinear spectroscopic studies of chiral media

    International Nuclear Information System (INIS)

    Belkin, Mikhail Alexandrovich

    2004-01-01

    Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies

  10. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin, E-mail: wqing07@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Zhang Yaheng, E-mail: zhangyah04@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Sun Huijun, E-mail: sun.hui.jun-04@163.co [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-02-15

    Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy {Delta}H{sup 0} and entropy {Delta}S{sup 0}, have been calculated to be -29.52 kJ mol{sup -1} and -24.23 J mol{sup -1} K{sup -1}, respectively, according to the Van't Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies. - Research highlights: The interaction between butyl p-hydroxybenzoate with HSA has been investigated for the first time. Molecular modeling study can provide theoretical direction for experimental design. Multi-spectroscopic method can provide the binding parameters and thermodynamic parameters. These results are important for food safety and human health when using parabens as a preservative.

  11. The NASA Ames PAH IR Spectroscopic Database: Computational Version 3.00 with Updated Content and the Introduction of Multiple Scaling Factors

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Ricca, A.; Boersma, C.; Allamandola, L. J.

    2018-02-01

    Version 3.00 of the library of computed spectra in the NASA Ames PAH IR Spectroscopic Database (PAHdb) is described. Version 3.00 introduces the use of multiple scale factors, instead of the single scaling factor used previously, to align the theoretical harmonic frequencies with the experimental fundamentals. The use of multiple scale factors permits the use of a variety of basis sets; this allows new PAH species to be included in the database, such as those containing oxygen, and yields an improved treatment of strained species and those containing nitrogen. In addition, the computed spectra of 2439 new PAH species have been added. The impact of these changes on the analysis of an astronomical spectrum through database-fitting is considered and compared with a fit using Version 2.00 of the library of computed spectra. Finally, astronomical constraints are defined for the PAH spectral libraries in PAHdb.

  12. Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2013-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of luminous massive stars with high mass loss rates. The paucity ( 12) of confirmed Galactic LBV precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. We've been conducting an optical/near-IR spectral survey of a large subset of central stars residing within newly discovered it Spitzer nebulae and have identified over two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; confirming them as bona fide LBVs requires demonstrating 1-3 mag photometric and spectroscopic variability. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Monitoring from semesters 2011B-2012A already has confirmed one new cLBV as a bona fide LBV. We propose to continue optical-IR photometric monitoring of these cLBVS with the 1.3m. Chiron, replacing the RC spectrograph on the 1.5m, now allows high-resolution optical spectroscopic monitoring of bright cLBVs, 11 of which are proposed herein. Spectra are important for understanding the physics driving photometric variability, properties of the wind, and allow analysis of line profiles.

  13. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Indian Academy of Sciences (India)

    Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment ... The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied.

  14. Spectroscopic study of low-lying 16N levels

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott

    2008-01-01

    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented

  15. THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, C.; Mattioda, A. L.; Allamandola, L. J. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Bauschlicher, C. W. Jr.; Ricca, A. [NASA Ames Research Center, MS 230-3, Moffett Field, CA 94035 (United States); Cami, J.; Peeters, E.; De Armas, F. Sánchez; Saborido, G. Puerta [SETI Institute, 189 Bernardo Avenue 100, Mountain View, CA 94043 (United States); Hudgins, D. M., E-mail: Christiaan.Boersma@nasa.gov [NASA Headquarters, MS 3Y28, 300 E St. SW, Washington, DC 20546 (United States)

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm{sup -1}) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  16. Vibrational Spectroscopic Studies of Tenofovir Using Density Functional Theory Method

    Directory of Open Access Journals (Sweden)

    G. R. Ramkumaar

    2013-01-01

    Full Text Available A systematic vibrational spectroscopic assignment and analysis of tenofovir has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis was aided by electronic structure calculations—hybrid density functional methods (B3LYP/6-311++G(d,p, B3LYP/6-31G(d,p, and B3PW91/6-31G(d,p. Molecular equilibrium geometries, electronic energies, IR intensities, and harmonic vibrational frequencies have been computed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties such as HOMO and LUMO energies and were determined by time-dependent DFT (TD-DFT method. The geometrical, thermodynamical parameters, and absorption wavelengths were compared with the experimental data. The B3LYP/6-311++G(d,p-, B3LYP/6-31G(d,p-, and B3PW91/6-31G(d,p-based NMR calculation procedure was also done. It was used to assign the 13C and 1H NMR chemical shift of tenofovir.

  17. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  18. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  19. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  20. Molecular structure, vibrational spectroscopic analysis (IR & Raman), HOMO-LUMO and NBO analysis of anti-cancer drug sunitinib using DFT method

    Science.gov (United States)

    Mıhçıokur, Özlem; Özpozan, Talat

    2017-12-01

    Oxindole and its derivatives have wide applications in different industries such as in synthetic & natural fibers, dyes for hair and plastic materials in addition to their biological importance. In the present study, one of the oxindole derivatives, N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide (Sunitinib), which is used as an anti-cancer drug, was investigated in terms of structural, vibrational spectroscopic and theoretical analysis. The calculations have been performed for gaseous, aqueous and DMSO phases, respectively. Potential Energy Surface (PES) scan has been carrried out to obtain the most stable structures of all the phases of the title molecule using B3LYP/6-31G(d,p) level and the geometrical variations among them are discussed. The solvent effect for Sunitinib in aqueous and DMSO phases have been performed by means of the self-consistent recognition reaction field (SCRF) method as implemented in the integral equation formalism polarized continuum model (IEFPCM). On the other hand, NBO analysis has been carried out to understand probable hydrogen bonding sites and charge transfers. Additionally, the HOMO and the LUMO energies are calculated using B3LYP/6-31G(d,p) to determine the intra molecular charge transfers (ICT) within the molecule and the kinetic stabilities for each phases. The molecular electrostatic potential surface (MESP) has been plotted over the optimized structure to estimate the reactive sites of electrophilic and nucleophilic attacks regarding Sunitinib molecule. The potential energy distribution (PED) has been calculated using VEDA4 program and vibrational assignments of the experimental spectra (IR & Raman) have been elucidated by means of the calculated vibrational spectra. The observed vibrational spectra of Sunitinib is compared with the calculated spectra obtained by using B3LYP functional both with 6-31G(d,p) and 6-311++G(d,p) basis sets. Theoretical results

  1. Cleaning spectroscopic samples of stars in nearby dwarf galaxies : The use of the nIR Mg I line to weed out Milky Way contaminants

    NARCIS (Netherlands)

    Battaglia, G.; Starkenburg, E.

    Dwarf galaxies provide insight into the processes of star formation and chemical enrichment at the low end of the galaxy mass function, as well as into the clustering of dark matter on small scales. In studies of Local Group dwarf galaxies, spectroscopic samples of individual stars are used to

  2. FT-IR spectroscopy of lipoproteins—A comparative study

    Science.gov (United States)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  3. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Studies of Neutron Stars at Optical/IR Wavelengths

    OpenAIRE

    Mignani, R. P.; Bagnulo, S.; De Luca, A.; Israel, G. L.; Curto, G. Lo; Motch, C.; Perna, R.; Rea, N.; Turolla, R.; Zane, S.

    2006-01-01

    In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found f...

  5. Inhibition of urinary calculi -- a spectroscopic study

    Science.gov (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  6. INFRARED AND RAMAN SPECTROSCOPIC STUDY OF ION ...

    African Journals Online (AJOL)

    Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both n (CN) and n (CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  7. Spectroscopic studies of hydrogen atom and molecule collisions: Performance report

    International Nuclear Information System (INIS)

    Kielkopf, J.

    1986-01-01

    This research is concerned with spectroscopic measurements of collisions in atomic and molecular hydrogen in order to clarify the basic physical processes that take place during radiative collisions and to provide experimental values for systems where the theoretical analysis is tractable. To this end, we proposed to measure from the cores to the far wings the profiles of the spectral lines of atomic hydrogen broadened by molecular hydrogen and noble gases, and to study energy transfer in the atom and molecule

  8. Spectroscopic Study of NGC 281 West

    Science.gov (United States)

    Hasan, Priya

    2018-04-01

    NGC 281 is a complex region of star formation at 2.8 kpc. This complex is situated 300 pc above the Galactic plane, and appears to be part of a 270 pc diameter ring of atomic and molecular clouds expanding at 22 km/s (Megeath et al. 2003). It appears that two modes of triggered star formation are at work here: an initial supernova to trigger the ring complex and the initial O stars and the subsequent triggering of low mass star formation by photoevaporation driven molecular core compression. To get a complete census of the young stellar population, we use observations from Chandra ACIS 100 ksec coupled with data from 2MASS and Spitzer. The Master X-ray catalog has 446 sources detected in different bandpasses. We present the spatial distribution of Class I, II and III sources to study the progress of star formation. We also determine the gas to dust ratio NH/AK to be 1.93 ± 0.47 ×1022 cm‑2 mag‑1 for this region. In this article, we present NGC 281 as a good target to study with the 3.6-m Devasthal Optical Telescope (DOT) in spectroscopy. With these spectra, we look for evidence for the pre-main-sequence (PMS) nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed young stellar objects (YSOs). The temperatures implied by the spectral types can be combined with luminosities determined from the near-infrared (NIR) photometry to construct Hertzsprung–Russell (HR) diagrams for the clusters. By comparing the positions of the YSOs in the HR diagrams with the PMS tracks, we can determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks.

  9. Betulinic acid spectroscopic studies by NMR

    International Nuclear Information System (INIS)

    Junges, Mario Jose; Fernandes, Joao Batista; Rodrigues Filho, Edson; Vieira, Paulo Cezar; Silva, Maria Fatima das G. Fernandes da

    1995-01-01

    HMQC, HMBC, COSY 1 H- 1 H, DEPT, COSYHLR were used to assign the hydrogen and carbon chemical shifts of betulinic acid. On base in this study it is proposed to change the δ of the carbons 6, 11, 18, 19 and 26 and of the methyls hydrogen in the literature for betulinic acid, as well as of the compounds where betulinic acid was used as model. It was verified that H-5, δ 0,82, is in position strongly shielded. (author)

  10. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions

  11. Spectroscopic analysis of bones for forensic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tofanelli, Mirko [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy); Pardini, Lorenzo [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Borrini, Matteo [Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool (United Kingdom); Bartoli, Fulvio; Bacci, Alessandra [Department of Biology, University of Pisa, Via A. Volta, 4, 56126 Pisa (Italy); D’Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy); Holanda Cavalcanti, Gildo de [Instituto de Fìsica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no Campus da Praia Vermelha, CEP 24210-346, Niterói, Rio de Janeiro (Brazil); Lezzerini, Marco [Department of Earth Sciences, University of Pisa, Via Santa Maria, 53, 56126 Pisa (Italy); Palleschi, Vincenzo, E-mail: vincenzo.palleschi@cnr.it [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy)

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied. - Highlights: • The LIBS analysis of (animal) bones is presented, to establish its feasibility for forensic studies. • Untreated bones and bones subjected to high temperatures (boiled, burned) were analyzed. • A simple calibration, using a single reference sample, gave reasonable quantitative results. • The comparison of the results demonstrates that LIBS analysis can provide nutritional information. • The nutritional information obtained are the same on untreated, boiled and burned bones.

  12. Spectroscopic analysis of bones for forensic studies

    International Nuclear Information System (INIS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D’Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; Holanda Cavalcanti, Gildo de; Lezzerini, Marco; Palleschi, Vincenzo

    2014-01-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied. - Highlights: • The LIBS analysis of (animal) bones is presented, to establish its feasibility for forensic studies. • Untreated bones and bones subjected to high temperatures (boiled, burned) were analyzed. • A simple calibration, using a single reference sample, gave reasonable quantitative results. • The comparison of the results demonstrates that LIBS analysis can provide nutritional information. • The nutritional information obtained are the same on untreated, boiled and burned bones

  13. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    Science.gov (United States)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  14. Vibrational spectroscopic study of terbutaline hemisulphate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  15. FT-mid-IR spectroscopic investigation of fiber maturity and crystallinity at single boll level and a comparison with XRD approach

    Science.gov (United States)

    In previous study, we have reported the development of simple algorithms for determining fiber maturity and crystallinity from Fourier transform (FT) -mid-infrared (IR) measurement. Due to its micro-sampling feature, we were able to assess the fiber maturity and crystallinity at different portions o...

  16. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and γ-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics

  17. Nonlinear spectroscopic studies of interfacial molecular ordering

    International Nuclear Information System (INIS)

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs

  18. Spectroscopic studies of silver boro tellurite glasses

    Science.gov (United States)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.

    2014-04-01

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  19. Spectroscopic studies of silver boro tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ramesh, E-mail: apparao.bojja@gmail.com; Kumari, K. Rajani, E-mail: apparao.bojja@gmail.com; Rao, B. Appa, E-mail: apparao.bojja@gmail.com; Bhikshamaiah, G., E-mail: apparao.bojja@gmail.com [Department of Physics, Osmania University, Hyderabad-500007 (India)

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  20. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Iwasita Teresa

    2002-01-01

    Full Text Available Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH. In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishing the reaction intermediates and products and the dependence of the amount of species on the applied potential. FTIR and scanning tunneling microscopy contribute to understand the effects of the surface structure on the rate of reaction. Examples are presented for methanol and ethanol oxidation at pure and modified Pt catalysts.

  1. Electrochemical impedance spectroscopic study of passive zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ai Jiahe; Chen Yingzi [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Urquidi-Macdonald, Mirna [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Macdonald, Digby D. [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddm2@psu.edu

    2008-09-30

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH){sub 3} + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 deg. C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  2. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  3. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia

    2002-01-01

    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  4. Statistical spectroscopic studies in nuclear structure physics

    International Nuclear Information System (INIS)

    Halemane, T.R.

    1979-01-01

    The spectral distribution theory establishes the centroid and width of the energy spectrum as quantities of fundamental importance and gives credence to a geometry associated with averages of the product of pairs of operators acting within a model space. Utilizing this fact and partitioning the model space according to different group symmetries, simple and physically meaningful expansions are obtained for the model interactions. In the process, a global measure for the goodness of group symmetries is also developed. This procedure could eventually lead to a new way of constructing model interactions for nuclear structure studies. Numerical results for six (ds)-shell interactions and for scalar-isospin, configuration-isospin, space symmetry, supermultiplet and SU(e) x SU(4) group structures are presented. The notion of simultaneous propagation of operator averages in the irreps of two or more groups (not necessarily commuting) is also introduced. The non-energy-weighted sum rule (NEWSR) for electric and magnetic multipole excitations in the (ds)-shell nuclei 20 Ne, 24 Mg, 28 Si, 32 S, and 36 Ar are evaluated. A generally applicable procedure for evaluating the eigenvalue bound to the NEWSR is presented and numerical results obtained for the said excitations and nuclei. Comparisons are made with experimental data and shell-model results. Further, a general theory is given for the linear-energy-weighted sum rule (LEWSR). When the Hamiltonian is one-body, this has a very simple form (expressible in terms of occupancies) and amounts to an extension of the Kurath sum rule to other types of excitations and to arbitrary one-body Hamiltonians. Finally, we develop a statistical approach to perturbation theory and inverse-energy-weighted sum rules, and indicate some applications

  5. Study on IR Properties of Reduced Graphene Oxide

    Science.gov (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun

    2018-01-01

    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  6. Proposals of electronic-vibrational energy relaxation studies by using laser pulses synchronized with IR-SR pulses

    International Nuclear Information System (INIS)

    Nakagawa, Hideyuki

    2000-01-01

    Synchrotron radiation is expected to be the sharp infrared light source for the advanced experiments on IR and FIR spectroscopy in wide research fields. Especially, synchronized use of SR with VIS and/or UV laser light is to be a promising technique for the research on the dynamical properties of the photo-excited states in condensed materials. Some proposals are attempted for high resolution IR spectroscopy to elucidate fine interaction of molecular ions in crystalline solids with their environmental field and for time-resolved IR spectroscopic studies on the electronic and vibrational energy relaxation by using laser pulses synchronized with IR-SR pulses. Several experimental results are presented in relevance to the subjects; on high-resolution FTIR spectra of cyanide ions and metal cyanide complexes in cadmium halide crystals, on the energy up-conversion process among the vibrational levels of cyanide ions in alkali halide crystals, and on the electronic-to-vibrational energy conversion process in metal cyanide complexes. (author)

  7. Spectroscopic and theoretical study of the o-vanillin hydrazone of the mycobactericidal drug isoniazid

    Science.gov (United States)

    González-Baró, Ana C.; Pis-Diez, Reinaldo; Parajón-Costa, Beatriz S.; Rey, Nicolás A.

    2012-01-01

    A complete and detailed study of the hydrazone obtained from condensation of antituberculous isoniazid (hydrazide of the isonicotinic acid, INH) and o-vanillin (2-hydroxy-3-methoxybenzaldehyde, o-HVa) is performed. It includes structural and spectroscopic analyses, comparing experimental and theoretical results. The compound was obtained as a chloride of the pyridinic salt (INHOVA +Cl -) but it will be referred as INHOVA for the sake of simplicity. The conformational space was searched and optimized geometries were determined both in gas phase and including solvent effects. Vibrational (IR and Raman), electronic and NMR spectra were registered and assigned with the help of computational methods based on the Density Functional Theory. Isoniazid hydrazones are good candidates for therapeutic agents against tuberculosis with conserved efficiency and lower toxicity and resistance than parent INH.

  8. Spectroscopic study; Estudio espectroscopico del PAA con iones de Eu{sup 3+} como material luminescente

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.; Rodriguez, R. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, Mexico D.F. (Mexico); Arroyo, R. [Departamento de Quimica, Universidad Autonoma Metropolitana Iztapalapa, A.P. 55-534, 09340 Mexico D.F. (Mexico)

    1999-07-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu{sup 3+}). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of {sup 1} H, {sup 13} C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at {lambda} = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  9. A novel FT-IR spectroscopic method based on lipid characteristics for qualitative and quantitative analysis of animal-derived feedstuff adulterated with ruminant ingredients.

    Science.gov (United States)

    Gao, Fei; Zhou, Simiao; Han, Lujia; Yang, Zengling; Liu, Xian

    2017-12-15

    The objective of this study was to explore the ability of Fourier transform infrared (FT-IR) spectroscopy to authenticate adulterated animal-derived feedstuff. A total of 18 raw meat and bone meals (MBMs), including 9 non-ruminant MBMs and 9 ruminant MBMs, were mixed to obtain 81 binary mixtures with specific proportions (1-35%). Lipid spectral characteristics were analyzed by FT-IR spectroscopy combined with chemometrics. Changes in FT-IR spectra were observed as adulterant concentration was varied. The results illustrate ruminant adulteration can be successfully distinguished based on lipid characteristics. PLS model was established to quantify ruminant adulteration, which was shown to be valid (R 2 P >0.90). Furthermore, the ratios of CC/CO and CC/CH(CH 2 ), as well as the number of CH(CH 2 ) in the fatty acids of adulterated lipids, were calculated, which showed that differences in the trans fatty acid content and the degree of unsaturation were the main contributors to determination of adulteration based on FT-IR spectroscopy. Copyright © 2017. Published by Elsevier Ltd.

  10. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, Takayuki; Kusaka, Ryoji [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526 (Japan); Xantheas, Sotiris S. [Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352 (United States)

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  11. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Moral, Monica; Garcia, Gregorio [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Penas, Antonio [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Garzon, Andres; Granadino-Roldan, Jose M. [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Melguizo, Manuel [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Fernandez-Gomez, Manuel, E-mail: mfg@ujaen.es [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer We study properties of Ph{sub 2}Tz and (PhTz){sub n}Ph as candidates for organic electronics. Black-Right-Pointing-Pointer The synthesis of Ph{sub 2}Tz was performed through a modified Pinner-type reaction. Black-Right-Pointing-Pointer IR/Raman spectra allowed to conclude that Ph{sub 2}Tz is nearly planar in liquid phase. Black-Right-Pointing-Pointer Electronic structure was studied by UV-Vis/TD-DFT methods in different solvents. Black-Right-Pointing-Pointer Bandgap, E{sub LUMO}, electron mobility predict some n-type character for limit polymer. -- Abstract: This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph{sub 2}Tz) and some oligomeric derivatives. Ph{sub 2}Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  12. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    International Nuclear Information System (INIS)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-01-01

    Highlights: ► We study properties of Ph 2 Tz and (PhTz) n Ph as candidates for organic electronics. ► The synthesis of Ph 2 Tz was performed through a modified Pinner-type reaction. ► IR/Raman spectra allowed to conclude that Ph 2 Tz is nearly planar in liquid phase. ► Electronic structure was studied by UV–Vis/TD-DFT methods in different solvents. ► Bandgap, E LUMO , electron mobility predict some n-type character for limit polymer. -- Abstract: This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph 2 Tz) and some oligomeric derivatives. Ph 2 Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV–Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  13. Study of the deuterated albumin by FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Stoenescu, Daniela; Sahini, V.E.

    2000-01-01

    The albumin is a protein from the soluble or corpuscular protein class, which exists in cells, in dissolved state or in form of a hydrated gel. Proteins are essential constituents beside water, inorganic salts, lipids, carbon hydrates, vitamins, enzymes. The albumin is also a protein soluble in water and in diluted electrolyte solutions (acids, bases and salts). The investigation of the vibration isotopic effect has a great importance both for the diatomic molecules and for the polyatomic molecules. This paper is the first from a series of works which are intended to study the physico-chemical properties of the deuterated albumin and of the albumin solutions in heavy water by an isotopic exchange method. To put in evidence H-D exchange, the FT-IR spectroscopy is used when the deuterated albumin has different layer thickness. It is also of interest to elucidate the isotopic exchange between the hydrogen and oxygen atoms in bovine serum albumin macromolecules. (authors)

  14. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  15. Multi-spectroscopic studies on the interaction of human serum albumin with astilbin: Binding characteristics and structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Li, Shuang; Peng, Xialian; Yu, Qing [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Bian, Hedong, E-mail: gxnuchem312@yahoo.com.cn [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Huang, Fuping [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Liang, Hong, E-mail: lianghongby@yahoo.com.cn [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China)

    2013-04-15

    Five spectroscopic techniques were used to investigate the interaction of astilbin (ASN) with human serum albumin (HSA). UV–vis absorption measurements prove that ASN–HSA complex can be formed. The analysis of fluorescence spectra reveal that in the presence of ASN, quenching mechanism of HSA is considered as static quenching. The quenching rate constant k{sub q}, K{sub SV} and the binding constant K were estimated. According to the van't Hoff equation, the thermodynamic parameters enthalpy change (ΔΗ) and entropy change (ΔS) were calculated to be −12.94 kJ mol{sup −1} and 35.92 J mol{sup −1} K{sup −1}, respectively. These indicate that the hydrophobic interaction is the major forces between ASN and HSA, but the hydrogen bond interaction cannot be excluded. The changes in the secondary structure of HSA which was induced by ASN were determined by circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. -- Graphical abstract: In this paper, the interaction of HSA with ASN was systematically studied under simulated physiological conditions by using UV–vis absorption, CD, FT-IR, fluorescence and Raman spectroscopic approaches. The quenching constant k{sub q}, K{sub SV} and the binding constant K were estimated. The changes in the secondary structure of HSA were studied by Circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The UV–visible absorption spectra of HSA in the absence and presence of different concentration of ASN (1) and fluorescence spectra of HSA in the absence and the presence of ASN (2). Highlights: ► Interaction of ASN and HSA has been studied by five spectroscopic techniques. ► Hydrophobic interaction is the major forces between ASN and HSA. ► Binding of ASN induced the changes in the secondary structure of HSA.

  16. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    Science.gov (United States)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  17. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    Science.gov (United States)

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    International Nuclear Information System (INIS)

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.

    2013-01-01

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R V and A V for O-type stars in Wd2. We find average values (R V ) = 3.77 ± 0.09 and (A V ) = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  19. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Alvarez, Carlos A.; Kobulnicky, Henry A. [Department of Physics and Astronomy, University of Wyoming, Dept. 3905, Laramie, WY 82071 (United States); Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255 (United States); Cool, Richard J. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Miller, Brendan P., E-mail: cvargasa@uwyo.edu, E-mail: chipk@uwyo.edu, E-mail: davidbradley512@gmail.com, E-mail: sheila@physics.unc.edu, E-mail: manorris@physics.unc.edu, E-mail: rcool@obs.carnegiescience.edu, E-mail: mbrendan@umich.edu [Department of Astronomy, University of Michigan, 745 Dennison Building, 500 Church St., Ann Arbor, MI 48109 (United States)

    2013-05-15

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R{sub V} and A{sub V} for O-type stars in Wd2. We find average values (R{sub V} ) = 3.77 {+-} 0.09 and (A{sub V} ) = 6.51 {+-} 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 {+-} 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  20. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    Science.gov (United States)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  1. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  2. Study of binding interaction between anthelmintic 2, 3-dihydroquinazolin-4-ones with bovine serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Hemalatha, K.; Madhumitha, G., E-mail: madhumitha.g@vit.ac.in

    2016-10-15

    A new series of brominated derivatives of 2, 3-dihydroquinazolin-4(1H)-one were synthesized and their structures were confirmed using IR, NMR and mass spectra. The synthesized derivatives were screened for their in vitro anthelmintic activity. The investigations on interaction of the bioactive compound, 2i with bovine serum albumin (BSA) were evaluated. The quenching mechanism of the compound, 2i was deduced based on the results of Stern–Volmer equation. The number of binding site, prediction of binding site region and the changes in the secondary structure of protein were predicted using various spectroscopic studies.

  3. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    Science.gov (United States)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  4. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    Department of Physics, Science Faculty, Anadolu University, Eskişehir, Turkey ... IR spectrum was recorded using Bruker Optics IFS66v/s FTIR spectrometer at a ... spectrum was obtained using a Bruker Senterra Dispersive Raman microscope.

  5. Study on seasonal IR signature change of a ship by considering seasonal marine environmental conditions

    Science.gov (United States)

    Kim, Do-Hwi; Han, Kuk-Il; Choi, Jun-Hyuk; Kim, Tae-Kuk

    2017-05-01

    Infrared (IR) signal emitted from objects over 0 degree Kelvin has been used to detect and recognize the characteristics of those objects. Recently more delicate IR sensors have been applied for various guided missiles and they affect a crucial influence on object's survivability. Especially, in marine environment it is more vulnerable to be attacked by IR guided missiles since there are nearly no objects for concealment. To increase the survivability of object, the IR signal of the object needs to be analyzed properly by considering various marine environments. IR signature of a naval ship consists of the emitted energy from ship surface and the reflected energy by external sources. Surface property such as the emissivity and the absorptivity on the naval ship varies with different paints applied on the surface and the reflected IR signal is also affected by the surface radiative property, the sensor's geometric position and various climatic conditions in marine environment. Since the direct measurement of IR signal using IR camera is costly and time consuming job, computer simulation methods are developing rapidly to replace those experimental tasks. In this study, we are demonstrate a way of analyzing the IR signal characteristics by using the measured background IR signals using an IR camera and the estimated target IR signals from the computer simulation to find the seasonal trends of IR threats of a naval ship. Through this process, measured weather data are used to analyze more accurate IR signal conditions for the naval ship. The seasonal change of IR signal contrast between the naval ship and the marine background shows that the highest contrast radiant intensity (CRI) value is appeared in early summer.

  6. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  7. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  8. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  10. Near-Infrared Spectroscopic Study of Chlorite Minerals

    OpenAIRE

    Min Yang; Meifang Ye; Haihui Han; Guangli Ren; Ling Han; Zhuan Zhang

    2018-01-01

    The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS) spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, and X-ray fluorescence (XRF) analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 we...

  11. Spectroscopic Studies on Complex Formation of U(VI)-thiosalicylate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, Hye Ryun; Park, Kyoung Kyun; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The dynamic interaction between radionuclides and organic ligands is largely dependent on the composition of functional groups in a ligand chemical structure. Therefore, the structural mimics of natural ligands possessing specific functional groups, such as hydroxy, phenol, carboxyl, thiol and amine groups, have been studied to understand their influence on the migration of radionuclides including actinide species under geological groundwater conditions. In previous studies, we demonstrated that the fraction of hydrolyzed U(VI) species occurring in weak acidic solutions (pH {approx}4.5) is significantly influenced by the presence of salicylate (Sal) ligand due to the simultaneous participation of both phenol and carboxyl groups in the formation of U(VI)-complexes. Thiosalicylic acid (TSalH{sub 2}) is a good model compound for studying the effects of both carboxyl and thiol (-SH) groups. The fraction of di-anionic ligand form (TSal{sup 2-}) is higher at near neutral pH due to the lower pKa ({approx} 8) of the thiol group than the case of salicylic acid (pKa, {approx}13 for salicylic -OH), despite the structural similarity. In addition, the redox capability of the thiol group is expected to influence the reducible radiouclides and the chemical structures of natural ligands by creating cross-linkage (-S-S-) upon oxidation. The goal of the present study is to investigate aqueous U(VI)-TSal complexation equilibrium via laser-based spectroscopic techniques including time resolved laser-induced fluorescence spectroscopy (TRLFS). In this preliminary work, we report the results of spectroscopic studies using conventional UVVis absorbance and fluorescence (FL) measurement methods. The photo-stability of U(VI)-TSal complex or ligand itself upon exposure to a series of laser pulses is estimated by monitoring the change in their absorption bands. Additionally, TSal FL-quenching effect by U(VI) ions is discussed in comparison with that of Sal FL-quenching

  12. Structural, Spectroscopic (FT-IR, Raman and NMR, Non-linear Optical (NLO, HOMO-LUMO and Theoretical (DFT/CAM-B3LYP Analyses of N-Benzyloxycarbonyloxy-5-Norbornene-2,3-Dicarboximide Molecule

    Directory of Open Access Journals (Sweden)

    Nuri ÖZTÜRK

    2018-02-01

    Full Text Available The experimental spectroscopic investigation of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide (C17H15NO5 molecule has been done using 1H and 13C NMR chemical shifts, FT-IR and Raman spectroscopies. Conformational forms have been determined depending on orientation of N-benzyloxycarbonyloxy and 5-norbornene-2,3-dicarboximide (NDI groups of the title compound. The structural geometric optimizations, vibrational wavenumbers, NMR chemical shifts (in vacuum and chloroform and HOMO-LUMO analyses for all conformers of the title molecule have been done with DFT/CAM-B3LYP method at the 6-311++G(d,p basis set. Additionally, based on the calculated HOMO and LUMO energy values, some molecular properties such as ionization potential (I, electron affinity (A, electronegativity (χ, chemical hardness (h, chemical softness (z, chemical potential (μ and electrophilicity index (w parameters are determined for all conformers. The non-linear optical (NLO properties have been studied for the title molecule. We can say that the experimental spectral data are in accordance with calculated values.

  13. Spectroscopic study of photo and thermal destruction of riboflavin

    Science.gov (United States)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  14. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A detailed spectroscopic study of an Italian fresco

    International Nuclear Information System (INIS)

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-01-01

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied

  16. Precision electron-gamma spectroscopic studies in 111Cd

    International Nuclear Information System (INIS)

    Sai Vignesh, T.; Chhetri, Premaditya; Vijay Sai, K.; Gowrishankar, R.; Venkataramaniah, K.; Deepa, S.; Rao, Dwarakarani; Kailas, S.

    2011-01-01

    The energy levels of 111 Cd has formerly been considered in terms of the states available to the 63rd neutron which is in the 3s 1/2 sub-shell. Kisslinger and Sorensen have used the pairing plus-quadrupole model to predict the energy levels. In the Coulomb excitation experiment only five levels have been excited. The decay of 111 Ag has been investigated only by few workers, Burmistov and Didorenko, Shevlev et al and Goswamy et al. The previous data on level energies, gamma energies and intensities differ considerably even for intense gamma transitions. There has been no detailed study of the internal conversion spectrum. There have been no multipolarity assignments for some of the transitions. An extensive experimental investigation of the gamma and conversion electron spectra has been undertaken to provide precision spectroscopic information on the low lying levels of 111 Cd from the beta decay of 111 Ag

  17. A detailed post-IR IRSL dating study of the Niuyangzigou loess site in northeastern China

    DEFF Research Database (Denmark)

    Yi, Shuangwen; Buylaert, Jan-Pieter; Murray, Andrew Sean

    2016-01-01

    In this study, we report standard quartz SAR OSL and post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) measurements made on sand-sized quartz and K-feldspar extracts from the loess-palaeosol sequence at Niuyangzigou in northeastern China. The quartz OSL characteristics...... temperature -pIRIR (MET-pIRIR) data. It appears that the low temperature MET-pIRIR data are strongly affected by poor dose recovery, but this is not the case for the pIRIR290 results. Natural signal measurements at the highest (first IR) stimulation temperature on a sample expected to be in field saturation...

  18. ESR studies of electron irradiated K3Ir(CN)6 in KCl single crystals

    International Nuclear Information System (INIS)

    Vugman, N.V.; Pinhal, N.M.

    1983-01-01

    ESR studies of KCl single crystals doped with small amounts of K 3 Ir(CN) 6 and submitted to a prolongued 2 MeV electron irradiation at room temperature reveal the presence of the [IR(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- new molecular species. Ligand spin densities and ligand field parameters are calculated from the experimental hyperfine and superhyperfine interactions and compared to previous data on the [Ir(CN) 5 ] 4- species. (Author) [pt

  19. A Study of IR Loss Correction Methodologies for Commercially Available Pyranometers

    Energy Technology Data Exchange (ETDEWEB)

    Long, Chuck; Andreas, Afshin; Augustine, John; Dooraghi, Mike; Habte, Aron; Hall, Emiel; Kutchenreiter, Mark; McComiskey, Allison; Reda, Ibrahim; Sengupta, Manajit

    2017-03-24

    This presentation provides a high-level overview of a study of IR Loss Connection Methodologies for Commercially Available Pyranometers. The IR Loss Corrections Study is investigating how various correction methodologies work for several makes and models of commercially available pyranometers in common use, both when operated in ventilators with DC fans and without ventilators, as when they are typically calibrated.

  20. Study of radiation heating (part 1). UR spectroscopic characteristics of radiant heat source

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Yoshikazu; Ajisaka, Kazuhiro; Toyonaga, Hajime; Kitahata, Hiroki; Oshida, Shun' ichi; Sugihara, Tomonori

    1987-09-01

    There are many IR permeable substances. When this is heated with IR beam, UR beam penetrated into the substance and heat up the substance from the inside. In this case, the inside gets hot quicker than the surface which gives much difference in the finish of the product. Characteristics of permeation and absorption of the IR beam vary by the type of the substance and the wave-length of the UR beam. Examples of effectiveness of far infra-red heater are: Baking of rice cake. Baking of PVC granules as a slip-stop for a working gloves. Far infra-red sauna (sweating effect around 50/sup 0/C). Tokyo Gas Co., Ltd. and other companies introduced an IR spectroscopic radiometer of Minarad Systems of USA to establish a data exchange system in 1984. The spectroscopic radio-meter system consists of 3 components, i.e., a spectrophotometric radiometer, a black body furnace, and a computer for data processing. (14 figs, 5 tabs)

  1. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  2. Exploring inclusion complexes of ionic liquids with α- and β- cyclodextrin by NMR, IR, mass, density, viscosity, surface tension and conductance study

    Science.gov (United States)

    Barman, Biraj Kumar; Rajbanshi, Biplab; Yasmin, Ananya; Roy, Mahendra Nath

    2018-05-01

    The formation of the host-guest inclusion complexes of ionic liquids namely [BMIm]Cl and [HMIm]Cl with α-CD and β-CD were studied by means of physicochemical and spectroscopic methods. Conductivity and surface tension study were in good agreement with the 1H NMR and FT-IR studies which confirm the formation of the inclusion complexes. The Density and viscosity study also supported the formation of the ICs. Further the stoichiometry was determined 1:1 for each case and the association constants and thermodynamic parameters derived supported the most feasible formation of the [BMIm]Cl- β-CD inclusion complex.

  3. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    CSIR Research Space (South Africa)

    Andreev, GN

    2003-12-16

    Full Text Available of normal vibrations of the corresponding individual compounds. The latter facilitated the Raman spectroscopic elucidation of the reaction products formed on the chalcopyrite surface in real industrial flotation conditions with a sodium isopropyl xanthate...

  4. A Study of Search Intermediary Working Notes: Implications for IR System Design.

    Science.gov (United States)

    Spink, Amanda; Goodrum, Abby

    1996-01-01

    Reports findings from an exploratory study investigating working notes created during encoding and external storage (EES) processes by human search intermediaries (librarians at the University of North Texas) using a Boolean information retrieval (IR) system. Implications for the design of IR interfaces and further research is discussed.…

  5. A first-principles study of oxygen adsorption on Ir(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  6. Tertiary phosphine complexes of rhenium: a spectroscopic study

    International Nuclear Information System (INIS)

    Fergusson, J.E.; Heveldt, P.F.

    1976-01-01

    Complexes of the type ReOX 3 L 2 , ReNX 2 L 3 , ReX 3 (NO)L 2 and ReX 2 (NO)L 3 have been studied using, UV visible, IR and H 1 , C 13 NMR spectroscopy. (X is a halogen, Cl, Br, I and L is a tertiary phosphine Et 3 P and Et 2 PhP). Evidence obtained on the blue cis isomer ReOCl 3 L 2 suggests that the halogens are arranged on a face of the octahedral complex. Assignments of ν(Re-X) and ν(Re-P) vibrations have been made. Three complexes of technetium, [TcCl 4 (Ph 3 P) 2 ], [TcCl 3 (Et 2 PhP) 3 ] and [TcCl 3 (NO)(Et 2 PhP) 2 ] have been isolated. (author)

  7. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  8. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling

    OpenAIRE

    Kamnev, Alexander A.

    2008-01-01

    Modern spectroscopic techniques are highly useful in studying diverse processes in microbial cells related to or incited by environmental factors. Spectroscopic data for whole cells, supramolecular structures or isolated cellular constituents can reflect structural and/or compositional changes occurring in the course of cellular metabolic responses to the effects of pollutants, environmental conditions (stress factors); nutrients, signalling molecules (communication factors), etc. This inform...

  9. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    Science.gov (United States)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  10. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations

    Science.gov (United States)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-03-01

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The 13C and 1H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied.

  11. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations.

    Science.gov (United States)

    Karthikeyan, N; Prince, J Joseph; Ramalingam, S; Periandy, S

    2015-03-15

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The (13)C and (1)H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  12. FT-IR X-ray diffraction and porosimetry studies of archaeologic artifacts recently excavated from Rajakkamangalam in Tamilnadu

    International Nuclear Information System (INIS)

    Babu Suresh; Velraj, Gothandapani

    2011-01-01

    In the present study, fragmented pottery sample were collected from the recently excavated archaeologic site named Rajakkamangalam, India. The samples were collected at different depths. The samples were subjected to FT-IR, X-ray diffraction and also porosimetry study was done, The spectroscopic method Fourier Transform Infrared Spectroscopy (FT-IR) has been employed to find the mineralogical composition of the potteries. And the complementary technique to find the clay minerals present using XRD. The major primary minerals present in the samples are Kaolinite and the secondary mineral present is quartz and the accessory minerals present in the sample are hematite and magnetite. In addition to the used mineral the orthoclase and orthopyroxene are present in the sample of interest. The firing temperature of the samples at the time of manufacturing is also estimated from apparent porosity of the samples. The percentage of the potteries lies in the range of porosity is 17-42 percentages. The results obtained from Porosimetry techniques on pottery shreds provide information of the firing temperature might have been fired below 1000 deg C at the time of manufacturing the potteries. (author)

  13. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  14. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    Science.gov (United States)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  15. Spectroscopic and electrochemical study of polynuclear clusters from ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters [Ru sub(3) O (CH sub(3) CO sub(2)) sub(4) L sub(3)] where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multisite species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltammograms exhibited a series of four or five mono electronic waves ascribed to the sucessive Ru sup(IV) Ru sup(III) Ru sup(III) / Ru sup(III) Ru sup(III) Ru sup(III)/ --- Ru sup(II) Ru sup(II) Ru sup(II) redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru sub(3) centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. Resonance Raman studies for the pyrazine cluster showed selective intensification of the vibrational modes of the Ru-pyrazine chromophore, and the trinuclear centre, using excitation wavelengths coinciding with the metal-to-pyrazine and metal-metal bands, respectively. (author)

  16. Spectroscopic study on a thermoelectron-enhanced microplasma jet

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Nishiyama, Hiroyuki; Terashima, Kazuo; Sugimoto, Kyozo; Yoshikawa, Hirohisa; Takahashi, Hideaki; Sakurai, Takeki

    2004-01-01

    An Ar thermoelectron-enhanced microplasma (TEMP) jet was characterized by spectroscopic study. The 1s 5 lowest metastable densities at the core of the plasma and very close to the substrate, about 4 mm apart from the torch, were obtained successfully using laser absorption spectroscopy (LAS) and laser induced evanescent-mode fluorescence spectroscopy (LIEF). For TEMP generated with 450 MHz, 5 W and 60 Torr, these densities were estimated to be about 3 x 10 12 cm -3 and about 10 10 cm -3 , by the LAS and LIEF methods, respectively. Moreover, gaseous temperature was also estimated as about 700 K by the LAS method. Depopulation of the 1s 5 metastable atoms might be caused primarily by gaseous diffusion between the torch and the substrate. Finally, we report a device with a TEMP generator at the top of a flexible fibre called the 'plasma fibre', which allows plasma processing in any location, as with laser processing using an optical fibre. This article was due to be published in issue 23 of 2003. To access this special issue, please follow this link: http://www.iop.org/EJ/toc/0022-3727/36/23

  17. Moessbauer spectroscopic studies of hemoglobin and its isolated subunits

    International Nuclear Information System (INIS)

    Hoy, G.R.; Cook, D.C.; Berger, R.L.; Friedman, F.K.

    1986-01-01

    Samples of 90% enriched 57Fe hemoglobin and its isolated subunits have been prepared. Moessbauer spectroscopic measurements have been made on three such samples. Sample one contained contributions of oxyhemoglobin, deoxyhemoglobin, and carbonmonoxyhemoglobin. This sample was studied from a temperature of 90 K down to 230 mK. Measurements were also made at 4.2 K using a small applied magnetic field of 1.0 T. In general, the measured quadrupole splittings and isomer shifts for each component agreed with previous measurements on single component samples in the literature, and thus demonstrated that chemically enriched hemoglobin has not been altered. The second and third samples were isolated alpha and beta subunits, respectively. We have found measurable Moessbauer spectral differences between the HbO 2 sites in the alpha subunit sample and the beta subunit sample. The measured Moessbauer spectral areas indicate that the iron ion has the largest mean-square displacement at the deoxy Hb sites as compared to that at the oxy- and carbonmonoxy Hb sites. The mean-square displacement at the HbO 2 sites is the smallest

  18. IR and Raman spectroscopic studies of sol–gel derived alkaline ...

    Indian Academy of Sciences (India)

    modifications on the silica network. The population of the ... network due to the breaking of the Si–O–Si bonds lead- ing to the ... Nd:YAG laser at 1064 nm (with a maximum output power of. 500 mW) ... The wide distribution of the intertetrahedral Si–O–Si angles .... related to the silanol group, which is situated at the energy of.

  19. Study on an x-ray microcalorimeter using Ir superconductor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Zen, Nobuyuki; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2005-01-01

    We fabricated a ten-pixel Ir/Au-transition edge sensor (TES) microcalorimeter, and investigated its signal and noise-property. The device was successfully operated in electro-thermal feedback (ETF) mode. More than six position groups could be discrete by using pulse height and rise time parameters of observed x-ray signals. It seems that the separation groups reflect the pixel position of the TES. The best energy resolution was 18.8 eV (FWHM) for 5.9 keV. The noise spectrum showed that noise level of ten-pixel was larger than that of single pixel. A unexplained peak was observed in the plot of current noise for each bias point. (author)

  20. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  1. Electrochemical and spectroscopic studies of tungstencarbonyl complexes containing nitrogen and phosphorous ligands

    Directory of Open Access Journals (Sweden)

    Haddad Paula S.

    2000-01-01

    Full Text Available The present work deals with the synthesis, spectroscopic investigation and electrochemical behaviour of the compounds [W(CO4(bipy] (1, [W(CO3(bipy(dppm] (2 and [W(CO3(bipy(dppf] (3, bipy = 2,2'-bipyridine; dppm = bis(diphenylphosphinomethane; dppf = 1,1'-bis(diphenylphosphinoferrocene. The IR and 31P{¹H} NMR spectroscopic data have shown an octahedral coordination geometry for the tungsten atom with the diphosphines acting as monodentate ligands. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry and controlled potential coulometry. Cyclic voltammograms have indicated that the compounds containing diphosphines ligands are more stable towards oxidation than compound (1.

  2. Spectroscopic, structural and drug docking studies of carbocysteine

    Science.gov (United States)

    Manivannan, M.; Rajeshwaran, K.; Govindhan, R.; Karthikeyan, B.

    2017-09-01

    Carbocysteine or carbocisteine having the empirical formula C5H9NO4S,is one of the most therapeutically prescribed expectorant, sold under the brand name viz., Mucodyne (UK and India), Rhinathiol and Mucolite. In pediatric respiratory pathology, it can relieve the symptoms of obstructive pulmonary disease (COPD) and bronchiectasis. On the consideration of its extensive pharmaceutical usage and medicinal value, we have investigated its chemical structure and composition by employing various spectral techniques like 1H, 13C NMR, FT-IR,Raman, UV-Visible spectroscopy and powder X-ray diffraction method. Density Functional Theoretical (DFT) studies on its electronic structure is also carried out. Drug docking studies were carried out to ascertain the nature of molecular interaction with the biological protein system. Furthermore theoretical Raman spectrum of this molecule has been computed and compared with the experimental Raman spectrum. The forbidden energy gap between its frontier molecular orbitals, viz., HOMO-LUMO is calculated and correlated with its observed λmax value. Atomic orbitals which are mainly contributes to the frontier molecular orbitals were identified. Molecular electrostatic potential diagram has been mapped to explain its chemical activity. Based on the results, a suitable mechanism of its protein binding mode and drug action has been discussed.

  3. Raman spectroscopic studies of optically trapped red blood cells

    International Nuclear Information System (INIS)

    Dasgupta, R.; Gupta, P.K.

    2010-01-01

    Raman spectroscopic studies were performed on optically trapped red blood cells (RBCs) collected from healthy volunteers and patients suffering from malaria (Plasmodium vivax infection) using near infrared (785 nm) laser source. The results show significant alteration in the spectra averaged over ∼ 50 non-parasitized RBCs per sample. As compared to RBCs from healthy donors, in cells collected from malaria patients, a significant decrease in the intensity of the low spin (oxygenated-haemoglobin) marker Raman band at 1223 cm -1 (υ 13 or υ 42 ) along with a concomitant increase in the high spin (deoxygenated-haemoglobin) marker bands at 1210 cm -1 (υ 5 + υ 18 ) and 1546 cm -1 (υ 11 ) was observed. The changes primarily suggest a reduced haemoglobin-oxygen affinity for the non-parasitized red cells in malaria patients. The possible causes include up regulation of intra-erythrocytic 2,3-diphosphoglycerate and/or ineffective erythropoiesis resulted from the disease. During the above study we also observed that significant photo-damage may results to the intracellular haemoglobin (Hb) if higher laser power is used. For a laser power above ∼ 5 mW the observed increase in intensity of the Raman bands at 975 cm -1 (υ 46 ), 1244 cm -1 (υ 42 ) and 1366 cm -1 (υ 4 ) with increasing exposure time suggests photo-denaturation of Hb and the concomitant decrease in intensity of the Raman band at 1544 cm -1 (υ 11 ) suggests photo induced methaemoglobin formation. The photo damage of intracellular haemoglobin by the above processes was also observed to result in intracellular heme aggregation. (author)

  4. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carr, J. K.; Roy, S.; Skinner, J. L. [Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin 53706 (United States); Zabuga, A. V.; Rizzo, T. R. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne (Switzerland)

    2014-06-14

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala){sub 5}-Lys-H{sup +} in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly {sup 13}C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and {sup 13}C{sup 18}O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm{sup −1} for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.

  5. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    International Nuclear Information System (INIS)

    Carr, J. K.; Roy, S.; Skinner, J. L.; Zabuga, A. V.; Rizzo, T. R.

    2014-01-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala) 5 -Lys-H + in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13 C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13 C 18 O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm −1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides

  6. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    Science.gov (United States)

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-01-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm−1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides. PMID:24929378

  7. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    Energy Technology Data Exchange (ETDEWEB)

    Mini, S., E-mail: sadasivan.v@gmail.com; Sadasivan, V., E-mail: sadasivan.v@gmail.com [University College, M G Road, Palayam, Thiruvananthapuram 695 034 Kerala (India); Meena, S. S., E-mail: ssingh@barc.gov.in; Bhatt, Pramod, E-mail: ssingh@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  8. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    International Nuclear Information System (INIS)

    Mini, S.; Sadasivan, V.; Meena, S. S.; Bhatt, Pramod

    2014-01-01

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl 3 Ðœ‡2H 2 O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H 2 O) 2 ] and [Fe(FAHP)Cl 2 (H 2 O) 2

  9. A spectroscopic study of the hydrogen bonding and pi-pi stacking interactions of harmane with quinoline.

    Science.gov (United States)

    Balón, M; Guardado, P; Muñoz, M A; Carmona, C

    1998-01-01

    A spectroscopic (UV-vis, Fourier transform IR, steady state, and time-resolved fluorescence) study of the interactions of the ground and excited singlet states of harmane (1-methyl-9H-pyrido/3,4-b/indole) with quinoline has been carried out in cyclohexane, toluene, and buffered pH=8.7 aqueous solutions. To analyze how the number of rings in the substrate influences these interactions, pyridine and phenanthridine have also been included in this study. In cyclohexane and toluene 1:1 stoichiometric hydrogen-bonded complexes are formed in both the ground and the excited singlet states. As the number of rings of the benzopyridines and the solvent polarity increase hydrogen-bonding interactions weaken and pi-pi van der Waals interactions become apparent.

  10. Density functional study of the L10-αIrV transition in IrV and RhV

    International Nuclear Information System (INIS)

    Mehl, Michael J.; Hart, Gus L.W.; Curtarolo, Stefano

    2011-01-01

    Research highlights: → The computational determination of the ground state of a material can be a difficult task, particularly if the ground state is uncommon and so not found in usual databases. In this paper we consider the alpha-IrV structure, a low temperature structure found only in two compounds, IrV and RhV. In both cases this structure can be considered as a distorted tetragonal structure, and the tetragonal 'L1 0 ' structure is the high temperature structure for both compounds. We show, however, that the logical path for the transition from the L1 0 to the alpha-IrV structure is energetically forbidden, and find a series of unstable and metastable structures which have a lower energy than the L1 0 phase, but are higher in energy than the alpha-IrV phase. We also consider the possibility of the alpha-IrV structure appearing in neighboring compounds. We find that both IrTi and RhTi are candidates. - Abstract: Both IrV and RhV crystallize in the αIrV structure, with a transition to the higher symmetry L1 0 structure at high temperature, or with the addition of excess Ir or Rh. Here we present evidence that this transition is driven by the lowering of the electronic density of states at the Fermi level of the αIrV structure. The transition has long been thought to be second order, with a simple doubling of the L1 0 unit cell due to an unstable phonon at the R point (0 1/2 1/2). We use first-principles calculations to show that all phonons at the R point are, in fact, stable, but do find a region of reciprocal space where the L1 0 structure has unstable (imaginary frequency) phonons. We use the frozen phonon method to examine two of these modes, relaxing the structures associated with the unstable phonon modes to obtain new structures which are lower in energy than L1 0 but still above αIrV. We examine the phonon spectra of these structures as well, looking for instabilities, and find further instabilities, and more relaxed structures, all of which have

  11. Structure and properties of hydrocarbon radical cations in low-temperature matrices as studied by a combination of EPR and IR spectroscopy

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1997-01-01

    Use of IR spectroscopy (as a supplement to EPR) may provide new insight into the problem of analysis of structure and properties of organic radical cations. In this work, the results of combined EPR/IR studies of the formation, structure and properties of hydrocarbon radical cations in halocarbon and solid rare gas matrices are discussed. Both IR and EPR studies were carried out with matrix deposited samples irradiated with fast electrons at 15 or 77 K. IR spectroscopic data were found to be helpful in three aspects: (i) characterization of the conformation and association and molecule-matrix interactions of the parent molecules; (ii) identification of diamagnetic products of the reactions of radical cations in ground and excited states; (iii) determining the characteristics of vibrational spectra of the radical cations, which are of primary interest for analysis of chemical bonding and reactivity of the radical cations. The applications of the combined approach are illustrated with examples of studies of several alkenes in Freon matrices and alkanes in solid rare gas matrices. The matrix effects on trapping and degradation of radical cations were interpreted as the result of variations in matrix electronic characteristics (IP, polarizability) and molecule-matrix interactions. (au) 48 refs

  12. A Spectroscopic and Photometric Study of Gravitational Microlensing Events

    Science.gov (United States)

    Kane, Stephen R.

    2000-08-01

    Gravitational microlensing has generated a great deal of scientific interest over recent years. This has been largely due to the realization of its wide-reaching applications, such as the search for dark matter, the detection of planets, and the study of Galactic structure. A significant observational advance has been that most microlensing events can be identified in real-time while the source is still being lensed. More than 400 microlensing events have now been detected towards the Galactic bulge and Magellanic Clouds by the microlensing survey teams EROS, MACHO, OGLE, DUO, and MOA. The real-time detection of these events allows detailed follow-up observations with much denser sampling, both photometrically and spectroscopically. The research undertaken in this project on photometric studies of gravitational microlensing events has been performed as a member of the PLANET (Probing Lensing Anomalies NETwork) collaboration. This is a worldwide collaboration formed in the early part of 1995 to study microlensing anomalies - departures from an achromatic point source, point lens light curve - through rapidly-sampled, multi-band, photometry. PLANET has demonstrated that it can achieve 1% photometry under ideal circumstances, making PLANET observations sensitive to detection of Earth-mass planets which require characterization of 1%--2% deviations from a standard microlensing light curve. The photometric work in this project involved over 5 months using the 1.0 m telescope at Canopus Observatory in Australia, and 3 separate observing runs using the 0.9 m telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Methods were developed to reduce the vast amount of photometric data using the image analysis software MIDAS and the photometry package DoPHOT. Modelling routines were then written to analyse a selection of the resulting light curves in order to detect any deviation from an achromatic point source - point lens light curve. The photometric

  13. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    Science.gov (United States)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  14. Application of spectroscopic methods to the study of ionizing radiation effects in polymers

    International Nuclear Information System (INIS)

    Jimenez P, G.

    1995-01-01

    In general the interaction of ionizing radiation with polymers generates physic-chemical changes. Aiming to quantity these changes, three spectroscopic analytical techniques were used (UV, IR and EPR) and the chemical corrosion technique was used for three DSTN (CR39, Lexan and Makrofol) which were exposed to two radiation types: electrons and gammas. The effects of radiation are compared. Also a correlation between the UV and Vg results in function of dose is presented. The possible causes of the increase in chemical corrosion are discussed. (Author)

  15. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations

    Science.gov (United States)

    Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.

    2015-05-01

    In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  16. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Anatol'evich, Dikusar Evgenij; Yahyaei, Hooriye

    2017-06-01

    In the present work, the molecular structures of three new azomethine dyes: N-benzylidene-4-((E)-phenyldiazenyl)aniline (PAZB-1), 2-methoxy-4-(((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-2) and 2-methoxy-5-((E)-((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8) have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by PBE0/6-31 + G* level of theory. The electronic spectra of these azomethine dyes in a DMF solution was carried out by TDPBE0/6-31 + G* method. After quantum-chemical calculations three new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for Visible region of spectrum were developed. The main optical parameters of polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal conductivity of the PVA-films has been studied.

  17. Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations.

    Science.gov (United States)

    Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M

    2014-01-24

    In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Preliminary study of corrosion mechanisms of actinides alloys: calibration of FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Magnien, Veronique; Cadignan, Marx; Faivret, Olivier; Rosa, Gaelle

    2008-01-01

    In situ analyzes of gaseous atmospheres could be performed by FT-IR spectroscopy in order to study the corrosion reactions of actinides. Nevertheless experimental conditions and the nature of studied species have a strong effect on IR absorption laws. Thus a prior calibration of our set-up is required to obtain an accurate estimation of gas concentration. For this purpose, the behavior of several air pure gases has been investigated according to their concentration from IR spectra. Reproducible results revealed subsequent increases of the most significant peak areas with gas pressure and small deviations from Beer Lambert's law. This preliminary work allowed to determine precise absorption laws for each studied pure gas in our in situ experimental conditions. Besides our FT-IR set-up was well suitable to quantitative analysis of gaseous atmosphere during corrosion reactions. Finally the effect of foreign gas will be investigated through more complex air mixtures to obtain a complete calibration network. (authors)

  19. In situ study of nitrobenzene grafting on Si(111)-H surfaces by infrared spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Rappich, J. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut fuer Silizium-Photovoltaik, Kekulestr. 5, 12489 Berlin (Germany); Hinrichs, K. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2009-12-15

    The binding of nitrobenzene (NB) molecules from a solution of 4-nitrobenzene-diazonium-tetrafluoroborate on a Si(111)-H surface was investigated during the electrochemical processing in diluted sulphuric acid by means of infrared spectroscopic ellipsometry (IR-SE). The grafting was monitored by an increase in specific IR absorption bands due to symmetric and anti-symmetric NO{sub 2} stretching vibrations in the 1400-1700 cm{sup -1} regime. The p- and s-polarized reflectances were recorded within 20 s for each spectrum only. NB molecules were detected when bonded to the Si(111) surface but not in the 2 mM solution itself. Oxide formation on the NB grafted Si surface was observed after drying in inert atmosphere and not during the grafting process in the aqueous solution. (author)

  20. IR and Raman spectra of nitroanthracene isomers: substitional effects based on density functional theory study.

    Science.gov (United States)

    Alparone, Andrea; Librando, Vito

    2012-04-01

    Structure, IR and Raman spectra of 1-, 2- and 9-nitroanthracene isomers (1-NA, 2-NA and 9-NA) were calculated and analyzed through density functional theory computations using the B3LYP functional with the 6-311+G** basis set. Steric and π-conjugative effects determine the characteristic ONCC dihedral angles, which vary from 0° (2-NA) to 28-29° (1-NA) and 59° (9-NA), influencing the relative order of stability along the series 9-NA3000 cm(-1) and utility to discriminate the NA isomers. Structural and spectroscopic results suggest that the unknown mutagenic activity of 1-NA is expected to be between that of 9-NA and 2-NA. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Initial study of a method for IR measurements in boilers; Inledande studie av metod foer IR-maetning i aangpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Martin; Joensson, Magnus; Lundin, Leif [Swedish National Testing and Research Inst., Boraas (Sweden)

    1999-10-01

    The tubes in steam boilers are required to be regularly inspected, in order to find water-side deposits, thinning of walls or material defects. This is for safety, problem-free operation and high availability. No non-destructive method of inspection is available today for finding deposits on the insides of boiler tubes. Nor is there any method that can not only detect deposits on the insides of the tubes but also monitor the tubes' wall thicknesses. A suitable method - reliable, safe, easy to use and cost-efficient - is therefore needed. One such method is to measure the surface temperature of a larger area of the diaphragm wall, using a non-contact method, and from the resulting information to assess the material thickness and possible water-side or steam-side deposits. An IR camera is used for non-contact measurement of the radiated energy from several adjacent surface elements, and thus also of their temperature. The temperature is displayed on the camera's screen to produce a picture of the temperature distribution. This is a well-established method today, and is used in applications such as the steel industry, the electricity industry, electronics and health care. The surface temperatures of the tube walls can be measured by inserting an IR camera on an arm into the combustion chamber, without anyone having to get inside the boiler. The combustion chamber is the part of the boiler that is of main interest for inspection, as it is the easiest to reach. Measurements are facilitated by higher temperatures and thus higher heat fluxes through the tube walls. Diaphragm wall temperatures can be measured quickly and rationally over large areas. Points of interest in inspections include determining where there are water-side deposits in the tubes, where tubes are thin, where flow is obstructed and where there might be material defects. With the exception of material defects, all of these mechanisms result in changes in the surface temperature, which in many

  2. Comprehensive GC–FID, GC–MS and FT-IR spectroscopic analysis of the volatile aroma constituents of Artemisia indica and Artemisia vestita essential oils

    Directory of Open Access Journals (Sweden)

    Manzoor A. Rather

    2017-05-01

    Full Text Available In the current study, the leaf volatile constituents of the essential oils of Artemisia indica Willd. and Artemisia vestita Wall were studied using a combination of capillary GC–FID, GC–MS and FT-IR (Fourier-Transform Infra-Red analytical techniques. The analysis led to the identification of 42 compounds in the essential oil of A. indica, representing 96.6% of the essential oil and the major components were found to be artemisia ketone (42.1%, germacrene D (8.6%, borneol (6.1% and cis-chrysanthenyl acetate (4.8%. The essential oil was dominated by the presence of oxygenated monoterpenes constituting 65.2% of the total oil composition followed by sesquiterpene hydrocarbons and monoterpene hydrocarbons constituting 15.7% and 10.7%, respectively of the total oil composition. The essential oil composition of A. vestita was found to contain a total of 18 components representing 94.2% of the total oil composition. The principal components were found to be 1,8-cineole (46.8%, (E-citral (13.7%, limonene (9.8%, α-phellandrene (6.4%, camphor (5.0%, (Z and (E-thujones (3.0% each. Oxygenated monoterpenes were the dominant group of terpenes in the essential oil constituting 73.1% of the total oil composition followed by monoterpene hydrocarbons (17.3%. The results of the current study reveal remarkable differences in the essential oil compositions of these two Artemisia species already reported in the literature from other parts of the globe.

  3. Spectroscopic studies of uranium species for environmental decontamination applications

    Science.gov (United States)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  4. Spectroscopic Tools for Quantitative Studies of DNA Structure and Dynamics

    DEFF Research Database (Denmark)

    Preus, Søren

    The main objective of this thesis is to develop quantitative fluorescence-based, spectroscopic tools for probing the 3D structure and dynamics of DNA and RNA. The thesis is founded on six peer-reviewed papers covering mainly the development, characterization and use of fluorescent nucleobase...... analogues. In addition, four software packages is presented for the simulation and quantitative analysis of time-resolved and steady-state UV-Vis absorption and fluorescence experiments....

  5. Ion-beam spectroscopic studies of the 69As nucleus

    International Nuclear Information System (INIS)

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.

    2009-01-01

    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  6. Raman spectroscopic study of ancient South African domestic clay pottery

    Science.gov (United States)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  7. Characterization of WO3-doped borophosphate glasses by optical, IR and ESR spectroscopic techniques before and after subjecting to gamma irradiation

    International Nuclear Information System (INIS)

    Ouis, M.A.; EI-Batal, H.A.; Azooz, M.A.; Abdelghany, A.M.

    2013-01-01

    Borophosphate glasses containing increasing WO 3 within the doping level (0.16-1.33%) have been prepared and investigated by UV-visible, infrared spectral measurements. These glasses have been exposed to gamma rays with a dose of 8 Mrad for studying the effect of gamma radiation on the combined studied spectra of such glasses. The optical spectrum of undoped borophosphate glass reveals strong UV absorption but with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurities within the chemicals used for the preparation of this borophosphate glass. The WO 3 -doped samples show two additional UV and visible bands at about 380 and 740 nm due to the presence of both W 6+ and W 5+ ions in noticeable content. The calculated induced spectra reveal the appearance of an ultraviolet band at 320 nm and two visible bands centered at 390 and 540 nm which are related to the combined presence of W 6+ and W 5+ ions. The FTIR spectra show vibrational bands due to characteristic constitutional phosphate and borate groups but the phosphate groups are predominant due to the high P 2 O 5 content (50%). The effect of the addition of WO 3 with the dopant level reveals limited changes in the IR spectra. Electron spin resonance (ESR) spectra show specified signals in the high WO 3 content glass but on gamma irradiation the signals are disappeared. This result confirms the decrease of the W 5+ ions by photochemical oxidation to paired W 6+ ions. This result is also observed in optical absorption of WO 3 doped glasses after gamma irradiation through the disappearance of the visible band at 740 nm. (author)

  8. SPECTROSCOPIC ANALYSIS OF FIVE PHYLOGENETICALLY DISTANT FUNGI (DIVISION: ASCOMYCETE FROM VELLAR ESTUARY, SOUTHEAST COAST OF INDIA – A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Jayachandran Subburaj

    2013-04-01

    Full Text Available Fungal taxonomy is dynamically driven towards controversial discipline that consequently requires changes in nomenclature. Scarcity of microbiological expertise particularly for marine fungi is another major setback for these taxonomical differences. Here, five different species pharmacologically important marine fungi under Division Ascomycete were studied for their spectral variation. This work verified the practical applicability of FT-IR microspectroscopy technique for early and rapid identification of these species based on the spectral data showed striking difference with their major biomolecules such as lipids, proteins and nucleic acids produced by them. Spectra of all the species showed striking differences while individual peaks of each spectrum are parallel to each other in their respective spectral regions. Aspergillus oryzae have intense peaks in the lipid and nucleic acid spectral region and moderate bands in the amide spectrum. Phoma herbarum and Trichoderma piluliferum showed intense peaks in the protein spectral region but moderate peaks in the lipid and nucleic acid regions. Hypocrea lixii and Meyerozyma guilliermandii have less intense peaks in all the five spectral regions. This unique spectral representation is concordant with the cluster analysis dendrogram by minimum variance statistical method where low spectroscopic distance was found between H. lixii and M. guilliermondii whereas a higher spectroscopic distance was found between P. herbarum and T. piluliferum. FTIR spectroscopy delivers a combined advantage for efficient fungal classification as well as simultaneous visualization of chemical composition of samples as evident from this study.

  9. Fourier-transform infrared spectroscopic studies of dithia ...

    Indian Academy of Sciences (India)

    We present here infrared absorption spectra of dithia tetraphenylporphine and its cation in the 450-1600 and 2900-3400 cm-1 regions. Most of the allowed IR bands are observed in pairs due to overall 2ℎ point group symmetry of the molecule. The observed bands have been assigned to the porphyrin skeleton and phenyl ...

  10. Fourier-transform infrared spectroscopic studies of dithia ...

    Indian Academy of Sciences (India)

    Unknown

    limited region 1000–1150 cm–1.10 Therefore, in the present paper we report and analyse Fourier-trans- form infrared (FT-IR) spectra of S2TPP and its chemically prepared cation. 2. Experimental. Dithia tetraphenyl porphyrine was received from. Professor A L Verma as a gift and used without fur- ther purification. However ...

  11. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl

    Science.gov (United States)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.

    2018-05-01

    A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}})Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.

  12. Theoretical and spectroscopic studies of a tricyclic antidepressant, imipramine hydrochloride

    Science.gov (United States)

    Sagdinc, S. G.; Azkeskin, Caner; Eşme, A.

    2018-06-01

    Imipramine hydrochloride ([H-IMI]Cl), C19H24N2.HCl, is the prototypic tricyclic antidepressant (TCA) inhibitor of norepinephrine and serotonin neuronal reuptake. The molecular structure, molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis, linear and non-linear optical (NLO) properties of [H-IMI]Cl have been investigated using the density functional theory (DFT) calculations with the B3LYP level at the 6‒311++G(d,p) basis set. The UV-Vis spectra for [H-IMI]Cl were experimentally studied in water and methanol. TD‒DFT calculations in water and methanol were employed to investigate the absorption wavelengths (λ), excitation energies (E), and oscillator strengths (f) for the UV-Vis analysis and the major contributions to the electronic transitions. From NBO analysis, the orbitals with the stabilization energy E(2) of 192.15 kcal/mol are π*(C5sbnd C18) as donor NBO and π*(C19sbnd C20) as acceptor NBO. The FT‒IR (4000‒400 cm-1) and FT‒Raman (3500-50 cm-1) spectra have been measured and analyzed. The assignment of bands observed vibrational spectra have been made by comparison of its calculated theoretical vibrational frequencies obtained using the DFT/B3LYP/6‒311++G(d,p) method. The detailed vibrational assignments were performed with the DFT calculation, and the potential energy distribution (PED) of [H-IMI]Cl was obtained by the Vibrational Energy Distribution Analysis 4 (VEDA4) program. The scaled frequencies resulted in good agreement with the observed spectral patterns.

  13. Synthesis, structural, spectroscopic and biological studies of Schiff base complexes

    Science.gov (United States)

    Diab, M. A.; El-Sonbati, A. Z.; Shoair, A. F.; Eldesoky, A. M.; El-Far, N. M.

    2017-08-01

    Schiff base ligand 4-((pyridin-2- yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (PDMP) and its complexes were prepared and characterized on the basis of elemental analysis, IR, mass spectra and thermogravimetric analysis. All results confirm that the complexes have 1:1 (M: PMDP) stoichiometric formula [M(PMDP)Cl2H2O ] (M = Cu(II), Co(II), Ni(II) and Mn(II)), [Cd(PMDP)Cl2] and the ligand behaves as a bi/tridentate forming five-membered chelating ring towards the metal ions, bonding through azomethine nitrogen/exocyclic carbonyl oxygen, azomethine pyridine nitrogen and exocyclic carbonyl oxygen. The shift in the band positions of the groups involved in coordination has been utilized to estimate the metal-nitrogen and/or oxygen bond lengths. The complexes of Co(II), Ni(II) and Cu(II) are paramagnetic and the magnetic as well as spectral data suggest octahedral geometry, whereas the Cd(II) complex is tetrahedral. The XRD studies show that both the ligand and its metal complexes (1 and 3) show polycrystalline with crystal structure. Molecular docking was used to predict the binding between PMDP ligand and the receptors. The corrosion inhibition of mild steel in 2 M HCl solution by PDMP was explored utilizing potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and (EFM) electrochemical frequency modulation method. Potentiodynamic polarization demonstrated that PDMP compound is mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the protective ability. The percentage of inhibition efficiency was found to increase with increasing the inhibitor concentration.

  14. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  15. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis.

    Science.gov (United States)

    Awan, Uzma Azeem; Ali, Shaukat; Shahnawaz, Amna Mir; Shafique, Irsa; Zafar, Atiya; Khan, Muhammad Abdul Rauf; Ghous, Tahseen; Saleem, Azhar; Andleeb, Saiqa

    2017-05-01

    The spread of bacterial infectious diseases is a major public threat. Herbs and spices have offered an excellent, important and useful source of antimicrobial agents against many pathological infections. In the current study, the antimicrobial potency of fresh, naturally and commercial dried Allium sativum and Zingiber officinale extracts had been investigated against seven local clinical bacterial isolates such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, and Serratia marcesnces by the agar disc diffusion method. All tested pathogens except P. aeruginosa and E. coli were most susceptible to ethanolic and methanolic extracts of A. sativum. Similarly, chloroform and diethyl ether extracts of Z. officinale showed a greater zone of inhibition of tested pathogens except for P. aeruginosa and E. coli. We found that all extracts of A. sativum and Z. officinale have a strong antibacterial effect compared to recommended standard antibiotics through activity index. All results were evaluated statistically and a significant difference was recorded at Psativum and Z. officinale proposed the presence of various phytochemicals such as tannins, phenols, alkaloids, steroids and saponins. Retention factor of diverse phytochemicals provides a valuable clue regarding their polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of S. aureus was also observed through TLC-Bioautography. FT-IR Spectrometry was also performed to characterize both natural and commercial extracts of A. sativum and Z. officinale to evaluate bioactive compounds. These findings provide new insights to use A. sativum and Z. officinale as potential plant sources for controlling pathogenic bacteria and potentially considered as cost-effective in the management of diseases and to the threat of drug resistance phenomenon.

  16. Spectroscopic [FT-IR and FT-Raman] and theoretical [UV-Visible and NMR] analysis on α-Methylstyrene by DFT calculations.

    Science.gov (United States)

    Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S

    2015-05-15

    In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  17. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies.

    Science.gov (United States)

    Zamani, Mehdi; Moradi Delfani, Ali; Jabbari, Morteza

    2018-05-03

    The radical scavenging performance and antioxidant activity of γ-alumina nanoparticles towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical were investigated by spectroscopic and computational methods. The radical scavenging ability of γ-alumina nanoparticles in the media with different polarity (i.e. i-propanol and n-hexane) was evaluated by measuring the DPPH absorbance in UV-Vis absorption spectra. The structure and morphology of γ-alumina nanoparticles before and after adsorption of DPPH were studied using XRD, FT-IR and UV-Vis spectroscopic techniques. The adsorption of DPPH free radical on the clean and hydrated γ-alumina (1 1 0) surface was examined by dispersion corrected density functional theory (DFT-D) and natural bond orbital (NBO) calculations. Also, time-dependent density functional theory (TD-DFT) was used to predict the absorption spectra. The adsorption was occurred through the interaction of radical nitrogen N and NO 2 groups of DPPH with the acidic and basic sites of γ-alumina surface. The high potential for the adsorption of DPPH radical on γ-alumina nanoparticles was investigated. Interaction of DPPH with Brønsted and Lewis acidic sites of γ-alumina was more favored than Brønsted basic sites. The following order for the adsorption of DPPH over the different active sites of γ-alumina was predicted: Brønsted base free radicals. Copyright © 2018. Published by Elsevier B.V.

  18. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  19. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  20. FTIR and Vis-FUV real time spectroscopic ellipsometry studies of polymer surface modifications during ion beam bombardment

    Science.gov (United States)

    Laskarakis, A.; Gravalidis, C.; Logothetidis, S.

    2004-02-01

    The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the CO, C-C and CC groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME.

  1. FTIR and Vis-FUV real time spectroscopic ellipsometry studies of polymer surface modifications during ion beam bombardment

    International Nuclear Information System (INIS)

    Laskarakis, A.; Gravalidis, C.; Logothetidis, S.

    2004-01-01

    The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the C-O, C-C and C-C groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME

  2. Spectroscopic and thermogravimetric study of nickel sulfaquinoxaline complex

    International Nuclear Information System (INIS)

    Tailor, Sanjay M.; Patel, Urmila H.

    2016-01-01

    The ability of sulfaquinoxaline (4-Amino-N-2-quinoxalinylbenzenesulfonamide) to form metal complexes are investigated. The nickel complex of sulfaquinoxaline is prepared by reflux method and characterized by CHN analysis and IR spectra. The results of IR spectral data suggest that the binding of nickel atom to the sulfonamidic nitrogen are in good agreement. The thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential thermogravimetric (DTG) analysis of nickel sulfaquinoxaline are carried out from ambient temperature to 750°C in inert nitrogen atmosphere. The activation energy, enthalpy, entropy and Gibbs free energy of nickel sulfaquinoxaline complex is determined from the thermal curves using Broido method. The results are reported in this paper.

  3. Fourier Transform Infrared and Resonance Raman Spectroscopic Studies of Bacteriorhodopsin.

    Science.gov (United States)

    Earnest, Thomas Nixon

    Fourier transform infrared and resonance Raman spectroscopy were used to investigate the structure and function of the light-activated, transmembrane proton pump, bacteriorhodopsin, from the purple membrane of Halobacterium halobium. Bacteriorhodopsin (bR) is a 27,000 dalton integral membrane protein consisting of 248 amino acids with a retinylidene chromophore. Absorption of a photon leads to the translocation of one or two protons from the inside of the cell to the outside. Resonance Raman spectroscopy allows for the study of the configuration of retinal in bR and its photointermediates by the selective enhancement of vibrational modes of the chromophore. This technique was used to determine that the chromophore is attached to lysine-216 in both the bR _{570} and the M _{412} intermediates. In bR with tyrosine-64 selectively nitrated or aminated, the chromophore appears to have the same configuration in that bR _{570} (all- trans) and M _{412} (13- cis) states as it does in unmodified bR. Polarized Fourier transform infrared spectroscopy (FTIR) permits the study of the direction of transition dipole moments arising from molecular vibrations of the protein and the retinal chromophore. The orientation of alpha helical and beta sheet components was determined for bR with the average helical tilt found to lie mostly parallel to the membrane normal. The beta sheet structures also exhibit an IR linear dichroism for the amide I and amide II bands which suggest that the peptide backbone is mostly perpendicular to the membrane plane although it is difficult to determine whether the bands originate from sheet or turn components. The orientation of secondary structure components of the C-1 (residues 72-248) and C-2 (residues 1-71) fragments were also investigated to determine the structure of these putative membrane protein folding intermediates. Polarized, low temperature FTIR -difference spectroscopy was then used to investigate the structure of bR as it undergoes

  4. Spectroscopic study on the stability of morin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bark, Ki Min [Dept. of Chemical Education and Research Institute of Life Science, Gyeongsang National University, Chinju (Korea, Republic of); Im, Seo Eun; Seo, Jung Ja; Park, Ok Hyun; Park, Hyoung Ryun [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of); Park, Chul Ho [Dept. of Cosmetic Science, Nambu University, Gwangju (Korea, Republic of)

    2015-02-15

    Morin (3,2,4,5,7-pentahydroxyflavone) is a flavonol conjugated to a resorcinol moiety at the C-2 position, different from many other flavonoids. The UV–vis spectrum of morin in neat water reveals two major absorption bands with maxima at 265 and 387 nm. The substance is stable in acidic solution and neat water. However, its absorption maximum at 387 nm continuously shifts to longer wavelengths and new peaks appeared at wavelengths of 312 nm with increasing pH of the solution. The shape of the absorption spectrum of morin depends on the storage time at a given pH, indicating the occurrence of other successive chemical reactions. The fluorescence spectroscopic results also prove that new conjugated double bonds are formed in the deaerated basic solution at the initial state and decompose with time. This behavior indicates that morin is very unstable, and therefore its decomposition occurs by a sequence of multistep reactions in basic solution. Probable reaction pathways for the reaction are suggested based on the spectroscopic results.

  5. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    Science.gov (United States)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  6. Spectroscopic investigations (FT-IR & FT-Raman) and molecular docking analysis of 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine

    Science.gov (United States)

    Prasath, M.; Govindammal, M.; Sathya, B.

    2017-10-01

    The Azathioprine is used as anticancer agent. Azathioprine is chemically called 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine (6M4N5P). The vibrational analysis of the 6M4N5P compound was carried out by using FT-IR and FT-Raman spectroscopic techniques and compared with aspects. The optimized geometry, frequency and intensity of the vibrational bands of 6M4N5P were obtained from the HF and DFT methods with 6-31G (d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The calculated Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies show that charge transfer occur within the molecule. MEP (Molecular Electrostatic Potential) is very useful in the investigation of the charge distributions and molecular structure. The molecule orbital contributions were determined by using the total density of states (TDOS). A molecular docking analysis has been carried out to understand the conformational change and electrostatic properties of 6M4N5P in the active site of Rac1-Receptor.

  7. Thermal and IR studies on copper doped polyvinyl alcohol

    Indian Academy of Sciences (India)

    TECS

    and K VEERA BRAHMAM*. Advanced Systems Laboratory, Kanchanbagh, Hyderabad 500 058, India ... and transient data storage materials or as a basic material for the fabrication of ... of the polymer. The aim of the present work was to study.

  8. Homa1-ir And Homa2-ir Indexes In Identifying Insulin Resistance And Metabolic Syndrome - Brazilian Metabolic Syndrome Study (brams) [Índices Homa1-ir E Homa2-ir Para Identificação De Resistência à Insulina E Síndrome Metabólica - Estudo Brasileiro De Síndrome Metabólica (brams)

    OpenAIRE

    Geloneze B.; Vasques A.C.J.; Stabe C.F.C.; Pareja J.C.; de Lima Rosado L.E.F.P.; de Queiroz E.C.; Tambascia M.A.

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  9. Spectroscopic study of cadmium (II) complexes with heterocyclic dithiocarbamate ligands

    International Nuclear Information System (INIS)

    Garcia-Fontan, S.; Rodriguez-Seoane, P.; Casas, J.S.; Sordo, J.; Jones, M.M.

    1993-01-01

    Cadmium(II) dithiocarbamates [Cd(dtc) 2 ] (dtc=4-carboxamidopiperidine-1-carbodithioate, morpholine-1-carbodithioate or 4-(2-hydroxyethyl)piperazine-1-carbodithioate) and [Cd(dtc) 2 ].H 2 O (dtc=4-hydroxypiperidine-1-carbodithioate} have been prepared and characterized by thermal analysis and IR and NMR ( 13 C, 113 Cd) spectrometry. Two of these ligands have previously been shown capable of removing cadmium from its aged in vivo storage sites. The use of solid state 13 C NMR measurements to establish the coordination mode of the dithiocarbomate ligands is also examined and the difficulties which arise are discussed. (orig.)

  10. The Problem of World Order in Western IR Studies

    OpenAIRE

    Maria Victorovna Soljanova

    2016-01-01

    The article "Problem of world order in modern Western studies" is the study of one of the most debated issues in the science of international relations - world order. Discussion of the structure of world order is underway in various countries, both at the state level and in the expert community. Some researchers insist on the fact that after the end of the cold war, the collapse of the bipolar model of international relations, the world has become unipolar. Others argue that the increase in t...

  11. Spectroscopic ellipsometry study of FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [School of Materials Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2006-12-15

    The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. A spectroscopic study of uranium(VI) interaction with magnetite

    International Nuclear Information System (INIS)

    El Aamrani, S.; Gimenez, J.; Rovira, M.; Seco, F.; Grive, M.; Bruno, J.; Duro, L.; Pablo, J. de

    2007-01-01

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO 2 and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI)

  13. Study of single-nucleon spectroscopic characteristics in light nuclei

    International Nuclear Information System (INIS)

    Zhusupova, K.A.

    1998-01-01

    Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)

  14. Attenuated total reflection design for in situ FT-IR spectroelectrochemical studies

    International Nuclear Information System (INIS)

    Visser, Hendrik; Curtright, Aimee E.; McCusker, James K.; Sauer, Kenneth

    2000-01-01

    A versatile spectroelectrochemical apparatus is introduced to study the changes in IR spectra of organic and inorganic compounds upon oxidation or reduction. The design is based on an attenuated total reflection (ATR) device, which permits the study of a wide spectral range of 16,700 cm-1 (600 nm) - 250 cm-1 with a small opaque region of 2250 - 1900 cm-1. In addition, an IR data collection protocol is introduced to deal with electrochemically non-reversible background signals. This method is tested with ferrocene in acetonitrile, producing results that agree with those in the literature

  15. A cohort study of incident microalbuminuria in relation to HOMA-IR in Korean men.

    Science.gov (United States)

    Park, Sung Keun; Chun, Hyejin; Ryoo, Jae-Hong; Lee, Sang Wha; Lee, Hong Soo; Shim, Kyung Won; Cho, Choo Yon; Ryu, Dong-Ryeol; Ko, Taeg Su; Kim, Eugene; Park, Se-Jin; Park, Jai Hyung; Hong, Seok Jin; Hong, Hyun Pyo

    2015-06-15

    Despite the previous studies showing the relationship between microalbuminuria and insulin resistance, longitudinal effect of insulin resistance on development of microalbuminuria is not clearly identified in non-diabetic population. One thousand six hundred three non-diabetic Korean men without microalbuminuria in 2005 had been followed up for the development of microalbuminuria until 2010. Microalbuminuria was evaluated by urine-albumin creatinine ration, and insulin resistance was evaluated by homeostasis model assessment of insulin resistance (HOMA-IR). Cox proportional hazards model was used to estimate the risk for microalbuminuria according to the tertile of HOMA-IR. During 5465.8 person-y of average follow-up, microalbuminuria developed in 76 (4.7%) participants. Incidence of microalbuminuria increased in proportion to the level of HOMA-IR (tertile 1: 3.0%, tertile 2: 4.1%, tertile 3: 7.1%, PHOMA-IR was set as reference, hazard ratios and 95% confidence interval were 1.15 (0.56-2.35) and 2.07 (1.05-4.09) for those in the 2nd and 3rd tertiles of HOMA-IR, even after adjusting multiple covariates, respectively (P for linear trend=0.054). Increased insulin resistance was a predictor of microalbuminuria in Korean men. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  17. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  18. The Problem of World Order in Western IR Studies

    Directory of Open Access Journals (Sweden)

    Maria Victorovna Soljanova

    2016-01-01

    Full Text Available The article "Problem of world order in modern Western studies" is the study of one of the most debated issues in the science of international relations - world order. Discussion of the structure of world order is underway in various countries, both at the state level and in the expert community. Some researchers insist on the fact that after the end of the cold war, the collapse of the bipolar model of international relations, the world has become unipolar. Others argue that the increase in the number of centers of power and the need for a multilateral approach to solving global problems (terrorism, proliferation of weapons of mass destruction, environmental and climate issues talking about the formation of multipolarity. However, it should be recognized that currently no widely accepted theoretical and conceptual apparatus, which complicates not only the study of the world order, but makes it impossible to search for common approaches of the international community in solving the problems associated with global development, new challenges and threats. The author of this article seeks to research and analyze the various theoretical paradigms (neo-realism, neo-liberalism, institutionalism, neo-marxism, etc. and concepts to form a coherent picture of the structure of the world system, its main features and to offer readers the vision of the concept of "world order". Thus, the article notes that the multidimensional structure of the modern system of international relations established after the end of the cold war is so complex that none of the concepts can claim to accurate interpretation of the world order. The modern system differs from systems of the past centuries. Characteristics inherent in it (on the one hand, the increasing global processes in economy, politics, culture, etc., on the other, the attraction to return to the concept of "nation state", the closure of borders, the disintegration, require new approaches to the study of world

  19. Energy-beam processing studies on Ta/U and Ir/Ta systems

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Peercy, P.S.; Jacobson, D.C.; Draper, C.W.; Huegel, F.J.; Echer, C.J.; Makowiecki, D.M.; Balser, J.D.

    1983-01-01

    Films of Ta metal on uranium and of Ir metal on tantalum have been irradiated and melted by pulses from Q-switched Ruby and frequency-doubled Nd:YAG lasers to investigate the nature of the resulting mixtures in light of the very different binary-phase diagrams of the two systems. In addition, a two-phase Ir-Ta alloy has been surface-processed with CW CO 2 -laser radiation and with an electron beam in order to study microstructure refinement and test the advantage of using alloys as opposed to film-on-substrate combinations for the development of claddings

  20. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    Science.gov (United States)

    Gómez-Zavaglia, A.; Fausto, R.

    2003-12-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C 2h symmetry trans conformation (OC-CO dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the compound in vacuum. However, in the low temperature amorphous state, obtained by fast deposition of the vapour of the compound onto a suitable cold (9 K) substrate, as well as in the liquid and gaseous phases, spectroscopic features are observed that can only be explained by assuming that conformations without an inversion centre ( C 2 symmetry) do also contribute to the spectra. These results are in agreement with the experimental evidence that diacetyl has a permanent dipole moment (ca.1 Debye) in the vapour phase at room temperature and are here explained taking into consideration the influence of the low frequency large amplitude torsional vibration around the central C-C bond on the molecular properties.

  1. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    International Nuclear Information System (INIS)

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  2. [Spectroscopic study of photocatalytic mechanism of methanol and CO2].

    Science.gov (United States)

    Hai, Feng; Zhang, Qian-cheng; Bai, Feng-rong; Wang, A-nan; Wang, Zhi-wei; Jian, Li

    2011-12-01

    Ni-Ti-O/SiO2 catalyst was prepared by impregnation method, and its photocatalytic performance for carbonylation of methanol with CO2 was investigated under UV light. The in-situ IR, XPS and MS were carried out to analyze the possible photocatalytic reaction mechanism. Results indicated that the Ni-Ti-O/SiO2 exhibited good photocatalytic performance for carbonylation of methanol with CO2, the methanol conversion reached up to 24.9%, and the selectivity for the carbonylated products was more than 60% within 180 min reaction time. The catalyst characterization results showed that the O==C .--O- and CH3OC(O)* might be important intermediate in the carbonylation of methanol with CO2.

  3. Near‐IR laser cleaning of Cu‐ based artefacts: a comprehensive study of the methodology standardization

    DEFF Research Database (Denmark)

    Hrnjic, Mahir

    2015-01-01

    . In this study, laser cleaning was performed with near-IR lasers on artificially aged copper specimens and on two copper coins coming from Bubastis (Egypt) in order to remove the patinas in a totally non invasive way. Different irradiance and different number of passes were utilised and compared. Treated surface...

  4. Evidence for resonant bonding in phase-change materials studied by IR spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Shportko

    2017-04-01

    Full Text Available Phase-change materials (PCM attract attention due to their unique properties. This remarkable portfolio also makes them promising for applications in novel data storage devices. In this study, we discuss differences in the optical properties of PCM and non-PCM in the IR caused by presence or absence of resonant bonding.

  5. The study of the curing of the polyurethane coating by method of IR spectroscopy

    Directory of Open Access Journals (Sweden)

    N. A. Korshunova

    2016-12-01

    Full Text Available The results of the study of the curing process of polyurethane compositions with participation of two different catalysts by the method of IR spectroscopy are given. The time dependences of curing of polyurethane coatings from concentrations of catalysts were determined, on the basis of which the most effective catalyst was selected.

  6. Electrochemical and spectroscopic studies of uranium(IV), -(V), and -(VI) in carbonate-bicarbonate buffers

    International Nuclear Information System (INIS)

    Wester, D.W.; Sullivan, J.C.

    1980-01-01

    Recently a need for more detailed knowledge of the chemistry of actinide ions in basic media has arisen in connection with deducing their chemistry in the environment. In this work the results of polarographic, cyclic voltammetric, and spectroscopic studies of U(IV), -(V), and -(VI) in carbonate and bicarbonate media are reported. Polarographic studies were in excellent agreement with those reported previously. Cyclic voltammetric scans confirmed the irreversible reduction to U(V) in both solutions, but disproportionation of the U(V) was observed only in the bicarbonate solutions. The oxidation of U(V) in carbonate was followed spectroscopically for the first time. Reduction in bicarbonate produced U(IV), the spectrum of which is now reported and the oxidation of which was also followed spectroscopically for the first time

  7. Dielectric and impedance spectroscopic studies of neodymium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Sakhya, Anup Pradhan, E-mail: npshakya31@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  8. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    International Nuclear Information System (INIS)

    Mtat, D.; Touati, R.; Guerfel, T.; Walha, K.; Ben Hassine, B.

    2016-01-01

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C 17 H 22 NO 2 Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2 1 2 1 2 1 . In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability β tot of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.

  9. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    Energy Technology Data Exchange (ETDEWEB)

    Mtat, D.; Touati, R. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia); Guerfel, T., E-mail: taha-guerfel@yahoo.fr [Université de Kairouan, Laboratoire d’Electrochimie, Matériaux et Environnement (Tunisia); Walha, K. [Université de Sfax, M.E.S.Lab. Faculté des Sciences de Sfax (Tunisia); Ben Hassine, B. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia)

    2016-12-15

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C{sub 17}H{sub 22}NO{sub 2}Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2{sub 1}2{sub 1}2{sub 1}. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability β{sub tot} of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.

  10. Spectroscopic and molecular modeling studies of N-(4-(3-methyl-3-phenylcyclobutyl-3-phenylthiazole-2(3H-ylideneaniline by using experimental and density functional methods

    Directory of Open Access Journals (Sweden)

    Fatih Şen

    2017-05-01

    Full Text Available In the present study, a combined experimental and computational study on molecular structure and spectroscopic characterization on the title compound has been reported. The crystal was synthesized and its molecular structure brought to light by X-ray single crystal structure determination. The spectroscopic properties of the compound were examined by FT-IR and NMR (1H and 13C techniques. FT-IR spectra of the target compound in solid state were observed in the region 4000–400 cm−1. The 1H and 13C NMR spectra were recorded in CDCl3 solution. The molecular geometries were those obtained from the X-ray structure determination optimized using the density functional theory (DFT/B3LYP method with the 6-31G(d, p and 6-31G+(d, p basis set in ground state. From the optimized geometry of the molecule, geometric parameters (bond lengths, bond angles and torsion angles, vibrational assignments and chemical shifts of the title compound have been calculated theoretically and compared with those of experimental data. Besides, molecular electrostatic potential (MEP, frontier molecular orbitals (FMOs, Mulliken population analysis, Thermodynamic properties and non-linear optical (NLO properties of the title molecule were investigated by theoretical calculations.

  11. Spectroscopic and theoretical studies of dalbergin and Methyldalbergin

    Science.gov (United States)

    Shweta; Khan, Eram; Tandon, Poonam; Bharti, Purnima; Kumar, Padam; Maurya, Rakesh

    2018-03-01

    Molecular structure and vibrational analysis of methyldalbergin (MDLBG) and dalbergin (DLBG) are presented using vibrational spectroscopy (infrared and Raman) and quantum chemical calculations. Difference in the Osbnd H stretching vibration wavenumber of two conformers of DLBG was observed as in one conformer this bond is making an intramolecular H-bond while in other it is free. The spectral calculations, ground state geometry and electronic structure calculations were performed based on the density functional theory (DFT) using the standard B3LYP/6-311++G(d,p) methodology. FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution analysis. The UV-visible absorption spectrum was examined in DMSO solvent and compared with one calculated in gas phase as well as in solvent environment using TD-DFT/6-311G++(d,p) basis set. HOMO-LUMO energy gap results show chemical reactivity of conformers of DLBG and MDLBG.

  12. Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

    Directory of Open Access Journals (Sweden)

    Piyali Mukherjee

    2013-01-01

    Full Text Available Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560 is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7 mM copper with a further increment to 14.96-fold in presence of 0.05 mM NADH. Optimum temperature for oxygenase activity was recorded at 36∘C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. Km and Vmax for benzene were 3.8 mM and 340 U/mg/min and those for TCE were 2.1 mM and 170 U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy.

  13. Recent Advances in IR and UV/VIS Spectroscopic Characterization of the C76 and C84 Isomers of D2 Symmetry

    Directory of Open Access Journals (Sweden)

    Tamara Jovanović

    2014-01-01

    Full Text Available The stable isomers of the higher fullerenes C76 and C84 with D2 symmetry as well as the basic fullerenes C60 and C70 were isolated from carbon soot and characterized by the new and advanced methods, techniques, and processes. The validity of several semiempirical, ab initio, and DFT theoretical calculations in predicting the general pattern of IR absorption and the vibrational frequencies, as well as the molecular electronic structure of the C76 and C84 isomers of D2 symmetry, is confirmed, based on recent experimental results. An excellent correlation was found between the previously reported theoretical data and the recently obtained experimental results for these molecules over the relevant spectral range for the identification of fullerenes. These results indicate that there are no errors in the calculations in the significant spectral regions, the assumptions that were based on previous comparisons with partial experimental results. Isolated fullerenes are important for their applications in electronic and optical devices, solar cells, optical limiting, sensors, polymers, nanophotonic materials, diagnostic and therapeutic agents, health and environment protection, and so forth.

  14. The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO-LUMO analysis of dansyl chloride

    Science.gov (United States)

    Karabacak, M.; Cinar, M.; Kurt, M.; Poiyamozhi, A.; Sundaraganesan, N.

    2014-01-01

    The solid phase FT-IR and FT-Raman spectra of dansyl chloride (DC) have been recorded in the regions 400-4000 and 50-4000 cm-1, respectively. The spectra have been interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule has been optimized and the structural characteristics have been determined by density functional theory (B3LYP) method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for most stable conformer and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra have also been predicted from the calculated intensities. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Nonlinear optical and thermodynamic properties were interpreted. All the calculated results were compared with the available experimental data of the title molecule.

  15. Synthesis and photophysical studies of blue phosphorescent Ir(III) complexes with dimethylphenylphospine.

    Science.gov (United States)

    Ham, Ho-Wan; Jung, Kyung-Yoon; Kim, Young-Sik

    2012-02-01

    New blue emitting mixed ligand iridium(III) complexes comprising one cyclometalating, two phosphines trans to each other such as Ir{(CF3)2Meppy}(PPhMe3)2(H)(L) [L = CI, NCMe, CN] [(CF3)2Meppy = 2-(3', 5'-bis-trifluoromethylphenyl)-4-methylpyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To achieve deep blue emission, the trifluoromethyl group substituted on the phenyl ring and the methyl group substituted on the pyridyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift. To gain insight into the factors responsible for the emission color change and the different luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the complexes. From these results, we discuss how the ancillary ligand influences the emission peak as well as the metal to ligand charge transfer (MLCT) transition efficiency. The maximum emission spectra of Ir{(CF3)2Meppy}(PPhMe3)2(H)(Cl), [Ir{(CF3),Meppy)(PPhMe3),(H)(NCMe)]+ and Ir{(CF3)2Meppy}(PPhMe3)2(H)(CN) were in the ranges of 441, 435, 434 nm, respectively.

  16. Interactions of oxytetracycline with a smectite clay: a spectroscopic study with molecular simulations.

    Science.gov (United States)

    Aristilde, Ludmilla; Marichal, Claire; Miéhé-Brendlé, Jocelyne; Lanson, Bruno; Charlet, Laurent

    2010-10-15

    Binding of antibiotics to clay minerals can decrease both their physical and biological availability in soils. To elucidate the binding mechanisms of tetracycline antibiotics on smectite clays as a function of pH, we probed the interactions of oxytetracycline (OTC) with Na-montmorillonite (MONT) using X-ray diffraction (XRD), infrared (IR), and solid-state nuclear magnetic resonance (NMR) spectroscopies, and Monte Carlo molecular simulations. The XRD patterns demonstrate the presence of OTC in the MONT interlayer space at acidic pH whereas complexation of OTC by external basal and edge sites seems to prevail at pH 8. At both pH, the (1)H-(13)C NMR profile indicates restricted mobility of the adsorbed OTC species; and, -CH(3) deformation and C-N stretching IR vibration bands confirm a binding mechanism involving the protonated dimethylamino group of OTC. Changes in the (23)Na NMR environments are consistent with cation-exchange and cation complexation reactions at the different sites of adsorption. Molecular simulations indicate that MONT interlayer spacing and structural charge localization dictate favorable binding conformations of the intercalated OTC, facilitating multiple interactions in agreement with the spectroscopic data. Our results present complementary insights into the mechanisms of adsorption of TETs on smectites important for their retention in natural and engineered soil environments.

  17. Molecular structure, electronic properties, NLO, NBO analysis and spectroscopic characterization of Gabapentin with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations

    Science.gov (United States)

    Sinha, Leena; Karabacak, Mehmet; Narayan, V.; Cinar, Mehmet; Prasad, Onkar

    2013-05-01

    Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated.

  18. Quantification of gadolinium-DTPA concentrations for different inversion times using an IR-turbo flash pulse sequence: a study on optimizing multislice perfusion imaging

    DEFF Research Database (Denmark)

    Fritz-Hansen, T; Rostrup, Egill; Ring, P B

    1998-01-01

    a system responding linearly to input. R1 are linearly related to changes in the concentration of gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA), and R1 is a parameter that can be derived from the magnetic resonance (MR) signal. The accuracy of calculated R1 using an IR turbo fast low-angle shot...... was evaluated in phantoms and for increasing TIs using spectroscopically measured R1 values as reference. Signal curves, obtained in vivo after a bolus injection of Gd-DTPA, were used in an analytical computer program to study the effect of different TI-values on accurate calculation of R1. Results show...... that TIeff should be DTPA in blood accurately, whereas the myocardial response can be measured correctly for TIeff

  19. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  20. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  1. Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures

    Science.gov (United States)

    Aswathy, V. V.; Alper-Hayta, Sabiha; Yalcin, Gözde; Mary, Y. Sheena; Panicker, C. Yohannan; Jojo, P. J.; Kaynak-Onurdag, Fatma; Armaković, Stevan; Armaković, Sanja J.; Yildiz, Ilkay; Van Alsenoy, C.

    2017-08-01

    N-[2-(2-bromophenyl)-1,3-benzoxazol-5-yl]-2-phenylacetamide (NBBPA) was synthesized in this study as an original compound in order to evaluate its antibacterial activity against representative Gram-negative and Gram-positive bacteria, with their drug-resistant clinical isolate. Microbiological results showed that this compound had moderate antibacterial activity. Study also encompassed detailed FT-IR, FT-Raman and NMR experimental and theoretical spectroscopic characterization and assignation of the ring breathing modes of the mono-, ortho- and tri-substituted phenyl rings is in agreement with the literature data. DFT calculations were also used to identify specific reactivity properties of NBBPA molecule based on the molecular orbital, charge distribution and electron density analysis, which indicated the reactive importance of carbonyl and NH2 groups, together with bromine atom. DFT calculations were also used for investigation of sensitivity of the NBBPA molecules towards the autoxidation mechanism, while molecular dynamics (MD) simulations were used to investigate the influence of water. The molecular docking results suggest that the compound might exhibit inhibitory activity against GyrB complex.

  2. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 2

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ external reflection FT-IR measurements are performed during cyclic voltammetric scans on electrochemically polymerized polyphenylene films. The films are polymerized either in 0.1 or 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. Changes in the IR spectrum of films of different thicknesses are studied when the films are potentially cycled from the neutral to the oxidized states of the polymer. No differences between films made in high or low dimer concentration can be observed in the spectra. The potential-dependent insertion and expulsion of solvent, residual water, anions and cations in and out of the film have different behaviour in films of different thicknesses. Changes in the structure of the segments in the film, from the benzenoid form into the quinoid form, can be followed. Differences between the first and subsequent cyclic potential scans are observed. (orig.)

  3. Vibrational spectroscopic and gravimetric study of some Hofmann-CBA-Type Host and host-guest compounds

    International Nuclear Information System (INIS)

    Aytekin, M.A.

    2005-01-01

    In this study, similar to Hofmann type M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 (M=Ni or Co) host and M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 .nG (M=Ni or Co; G=benzene, 1,2-, 1,3-dichlorobenzene; n=the number of guest) hostguest compounds were obtained chemically. The infrared spectra of these compounds were recorded with FT-IR spectrometer in the spectroscopic region of 4000cm-1-400cm-1. From these spectra the vibrational wave numbers of ligand molecule, Ni(CN) 4 2 - ion and guest molecules were determined. The absorption and the liberation processes of the guest molecules in the host compounds were examined at room temperature by gravimetric method. Otherwise, it was seen that the molecular structure was supported by making instrumental analysis of host and some host-guest compounds. By analysing the structures of host and host-guest compounds were found to be similar to those of Hofmann type compounds, ligand molecule cyclobutylamine were coordinated to M metal atom from cyclobutylamine's nitrogen atom, the guest molecules were imprisoned in the structural cavities between the sheets

  4. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.

    Science.gov (United States)

    Kubis, Christoph; Sawall, Mathias; Block, Axel; Neymeyr, Klaus; Ludwig, Ralf; Börner, Armin; Selent, Detlef

    2014-09-08

    The influence of carbon monoxide concentration on the kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a phosphite-modified rhodium catalyst has been studied for the pressure range p(CO)=0.20-3.83 MPa. Highly resolved time-dependent concentration profiles of the organometallic intermediates were derived from IR spectroscopic data collected in situ for the entire olefin-conversion range. The dynamics of the catalyst and organic components are described by enzyme-type kinetics with competitive and uncompetitive inhibition reactions involving carbon monoxide taken into account. Saturation of the alkyl-rhodium intermediates with carbon monoxide as a cosubstrate occurs between 1.5 and 2 MPa of carbon monoxide pressure, which brings about a convergence of aldehyde regioselectivity. Hydrogenolysis of the acyl intermediate is fast at 30 °C and low pressure of p(CO)=0.2 MPa, but is of minus first order with respect to the solution concentration of carbon monoxide. Resting 18-electron hydrido and acyl complexes that correspond to early and late rate-determining states, respectively, coexist as long as the conversion of the substrate is not complete. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cadmium (II) macrocyclic Schiff-base complexes containing piperazine moiety: Synthesis, spectroscopic, X-ray structure, theoretical and antibacterial studies

    Science.gov (United States)

    Keypour, Hassan; Mahmoudabadi, Masoumeh; Shooshtari, Amir; Bayat, Mehdi; Mohsenzadeh, Fariba; Gable, Robert William

    2018-03-01

    The new Cd(II) macrocyclic Schiff-base complexes were prepared via the metal templated [1 + 1] cyclocondensation of 2,2'-(piperazine-1,4-diylbis (methylene))dianiline (A) and 2,6-pyridinedicarbaldehyde or 2,6-diacetylpyridine. The products were characterized by elemental analysis, mass spectrometry and spectroscopic methods such as: FT-IR, 1H and 13C-NMR, the crystal structure of [CdL1(ClO4)2](CH3CN) (1) complex was also obtained by single-crystal X-ray crystallography. The complexes were tested for in vitro antibacterial properties against some bacteria. The complexes had antibacterial properties and in some cases were active even more than standards. The geometries of the [CdLn (ClO4)2], (n = 1,2) complexes have been optimized at the BP86/def2-SVP level of theory. Also the nature of Cd←Ln (n = 1, 2) bonds in [CdLn (ClO4)2], (n = 1,2) complexes are studied with the help of NBO and Energy decomposition analysis (EDA). Results showed that the nature of metal-ligand bond in the complexes is slightly more electrostatic with a contribution of about 52% in total interaction energy.

  6. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  7. Mars atmosphere studies with the SPICAM IR emission phase function observations

    Science.gov (United States)

    Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup

    Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.

  8. Spectroscopic transport studies at the stellerator Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Unger, E.

    1995-11-01

    The following topics were dealt with: Magnetic confinement experiments with toroidal geometry, foundations of particle transport theory, code calculations (SITAR), gaseous oscillation method for impurity transport study and results

  9. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  10. PHOSPHATO AND PHOSPHONATO ADDUCTS: SYNTHESIS AND SPECTROSCOPIC STUDY

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2014-05-01

    Full Text Available Two new adducts have been synthesized and studied by infrared and NMR spectroscopy. The suggested structures are discrete or of infinite chain type with a phosphate behaving as a bidentate ligand, a phosphonate acting as a monodentate ligand, the environments around the tin centre being tetrahedral or trigonal bipyramidal. In all the studied compounds, supramolecular architectures are obtained when hydrogen bonds are considered.

  11. Spectroscopic study of trivalent rare earth ions in calcium nitrate hydrate melt

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Asano, Hideki; Kimura, Takaumi; Yamamoto, Takeshi; Uehara, Akihiro; Yamana, Hajimu

    2006-01-01

    Influence of the water content to chemical status of trivalent rare earth ions in calcium nitrate hydrate melt was studied by spectroscopic techniques. Fluorescence spectrometry for Eu(III) in Ca(NO 3 ) 2 .RH 2 O and electronic absorption spectrometry for Nd(III) in Ca(NO 3 ) 2 .RH 2 O were performed for analyzing the changing coordination symmetries through the changes in their hypersensitive transitions. Raman spectroscopic study and EXAFS study were performed for Y(NO 3 ) 3 solutions and Y(III) in Ca(NO 3 ) 2 .RH 2 O for analyzing the oxygen bonding to Y(III). Luminescence lifetime study of Eu(III) and Dy(III) in Ca(NO 3 ) 2 .RH 2 O was performed for evaluating the hydration number changes. Results of these spectroscopic studies indicated that, with the decrease of water content (R), the hydration number decreases while the interaction between trivalent rare earth ion and nitrate ion increases. It was also revealed that the symmetry of the coordination sphere gets distorted gradually by this interaction

  12. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    Science.gov (United States)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  13. Spectroscopic studies of irradiated glasses: Application in nuclear dosimetry

    International Nuclear Information System (INIS)

    Farah, Khaled

    2010-01-01

    The present work aims to study the effects of ionizing radiation on silicate glasses in order to develop a new dosimetry system simple, precise, stable and inexpensive. Indeed, changes in mechanical properties, optical and paramagnetic glasses when subjected to ionizing radiation. The prediction of long-term behavior, physical aging under irradiation, the glass is paramount. many studies have brought many ways to avoid obscuring glass windows used in nuclear reactors or hot cells and optical devices. Recently, much work has concentrated on the application of the color induced by irradiation for developing a recyclable glass in the glass industry is of great interest economically and environmentally.

  14. Comparative study of spectroscopic properties of the low-lying ...

    Indian Academy of Sciences (India)

    due to the substitutions by methyl (II), isopropyl (III) and fluoromethyl (IV) groups on nitrogen. Some theo- retical studies on PSB (I) have been earlier reported at different level of calculations. AM1/CISD, MP4, MRCI calculations have been carried out by Dobado and. Nonella,25 while MNDO-CI method has been applied.

  15. Moessbauer spectroscopic studies of magnetically ordered biological materials

    International Nuclear Information System (INIS)

    Dickson, D.P.E.

    1987-01-01

    This paper discusses recent work showing the application of Moessbauer spectroscopy to the study of the properties of the magnetically ordered materials which occur in a variety of biological systems. These materials display a diversity of behaviour which provides good examples of the various possibilities which can arise with iron-containing particles of different compositions and sizes. (orig.)

  16. Synthesis and Spectroscopic, Thermal and Crystal Structure Studies ...

    African Journals Online (AJOL)

    NICO

    Structure Studies of Hydrazinium Hydrogensuccinate .... SMART and SAINT software packages28 were used for ... were corrected for systematic errors using SADABS29 based on ... T. Premkumar, R. Selvakumar, N.P. Rath and S. Govindarajan,. 86. S. Afr. J. .... 6 D. Gajapathy, S. Govindarajan and K.C. Patil, Thermochim.

  17. Deformed shell model studies of spectroscopic properties of Zn and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... April 2014 physics pp. 757–767. Deformed shell model studies of ... experiments without isotopical enrichment thereby reducing the cost considerably. By taking a large mass of the sample because of its low cost, one can ...

  18. 57Fe Moessbauer spectroscopic studies on photosensitive nitrile hydratase (NHase)

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Odaka, Masafumi

    2001-01-01

    57 Fe Moessbauer spectroscopy is a very useful technique for elucidating the chemical properties and biological changes of Fe species located at the reaction centers in various biological systems. We have applied 57 Fe Moessbauer spectroscopy to study the mechanism of photoactivation and the structural change caused by light irradiation of nitrile hydratase (NHase). (author)

  19. Structural, spectroscopic and electrochemical study of V substituted ...

    Indian Academy of Sciences (India)

    Administrator

    Electrochemical impedance studies showed that ionic conductivity is high for x = 0∙10 composition. a.c. and ... ground in an agate mortar in the presence of methanol for .... tion peaks are stabilized at 2∙41 V. The oxidation peaks are observed ...

  20. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)

    Wintec

    In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with .... (XRD) using a Siemens model D 500, powder X-ray ... decays were analysed using IBH DAS6 software. 3. ... This alloying process is.

  1. Spectroscopic Studies of the Electron Donor-Acceptor Interaction of ...

    African Journals Online (AJOL)

    Conformity with Beer\\'s law was evident over the concentration range 0.8 – 8.0 mg/100 ml of chloroquine phosphate; thus making it possible for an accurate quantitative determination of the drug. Conclusion: The studied complexation phenomenon formed a basis for the quantitative determination of both pure samples and ...

  2. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2004-01-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and...

  3. Lanthanum benzoyl acetonates: an IR and mass spectrometric study of the composition and structure

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Tereshko, N.V.

    2005-01-01

    IR spectroscopy and mass spectrometry were used to study the structure of lanthanum chelates of benzoyl acetone (1-phenyl-1,3-butadione, HBA) of the following compositions: La(BA) 3 · EtOH, La(BA) 2 , La(BA) 2 · CH 3 CN, and La(BA) 2 · HDA, where EtOH = ethanol, HDA = nonadecanoic acid. It is demonstrated that a quasi-aromatic metalloring is formed in lanthanum chelates studied. Stable metal-containing fragments of the molecular ions of lanthanum bis- and tris-benzoylacetonate were identified [ru

  4. Spectroscopic studies with the use of deep-inelastic heavy-ion reactions

    International Nuclear Information System (INIS)

    Broda, R

    2006-01-01

    Gamma spectroscopic studies exploiting deep-inelastic heavy-ion reactions in thick target experiments are reviewed. The description of physical motivation, history of early experiments, analysis of the N/Z equilibration process as well as the outline of the experimental method and data analysis are followed by the presentation of main results obtained in various regions of the nuclide chart. Brief comments on thin target spectroscopy experiments involving fragment detection and future outlook are summarized. (topical review)

  5. Isolation and spectroscopic studies of curcumin from Philippine Curcuma longa L

    International Nuclear Information System (INIS)

    Torres, Rosalinda C.; Bonifacio, Teresita S.; Herrera, Celia L.; Lanto, Eduardo A.

    1998-01-01

    Curcumin, the yellow coloring matter was isolated from the rhizomes of Philippine Curcuma longa L. (turmeric) by Soxhlet extraction with toluene followed by concentration and slow crystallization. The isolated curcumin was then subjected to chromatographic and spectroscopic studies with the Merck curcumin standard. The infra red and UV-vis spectra of both compounds were found to be almost identical indicating a high purity of the isolate. The % yield obtained was 2-3%. (Author)

  6. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  7. Spectroscopic Study of Electrical Glow Discharges in Gases

    Science.gov (United States)

    Reyes, P. G.; Evangelista, M.; Trujillo, C.; Castillo, F.; Rangel, J.

    2006-12-01

    The variation of the power of the light emitted in a Glow Discharge in Gases of low pressure (GDGLP) excited by a DC source was studied. A lack of dependency of the kind of gas used and the pressure it is located at was obtained. This is comparable to the potential drop which takes place in the discharge by inelastic collisions such as ionization, recombination, excitation, relaxation, etc.

  8. Spectroscopic studies on Titanium ion binding to the apo lactoferrin

    International Nuclear Information System (INIS)

    Moshtaghie, A.A.; Ani, M.; Arabi, M.H.

    2006-01-01

    Titanium is a relatively abundant element that has found growing applications in medical science and recently some of Titanium compounds are introduced as anticancer drugs. In spite of very limited data which exist on the Titanium metabolism, some proteins might be involved in the mechanism of action of Titanium up to our knowledge, there is not any report in the literature concerning binding of Titanium to apo lactoferrin. Binding of apo lactoferrin with Ti(IV)-citrate was studied by spectroflourimeterey and spectrophotometery techniques under physiological conditions. The spectroflourimeteric studies revealed a significant fluorescence quenching, that indicated binding of apo lactoferrin with Ti(IV). The same reaction was monitored through spectrophotometry technique; this represents a characteristic UV difference band at 267 nm, which is different from lac-Fe (III). Titration studies how that lactoferrin specifically binds two moles Ti(IV) as complex with citrate per mol protein. Spectroflourimeterey and spectrophotometery techniques indicated that Ti(IV) ions cause a reduction (13%-14%) in binding of Fe(III) to lactoferrin. In overall, we may come to this conclusion that this element might be involved in the iron metabolism

  9. A Prospective Cohort Study on IRS Gene Polymorphisms in Type 2 ...

    African Journals Online (AJOL)

    Insulin resistance status was determined using the homeostatic model assessment for insulin resistance (HOMA-IR) index. Results: IRS1 polymorphisms were associated with increased insulin resistance (X2 = 5.09, p = 0.023) in T2DM patients with severe/acute hyperglycemia. IRS2 polymorphisms were not associated with ...

  10. [Derivative spectrophotometric and NMR spectroscopic study in pharmaceutical science].

    Science.gov (United States)

    Kitamura, Keisuke

    2007-10-01

    This review starts with an introduction of derivative spectrophotometry followed by a description on the construction of a personal computer-assisted derivative spectrophotometric (DS) system. An acquisition system for inputting digitalized absorption spectra into personal computers and a BASIC program for calculating derivative spectra were developed. Then, applications of the system to drug analyses that are difficult with traditional absorption methods are described. Following this, studies on the interactions of drugs with biological macromolecules by the DS and NMR methods were discussed. An (1)H NMR study elucidated that the small unilamellar vesicle (SUV) has a single membrane made of a phosphatidylcholine bilayer, and that chlorpromazine interacts with both the outer and inner layers. (13)C NMR revealed a reduction of the dissociation constants of phenothiazine drugs due to their interaction with SUV. The partition coefficients of phenothiazine, benzodiazepine and steroid drugs in an SUV-water system and the effects of cholesterol or amino lipids content on these partition coefficients were examined by the DS method. The binding constants of phenothiazine drugs to bovine serum albumin (BSA) and the influence of Na(+), K(+), Cl(-), Br(-), and I(-) on these binding constants were determined by DS. It was found that I(-), Br(-), Cl(-) reduce the binding constants in this order, and that Na(+) and K(+) have no effect. A (19)F NMR study revealed that triflupromazine binds to BSA and human serum albumin in two regions including Site II with different populations, and that a nonsteroidal anti-inflammatory drug, niflumic acid, binds Sites Ia and Ib.

  11. Studies on spectroscopic and thermal behaviour of neodymium soaps

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1992-01-01

    The present work has been initiated with a view to study the nature of bonding, structure, thermal and micellar behaviour of neodymium soaps in non-aqueous media. The structure of these soaps in solid state has been investigated by infrared spectra and X-ray diffraction patterns, and spectrophotometric result confirms the nature of bonding and micellar behaviour of neodymium soaps. The results of TGA have been used to explain the order of reaction and to find out the values of energy of activation for the decomposition process. (author). 9 refs., 5 tabs

  12. Mechanism of the electrochemical oligomerization of thionaphteneindole: a spectroscopic study

    Science.gov (United States)

    Poggi, Gabriella; Casalbore Miceli, Giuseppe; Beggiato, Giancarlo; Emmi, Salvatore S.

    1997-10-01

    The UV, visible and NIR spectra recorded during electrolysis of TNI in CH 2Cl 2 have been studied as a function of electrolysis time and of the quantity of charge exchanged. Among the oligomeric species that might be responsible for the behaviour observed, particular attention has been devoted to dimers of TNI characterized by different charges, presence of unpaired electrons, and deprotonation of the amino hydrogens. A sample of these species has been described theoretically by means of the PM3 semiempirical hamiltonian and their spectra have been computed giving results in reasonable agreement with the observed transitions.

  13. Impedance and modulus spectroscopic study of nano hydroxyapatite

    Science.gov (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  14. Divalent thulium triflate. A structural and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Xemard, Mathieu; Jaoul, Arnaud; Cordier, Marie; Nocton, Gregory [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Molton, Florian; Duboc, Carole [Grenoble Univ., Saint Martin d' Heres (France). Dept. de Chimie Moleculaire; Cador, Olivier; Le Guennic, Boris [Univ. de Rennes 1 (France). Inst. des Sciences Chimique de Rennes, UMR 6226 CNRS; Maury, Olivier [Univ. Claude Bernard Lyon 1 (France). Lab. de Chimie; Clavaguera, Carine [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Univ. Paris Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Chimie Physique, CNRS

    2017-04-03

    The first molecular Tm{sup II} luminescence measurements are reported along with rare magnetic, X and Q bands EPR studies. Access to simple and soluble molecular divalent lanthanide complexes is highly sought for small-molecule activation studies and organic transformations using single-electron transfer processes. However, owing to their low stability and propensity to disproportionate, these complexes are hard to synthetize and their electronic properties are therefore almost unexplored. Herein we present the synthesis of [Tm(μ-OTf){sub 2}(dme){sub 2}]{sub n}, a rare and simple coordination compound of divalent thulium that can be seen as a promising starting material for the synthesis of more elaborated complexes. This reactive complex was structurally characterized by X-ray diffraction analysis and its electronic structure has been compared with that of its halide cousin TmI{sub 2}(dme){sub 3}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  16. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone

    Science.gov (United States)

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-07-01

    In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm -1 in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm -1 originates from three overlapping bands 1797, 1787 and 1778 cm -1. The band at around 1787 cm -1 is assigned to C dbnd O stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm -1, originate from aragonite and have been assigned to combination bands, ν 3 + ν 4a and ν 3 + ν 4b, respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.

  17. Spectroscopic studies on surface reactions between minerals and reagents in flotation systems

    International Nuclear Information System (INIS)

    Giesekke, E.W.

    1981-01-01

    A study of the adsorbed species at the interface between the minerals and the aqueous solution is reported in the hope that it will contribute to a better understanding of selective mineral flotation by various reagents. The results of infrared spectroscopic studies are cited from the author's investigation on the fluorite-sodium oleate and fluorite-linoleate systems. Electron-spectroscopic techniques, e.g., electron spectroscopy for chemical analysis (ESCA) have also been useful in the identification of adsorbed species on mineral surfaces. Some experimental data from the literature are discussed. These studies have the disadvantage that they are not in situ investigations of the interface between the mineral and the aqueous solution. The potential use of other spectroscopic techniques are discussed, photo-acoustic, Raman, and electron-spin-resonance spectroscopy being considered as possible alternatives. It is suggested that the relatively small surface areas of minerals used in flotation (i.e. smaller than 2m 2 .g- 1 ) impose severe restrictions on the use of such techniques

  18. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  19. Activation of heterogenised rhodium carbonylation catalyst infrared spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Scurrell, M S

    1977-01-01

    In a study related to heterogeneous versions of homogeneous catalysts active in carbonylation of methanol to acetic acid, the catalyst consisted of 1Vertical Bar3< rhodium as rhodium trichloride supported on 13X zeolite and evacuated at 437/sup 0/K. Contacting the catalyst with carbon monoxide caused two bands, at 2025 and 2095 cm/sup -1/, to appear. Contact with a mixture of carbon monoxide and methyl iodide (the usual promoter) caused bands at 2085, 1710, 1440, and 1370 cm/sup -1/ to appear; the first two correspond to the bands at 2062 and 1711 cm/sup -1/ in homogeneous catalysts attributed to the formation of Rh(CH/sup 3/CO)(CO)X/sup 2/I/sup -/. Spectra.

  20. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini

    2010-01-01

    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  1. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  2. Spectroscopic study of low-temperature hydrogen absorption in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Ienaga, K., E-mail: ienaga@issp.u-tokyo.ac.jp; Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T. [Department of Applied Quantum Physics, Faculty of Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395 (Japan); Tsujii, H. [Department of Physics, Faculty of Education, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Kimura, T. [Department of Physics, Kyushu University, Hakozaki, Higashi-Ku, Fukuoka 812-8581 (Japan)

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  3. Phosphonic drugs: Experimental and theoretical spectroscopic studies of fosfomycin

    Science.gov (United States)

    Chruszcz-Lipska, Katarzyna; Zborowski, Krzysztof K.; Podstawka-Proniewicz, Edyta; Liu, Shaoxuan; Xu, Yizhuang; Proniewicz, Leonard M.

    2011-02-01

    pH and time-dependant changes of fosfomycin molecular structure in an aqueous solution are studied by Raman, NMR, and generalized 2D correlation spectroscopies. Interpretation of the experimental spectra is based on the assumption of formation of different species running on applied physicochemical conditions. Geometries of all possible structures were entirely optimized with the 6-311++G(2df,p) basis set at the B3LYP theoretical level using procedures implemented in the Gaussian '03 set of programs. Harmonic frequency calculations verified the nature of the studied structures and allowed to simulate obtained Raman spectra. The theoretical NMR shielding was calculated using the GIAO method at the same computational level. In addition, in some cases PCM model was used to monitor the influence of water molecules on the NMR spectra. It is shown that in the pH range of 1-2 of fosfomycin aqueous solution oxirane ring is open sequent to nucleophilic attack and forms 1,2-dihydroxyphosphonic acid with small content of its monodeprotonated species. On the other hand, in pH 7 and higher it appears either as 1,2-epoxypropylphosphonic or 1,2-dihydroxyphosphonic dianion depending upon whether hydrolysis took place or not. It is also discussed that Raman marker bands originating from the individual species of fosfomycin can be used to detect and/or to monitor this antibiotic in an aqueous medium (for example urine samples). Hence, depending upon the structure found in urine one can tell about metabolic processes of this antibiotic in the body.

  4. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. NMR spectroscopic studies of membrane-bound biological systems

    International Nuclear Information System (INIS)

    Hohlweg, W.

    2013-01-01

    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  6. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  7. Studies on selected polymeric materials using the photoacoustic spectroscopic technique

    International Nuclear Information System (INIS)

    Singh, Hukum

    2011-01-01

    Polymethylmethacrylate—graft—polybisphenol—A-carbonate (PMMA-G-PC) with 50% grafting is synthesized. The graft co-polymerization of methylmethacrylate (0.036 mol · lit −1 ) onto polybisphenol—A-carbonate (0.5 g) in the presence of a redox couple formed from potassium persulphate (40 mol · lit −1 ) and thio-urea (30 mmol · lit −1 ) in aqueous nitric acid (0.18 M, 100 ml) in air at (45±2) °C for 3.0 h. Condensation of (PMMA-G-PC) with N- [p-(carboxyl phenyl amino acetic acid)] hydrazide (PCPH) affords polybisphenol-A-carbonate-graft-polymethylmethacrylate hydrazide (PCGH). The photoacoustic (PA) spectra of (PCGH) are recorded in a wavelength range from 200 nm to 800 nm at a modulation frequency of 22 Hz, and compared with those of pure polybisphenol-A-carbonate (PC), (PMMA-G-PC) and (PCPH). In the present work, a non-destructive and non-contact analytical method, namely the photoacoustic technique, is successfully implemented for optical and thermal characterization of selected polymeric materials. The indigenous PA spectrometer used in the present study consists of a 300-W xenon arc lamp, a lock-in amplifier, a chopper, a (1/8)-m monochromator controlled by computer and a home-made PA cell. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Moessbauer spectroscopic studies of alkylammonium iron(III) complexes

    International Nuclear Information System (INIS)

    Katada, M.; Kozawa, S.; Nakajima, Y.

    2006-01-01

    Alkylammonium iron(III) complexes, [(n-C n H 2n+1 )mNH 4-m ] 3 [Fe(CN) 6 ] were prepared and studied by Moessbauer spectroscopy, XRD, and DSC. In the complexes with m=2, the temperature dependences of the area intensity of Moessbauer are correlated to the motion of alkyl chains. The temperature dependence of the complex with n=4 was linear and smaller than that of other complexes. Especially in the complex with n=6, the deviation from the linear was the largest in the complexes observed. This result is attributed to the structural difference of the complex. The complexes with n≥8 consist of two-dimensional layer structure. The temperature dependence of the area intensity was similar to each other. This means that the motion of alkyl chain in these complexes are almost the same. The values of quadrupole splitting for the complexes were larger those that of the complexes (m=1). This indicates that the form of [Fe(CN) 6 ] 3- ion is affected by the differences of the number of alkyl groups. (author)

  9. Spectroscopic studies on the antioxidant activity of ellagic acid

    Science.gov (United States)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  10. A theoretical and spectroscopic study of conformational structures of piroxicam

    Science.gov (United States)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  11. Borax methylene blue: a spectroscopic and staining study.

    Science.gov (United States)

    Donaldson, P T; Russo, A; Reynolds, C; Lillie, R D

    1978-07-01

    Borax methylene blue is quite stable at room temperatures of 22-25 C. At 30 C polychroming is slow; during 50 days in a water bath at this temperature the absorption peak moves from 665 to 656 nm. At 35 C, the absorption peak reaches 660 nm in 7 days, 654 nm in 14. At 60 C polychroming is rapid, the absorption peak reaching 640-620 nm in 3 days. When the pH of the borax methylene blue solutions, normally about 9.0, is adjusted to pH 6.5, the absorption peak remains at 665 nm even when incubated at 60 C for extended periods. When used as a blood stain 0.4 ml borax methylene blue (1% methylene blue in 1% borax), 4 ml acetone, 2 ml borax-acid phosphate buffer to bring the solution to pH 6.5, and distilled water to make 40 ml, with 0.2 ml 1% eosin added just before using, an excellent Nocht-Giemsa type stain is achieved after 30 minutes staining. The material plasmodia P. falciparum, P. vivax, and P. berghei stain moderate blue with dark red chromatin and green to black pigment granules. The study confirms Malachowski's 1891 results and explains Gautier's 1896-98 failure to duplicate it.

  12. HPLC assisted Raman spectroscopic studies on bladder cancer

    Science.gov (United States)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  13. OD bands in the IR spectra of a deuterated soda-lime-silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuker, C.; Brzezinka, K.W.; Gaber, M.; Kohl, A.; Geissler, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2001-07-01

    IR spectra of a deuterated glass of the composition (in mol%) 16 Na{sub 2}O . 10 CaO . 74 SiO{sub 2} complete earlier spectroscopic studies on water-poor soda-lime-silica glasses. The approved IR spectroscopic method of the deuterium exchange allows a reliable assignment of the hydroxyl bands also in the case of glasses. By spectra comparison the assignment of the IR bands at 3500 and 2800 cm{sup -1} to hydroxyl groups with different hydrogen bonding is verified. The IR band at about 4500 cm{sup -1} is interpreted as both a combination of the stretching vibrations {nu}O-H and {nu}Si-OH and a combination of the stretching vibration {nu}O-H and the deformation vibration {delta}SiOH. The bands at 1763 and 1602 cm{sup -1} are attributed to combination vibrations of the glass network. (orig.)

  14. QM/MM methodology, docking and spectroscopic (FT-IR/FT-Raman, NMR, UV) and Fukui function analysis on adrenergic agonist

    Science.gov (United States)

    Uma Maheswari, J.; Muthu, S.; Sundius, Tom

    2015-02-01

    The Fourier transform infrared, FT-Raman, UV and NMR spectra of Ternelin have been recorded and analyzed. Harmonic vibrational frequencies have been investigated with the help of HF with 6-31G (d,p) and B3LYP with 6-31G (d,p) and LANL2DZ basis sets. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. The polarizability (α) and the first hyperpolarizability (β) values of the investigated molecule have been computed using DFT quantum mechanical calculations. Stability of the molecule arising from hyper conjugative interactions, and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in Ternelin. Finally the calculated results were compared to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. Molecular docking studies have been carried out in the active site of Ternelin and reactivity with ONIOM was also investigated.

  15. Moessbauer spectroscopic study on inorganic compounds. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi; Kitazawa, Takafumi; Nanba, Hiroshi; Yoshinaga, Tomohiro; Nakajima, Norio; Sumisawa, Yasuhiro; Takeda, Masuo [Toho Univ., Funabashi, Chiba (Japan). Faculty of Science; Sawahata, Hiroyuki; Ito, Yasuo

    1998-01-01

    {sup 166}Er and {sup 127}I Moessbauer spectra were observed. {sup 166}Er Moessbauer spectrum of Er metal and 9 compounds were measured by {sup 166}Ho/Y{sub 0.6}Ho{sub 0.4}H{sub 2} source at 12K and the parameters such as e{sup 2}qQ(mm s{sup -1}), Heff(T) and {tau}(ns) were determined. The relaxation time of ErCl{sub 3}{center_dot}6H{sub 2}O was 0.7ns, long, but that of ErCl{sub 3} was 10 ps, short time. {sup 127}I Moessbauer spectrum of PhI(O{sub 2}CR){sub 2} (R=CH{sub 3}, CHF{sub 2}, CH{sub 2}Cl, CHCl{sub 2}, CCl{sub 3}, CH{sub 2}Br, CHBr{sub 2} and CBr{sub 3}) were observed and compared with that of R`{sub 3}Sb(O{sub 2}CR){sub 2} was similar to that of PhI(O{sub 2}CR){sub 2}. The correlation coefficient between e{sup 2}qQ({sup 127}I) and Mulliken population of carboxylic hydrogen atom of R{sub 2}CO{sub 2}H was -0.87. The relation between the hypervalent bond of O-I-O and that of O-Sb-0 was shown by the equation: e{sup 2}qQ({sup 121}Sb)/mm s{sup -1} = -47.2 + 1.32 e{sup 2}qQ({sup 127}I)/mm s{sup -1}. Hypervalent iodine complex such as (PhI(py){sub 2}){sup 2+} salt and E-Sb-I (E=O, I, N and C) were studied, too. (S.Y.)

  16. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    Science.gov (United States)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  17. Spectroscopic studies of molybdenum complexes as models for nitrogenase

    International Nuclear Information System (INIS)

    Walker, T.P.

    1981-05-01

    Because biological nitrogen fixation requires Mo, there is an interest in inorganic Mo complexes which mimic the reactions of nitrogen-fixing enzymes. Two such complexes are the dimer Mo 2 O 4 (cysteine) 2 2- and trans-Mo(N 2 ) 2 (dppe) 2 (dppe = 1,2-bis(diphenylphosphino)ethane). The H 1 and C 13 NMR of solutions of Mo 2 O 4 (cys) 2 2- are described. It is shown that in aqueous solution the cysteine ligands assume at least three distinct configurations. A step-wise dissociation of the cysteine ligand is proposed to explain the data. The Extended X-ray Absorption Fine Structure (EXAFS) of trans-Mo(N 2 ) 2 (dppe) 2 is described and compared to the EXAFS of MoH 4 (dppe) 2 . The spectra are fitted to amplitude and phase parameters developed at Bell Laboratories. On the basis of this analysis, one can determine (1) that the dinitrogen complex contains nitrogen and the hydride complex does not and (2) the correct Mo-N distance. This is significant because the Mo inn both complexes is coordinated by four P atoms which dominate the EXAFS. A similar sort of interference is present in nitrogenase due to S coordination of the Mo in the enzyme. This model experiment indicates that, given adequate signal to noise ratios, the presence or absence of dinitrogen coordination to Mo in the enzyme may be determined by EXAFS using existing data analysis techniques. A new reaction between Mo 2 O 4 (cys) 2 2- and acetylene is described to the extent it is presently understood. A strong EPR signal is observed, suggesting the production of stable Mo(V) monomers. EXAFS studies support this suggestion. The Mo K-edge is described. The edge data suggests Mo(VI) is also produced in the reaction. Ultraviolet spectra suggest that cysteine is released in the course of the reaction

  18. [Spectroscopic studies on the interaction of nicotine and BSA].

    Science.gov (United States)

    Chen, Yun; Kong, Xiang-rong; Shen, Xinag-can; Liang, Hong

    2005-10-01

    The interaction of nicotine and bovine serum albumin(BSA) was investigated by fluorescence spectra and UV-vis spectra. The fluorescence spectrum showed that BSA fluorescence quench regularly with the addition of nicotine.The fluorescence quenching mechanisms were also studied in pH 5.0, pH 7.4 and pH 11.0 by Stern-Volmer equation, indicating dynamic quenching(pH 5.0) and static quenching(pH 7.4 and pH 11.0) respectively. Association constants (k) of nicotine and BSA at pH 7.4 and pH 11.0 at the temperatures of 20 and 37 degrees C were given by the Lineweaver-Buck equation, which are: k(20 degrees C) = 140.15 L x mol(-1) and k(37 degrees C) = 131.83 mol x L(-1) (pH 7.4), and k(20 degrees C) = 141.76 mol x L(-1), k(37 degrees C) = 27.79 mol x L(-1) (pH 11.0), suggesting that the association constant is effected by the temperature much more remarkably at pH 7.4 than that at pH 11.0 because of the different states of nicotine at different pHs. The UV-Vis spectra exhibit that the absorbance of BSA(210 nm) shifts to red and decreases gradually with the addition of nicotine, reflecting the transition of secondary structure of BSA, namely, the helix of BSA becomes looser. The UV-Vis second derivative spectra and synchronous spectra (delta wavelength = wavelength(em) - wavelength(ex) = 15 nm and delta wavelength = wavelength(em) - wavelength(ex) = 60 nm) imply the change of the microcircumstance of aromatic amino residues of BSA(Trp, Tyr and Phe) from hydrophobicity to hydrophilicity at high concentration of nicotine.

  19. Raman spectroscopic studies on exfoliated cells of oral and cervix

    Science.gov (United States)

    Hole, Arti; Sahu, Aditi; Shaikh, Rubina; Tyagi, Gunjan; Murali Krishna, C.

    2018-01-01

    Visual inspection followed by biopsy is the standard procedure for cancer diagnosis. Due to invasive nature of the current diagnostic methods, patients are often non-compliant. Hence, it is necessary to explore less invasive and rapid methods for early detection. Exfoliative cytology is a simple, rapid, and less invasive technique. It is thus well accepted by patients and is suitable for routine applications in population screening programs. Raman spectroscopy (RS) has been increasingly explored for disease diagnosis in the recent past. In vivo RS has previously shown promise in management of both oral and cervix cancers. In vivo applications require on-site instrumentation and stringent experimental conditions. Hence, RS of less invasive samples like exfoliated cells has been explored, as this facilitates collection at multiple screening centers followed by analysis at a centralized facility. In the present study, efficacy of Raman spectroscopy in classification of 15 normal and 29 abnormal oral exfoliated cells specimens and 28 normal and 38 abnormal cervix specimens were explored. Spectra were acquired by Raman microprobe (HE 785, Horiba-Jobin-Yvon, France) from several areas to span the pellet. Spectral acquisition parameters were: microscopic objective: 40X, power: 40 mW, acquisition time: 15 s and average: 3. PCA and PC-LDA of pre-processed spectra was carried out on a 4-model system of normal and tumor of both cervix and oral specimens. Leave-one-out-cross-validation findings indicate 73 % correct classification. Findings suggest RS of exfoliated cells may serve as a patient-friendly, non-invasive, rapid and objective method for management of cervix and oral cancers.

  20. A Moessbauer spectroscopic study of stannosilicate and ferrisilicate glasses

    International Nuclear Information System (INIS)

    Appleyard, P.G.

    2000-02-01

    Silicate glasses of variable composition, containing tin and iron have been studied using Moessbauer spectroscopy. The glass samples consisted of 3 basic groups; binary stannosilicate glasses, ternary stannosilicate glasses and ternary ferrisilicate glasses. The binary stannosilicate glasses were a simple x SnO + (1-x) SiO 2 composition, with x ranging from 16.5% to 67.7% mole. The ternary stannosilicate glasses followed a nominal compositional range of 0.5 SiO 2 + (0.5-x) SnO + x RO, where RO is modifier oxide. Several series of ternary stannosilicates were manufactured, with each series containing a different modifier type. The modifiers chosen were; group I metal oxides of Li, Na, K and Rb, group II metal oxides of Mg, Ca and Sr and group III metal oxide of Al. Two series of ternary ferrisilicate glasses were manufactured following nominal compositional ranges of (0.7-x) SiO 2 + x Fe 2 O 3 + 0.3 Na 2 O and 0.7 SiO 2 + xFe 2 O 3 + (0.3-x) Na 2 O. In the majority of the stannosilicate glasses, the Sn was shown to exist primarily in the Sn(II) valence state. The Moessbauer centre shift and quadrupole splitting of the Sn(II) were shown to possess a dependence on sample concentration, this being weak in the binary glasses, but large and distinct in the ternary glasses. The isomer shift and quadrupole splitting slowly decreased with increasing modifier concentration in the ternary glasses. The rate of this decrease was proportional to the Z/radius of the modifier ion. Variable temperature experiments on a large selection of the glasses revealed that the Sn(II) isomer shift and quadrupole splitting possessed positive and negative dependencies on temperature respectively. The increase in isomer shift is consistent with the effects of thermal expansion and an increase in pressure at the Sn site. The decrease in quadrupole splitting is also consistent with thermal expansion of the Sn-O bonds. The temperature dependence of the isomer shift was incorporated into the

  1. Linking lifestyle factors and insulin resistance, based on fasting plasma insulin and HOMA-IR in middle-aged Japanese men: a cross-sectional study.

    Science.gov (United States)

    Otake, Toshie; Fukumoto, Jin; Abe, Masao; Takemura, Shigeki; Mihn, Pham Ngoc; Mizoue, Tetsuya; Kiyohara, Chikako

    2014-09-01

    Insulin resistance (IR) is regarded as one of the earliest features of many metabolic diseases, and major efforts are aimed at improving insulin function to confront this issue. The aim of this study was to investigate the relationship of body mass index (BMI), cigarette smoking, alcohol intake, physical activity, green tea and coffee consumption to IR. We performed a cross-sectional study of 1542 male self defense officials. IR was defined as the highest quartile of the fasting plasma insulin (≥ 50 pmol/L) or the homeostasis model assessment-estimated IR (HOMA-IR ≥ 1.81). An unconditional logistic model was used to estimate the odds ratio (OR) and 95% confidence interval (CI) for the association between IR and influential factors. Stratified analysis by obesity status (BMI IR was significantly positively related to BMI and glucose tolerance, negatively related to alcohol use. Independent of obesity status, significant trends were observed between IR and alcohol use. Drinking 30 mL or more of ethanol per day reduced IR by less than 40%. Strong physical activity was associated with decreased risk of IR based on fasting plasma insulin only in the obese. Coffee consumption was inversely associated with the risk of IR based on HOMA-IR in the non-obese group. Higher coffee consumption may be protective against IR among only the non-obese. Further studies are warranted to examine the effect modification of the obesity status on the coffee-IR association.

  2. Optical and near-IR study of LMC HII region N11AB

    International Nuclear Information System (INIS)

    Lee, M.G.

    1990-01-01

    N11 (DEM 34), complex HII region located about 4 degrees from the center of the LMC bar, is a very interesting giant interstellar shell. It has a complicated structure and motion. It is located on the edge of an HI concentration. This is the progress report of the study of its two components, A and B at the optical and near-IR wavelengths to investigate stars, dust and ionized gas associated with them. N11A is a compact high-excitation blob and N11B is a bright HII region in this complex, which embeds OB association Lucke-Hodge 10

  3. Synthesis, characterization, spectroscopic properties and DFT study of a new pyridazinone family

    Science.gov (United States)

    Arrue, Lily; Rey, Marina; Rubilar-Hernandez, Carlos; Correa, Sebastian; Molins, Elies; Norambuena, Lorena; Zarate, Ximena; Schott, Eduardo

    2017-11-01

    Nitrogen compounds are widely investigated due to their pharmacological properties such as antihypertensive, antinociceptive, antibacterial, antifungal, analgesic, anticancer and inhibition activities and lately even as pesticide. In this context, we present the synthesis of new compounds: (E)-6-(3,4-dimethoxyphenyl)-3-(3-(3,4-dimethoxyphenyl)acryloyl)-1-(4-R-phenyl)- 5,6-dihydropyridazin-4(1H)-one (with R = sbnd H(1), -Cl(2), -Br(3), sbnd I(4) and sbnd COOH(5)) that was carried out by reaction of (1E, 6E)-1,7-bis(3,4-dimethoxyphenyl)hepta-1,6-diene-3,5-dione with a substituted phenylamine with general formula p-R-C6H4sbnd NH2 (R = sbnd H (1), sbnd Cl (2), -Br(3), sbnd I(4) and sbnd COOH(5)). This is the first synthesis report of a pyridazinone using as precursors a curcuminoid derivative and a diazonium salt formed in situ. All compounds were characterized by EA, FT-IR, UV-Vis, Emission,1H- and13C-NMR spectroscopy and the crystalline and molecular structure of 4 was solved by X-rays diffraction method. DFT and TD-DFT quantum chemical calculations were also employed to characterize the compounds and provide a rational explanation to the spectroscopic properties. To assess the biological activity of the systems, we focused on pesticide tests on compound 2, which showed an inhibitory effect in plant growth of Agrostis tenuis Higland.

  4. Spectroscopic study on variations in illite surface properties after acid-base titration.

    Science.gov (United States)

    Liu, Wen-xin; Coveney, R M; Tang, Hong-xiao

    2003-07-01

    FT-IR, Raman microscopy, XRD, 29Si and 27Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid-base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al-Si complexes, preferable to Al(OH)3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si-O and Al-O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between (IV)Al and (VI)Al species in 27Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid-leaching silicic acid and aluminum ions should be considered in the model description of surface acid-base properties of the aqueous illite.

  5. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  6. Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study

    Science.gov (United States)

    Hossain, Mossaraf; Thomas, Renjith; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Vijayakumar, G.; Van Alsenoy, C.

    2018-04-01

    Two newly synthetized imidazole derivatives (1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (MPDIA) and 1-(4-bromophenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (BPDIA)) have been prepared by solvent-free synthesis pathway and their specific spectroscopic and reactive properties have been discussed based on combined experimental and computational approaches. Aside of synthesis, experimental part of this work included measurements of IR, FT-Raman and NMR spectra. All of the aforementioned spectra were also obtained computationally, within the framework of density functional theory (DFT) approach. Additionally, DFT calculations have been used in order to investigate local reactivity properties based on molecular orbital theory, molecular electrostatic potential (MEP), average local ionization energy (ALIE), Fukui functions and bond dissociation energy (BDE). Molecular dynamics (MD) simulations have been used in order to obtain radial distribution functions (RDF), which were used for identification of the atoms with pronounced interactions with water molecules. MEP showed negative regions are mainly localized over N28, O29, O35 atoms, it is represent with red colour in rainbow color scheme for MPDIA and BPDIA (which are most reactive sites for electrophilic attack). The first order hyperpolarizabilities of MPDIA and BPDIA are 20.15 and 6.10 times that of the standard NLO material urea. Potential interaction with antihypertensive protein hydrolase.

  7. 4-Mercaptophenylboronic acid: conformation, FT-IR, Raman, OH stretching and theoretical studies.

    Science.gov (United States)

    Parlak, Cemal; Ramasami, Ponnadurai; Tursun, Mahir; Rhyman, Lydia; Kaya, Mehmet Fatih; Atar, Necip; Alver, Özgür; Şenyel, Mustafa

    2015-06-05

    4-Mercaptophenylboronic acid (4-mpba, C6H7BO2S) was investigated experimentally by vibrational spectroscopy. The molecular structure and spectroscopic parameters were studied by computational methods. The molecular dimer was investigated for intermolecular hydrogen bonding. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. The present work provides a simple physical picture of the OH stretch vibrational spectra of 4-mpba and analogues of the compound studied. When the different computational methods are compared, there is a strong evidence of the better performance of the BLYP functional than the popular B3LYP functional to describe hydrogen bonding in the dimer. The findings of this research work should be useful to experimentalists in their quests for functionalised 4-mpba derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches

    Science.gov (United States)

    Almutairi, Maha S.; Zakaria, Azza S.; Ignasius, P. Primsa; Al-Wabli, Reem I.; Joe, Isaac Hubert; Attia, Mohamed I.

    2018-02-01

    Indole-isatin molecular hybrids 5a-i have been synthesized and characterized by different spectroscopic methods to be evaluated as new antimicrobial agents against a panel of Gram positive bacteria, Gram negative bacteria, and moulds. Compound 5h was selected as a representative example of the prepared compounds 5a-i to perform computational investigations. Its vibrational properties have been studied using FT-IR and FT-Raman with the aid of density functional theory approach. The natural bond orbital analysis as well as HOMO and LUMO molecular orbitals investigations of compound 5h were carried out to explore its possible intermolecular delocalization or hyperconjugation and its possible interactions with the target protein. Molecular docking of compound 5h predicted its binding mode with the fungal target protein.

  9. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  10. HOMA-IR and the risk of hyperuricemia: a prospective study in non-diabetic Japanese men.

    Science.gov (United States)

    Nakamura, Koshi; Sakurai, Masaru; Miura, Katsuyuki; Morikawa, Yuko; Nagasawa, Shin-Ya; Ishizaki, Masao; Kido, Teruhiko; Naruse, Yuchi; Nakashima, Motoko; Nogawa, Kazuhiro; Suwazono, Yasushi; Nakagawa, Hideaki

    2014-10-01

    To examine the relation of insulin resistant status determined by homeostasis model assessment of insulin resistance (HOMA-IR) with the risk of incident hyperuricemia. The study participants included 2071 Japanese men without hyperuricemia and diabetes, aged 35-54 years. The participants had undergone annual heath examinations for 6 years to compare incident hyperuricemia (serum uric acid >416.4μmol/L (7.0mg/dL) and/or taking medication for hyperuricemia) in four groups based on quartiles of baseline HOMA-IR. During follow-up there were 331 incident cases of hyperuricemia. The hazard ratios for hyperuricemia, compared with HOMA-IR ≤0.66, were 1.42 (95% confidence interval 1.02-1.98) for HOMA-IR 0.67-0.98, 1.20 (0.86-1.68) for HOMA-IR 0.99-1.49 and 1.44 (1.04-1.98) for HOMA-IR ≥1.50 after adjustment for baseline serum uric acid, creatinine, hypercholesterolemia and hypertension status, age, alcohol intake, and smoking and exercise habits. The hazard ratio associated with an increase of one standard deviation in lnHOMA-IR (1.85 as one geometric standard deviation of HOMA-IR) was 1.14 (1.03-1.28) (p for trend=0.02). Increased HOMA-IR independently predicted the subsequent development of hyperuricemia. Insulin resistance itself or compensatory hyperinsulinemia may contribute to the development of hyperuricemia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect

    Science.gov (United States)

    Olsztyńska-Janus, S.; Pietruszka, A.; Kiełbowicz, Z.; Czarnecki, M. A.

    2018-01-01

    In this work we report the studies of the effect of temperature on skin components, such as lipids, proteins and water. Modifications of lipids structure induced by increasing temperature (from 20 to 90 °C) have been studied using ATR-IR (Attenuated Total Reflectance Infrared) spectroscopy, which is a powerful tool for characterization of the molecular structure and properties of tissues, such as skin. Due to the small depth of penetration (0.6-5.6 μm), ATR-IR spectroscopy probes only the outermost layer of the skin, i.e. the stratum corneum (SC). The assignment of main spectral features of skin components allows for the determination of phase transitions from the temperature dependencies of band intensities [e.g. νas(CH2) and νs(CH2)]. The phase transitions were determined by using two methods: the first one was based on the first derivative of the Boltzmann function and the second one employed tangent lines of sigmoidal, aforementioned dependencies. The phase transitions in lipids were correlated with modifications of the structure of water and proteins.

  12. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR insights, electronic profiling and DFT computations on ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene] amino}oxy(4-nitrophenylmethanone, an imidazole-bearing anti-Candida agent

    Directory of Open Access Journals (Sweden)

    Al-Wahaibi Lamya H.

    2018-02-01

    Full Text Available The anti-Candida agent, ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amnio}oxy(4-nitropheny methanone (IPAONM, was subjected to comprehensive spectroscopic (FT-IR, FT-Raman, UV–Vis 1H and 13C NMR characterization as well as Hartree Fock and density functional theory computation studies. The selected optimized geometric bond lengths and bond angles of the IPAONM molecule were compared with the experimental values. The calculated wavenumbers have been scaled and compared with the experimental spectra. Mulliken charges and natural bond orbital analysis of the title molecule were calculated and interpreted. The energy and oscillator strengths of the IPAONM molecule were calculated by time-dependent density functional theory (TD-DFT. In addition, frontier molecular orbitals and molecular electrostatic potential diagram of the title compound were computed and analyzed. A study on the electronic properties, such as HOMO, HOMO-1, LUMO and LUMO+1 energies was carried out using TD-DFT approach. The 1H and 13C NMR chemical shift values of the title compound were calculated by the gauge independent atomic orbital method and compared with the experimental results.

  13. Binding Studies of Andrographolide with Human serum albumin: Molecular Docking, Chromatographic and Spectroscopic studies.

    Science.gov (United States)

    Godugu, Deepika; Rupula, Karuna; Beedu, Sashidhar Rao

    2018-02-11

    Andrographolide, sourced from Andrographis paniculata, is an established therapeutic agent with variety of pharmacological properties in treatment of various diseases. The present study is designed to evaluate the interaction and binding affinity of andrographolide with HSA by docking and spectral studies. The docking study for screening the interaction of andrographolide with HSA protein was carried out using Auto Dock Vina software and the binding score of andrographolide was -8.7 kcal mol-1 and formed one hydrogen bond with Arg 218 residue of HSA in sub-domains IIA region. The formation of HSA-andrographolide complex was characterized by spectroscopic methods - UV absorption, HPLC, CD and FTIR analysis. The UV spectral analysis revealed a decrease in the absorption peak of HSA due to its interaction with andrographolide. A new peak was observed at retention time 7.45 min by HPLC analysis and the Bmax was found to be 7.5 ± 0.4 mg protein with a Kd value of 1.89 mM, indicating interaction of andrographolide with HSA. The CD spectra results suggested, a marginal decrease in the negative ellipticity without any significant shift in peak, indicating the stabilization of the HSA-andrographolide complex. The FTIR analysis further confirmed, a shift of amide I groups from 1646 to 1637 cm-1 and a peak at 1016 cm-1 in andrographolide, was observed in the complex, indicating the interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    Science.gov (United States)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  15. Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Satoshi [Tohoku Univ., Sendai (Japan); Gogami, Toshiyuki [Tohoku Univ., Sendai (Japan); Tang, Liguang [Hampton Univ., Hampton, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-07-01

    The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.

  16. MOLECULAR BEAM STUDIES OF IR LASER INDUCED MULTIPHOTON DISSOCIATION AND VIBRATIONAL PREDISSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuan T.; Shen, Y. Ron

    1980-06-01

    The advancement of crossed molecular beam methods, modern spectroscopy and laser technology allows us to observe chemical reactions on atomic and molecular levels in great detail. After a brief history of crossed molecular beams studies, the author describes and discusses the universal molecular beam apparatus and gives examples of crossed molecular beam studies. The crossed beam technique is compared to other techniques used to provide microscopic information on reaction dynamics. Application of crossed laser and molecular beam studies to the problem of IR multiphoton dissociation of polyatomic molecules is discussed. Study of vibrational predissociation of hydrogen-bonded and van der Waals molecular clusters are discussed. Future cases that the author considers worth pursuing that could benefit from the collisionless environment of molecular beams are enumerated.

  17. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  18. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  19. In situ study of interface reactions of ion beam sputter deposited (Ba0.5Sr0.5)TiO3 films on Si, SiO2, and Ir

    International Nuclear Information System (INIS)

    Gao, Y.; Mueller, A.H.; Irene, E.A.; Auciello, O.; Krauss, A.; Schultz, J.A.

    1999-01-01

    (Ba 0.5 ,Sr 0.5 )TiO 3 (BST) thin films were deposited on MgO, Si, SiO 2 and Ir surfaces by ion beam sputter deposition in oxygen at 700 degree C. In situ spectroscopic ellipsometry (SE) has been used to investigate the evolution of the BST films on different surfaces during both deposition and postannealing processes. First, the optical constants of the BST films in the photon energy range of 1.5 - 4.5 eV were determined by SE analysis on crystallized BST films deposited on MgO single crystal substrates. The interfaces in BST/Si and BST/SiO 2 /Si structure were examined by SE and Auger electron spectroscopy depth profiles. Subcutaneous oxidation in the BST/Ir structure was observed by in situ SE during both ion beam sputter deposition and postdeposition annealing in oxygen at 700 degree C. A study of the thermal stability of the Ir/TiN/SiO 2 /Si structure in oxygen at 700 degree C was carried out using in situ SE. The oxidation of Ir was confirmed by x-ray diffraction. The surface composition and morphology evolution after oxidation were investigated by time of flight mass spectroscopy of recoiled ions (TOF-MSRI) and atomic force microscopy. It has been found that Ti from the underlying TiN barrier layer diffused through the Ir layer onto the surface and thereupon became oxidized. It was also shown that the surface roughness increases with increasing oxidation time. The implications of the instability of Ir/TiN/SiO 2 /Si structure on the performance of capacitor devices based on this substrate are discussed. It has been shown that a combination of in situ SE and TOF-MSRI provides a powerful methodology for in situ monitoring of complex oxide film growth and postannealing processes. copyright 1999 American Vacuum Society

  20. Spectroscopic studies of 2-thenoyltrifluoro acetonate of uranyl salts doped with europium

    International Nuclear Information System (INIS)

    Nakagawa, F.T.; Luiz, J.E.M. de Sa; Felinto, M.C.F.C.; Brito, H.F.; Teotonio, E.E.S.

    2006-01-01

    Uranyl compounds present a great potential as luminescence materials. Some examples of applications are: in laser technology, cathode ray tube, X-rays diagnostic. In this work it was studied the synthesis, characterization and spectroscopic properties study of uranyl 2-thenoyl trifluoroacetonate and uranyl 2- thenoyl trifluoroacetonate doped with europium. The compounds were synthesized and characterized by infrared absorption spectroscopy, thermal analysis, scanning electronic microscopy, and electronic spectroscopy of emission and excitation. The Eu 3+ ion acted as an effective luminescent probe, however the process of energy transfer from UO 2 2+ to Eu 3+ ion has not been efficient. (author)

  1. Mössbauer spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation

    Science.gov (United States)

    Kumar, Asheesh; Kanagare, A. B.; Meena, Sher Singh; Banerjee, S.; Kumar, P.; Sudarsan, V.

    2018-04-01

    This paper reports Mössbauer study of cobalt hexacyanoferrate (CoHCF) before and after hydrogenation. The CoHCF was synthesised by chemical precipitation method. The sample was characterized by using various techniques (XRD, TG, EDX and FTIR). The CoHCF paricles show fcc structure. The hydrogen storage property was measured at different temperature. The COHCF shows maximum 0.93 wt% hydrogen storage capacity at 223K. 57Fe Mössbauer spectroscopic study shows the effect of hydrogenation on the electronic structure in terms of electronic charge distribution and volume expansion. Isomer shift and quadrupole splitting values were found to be increased after hydrogenation.

  2. THE STUDY OF CLINOPTILOLITE MODIFIED WITH3d METALS HALIDES BY IR AND DIFFUSE REFLECTANCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The results of investigation of natural clinoptilolite (N-CLI and that modified with 3d metal halides (MeCl2/N-CLI, where Me are Cu, Co, and Mn by IR and diffuse reflectance spectroscopy are summarized. A band at 3437 cm-1 assigned to stretching vibrations of hydroxyl groups (nOH is found in the IR spectrum of the N-CLI sample. A location of the band was practically the same as for all above MeCl2/N-CLI samples. A band of middle intensity at 1638 cm-1 in the range of deformation vibrations of zeolite water observed in the IR spectrum of N-CLI slightly displays to lower frequencies in the case of the modified samples. An intensive wide band of a complex shape in the range from 1250 to 980 cm-1 assigned to Si–O–Si and Si–O–Al vibrations appears in IR spectra of all samples. A doublet band of middle intensity at 797 and 778 cm-1 is assigned to external symmetric stretching T-O vibrations and a band at 606 cm-1-to vibrations of a double ring. A location of the above bands is the same for all listed samples but their intensity is higher for MnCl2/N-CLI and CoCl2/N-CLI samples. After the reaction with ozone, significant changes in the IR spectra are observed only for MnCl2/N-CLI. They are due to MnO2 formation on the clinoptilolite surface resulting in a high frequency displacement of some bands. Based on UV-vi spectroscopy results, it is reasonable to make conclusions about the coordination and valence state of a central atom in the MeCl2/N-CLI samples under study. A location of charge transfer bands for these samples only slightly differs from that for N-CLI however the intensity of such bands increases for the MeCl2/N-CLI samples. The UV-vis spectrum of MnCl2/N-CLI changes after the reaction with ozone: the appearance of new bands of  charge transfer at 363 and 354 nm and also the two-fold increase in intensity of a charge transfer band at 272 nm in comparison with those of N-CLI and MnCl2/N-CLI are the evidence of change in both the

  3. Study of (n,2n reaction on 191,193Ir isotopes and isomeric cross section ratios

    Directory of Open Access Journals (Sweden)

    Vlastou R.

    2017-01-01

    Full Text Available The cross section of 191Ir(n,2n190Irg+m1 and 191Ir(n,2n190Irm2 reactions has been measured at 17.1 and 20.9 MeV neutron energies at the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR “Demokritos”, using the activation method. The neutron beams were produced by means of the 3H(d,n4He reaction at a flux of the order of 2 × 105 n/cm2s. The neutron flux has been deduced implementing the 27Al(n,α reaction, while the flux variation of the neutron beam was monitored by using a BF3 detector. The 193Ir(n,2n192Ir reaction cross section has also been determined, taking into account the contribution from the contaminant 191Ir(n,γ192Ir reaction. The correction method is based on the existing data in ENDF for the contaminant reaction, convoluted with the neutron spectra which have been extensively studied by means of simulations using the NeusDesc and MCNP codes. Statistical model calculations using the code EMPIRE 3.2.2 and taking into account pre-equilibrium emission, have been performed on the data measured in this work as well as on data reported in literature.

  4. Association between IRS1 Gene Polymorphism and Autism Spectrum Disorder: A Pilot Case-Control Study in Korean Males

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2016-07-01

    Full Text Available The insulin-like growth factor (IGF pathway is thought to play an important role in brain development. Altered levels of IGFs and their signaling regulators have been shown in autism spectrum disorder (ASD patients. In this study, we investigated whether coding region single-nucleotide polymorphisms (cSNPs of the insulin receptor substrates (IRS1 and IRS2, key mediators of the IGF pathway, were associated with ASD in Korean males. Two cSNPs (rs1801123 of IRS1, and rs4773092 of IRS2 were genotyped using direct sequencing in 180 male ASD patients and 147 male control subjects. A significant association between rs1801123 of IRS1 and ASD was shown in additive (p = 0.022, odds ratio (OR = 0.66, 95% confidence interval (CI = 0.46–0.95 and dominant models (p = 0.013, OR = 0.57, 95% CI = 0.37–0.89. Allele frequency analysis also showed an association between rs1801123 and ASD (p = 0.022, OR = 0.66, 95% CI = 0.46–0.94. These results suggest that IRS1 may contribute to the susceptibility of ASD in Korean males.

  5. A Multiwavelength Study of Cygnus X-1: The First Mid-Infrared Spectroscopic Detection of Compact Jets

    Science.gov (United States)

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern

    2011-01-01

    We report on a Spitzer/IRS (mid-infrared), RXTE /PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multi-wavelength study of the micro quasar Cygnus X-I, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9 x 10(exp 13) Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keY, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-I stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Raleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(sub infinity) approx.= 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anticorrelation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and the Cygnus X-1's environment and/or companion star's stellar wind.

  6. Raman Spectroscopic Studies of YBa2Cu3O7 Coated Conductors

    International Nuclear Information System (INIS)

    Choi, Mi Kyeung; Mnh, Nguyen Van; Bae, J. S.; Jo, William; Yang, In Sang; Ko, Rock Kil; Ha, Hong Soo; Park, Chan

    2005-01-01

    We present results of Raman spectroscopic studies of superconducting YBa 2 Cu 3 O 7 (YBCO) coated conductors. Raman scattering is used to characterize optical phonon modes, oxygen content, c-axis misalignment, and second phases of the YBCO coated conductors at a micro scale. A two-dimensional mapping of Raman spectra with transport properties has been performed to elucidate the effect of local propertied on current path and superconducting phase. The information taken from the local measurement will be useful for optimizing the process condition.

  7. Preparation and spectroscopic studies of PbS/nanoMCM-41 nanocomposite

    Directory of Open Access Journals (Sweden)

    A. Pourahmad

    2014-11-01

    Full Text Available The present work describes the preparation and characterization of nanosized PbS particles inside the mesopore channels of nanoMCM-41 silicate molecular sieves. The encapsulation of the lead sulfide was carried out at room temperature by ion-exchange method. Diffuse reflectance ultraviolet–visible spectroscopic studies showed a significant shift in the absorption band for the entrapped metal sulfide as compared to corresponding bulk sulfide. Thus, confirming the quantum confinement of the incorporated nanoparticles in nanoMCM-41.

  8. The interaction of new piroxicam analogues with lipid bilayers--a calorimetric and fluorescence spectroscopic study.

    Science.gov (United States)

    Maniewska, Jadwiga; Szczęśniak-Sięga, Berenika; Poła, Andrzej; Sroda-Pomianek, Kamila; Malinka, Wiesław; Michalak, Krystyna

    2014-01-01

    The purpose of the present paper was to assess the ability of new piroxicam analogues to interact with the lipid bilayers. The results of calorimetric and fluorescence spectroscopic experiments of two new synthesized analogues of piroxicam, named PR17 and PR18 on the phase behavior of phospholipid bilayers and fluorescence quenching of fluorescent probes (Laurdan and Prodan), which molecular location within membranes is known with certainty, are shown in present work. The presented results revealed that, depending on the details of chemical structure, the studied compounds penetrated the lipid bilayers.

  9. Mg co-ordination with potential carcinogenic molecule acrylamide: Spectroscopic, computational and cytotoxicity studies

    Science.gov (United States)

    Singh, Ranjana; Mishra, Vijay K.; Singh, Hemant K.; Sharma, Gunjan; Koch, Biplob; Singh, Bachcha; Singh, Ranjan K.

    2018-03-01

    Acrylamide (acr) is a potential toxic molecule produced in thermally processed food stuff. Acr-Mg complex has been synthesized chemically and characterized by spectroscopic techniques. The binding sites of acr with Mg were identified by experimental and computational methods. Both experimental and theoretical results suggest that Mg coordinated with the oxygen atom of Cdbnd O group of acr. In-vitro cytotoxicity studies revealed significant decrease in the toxic level of acr-Mg complex as compared to pure acr. The decrease in toxicity on complexation with Mg may be a useful step for future research to reduce the toxicity of acr.

  10. Spectroscopic and theoretical studies on the aromaticity of pyrrol-2-yl-carbonyl conformers

    Science.gov (United States)

    Dubis, Alina T.; Wojtulewski, Sławomir; Filipkowski, Karol

    2013-06-01

    The aromaticity of s-cis and s-trans pyrrol-2-yl carbonyl conformers was studied by FT-IR, 1H NMR spectroscopy and DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The Harmonic Oscillator Model of Aromaticity (HOMA) and Nucleus Independent Chemical Shift (NICS) indices were calculated to estimate π-electron delocalization in the pyrrole ring. The usefulness of infrared spectroscopy in the evaluation of the aromaticity of the homogeneous set of pyrroles is discussed. The influence of 2-substitution on different aspects of aromaticity and stability of the pyrrol-2-yl carbonyl conformers is also discussed. It is concluded that the substitution effect of the title pyrrole derivatives can be explained on the basis of theoretical and experimental measurements of π-electron delocalization, including IR data.

  11. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Laitinen, Riikka; Grohganz, Holger

    2013-01-01

    . In this study, the co-amorphous drug mixture containing naproxen (NAP) and indomethacin (IND) was investigated using infrared spectroscopy (IR) and quantum mechanical calculations. The structures of both drugs were optimized as monomer, homodimer and heterodimer using density functional theory and used...... for the calculation of IR spectra. Conformational analysis confirmed that the optimized structures were suitable for the theoretical prediction of the spectra. Vibrational modes from the calculation could be matched with experimentally observed spectra for crystalline and amorphous NAP and IND, and it could be shown...... that both drugs exist as homodimers in their respective individual amorphous form. With the results from the experimental single amorphous drugs and theoretical homodimers, a detailed analysis of the experimental co-amorphous and theoretical heterodimer spectra was performed and evaluated. It is suggested...

  12. FT-IR Spectroscopic study on the 4-(3-Cyclohexen-1-yl)pyridine metal (II) tetracyanonickelate complex

    International Nuclear Information System (INIS)

    Parlak, C.

    2005-01-01

    New Hofmann type complex in the form of M(4-Chpy) 2 Ni(CN) 4 (where 4-Chpy=4-(3- Cyclohexen-1-yl)pyridine and M = Ni) was prepared in powder form and its infrared spectra is reported in the range of 4000-400 cm - 1. The spectral findings suggest that this compound is similar in structure to the Hofmann type complexes and its structure consists of polymeric layers | M-Ni(CN) 4 |∞ with the 4-(3-Cyclohexen-1-yl)pyridine molecule bound to the metal atom (M)

  13. Combined FT-IR Spectroscopic and DFT Theoretical Study on Carbon Dioxide Adsorption on the Zeolite H-FER

    Czech Academy of Sciences Publication Activity Database

    Pulido, A.; Delgado, M. R.; Bludský, Ota; Rubeš, Miroslav; Nachtigall, Petr; Areán, C. O.

    2009-01-01

    Roč. 2, č. 11 (2009), s. 1187-1195 ISSN 1754-5692 R&D Projects: GA ČR GA203/09/0143; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : DFT * FTIR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.500, year: 2009

  14. Diphosphine- and CO-Induced Fragmentation of Chloride-bridged Dinuclear Complex and Cp*Ir(mu-Cl)(3)Re(CO)(3) and Attempted Synthesis of Cp*Ir(mu-Cl)(3)Mn(CO)(3): Spectroscopic Data and X-ray Diffraction Structures of the Pentamethylcyclopentadienyl Compounds [Cp*IrCl{(Z)-Ph2PCH = CHPPh2}][Cl]center dot 2CHCl(3) and Cp*Ir(CO)Cl-2

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, Casey [University of North Texas; Wang, Xiaoping [ORNL; Nesterov, Vladimir [University of North Texas; Richmond, Michael G. [University of North Texas

    2010-01-01

    The confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (1) undergoes rapid fragmentation in the presence of the unsaturated diphosphine ligand (Z)-Ph2PCH = CHPPh2 to give the mononuclear compounds [Cp*IrCl {(Z)-Ph2PCH = CHPPh2}][Cl] (2) and fac-ClRe(CO)(3)[(Z)-Ph2PCH = CHPPh2] (3). 2 has been characterized by H-1 and P-31 NMR spectroscopy and X-ray diffraction analysis. 2 center dot 2CHCl(3) crystallizes in the monoclinic space group C2/c, a = 35.023 (8) angstrom, b = 10.189 (2) angstrom, c = 24.003 (6) angstrom, b = 103.340 (3), V = 8,335 (3) angstrom 3, Z = 8, and d(calc) = 1.647 Mg/m(3); R = 0.0383, R-w = 0.1135 for 8,178 reflections with I> 2 sigma(I). The Ir(III) center in 2 exhibits a six-coordinate geometry and displays a chelating diphosphine group. Compound 1 reacts with added CO with fragmentation to yield the known compounds Cp*Ir(CO)Cl-2 (4) and ClRe(CO)(5) (5) in near quantitative yield by IR spectroscopy. Using the protocol established by our groups for the synthesis of 1, we have explored the reaction of [Cp*IrCl2](2) with ClMn(CO)(5) as a potential route to Cp*Ir(mu-Cl)(3)Mn(CO)(3); unfortunately, 4 was the only product isolated from this reaction. The solid-state structure of 4 was determined by X-ray diffraction analysis. 4 crystallizes in the triclinic space group P-1, a = 7.4059 (4) angstrom, b = 7.8940 (4) angstrom, c = 11.8488 (7) angstrom, alpha = 80.020 (1), beta = 79.758 (1), gamma = 68.631 (1), V = 630.34 (6) angstrom(3), Z = 2, and d(calc) = 2.246 Mg/m(3); R = 0.0126, R-w = 0.0329 for 2,754 reflections with I> 2 sigma(I). The expected three-legged piano-stool geometry in 4 has been crystallographically confirmed.

  15. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    Science.gov (United States)

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  16. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2017-01-01

    Full Text Available The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman and X-ray crystallographic techniques complemented with a density functional theory (DFT method. The hindered rotation of the C(O–NH2 single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the 1H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar–NH2 single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p basis set revealed that the conformer (A with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  17. Spectroscopic study of barite from the Kremikovtsi Deposit (Bulgaria with implication for its origin

    Directory of Open Access Journals (Sweden)

    Dimova Maya

    2006-01-01

    Full Text Available Different genetic types (endogene and supergene of barite from the Kremikovtsi deposit (Bulgaria were studied by Laser-induced time-resolved luminescence (LITRL, Infrared (IR and Raman spectroscopy. The IR spectra of the endogene barites are quite similar to those reported in the literature and do not show appreciable differences among them. The IR spectra of the supergene barites are almost identical to those of the endogene ones in respect to the positions of the vibrational modes ν1, ν2 and ν4 of SO4 2 except for a shift of 3 cm-1 for the ν 3 band. They displayed a presence of additional bands, which are close to the ν3 and ν1 modes of CO3 2- in calcite. The Raman studies support the suggestion that the supergene barite contains traces of calcite. The modern LITRL technique allowed the detection of several luminescent centers in the endogene barite. Eu3+ luminescence was identified for the first time in barite. The different emission spectra at 266 and 532 nm excitations suggest there are at least 2 structural positions for Eu3+ in the barite crystal lattice. The luminescent spectra also revealed a rather unusual violet-blue Nd3+ emission, which usually occurs in the IR spectral range, as well as emissions of Ce3+, Eu2+, Tb3+, Ag+, Sn2+(? and UO2 2+. The oxidation state of cations isomorphically present in the barite crystal lattice suggests the endogene barite in the Kremikovtsi deposit precipitated from reduced fluids supposedly subjected to cooling (conductive/convective and oxidation (mixing with seawater.

  18. Comparative study of potentially J{sub eff} = 0 ground state iridium(V) in SrLaNiIrO{sub 6}, SrLaMgIrO{sub 6}, and SrLaZnIrO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Klaus K.; Agrestini, Stefano; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Tanaka, Arata [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima (Japan); Jansen, Martin [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2017-12-13

    A series of polycrystalline double perovskites SrLaBIrO{sub 6} (B = Ni, Mg, Zn) containing Ir{sup 5+} (5d{sup 4}) was synthesized by solid state reactions, and structural, magnetic and electronic properties were investigated. The isotypic fully ordered double perovskites crystallize in space group P2{sub 1}/n and show semiconducting behavior with estimated bandgaps of approximately 0.2 eV for SrLaNiIrO{sub 6} and SrLaZnIrO{sub 6}, and 0.4 eV for SrLaMgIrO{sub 6}. SrLaNiIrO{sub 6} is an antiferromagnet with a Neel temperature of 74 K (μ{sub eff} = 3.3 μ{sub B}, θ{sub W} = -90 K), whereas SrLaMgIrO{sub 6} and SrLaZnIrO{sub 6} are weakly paramagnetic. All title compounds exhibit a temperature-independent contribution to the measured magnetic susceptibility, which supports the notion for a van-Vleck-type response originating from the Ir{sup 5+} (5d{sup 4}, J{sub eff} = 0) ions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. The joined use of n.i. spectroscopic analyses - FTIR, Raman, visible reflectance spectrometry and EDXRF - to study drawings and illuminated manuscripts

    International Nuclear Information System (INIS)

    Bruni, S.; Guglielmi, V.; Caglio, S.; Poldi, G.

    2008-01-01

    Some art objects being small and very precious prevents conservators and conservation scientists from whatever kind of sampling, so that only completely non-invasive (n.i.) studies are permitted. Besides, also moving the object is sometimes forbidden: this happens for jewels as well as for manuscripts, illuminated codices, drawings and paintings. Some important physical n.i. analyses, such as PIXE and PIGE, therefore cannot be used in many cases. With these limitations, only imaging techniques in X, UV, Visible and IR bands, and a few spectroscopic methods that can be carried out with portable instruments can be applied, i.e. molecular spectroscopies like Fourier transform infrared (FTIR), Raman, UV visible and near IR reflectance spectrometry (UV-Vis-NIR RS) and atomic spectroscopy like energy dispersive X-ray fluorescence (EDXRF). The use of only one or two of these techniques is usually far from giving all the information required to achieve a full characterization of materials used by the artist or during restorations, and to understand some conservative problems of the object. On the contrary, a joined use of n.i. analyses can supply a larger set of data, allowing for cross checks. With this aim we show a fully integrated spectroscopic approach to polychrome objects, and, in particular, to drawings and illuminated manuscripts, using portable instruments, specifically μ-FTIR, μ-Raman, Vis-RS and EDXRF, where also the Raman signal does not suffer fluorescence caused by varnish coating and from binder. We propose the joined use of all these four physical analyses to characterize materials - support, pigments, dyes, binders, etc. - on a complex case: a painted and drawn parchment of the late 15th century, or the beginning of the 16th, partly attributed to Andrea Mantegna. The collected spectroscopic data have been compared to proper spectral databases, some of which specifically realized in our laboratories. Also, mixtures of pigments and their stratigraphical

  20. The HOMA-Adiponectin (HOMA-AD) Closely Mirrors the HOMA-IR Index in the Screening of Insulin Resistance in the Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Vilela, Brunna Sullara; Vasques, Ana Carolina Junqueira; Cassani, Roberta Soares Lara; Forti, Adriana Costa E; Pareja, José Carlos; Tambascia, Marcos Antonio; Geloneze, Bruno

    2016-01-01

    The major adverse consequences of obesity are associated with the development of insulin resistance (IR) and adiposopathy. The Homeostasis Model Assessment-Adiponectin (HOMA-AD) was proposed as a modified version of the HOMA1-IR, which incorporates adiponectin in the denominator of the index. To evaluate the performance of the HOMA-AD index compared with the HOMA1-IR index as a surrogate marker of IR in women, and to establish the cutoff value of the HOMA-AD. The Brazilian Metabolic Syndrome Study (BRAMS) is a cross-sectional multicenter survey. The data from 1,061 subjects met the desired criteria: 18-65 years old, BMI: 18.5-49.9 Kg/m² and without diabetes. The IR was assessed by the indexes HOMA1-IR and HOMA-AD (total sample) and by the hyperglycemic clamp (n = 49). Metabolic syndrome was defined using the IDF criteria. For the IR assessed by the clamp, the HOMA-AD demonstrated a stronger coefficient of correlation (r = -0.64) compared with the HOMA1-IR (r = -0.56); p HOMA1-IR, the HOMA-AD showed higher values of the AUC for the identification of IR based on the clamp test (AUC: 0.844 vs. AUC: 0.804) and on the metabolic syndrome (AUC: 0.703 vs. AUC: 0.689), respectively; p HOMA-AD in comparison with the HOMA1-IR in the diagnosis of IR and metabolic syndrome (p > 0.05). The optimal cutoff identified for the HOMA-AD for the diagnosis of IR was 0.95. The HOMA-AD index was demonstrated to be a useful surrogate marker for detecting IR among adult women and presented a similar performance compared with the HOMA1-IR index. These results may assist physicians and researchers in determining which method to use to evaluate IR in light of the available facilities.

  1. Spectroscopic studies on the interaction between ZnSe nanoparticles with bovine serum albumin

    International Nuclear Information System (INIS)

    Chen, Zhi; Wu, Dudu

    2012-01-01

    The interaction between ZnSe nanoparticles (NPs) and bovine serum albumin (BSA) was studied by UV–vis, fluorescence spectroscopic techniques. The results showed that the fluorescence of BSA was strongly quenched by ZnSe NPs and the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching constant (K q ). The recorded UV–vis data and the fluorescence data quenching by the ZnSe NPs showed that the interaction between them leads to the formation of ZnSe–BSA complex. Based on the synchronous fluorescence spectra, it was established that the conformational change of BSA was induced by the interaction of ZnSe with the tyrosine micro-region of the BSA molecules. Furthermore, the temperature effects on the structural and spectroscopic properties of individual ZnSe NPs and protein and their bioconjugates (ZnSe–BSA) were also researched. It was found that, compared to the monotonic decrease of the individual ZnSe NPs fluorescence intensity, the temperature dependence of the ZnSe–BSA emission had a much more complex behavior, which was highly sensitive to the conformational changes of the protein. - Highlights: ►Interaction between bovine serum albumin (BSA) and ZnSe nanoparticles was studied. ► UV–vis data and fluorescence data demonstrated the formation of ZnSe–BSA complex. ► Temperature dependence of ZnSe–BSA emission was sensitive to the conformational changes of protein.

  2. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  3. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D.; Treu-Filho, O.; Bannach, G.

    2014-01-01

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L) 3 , in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand

  4. Theoretical studies on CH+ ion molecule using configuration interaction method and its spectroscopic properties

    International Nuclear Information System (INIS)

    Machado, F.B.C.

    1985-01-01

    The use of the configuration (CI) method for the calculation of very accurate potential energy curves and dipole moment functions, and then their use in the comprehension of spectroscopic properties of diatomic molecules is presented. The spectroscopic properties of CH + and CD + such as: vibrational levels, spectroscopic constants, averaged dipole moments for all vibrational levels, radiative transition probabilities for emission and absorption, and radiative lifetimes are verificated. (M.J.C.) [pt

  5. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  6. Laser Spectroscopic and Theoretical Studies of Encapsulation Complexes of Calix[4]arene

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Shohei; Inokuchi, Yoshiya; Ebata, Takayuki; Apra, Edoardo; Xantheas, Sotiris S.

    2011-10-13

    The complexes between the host calix[4]arene (C4A) and various guest molecules such as NH3, N2, CH4, and C2H2 have been investigated via experimental and theoretical methods. The S1-S0 electronic spectra of these guest-host complexes are observed by mass-selected resonant two-photon ionization (R2PI) and laser induced fluorescence (LIF) spectroscopy. The infrared (IR) spectra of the complexes formed in molecular beams are obtained by IR-UV double resonance (IR-UV DR) and IR photodissociation (IRPD) spectroscopy. The supramolecular structures of the complexes are investigated by electronic structure methods (density functional and second order perturbation theory). The current results for the various molecular guests are put in perspective with the previously reported ones for the C4A-Rare Gas (Rg) (Phys. Chem. Chem. Phys. 2007, 126, 141101) and C4A-H2O complexes (J. Phys. Chem. A, 2010, 114, 2967). The electronic spectra of the complexes of C4A with N2, CH4 and C2H2 exhibit red-shifts of similar magnitudes with the ones observed for the C4A-Rg complexes, whereas the complexes of C4A with H2O and NH3 show much larger red-shifts. Most of the IR-UV DR spectra of the complexes, except for C4A-C2H2, show a broad hydrogen bonded OH stretching band with a peak at ~3160 cm-1. The analysis of the experimental results, in agreement with the ones resulted from the electronic structure calculations, suggest that C4A preferentially forms endo-complexes with all the guest species reported in this study. We discuss the similarities and differences of the structures, binding energies and the nature of the interaction between the C4A host and the various guest species. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy

  7. Ab initio study of the O4H(+) novel species: spectroscopic fingerprints to aid its observation.

    Science.gov (United States)

    Xavier, F George D; Hernández-Lamoneda, Rámon

    2015-06-28

    A detailed ab initio characterization of the structural, energetic and spectroscopic properties of the novel O4H(+) species is presented. The equilibrium structures and relative energies of all multiplet states have been determined systematically by analyzing static and dynamical correlation effects. The two and three body dissociation processes have been studied and indicate the presence of conical intersections in various states including the ground state. Comparison with available thermochemical data is very good, supporting the applied methodology. The reaction, H3(+) + O4→ O4H(+) + H2, was found to be exothermic ΔH = -19.4 kcal mol(-1) and therefore, it is proposed that the product in the singlet state could be formed in the interstellar medium (ISM) via collision processes. To aid in its laboratory or radioastronomy detection in the interstellar medium we determined spectroscopic fingerprints. It is estimated for the most stable geometry of O4H(+) dipole allowed electronic transitions in the visible region at 429 nm and 666 nm, an intense band at 1745 cm(-1) in the infrared and signals at 40.6, 81.2 and 139.2 GHz in the microwave region at 10, 50 and 150 K respectively, relevant for detection in the ISM.

  8. Spectroscopic study of honey from Apis mellifera from different regions in Mexico

    Science.gov (United States)

    Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, JL; Macías-López, E.; Bujdud-Pérez, JM; Medina-Ramírez, I.

    2017-05-01

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  9. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    Science.gov (United States)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  10. Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: a population-based and inter-laboratory study

    OpenAIRE

    Isokuortti, Elina; Zhou, You; Peltonen, Markku; Bugianesi, Elisabetta; Clement, Karine; Bonnefont-Rousselot, Dominique; Lacorte, Jean-Marc; Gastaldelli, Amalia; Schuppan, Detlef; Schattenberg, Jörn M.; Hakkarainen, Antti; Lundbom, Nina; Jousilahti, Pekka; Männistö, Satu; Keinänen-Kiukaanniemi, Sirkka

    2017-01-01

    Aims/hypothesis\\ud \\ud Recent European guidelines for non-alcoholic fatty liver disease (NAFLD) call for reference values for HOMA-IR. In this study, we aimed to determine: (1) the upper limit of normal HOMA-IR in two population-based cohorts; (2) the HOMA-IR corresponding to NAFLD; (3) the effect of sex and PNPLA3 genotype at rs738409 on HOMA-IR; and (4) inter-laboratory variations in HOMA-IR.\\ud \\ud Methods\\ud \\ud We identified healthy individuals in two population-based cohorts (FINRISK 20...

  11. Retrieval of Tropospheric Profiles from IR Emission Spectra: Field Experiment and Sensitivity Study

    National Research Council Canada - National Science Library

    Theriault, J

    1993-01-01

    .... The goal of this project was the retrieval of atmospheric temperature and water vapor profiles and possibly over relevant information on clouds and aerosol properties from high resolution IR emission...

  12. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A near-infrared spectroscopic study of the starburst core of M82

    International Nuclear Information System (INIS)

    Lester, D.F.; Gaffney, N.; Carr, J.S.; Joy, M.

    1990-01-01

    Near-IR spectroscopy of the M82 starburst core is presented, including complete J, H, and K band spectra with a resolution of 0.0035-micron for the inner 60 pc of the galaxy. Also, spatial profiles along the starburst ridge are presented for Br-gamma, molecular hydrogen, and forbidden Fe II line fluxes. Emission from shocked molecular hydrogen is detected from the core of M82. The distribution of features across the starburst disk are mapped to study the relationships between spectral diagnostics. The observations are used to test the appropriateness of single-beam, aggregate models for studying the physical conditions in starbursts. 68 refs

  14. A near-infrared spectroscopic study of the starburst core of M82

    Science.gov (United States)

    Lester, D. F.; Gaffney, N.; Carr, J. S.; Joy, M.

    1990-01-01

    Near-IR spectroscopy of the M82 starburst core is presented, including complete J, H, and K band spectra with a resolution of 0.0035-micron for the inner 60 pc of the galaxy. Also, spatial profiles along the starburst ridge are presented for Br-gamma, molecular hydrogen, and forbidden Fe II line fluxes. Emission from shocked molecular hydrogen is detected from the core of M82. The distribution of features across the starburst disk are mapped to study the relationships between spectral diagnostics. The observations are used to test the appropriateness of single-beam, aggregate models for studying the physical conditions in starbursts.

  15. Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques

    International Nuclear Information System (INIS)

    Gaafar, M.S.; El-Aal, N.S. Abd; Gerges, O.W.; El-Amir, G.

    2009-01-01

    Glasses in the system (1 - x) [29Na 2 O- 4Al 2 O 3 - 67B 2 O 3 ]- xZnO (0 ≤ x ≤ 35 mol%), have been prepared by the melt quenching technique. Elastic properties, X-ray and FT-IR spectroscopic studies have been employed to study the role of ZnO on the structure of the investigated glass system. Elastic properties and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz at room temperature. The results showed that the density increases and the molar volume decreases while both sound velocities and the determined glass transition temperatures decrease with increase in x. X-ray and infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of ZnO content. These results are interpreted in terms of the decrease in the N 4 values (fraction of tetrahedral coordinated boron atoms), and substitution of longer bond lengths of Zn-O in place of shorter B-O bond. The results indicate that Zinc ions have been substituted for boron ions as tetrahedral network former ions. The elastic moduli are observed to increase with the increase of ZnO content.

  16. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  17. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies

    Science.gov (United States)

    Abo Dena, Ahmed S.; Abdel Gaber, Sara A.

    2017-06-01

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV.

  18. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    Science.gov (United States)

    Gómez-Zavaglia, A.; Fausto, R.

    2004-02-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and is characterized by a NH⋯O intramolecular hydrogen bond; in this form, the ester group assumes the cis configuration and the OC-C-N and Lp-N-C-C (where Lp is the nitrogen lone electron pair) dihedral angles are ca. -17.8 and 171.3°, respectively. The second most stable conformer ( GSC) differs from the ASC conformer essentially in the conformation assumed by the methylamino group, which in this case is gauche ( Lp-N-C-C dihedral angle equal to 79.4°). On the other hand, the third most stable conformer ( AAC) differs from the most stable form in the conformation of the OC-C-N axis (151.4°). These three forms were predicted to differ in energy by less than ca. 5 kJ mol -1 and represent ≈95% of the total conformational population at room temperature. FT-IR spectra were obtained for sarcosine-Me isolated in argon matrices (T=9 K) revealing the presence in the matrices of the three lowest energy conformers predicted by the calculations. The matrices were prepared by deposition of the vapour of the compound using two different nozzle temperatures, 25 and 60 °C. The relative populations of the three conformers trapped in the matrices were found to be consistent with occurrence of conformational cooling during matrix deposition and with a stabilization of the most polar GSC and AAC conformers in the matrices compared to the gas phase. Indeed, like it was previously observed for the methyl ester of dimethylglycine [Phys. Chem. Chem. Phys. 5 (2003) 52] the different

  19. Colchiceine Complexes with Lithium, Sodium and Potassium Salts − Spectroscopic Studies

    Directory of Open Access Journals (Sweden)

    Joanna Kurek

    2016-09-01

    Full Text Available Colchiceine complexes with Li+, Na+ and K+ cations have been synthesized and studied by 1H and 13C NMR, FT-IR, FAB MS and UV-Vis. It has been shown that colchiceine forms stable complexes especially with lithium cation and the most stable structures of the complexes are those in which the acetamide groups are involved in the coordination process. The structures of the colchiceine complexes with Li+, Na+ and K+ cations are discussed in details. This work is licensed under a Creative Commons Attribution 4.0 International License.

  20. Infra-red and Raman spectroscopic studies of infected and affected dentine

    International Nuclear Information System (INIS)

    Aminzadeh, A.; Aminzadeh, A.; Khosravy, K.

    2002-01-01

    Diagnosis of infected and affected dentine is an important factor in clinical restorative treatment of dentine. In this study, the IR and Raman spectra of the sound dentine, infected dentine and affected dentine are reported. The structure of infected dentine and affected dentine has been compared with the sound dentine and hydroxyapatite. It is shown while the infected dentine has lost its structure, the affected dentine has more or less a structure similar to the sound dentine. The molecular structure of collagen remains unchanged in both infected and affected dentine

  1. In vivo P-31 MR spectroscopic studies of liver in normal adults and cirrhotic patients

    International Nuclear Information System (INIS)

    Ban, N.; Moriyasu, F.; Tamada, T.

    1986-01-01

    The author performed in vivo P-31 MR spectroscopic studies of normal and diseased human liver using an experimental 2.0-T whole-body MR imager. Then normal adults and ten cirrhotic patients in the fasting state were studied. Spatially localized in vivo P-31 MR spectra of human liver were obtained in combination with the use of a surface coil and gradient magnetic field. Six spectral peaks were observed in both groups and were assigned, from left to right, to phosphomonoester, inorganic phosphate, phosophodiester, γ-ATP, α-ATP, and β-ATP, on the basis of the chemical shifts. There were no definite differences between the spectral patterns of normal adults and those of cirrhotic patients in the fasting state

  2. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  3. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  4. Defect study in ZnO related structures-A multi-spectroscopic approach

    International Nuclear Information System (INIS)

    Ling, C.C.; Cheung, C.K.; Gu, Q.L.; Dai, X.M.; Xu, S.J.; Zhu, C.Y.; Luo, J.M.; Zhu, C.Y.; Tam, K.H.; Djurisic, A.B.; Beling, C.D.; Fung, S.; Lu, L.W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H.C.

    2008-01-01

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2 O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure

  5. Defect study in ZnO related structures-A multi-spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.C. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)], E-mail: ccling@hku.hk; Cheung, C.K.; Gu, Q.L.; Dai, X.M.; Xu, S.J.; Zhu, C.Y.; Luo, J.M.; Zhu, C.Y.; Tam, K.H.; Djurisic, A.B.; Beling, C.D.; Fung, S.; Lu, L.W. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Brauer, G.; Anwand, W.; Skorupa, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Ong, H.C. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China)

    2008-10-31

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H{sub 2}O{sub 2} pre-treatment induced ohmic to rectifying contact conversion on Au/n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.

  6. Defect study in ZnO related structures—A multi-spectroscopic approach

    Science.gov (United States)

    Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Zhu, C. Y.; Tam, K. H.; Djurišić, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.

    2008-10-01

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/ n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.

  7. Matrix-isolation FT-IR spectra and theoretical study of dimethyl sulfate

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Simões, Pedro N. N. L.; Fausto, Rui

    2005-05-01

    The preferred conformations of dimethyl sulfate and their vibrational spectra were studied by matrix-isolation FT-IR spectroscopy and theoretical methods (DFT and MP2, with basis sets of different sizes, including the quadruple-zeta, aug-cc-pVQZ basis). Conformer GG (of C 2 symmetry and exhibiting O sbnd S sbnd O sbnd C dihedral angles of 74.3°) was found to be the most stable conformer in both the gaseous phase and isolated in argon. Upon annealing of the matrix, the less stable observed conformer (GT; with C 1 symmetry) quickly converts to the GG conformer, with the resulting species being embedded in a matrix-cage which corresponds to the most stable matrix-site for GG form. The highest energy TT conformer, which was assumed to be the most stable conformer in previous studies, is predicted by the calculations to have a relative energy of ca. 10 kJ mol -1 and was not observed in the spectra of the matrix-isolated compound.

  8. Study of the odd mass transition nuclei: 185Hg, 187Hg, 189Hg and 183Ir

    International Nuclear Information System (INIS)

    Zerrouki, A.

    1979-01-01

    The radioactive decay of 185 Tl, 186 Tl, 187 Tl has been studied on the isotope separator Isocele II working on line with the Orsay synchrocyclotron from Au( 3 He,xn) reactions: the emitted α lines have been measured and the main γ lines belonging to the 187 Tl→ 187 Hg decay have been identified. The 185 Hg, 187 Hg, 189 Hg high spin states have been studied using the following (HI,xn) reactions obtained on the Strasbourg MP Tandem: 168 Er( 24 Mg,xn) 187 Hg, 188 Hg, 166 Er( 24 Mg,xn) 185 Hg, 186 Hg, 157 Gd( 32 S,xn) 184 Hg, 185 Hg, 158 Gd( 32 S,5n) 185 Hg and 175 Lu( 19 F,5n) 189 Hg. The excitation functions are indicated and a high spin level scheme of 189 Hg is proposed: it is compared to the 'quasiparticle + triaxial rotor' model predictions. A level scheme of 183 Ir is proposed from the data collected at Isolde II (CERN) by Dr. SCHUCK: it is analysed within the framework of the same theoretical model used above [fr

  9. A study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents.

    Science.gov (United States)

    Singh, Yashpal; Garg, M K; Tandon, Nikhil; Marwaha, Raman Kumar

    2013-01-01

    Insulin resistance (IR) and associated metabolic abnormalities are increasingly being reported in the adolescent population. Cut-off value of homeostasis model of assessment IR (HOMA-IR) as an indicator of metabolic syndrome (MS) in adolescents has not been established. This study aimed to investigate IR by HOMA-IR in urban Indian adolescents and to establish cut-off values of HOMA-IR for defining MS. A total of 691 apparently healthy adolescents (295 with normal body mass index (BMI), 205 overweight, and 199 obese) were included in this cross-sectional study. MS in adolescents was defined by International Diabetes Federation (IDF) and Adult Treatment Panel III (ATP III) criteria. IR was calculated using the HOMA model. Mean height, waist circumference (WC), waist/hip ratio (WHR), waist/height ratio (WHtR), and blood pressure were significantly higher in boys as compared to girls. The HOMA-IR values increased progressively from normal weight to obese adolescents in both sexes. Mean HOMA-IR values increased progressively according to sexual maturity rating in both sexes. HOMA-IR value of 2.5 had a sensitivity of >70% and specificity of >60% for MS. This cut-off identified larger number of adolescents with MS in different BMI categories (19.7% in normal weight, 51.7% in overweight, and 77.0% in obese subjects) as compared to the use of IDF or ATP III criteria for diagnosing MS. Odds ratio for having IR (HOMA-IR of >2.5) was highest with WHtR (4.9, p pHOMA-IR increased with sexual maturity and with progression from normal to obese. A HOMA-IR cut-off of 2.5 provided the maximum sensitivity and specificity in diagnosing MS in both genders as per ATP III and IDF criteria.

  10. A Spectroscopic Study of Young Stellar Objects in the Serpens Cloud Core and NGC 1333

    Science.gov (United States)

    Winston, E.; Megeath, S. T.; Wolk, S. J.; Hernandez, J.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Covey, K.; Allen, L. E.; Spitzbart, B.; Peterson, D.; Myers, P.; Fazio, G. G.

    2009-06-01

    We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K bands from SpeX on the IRTF and far-red spectra (6000-9000 Å) from Hectospec on the Multi-Mirror Telescope. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra we search for corroborating evidence for the pre-main-sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. The temperatures implied by the spectral types are combined with luminosities determined from the near-IR photometry to construct Hertzsprung-Russell (H-R) diagrams for the clusters. By comparing the positions of the YSOs in the H-R diagrams with the pre-main-sequence tracks of Baraffe (1998), we determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distributions of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages >3 Myr show all the characteristics of YSOs in their spectra, their IR spectral energy distributions, and their X-ray emission; we find no evidence that they are contaminating background giants or foreground dwarfs. However, we find no corresponding decrease in the fraction of sources with infrared excess with isochronal age; this suggests that the older isochronal ages may not measure the true age of the >3

  11. Potential curves and spectroscopic study of the electronic states of the molecular ion LiCs+

    International Nuclear Information System (INIS)

    Moughrabi, A.; Korek, M.; Allouche, A.R.

    2004-01-01

    Full text.Due to a very accurate high-resolution techniques and to the spectacular developments in ultracold alkali atom trapping developments which are at the root of photo association spectroscopy there has been a renewed interest on the spectroscopic study of alkali dimers. The existence of new experimental data on these species has stimulated theoretical approaches, necessary to provide predictions accurate enough to be useful for interpretation and evenly for guidance of experiments. With the aim of improving the accuracy of predictions we will perform a theoretical study of the electronic structure of the molecular ion LiCs + , using a method mainly in the way by which core-valence effects are taken into account. To investigate the electronic structure of LiCs + we will use the package CIPSI (Configuration Interaction by Perturbation of a multiconfiguration wave function Selected Interactively) of the Laboratoire de Physique Quantique (Toulouse, France). The atoms Li and Cs will be treated through non-empirical effective one electron core potentials of Durand and Barthelat type. Molecular orbitals for LiCs + will be derived from Self Consistent Field Calculations (SCF) and full valence Configuration Interaction (IC) calculations. A core-core interaction more elaborated than the usual approximation 1/R will be taken into account as the sum of an exponential repulsive term plus a long range dispersion term approximated by the well known London formula. Potential energy calculations will be performed for different molecular states, for numerous values of the inter-nuclear distance R in a wide range. Spectroscopic constants have been derived for the bound states with a regular shape A ro vibrational study have been performed for the ground states with a calculation of the rotational and centrifugal distortion constants. A calculation for the transition dipole moment and matrix elements have been done for the bound states

  12. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  13. Study on the phenomenon of insulin resistance (IR) in patients with acute cerebral infarction

    International Nuclear Information System (INIS)

    Chen Xinhua; Wang Genfa; Yu Lihua

    2007-01-01

    Objective: To investigate the presence of insulin resistance (IR) in patients with cerebral infarction and the indication for insulin therapy. Methods: Fasting blood glucose (FPG) (with biochemistry), fasting serum insulin (FINS) and cortisol (with RIA) levels were measured in 50 patients with cerebral infarction and 80 controls. Insulin sensitivity index (ISI) was calculated and correlation with the score of neurologic impairment as well as the size of lesion was studied. Results: FPG, FINS and cortisol levels in the patients were significantly higher than those in the controls (P<0.001 ) while the ISI was significantly lower (P <0.001 ) than that in the controls. Levels of there parameters were significantly higher in patients with moderate-severe lesions than those in patients with only mild lesion (P<0.001, P<0.01, P<0.05 respectively). ISI was negatively correlated to the size of infarction (r=-0.313, P<0.05) and also to the score of neurologic impairment (r=-0.317, P<0.05). The mortality and morbidity in the moderate severe group were naturally higher than those in the mild group. Conclusion: Insulin resistance does exist during the acute stage of cerebral infarction. Degree of hyperinsulinaemia and severity of the resistance are related to the course and prognosis of the disease process. Insulin therapy should be considered in those patients with hyperglycemia. (authors)

  14. Performance studies of an IR fiber optic sensor for chlorinated hydrocarbons in water

    International Nuclear Information System (INIS)

    Goebel, R.; Krska, R.; Neal, S.; Kellner, R.

    1994-01-01

    Chlorinated hydrocarbons (CHCs) were monitored using a recently presented infrared fiber-optic physico-chemical sensor consisting of an MIR transparent, polymer coated, silver halide fiber coupled to a commercial FTIR spectrometer. The aim of this study was to test the performance of this new fiber optic sensing device with respect to temperature dependence, simultaneous detection of several CHCs, sensitivity and dynamic response behavior. In addition the diffusion process of the CHCs into the polymer was analyzed in order to better understand and evaluate the obtained results. During the investigation of the temperature dependence of the sensor response to real trend could be observed in the temperature range of 0 to 22 C. The dynamic response of the sensor is in the minute range when experiencing an increase in concentration of the analyte while with a decrease in concentration, the response is relatively slow. The sensor enabled the detection of 10 environmentally relevant CHCs at concentrations of 1 to 50 ppm. The simulation of the experimental diffusion data revealed Fick's 1st law diffusion for CHCs into the polymer layers. Finally the sensing device was validated with head spacegas chromatography (HSGC) analyses and showed good agreement with these already established methods. This work shows the great potential of IR fiber optic sensors as early warning systems for a variety of CHCs in water (''threshold alarm sensor'') (orig.)

  15. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 1

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ spectroelectrochemical measurements with external reflection FT-IR are performed at different stages of polymerization of 0.05, 0.1 and 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. The biphenyl concentration is not found to have any effect on the structure of the polymer formed. Formation of oligomers and the ratio of ortho/para-substituted polymer chains during film growth are studied. The first coupling of dimers to oligomers is found to take place in the vicinity of the electrode surface and at a later stage of polymerization the oligomers start to form polymer film on the electrode. A mixed para and ortho coupling resulting in crosslinking between chains is observed already at the early stage of polymerization. However, when a lower current density is used a more ordered polymer structure is obtained. A breakdown of the polymer film due to overoxidation can be seen when the potential is increased to 2.0 V. (orig.)

  16. Study of the influence of Nb buffer layer on the exchange coupling induced at the Co/IrMn interface

    Energy Technology Data Exchange (ETDEWEB)

    Merino, I.L.C., E-mail: isabel5cas@gmail.com [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil); Figueiredo, L.C. [Instituto de Física, Universidade de Brasília, Brasília 70910-900 (Brazil); Passamani, E.C.; Nascimento, V.P. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910 (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia 74560-900 (Brazil); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil)

    2017-06-15

    Highlights: • Nb buffer layer favors smooth/rough Co/IrMn interfaces, depending on its thickness. • Double and single-like hysteresis loop features depend on the Nb thickness. • Co uniaxial anisotropy induced exchange-bias in as-deposited sample. • Uniaxial and exchange-bias anisotropy directions depend on the Nb thickness. • Thicker Nb favors non-collinear anisotropies, while thinner Nb favors collinear. - Abstract: Hybrid Nb(t{sub Nb})/Co(10 nm)/IrMn(15 nm)/Nb(10 nm) heterostructured materials were prepared by DC Magnetron Sputtering and systematically studied by X-ray, magnetization and ferromagnetic resonance techniques. For thinner Nb buffer layer (≤10 nm), it was found that there is an inter-diffusion at Co/IrMn interface, which favors double-like hysteresis loop. For thicker Nb layers, however, a gradual transition from double to single-like hysteresis loops is observed and it is associated with the reduction of the Nb roughness, which also enhances the exchange coupling at the Co/IrMn interface. Nb grown on IrMn layer induces the formation of an NbIrMn alloy layer, while no evidence of inter-diffusion at the Co/Nb interface is observed. For rougher Nb buffer layers (t{sub Nb} < 50 nm), exchange bias and Co uniaxial anisotropies are pointing at the same direction (β∼zero), but for smoother Nb buffer layer (t{sub Nb} = 50 nm) a β angle of 150{sup o} is found. Exchange bias effect was measured in as-prepared and in field-cooled samples; being its presence, in as-prepared sample, attributed to the unidirectional anisotropy of the Co layer (its intensity is modified in case of sample with a CoIrMn alloy layer). Considering that the Si/Nb/Co/IrMn interfaces have different β values (t{sub Nb} = 35 and 50 nm), a study of the influence of magnetization direction, governed by exchange-biased layers, on superconducting properties of Nb films can be successfully done in this hybrid system.

  17. Optical properties of gold island films-a spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, Martin, E-mail: mloncaric@irb.hr; Sancho-Parramon, Jordi; Zorc, Hrvoje

    2011-02-28

    Metal island films of noble metals are obtained by deposition on glass substrates during the first stage of evaporation process when supported metal nanoparticles are formed. These films show unique optical properties, owing to the localized surface plasmon resonance of free electrons in metal nanoparticles. In the present work we study the optical properties of gold metal island films deposited on glass substrates with different mass thicknesses at different substrate temperatures. The optical characterization is performed by spectroscopic ellipsometry at different angles of incidence and transmittance measurements at normal incidence in the same point of the sample. Fitting of the ellipsometric data allows determining the effective optical constants and thickness of the island film. A multiple oscillator approach was used to successfully represent the dispersion of the effective optical constants of the films.

  18. Phosphorus-31 nuclear magnetic resonance spectroscopic study of the canine pancreas: applications to acute alcoholic pancreatitis

    International Nuclear Information System (INIS)

    Janes, N.; Clemens, J.A.; Glickson, J.D.; Cameron, J.L.

    1988-01-01

    The first nuclear magnetic resonance spectroscopic study of the canine pancreas is described. Both in-vivo, ex-vivo protocols and NMR observables are discussed. The stability of the ex-vivo preparation based on the NMR observables is established for at least four hours. The spectra obtained from the in-vivo and ex-vivo preparations exhibited similar metabolite ratios, further validating the model. Metabolite levels were unchanged by a 50% increase in perfusion rate. Only trace amounts of phosphocreatine were observed either in the intact gland or in extracts. Acute alcoholic pancreatitis was mimicked by free fatty acid infusion. Injury resulted in hyperamylasemia, edema (weight gain), increased hematocrit and perfusion pressure, and depressed levels of high energy phosphates

  19. Spectroscopic study of plasma produced with a heavy ion maxilac beam

    International Nuclear Information System (INIS)

    Belyaev, G.E.; Golubev, A.A.; Sharkov, B.Y.; Mahrt-Olt, K.; Hoffmann, D.H.H.

    1992-01-01

    Spectroscopic study of plasma produced through bombardment of the 1 x 3 mm 2 area on the surface of a solid Mg target with Kr + ions is carried out. Spectral lines of Mg I and Mg II ions were observed in the visible range (200-600 nm). The plasma parameters N e 1.4·10 17 cm -3 and T e = 0.8 eV are calculated from electron impact broadening of the 4f-3d line of MgII and from the ratio of intensities for the 4f-3d and 4s-3p lines of Mg II. The ionic composition of the plasma is determined. The detected X-ray emission is shown to be the characteristic emission of the target. (author)

  20. Spectroscopic study of S = -2 hypernuclei with a new spectrometer S-2S

    International Nuclear Information System (INIS)

    Kanatsuki, Shunsuke; Amano, Nobuaki; Ekawa, Hiroyuki

    2015-01-01

    A spectroscopic study of Ξ hypernucleus is planned to carry out in the J-PARC E05 experiment at J-PARC K1.8 beam line. We aim to observe bound state peaks of Ξ hypernucleus through the "1"2C(K"-, K"+) reaction with an energy resolution of better than 2 MeV. For this experiment, we are constructing a new spectrometer to analyze the scattered K"+ momentum precisely. Construction of the magnets will be completed by the end of JFY2014, and most parts of detectors are almost ready. The plan of the experiment and the design and status of the new spectrometer are presented. (author)

  1. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study

    Science.gov (United States)

    Bayraktutan, Tuğba; Onganer, Yavuz

    2017-01-01

    The binding mechanism and protein-fluorescence probe interactions between bovine serum albumin (BSA) and coumarin 35 (C35) was investigated by using UV-Vis absorption and fluorescence spectroscopies since they remain major research topics in biophysics. The spectroscopic data indicated that a fluorescence quenching process for BSA-C35 system was occurred. The fluorescence quenching processes were analyzed using Stern-Volmer method. In this regard, Stern-Volmer quenching constants (KSV) and binding constants were calculated at different temperatures. The distance r between BSA (donor) and C35 (acceptor) was determined by exploiting fluorescence resonance energy transfer (FRET) method. Synchronous fluorescence spectra were also studied to observe information about conformational changes. Moreover, thermodynamics parameters were calculated for better understanding of interactions and conformational changes of the system.

  2. Spectroscopic studies of the physical origin of environmental aging effects on doped graphene

    International Nuclear Information System (INIS)

    Chang, J.-K.; Hsu, C.-C.; Liu, S.-Y.; Wu, C.-I.; Gharib, M.; Yeh, N.-C.

    2016-01-01

    The environmental aging effect of doped graphene is investigated as a function of the organic doping species, humidity, and the number of graphene layers adjacent to the dopant by studies of the Raman spectroscopy, x-ray and ultraviolet photoelectron spectroscopy, scanning electron microscopy, infrared spectroscopy, and electrical transport measurements. It is found that higher humidity and structural defects induce faster degradation in doped graphene. Detailed analysis of the spectroscopic data suggest that the physical origin of the aging effect is associated with the continuing reaction of H_2O molecules with the hygroscopic organic dopants, which leads to formation of excess chemical bonds, reduction in the doped graphene carrier density, and proliferation of damages from the graphene grain boundaries. These environmental aging effects are further shown to be significantly mitigated by added graphene layers.

  3. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    Science.gov (United States)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  4. Raman spectroscopic study of “The Malatesta”: A Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G. M.; Vandenabeele, Peter; Benoy, Timothy J.

    2015-02-01

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  5. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    Science.gov (United States)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  6. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    International Nuclear Information System (INIS)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong

    2016-01-01

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future

  7. SPECTROSCOPIC STUDY OF THE N159/N160 COMPLEX IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Farina, Cecilia; Bosch, Guillermo L.; Morrell, Nidia I.; Barba, Rodolfo H.; Walborn, Nolan R.

    2009-01-01

    We present a spectroscopic study of the N159/N160 massive star-forming region south of 30 Doradus in the Large Magellanic Cloud, classifying a total of 189 stars in the field of the complex. Most of them belong to O and early B spectral classes; we have also found some uncommon and very interesting spectra, including members of the Onfp class, a Be P Cygni star, and some possible multiple systems. Using spectral types as broad indicators of evolutionary stages, we considered the evolutionary status of the region as a whole. We infer that massive stars at different evolutionary stages are present throughout the region, favoring the idea of a common time for the origin of recent star formation in the N159/N160 complex as a whole, while sequential star formation at different rates is probably present in several subregions.

  8. NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions

    International Nuclear Information System (INIS)

    Gil, S.; Kummerle, S.; Hosek, T.; Pierattelli, R.; Felli, I.C.; Solyom, Z.; Brutscher, B.

    2013-01-01

    We have shown here that 13 C-start 13 -C detected experiments do not suffer from fast hydrogen exchange between amide and solvent protons in IDP samples studied at close to physiological conditions, thus enabling us to recover information that would be difficult or even impossible to obtain through amide 1 H-detected experiments. Furthermore, in favourable cases the fast hydrogen exchange rates can even be turned into a spectroscopic advantage. By combining longitudinal 1 H relaxation optimized BEST-type techniques with 13 C-direct detection pulse schemes, important sensitivity improvements can be achieved, and experimental times can be significantly reduced. This opens up new applications for monitoring chemical shift changes in IDPs upon interaction to a binding partner, chemical modification, or by changing the environment, under sample conditions that were inaccessible by conventional techniques. (authors)

  9. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong [Gyeongsang National University, Jinju (Korea, Republic of)

    2016-10-15

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future.

  10. Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin

    DEFF Research Database (Denmark)

    Celebioglu, Hilal Yilmaz; Guðjónsdóttir, María; Meier, Sebastian

    2015-01-01

    Dichroism (CD) spectroscopy. The zeta potentials of the proteins were also measured to provide information on the role of electrostatic forces in the interaction. The ratio between BLG and BSM was 1:1, and pH was adjusted to 3.0, 5.0 and 7.4 at room temperature. These spectroscopic results suggested......The structural changes occurring during the interaction between β-lactoglobulin (BLG), the major whey protein, and bovine submaxillary mucin (BSM), a major salivary protein, were studied using high and low field Nuclear Magnetic Resonance (NMR), Dynamic Light Scattering (DLS), and Circular...... in the BLG–BSM mixtures for water–protein interaction after aggregation of the two proteins....

  11. Spectroscopic study of plasma produced with a heavy ion maxilac beam

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, G.E.; Golubev, A.A.; Sharkov, B.Y. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Teoreticheskoj i Ehksperimental' noj Fiziki); Bryunetkin, B.A.; Skobelev, I.Y.; Faenov, A.Y. (Nauchno-Proizvostvennoe Ob' ' edinenie VNIIFTRI, Mendeleevo (Russian Federation)); Mahrt-Olt, K.; Hoffmann, D.H.H. (Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany))

    1992-01-01

    Spectroscopic study of plasma produced through bombardment of the 1 x 3 mm[sup 2] area on the surface of a solid Mg target with Kr[sup +] ions is carried out. Spectral lines of Mg I and Mg II ions were observed in the visible range (200-600 nm). The plasma parameters N[sub e] 1.4[center dot]10[sup 17] cm [sup -3] and T[sub e] = 0.8 eV are calculated from electron impact broadening of the 4f-3d line of MgII and from the ratio of intensities for the 4f-3d and 4s-3p lines of Mg II. The ionic composition of the plasma is determined. The detected X-ray emission is shown to be the characteristic emission of the target. (author).

  12. An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites

    NARCIS (Netherlands)

    Coenen, K.T.; Gallucci, F.; Mezari, B.; Hensen, E.J.M.; van Sint Annaland, M.

    2018-01-01

    In-situ IR technique was used to study the reversible adsorption of CO2 and H2O at elevated temperatures on a potassium-promoted hydrotalcite for its use in sorption-enhanced water-gas shift (SEWGS). It was found that mainly bidentate carbonate species are responsible for the reversible (cyclic)

  13. A spatial study of the mid-IR emission features in four Herbig Ae/Be stars

    NARCIS (Netherlands)

    Boersma, C.; Peeters, E.; Martin-Hernandez, N. L.; van der Wolk, G.; Verhoeff, A. P.; Tielens, A. G. G. M.; Waters, L. B. F. M.; Pel, J. W.

    Context. Infrared (IR) spectroscopy and imaging provide a prime tool to study the characteristics of polycyclic aromatic hydrocarbon (PAH) molecules and the mineralogy in regions of star formation. Herbig Ae/Be stars are known to have varying amounts of natal cloud material present in their

  14. Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2016-05-01

    Full Text Available The aim of this study was attempted to investigate both the glycation kinetics and protein secondary conformational changes of human serum albumin (HSA after the reaction with ribose. The browning and fluorescence determinations as well as Fourier transform infrared (FTIR microspectroscopy with a curve-fitting technique were applied. Various concentrations of ribose were incubated over a 12-week period at 37 ± 0.5 oC under dark conditions. The results clearly shows that the glycation occurred in HSA-ribose reaction mixtures was markedly increased with the amount of ribose used and incubation time, leading to marked alterations of protein conformation of HSA after FTIR determination. In addition, the browning intensity of reaction solutions were colored from light to deep brown, as determined by optical observation. The increase in fluorescence intensity from HSA–ribose mixtures seemed to occur more quickly than browning, suggesting that the fluorescence products were produced earlier on in the process than compounds causing browning. Moreover, the predominant α-helical composition of HSA decreased with an increase in ribose concentration and incubation time, whereas total β-structure and random coil composition increased, as determined by curve-fitted FTIR microspectroscopy analysis. We also found that the peak intensity ratios at 1044 cm−1/1542 cm−1 markedly decreased prior to 4 weeks of incubation, then almost plateaued, implying that the consumption of ribose in the glycation reaction might have been accelerated over the first 4 weeks of incubation, and gradually decreased. This study first evidences that two unique IR peaks at 1710 cm−1 [carbonyl groups of irreversible products produced by the reaction and deposition of advanced glycation end products (AGEs] and 1621 cm−1 (aggregated HSA molecules were clearly observed from the curve-fitted FTIR spectra of HSA-ribose mixtures over the course of incubation time. This study

  15. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Pronab; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2016-06-21

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2′-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN{sub 2}) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ{sup ∗} or the ππ{sup ∗} absorption band, respectively. Together with the fluorescence bands, the LN{sub 2} studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G{sup ∗∗} level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S{sub 1} and the T{sub 1} states—one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S{sub 2}) state. This is ascribed to the proximity of the minimum of the PEC of the S{sub 2} state and the hill-top of the PEC of the S{sub 1} state.

  16. Application of spectroscopic techniques to the study of illuminated manuscripts: A survey

    International Nuclear Information System (INIS)

    Pessanha, S.; Manso, M.; Carvalho, M.L.

    2012-01-01

    This work focused on the application of the most relevant spectroscopic techniques used for the characterization of illuminated manuscripts. The historical value of these unique and invaluable artworks, together with the increased awareness concerning the conservation of cultural heritage, prompted the application of analytical techniques to the study of these illuminations. This is essential for the understanding of the artist's working methods, which aids conservation–restoration. The characterization of the pigments may also help assign a probable date to the manuscript. For these purposes, the spectroscopic techniques used so far include those that provide information on the elemental content: X-ray fluorescence, total reflection X-ray fluorescence and scanning electron microscopy coupled with energy-dispersive spectroscopy and laser-induced breakdown spectroscopy. Complementary techniques, such as X-ray diffraction, Fourier transform infrared and Raman spectroscopy, reveal information regarding the compounds present in the samples. The techniques, suitability, technological evolution and development of high-performance detectors, as well as the possibility of microanalysis and the higher sensitivity of the equipment, will also be discussed. Furthermore, issues such as the necessity of sampling, the portability of the equipment and the overall advantages and disadvantages of different techniques will be analyzed. - Highlights: ► The techniques used for studying illuminated manuscripts are described and compared. ► For in situ, non-destructive analysis the most suitable technique is EDXRF. ► For quantitative analysis TXRF is more appropriate. ► Raman spectroscopy is mostly used for pigments identification. ► FTIR was used for the characterization of binders and parchment.

  17. First-principles study of molecular NO dissociation on Ir(100) surface

    Science.gov (United States)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2014-02-01

    The dissociation of NO on Ir(100) surface is investigated using density functional theory (DFT). The pathway and transition state (TS) of the dissociation of NO molecule are determined using climbing image nudge elastic band (CI-NEB). The prerequisite state of NO dissociation is determining the most stable sites of the reactant and products. We found that the most energetically stable sites are the hollow for N atom and the bridge for NO molecule as well as O atom. We found that the bending of NO is the first step of the dissociation reaction due to the increase of the back-donation from the d-band of Ir to 2 π ∗ orbital of NO, which causes the weakening of NO bond. The dissociation energy barrier of NO molecule on Ir(100) surface is 0.49 eV.

  18. Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system.

    Science.gov (United States)

    Awaji, Naoki; Miyajima, Toyoo; Doi, Shuuichi; Nomura, Kenji

    2010-12-01

    It has recently been found that the exchange bias of a MnIr/CoFe system can be increased significantly by adding a thermal treatment to the bilayer. To reveal the origin of the higher exchange bias, we performed polarized neutron reflectivity measurements at the JRR-3 neutron source. The magnetization vector near the MnIr/CoFe interface for thermally treated samples differed from that for samples without the treatment. We propose a model in which the pinned spin area at the interface is extended due to the increased roughness and atomic interdiffusion that result from the thermal treatment.

  19. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    Science.gov (United States)

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The hippocampus in patients treated with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study.

    Science.gov (United States)

    Ende, G; Braus, D F; Walter, S; Weber-Fahr, W; Henn, F A

    2000-10-01

    We monitored the effect of electroconvulsive therapy (ECT) on the nuclear magnetic resonance-detectable metabolites N-acetylaspartate, creatine and phosphocreatine, and choline-containing compounds in the hippocampus by means of hydrogen 1 magnetic resonance spectroscopic imaging. We hypothesized that if ECT-induced memory deterioration was associated with neuronal loss in the hippocampus, the N-acetylaspartate signal would decrease after ECT and any increased membrane turnover would result in an increase in the signal from choline-containing compounds. Seventeen patients received complete courses of ECT, during which repeated proton magnetic resonance spectroscopic imaging studies of the hippocampal region were performed. Individual changes during the course of ECT were compared with values obtained in 24 healthy control subjects and 6 patients remitted from major depression without ECT. No changes in the hippocampal N-acetylaspartate signals were detected after ECT. A significant mean increase of 16% of the signal from choline-containing compounds after 5 or more ECT treatments was observed. Despite the mostly unilateral ECT application (14 of 17 patients), the increase in the choline-containing compound signal was observed bilaterally. Lactate or elevated lipid signals were not detected. All patients showed clinical amelioration of depression after ECT. Electroconvulsive therapy is not likely to induce hippocampal atrophy or cell death, which would be reflected by a decrease in the N-acetylaspartate signal. Compared with an age-matched control group, the choline-containing compounds signal in patients with a major depressive episode was significantly lower than normal, before ECT and normalized during ECT.

  1. Raman spectroscopic study of a post-medieval wall painting in need of conservation.

    Science.gov (United States)

    Edwards, Howell G M; Farwell, Dennis W; Brooke, Christopher J

    2005-09-01

    Raman spectroscopic studies of four specimens from an important angel wall painting in need of conservation work in a medieval church have provided some information about the pigments and pigment compositions which will influence possible future preservation and restoration strategies. Excitation of the Raman spectra at 1,064 nm in macroscopic mode and at 785 nm in microscopic mode revealed that the white pigment on the angel's wings was a mixture of barytes with calcite and lead white in minor composition. Although the specimens provided were not directly associated with coloured regions of the painting, yellow and blue microcrystals were found and they were identified as chrome yellow and lazurite, respectively. Red and brown particles were identified as cinnabar/vermilion and haematite. Several green particles were also found but could not be identified. The green and blue crystals could be related to neighbouring coloured regions of the artwork and the yellow colour could be identified as a background to the angel figure. Particles of carbon were found to be dispersed throughout the specimens and can be ascribed to soot from candles, heating stoves or oil lamps providing lighting in the church. No evidence for biological deterioration was found from the spectra. The unusual pigment palette is strongly suggestive of a later date of painting than was originally believed but there is a possibility that an earlier rendition exists underneath. Following a review of the spectroscopic data, a more extensive sampling protocol is recommended, from which some stratigraphic evidence could identify the underlying plaster and possible artwork.

  2. Spectroscopic imaging studies of nanoscale polarity and mass transport phenomena in self-assembled organic nanotubes.

    Science.gov (United States)

    Xu, Hao; Nagasaka, Shinobu; Kameta, Naohiro; Masuda, Mitsutoshi; Ito, Takashi; Higgins, Daniel A

    2017-08-02

    Synthetic organic nanotubes self-assembled from bolaamphiphile surfactants are now being explored for use as drug delivery vehicles. In this work, several factors important to their implementation in drug delivery are explored. All experiments are performed with the nanotubes immersed in ethanol. First, Nile Red (NR) and a hydroxylated Nile Red derivative (NR-OH) are loaded into the nanotubes and spectroscopic fluorescence imaging methods are used to determine the apparent dielectric constant of their local environment. Both are found in relatively nonpolar environments, with the NR-OH molecules preferring regions of relatively higher dielectric constant compared to NR. Unique two-color imaging fluorescence correlation spectroscopy (imaging FCS) measurements are then used along with the spectroscopic imaging results to deduce the dielectric properties of the environments sensed by mobile and immobile populations of probe molecules. The results reveal that mobile NR molecules pass through less polar regions, likely within the nanotube walls, while immobile NR molecules are found in more polar regions, possibly near the nanotube surfaces. In contrast, mobile and immobile NR-OH molecules are found to locate in environments of similar polarity. The imaging FCS results also provide quantitative data on the apparent diffusion coefficient for each dye. The mean diffusion coefficient for the NR dye was approximately two-fold larger than that of NR-OH. Slower diffusion by the latter could result from its additional hydrogen bonding interactions with polar triglycine, amine, and glucose moieties near the nanotube surfaces. The knowledge gained in these studies will allow for the development of nanotubes that are better engineered for applications in the controlled transport and release of uncharged, dipolar drug molecules.

  3. Synthesis, X-ray crystallography, thermal studies, spectroscopic and electrochemistry investigations of uranyl Schiff base complexes.

    Science.gov (United States)

    Asadi, Zahra; Shorkaei, Mohammad Ranjkesh

    2013-03-15

    Some tetradentate salen type Schiff bases and their uranyl complexes were synthesized and characterized by UV-Vis, NMR, IR, TG, C.H.N. and X-ray crystallographic studies. From these investigations it is confirmed that a solvent molecule occupied the fifth position of the equatorial plane of the distorted pentagonal bipyramidal structure. Also, the kinetics of complex decomposition by using thermo gravimetric methods (TG) was studied. The thermal decomposition reactions are first order for the studied complexes. To examine the properties of uranyl complexes according to the substitutional groups, we have carried out the electrochemical studies. The electrochemical reactions of uranyl Schiff base complexes in acetonitrile were reversible. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Floatability of Fe-bearing silicates in the presence of starch: Adsorption and spectroscopic studies

    International Nuclear Information System (INIS)

    Severov, V V; Filippova, I V; Filippov, L O

    2013-01-01

    Natural polysaccharides such as starch, dextrin, cellulose and their derivatives are promising non-toxic and biodegradable organic flocculants and flotation depressants. This paper presents the investigation of mechanism of adsorption of corn starch on quartz and Fe-bearing amphibole, i.e. pargasite. The direct measurement of starch adsorption on the mineral surfaces shows no difference between quartz and pargasite. However, the starch adsorption on the magnetite is more important. FT-IR spectroscopy studies reports different adsorption mechanism of starch on quartz and pargasite surface. The key changes observed in starch absorption on quartz are the major shifts in C-0 stretching frequencies presumed existence of a hydrogen bond between starch and quartz surface. The similar changes were observed in this region of IR-band for pargasite. The appearance and disappearance of the bands in the region 960-920 cm −1 corresponds probably to formation of a new chemical bond between starch O-H groups and metal atoms on pargasite surface with formation of a surface complex. This result confirms that adsorption of the starch on the pargasite surface is droved by two mechanism. Hence, existence of strong chemical bond between starch and pargasite surface explains decrease of its floatability compared to quartz in process of iron ore flotation and forces to search new conditioning reagent modes.

  5. Floatability of Fe-bearing silicates in the presence of starch: Adsorption and spectroscopic studies

    Science.gov (United States)

    Severov, V. V.; Filippova, I. V.; Filippov, L. O.

    2013-03-01

    Natural polysaccharides such as starch, dextrin, cellulose and their derivatives are promising non-toxic and biodegradable organic flocculants and flotation depressants. This paper presents the investigation of mechanism of adsorption of corn starch on quartz and Fe-bearing amphibole, i.e. pargasite. The direct measurement of starch adsorption on the mineral surfaces shows no difference between quartz and pargasite. However, the starch adsorption on the magnetite is more important. FT-IR spectroscopy studies reports different adsorption mechanism of starch on quartz and pargasite surface. The key changes observed in starch absorption on quartz are the major shifts in C-0 stretching frequencies presumed existence of a hydrogen bond between starch and quartz surface. The similar changes were observed in this region of IR-band for pargasite. The appearance and disappearance of the bands in the region 960-920 cm-1 corresponds probably to formation of a new chemical bond between starch O-H groups and metal atoms on pargasite surface with formation of a surface complex. This result confirms that adsorption of the starch on the pargasite surface is droved by two mechanism. Hence, existence of strong chemical bond between starch and pargasite surface explains decrease of its floatability compared to quartz in process of iron ore flotation and forces to search new conditioning reagent modes.

  6. Spectroscopic, semiempirical studies and antibacterial activity of new urethane derivatives of natural polyether antibiotic - Monensin A

    Science.gov (United States)

    Huczyński, Adam; Stefańska, Joanna; Piśmienny, Mieszko; Brzezinski, Bogumil

    2013-02-01

    A series of new Monensin A dimers linked by diurethane moiety were synthesised and their molecular structures were studied using ESI-MS, FT-IR, 1H and 13C NMR and PM5 methods. The results showed that the compounds form a pseudo-cyclic structure stabilized by three intramolecular hydrogen bonds and the sodium cation was coordinated by five oxygen atoms of polyether skeleton of Monensin moiety. The NMR and FT-IR data of complexes of Monensin urethane sodium salts demonstrated that within the pseudo-cyclic structure the carbonyl oxygen atom of the urethane group did not coordinate the sodium cation. Monensin urethanes were tested in vitro for the activity against Gram-positive and Gram-negative bacteria and fungi as well as against a series of clinical isolates of Staphylococcus: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA). The most active compound against MRSA and MSSA was 1,4-phenylene diurethane of Monensin with MIC 10.4-41.4 μmol/L).

  7. HOMA-IR Values are Associated With Glycemic Control in Japanese Subjects Without Diabetes or Obesity: The KOBE Study.

    Science.gov (United States)

    Hirata, Takumi; Higashiyama, Aya; Kubota, Yoshimi; Nishimura, Kunihiro; Sugiyama, Daisuke; Kadota, Aya; Nishida, Yoko; Imano, Hironori; Nishikawa, Tomofumi; Miyamatsu, Naomi; Miyamoto, Yoshihiro; Okamura, Tomonori

    2015-01-01

    Several studies have reported that insulin resistance was a major risk factor for the onset of type 2 diabetes mellitus in individuals without diabetes or obesity. We aimed to clarify the association between insulin resistance and glycemic control in Japanese subjects without diabetes or obesity. We conducted a community-based cross-sectional study including 1083 healthy subjects (323 men and 760 women) in an urban area. We performed multivariate regression analyses to estimate the association between the homeostasis model assessment of insulin resistance (HOMA-IR) values and markers of glycemic control, including glycated haemoglobin (HbA1c), 1,5-anhydroglucitol (1,5-AG), and fasting plasma glucose (FPG) levels, after adjustment for potential confounders. Compared with the lowest tertile of HOMA-IR values, the highest tertile was significantly associated with HbA1c and FPG levels after adjustment for potential confounders, both in men (HbA1c: β = 1.83, P = 0.001; FPG: β = 0.49, P HOMA-IR values was inversely associated with 1,5-AG levels compared with the lowest tertile (β = -18.42, P = 0.009) only in men. HOMA-IR values were associated with markers of glycemic control in Japanese subjects without diabetes or obesity. Insulin resistance may influence glycemic control even in a lean, non-diabetic Asian population.

  8. Experimental study and nuclear model calculations on the $^{192}Os (p, n)^{192}$Ir reaction Comparison of reactor and cyclotron production of the therapeutic radionuclide $^{192}$Ir

    CERN Document Server

    Hilgers, K; Sudar, S; 10.1016/j.apradiso.2004.12.010

    2005-01-01

    In a search for an alternative route of production of the important therapeutic radionuclide /sup 192/Ir (T/sub 1/2/=78.83 d), the excitation function of the reaction /sup 192/Os(p, n)/sup 192/Ir was investigated from its threshold up to 20MeV. Thin samples of enriched /sup 192/Os were obtained by electrodeposition on Ni, and the conventional stacked-foil technique was used for cross section measurements. The experimental data were compared with the results of theoretical calculations using the codes EMPIRE-II and ALICE-IPPE. Good agreement was found with EMPIRE-II, but slightly less with the ALICE-IPPE calculations. The theoretical thick target yield of /sup 192/Ir over the energy range E/sub p/=16 to 8MeV amounts to only 0.16MBq/ mu A.h. A comparison of the reactor and cyclotron production methods is given. In terms of yield and radionuclidic purity of /sup 192/Ir the reactor method appears to be superior; the only advantage of the cyclotron method could be the higher specific activity of the product.

  9. Spectroscopic and density functional theory studies of 5,7,3',5'-tetrahydroxyflavanone from the leaves of Olea ferruginea.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Ayub, Khurshid; Farooq, Umar

    2014-07-15

    5,7,3',5'-Tetrahydroxyflavanone (1) was isolated from the leaves of Olea ferruginea and a theoretical model was developed for obtaining the electronic and spectroscopic properties of 1. The geometric and electronic properties were calculated at B3LYP/6-311 G (d, p) level of Density Functional Theory (DFT). The theoretical data was in good agreement with the experimental one. The optimized geometric parameters of compound 1 were calculated for the first time. The theoretical vibrational frequencies of 1 were found to correlate with the experimental IR spectrum after a scaling factor of 0.9811. The UV and NMR spectral data computed theoretically were in good agreement with the experimental data. Electronic properties of the compound i.e., ionization potential (IP), electron affinity (EA), coefficients of HOMO and LUMO were estimated computationally for the first time which can be used to explain its antioxidant as well as other related activities and more active sites on it. The intermolecular interactions and their effects on IR frequencies, electronic and geometric parameters were simulated using water molecule as a model for hydrogen bonding with flavonoid hydroxyl groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Porcine insulin receptor substrate 4 (IRS4) gene: cloning, polymorphism and association study

    Czech Academy of Sciences Publication Activity Database

    Masopust, Martin; Vykoukalová, Z.; Knoll, Aleš; Bartenschlager, H.; Mileham, A.; Deeb, N.; Rohrer, G. A.; Čepica, Stanislav

    2010-01-01

    Roč. 38, - (2010), 2611-2617 ISSN 0301-4851 R&D Projects: GA ČR GA523/07/0353; GA ČR GAP502/10/1216 Institutional research plan: CEZ:AV0Z50450515 Keywords : PCR cloning * Polymorphism * IRS4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.875, year: 2010

  11. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser

    Science.gov (United States)

    2016-12-15

    chemical/bio weapon signatures in real time. • IR sources and detectors have a wide ranging applications in public sector from night vision cameras on cars...Jeffrey D. Bude, Andy J. Bayramian, Christopher D. Marshall, Thomas M. Spinka, Constantin L. Haefner, Test station development for laser-induced

  12. Experimental and theoretical IR study of methanol and ethanol converson over H-SAPO-34

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Ghysels, A.; Mores, D.; De Wispelaere, K.; Van Speybroeck, V.; Weckhuysen, B.M.; Waroquier, M.

    2011-01-01

    Theoretical and experimental IR data are combined to gain insight into the methanol and ethanol conversion over an acidic H-SAPO-34 catalyst. The theoretical simulations use a large finite cluster and the initial physisorption energy of both alcohols is calculated. Dispersive contributions turn out

  13. Structure-function relationship of viral coat proteins : a site-directed spectroscopic study of M13 coat protein

    NARCIS (Netherlands)

    Stopar, D.

    1997-01-01

    This thesis describes the results of a spectroscopic study of the major coat protein of bacteriophage M13. During the infection process this protein is incorporated into the cytoplasmic membrane of Escherichia coli host cells. To specifically monitor the local structural changes

  14. The dynamics of molecular dimers in the crystals of m-aminobenzoic acid studied by inelastic neutron scattering (INS), Raman, IR spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pawlukojc, A.; Leciejewicz, J

    2004-03-29

    Inelastic neutron scattering, Raman and IR spectra were measured for m-aminobenzoic acid (MABA). Optimized geometries and observed frequencies were assigned using DFT calculation on the B3LYP/6-311G** level using Gaussian 98 and Gamess programs. Experimental structural and spectroscopic data are in good agreement with computations assuming the presence in the crystals of molecular dimers composed of two MABA molecules linked by a pair of O-H...O hydrogen bonds each provided by the carboxylic group. INS frequencies have been identified for the O-H (out of plane) mod0008.

  15. Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E,E)-azomethines in colored stretched poly (vinyl alcohol) matrix

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Dikusar, Evgenij; Yahyaei, Hooriye; Kumar, Rakesh; Khaleghian, Mehrnoosh

    2018-04-01

    In the present work, the molecular structures of two new azomethine dyes: have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by B3LYP/6-31+G* level of theory. The electronic spectra of these azomethine dyes in a DMF solvent was carried out by using TD-B3LYP/6-31+G* method. After quantum-chemical calculations two new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for visible region of spectrum were developed. The main optical parameters of the polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal and electrical conductivity of the PVA-films have been studied and explained.

  16. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of a potential chemotherapeutic agent 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile.

    Science.gov (United States)

    Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı

    2014-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    International Nuclear Information System (INIS)

    Rustenholtz Farawila, A.

    2005-06-01

    Supercritical fluid carbon dioxide (SF-CO 2 ) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO 2 . A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO 2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO 2 . For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO 2 . These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO 2 for the extraction of uranium from ash. (author)

  18. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rustenholtz Farawila, A

    2005-06-15

    Supercritical fluid carbon dioxide (SF-CO{sub 2}) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO{sub 2}. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO{sub 2} phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO{sub 2}. For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO{sub 2}. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO{sub 2} for the extraction of uranium from ash. (author)

  19. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.; Purchase, R. L.; Monti, A.; van der Ham, C. J. M.; Gullo, M. P.; Joya, K. S.; D'Angelantonio, M.; Barbieri, A.; Hetterscheid, D. G. H.; de Groot, H. J. M.; Buda, F.

    2016-01-01

    derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst

  20. Structural stability of boron carbide under pressure proven by spectroscopic studies up to 73 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany); Bayerisches Geoinstitut, University of Bayreuth (Germany); Gasharova, Biliana; Mathis, Yves-Laurent [IBPT, Karlsruhe Institute of Technology, Karlsruhe (Germany); Dubrovinsky, Leonid [Bayerisches Geoinstitut, University of Bayreuth (Germany); Dubrovinskaia, Natalia [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany)

    2017-11-17

    Being a material of choice for lightweight armor applications, boron carbide has been intensively studied. Its behavior under pressure was investigated using both theoretical and experimental methods, such as powder X-ray diffraction and vibrational spectroscopy. As there is a discrepancy in experimental observations, in the presented work we studied vibrational properties of commercially available, ''nearly stoichiometric'' B{sub 4}C using IR and Raman spectroscopy up to 73 GPa. No phase transitions were found in the entire pressure range. Our results are at odds with the recent report of a phase transition in B{sub 4.3}C at about 40 GPa. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A spectroscopic study of absorption and emission features of interstellar dust components

    International Nuclear Information System (INIS)

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  2. Structural and spectroscopic studies on Er{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraju, K. [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India)

    2012-04-01

    Er{sup 3+} doped boro-tellurite glasses with the chemical composition (69-x)B{sub 2}O{sub 3}-xTeO{sub 2}-15MgO-15K{sub 2}O-1Er{sub 2}O{sub 3} (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er{sup 3+} ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters ({beta}{sup Macron} and {delta}) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio ({beta}{sub R}) and peak stimulated emission cross-section ({sigma}{sub P}{sup E}) for the excited state transitions {sup 2}H{sub 9/2}{yields}{sup 4}I{sub 15/2} and {sup 2}H{sub 11/2} and {sup 4}S3{sub /2}{yields}{sup 4}I{sub 15/2} of the Er{sup 3+} ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (E{sub opt}) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er{sup 3+} doped boro-tellurite glasses in the present study. The

  3. Structural and spectroscopic studies on Er3+ doped boro-tellurite glasses

    Science.gov (United States)

    Selvaraju, K.; Marimuthu, K.

    2012-04-01

    Er3+ doped boro-tellurite glasses with the chemical composition (69-x)B2O3-xTeO2-15MgO-15K2O-1Er2O3 (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er3+ ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters (βbar and δ) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters Ωλ (λ=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio (βR) and peak stimulated emission cross-section (σPE) for the excited state transitions 2H9/2→4I15/2 and 2H11/2 and 4S3/2→4I15/2 of the Er3+ ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (Eopt) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er3+ doped boro-tellurite glasses in the present study. The optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar results.

  4. The most reactive third-row transition metal: Guided ion beam and theoretical studies of the activation of methane by Ir+

    Science.gov (United States)

    Li, Feng-Xia; Zhang, Xiao-Guang; Armentrout, P. B.

    2006-09-01

    The potential energy surface for activation of methane by the third-row transition metal cation, Ir+, is studied experimentally by examining the kinetic energy dependence of reactions of Ir+ with methane, IrCH2+ with H2 and D2, and collision-induced dissociation of IrCH2+ with Xe using guided ion beam tandem mass spectrometry. A flow tube ion source produces Ir+ in its electronic ground state term and primarily in the ground spin-orbit level. We find that dehydrogenation to form IrCH2+ + H2 is exothermic, efficient, and the only process observed at low energies for reaction of Ir+ with methane, whereas IrH+ dominates the product spectrum at higher energies. We also observe the IrH2+ product, which provides evidence that methane activation proceeds via a dihydride (H)2IrCH2+ intermediate. The kinetic energy dependences of the cross sections for several endothermic reactions are analyzed to give 0 K bond dissociation energies (in eV) of D0(Ir+-2H) > 5.09 +/- 0.07, D0(Ir+-C) = 6.59 +/- 0.05, D0(Ir+-CH) = 6.91 +/- 0.23, and D0(Ir+-CH3) = 3.25 +/- 0.18. D0(Ir+-CH2) = 4.92 +/- 0.03 eV is determined by measuring the forward and reverse reaction rates for Ir++CH4[right harpoon over left]IrCH2++H2 at thermal energy. Ab initio calculations at the B3LYP/HW+/6-311++G(3df,3p) level performed here show reasonable agreement with the experimental bond energies and with the few previous experimental and theoretical values available. Theory also provides the electronic structures of the product species as well as intermediates and transition states along the reactive potential energy surfaces. We also compare this third-row transition metal system with the first-row and second-row congeners, Co+ and Rh+. Differences in reactivity and mechanisms can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals.

  5. Applications of structural and spectroscopic techniques to the experimental and theoretical study of new luminescent materials

    International Nuclear Information System (INIS)

    Navarro Ahumada, Gustavo Adolfo

    2001-01-01

    This thesis discusses the general problem of the radiation-matter interaction in the case of a family of crystals known as elpasolites, which belong to the spatial group FM3M(O 5 H ). These systems present complications, from a theoretical as well as experimental point of view. The study was carried out in stoichiometric elpasolite type systems, characterized by empirical formulas of the general type Cs2NaLnCl 6 where Ln is a lanthanide of the first series of internal transition with electronic configurations for the trivalent state (Ln +3 ) of the form ∫ 1 → ∫ 13 . An analysis of the atomic spectra for these gaseous phase ions shows a diversity of permitted states, due to relativistic and non relativistic effects. Systems with positive trivalent lanthanide ions of the form Dy 3+ (∫ 9 ), Ho 3+ (∫ 10 ) y Er 3+ (∫ 11 ) have been selected at the level of the stoichiometric elpasolites and are characterized by complex energetic spectra. A careful experimental study of the emission states suggests that the elpasolite of Er 3+ is interesting, and its study is very relevant. The assignments and identifications of the peaks, during absorption as well as during emission, are more precise for the configuration Er 3+ , and careful studies show that fluorescence between terminal states with the rule of selection for the total orbital angular momentum:ΔJ = 6 is observed for this system. A declining cascade that can reasonably explain the unsuspected related spectral intensity, in the order of 10-9, is presented and suggested although a value was predicted for the electric dipolar force of lesser than 4 orders of magnitude what was observed. This problem is discussed and a mechanism is proposed for spectral intensities associated with two emissions characterized by ΔJ = 4 (electric hexadecapole) and ΔJ = 2 (electric cuadrupole). The laboratory tests made, include synthesis by solid state reactions of Dy 3+ and Ho 3+ , type elpasolites, structural characterization

  6. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  7. RAMAN SPECTROSCOPIC STUDY ON PREDICTION OF TREATMENT RESPONSE IN CERVICAL CANCERS

    Directory of Open Access Journals (Sweden)

    S. RUBINA

    2013-04-01

    Full Text Available Concurrent chemoradiotherapy (CCRT is the choice of treatment for locally advanced cervical cancers; however, tumors exhibit diverse response to treatment. Early prediction of tumor response leads to individualizing treatment regimen. Response evaluation criteria in solid tumors (RECIST, the current modality of tumor response assessment, is often subjective and carried out at the first visit after treatment, which is about four months. Hence, there is a need for better predictive tool for radioresponse. Optical spectroscopic techniques, sensitive to molecular alteration, are being pursued as potential diagnostic tools. Present pilot study aims to explore the fiber-optic-based Raman spectroscopy approach in prediction of tumor response to CCRT, before taking up extensive in vivo studies. Ex vivo Raman spectra were acquired from biopsies collected from 11 normal (148 spectra, 16 tumor (201 spectra and 13 complete response (151 CR spectra, one partial response (8 PR spectra and one nonresponder (8 NR spectra subjects. Data was analyzed using principal component linear discriminant analysis (PC-LDA followed by leave-one-out cross-validation (LOO-CV. Findings suggest that normal tissues can be efficiently classified from both pre- and post-treated tumor biopsies, while there is an overlap between pre- and post-CCRT tumor tissues. Spectra of CR, PR and NR tissues were subjected to principal component analysis (PCA and a tendency of classification was observed, corroborating previous studies. Thus, this study further supports the feasibility of Raman spectroscopy in prediction of tumor radioresponse and prospective noninvasive in vivo applications.

  8. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Directory of Open Access Journals (Sweden)

    Ankur Bikash Pradhan

    Full Text Available Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride with single and double stranded form of polyriboadenylic acid (hereafter poly-A using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A with high affinity while it does not interact at all with the double stranded (ds form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  9. Spectroscopic studies on (Ba,Ca)(Ti,Zr)O3 ferroelectric ceramics with high piezoelectric coefficients

    International Nuclear Information System (INIS)

    Archana Kumar; Sreenivas, K.

    2013-01-01

    In recent year non lead-based multi component ceramics consisting Ba(Ti 0.8 Zr 0.2 )O 3- (Ba 0.7 Ca 0.3 )TiO 3 have been found to exhibit high piezoelectric coefficients comparable to those of PZT, and there is a lot interest to understand nature of phase transition in these novel compositions. In the present study 0.5Ba(Ti 0.8 Zr 0.2 )O 3- 0.5(Ba 0.7 Ca 0.3 )TiO 3 ceramic composition calcinated and sintered at different temperatures has been investigated. The ceramics are prepared from the raw powders and reacted by a solid state reaction method. Spectroscopic methods including DTA/TGA, FTIR and Raman spectroscopy been used to understand the changes occurring in the chemical and structural properties during processing. The nature of polymorphic phase transition has been studied through the temperature dependent Raman spectroscopy. The de-poling characteristics with temperature have been studied to assess their usefulness for high temperature transducer applications, and their ferroelectric properties have been studied. This new composition exhibits high piezoelectric (d 33 ), and the transition temperature is low around 120℃. (author)

  10. The HOMA-Adiponectin (HOMA-AD) Closely Mirrors the HOMA-IR Index in the Screening of Insulin Resistance in the Brazilian Metabolic Syndrome Study (BRAMS)

    Science.gov (United States)

    Cassani, Roberta Soares Lara; Forti, Adriana Costa e; Pareja, José Carlos; Tambascia, Marcos Antonio; Geloneze, Bruno

    2016-01-01

    Background The major adverse consequences of obesity are associated with the development of insulin resistance (IR) and adiposopathy. The Homeostasis Model Assessment-Adiponectin (HOMA-AD) was proposed as a modified version of the HOMA1-IR, which incorporates adiponectin in the denominator of the index. Objectives To evaluate the performance of the HOMA-AD index compared with the HOMA1-IR index as a surrogate marker of IR in women, and to establish the cutoff value of the HOMA-AD. Subjects/Methods The Brazilian Metabolic Syndrome Study (BRAMS) is a cross-sectional multicenter survey. The data from 1,061 subjects met the desired criteria: 18–65 years old, BMI: 18.5–49.9 Kg/m² and without diabetes. The IR was assessed by the indexes HOMA1-IR and HOMA-AD (total sample) and by the hyperglycemic clamp (n = 49). Metabolic syndrome was defined using the IDF criteria. Results For the IR assessed by the clamp, the HOMA-AD demonstrated a stronger coefficient of correlation (r = -0.64) compared with the HOMA1-IR (r = -0.56); p 0.05). The optimal cutoff identified for the HOMA-AD for the diagnosis of IR was 0.95. Conclusions The HOMA-AD index was demonstrated to be a useful surrogate marker for detecting IR among adult women and presented a similar performance compared with the HOMA1-IR index. These results may assist physicians and researchers in determining which method to use to evaluate IR in light of the available facilities. PMID:27490249

  11. The HOMA-Adiponectin (HOMA-AD Closely Mirrors the HOMA-IR Index in the Screening of Insulin Resistance in the Brazilian Metabolic Syndrome Study (BRAMS.

    Directory of Open Access Journals (Sweden)

    Brunna Sullara Vilela

    Full Text Available The major adverse consequences of obesity are associated with the development of insulin resistance (IR and adiposopathy. The Homeostasis Model Assessment-Adiponectin (HOMA-AD was proposed as a modified version of the HOMA1-IR, which incorporates adiponectin in the denominator of the index.To evaluate the performance of the HOMA-AD index compared with the HOMA1-IR index as a surrogate marker of IR in women, and to establish the cutoff value of the HOMA-AD.The Brazilian Metabolic Syndrome Study (BRAMS is a cross-sectional multicenter survey. The data from 1,061 subjects met the desired criteria: 18-65 years old, BMI: 18.5-49.9 Kg/m² and without diabetes. The IR was assessed by the indexes HOMA1-IR and HOMA-AD (total sample and by the hyperglycemic clamp (n = 49. Metabolic syndrome was defined using the IDF criteria.For the IR assessed by the clamp, the HOMA-AD demonstrated a stronger coefficient of correlation (r = -0.64 compared with the HOMA1-IR (r = -0.56; p 0.05. The optimal cutoff identified for the HOMA-AD for the diagnosis of IR was 0.95.The HOMA-AD index was demonstrated to be a useful surrogate marker for detecting IR among adult women and presented a similar performance compared with the HOMA1-IR index. These results may assist physicians and researchers in determining which method to use to evaluate IR in light of the available facilities.

  12. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    Science.gov (United States)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  13. Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Soukhanovskii, V. A.; Roquemore, A. L.; Bell, R. E.; Kaita, R.; Kugel, H. W.

    2010-01-01

    The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-α transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R=0.67 m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D 2 , LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry.

  14. In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies.

    Science.gov (United States)

    Abo Dena, Ahmed S; Abdel Gaber, Sara A

    2017-06-15

    Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1 HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques

    Science.gov (United States)

    Rosi, F.; Miliani, C.; Clementi, C.; Kahrim, K.; Presciutti, F.; Vagnini, M.; Manuali, V.; Daveri, A.; Cartechini, L.; Brunetti, B. G.; Sgamellotti, A.

    2010-09-01

    A non-invasive study has been carried out on 18 paintings by Alberto Burri (1915-1995), one of Italy’s most important contemporary painters. The study aims to demonstrate the appropriate and suitable use of portable non-invasive instrumentation for the characterization of materials and techniques found in works dating from 1948 to 1975 belonging to the Albizzini Collection. Sampling of any kind has been forbidden, in order to maintain the integrity of the paintings. Furthermore, the material heterogeneity of each single artwork could potentially result in a poorly representative sampling campaign. Therefore, a non-invasive and in situ analytical approach has been deemed mandatory, notwithstanding the complexity of modern materials and challenging data interpretation. It is the non-invasive nature of the study that has allowed for the acquisition of vast spectral data (a total of about 650 spectra including XRF, mid and near FTIR, micro-Raman and UV-vis absorption and emission spectroscopies). In order to better handle and to extrapolate the most meaningful information from these data, a statistical multivariate analysis, namely principal component analysis (PCA), has been applied to the spectral results. In particular, the possibility of combining elemental and molecular information has been explored by uniting XRF and infrared spectra in one PCA dataset. The combination of complementary spectroscopic techniques has allowed for the characterization of both inorganic and organic pigments, extenders, fillers, and binders employed by Alberto Burri.

  16. Raman spectroscopic study of keratin 8 knockdown oral squamous cell carcinoma derived cells

    Science.gov (United States)

    Singh, S. P.; Alam, Hunain; Dmello, Crismita; Vaidya, Milind M.; Krishna, C. Murali

    2012-03-01

    Keratins are one of most widely used markers for oral cancers. Keratin 8 and 18 are expressed in simple epithelia and perform both mechanical and regulatory functions. Their expression are not seen in normal oral tissues but are often expressed in oral squamous cell carcinoma. Aberrant expression of keratins 8 and 18 is most common change in human oral cancer. Optical-spectroscopic methods are sensitive to biochemical changes and being projected as novel diagnostic tools for cancer diagnosis. Aim of this study was to evaluate potentials of Raman spectroscopy in detecting minor changes associated with differential level of keratin expression in tongue-cancer-derived AW13516 cells. Knockdown clones for K8 were generated and synchronized by growing under serum-free conditions. Cell pellets of three independent experiments in duplicate were used for recording Raman spectra with fiberoptic-probe coupled HE-785 Raman-instrument. A total of 123 and 96 spectra from knockdown clones and vector controls respectively in 1200-1800 cm-1 region were successfully utilized for classification using LDA. Two separate clusters with classification-efficiency of ~95% were obtained. Leave-one-out cross-validation yielded ~63% efficiency. Findings of the study demonstrate the potentials of Raman spectroscopy in detecting even subtle changes such as variations in keratin expression levels. Future studies towards identifying Raman signals from keratin in oral cells can help in precise cancer diagnosis.

  17. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH2Cl2: Fluorescence from intermediate compounds

    International Nuclear Information System (INIS)

    Alwis, D.D.D.H; Chandrika, U.G.; Jayaweera, P.M.

    2015-01-01

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH 2 Cl 2 solutions via chemical oxidation using anhydrous FeCl 3 . UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S 2 →S 0 (1 1 B u →1 1 A g ) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl 3 in CH 2 Cl 2 shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region

  18. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH{sub 2}Cl{sub 2}: Fluorescence from intermediate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, D.D.D.H [Department of Chemistry, The Open University of Sri Lanka, Nawala (Sri Lanka); Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Chandrika, U.G. [Department of Biochemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Jayaweera, P.M., E-mail: pradeep@sjp.ac.lk [Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka)

    2015-02-15

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH{sub 2}Cl{sub 2} solutions via chemical oxidation using anhydrous FeCl{sub 3}. UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S{sub 2}→S{sub 0} (1{sup 1}B{sub u}→1{sup 1}A{sub g}) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl{sub 3} in CH{sub 2}Cl{sub 2} shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region.

  19. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    Science.gov (United States)

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  20. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Yu-Feng; Liu, Hong-Sheng

    2018-02-01

    In the present work, the binding interaction between lenalidomide (LEN) and calf thymus DNA (ct-DNA) was systematically studied by using fluorescence, ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) spectroscopies under imitated physiological conditions (pH = 7.4) coupled with molecular docking. It was found that LEN was bound to ct-DNA with high binding affinity (Ka = 2.308 × 105 M-1 at 283 K) through groove binding as evidenced by a slight decrease in the absorption intensity in combination with CD spectra. Thermodynamic parameters (ΔG 0 and ΔS interaction. Furthermore, competitive binding experiments with ethidium bromide and 4‧, 6-dia-midino-2-phenylindoleas probes showed that LEN could preferentially bind in the minor groove of double-stranded DNA. The average lifetime of LEN was calculated to be 7.645 ns. The φ of LEN was measured as 0.09 and non-radiation energy transfer between LEN and DNA had occurred. The results of the molecular docking were consistent with the experimental results. This study explored the potential applicability of the spectroscopic properties of LEN and also investigated its interactions with relevant biological targets. In addition, it will provide some theoretical references for the deep research of simultaneous administration of LEN with other drugs.