WorldWideScience

Sample records for ir spectral regions

  1. Camouflage in thermal IR: spectral design

    Science.gov (United States)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman

    2016-10-01

    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  2. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  3. Mid-Infrared Spectral Properties of IR QSOs

    International Nuclear Information System (INIS)

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-01-01

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from ∼5 to 30 μm, including the spectral slopes, 6.2 μm PAH emission strengths and [NeII] 12.81 μm luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 μm) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  4. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    Science.gov (United States)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  5. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  6. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  7. Radiation from an equilibrium CO2-N2 plasma in the [250-850 nm] spectral region: II. Spectral modelling

    International Nuclear Information System (INIS)

    Silva, M Lino da; Vacher, D; Andre, P; Faure, G; Dudeck, M

    2008-01-01

    In the first part of this work, described in a previous paper, the thermodynamic conditions in an atmospheric pressure inductively coupled CO 2 -N 2 plasma have been determined, and the radiation emission spectrum has been measured and calibrated in the [250-850 nm] spectral region. In the second part of this work, a synthetic radiation spectrum is obtained taking into account (a) the geometry of the plasma torch and (b) the local thermodynamic conditions of the plasma. This synthetic spectrum has then been compared against the measured spectrum. The good agreement between the two spectra allows validating the spectral database of the line-by-line code SPARTAN for the simulation of the radiative emission of CO 2 -N 2 plasmas from the near-UV to the near-IR spectral region.

  8. Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-μm spectral region

    International Nuclear Information System (INIS)

    Pon, R.M.; Hessler, J.P.

    1984-01-01

    To correct emission spectra a standard radiance source is often used to determine the spectral responsivity of the detection system. In the near-UV, visible, and near-IR spectral regions the most common radiance standard is a tungsten strip lamp calibrated by a standards laboratory. For day-to-day experiments where slightly less accuracy is acceptable, a less expensive uncalibrated lamp is useful. In this case, the radiant temperature T/sub r/ of the lamp is measured with an optical pyrometer, generally at a single wavelength such as 650 nm, and the source spectral radiance L(λ) is calculated from L(λ) = tau(λ)epsilon(λ,T)L/sub B/(λ,T). The transmittance of the source is tau(λ), the spectral emissivity is epsilon(λ,T), and L/sub B/(λ,T) is the spectral distribution of blackbody radiation, Planck's radiation law. To obtain the true temperature T, Wien's approximation is employed. To conveniently calibrate a system, especially one which utilizes a microcomputer, it is advantageous to have analytic expressions for the spectral emissivity of tungsten. Although Larrabee has published such expressions, they are limited to the 450-800-nm spectral region. To obtain analytic expressions from 340 nm to 2.6 μm they have used the measurements of DeVos. Although DeVos's results differ by 2% from those of Larrabee, this difference is assumed to be acceptable

  9. Optical properties of reduced graphene oxide and CuFe2O4 composites in the IR region

    Science.gov (United States)

    Ma, De-yue; Li, Xiao-xia; Guo, Yu-xiang; Zeng, Yu-run

    2018-01-01

    The complex refractive index of reduced graphene oxide and CuFe2O4 composites prepared by hydrothermal method was calculated using infrared Micro-reflective spectra and K-K relation, and the calculation errors were analyzed according to its IR transmission and spectral reflectivity calculated by Fresnel formula. And then normal emissivity of the composite in IR atmospheric window was calculated by means of Fresnel formula and modified refraction angle formula. The calculation accuracy was verified by comparing measured normal total emissivity with the calculated one. The results show that complex refractive index and normal emissivity calculated by the formulas have a high accuracy. It has been found that the composite has a good absorption and radiation characteristics in IR atmospheric window and a strong scattering ability in middle IR region by analyzing its extinction, absorption and radiation properties in IR region. Therefore, it may be used as IR absorption, extinction and radiation materials in some special fields.

  10. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    Science.gov (United States)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  11. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    Science.gov (United States)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  12. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.

    Science.gov (United States)

    Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G

    2016-02-05

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  14. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    Science.gov (United States)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  15. Constraining Cometary Crystal Shapes from IR Spectral Features

    Science.gov (United States)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.

    2013-12-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The

  16. Composite multilobe descriptors for cross-spectral recognition of full and partial face

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.; Bourlai, Thirimachos

    2016-08-01

    Cross-spectral image matching is a challenging research problem motivated by various applications, including surveillance, security, and identity management in general. An example of this problem includes cross-spectral matching of active infrared (IR) or thermal IR face images against a dataset of visible light images. A summary of recent developments in the field of cross-spectral face recognition by the authors is presented. In particular, it describes the original form and two variants of a local operator named composite multilobe descriptor (CMLD) for facial feature extraction with the purpose of cross-spectral matching of near-IR, short-wave IR, mid-wave IR, and long-wave IR to a gallery of visible light images. The experiments demonstrate that the variants of CMLD outperform the original CMLD and other recently developed composite operators used for comparison. In addition to different IR spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated. Performance of CMLD I to III is evaluated for each of the three cases of distances. The newly developed operators, CMLD I to III, are further utilized to conduct a study on cross-spectral partial face recognition where different facial regions are compared in terms of the amount of useful information they contain for the purpose of conducting cross-spectral face recognition. The experimental results show that among three facial regions considered in the experiments the eye region is the most informative for all IR spectra at all standoff distances.

  17. Choice of Eye-Safe Radiation Wavelength in UV and Near IR Spectral Bands for Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2016-01-01

    Full Text Available The introduction of laser remote sensing systems carries a particular risk to the human’s sense of vision. A structure of the eye, and especially the retina, is the main critical organ as related to the laser radiation.The work uses the optical models of the atmosphere, correctly working in both the UV and the near-IR band, to select the eye-safe radiation wavelengths in the UV (0.355 m and near-IR (~ 1.54 and ~ 2 m spectral bands from the point of view of recorded lidar signal value to fulfill the tasks of laser sensing the natural formations and laser aerosol sensing in the atmosphere.It is shown that the remote sensing lasers with appropriate characteristics can be selected both in the UV band (at a wavelength of 0.355 μm and in the near-IR band (at wavelengths of 1.54 ~ or ~ 2 μm.Molecular scattering has its maximum (for the selected wavelength at a wavelength of 0.355 μm in the UV band, and the minimum at the wavelengths of 1.54 and 2.09 μm in the near -IR band. The main contribution to the molecular absorption at a wavelength of 0.355 μm is made by ozone. In the near-IR spectral band the radiation is absorbed due to water vapor and carbon dioxide.Calculations show that the total effect of the molecular absorption and scattering has no influence on radiation transmission for both the wavelength of 0.355 μm in the UV band, and the wavelengths of 1.54 and 2.09 μm in the near-IR band for sensing trails ~ 1 km.One of the main factors of laser radiation attenuation in the Earth's atmosphere is radiation scattering by aerosol particles.The results of calculations at wavelengths of 0.355 μm, 1.54 μm and 2.09 μm for the several models of the atmosphere show that a choice of the most effective (in terms of the recorded signal of lidar and eye-safe radiation wavelength depends strongly on the task of sensing.To fulfill the task of laser sensing the natural formations, among the eye-safe wavelengths there is one significantly advantageous

  18. Near-IR Spectral Imaging of Semiconductor Absorption Sites in Integrated Circuits

    Directory of Open Access Journals (Sweden)

    E. C. Samson

    2004-12-01

    Full Text Available We derive spectral maps of absorption sites in integrated circuits (ICs by varying the wavelength of the optical probe within the near-IR range. This method has allowed us to improve the contrast of the acquired images by revealing structures that have a different optical absorption from neighboring sites. A false color composite image from those acquired at different wavelengths is generated from which the response of each semiconductor structure can be deduced. With the aid of the spectral maps, nonuniform absorption was also observed in a semiconductor structure located near an electrical overstress defect. This method may prove important in failure analysis of ICs by uncovering areas exhibiting anomalous absorption, which could improve localization of defective edifices in the semiconductor parts of the microchip

  19. SPATIAL VARIATIONS OF PAH PROPERTIES IN M17SW REVEALED BY SPITZER /IRS SPECTRAL MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara 252-5210 (Japan); Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Nishimura, A.; Kohno, M. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Onaka, T.; Ohashi, S. [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagayama, T.; Matsuo, M. [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Umemoto, T.; Minamidani, T.; Fujita, S. [Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsuda, Y., E-mail: yamagish@ir.isas.jaxa.jp [Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-0042 (Japan)

    2016-12-20

    We present Spitzer /IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Br γ and Nobeyama 45 m/FOREST {sup 13}CO ( J = 1–0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2  μ m. We find that the PAH emission features are bright in the region between the H ii region traced by Br γ and the molecular cloud traced by {sup 13}CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer /IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7  μ m/PAH 11.3  μ m varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0  μ m, 12.7  μ m, 13.5  μ m, and 14.2  μ m features to the PAH 11.3  μ m feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  20. An unbiased spectral line survey toward R CrA IRS7B in the 345 GHz window with ASTE

    DEFF Research Database (Denmark)

    Watanabe, Yoshimasa; Sakai, Nami; Lindberg, Johan

    2012-01-01

    We have conducted a spectral line survey in the 332-364 GHz region with the Atacama Submillimeter Telescope Experiment 10 m telescope toward R CrA IRS7B, a low-mass protostar in the Class 0 or Class 0/I transitional stage. We have also performed some supplementary observations in the 450 GHz band...... corino. These results suggest a weak hot corino activity in R CrA IRS7B. On the other hand, the carbon-chain related molecules, CCH and c-C3H2, are found to be abundant. However, this source cannot be classified as a WCCC source, since long carbon-chain molecules are not detected. If WCCC and hot corino...... chemistry represent the two extremes in chemical compositions of low-mass Class 0 sources, R CrA IRS7B would be a source with a mixture of these two chemical characteristics. The UV radiation from the nearby Herbig Ae star R CrA may also affect the chemical composition. The present line survey demonstrates...

  1. Mid-IR laser system for advanced neurosurgery

    Science.gov (United States)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  2. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  3. Choice of Eye-Safe Radiation Wavelength in UV and Near IR Spectral Bands for Remote Sensing

    OpenAIRE

    M. L. Belov; V. A. Gorodnichev; D. A. Kravtsov; A. A. Cherpakova

    2016-01-01

    The introduction of laser remote sensing systems carries a particular risk to the human’s sense of vision. A structure of the eye, and especially the retina, is the main critical organ as related to the laser radiation.The work uses the optical models of the atmosphere, correctly working in both the UV and the near-IR band, to select the eye-safe radiation wavelengths in the UV (0.355 m) and near-IR (~ 1.54 and ~ 2 m) spectral bands from the point of view of recorded lidar signal value to ful...

  4. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  5. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  6. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  7. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  8. Photochemistry of Fe:H2O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV-Visible Regions.

    Science.gov (United States)

    Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A

    2018-01-18

    The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.

  9. AN UNBIASED SPECTRAL LINE SURVEY TOWARD R CrA IRS7B IN THE 345 GHz WINDOW WITH ASTE

    International Nuclear Information System (INIS)

    Watanabe, Yoshimasa; Sakai, Nami; Yamamoto, Satoshi; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.

    2012-01-01

    We have conducted a spectral line survey in the 332-364 GHz region with the Atacama Submillimeter Telescope Experiment 10 m telescope toward R CrA IRS7B, a low-mass protostar in the Class 0 or Class 0/I transitional stage. We have also performed some supplementary observations in the 450 GHz band. In total, 16 molecular species are identified in the 332-364 GHz region. Strong emission lines of CN and CCH are observed, whereas complex organic molecules and long carbon-chain molecules, which are characteristics of hot corino and warm carbon-chain chemistry (WCCC) source, respectively, are not detected. The rotation temperature of CH 3 OH is evaluated to be 31 K, which is significantly lower than that reported for the prototypical hot corino IRAS 16293-2422 (∼85 K). The deuterium fractionation ratios for CCH and H 2 CO are obtained to be 0.038 and 0.050, respectively, which are much lower than those in the hot corino. These results suggest a weak hot corino activity in R CrA IRS7B. On the other hand, the carbon-chain related molecules, CCH and c-C 3 H 2 , are found to be abundant. However, this source cannot be classified as a WCCC source, since long carbon-chain molecules are not detected. If WCCC and hot corino chemistry represent the two extremes in chemical compositions of low-mass Class 0 sources, R CrA IRS7B would be a source with a mixture of these two chemical characteristics. The UV radiation from the nearby Herbig Ae star R CrA may also affect the chemical composition. The present line survey demonstrates further chemical diversity in low-mass star-forming regions.

  10. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  11. Maximum spectral demands in the near-fault region

    Science.gov (United States)

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  12. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    Science.gov (United States)

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  13. Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2(OH/D)3Cl

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Dong; Hagihala Masato; ZHENG Xu-Guang; MENG Dong-Doug; GUO Qi-Xin

    2011-01-01

    @@ Vibrational spectra(Raman 4000-95cm-1 and mid-IR 4000-400cm-1) of the atacamite-structure Ni2(OH)3Cl,including a rarely reported kind of asymmetric trimetric hydrogen bond, as a member of the geometrically frustrated material series and its deuteride Ni2(OD)3Cl are, to the best of our knowledge, reported for the first time and analyzed at room temperature.Through a comparative study of four spectra according to their crystal structural parameters, we assign OH stretching modes v(OH) in a functional group region(3700-3400 cm-1) and their deformation modes δ(NiOH/D) in the correlation peak region(900-600 cm-1)with the corresponding mode frequency ratios ωv(OD)/ωv(OH)≈73% and ωδ(NiOD)/ωδ(NiOH)≈75%, and further self-consistently suggest NiO and Ni-Cl related modes in the fingerprint region(500-200cm-1 and 200-Ocm-1, respectively) by use of the unified six-ligand NiO5Cl and NiO4Cl2 frames.This report may contribute to the spectral analysis of other hydroxyl transition-metal halides and to the understanding of the fundamental physics of their exotic magnetic geometrical frustration property from the spectral changes around the corresponding low transition temperatures.

  14. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    Science.gov (United States)

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  15. EPR and IR spectral investigations on some leafy vegetables of Indian origin

    Science.gov (United States)

    Prasuna, C. P. Lakshmi; Chakradhar, R. P. S.; Rao, J. L.; Gopal, N. O.

    2009-09-01

    EPR spectral investigations have been carried out on four edible leafy vegetables of India, which are used as dietary component in day to day life. In Rumex vesicarius leaf sample, EPR spectral investigations at different temperatures indicate the presence of anti-ferromagnetically coupled Mn(IV)-Mn(IV) complexes. EPR spectra of Trigonella foenum graecum show the presence of Mn ions in multivalent state and Fe 3+ ions in rhombic symmetry. EPR spectra of Basella rubra indicate the presence of Mn(IV)-O-Mn(IV) type complexes. The EPR spectra of Basella rubra have been studied at different temperatures. It is found that the spin population for the resonance signal at g = 2.06 obeys the Boltzmann distribution law. The EPR spectra of Moringa oliefera leaves show the presence of Mn 2+ ions. Radiation induced changes in free radical of this sample have also been studied. The FT-IR spectra of Basella rubra and Moringa oliefera leaves show the evidences for the protein matrix bands and those corresponding to carboxylic C dbnd O bonds.

  16. Investigation of conspicuous infrared star cluster and star-forming region RCW 38 IR Cluster

    International Nuclear Information System (INIS)

    Gyulbudaghian, A.L.; May, J.

    2008-01-01

    An infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with SEST (Cerro is Silla, Chile) telescope on 2.6-mm 12 CO spectral line and with SIMBA on 1.2-mm continuum are given. The 12 CO observations revealed the existence of several molecular clouds, two of which (clouds I and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω 4.6 · 10 -14 s -1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has been also found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colours typical for a, non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shoves the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that it is not excluded the possibility that this extension might be also rotating like cloud 2. In the vicinity of these extensions there are condensations resembling HH objects

  17. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    Science.gov (United States)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  18. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  19. Mord studies in IR region by new dispersion relation

    International Nuclear Information System (INIS)

    Murthy, V.R.; Kumar, R. Jeevan

    1994-01-01

    This is the continuation of the series reporting MORD studies to typical problem in Chemistry and Polymer Science. In our earlier papers the MORDsup1.2 studied only in visible region. In this present investigation we extended the application of the New Dispersion Relation in IR region to determine the MORD and tested to some simple systems

  20. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  1. FT-IR spectroscopy of lipoproteins—A comparative study

    Science.gov (United States)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  2. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  3. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications

    International Nuclear Information System (INIS)

    Cousin, J.

    2006-12-01

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of -8 cm -1 Hz -1/2 and allowed the quantification of chemical species such as CO 2 , CO, C 2 H 2 , CH 4 and the determination of the isotopic ratio 13 CO 2 / 12 CO 2 in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 μm), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C 2 H 4 ) and benzene (C 6 H 6 ). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  4. UNTANGLING THE NEAR-IR SPECTRAL FEATURES IN THE PROTOPLANETARY ENVIRONMENT OF KH 15D

    Energy Technology Data Exchange (ETDEWEB)

    Arulanantham, Nicole A.; Herbst, William; Gilmore, Martha S.; Cauley, P. Wilson [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Leggett, S. K., E-mail: nicole.arulanantham@colorado.edu [Gemini Observatory (North), Hilo, HI 96720 (United States)

    2017-01-10

    We report on Gemini/GNIRS observations of the binary T Tauri system V582 Mon (KH 15D) at three orbital phases. These spectra allow us to untangle five components of the system: the photosphere and magnetosphere of star B, the jet, scattering properties of the ring material, and excess near-infrared (near-IR) radiation previously attributed to a possible self-luminous planet. We confirm an early-K subgiant classification for star B and show that the magnetospheric He i emission line is variable, possibly indicating increased mass accretion at certain times. As expected, the H{sub 2} emission features associated with the inner part of the jet show no variation with orbital phase. We show that the reflectance spectrum for the scattered light has a distinctive blue slope and spectral features consistent with scattering and absorption by a mixture of water and methane ice grains in the 1–50 μ m size range. This suggests that the methane frost line is closer than ∼5 au in this system, requiring that the grains be shielded from direct radiation. After correcting for features from the scattered light, jet, magnetosphere, and photosphere, we confirm the presence of leftover near-IR light from an additional source, detectable near minimum brightness. A spectral emission feature matching the model spectrum of a 10 M {sub J}, 1 Myr old planet is found in the excess flux, but other expected features from this model are not seen. Our observations, therefore, tentatively support the picture that a luminous planet is present within the system, although they cannot yet be considered definitive.

  5. Application of FT-IR spectroscopy on breast cancer serum analysis

    Science.gov (United States)

    Elmi, Fatemeh; Movaghar, Afshin Fayyaz; Elmi, Maryam Mitra; Alinezhad, Heshmatollah; Nikbakhsh, Novin

    2017-12-01

    Breast cancer is regarded as the most malignant tumor among women throughout the world. Therefore, early detection and proper diagnostic methods have been known to help save women's lives. Fourier Transform Infrared (FT-IR) spectroscopy, coupled with PCA-LDA analysis, is a new technique to investigate the characteristics of serum in breast cancer. In this study, 43 breast cancer and 43 healthy serum samples were collected, and the FT-IR spectra were recorded for each one. Then, PCA analysis and linear discriminant analysis (LDA) were used to analyze the spectral data. The results showed that there were differences between the spectra of the two groups. Discriminating wavenumbers were associated with several spectral differences over the 950-1200 cm- 1(sugar), 1190-1350 cm- 1 (collagen), 1475-1710 cm- 1 (protein), 1710-1760 cm- 1 (ester), 2800-3000 cm- 1 (stretching motions of -CH2 & -CH3), and 3090-3700 cm- 1 (NH stretching) regions. PCA-LDA performance on serum IR could recognize changes between the control and the breast cancer cases. The diagnostic accuracy, sensitivity, and specificity of PCA-LDA analysis for 3000-3600 cm- 1 (NH stretching) were found to be 83%, 84%, 74% for the control and 80%, 76%, 72% for the breast cancer cases, respectively. The results showed that the major spectral differences between the two groups were related to the differences in protein conformation in serum samples. It can be concluded that FT-IR spectroscopy, together with multivariate data analysis, is able to discriminate between breast cancer and healthy serum samples.

  6. Study on IR Properties of Reduced Graphene Oxide

    Science.gov (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun

    2018-01-01

    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  7. A study of the region of massive star formation L379IRS1 in radio lines of methanol and other molecules

    Science.gov (United States)

    Kalenskii, S. V.; Shchurov, M. A.

    2016-04-01

    The results of spectral observations of the region of massive star formation L379IRS1 (IRAS18265-1517) are presented. The observations were carried out with the 30-m Pico Veleta radio telescope (Spain) at seven frequencies in the 1-mm, 2-mm, and 3-mm wavelength bands. Lines of 24 molecules were detected, from simple diatomic or triatomic species to complex eight- or nine-atom compounds such as CH3OCHO or CH3OCH3. Rotation diagrams constructed from methanol andmethyl cyanide lines were used to determine the temperature of the quiescent gas in this region, which is about 40-50 K. In addition to this warm gas, there is a hot component that is revealed through high-energy lines of methanol and methyl cyanide, molecular lines arising in hot regions, and the presence of H2O masers and Class II methanol masers at 6.7 GHz, which are also related to hot gas. One of the hot regions is probably a compact hot core, which is located near the southern submillimeter peak and is related to a group of methanol masers at 6.7 GHz. High-excitation lines at other positions may be associated with other hot cores or hot post-shock gas in the lobes of bipolar outflows. The rotation diagrams can be use to determine the column densities and abundances of methanol (10-9) and methyl cyanide (about 10-11) in the quiescent gas. The column densities of A- and E-methanol in L379IRS1 are essentually the same. The column densities of other observedmolecules were calculated assuming that the ratios of the molecular level abundances correspond to a temperature of 40 K. The molecular composition of the quiescent gas is close to that in another region of massive star formation, DR21(OH). The only appreciable difference is that the column density of SO2 in L379IRS1 is at least a factor of 20 lower than the value in DR21(OH). The SO2/CS and SO2/OCS abundance ratios, which can be used as chemical clocks, are lower in L379IRS1 than in DR21(OH), suggesting that L379IRS1 is probably younger than DR21(OH).

  8. Enhanced spectral emissivity of CeO2 coating with cauliflower-like microstructure

    International Nuclear Information System (INIS)

    Huang Jianping; Li Yibin; He Xiaodong; Song Guangping; Fan Chenglei; Sun Yue; Fei Weidong; Du Shanyi

    2012-01-01

    Highlights: ► Cauliflower-like microstructured CeO 2 coating is prepared on Ni based substrate. ► The infrared emissive property at high temperature is investigated. ► Rough CeO 2 coating shows high emissivity, that is, 0.9 at 873 K and 0.87 at 1073 K. ► The emissivity enhancement mechanisms for the rough CeO 2 coating are discussed. - Abstract: Cerium dioxide is a transparent oxide with high refractive index (from 1.6 to 2.5 at 633 nm) in the visible and near-IR spectral regions. However, little attention has been paid to its optical property in mid-IR (2.5–25 μm). Here we report that the cauliflower-like microstructured CeO 2 coating deposited by electron beam physical vapor deposition technique shows high emissivity up to 0.9 at 873 K in the mid-IR spectral region. The high emissivity is attributed to the coupling between free propagating waves and space-variant polarizations caused by the cauliflower-like microstructure. This high emissivity coating shows a potential application in high temperature components.

  9. Salinity and spectral reflectance of soils

    Science.gov (United States)

    Szilagyi, A.; Baumgardner, M. F.

    1991-01-01

    The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.

  10. Euler deconvolution and spectral analysis of regional aeromagnetic ...

    African Journals Online (AJOL)

    Existing regional aeromagnetic data from the south-central Zimbabwe craton has been analysed using 3D Euler deconvolution and spectral analysis to obtain quantitative information on the geological units and structures for depth constraints on the geotectonic interpretation of the region. The Euler solution maps confirm ...

  11. Attenuated total reflection design for in situ FT-IR spectroelectrochemical studies

    International Nuclear Information System (INIS)

    Visser, Hendrik; Curtright, Aimee E.; McCusker, James K.; Sauer, Kenneth

    2000-01-01

    A versatile spectroelectrochemical apparatus is introduced to study the changes in IR spectra of organic and inorganic compounds upon oxidation or reduction. The design is based on an attenuated total reflection (ATR) device, which permits the study of a wide spectral range of 16,700 cm-1 (600 nm) - 250 cm-1 with a small opaque region of 2250 - 1900 cm-1. In addition, an IR data collection protocol is introduced to deal with electrochemically non-reversible background signals. This method is tested with ferrocene in acetonitrile, producing results that agree with those in the literature

  12. Third-harmonic generation in silicon and photonic crystals of macroporous silicon in the spectral intermediate-IR range; Erzeugung der Dritten Harmonischen in Silizium und Photonischen Kristallen aus makroporoesem Silizium im spektralen mittleren IR-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Mitzschke, Kerstin

    2007-11-01

    Nonlinear optical spectroscopy is a powerful method to study surface or bulk properties of condensed matter. In centrosymmetric materials like silicon even order nonlinear optical processes are forbidden. Besides self-focussing or self phase modulation third-harmonic-generation (THG) is the simplest process that can be studied. This work demonstrates that THG is a adapted non-contact and non-invasive optical method to get information about bulk structures of silicon and Photonic crystals (PC), consisting of silicon. Until now most studies are done in the visible spectral range being limited by the linear absorption losses. So the extension of THG to the IR spectral range is extremely useful. This will allow the investigation of Photonic Crystals, where frequencies near a photonic bandgap are of special interest. 2D- photonic structures under investigation were fabricated via photoelectrochemical etching of the Si (100) wafer (thickness 500 {mu}m) receiving square and hexagonal arranged pores. The typical periodicity of the structures used is 2 {mu}m and the length of the pores reached to 400 {mu}m. Because of stability the photonic structures were superimposed on silicon substrate. The experimental set-up used for the THG experiments generates tuneable picosecond IR pulses (tuning range 1500-4000 cm{sup -1}). The IR-pulse hit the sample either perpendicular to the sample surface or under an angle {theta}. The sample can be rotated (f) around the surface normal. The generated third harmonic is analysed by a polarizer, spectrally filtered by a polychromator and registered by a CCD camera. The setup can be used either in transmission or in reflection mode. Optical transmission and reflection spectra of the Si bulk correspond well with the theoretical description, a 4-fold and a 8-fold dependencies of the azimuth angle resulting in the structure of the x{sup (3)}-tensor of (100)-Si. The situation changes dramatically if the PC with hexagonal structure is investigated

  13. The influence of spectral nudging on typhoon formation in regional climate models

    Science.gov (United States)

    Feser, Frauke; Barcikowska, Monika

    2012-03-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  14. The influence of spectral nudging on typhoon formation in regional climate models

    International Nuclear Information System (INIS)

    Feser, Frauke; Barcikowska, Monika

    2012-01-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden–Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  15. Comparative Evaluation of Spectral Transmittance of Some Welding Glasses with ANSI Z87.1

    Directory of Open Access Journals (Sweden)

    saeed Rahmani

    2016-04-01

    Full Text Available Background: Welding emits harmful rays to the eyes. We evaluate and compare the UV, blue light and IR transmittance characteristics of some currently available welding safety protectors with ANSI Z87.1 criteria.Materials and Methods: Three type of welding safety protectors (three of each type have been evaluated for spectral transmittance. One-sample T-test was performed to establish is there a statistically significant difference between the standard criteria and UV, blue and IR regions for the welding protectors (α=0.05.Results: In ultraviolet (UV (far and near region, two types of the tested protectors (P1, P2 transmitted lower than the maximum allowable value specified in the standard (P<0.001. In infrared (IR spectrum only one type (P3 transmitted lower than the maximum allowable value specified in the standard (P<0.001. In blue light region, all of the tested protectors transmitted lower than the maximum allowable value specified in the standard (P<0.001.Conclusion: Although all of the tested glasses could meet some parts of the criteria, but none of them could meet the complete spectral transmittance requirements of ANSI Z87.1.

  16. Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2015-05-01

    Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

  17. THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, Allison; Bally, John [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, Adam, E-mail: allison.youngblood@colorado.edu [ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-06-01

    We present near-IR (1.1–2.4 μ m) position–position–velocity cubes of the 500 year old Orion BN/KL explosive outflow with spatial resolution 1″ and spectral resolution 86 km s{sup −1}. We construct integrated intensity maps free of continuum sources of 15 H{sub 2} and [Fe ii] lines while preserving kinematic information of individual outflow features. Included in the detected H{sub 2} lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All of the ratios show the dominance of the shock excitation of the H{sub 2} emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O i] and [Fe ii] and analyze other observed outflows not associated with the BN/KL outflow.

  18. Effect of H+ implantation on the optical properties of semi-insulating GaAs crystals in the IR spectral region

    International Nuclear Information System (INIS)

    Klyui, N. I.; Lozinskii, V. B.; Liptuga, A. I.; Dikusha, V. N.; Oksanych, A. P.; Kogdas’, M. G.; Perekhrest, A. L.; Pritchin, S. E.

    2017-01-01

    The optical properties of semi-insulating GaAs crystals subjected to multienergy hydrogen-ion implantation and treatment in a high-frequency electromagnetic field are studied in the infrared spectral region. It is established that such combined treatment provides a means for substantially increasing the transmittance of GaAs crystals to values characteristic of crystals of high optical quality. On the basis of analysis of the infrared transmittance and reflectance data, Raman spectroscopy data, and atomic-force microscopy data on the surface morphology of the crystals, a physical model is proposed to interpret the effects experimentally observed in the crystals. The model takes into account the interaction of radiation defects with the initial structural defects in the crystals as well as the effect of compensation of defect centers by hydrogen during high-frequency treatment.

  19. Enhanced spectral emissivity of CeO{sub 2} coating with cauliflower-like microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jianping [Center for Composite Materials and Structures, Harbin Institute of Technology, 150080 Harbin (China); Li Yibin, E-mail: liyibin@hit.edu.cn [Center for Composite Materials and Structures, Harbin Institute of Technology, 150080 Harbin (China); He Xiaodong; Song Guangping [Center for Composite Materials and Structures, Harbin Institute of Technology, 150080 Harbin (China); Fan Chenglei [Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, 150001 Harbin (China); Sun Yue [Center for Composite Materials and Structures, Harbin Institute of Technology, 150080 Harbin (China); Fei Weidong [School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin (China); Du Shanyi [Center for Composite Materials and Structures, Harbin Institute of Technology, 150080 Harbin (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Cauliflower-like microstructured CeO{sub 2} coating is prepared on Ni based substrate. Black-Right-Pointing-Pointer The infrared emissive property at high temperature is investigated. Black-Right-Pointing-Pointer Rough CeO{sub 2} coating shows high emissivity, that is, 0.9 at 873 K and 0.87 at 1073 K. Black-Right-Pointing-Pointer The emissivity enhancement mechanisms for the rough CeO{sub 2} coating are discussed. - Abstract: Cerium dioxide is a transparent oxide with high refractive index (from 1.6 to 2.5 at 633 nm) in the visible and near-IR spectral regions. However, little attention has been paid to its optical property in mid-IR (2.5-25 {mu}m). Here we report that the cauliflower-like microstructured CeO{sub 2} coating deposited by electron beam physical vapor deposition technique shows high emissivity up to 0.9 at 873 K in the mid-IR spectral region. The high emissivity is attributed to the coupling between free propagating waves and space-variant polarizations caused by the cauliflower-like microstructure. This high emissivity coating shows a potential application in high temperature components.

  20. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer

    2015-01-01

    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  1. Multiplexing of spatial modes in the mid-IR region

    Science.gov (United States)

    Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew

    2017-02-01

    Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.

  2. Fiber optic lasers with emission to the region 2-3 μm of IR medium

    International Nuclear Information System (INIS)

    Anzuelo Sanchez, G.; Osuna Galan, I.; Camas Anzueto, J.; Martinez Rios, A.; Selvas Aguilar, R.

    2009-01-01

    We present recent advances in laser emission in the 2-2-5 μm mid-IR, using a chalcogenide fiber with low loss and a high Raman gain in the region 2-10 μm. We present a review of fiber lasers operating in 2-3 μm of the mid IR. (Author)

  3. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    International Nuclear Information System (INIS)

    Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V

    2011-01-01

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)

  4. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  5. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  6. CORRELATION ANALYSIS OF IR, 1 H- AND 13 C-NMR SPECTRAL DATA OF N-ALKYL AND N-CYCLOALKYL CYANOACETAMIDES

    Directory of Open Access Journals (Sweden)

    Aleksandar D. Marinković

    2011-09-01

    Full Text Available Linear free energy relationships (LFER were applied to the IR, 1H- and 13C--NMR spectral data in N-alkyl and N-cycloalkyl cyanoacetamides. N-alkyl and N-cycloalkyl cyanocetamides were synthesized from corresponding amine and ethyl cyanoacetate. A number of substituents were employed for alkyl substitution, and fairly good correlations were obtained, using simple Hammett equation. In N-alkyl and N-cycloalkyl cyanoacetamides substituent cause SCS of N-H hydrogen primarily by steric interaction, polar subtituent effect influences SCS shift of C=O carbon, while steric effect of N-alkyl substituent causes IR stretching frequencies of N-H, C=O and CN group. The conformations of investigated compounds have been studied by the use of semiempirical PM6 method, and together with LFER analysis, give a better insight into the influence of such a structure on the transmission of electronic substituent effects. Negative ρ values for several correlations (reverse substituent effect were found.

  7. Effect of H{sup +} implantation on the optical properties of semi-insulating GaAs crystals in the IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Klyui, N. I.; Lozinskii, V. B., E-mail: lvb@isp.kiev.ua [Jilin University, College of Physics (China); Liptuga, A. I.; Dikusha, V. N. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine); Oksanych, A. P.; Kogdas’, M. G.; Perekhrest, A. L.; Pritchin, S. E. [Kremenchug National University (Ukraine)

    2017-03-15

    The optical properties of semi-insulating GaAs crystals subjected to multienergy hydrogen-ion implantation and treatment in a high-frequency electromagnetic field are studied in the infrared spectral region. It is established that such combined treatment provides a means for substantially increasing the transmittance of GaAs crystals to values characteristic of crystals of high optical quality. On the basis of analysis of the infrared transmittance and reflectance data, Raman spectroscopy data, and atomic-force microscopy data on the surface morphology of the crystals, a physical model is proposed to interpret the effects experimentally observed in the crystals. The model takes into account the interaction of radiation defects with the initial structural defects in the crystals as well as the effect of compensation of defect centers by hydrogen during high-frequency treatment.

  8. Third-generation intelligent IR focal plane arrays

    Science.gov (United States)

    Caulfield, H. John; Jack, Michael D.; Pettijohn, Kevin L.; Schlesselmann, John D.; Norworth, Joe

    1998-03-01

    SBRC is at the forefront of industry in developing IR focal plane arrays including multi-spectral technology and '3rd generation' functions that mimic the human eye. 3rd generation devices conduct advanced processing on or near the FPA that serve to reduce bandwidth while performing needed functions such as automatic target recognition, uniformity correction and dynamic range enhancement. These devices represent a solution for processing the exorbitantly high bandwidth coming off large area FPAs without sacrificing systems sensitivity. SBRC's two-color approach leverages the company's HgCdTe technology to provide simultaneous multiband coverage, from short through long wave IR, with near theoretical performance. IR systems that are sensitive to different spectral bands achieve enhanced capabilities for target identification and advanced discrimination. This paper will provide a summary of the issues, the technology and the benefits of SBRC's third generation smart and two-color FPAs.

  9. Optimization of silicon waveguides for gas detection application at mid-IR wavelengths

    Science.gov (United States)

    Butt, M. A.; Kozlova, E. S.

    2018-04-01

    There are several trace gases such as N2O, CO, CO2, NO, H2O, NO2, NH3, CH4 etc. which have their absorption peaks in Mid-IR spectrum These gases strongly absorb in the mid-IR > 2.5 μm spectral region due to their fundamental rotational and vibrational transitions. In this work, we modelled and optimized three different kinds of waveguides such as rib, strip and slot based on silicon platform to obtain maximum evanescent field ratio. These waveguides are designed at 3.39 μm and 4.67 μm which correspond to the absorption line of methane (CH4) and carbon monoxide (CO) respectively.

  10. Selective suppression of high-order harmonics within phase-matched spectral regions.

    Science.gov (United States)

    Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren

    2017-04-01

    Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.

  11. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  12. Methods for deconvoluting and interpreting complex gamma- and x-ray spectral regions

    International Nuclear Information System (INIS)

    Gunnink, R.

    1983-06-01

    Germanium and silicon detectors are now widely used for the detection and measurement of x and gamma radiation. However, some analysis situations and spectral regions have heretofore been too complex to deconvolute and interpret by techniques in general use. One example is the L x-ray spectrum of an element taken with a Ge or Si detector. This paper describes some new tools and methods that were developed to analyze complex spectral regions; they are illustrated with examples

  13. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1979-01-01

    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  14. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2001-02-01

    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.Key words. Ionosphere (ionospheric irregularities

  15. Spectral filter for splitting a beam with electromagnetic radiation having wavelengths in the extreme ultraviolet (EUV) or soft X-Ray (Soft X) and the infrared (IR) wavelength range

    NARCIS (Netherlands)

    van Goor, F.A.; Bijkerk, Frederik; van den Boogaard, Toine; van den Boogaard, A.J.R.; van der Meer, R.

    2012-01-01

    Spectral filter for splitting the primary radiation from a generated beam with primary electromagnetic radiation having a wavelength in the extreme ultraviolet (EUV radiation) or soft X-ray (soft X) wavelength range and parasitic radiation having a wavelength in the infrared wavelength range (IR

  16. HOM [higher order mode] losses at the IR [interaction region] of the B-factory

    International Nuclear Information System (INIS)

    Heifets, S.

    1990-08-01

    Masking at the interaction region (IR) will presumably reduce the synchrotron radiation background in the detector. One possible layout of the IR for B-factory shows a rather complicated system of masks. A bunch passing each mask will generate RF waves. These waves (called usually higher order modes, HOM-s) will be absorbed in the beam pipe wall producing additional heating and, interacting with the beam, kicking particles in the radial and azimuthal directions. This may change the bunch motion and its emittance. These effects are estimated in the present note

  17. Subarcsecond observations of NGC 7538 IRS 1: Continuum distribution and dynamics of molecular gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei; Shi, Hui [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wright, M. C. H. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Sandell, Göran [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Building N232, Rm. 146, P.O. Box 1, Moffett Field, CA 94035-0001 (United States); Wu, Yue-Fang [Department of Astronomy, Peking University, Beijing 100871 (China); Brogan, Crystal; Corder, Stuartt, E-mail: lzhu@nao.cas.cn [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2013-12-10

    We report new results based on the analysis of the Submillimeter Array (SMA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of NGC 7538 IRS 1 at 1.3 and 3.4 mm with subarcsecond resolutions. With angular resolutions ∼0.''7, the SMA and CARMA observations show that the continuum emission at 1.3 and 3.4 mm from the hyper-compact H II region IRS 1 is dominated by a compact source with a tail-like extended structure to the southwest of IRS 1. With a CARMA B-array image at 1.3 mm convolved to 0.''1, we resolve the hyper-compact H II region into two components: an unresolved hyper-compact core, and a north-south extension with linear sizes of <270 AU and ∼2000 AU, respectively. The fine structure observed with CARMA is in good agreement with the previous Very Large Array results at centimeter wavelengths, suggesting that the hyper-compact H II region at the center of IRS 1 is associated with an ionized bipolar outflow. We image the molecular lines OCS(19-18) and CH{sub 3}CN(12-11) as well as {sup 13}CO(2-1) surrounding IRS 1, showing a velocity gradient along the southwest-northeast direction. The spectral line profiles in {sup 13}CO(2-1), CO(2-1), and HCN(1-0) observed toward IRS 1 show broad redshifted absorption, providing evidence for gas infall with rates in the range of 3-10 × 10{sup –3} M {sub ☉} yr{sup –1} inferred from our observations.

  18. Spectral properties of common intraocular lens (IOL) types

    Science.gov (United States)

    Milne, Peter J.; Chapon, Pascal F.; Hamaoui, Marie; Parel, Jean-Marie A.; Clayman, H.; Rol, Pascal O.

    1999-06-01

    Currently over 50 kinds of intraocular lenses (IOLs) are approved for patient use in the treatment of cataracts and ametropia. These lenses are manufactured from at least 2 kinds of silicones as well as several kinds of acrylic polymers including polyHEMA, Poly HOXEMA, a range of polymethacrylate and polyacrylate formulations. We sought to measure spectral transmission curves of a range of IOLS in the UV-visible and near IR spectral regions in order to better characterize their optical properties and to provide a baseline from which to assess their alteration following implantation over time. Consideration of how this may best be achieved are discussed. The variable ability of both explained IOLs and some samples from a range of manufacturers to block UV wavelengths is commented upon.

  19. A classification of spectral populations observed in HF radar backscatter from the E region auroral electrojets

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of HF radar backscatter from the auroral electrojet E region indicate the presence of five major spectral populations, as opposed to the two predominant spectral populations, types I and II, observed in the VHF regime. The Doppler shift, spectral width, backscatter power, and flow angle dependencies of these five populations are investigated and described. Two of these populations are identified with type I and type II spectral classes, and hence, are thought to be generated by the two-stream and gradient drift instabilities, respectively. The remaining three populations occur over a range of velocities which can greatly exceed the ion acoustic speed, the usual limiting velocity in VHF radar observations of the E region. The generation of these spectral populations is discussed in terms of electron density gradients in the electrojet region and recent non-linear theories of E region irregularity generation.

    Key words. Ionosphere (ionospheric irregularities

  20. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  1. The X-Shooter spectral library

    NARCIS (Netherlands)

    Chen, Y. P.; Trager, S. C.; Peletier, R. F.; Lançon, A.; Prugniel, Ph.; Koleva, M.

    2012-01-01

    We are building a new spectral library with the X-Shooter instrument on ESO's VLT: XSL, the X-Shooter Spectral Library. We present our progress in building XSL, which covers the wavelength range from the near-UV to the near-IR with a resolution of R˜10000. As of now we have collected spectra for

  2. Selection/extraction of spectral regions for autofluorescence spectra measured in the oral cavity

    NARCIS (Netherlands)

    Skurichina, M; Paclik, P; Duin, RPW; de Veld, D; Sterenborg, HJCM; Witjes, MJH; Roodenburg, JLN; Fred, A; Caelli, T; Duin, RPW; Campilho, A; DeRidder, D

    2004-01-01

    Recently a number of successful algorithms to select/extract discriminative spectral regions was introduced. These methods may be more beneficial than the standard feature selection/extraction methods for spectral classification. In this paper, on the example of autofluorescence spectra measured in

  3. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons in the 3 μm region: role of hydrogenation and alkylation

    Science.gov (United States)

    Maltseva, Elena; Mackie, Cameron J.; Candian, Alessandra; Petrignani, Annemieke; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2018-03-01

    Aim. We aim to elucidate the spectral changes in the 3 μm region that result from chemical changes in the molecular periphery of polycyclic aromatic hydrocarbons (PAHs) with extra hydrogens (H-PAHs) and methyl groups (Me-PAHs). Methods: Advanced laser spectroscopic techniques combined with mass spectrometry were applied on supersonically cooled 1,2,3,4-tetrahydronaphthalene, 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 1,2,3,6,7,8-hexahydropyrene, 9-methylanthracene, and 9,10-dimethylanthracene, allowing us to record mass-selective and conformationally selective absorption spectra of the aromatic, aliphatic, and alkyl CH-stretches in the 3.175 - 3.636 µm region with laser-limited resolution. We compared the experimental absorption spectra with standard harmonic calculations and with second-order vibrational perturbation theory anharmonic calculations that use the SPECTRO program for treating resonances. Results: We show that anharmonicity plays an important if not dominant role, affecting not only aromatic, but also aliphatic and alkyl CH-stretch vibrations. The experimental high-resolution data lead to the conclusion that the variation in Me- and H-PAHs composition might well account for the observed variations in the 3 μm emission spectra of carbon-rich and star-forming regions. Our laboratory studies also suggest that heavily hydrogenated PAHs form a significant fraction of the carriers of IR emission in regions in which an anomalously strong 3 μm plateau is observed.

  4. Investigation on water content in fresco mock-ups in the microwave and near-IR spectral regions

    International Nuclear Information System (INIS)

    Magrini, Donata; Riminesi, Cristiano; Cucci, Costanza; Olmi, Roberto; Picollo, Marcello

    2017-01-01

    Water diffusion inside masonry is responsible for the majority of the decay phenomena observed in wall paintings and frescos. Thus, the diagnostics of moisture and water content and their monitoring represent a key issue. In order to preserve the integrity of surfaces of artistic interest, investigations by means of non-destructive techniques (NDT) are preferred over others. The aim of this research is to determine methodologies to quantify the moisture content (MC) of frescos by means of the integrated use of two non-invasive techniques, namely fiber optic reflectance spectroscopy (FORS) in the near-IR region and evanescent field dielectrometry (EFD) in the microwave range. The FORS technique has been employed in order to assess the amount of water adsorbed from the surface by means of an analysis of the reflectance spectra in the Vis–NIR (350-2200 nm) range. This technique investigates the electronic and vibrational transitions that are characteristic of each compound and enables their identification. The water content is evaluated on the basis of the 1920 nm and 1450 nm absorption bands. The EFD system consists of a resonant probe connected to a network analyzer. The resonance frequency of the cavity under different moisture-content conditions of frescos is in the 1.0–1.5 GHz range. The device makes it possible to compute, in real time, the MC from a measurement of the transmission coefficient (amplitude versus frequency) through the probe. Fresco mock-ups have been prepared in collaboration with the Opificio delle Pietre Dure in order to recreate most of the possible chromatic shades obtained by mixing iron oxides and hydroxide-based pigments. Measurements were performed by employing both techniques on fresco models after wet-dry cycles obtained by means of poultices with a known water content. The results obtained with these two techniques were compared, and cross relationships between the EFD and FORS data were defined. (paper)

  5. On global and regional spectral evaluation of global geopotential models

    International Nuclear Information System (INIS)

    Ustun, A; Abbak, R A

    2010-01-01

    Spectral evaluation of global geopotential models (GGMs) is necessary to recognize the behaviour of gravity signal and its error recorded in spherical harmonic coefficients and associated standard deviations. Results put forward in this wise explain the whole contribution of gravity data in different kinds that represent various sections of the gravity spectrum. This method is more informative than accuracy assessment methods, which use external data such as GPS-levelling. Comparative spectral evaluation for more than one model can be performed both in global and local sense using many spectral tools. The number of GGMs has grown with the increasing number of data collected by the dedicated satellite gravity missions, CHAMP, GRACE and GOCE. This fact makes it necessary to measure the differences between models and to monitor the improvements in the gravity field recovery. In this paper, some of the satellite-only and combined models are examined in different scales, globally and regionally, in order to observe the advances in the modelling of GGMs and their strengths at various expansion degrees for geodetic and geophysical applications. The validation of the published errors of model coefficients is a part of this evaluation. All spectral tools explicitly reveal the superiority of the GRACE-based models when compared against the models that comprise the conventional satellite tracking data. The disagreement between models is large in local/regional areas if data sets are different, as seen from the example of the Turkish territory

  6. Spectral density of electron concentration fluctuations in ionospheric D region

    International Nuclear Information System (INIS)

    Martynenko, S.I.

    1989-01-01

    Expression for spectral density of electron concentration fluctuations in D-region with regard to the effect of ionization-recombination proceses and negative ions is obtained in terms of atmospheric turbulence model which obeys Kolmogorov-Obukhov 2/3 law

  7. Mid-IR Spectra of Refractory Minerals Relevant to Comets

    Science.gov (United States)

    Jauhari, Shekeab

    2008-09-01

    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  8. Optical design for a breadboard high-resolution spectrometer for SIRTF/IRS

    Science.gov (United States)

    Brown, Robert J.; Houck, James R.; van Cleve, Jeffrey E.

    1996-11-01

    The optical design of a breadboard high resolution infrared spectrometer for the IRS instrument on the SIRTF mission is discussed. The spectrometer uses a crossed echelle grating configuration to cover the spectral region from 10 to 20 micrometer with a resolving power of approximately equals 600. The all reflective spectrometer forms a nearly diffraction limited image of the two dimensional spectrum on a 128 multiplied by 128 arsenic doped silicon area array with 75 micrometer pixels. The design aspects discussed include, grating numerology, image quality, packaging and alignment philosophy.

  9. Optical and near-IR study of LMC HII region N11AB

    International Nuclear Information System (INIS)

    Lee, M.G.

    1990-01-01

    N11 (DEM 34), complex HII region located about 4 degrees from the center of the LMC bar, is a very interesting giant interstellar shell. It has a complicated structure and motion. It is located on the edge of an HI concentration. This is the progress report of the study of its two components, A and B at the optical and near-IR wavelengths to investigate stars, dust and ionized gas associated with them. N11A is a compact high-excitation blob and N11B is a bright HII region in this complex, which embeds OB association Lucke-Hodge 10

  10. FT-IR spectroscopic studies of protein secondary structures for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karamancheva, I; Simonova, D.; Milev, A.

    2013-01-01

    Full text: Roughly 14 million new cancer cases and 8 million cancer deaths have occurred worldwide in 2012. At least 30 % of all cancer cases and 40 % of the cancer deaths should be avoided by improving the early detection. Fourier transform infrared (FT-IR) spectroscopy has shown many advantages as a tool for the detection of cancer over the traditional methods such as histopathological analysis, X-ray transmission, ultrasonic and computer tomography techniques. With the aim to establish the FT-IR spectroscopy as an alternative method for the diagnosis of human cancers, we have made several studies to examine in details the spectroscopic properties of normal and carcinomatous tissues. Human breast tissues were obtained immediately after surgical breast resection with the informed patient's consent. In our studies we made extensive use of Fourier self-deconvolution, second-order derivatization, difference spectra, curve-fitting procedures and quantitative determinations according to Beer's law. Cancer is a multi-step process. Characteristic differences in both the frequencies and the intensity ratios of several bands have been revealed. Considerable differences have been found in the spectral patterns. The most important and informative region in the mid-IR for determination of protein secondary structure is the amide I and amide II region. The bands between 1730 and 1600 cm -1 are highly sensitive to conformational changes. Considerable changes were observed in the A1735/A1652 absorbance ratio, which provides a measure for the content of a- helix and P-sheet domains. Our investigations have shown that the major biomarker peaks are in the amide I and amide II regions. In the so called 'fingerprint region' many molecular constituents such as lipids, phospholipids, proteins, DNA and RNA, carbohydrates and metabolites may overlap and the quantitative interpretation is impossible. The spectrum may therefore reflect only the average biochemical composition.; key words

  11. Magnetorefractive effect in manganites with a colossal magnetoresistance in the visible spectral region

    International Nuclear Information System (INIS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Granovsky, A. B.; Gan’shina, E. A.; Zhukov, A.; Gonzalez, J.; Herranz, G.; Caicedo, J. M.; Yurasov, A. N.; Bessonov, V. D.; Kaul’, A. R.; Gorbenko, O. Yu.; Korsakov, I. E.

    2012-01-01

    The magnetotransmission, magnetoreflection, and magnetoresistance of the La 0.7 Ca 0.3 MnO 3 and La 0.9 Ag 0.1 MnO 3 epitaxial films have been investigated. It has been found that the films exhibit a significant magnetorefractive effect in the case of reflection and transmission of light in the fundamental absorption region both in the vicinity of the Curie temperature and at low temperatures. It has been shown that the magnetorefractive effect in the infrared spectral region of the manganites is determined by a high-frequency response to magnetoresistance, whereas the magnetorefractive effect in the visible spectral region of these materials is associated with a change in the electronic structure in response to a magnetic field, which, in turn, leads to a change in the electron density of states, the probability of interband optical transitions, and the shift of light absorption bands. The obtained values of the magnetotransmittance and magnetoreflectance in the visible spectral region are less than those observed in the infrared region of the spectrum, but they are several times greater than the linear magneto-optical effects. As a result, the magnetorefractive effect, which is a nongyrotropic phenomenon, makes it possible to avoid the use of light analyzers and polarizers in optical circuits.

  12. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    Science.gov (United States)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  13. Ngc7538 Irs1 - A Highly Collimated Ionized Wind Source Powered By Accretion

    Science.gov (United States)

    Sandell, Goran H. L.; Wright, M.; Goss, W.; Corder, S.

    2009-01-01

    Recent images show that NGC7538 IRS1 is not a conventional Ultracompact or Hypercompact HII region, but is completely wind-excited (other broad recombination line hypercompact HII regions may be similar to IRS1). NGC 7538 IRS1 is a well studied young high-mass star (L 2 10^5 L_Sun).VLA images at 6 and 2 cm (Cambell 1984; ApJ, 282, L27) showed a compact bipolar core (lobe separation 0.2") with more extended faint lobes. Recombination line observations (Gaume et al. 1995, ApJ, 438, 776) show extremely wide line profiles indicating substantial mass motion of the ionized gas. We re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured the flux from the compact core and the extended (1.5 - 2") bipolar lobes. We find that the compact core has a spectral index, alpha 0.6, which could be explained by an optically thick hypercompact core with a density gradient. However, the size of the core shrinks with increasing frequency; from 0.24" at 6 cm to 0.1" at 7 mm, consistent with that expected for a collimated jet (Reynolds 1986, ApJ, 304, 713). If we do a crude size correction so that we compare emission from the optically thick inner part of the jet for a set of 2 cm and 7 mm observations we get alpha 1.6, i.e. close to the optically thick value. BIMA and CARMA continuum observations at 3 mm show some dust excess, while. HCO+ J=1-0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate 2 10^-4 M_Sun/year, sufficient to quench the formation of an HII region.

  14. On the Spatially Resolved Star Formation History in M51. I. Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars

    Science.gov (United States)

    Eufrasio, R. T.; Lehmer, B. D.; Zezas, A.; Dwek, E.; Arendt, R. G.; Basu-Zych, A.; Wiklind, T.; Yukita, M.; Fragos, T.; Hornschemeier, A. E.; Markwardt, L.; Ptak, A.; Tzanavaris, P.

    2017-12-01

    We present LIGHTNING, a new spectral energy distribution fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. LIGHTNING consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive far-UV-to-far-IR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the past 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover an SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51 and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.

  15. Magnetorefractive effect in manganites with a colossal magnetoresistance in the visible spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Sukhorukov, Yu. P., E-mail: suhorukov@imp.uran.ru; Telegin, A. V. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Granovsky, A. B., E-mail: granov@magn.ru; Gan' shina, E. A. [Moscow State University, Faculty of Physics (Russian Federation); Zhukov, A.; Gonzalez, J. [Universidad del Pais Vasco (UPV)/Euskal Herriko Unibertsitatea (EHU), Departamento de Fisica de Materiales, Facultad de Quimica (Spain); Herranz, G. [Institut de Ciencia de Materials de Barcelona (ICMAB)-CSIC (Spain); Caicedo, J. M. [Universidad del Pais Vasco (UPV)/Euskal Herriko Unibertsitatea (EHU), Departamento de Fisica de Materiales, Facultad de Quimica (Spain); Yurasov, A. N. [Moscow State Institute of Radio-Engineering, Electronics, and Automation (Technical University) (Russian Federation); Bessonov, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Kaul' , A. R.; Gorbenko, O. Yu.; Korsakov, I. E. [Moscow State University, Faculty of Physics (Russian Federation)

    2012-01-15

    The magnetotransmission, magnetoreflection, and magnetoresistance of the La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and La{sub 0.9}Ag{sub 0.1}MnO{sub 3} epitaxial films have been investigated. It has been found that the films exhibit a significant magnetorefractive effect in the case of reflection and transmission of light in the fundamental absorption region both in the vicinity of the Curie temperature and at low temperatures. It has been shown that the magnetorefractive effect in the infrared spectral region of the manganites is determined by a high-frequency response to magnetoresistance, whereas the magnetorefractive effect in the visible spectral region of these materials is associated with a change in the electronic structure in response to a magnetic field, which, in turn, leads to a change in the electron density of states, the probability of interband optical transitions, and the shift of light absorption bands. The obtained values of the magnetotransmittance and magnetoreflectance in the visible spectral region are less than those observed in the infrared region of the spectrum, but they are several times greater than the linear magneto-optical effects. As a result, the magnetorefractive effect, which is a nongyrotropic phenomenon, makes it possible to avoid the use of light analyzers and polarizers in optical circuits.

  16. Data fusion of Landsat TM and IRS images in forest classification

    Science.gov (United States)

    Guangxing Wang; Markus Holopainen; Eero Lukkarinen

    2000-01-01

    Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...

  17. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Manceron, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Laboratoire MONARIS, CNRS-Université Pierre et Marie Curie, UMR 8233, 4 Place Jussieu, F-75252 Paris Cedex (France)

    2016-06-15

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  18. Using Fourier transform IR spectroscopy to analyze biological materials

    Science.gov (United States)

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  19. Signal-to-noise ratio of FT-IR CO gas spectra

    DEFF Research Database (Denmark)

    Bak, J.; Clausen, Sønnik

    1999-01-01

    in emission and transmission spectrometry, an investigation of the SNR in CO gas spectra as a function of spectral resolution has been carried out. We present a method to (1) determine experimentally the SNR at constant throughput, (2) determine the SNR on the basis of measured noise levels and Hitran......The minimum amount of a gaseous compound which can be detected and quantified with Fourier transform infrared (FT-IR) spectrometers depends on the signal-to-noise ratio (SNR) of the measured gas spectra. In order to use low-resolution FT-IR spectrometers to measure combustion gases like CO and CO2...... simulated signals, and (3) determine the SNR of CO from high to low spectral resolutions related to the molecular linewidth and vibrational-rotational lines spacing. In addition, SNR values representing different spectral resolutions but scaled to equal measurement times were compared. It was found...

  20. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  1. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

    Science.gov (United States)

    Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung

    2016-01-01

    A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    Science.gov (United States)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  3. Characterization and identification of microorganisms by FT-IR microspectrometry

    Science.gov (United States)

    Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.

    2003-12-01

    We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.

  4. Liver Status Assessment by Spectrally and Time Resolved IR Detection of Drug Induced Breath Gas Changes

    Directory of Open Access Journals (Sweden)

    Tom Rubin

    2016-05-01

    Full Text Available The actual metabolic capacity of the liver is crucial for disease identification, liver therapy, and liver tumor resection. By combining induced drug metabolism and high sensitivity IR spectroscopy of exhaled air, we provide a method for quantitative liver assessment at bedside within 20 to 60 min. Fast administration of 13C-labelled methacetin induces a fast response of liver metabolism and is tracked in real-time by the increase of 13CO2 in exhaled air. The 13CO2 concentration increase in exhaled air allows the determination of the metabolic liver capacity (LiMAx-test. Fluctuations in CO2 concentration, pressure and temperature are minimized by special gas handling, and tracking of several spectrally resolved CO2 absorption bands with a quantum cascade laser. Absorption measurement of different 12CO2 and 13CO2 rotation-vibration transitions in the same time window allows for multiple referencing and reduction of systematic errors. This FLIP (Fast liver investigation package setup is being successfully used to plan operations and determine the liver status of patients.

  5. Identification of Spectral Regions for Quantification of Red Wine Tannins with Fourier Transform Mid-Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Jensen, Jacob Skibsted; Egebo, Max; Meyer, Anne S.

    2008-01-01

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due...... to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included...... to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69−79 mg of CE/L; r = 0...

  6. Spatially resolved star formation and dust attenuation in Mrk 848: Comparison of the integral field spectra and the UV-to-IR SED

    Science.gov (United States)

    Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai

    2018-05-01

    We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.

  7. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    Science.gov (United States)

    Lukowski, Michal L.

    second harmonic generation in a V- cavity is presented. Tens of watts of output power for both blue and green wavelengths prove the viability for VECSELs to replace the other types of lasers currently used for applications in laser light shows, for Ti:Sapphire pumping, and for medical applications such as laser skin resurfacing. The novel, recently patented, two-chip T-cavity configuration allowing for spatial overlap of two, separate VECSEL cavities is described in detail. This type of setup is further used to demonstrate type II sum frequency generation to green with multi-watt output, and the full potential of the T-cavity is utilized by achieving type II difference frequency generation to the mid-IR spectral region. The tunable output around 5.4 microm with over 10 mW power is showcased. In the same manner the first attempts to generate THz radiation are discussed. Finally, a slightly modified T-cavity VECSEL is used to reach the UV spectral regions thanks to type I fourth harmonic generation. Over 100 mW at around 265 nm is obtained in a setup which utilizes no stabilization techniques. The dissertation demonstrates the flexibility of the VECSEL in achieving broad spectral coverage and thus its potential for a wide range of applications.

  8. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    Science.gov (United States)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  9. A Resolved and Asymmetric Ring of PAHs within the Young Circumstellar Disk of IRS 48

    Energy Technology Data Exchange (ETDEWEB)

    Schworer, Guillaume; Lacour, Sylvestre; Du Foresto, Vincent Coudé [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France); Huélamo, Nuria [Dpto. Astrofísica, Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691, Villanueva de la Cañada (Spain); Pinte, Christophe; Chauvin, Gaël [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France CNRS, IPAG, F-38000 Grenoble (France); Ehrenreich, David [Observatoire de l’Université de Genève, 51 chemin des Maillettes, 1290 Versoix (Switzerland); Girard, Julien [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura, Santiago 19 (Chile); Tuthill, Peter [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-06-20

    For one decade, the spectral type and age of the ρ Oph object IRS-48 were subject to debate and mystery. Modeling its disk with mid-infrared to millimeter observations led to various explanations to account for the complex intricacy of dust holes and gas-depleted regions. We present multi-epoch high-angular-resolution interferometric near-infrared data of spatially resolved emissions in the first 15 au of IRS-48, known to have very strong polycyclic aromatic hydrocarbon (PAH) emissions within this dust-depleted region. We make use of new Sparse-Aperture-Masking data to instruct a revised radiative-transfer model, where spectral energy distribution fluxes and interferometry are jointly fitted. Neutral and ionized PAH, very small grains (VSG), and classical silicates are incorporated into the model; new stellar parameters and extinction laws are explored. A bright (42 L {sub ⊙}) and hence large (2.5 R {sub ⊙}) central star with A {sub v} = 12.5 mag and R {sub v} = 6.5 requires less near-infrared excess: the inner-most disk at ≈1 au is incompatible with the interferometric data. The revised stellar parameters place this system on a 4 Myr evolutionary track, four times younger than the previous estimations, which is in better agreement with the surrounding ρ Oph region and disk-lifetime observations. The disk-structure solution converges to a classical-grain outer disk from 55 au combined with an unsettled and fully resolved VSG and PAH ring, between 11 and 26 au. We find two overluminosities in the PAH ring at color-temperatures consistent with the radiative transfer simulations; one follows a Keplerian circular orbit at 14 au. We show a depletion of a factor of ≈5 of classical dust grains up to 0.3 mm compared to very small particles: the IRS-48 disk is nearly void of dust grains in the first 55 au. A 3.5 M {sub Jup} planet on a 40 au orbit can qualitatively explain the new disk structure.

  10. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  11. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    Science.gov (United States)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  12. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    Science.gov (United States)

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  13. Mid-IR Reflectance (DRIFT) Spectral Variations in Basaltic Mineralogy with Direction of Impact at Lonar Crater, India

    Science.gov (United States)

    Basavaiah, N.; Chavan, R. S.; Arif, M.

    2012-12-01

    Identification of spectral changes with the direction of impact has important implications for understanding the impact cratering phenomenon occurring on both terrestrial and extraterrestrial planets and also for geology of the crater. Fortuitously, Lonar Impact Crater (India) is the only well-preserved terrestrial simple crater excavated on Deccan basalts and serves as an excellent analogue to craters on Mars and Moon. An ~570 ka old Lonar crater was suggested to be formed by an oblique impact of a chondritic impactor that struck the pre-impact target from the east into a sequence of six basaltic Deccan flows and created a 1.88 km diameter crater with two layers of ejecta blanket. Here we report preliminary laboratory studies of spectral results on fine-grained rock powers (IR (4000-400 cm-1) Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The basalts were collected from two profiles in the east and south sections of the crater wall and the upper most crater rim, which later subdivided into sector-wise samples to carry out a systematic study of spectral properties of Lonar basalts, together with impact related samples of breccias and impact melts. For the first time, data of the shock metamorphism of Lonar basalt is examined using DRIFT spectroscopy. Infrared spectra of rock powders of relatively unshocked and shocked basalts are obtained to document the mineralogical variations and the distribution of primary (e.g. Plagioclase Feldspar, Pyroxene), and secondary Phyllosilicate minerals (e.g. Illite, Smectite, Montmorillonite, Saponite, Serpentine) with direction of impact. The spectral data between pre-impact unshocked and post-impact shocked basalts are interpreted to reflect the effect of shock pressure and alteration that rock have undergone. On western crater rim sector, typical silicate spectral features in 900-1200 cm-1 which attributed to Si-O stretching, are observed to change slightly in the width and shift in position as a result of

  14. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Jensen, Jacob S; Egebo, Max; Meyer, Anne S

    2008-05-28

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included the development of a new variable selection tool, iterative backward elimination of changeable size intervals PLS. The spectral regions identified by the different variable selection methods were not identical, but all included two regions (1485-1425 and 1060-995 cm(-1)), which therefore were concluded to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69-79 mg of CE/L; r = 0.93-0.94) as compared to a calibration model developed using all variables (RMSEP = 115 mg of CE/L; r = 0.87). Only minor differences in the performance of the variable selection methods were observed.

  15. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Maria-Cristina, E-mail: cpopescu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry (Romania); Gomez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz [Universidad de Alcala, Departamento de Quimica Inorganica (Spain); Simionescu, Bogdan C. [' Petru Poni' Institute of Macromolecular Chemistry (Romania)

    2013-06-15

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010-2,710, 1,530-1,170, and 1,170-625 cm{sup -1} regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 Degree-Sign C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si-O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH{sub 3} and CH{sub 3}-N{sup +} groups take place first. With increasing temperature, the intensity variation of the CH{sub 2}, C-N, Si-C and C-C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  16. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    International Nuclear Information System (INIS)

    Popescu, Maria-Cristina; Gómez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz; Simionescu, Bogdan C.

    2013-01-01

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010–2,710, 1,530–1,170, and 1,170–625 cm −1 regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 °C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si–O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH 3 and CH 3 –N + groups take place first. With increasing temperature, the intensity variation of the CH 2 , C–N, Si–C and C–C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  17. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  18. MicrOmega IR: a new infrared hyperspectral imaging microscope or in situ analysis

    Science.gov (United States)

    Vaitua, Leroi; Bibring, Jean-Pierre; Berthé, Michel

    2017-11-01

    MicrOmega IR is an ultra miniaturized Near Infrared hyperspectral microscope for in situ analysis of samples. It is designed to be implemented on board space planetary vehicles (lander and/or rovers). It acquires images of samples typically some 5 mm in width with a spatial sampling of 20 μm. On each pixel, MicrOmega acquires the spectrum in the spectral range 0.9 - 2.6 μm, with a possibility to extend the sensibility up to 4 μm. The spectrum will be measured in up to 300 contiguous spectral channels (600 in the extended range): given the diagnostic spectral features present in this domain, it provides the composition of each spatially resolved constituent. MicrOmega has thus the potential to identify: minerals, such as pyroxene and olivine, ferric oxides, hydrated phases such as phyllosilicates, sulfates and carbonates, ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body. In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for potential bio-relics in Martian samples. This purely non destructive characterization enables further analyses (e.g. through mass spectrometry) to be performed, and/or to contribute to sample selection to return to Earth. MicrOmega IR is coupled to a visible microscope: MicrOmega VIS. Thus, the MicrOmega instrument is developed by an international consortium: IAS (Orsay, France), LESIA (Meudon, France), CBM (Orléans, France), University Of Bern (Bern, Switzerland), IKI (Moscow, Russia). This instrument (MicrOmega IR, MicrOmega VIS and the electronics) is selected for the ESA Exomars mission (launch scheduled for 2013). MicrOmega IR will be used in a reduced spectral range (0.9 - 2.6 μm), due to power, mass and thermal constraints: however, most minerals and other

  19. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    Science.gov (United States)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P

  20. Model and measurements of linear mixing in thermal IR ground leaving radiance spectra

    Science.gov (United States)

    Balick, Lee; Clodius, William; Jeffery, Christopher; Theiler, James; McCabe, Matthew; Gillespie, Alan; Mushkin, Amit; Danilina, Iryna

    2007-10-01

    Hyperspectral thermal IR remote sensing is an effective tool for the detection and identification of gas plumes and solid materials. Virtually all remotely sensed thermal IR pixels are mixtures of different materials and temperatures. As sensors improve and hyperspectral thermal IR remote sensing becomes more quantitative, the concept of homogeneous pixels becomes inadequate. The contributions of the constituents to the pixel spectral ground leaving radiance are weighted by their spectral emissivities and their temperature, or more correctly, temperature distributions, because real pixels are rarely thermally homogeneous. Planck's Law defines a relationship between temperature and radiance that is strongly wavelength dependent, even for blackbodies. Spectral ground leaving radiance (GLR) from mixed pixels is temperature and wavelength dependent and the relationship between observed radiance spectra from mixed pixels and library emissivity spectra of mixtures of 'pure' materials is indirect. A simple model of linear mixing of subpixel radiance as a function of material type, the temperature distribution of each material and the abundance of the material within a pixel is presented. The model indicates that, qualitatively and given normal environmental temperature variability, spectral features remain observable in mixtures as long as the material occupies more than roughly 10% of the pixel. Field measurements of known targets made on the ground and by an airborne sensor are presented here and serve as a reality check on the model. Target spectral GLR from mixtures as a function of temperature distribution and abundance within the pixel at day and night are presented and compare well qualitatively with model output.

  1. Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells.

    Science.gov (United States)

    Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J

    2013-10-07

    Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.

  2. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  3. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications; Instruments de mesure multi-polluants par spectroscopie infrarouge bases sur des lasers fibres et par generation de difference de frequences: developpement et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, J

    2006-12-15

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of < 10{sup -8} cm{sup -1} Hz{sup -1/2} and allowed the quantification of chemical species such as CO{sub 2}, CO, C{sub 2}H{sub 2}, CH{sub 4} and the determination of the isotopic ratio {sup 13}CO{sub 2}/{sup 12}CO{sub 2} in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 {mu}m), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C{sub 2}H{sub 4}) and benzene (C{sub 6}H{sub 6}). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  4. Infrared spectral imaging as a novel approach for histopathological recognition in colon cancer diagnosis

    Science.gov (United States)

    Nallala, Jayakrupakar; Gobinet, Cyril; Diebold, Marie-Danièle; Untereiner, Valérie; Bouché, Olivier; Manfait, Michel; Sockalingum, Ganesh Dhruvananda; Piot, Olivier

    2012-11-01

    Innovative diagnostic methods are the need of the hour that could complement conventional histopathology for cancer diagnosis. In this perspective, we propose a new concept based on spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In order to correct spectral interferences from paraffin and agarose, a mathematical procedure is implemented. The corrected spectral images are then processed by a multivariate clustering method to automatically recover, on the basis of their intrinsic molecular composition, the main histological classes of the normal and the tumoral colon tissue. The spectral signatures from different histological classes of the colonic tissues are analyzed using statistical methods (Kruskal-Wallis test and principal component analysis) to identify the most discriminant IR features. These features allow characterizing some of the biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-free and nondestructive manner, main changes associated with nucleotide, carbohydrates, and collagen features can be identified simultaneously between the compared normal and the cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a complementary modern tool, to conventional histopathology, for an objective cancer diagnosis directly from paraffin-embedded tissue arrays.

  5. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    Science.gov (United States)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  6. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  7. Optical Remote Sensing for Fence-Line Monitoring using Open-Path Quantum Cascade Laser (QCL) mono-static system for multiple target compounds in the Mid IR 7-13um (Fingerprint) region.

    Science.gov (United States)

    Zemek, P. G.

    2017-12-01

    Quantum Cascade Lasers (QCLs) are quickly replacing Tunable Diode Lasers (TDL) for multi-target species identification and quantification in both extractive and open-path (OP) Optical Remote Sensing (ORS) fence-line instrumentation. As was seen with TDL incorporation and pricing drops as the adoption by the telecommunications industry and its current scaling has improved robustness and pricing, the QCL is also, albiet more slowly, becoming a mature market. There are several advantages of QCLs over conventional TDLs such as improved brightness and beam density, high resolution, as well as the incorporation of external etalons or internal gratings to scan over wide spectral areas. QCLs typically operate in the Mid infra-red (MIR) as opposed to the Near-Infrared (NIR) region used with TDL. The MidIR is a target rich absorption band area where compounds have high absorbtivity coefficients resulting in better detection limits as compared to TDL instruments. The use of novel chemometrics and more sensitive non-cryo-cooled detectors has allowed some of the first QCL open-path instruments in both active and passive operation. Data and field studies of one of the newest QCL OP systems is presented that allows one system to measure multiple target compounds. Multiple QCL spectral regions may be stitched together to increase the capability of QCLs over TDL OP systems. A comparison of several ORS type systems will be presented.

  8. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ir Spectroscopic Studies on Microsolvation of HCl by Water

    Science.gov (United States)

    Mani, Devendra; Schwan, Raffael; Fischer, Theo; Dey, Arghya; Kaufmann, Matin; Redlich, Britta; van der Meer, Lex; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Acid dissociation reactions are at the heart of chemistry. These reactions are well understood at the macroscopic level. However, a microscopic level understanding is still in the early stages of development. Questions such as 'how many H_2O molecules are needed to dissociate one HCl molecule?' have been posed and explored both theoretically and experimentally.1-5 Most of the theoretical calculations predict that four H_2O molecules are sufficient to dissociate one HCl molecule, resulting in the formation of a solvent separated H_3O+(H_2O)3Cl- cluster.1-3 IR spectroscopy in helium nanodroplets has earlier been used to study this dissociation process.3-5 However, these studies were carried out in the region of O-H and H-Cl stretch, which is dominated by the spectral features of undissociated (HCl)m-(H_2O)n clusters. This contributed to the ambiguity in assigning the spectral features arising from the dissociated cluster.4,5 Recent predictions from Bowman's group, suggest the presence of a broad spectral feature (1300-1360 wn) for the H_3O+(H_2O)3Cl- cluster, corresponding to the umbrella motion of H_3O+ moiety.6 This region is expected to be free from the spectral features due to the undissociated clusters. In conjunction with the FELIX laboratory, we have performed experiments on the (HCl)m(H_2O)n (m=1-2, n≥4) clusters, aggregated in helium nanodroplets, in the 900-1700 wn region. Mass selective measurements on these clusters revealed the presence of a weak-broad feature which spans between 1000-1450 wn and depends on both HCl as well as H_2O concentration. Measurements are in progress for the different deuterated species. The details will be presented in the talk. References: 1) C.T. Lee et al., J. Chem. Phys., 104, 7081 (1996). 2) H. Forbert et al., J. Am. Chem. Soc., 133, 4062 (2011). 3) A. Gutberlet et al., Science, 324, 1545 (2009). 4) S. D. Flynn et al., J. Phys. Chem. Lett., 1, 2233 (2010). 5) M. Letzner et al., J. Chem. Phys., 139, 154304 (2013). 6) J. M

  10. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  11. Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    In this paper, a node-free anisotropic hollow-core anti-resonant fiber has been proposed to give low transmission loss in the near-IR to mid-IR spectral regime. The proposed silica-based fiber design shows transmission loss below 10 dB/km at 2.94 μm with multiple low loss transmission bands. Tran...

  12. The W40 region in the gould belt: An embedded cluster and H II region at the junction of filaments

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, K. K.; Ojha, D. K. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Kumar, M. S. N. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 s/n Porto (Portugal); Bachiller, Rafael [Observatorio Astronómico Nacional (IGN), Alfonso XII 3, E-28014 Madrid (Spain); Samal, M. R. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), UMR 7326, F-13388 Marseille (France); Pirogov, L., E-mail: kshitiz@tifr.res.in [Institute of Applied Physics, Russian Academy of Sciences, 46 Uljanov str., Nizhny Novgorod 603950 (Russian Federation)

    2013-12-20

    We present a multiwavelength study of the W40 star-forming region using infrared (IR) observations in the UKIRT JHK bands, Spitzer Infrared Array Camera bands, and Herschel PACS bands, 2.12 μm H{sub 2} narrowband imaging, and radio continuum observations from GMRT (610 and 1280 MHz), in a field of view (FoV) of ∼34' × 40'. Archival Spitzer observations in conjunction with near-IR observations are used to identify 1162 Class II/III and 40 Class I sources in the FoV. The nearest-neighbor stellar surface density analysis shows that the majority of these young stellar objects (YSOs) constitute the embedded cluster centered on the high-mass source IRS 1A South. Some YSOs, predominantly the younger population, are distributed along and trace the filamentary structures at lower stellar surface density. The cluster radius is measured to be 0.44 pc—matching well with the extent of radio emission—with a peak density of 650 pc{sup –2}. The JHK data are used to map the extinction in the region, which is subsequently used to compute the cloud mass—126 M {sub ☉} and 71 M {sub ☉} for the central cluster and the northern IRS 5 region, respectively. H{sub 2} narrowband imaging shows significant emission, which prominently resembles fluorescent emission arising at the borders of dense regions. Radio continuum analysis shows that this region has a blister morphology, with the radio peak coinciding with a protostellar source. Free-free emission spectral energy distribution analysis is used to obtain physical parameters of the overall photoionized region and the IRS 5 sub-region. This multiwavelength scenario is suggestive of star formation having resulted from the merging of multiple filaments to form a hub. Star formation seems to have taken place in two successive epochs, with the first epoch traced by the central cluster and the high-mass star(s)—followed by a second epoch that is spreading into the filaments as uncovered by the Class I sources and even

  13. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Ramos Almeida, C. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Levenson, N. A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Nemmen, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Alonso-Herrero, A., E-mail: rmason@gemini.edu [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005 Santander (Spain)

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  14. Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region.

    Science.gov (United States)

    Alyabyeva, L N; Zhukova, E S; Belkin, M A; Gorshunov, B P

    2017-08-04

    We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2-700 cm -1 (0.06-21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.

  15. Spectral Comparison and Stability of Red Regions on Jupiter

    Science.gov (United States)

    Simon, A. A.; Carlson, R. W.; Sanchez-Lavega, A.

    2013-01-01

    A study of absolute color on Jupiter from Hubble Space Telescope imaging data shows that the Great Red Spot (GRS) is not the reddest region of the planet. Rather, a transient red cyclone visible in 1995 and the North Equatorial Belt both show redder spectra than the GRS (i.e., more absorption at blue and green wavelengths). This cyclone is unique among vortices in that it is intensely colored yet low altitude, unlike the GRS. Temporal analysis shows that the darkest regions of the NEB are relative constant in color from 1995 to 2008, while the slope of the GRS core may vary slightly. Principal component analysis shows several spectral components are needed, in agreement with past work, and further highlights the differences between regions. These color differences may be indicative of the same chromophore(s) under different conditions, such as mixing with white clouds, longer UV irradiation at higher altitude, and thermal processing, or may indicate abundance variations in colored compounds. A single compound does not fit the spectrum of any region well and mixes of multiple compounds including NH4SH, photolyzed NH3, hydrocarbons, and possibly P4, are likely needed to fully match each spectrum.

  16. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  17. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  18. High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    Science.gov (United States)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.

    2009-05-01

    Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.

  19. A System for Compressive Spectral and Polarization Imaging at Short Wave Infrared (SWIR) Wavelengths

    Science.gov (United States)

    2017-10-18

    UV -­‐ VIS -­‐IR   60mm   Apo   Macro  lens   Jenoptik-­‐Inc   $5,817.36   IR... VIS /NIR Compressive Spectral Imager”, Proceedings of IEEE International Conference on Image Processing (ICIP ’15), Quebec City, Canada, (September...imaging   system   will   lead   to   a   wide-­‐band   VIS -­‐NIR-­‐SWIR   compressive  spectral  and  polarimetric

  20. Regional Spectral Model Workshop in memory of John Roads and Masao Kanamitsu

    Science.gov (United States)

    Hann-Ming Henry Juang; Shyh-Chin Chen; Songyou Hong; Hideki Kanamaru; Thomas Reichler; Takeshi Enomoto; Dian Putrasahan; Bruce T. Anderson; Sasha Gershunov; Haiqin Li; Kei Yoshimura; Nikolaus Buenning; Diane Boomer

    2014-01-01

    The committee for the 12th International Regional Spectral Model (RSM) Workshop drew its members from the National Centers for Environmental Prediction (NCEP), the U.S. Forest Service, Yonsei University, the Cooperative Institute for Climate and Satellites, the University of Tokyo, the Food and Agriculture Organization of the United Nations (FAO), Hokkaido University,...

  1. Properties of magnetic photonic crystals in the visible spectral region and their performance limitations

    Science.gov (United States)

    Kotov, V. A.; Shavrov, V. G.; Vasiliev, M.; Alameh, K.; Nur-E-Alam, M.; Balabanov, D. E.

    2018-02-01

    We report on the results of computer modelling and performance analysis of the optical and magneto-optical (MO) characteristics of one-dimensional magnetic photonic crystals (MPC) of several classic design types (having either a single structure defect, or a number of these), designed for applications in the visible spectral region. The calculations are performed accounting for the real levels of optical absorption achievable in existing MO materials which currently demonstrate the best MO quality (bismuth-substituted ferrite garnets). We consider Bi2Dy1Fe4Ga1O12 as the base material for use within quarter-wave thick MO layers of MPC; silica is used for the non-magnetic transparent quarter-wave layers. The achieved results can be used to clarify the nature of the differences that exist between the expected practical potential of MPCs in integrated photonics, and the actual attained experimental results. Our results show that in MPCs optimized for light intensity modulation applications, in the red spectral region (near 650 nm), the achievable levels of optical transmission are limited to about 30%. This coincides spectrally with the peaks of Faraday rotation reaching their maxima at about 25°, with further transmission increases possible in the near-infrared region. Larger Faraday rotation angles are only achievable currently in structures or single film layers with reduced transmission.

  2. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    2002-11-01

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  3. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  4. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  5. Study of the spectral and energy characteristics of lasing in the green spectral region by lithium fluoride with radiation color centers

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P.; Kalinov, V.S.; Mikhnov, S.A.; Ovseichuk, S.I.

    1987-06-01

    The spectral and energy characteristics of lasers utilizing lithium fluoride with F2 and F3(+) color centers in transverse and longitudinal pumping schemes are studied. The feasibility of obtaining stable narrow-band radiation in the 510-570 nm range using a selective resonator is demonstrated. Consideration is given to the effect of lithium-fluoride crystal processing by excimer laser radiation at a wavelength of 308 nm on the spectroscopic and lasing characteristics of the F3(+) color center. After this processing, the laser efficiency in the green spectral region increases by more than a factor of two (reaching an efficiency of 14 percent). 7 references.

  6. Measurement of the Shape of the Optical-IR Spectrum of Prompt Emission from Gamma-Ray Bursts

    Science.gov (United States)

    Grossan, Bruce; Kistaubayev, M.; Smoot, G.; Scherr, L.

    2017-06-01

    While the afterglow phase of gamma-ray bursts (GRBs) has been extensively measured, detections of prompt emission (i.e. during bright X-gamma emission) are more limited. Some prompt optical measurements are regularly made, but these are typically in a single wide band, with limited time resolution, and no measurement of spectral shape. Some models predict a synchrotron self-absorption spectral break somewhere in the IR-optical region. Measurement of the absorption frequency would give extensive information on each burst, including the electron Lorentz factor, the radius of emission, and more (Shen & Zhang 2008). Thus far the best prompt observations have been explained invoking a variety of models, but often with a non-unique interpretation. To understand this apparently heterogeneous behavior, and to reduce the number of possible models, it is critical to add data on the optical - IR spectral shape.Long GRB prompt X-gamma emission typically lasts ~40-80 s. The Swift BAT instrument rapidly measures GRB positions to within a few arc minutes and communicates them via the internet within a few seconds. We have measured the time for a fast-moving D=700 mm telescope to point and settle to be less than 9 s anywhere on the observable sky. Therefore, the majority of prompt optical-IR emission can be measured responding to BAT positions with this telescope. In this presentation, we describe our observing and science programs, and give our design for the Burst Simultaneous Three-channel Instrument (BSTI), which uses dichroics to send eparate bands to 3 cameras. Two EMCCD cameras, give high-time resolution in B and V; a third camera with a HgCdTe sensor covers H band, allowing us to study extinguished bursts. For a total exposure time of 10 s, we find a 5 sigma sensitivity of 21.3 and 20.3 mag in B and R for 1" seeing and Kitt Peak sky brightness, much fainter than typical previous prompt detections. We estimate 5 sigma H-band sensitivity for an IR optimized telescope to be

  7. Far-IR measurements at Cerro Toco, Chile: FIRST, REFIR, and AERI

    Science.gov (United States)

    Cageao, Richard P.; Alford, J. Ashley; Johnson, David G.; Kratz, David P.; Mlynczak, Martin G.

    2010-09-01

    In mid-2009, the Radiative Heating in the Underexplored Bands Campaign II (RHUBC-II) was conducted from Cerro Toco, Chile, a high, dry, remote mountain plateau, 23°S , 67.8°W at 5.4km, in the Atacama Desert of Northern Chile. From this site, dominant IR water vapor absorption bands and continuum, saturated when viewed from the surface at lower altitudes, or in less dry locales, were investigated in detail, elucidating infrared (IR) absorption and emission in the atmosphere. Three Fourier Transform InfraRed (FTIR) instruments were at the site, the Far-Infrared Spectroscopy of the Troposphere (FIRST), the Radiation Explorer in the Far Infrared (REFIR), and the Atmospheric Emitted Radiance Interferometer (AERI). In a side-by-side comparison, these measured atmospheric downwelling radiation, with overlapping spectral coverage from 5 to 100μm (2000 to 100cm-1), and instrument spectral resolutions from 0.5 to 0.643cm-1, unapodized. In addition to the FTIR and other ground-based IR and microwave instrumentation, pressure/temperature/relative humidity measuring sondes, for atmospheric profiles to 18km, were launched from the site several times a day. The derived water vapor profiles, determined at times matching the FTIR measurement times, were used to model atmospheric radiative transfer. Comparison of instrument data, all at the same spectral resolution, and model calculations, are presented along with a technique for determining adjustments to line-by-line calculation continuum models. This was a major objective of the campaign.

  8. Spectral Identification of New Galactic cLBV and WR Stars

    Science.gov (United States)

    Stringfellow, G. S.; Gvaramadze, V. V.; Beletsky, Y.; Kniazev, A. Y.

    2012-12-01

    We have undertaken a near-IR spectral survey of stars associated with compact nebulae recently revealed by the Spitzer and WISE imaging surveys. These circumstellar nebulae, produced by massive evolved stars, display a variety of symmetries and shapes and are often only evident at mid-IR wavelengths. Stars associated with ˜50 of these nebulae have been observed. We also obtained recent spectra of previously confirmed (known) luminous blue variables (LBVs) and candidate LBVs (cLBVs). The spectral similarity of the stars observed when compared directly to known LBVs and Wolf-Rayet (WR) stars indicate many are newly identified cLBVs, with a few being newly discovered WR stars, mostly of WN8-9h spectral type. These results suggest that a large population of previously unidentified cLBVs and related transitional stars reside in the Galaxy and confirm that circumstellar nebulae are inherent to most (c)LBVs.

  9. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  10. UV TO FAR-IR CATALOG OF A GALAXY SAMPLE IN NEARBY CLUSTERS: SPECTRAL ENERGY DISTRIBUTIONS AND ENVIRONMENTAL TRENDS

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es [Instituto de Astrofisica de Andalucia, Glorieta de la Astronomia s/n, 18008 Granada (Spain)

    2012-03-01

    In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X} {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.

  11. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  12. Differentiation between probiotic and wild-type Bacillus cereus isolates by antibiotic susceptibility test and Fourier transform infrared spectroscopy (FT-IR).

    Science.gov (United States)

    Mietke, Henriette; Beer, W; Schleif, Julia; Schabert, G; Reissbrodt, R

    2010-05-30

    Animal feed often contains probiotic Bacillus strains used as feed additives. Spores of the non-pathogenic B. cereus var. toyoi (product name Toyocerin) are used. Distinguishing between toxic wild-type Bacillus cereus strains and this probiotic strain is essential for evaluating the quality and risk of feed. Bacillus cereus CIP 5832 (product name Paciflor was used as probiotic strain until 2001. The properties of the two probiotic strains are quite similar. Differentiating between probiotic strains and wild-type B. cereus strains is not easy. ss-lactam antibiotics such as penicillin and cefamandole exhibit an inhibition zone in the agar diffusion test of probiotic B. cereus strains which are not seen for wild-type strains. Therefore, performing the agar diffusion test first may make sense before FT-IR testing. When randomly checking these strains by Fourier transform infrared spectroscopy (FT-IR), the probiotic B. cereus strains were separated from wild-type B. cereus/B. thuringiensis/B. mycoides/B. weihenstephanensis strains by means of hierarchical cluster analysis. The discriminatory information was contained in the spectral windows 3000-2800 cm(-1) ("fatty acid region"), 1200-900 cm(-1) ("carbohydrate region") and 900-700 cm(-1) ("fingerprint region"). It is concluded that FT-IR spectroscopy can be used for the rapid quality control and risk analysis of animal feed containing probiotic B. cereus strains. (c) 2010 Elsevier B.V. All rights reserved.

  13. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  14. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  15. Spectral nudging in regional climate modelling: How strongly should we nudge?

    OpenAIRE

    Omrani , Hiba; Drobinski , Philippe; Dubos , Thomas

    2012-01-01

    International audience; Spectral nudging is a technique consisting in driving regional climate models (RCMs) on selected spatial scales corresponding to those produced by the driving global circulation model (GCM). This technique prevents large and unrealistic departures between the GCM driving fields and the RCM fields at the GCM spatial scales. Theoretically, the relaxation of the RCM towards the GCM should be infinitely strong provided thre are perfect large-scale fields. In practice, the ...

  16. Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic

    Directory of Open Access Journals (Sweden)

    P. Berg

    2013-06-01

    Full Text Available The performance of the Rossby Centre regional climate model RCA4 is investigated for the Arctic CORDEX (COordinated Regional climate Downscaling EXperiment region, with an emphasis on its suitability to be coupled to a regional ocean and sea ice model. Large biases in mean sea level pressure (MSLP are identified, with pronounced too-high pressure centred over the North Pole in summer of over 5 hPa, and too-low pressure in winter of a similar magnitude. These lead to biases in the surface winds, which will potentially lead to strong sea ice biases in a future coupled system. The large-scale circulation is believed to be the major reason for the biases, and an implementation of spectral nudging is applied to remedy the problems by constraining the large-scale components of the driving fields within the interior domain. It is found that the spectral nudging generally corrects for the MSLP and wind biases, while not significantly affecting other variables, such as surface radiative components, two-metre temperature and precipitation.

  17. Global Source Parameters from Regional Spectral Ratios for Yield Transportability Studies

    Science.gov (United States)

    Phillips, W. S.; Fisk, M. D.; Stead, R. J.; Begnaud, M. L.; Rowe, C. A.

    2016-12-01

    We use source parameters such as moment, corner frequency and high frequency rolloff as constraints in amplitude tomography, ensuring that spectra of well-studied earthquakes are recovered using the ensuing attenuation and site term model. We correct explosion data for path and site effects using such models, which allows us to test transportability of yield estimation techniques based on our best source spectral estimates. To develop a background set of source parameters, we applied spectral ratio techniques to envelopes of a global set of regional distance recordings from over 180,000 crustal events. Corner frequencies and moment ratios were determined via inversion using all event pairs within predetermined clusters, shifting to absolute levels using independently determined regional and teleseismic moments. The moment and corner frequency results can be expressed as stress drop, which has considerable scatter, yet shows dramatic regional patterns. We observe high stress in subduction zones along S. America, S. Mexico, the Banda Sea, and associated with the Yakutat Block in Alaska. We also observe high stress at the Himalayan syntaxes, the Pamirs, eastern Iran, the Caspian, the Altai-Sayan, and the central African rift. Low stress is observed along mid ocean spreading centers, the Afar rift, patches of convergence zones such as Nicaragua, the Zagros, Tibet, and the Tien Shan, among others. Mine blasts appear as low stress events due to their low corners and steep rolloffs. Many of these anomalies have been noted by previous studies, and we plan to compare results directly. As mentioned, these results will be used to constrain tomographic imaging, but can also be used in model validation procedures similar to the use of ground truth in location problems, and, perhaps most importantly, figure heavily in quality control of local and regional distance amplitude measurements.

  18. A spectral study of the elementary step of proton transfer in heterogeneous acid catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kazanskii, V B

    1977-09-01

    A spectral study of the elementary step of proton transfer in heterogeneous acid catalysis involved a determination of the potential curves of the OH bond in surface hydroxyl groups (e.g., those on silica, NaHY zeolite, or glass) of differing acidity from IR stretching frequency data in the overtone region; a calculation of the activation energies for proton transfer during acid catalysis from the changes in the curve forms after adsorption of various molecules (e.g., water, ammonia, benzene, toluene, xylenes, acetone, and cyclohexane); and a comparison of the IR predictions with quantum-chemical calculations of the potential curves. The results appear to furnish a new criterion for the coordinate of reactions involving Broensted sites: if the activation energy measured during actual catalysis is close to that calculated from the IR stretching data, the reaction proceeds by the stepwise mechanism of acid catalysis; but if these values differ greatly, the reaction involves a concerted mechanism (i.e., activation of the adsorbed molecule without involvement of OH groups). Tables, graphs, and 15 references.

  19. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  20. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  1. A TALE OF TWO NARROW-LINE REGIONS: IONIZATION, KINEMATICS, AND SPECTRAL ENERGY DISTRIBUTIONS FOR A LOCAL PAIR OF MERGING OBSCURED ACTIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting; Carroll, Christopher M.; Jones, Mackenzie L.; Zervos, Alexandros S. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Goulding, Andrew D. [Department Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-20

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (∼23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirm the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton . These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”.

  2. Photometric and Spectral Study of the Saturnian Satellites

    Science.gov (United States)

    Newman, Sarah F.

    2005-01-01

    Photometric and spectra analysis of data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) has yielded intriguing findings regarding the surface properties of several of the icy Saturnian satellites. Spectral cubes were obtained of these satellites with a wavelength distribution in the IR far more extensive than from any previous observations. Disk-integrated solar phase curves were constructed in several key IR wavelengths that are indicative of key properties of the surface of the body, such as macroscopic roughness, fluffiness (or the porosity of the surface), global albedo and scattering properties of surface particles. Polynomial fits to these phase curves indicate a linear albedo trend of the curvature of the phase functions. Rotational phase functions from Enceladus were found to exhibit a double-peaked sinusoidal curve, which shows larger amplitudes for bands corresponding to water ice and a linear amplitude-albedo trend. These functions indicate regions on the surface of the satellite of more recent geologic activity. In addition, recent images of Enceladus show tectonic features and an absence of impact craters on Southern latitudes which could be indicative of a younger surface. Investigations into the properties of these features using VIMS are underway.

  3. Spectral energy distributions of T Tauri stars - disk flaring and limits on accretion

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution. 85 references

  4. Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations

    Science.gov (United States)

    Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.

    2017-09-01

    We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.

  5. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    Science.gov (United States)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  6. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  7. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  8. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  9. Change detection by the IR-MAD and kernel MAF methods in Landsat TM data covering a Swedish forest region

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Olsson, Håkan

    2010-01-01

    Change over time between two 512 by 512 (25 m by 25 m pixels) multispectral Landsat Thematic Mapper images dated 6 June 1986 and 27 June 1988 respectively covering a forested region in northern Sweden, is here detected by means of the iteratively reweighted multivariate alteration detection (IR-M...

  10. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang, E-mail: yxweng@iphy.ac.cn [Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Xianyou [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Qingxu [School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023 (China)

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  11. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations

    Science.gov (United States)

    Choi, Suk-Jin; Lee, Dong-Kyou

    2016-06-01

    This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.

  12. Changes in spectral signatures of red lettuce regards to Zinc uptake

    Science.gov (United States)

    Shin, J.; Yu, J.; Koh, S. M.; Park, G.; Kim, S.

    2017-12-01

    Heavy metal contaminations caused by human activities such as mining and industrial activities caused serious soil contamination. Soil contaminations causes secondary impact on vegetation by uptake processes. Intakes of vegetables harvested from heavy metal contaminated soil may cause serious health problems. It would be very effective if screening tool could be developed before the vegetables are distributed over the market. This study investigated spectral response of red lettuce regards to Zn uptake from the treated soil in a laboratory condition. Zn solutions at different levels of concentration are injected to potted lettuce. The chemical composition and spectral characteristics of the leaves are analyzed every 2 days and the correlation between the Zn concentration and spectral reflectance is investigated. The experiment reveals that Zn uptake of red lettuce is significantly higher for the leaves from treated pot compared to untreated pot showing highly contaminated concentrations beyond the standard Zn concentrations for food. The spectral response regards to Zn is manifested at certain level of concentration threshold. Below the threshold, reflectance at NIR regions increases regards to increase in Zn concentration. On the other hand, above the threshold, IR reflectance decreases and slope of NIR shoulder increases regards to higher Zn concentration. We think this result may contribute for development of screening tools for heavy metal contaminations in vegetables.

  13. [Spectral characteristics of decomposition of incorporated straw in compound polluted arid loess].

    Science.gov (United States)

    Fan, Chun-Hui; Zhang, Ying-Chao; Xu, Ji-Ting; Wang, Jia-Hong

    2014-04-01

    The original loess from western China was used as soil sample, the spectral methods of scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), elemental analysis, Fourier transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (13C NMR) were used to investigate the characteristics of decomposed straw and formed humic acids in compound polluted arid loess. The SEM micrographs show the variation from dense to decomposed surface, and finally to damaged structure, and the EDS data reveal the phenomenon of element transfer. The newly-formed humic acids are of low aromaticity, helpful for increasing the activity of organic matters in loess. The FTIR spectra in the whole process are similar, indicating the complexity of transformation dynamics of humic acids. The molecular structure of humic acids becomes simpler, shown from 13C NMR spectra. The spectral methods are useful for humic acids identification in loess region in straw incorporation process.

  14. Limewashed mural paintings as seen by VIS-IR reflectography

    Science.gov (United States)

    Fontana, R.; Striova, J.; Barucci, M.; Pampaloni, E.; Raffaelli, M.; Pezzati, L.; Mariotti, P.

    2015-06-01

    Near-Infrared (NIR) reflectography is a well-established technique for painting diagnostics, offering a fundamental contribution to the conservation of paintings. Since the '80s it has been routinely applied to study the execution technique of the author, as well as the presence of pentimenti, retouches, integrations or underdrawing. In the last decades IR reflectography has been extended to the visible (VIS) spectral range, providing information about the pigment composition. Up to now the multispectral analysis is still applied at an experimental level, as the processing of the image set is not straightforward. Rarely multispectral VIS-IR application has been applied to frescos, probably due to the lack, in most cases, of a scattering background. In this work we present the results provided by a multispectral scanning device based on single sensor acquisition, working in the 380-2500 nm spectral range, that is a laboratory prototype specifically built for research-grade imaging. The technique have been applied on a mock up simulating a mural painting substrate where an underdrawing, made of either carbon or iron-gall ink, was covered by different surface layers of limewash, the so-called scialbo.

  15. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  16. Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines

    Energy Technology Data Exchange (ETDEWEB)

    Raouafi, Nour E. [The John Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Riley, Pete [Predictive Science Inc., San Diego, CA (United States); Gibson, Sarah [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Fineschi, Silvano [The Astrophysical Observatory of Turin, National Institute for Astrophysics, Turin (Italy); Solanki, Sami K., E-mail: noureddine.raouafi@jhuapl.edu [Max-Planck-Institut für Sonnensystemforschung, Göttingen (Germany); School of Space Research, Kyung Hee University, Yongin, South (Korea, Republic of)

    2016-06-22

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H i Ly-α and the He i 10,830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.

  17. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2016-05-01

    Full Text Available Turmeric powder (Curcuma longa L. is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman and Fourier Transform-Infra Red (FT-IR spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w. FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively.

  18. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005, Santander (Spain); Hatziminaoglou, Evanthia [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Spoon, Henrik W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Almeida, Cristina Ramos [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Santos, Tanio Díaz [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO18 1BJ (United Kingdom); González-Martín, Omaira [Centro de Radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia (Mexico); Esquej, Pilar, E-mail: ahernan@ifca.unican.es [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  19. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  20. UV, visible, and near-IR reflectivity data for magnetic soils/rocks from Brazil

    Science.gov (United States)

    Vempati, R. K.; Morris, R. V.; Lauer, H. V., Jr.; Coey, J. M. D.

    1991-01-01

    The objective is to obtain UV, visible, and near-IR reflectivity spectra for several magnetic Brazilian soils/rocks and compare them to corresponding data for Mars to see if these materials satisfy both magnetic and spectral constraints for Mars. Selected physical properties of the magnetic Brazilian soils/rocks are presented. In general, the spectral features resulting from ferric crystal-field transitions are much better defined in the spectra of the magnetic Brazilian soils/rocks than in Martian spectral data. Presumably, this results from a relatively higher proportion of crystalline ferric oxides for the former. The apparent masking of the spectral signature of maghemite by hematite or goethite for the Brazilian samples implies the magnetic and spectral constraints for Mars can be decoupled. That is, maghemite may be present in magnetically-significant but optically-insignificant amounts compared to crystalline hematite.

  1. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  2. Pulsed photothermal profiling of water-based samples using a spectrally composite reconstruction approach

    International Nuclear Information System (INIS)

    Majaron, B; Milanic, M

    2010-01-01

    Pulsed photothermal profiling involves reconstruction of temperature depth profile induced in a layered sample by single-pulse laser exposure, based on transient change in mid-infrared (IR) emission from its surface. Earlier studies have indicated that in watery tissues, featuring a pronounced spectral variation of mid-IR absorption coefficient, analysis of broadband radiometric signals within the customary monochromatic approximation adversely affects profiling accuracy. We present here an experimental comparison of pulsed photothermal profiling in layered agar gel samples utilizing a spectrally composite kernel matrix vs. the customary approach. By utilizing a custom reconstruction code, the augmented approach reduces broadening of individual temperature peaks to 14% of the absorber depth, in contrast to 21% obtained with the customary approach.

  3. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  4. Polycyclic Aromatic Hydrocarbon Emission in Spitzer /IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Peeters, E., E-mail: dstock84@gmail.com [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2017-03-10

    We decompose the observed 7.7 μ m polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer /IRS-SL instrument. In order to fit the 7.7 μ m PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μ m) is linearly related to the UV-field intensity (log G {sub 0}). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μ m spectral profiles.

  5. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  6. Nonlinear upconversion based infrared spectroscopy on ZSM-5 zeolite

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Beato, Pablo; Tidemand-Lichtenberg, Peter

    2017-01-01

    We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region.......We present a spectroscopic measurement of zeolite ZSM-5 in the mid-IR following the methanol attachment to active sites at 200 °C. The spectra are measured using nonlinear frequency upconversion to the near-IR spectral region....

  7. Synthesis and IR spectral study of MoO2Cl2 molecular complex with acetoacetanilides. Crystal structure of MoO2Cl2 complex with acetoacet-2-toluidine

    International Nuclear Information System (INIS)

    Abramenko, V.L.; Sergienko, V.S.; Churakov, A.V.

    2000-01-01

    Certain MoO 2 Cl 2 complexes with acetoacetanilide derivatives were synthesized, two IR spectral study being performed. Crystal and molecular structure of MoO 2 Cl 2 complex with acetoacet-2-toluidine (HL) was determined using X-ray diffraction analysis. The crystals are monoclinic, a = 7.621 (7), b = 9.498 (3), c = 19.980 (9) A, β = 95.16 (7), Z = 4, sp.gr. P2 1 /n. Coordination polyhedron of Mo atom is a distorted octahedron with two O oxoatoms in cis-position, two Cl atom in mutual trans-position and two O(HL) atoms in trans-positions in reference to O(oxo) [ru

  8. A MID-INFRARED VIEW OF THE HIGH MASS STAR FORMATION REGION W51A

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, C. L. [Laboratório Nacional de Astrofísica, R. dos Estados Unidos, Bairro das Nações, CEP 37504-364, Itajubá—MG (Brazil); Blum, R. D. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Damineli, A. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, Cid. Universitária, São Paulo 05508-900 (Brazil); Conti, P. S. [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Gusmão, D. M., E-mail: cassio.barbosa@pq.cnpq.br, E-mail: rblum@noao.edu, E-mail: augusto.damineli@iag.usp.br, E-mail: pconti@jila.colorado.edu, E-mail: danilo@univap.br [IP and D—Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911. São José dos Campos, SP, 12244-000 (Brazil)

    2016-07-01

    In this paper we present the results of a mid-infrared study of G49.5-0.4, or W51A, part of the massive starbirth complex W51. Combining public data from the Spitzer IRAC camera, and Gemini mid-infrared camera T-ReCS at 7.73, 9.69, 12.33, and 24.56 μ m, with a spatial resolution of ∼0.″5, we have identified the mid-infrared counterparts of eight ultracompact H ii regions, showing that two radio sources are deeply embedded in molecular clouds and another is a cloud of ionized gas. From the T-ReCS data we have unveiled the central core of the W51 region, revealing massive young stellar candidates. We modeled the spectral energy distribution of the detected sources. The results suggest that the embedded objects are sources with spectral types ranging from B3 to O5, but the majority of the fits indicate stellar objects with B1 spectral types. We also present an extinction map of IRS 2, showing that a region with lower extinction corresponds to the region where a proposed jet of gas has impacted the foreground cloud. From this map, we also derived the total extinction toward the enigmatic source IRS 2E, which amounts to ∼60 mag in the V band. We calculated the color temperature due to thermal emission of the circumstellar dust of the detected sources; the temperatures are in the interval of ∼100–150 K, which corresponds to the emission of dust located at 0.1 pc from the central source. Finally, we show a possible mid-infrared counterpart of a detected source at millimeter wavelengths that was found by Zapata et al. to be a massive young stellar object undergoing a high accretion rate.

  9. Measurement of multilayer mirror reflectivity and stimulated emission in the XUV spectral region

    International Nuclear Information System (INIS)

    Keane, C.; Nam, C.H.; Meixler, L.; Milchberg, H.; Skinner, C.H.; Suckewer, S.; Voorhees, D.; Barbee, T.

    1986-03-01

    We present measurements of multilayer mirror reflectivity and stimulated emission in the XUV spectral region. A molybdenum-silicon multilayer mirror with 12% measured reflectivity at 182 A was found to produce a 120% enhancement of the C VI 182 A line (3 → 2 transition) in a strongly recombining plasma. No such enhancement of the CV 186.7 A line was seen, demonstrating amplification of stimulated emission at 182 A

  10. General review of multispectral cooled IR development at CEA-Leti, France

    Science.gov (United States)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.

    2017-02-01

    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  11. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  12. Thermodynamic modeling and experimental investigation of the phase stability at the Ni-rich region of the Ni-Al-Cr-Ir system

    International Nuclear Information System (INIS)

    Zhang, C.; Zhang, F.; Chen, S.-L.; Cao, W.-S.; Chang, Y.A.

    2011-01-01

    The effect of adding 3 at.% Cr on the phase stability of the Ni-Al-Ir system was studied experimentally at 1250 deg. C. A thermodynamic description of the Ni-Al-Cr-Ir quaternary system in the Ni-rich region was then developed based on the microstructures, the crystal structures and the phase compositions determined by experiment for eight alloys in both as-cast and 1250 deg. C annealed states. The calculated isothermal section at 1250 deg. C using the obtained description was consistent with the phase-equilibrium data obtained in this study. The calculated two-dimensional section of liquidus projection was also in accordance with the primary phases of solidification observed from alloys in the as-cast state. The effects of Cr additions to the Ni-Al-Ir alloys on the as-cast and annealed microstructures were elucidated through Scheil simulation and phase-equilibrium calculation using Pandat.

  13. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  14. Estimation of spectral reflectance of snow from IRS-1D LISS-III ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Marine and Water Resources Group, Space Applications Centre, Ahmedabad, 380 015, India. The sensor ... snowpack characteristics as a result of various metamorphic processes, with age, can cause varia- tions in its ... estimate the direct radiation income of slopes in ... model are: mean solar exo-atmospheric spectral.

  15. IR emission and UV extinction in two open clusters

    International Nuclear Information System (INIS)

    Hackwell, J.A.; Hecht, J.H.

    1989-01-01

    Recent models of interstellar extinction have shown the importance of understanding both the UV and IR properties of interstellar dust grains. IRAS data have shown variations in 60 and 100 micron emissions presumably due to the presence of IR cirrus, while recent observations in the UV by Fitzpatrick and Massa have identified components in the UV extinction curve which vary in different star regions. A Draine and Anderson model connects these results by proposing that different size variations in interstellar grains would cause distinct changes in both the IR emission and the UV extinction. In order to test this model it is necessary to make observations in well defined locations away from peculiar extinction regions. In the infrared this means looking away from the galactic plane so as to limit non-local sources of IR radiation. Two open clusters that are out of the galactic plane and which contain a number of late B and early A stars suitable for UV extinction studies, and whose IRAS data show variations in the 60/100 micron ratio were studied. Based on the Drain and Anderson model, variations were expected in their UV extinction curves that correlate with the IR cirrus emission

  16. FT-IR spectrum of grape seed oil and quantum models of fatty acids triglycerides

    Science.gov (United States)

    Berezin, K. V.; Antonova, E. M.; Shagautdinova, I. T.; Chernavina, M. L.; Dvoretskiy, K. N.; Grechukhina, O. N.; Vasilyeva, L. M.; Rybakov, A. V.; Likhter, A. M.

    2018-04-01

    FT-IR spectra of grape seed oil and glycerol were registered in the 650-4000 cm-1 range. Molecular models of glycerol and some fatty acids that compose the oil under study - linoleic, oleic, palmitic and stearic acids - as well as their triglycerides were developed within B3LYP/6-31G(d) density functional model. A vibrating FT-IR spectrum of grape seed oil was modeled on the basis of calculated values of vibrating wave numbers and IR intensities of the fatty acids triglycerides and with regard to their percentage. Triglyceride spectral bands that were formed by glycerol linkage vibrations were revealed. It was identified that triglycerol linkage has a small impact on the structure of fatty acids and, consequently, on vibrating wave numbers. The conducted molecular modeling became a basis for theoretical interpretation on 10 experimentally observed absorption bands in FT-IR spectrum of grape seed oil.

  17. Test and evaluation of IR detectors and arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    Science.gov (United States)

    Hoke, Forney M.

    The present conference discusses a radiometric calibration system for IR cameras, a methodology for testing IR focal-plane arrays in simulated nuclear radiation environments, process optimization for Si:As In-bumped focal-plane arrays, precise MTF measurements for focal-plane arrays, and IR focal-plane array crosstalk measurement. Also discussed are an imaging metric for IR focal-plane arrays, optical stimuli for high-volume automated testing of 2D HgCdTe focal-plane arrays, the evaluation of a solid-state photomultiplier focal-plane array for SDI, spectral effects on bulk photoconductors operated at cryogenic temperatures, and a novel technique for measuring the ionizing radiation effects in MOS transistors.

  18. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several

  19. IL 6: 2D-IR spectroscopy: chemistry and biophysics in real time

    International Nuclear Information System (INIS)

    Bredenbeck, Jens

    2010-01-01

    Pulsed multidimensional experiments, daily business in the field of NMR spectroscopy, have been demonstrated only relatively recently in IR spectroscopy. Similar as nuclear spins in multidimensional NMR, molecular vibrations are employed in multidimensional IR experiments as probes of molecular structure and dynamics, albeit with femtosecond time resolution. Different types of multidimensional IR experiments have been implemented, resembling basic NMR experiments such as NOESY, COSY and EXSY. In contrast to one-dimensional linear spectroscopy, such multidimensional experiments reveal couplings and correlations of vibrations, which are closely linked to molecular structure and its change in time. The use of mixed IR/VIS pulse sequences further extends the potential of multidimensional IR spectroscopy, enabling studies of ultrafast non-equilibrium processes as well as surface specific, highly sensitive experiments. A UV/VIS pulse preceding the IR pulse sequence can be used to prepare the system under study in a non-equilibrium state. 2D-IR snapshots of the evolving non-equilibrium system are then taken, for example during a photochemical reaction or during the photo-cycle of a light sensitive protein. Preparing the system in a non-equilibrium state by UV/Vis excitation during the IR pulse sequence allows for correlating states of reactant and product of the light triggered process via their 2D-IR cross peaks - a technique that has been used to map the connectivity between different binding sites of a ligand as it migrates through a protein. Introduction of a non-resonant VIS pulse at the end of the IR part of the experiment allows to selectively up-convert the infrared signal of interfacial molecules to the visible spectral range by sum frequency generation. In this way, femtosecond interfacial 2D-IR spectroscopy can be implemented, achieving sub-monolayer sensitivity. (author)

  20. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  1. Spectral analysis of the structure of ultradispersed diamonds

    Science.gov (United States)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  2. Spectral and thermal investigation of tetrabenzoylacetonatobenzoylacetonediuranyl

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Klavsut', G.N.; Umrejko, D.S.

    1989-01-01

    Uranium(6) compound with benzoylacetone (NBA) of [(UO 2 ) 2 (NBA)(BA) 4 ] composition was prepared by the method of electrochemical synthesis in oxidizing medium. Spectral and thermal investigation (data of IR, Raman spectra, TG, DTA) was conducted to show that four NBA molecules entered the compound as acidoligands and one NBA molecule (being a bridge) - as neutral ligand in keto-form. Mechanism of thermal decomposition was suggested and kinetic parameters of thermolysis of examined substance were calculated

  3. NEAR-INFRARED IMAGING AND SPECTROSCOPIC SURVEY OF THE SOUTHERN REGION OF THE YOUNG OPEN CLUSTER NGC 2264

    Energy Technology Data Exchange (ETDEWEB)

    Marinas, Naibi; Lada, Elizabeth A. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Teixiera, Paula S. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Lada, Charles J. [Harvard-Smithsonian CFA, Cambridge, MA (United States)

    2013-08-01

    We have obtained JHK near-IR images and JH band low-resolution spectra of candidate members of the southern region of the young open cluster NGC 2264. We have determined spectral types from H-band spectra for 54 sources, 25 of which are classified for the first time. The stars in our sample cover a large range of spectral types (A8-M8). Using a cluster distance of 780 pc, we determined a median age of 1 Myr for this region of NGC 2264, with 90% of the stars being 5 Myr or younger. To improve the statistical significance of our sample, we included 66 additional cluster members within our field of view with optical spectral classification in the literature. We derived infrared excesses using stellar properties to model the photospheric emission for each source and the extinction to correct FLAMINGOS near-IR and Spitzer mid-IR photometry, and obtained a disk fraction of 51% {+-} 5% for the region. Binning the stars by stellar mass, we find a disk fraction of 38% {+-} 9% for the 0.1-0.3 solar mass group, 55% {+-} 6% for 0.3-1 solar masses, and 58% {+-} 10% for the higher than 1 solar mass group. The lower disk fraction for the lower mass stars is similar to the results found in non-cluster regions like Taurus and Chamaeleon, but differs from the older 3 Myr cluster IC 348 in which the disk fraction is lower for the higher mass stars. This mass-dependent disk fraction is accentuated in the sample with isochrone ages younger than 2 Myr. Here, we find that 45% {+-} 11% of the 0.1-0.3 solar mass stars have disks, 60% {+-} 7% of the 0.3-1 solar mass stars have disks, and all 1-3 solar mass stars have disks. Stellar masses might be an important factor in the ability of a system to form or retain a disk early on. However, regardless of the stellar mass, the large infrared excesses expected from optically thick disks disappear within the first 2 Myr for all stars in our study and small excesses from optically thin disks are found mostly in sources younger than 4 Myr.

  4. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    Science.gov (United States)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  5. Analysis of clay smoking pipes from archeological sites in the region of the Guanabara Bay (Rio de Janeiro, Brazil) by FT-IR

    Science.gov (United States)

    Freitas, Renato P.; Ribeiro, Iohanna M.; Calza, Cristiane; Oliveira, Ana L.; Silva, Mariane L.; Felix, Valter S.; Ferreira, Douglas S.; Coelho, Felipe A.; Gaspar, Maria D.; Pimenta, André R.; Medeiros, Elanio A.; Lopes, Ricardo T.

    2016-06-01

    In this study, twenty samples of clay smoking pipes excavated in an 18 km2 area between the Macacu and Caceribu rivers, in the municipality of Itaboraí, Rio de Janeiro, Brazil were analyzed by FT-IR technique. The samples, excavated in different archeological sites of the region, are dated between the seventeenth and the nineteenth centuries and are part of the material culture left by Africans and African descendants that lived in the complex. FT-IR analyses and complementary SEM-EDS studies showed that the clay paste used in the manufacture of smoking pipes, mostly handcrafted, is composed of quartz, feldspar, phyllosilicates and iron oxides. Multivariate statistical tests (PCA) were applied to FT-IR data to assess the interactions between the archeological sites. The results indicated that one archeological site - Macacu IV - is greatly related to the other sites. The results obtained have helped archeologists and anthropologists in better understanding the manufacturing process employed in ancient ceramic artifacts produced during the period of colonial Brazil.

  6. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    International Nuclear Information System (INIS)

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-01-01

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log (ν b [GHz]) = 2.84 ± 0.29 or ν b = 695 +651 -336 GHz. The Crab Nebula is well resolved by the ∼16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  7. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    Science.gov (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  8. Role of Al coordination in barium phosphate glasses on the emission features of Ho{sup 3+} ion in the visible and IR spectral ranges

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana, T.; Kalpana, T.; Ravi Kumar, V. [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521 201, A.P. (India); Veeraiah, N., E-mail: nvr8@rediffmail.co [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521 201, A.P. (India)

    2010-03-15

    The glasses of the composition (39-x)BaO-xAl{sub 2}O{sub 3}-60P{sub 2}O{sub 5}:1.0Ho{sub 2}O{sub 3} (in mol%) with x value ranging from 1.0 to 4.0 have been synthesized. The IR spectral studies of these glasses have indicated that there is a gradual transformation of Al{sup 3+} ions from tetrahedral to octahedral with increase in the concentration of Al{sub 2}O{sub 3} up to 3.0 mol%. Optical absorption and fluorescence spectra (in the visible and NIR regions) of these glasses have been recorded at room temperature. The Judd-Ofelt theory could successfully be applied to characterize the absorption and luminescence spectra of Ho{sup 3+} ions in these glasses. From the luminescence spectra, various radiative properties like transition probability A, branching ratio beta{sub r}, the radiative lifetime tau{sub r} and emission cross-section sigma{sup E} for various emission levels of these glasses have been evaluated. The radiative lifetime of the {sup 5}S{sub 2}->{sup 5}I{sub 8} (green emission) transition has also been measured. The variations observed in these parameters have been discussed in the light of varying co-ordinations (tetrahedral and octahedral positions) of Al{sup 3+} ions in the glass network. The influence of hydroxyl groups on the luminescence efficiency of the transition {sup 5}S{sub 2}->{sup 5}I{sub 8} has also been discussed. Finally the optimum concentration of Al{sub 2}O{sub 3} for getting maximum luminescence output has also been identified and reported.

  9. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers.

    Science.gov (United States)

    Liu, Yongliang; Kim, Hee-Jin

    2017-06-22

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.

  10. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  11. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  12. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy.

    Science.gov (United States)

    Kel, Oksana; Tamimi, Amr; Fayer, Michael D

    2015-07-23

    Phospholipid bilayers are frequently used as models for cell membranes. Here the influence of cholesterol on the structural dynamics in the interior of 1,2-dilauroyl-sn-glycero-3-phosphocholine (dilauroylphosphatidylcholine, DLPC) vesicles and DLPC planar bilayers are investigated as a function of cholesterol concentration. 2D IR vibrational echo spectroscopy was performed on the antisymmetric CO stretch of the vibrational probe molecule tungsten hexacarbonyl, which is located in the interior alkyl regions of the bilayers. The 2D IR experiments measure spectral diffusion, which is caused by the structural fluctuations of the bilayers. The 2D IR measurements show that the bilayer interior alkyl region dynamics occur on time scales ranging from a few picoseconds to many tens of picoseconds. These are the time scales of the bilayers' structural dynamics, which act as the dynamic solvent bath for chemical processes of membrane biomolecules. The results suggest that at least a significant fraction of the dynamics arise from density fluctuations. Samples are studied in which the cholesterol concentration is varied from 0% to 40% in both the vesicles (72 nm diameter) and fully hydrated planar bilayers in the form of aligned multibilayers. At all cholesterol concentrations, the structural dynamics are faster in the curved vesicle bilayers than in the planar bilayers. As the cholesterol concentration is increased, at a certain concentration there is a sudden change in the dynamics, that is, the dynamics abruptly slow down. However, this change occurs at a lower concentration in the vesicles (between 10% and 15% cholesterol) than in the planar bilayers (between 25% and 30% cholesterol). The sudden change in the dynamics, in addition to other IR observables, indicates a structural transition. However, the results show that the cholesterol concentration at which the transition occurs is influenced by the curvature of the bilayers.

  13. Measurement of IR optics with linear coupling's action-angle parametrization

    Science.gov (United States)

    Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.

    2005-08-01

    Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  14. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions

    International Nuclear Information System (INIS)

    Greenberg, B.M.; Gaba, V.; Canaani, O.; Malkin, S.; Mattoo, A.K.; Edelman, M.

    1989-01-01

    A component of the photosystem II reaction center, the 32-kDa protein, is rapidly turned over in the light. The mechanism of its light-dependent metabolism is largely unknown. We quantified the rate of 32-kDa protein degradation over a broad spectral range (UV, visible, and far red). The quantum yield for degradation was highest in the UVB (280-320 nm) region. Spectral evidence demonstrates two distinctly different photosensitizers for 32-kDa protein degradation. The data implicate the bulk photosynthetic pigments (primarily chlorophyll) in the visible and far red regions, and plastoquinone (in one or more of its redox states) in the UV region. A significant portion of 32-kDa protein degradation in sunlight is attributed to UVB irradiance

  15. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths

    Directory of Open Access Journals (Sweden)

    S. Kedenburg

    2016-11-01

    Full Text Available We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 μm and 4.1 μm at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 μm by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 μm can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.

  16. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  17. Temporal and spectral studies of high-order harmonics generated by polarization-modulated infrared fields

    International Nuclear Information System (INIS)

    Sola, I. J.; Zaier, A.; Cormier, E.; Mevel, E.; Constant, E.; Lopez-Martens, R.; Johnsson, P.; Varju, K.; Mauritsson, J.; L'Huillier, A.; Strelkov, V.

    2006-01-01

    The temporal confinement of high harmonic generation (HHG) via modulation of the polarization of the fundamental pulse is studied in both temporal and spectral domains. In the temporal domain, a collinear cross-correlation setup using a 40 fs IR pump for the HHG and a 9 fs IR pulse to probe the generated emission is used to measure the XUV pulse duration. The observed temporal confinement is found to be consistent with theoretical predictions. An increased confinement is observed when a 9 fs pulse is used to generate the harmonics. An important spectral broadening, including a continuum background, is also measured. Theoretical calculations show that with 10 fs driving pulses, either one or two main attosecond pulses are created depending on the value of the carrier envelope phase

  18. Spectral dimension of the universe in quantum gravity at a lifshitz point.

    Science.gov (United States)

    Horava, Petr

    2009-04-24

    We extend the definition of "spectral dimension" d_{s} (usually defined for fractal and lattice geometries) to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical exponent z in D+1 dimensions, the spectral dimension of spacetime is d_{s}=1+D/z. In the case of gravity in 3+1 dimensions with z=3 in the UV which flows to z=1 in the IR, the spectral dimension changes from d_{s}=4 at large scales to d_{s}=2 at short distances. Remarkably, this is the behavior found numerically by Ambjørn et al. in their causal dynamical triangulations approach to quantum gravity.

  19. Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil

    Science.gov (United States)

    Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.

    2015-10-01

    Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically

  20. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    Science.gov (United States)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  1. Coronal magnetic fields inferred from IR wavelength and comparison with EUV observations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2009-07-01

    Full Text Available Spectropolarimetry using IR wavelength of 1075 nm has been proved to be a powerful tool for directly mapping solar coronal magnetic fields including transverse component directions and line-of-sight component intensities. Solar tomography, or stereoscopy based on EUV observations, can supply 3-D information for some magnetic field lines in bright EUV loops. In a previous paper \\citep{liu08} the locations of the IR emission sources in the 3-D coordinate system were inferred from the comparison between the polarization data and the potential-field-source-surface (PFSS model, for one of five west limb regions in the corona (Lin et al., 2004. The paper shows that the region with the loop system in the active region over the photospheric area with strong magnetic field intensity is the region with a dominant contribution to the observed Stokes signals. So, the inversion of the measured Stokes parameters could be done assuming that most of the signals come from a relatively thin layer over the area with a large photospheric magnetic field strength. Here, the five limb coronal regions are studied together in order to study the spatial correlation between the bright EUV loop features and the inferred IR emission sources. It is found that, for the coronal regions above the stronger photospheric magnetic fields, the locations of the IR emission sources are closer to or more consistent with the bright EUV loop locations than those above weaker photospheric fields. This result suggests that the structures of the coronal magnetic fields observed at IR and EUV wavelengths may be different when weak magnetic fields present there.

  2. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  3. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure

    Science.gov (United States)

    Uludağ, Nesimi; Serdaroğlu, Goncagül

    2018-03-01

    This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.

  4. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  5. Spectral dependence of the main parameters of ITE silicon avalanche photodiodes

    Science.gov (United States)

    Wegrzecka, Iwona; Grynglas, Maria; Wegrzecki, Maciej

    2001-08-01

    New applications for avalanche photodiodes (APDs) as in systems using visible radiation, have prompted the need for the evaluation of detection properties of ITE APDs in the 400 divided by 700 nm spectral range. The paper presents the method and result of studies on the spectral dependence of the gain, dark and noise currents, sensitivity and excess noise factor of ITE APDs. The studies have shown that ITE APDs optimized for the near IR radiation can be effectively applied in the detection of radiation above the 500 nm wavelength.

  6. Analysis of dust and marine aerosol optical depth spectral-curvature information in the UV to SWIR (Short Wave Infrared) wavelength regions.

    Science.gov (United States)

    O'Neill, N. T.; Smirnov, A.; Eck, T. F.; Sakerin, S.; Kabanov, D.

    2005-12-01

    Traditional sunphotometry in the UV, visible and very NIR (Near Infrared) spectral regions is weighted, in terms of spectral information content, towards sub-micron (fine mode) particles. Sunphotometry in the NIR and SWIR increases the diversity and information content of spectral aerosol optical depth (AOD) measurements for supermicron (coarse mode) particles. Two data sets representing dust aerosols from the UAE (United Arab Emirates) region and marine aerosols from the northern, tropical and southern Atlantic Ocean were analyzed in terms of their spectral curvature diversity and information content. The former data set was acquired using NIR-enhanced CIMEL sunphotometers (340, 340, 380, 440, 500, 670, 870, 1020, 1640 nm) as part of the August to October, 2004 UAE2 field campaign while the latter data set was acquired using an automated Russian UV to SWIR SP-5 sunphotometer (339, 423, 438, 484, 552, 633, 677, 777, 869, 1241, 1560, 2148, 4000 nm) as part of a October/December 2004 cruise campaign in the northern, tropical and south Atlantic Ocean. A Microtops hand-held sunphotometer was also employed to acquire VIS to NIR AOD spectra during the latter field campaign. Results will be presented in terms of robust micro-physical and spectral curvature parameters which characterize super-micron aerosols and, in a more general sense, in terms of what universal/fundamental optical inferences can be drawn from the two disperse data sets.

  7. IR radiation characteristics of rocket exhaust plumes under varying motor operating conditions

    Directory of Open Access Journals (Sweden)

    Qinglin NIU

    2017-06-01

    Full Text Available The infrared (IR irradiance signature from rocket motor exhaust plumes is closely related to motor type, propellant composition, burn time, rocket geometry, chamber parameters and flight conditions. In this paper, an infrared signature analysis tool (IRSAT was developed to understand the spectral characteristics of exhaust plumes in detail. Through a finite volume technique, flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach. A refined 13-species, 30-reaction chemistry scheme was used for combustion effects and a k-ε-Rt turbulence model for entrainment effects. Using flowfield properties as input data, the spectrum was integrated with a line of sight (LOS method based on a single line group (SLG model with Curtis-Godson approximation. The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 μm and had good agreement for its location with imaging spectrometer data. The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures: (a afterburning; (b chamber pressure from ignition to cutoff; and (c minor changes in the ratio of hydroxyl-terminated polybutadiene (HTPB binder to ammonium perchlorate (AP oxidizer in propellant. Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%. Also, the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff. An increase of chamber pressure can lead to more distinct diamonds, whose distance intervals are extended, and the position of the first diamond moving backwards. In addition, an increase in HTPB/AP causes a significant jump in spectral intensity. The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB

  8. Evaluating Surgical Margins with Optical Spectroscopy and Spectral Imaging Following Breast Cancer Resection

    Science.gov (United States)

    2009-08-01

    Raman spectral features of hydroxyapatite crystals (found in breast calcifications) through overlying lean chicken breast tissue [18]. Thus, the...Raman signature of bone through several mm of soft tissue [3-5]. It has also been used to detect the Ram an spectral features of hydroxyapatite ...all f eaturing in- line f iltering at the ir tips (Em vision). All seve n f ibers we re bin ned a fter a sing le 3 se cond acquisition, and these

  9. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    Science.gov (United States)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  10. Mid IR-fiber spectroscopy in the 2-17μm range

    Science.gov (United States)

    Artyushenko, Viatcheslav G.; Bocharnikov, A.; Colquhoun, Gary; Leach, Clive A.; Lobachov, Vladimir; Pirogova, Lyudmila; Sakharova, Tatjana; Savitskij, Dmitrij; Ezhevskaya, Tatjana; Bublikov, Alexandr

    2007-10-01

    The latest development in IR-fibre optics enables us to expand the spectral range of process spectroscopy from 2μm out to 17μm (5000 to 600cm-1) i.e. into the most informative "finger-print" part of the spectrum. Mid-IR wavelength ranges from 2 to 6-10μm may be covered by Chalcogenide IR-glass CIR-fibres while Polycrystalline PIR-fibres made of Silver Halides solid solutions transmit 4-17 μm wavelength radiation. PIR-fibre immersion ATR probes and Transmission/Reflection probes had been manufactured and successfully tested with different FTIR spectrometers in the field of remote spectroscopy for forensic substances identification, chemical reaction control, and monitoring of exhaust or exhalation gases. Using these techniques no sample preparation is necessary for fibre probes to measure evanescent, reflection and transmission spectra, in situ and in real time. QCL spectrometer may be used as a portable device for multispectral gas analysis at 1ppb level of detectivity for various applications in environmental pollution monitoring.

  11. Detection of cancerous biological tissue areas by means of infrared absorption and SERS spectroscopy of intercellular fluid

    Science.gov (United States)

    Velicka, M.; Urboniene, V.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.

    2015-08-01

    We present a novel approach to the detection of cancerous kidney tissue areas by measuring vibrational spectra (IR absorption or SERS) of intercellular fluid taken from the tissue. The method is based on spectral analysis of cancerous and normal tissue areas in order to find specific spectral markers. The samples were prepared by sliding the kidney tissue over a substrate - surface of diamond ATR crystal in case of IR absorption or calcium fluoride optical window in case of SERS. For producing the SERS signal the dried fluid film was covered by silver nanoparticle colloidal solution. In order to suppress fluorescence background the measurements were performed in the NIR spectral region with the excitation wavelength of 1064 nm. The most significant spectral differences - spectral markers - were found in the region between 400 and 1800 cm-1, where spectral bands related to various vibrations of fatty acids, glycolipids and carbohydrates are located. Spectral markers in the IR and SERS spectra are different and the methods can complement each other. Both of them have potential to be used directly during surgery. Additionally, IR absorption spectroscopy in ATR mode can be combined with waveguide probe what makes this method usable in vivo.

  12. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    Science.gov (United States)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  13. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    Science.gov (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  14. Spectral Inverse Quantum (Spectral-IQ Method for Modeling Mesoporous Systems: Application on Silica Films by FTIR

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2012-11-01

    Full Text Available The present work advances the inverse quantum (IQ structural criterion for ordering and characterizing the porosity of the mesosystems based on the recently advanced ratio of the particle-to-wave nature of quantum objects within the extended Heisenberg uncertainty relationship through employing the quantum fluctuation, both for free and observed quantum scattering information, as computed upon spectral identification of the wave-numbers specific to the maximum of absorption intensity record, and to left-, right- and full-width at the half maximum (FWHM of the concerned bands of a given compound. It furnishes the hierarchy for classifying the mesoporous systems from more particle-related (porous, tight or ionic bindings to more wave behavior (free or covalent bindings. This so-called spectral inverse quantum (Spectral-IQ particle-to-wave assignment was illustrated on spectral measurement of FT-IR (bonding bands’ assignment for samples synthesized within different basic environment and different thermal treatment on mesoporous materials obtained by sol-gel technique with n-dodecyl trimethyl ammonium bromide (DTAB and cetyltrimethylammonium bromide (CTAB and of their combination as cosolvents. The results were analyzed in the light of the so-called residual inverse quantum information, accounting for the free binding potency of analyzed samples at drying temperature, and were checked by cross-validation with thermal decomposition techniques by endo-exo thermo correlations at a higher temperature.

  15. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  16. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  17. Photoconductivity of vanadium-doped lead telluride in the terahertz spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Artamkin, A. I.; Dobrovolsky, A. A.; Vinokurov, A. A.; Zlomanov, V. P. [Moscow State University (Russian Federation); Danilov, S. N. [University of Regensburg (Germany); Bel' kov, V. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Ryabova, L. I.; Khokhlov, D. R., E-mail: khokhlov@mig.phys.msu.ru [Moscow State University (Russian Federation)

    2013-03-15

    It is shown that PbTe:V single crystals are photosensitive in the terahertz spectral region up to the wavelength 280 {mu}m. The measurements are conducted in the temperature range from 8 to 300 K. In this temperature range, the dark conductivity of the crystals exhibits the activation character of the temperature dependence and varies by four orders of magnitude, which is due to Fermi-level pinning 20 meV below the bottom of the conduction band. As the temperature is elevated and, correspondingly, the conductivity increases, the amplitude of the photoresponse substantially increases. This result is interpreted in the context of the model that takes into account significant broadening of the vanadium impurity level and its shift to the bottom of the conduction band with increasing temperature.

  18. Synthesis and spectral studies of Pd(II) complexes with 2, 3-disubstituted quinazolin-(3H)-4-ones

    International Nuclear Information System (INIS)

    Prabhakar, B.; Lingaiah, P.; Laxima Reddy, K.

    1991-01-01

    A number of palladium(II) complexes of bidentate O-O and O-N donors, 2,3-disubstituted quinazoline-(3H)-4-ones, have been synthesized and characterized based on analytical, conductivity, magnetic, thermal, IR, electronic and PMR spectral data. The complexes of Pd(II) with ligands such as 2-(R)-3-(X)-substituted quinazoline-(3H)-4-ones, where R=methyl/phenyl and X=2'-hydroxybenzalimino (MHBQ/PHBQ), carboxymethyl (MCMQ/PCMQ), furfuralimino (MFQ/PFQ), acetamino (MAQ/PAQ), uramino (MUQ/PUQ) and thiouramino (MTUQ/PTUQ), yielded the complexes of the type [Pd(O-N) 2 ]Cl 2 and [Pd(O-O) 2 ]. The IR and PMR spectral data of the metal complexes indicate that MHQB, PHQB, MCMQ, and PCMQ act as uninegative bidentate ligands whereas MFQ, PFQ, MAQ, PAQ, MUQ, PUQ, MTUQ and PTUQ act as neutral bidentate ligands. The electronic spectral studies of these complexes indicate that they were square-planar geometry. (author). 23 refs., 2 tabs

  19. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  20. Density functional study of the L10-αIrV transition in IrV and RhV

    International Nuclear Information System (INIS)

    Mehl, Michael J.; Hart, Gus L.W.; Curtarolo, Stefano

    2011-01-01

    Research highlights: → The computational determination of the ground state of a material can be a difficult task, particularly if the ground state is uncommon and so not found in usual databases. In this paper we consider the alpha-IrV structure, a low temperature structure found only in two compounds, IrV and RhV. In both cases this structure can be considered as a distorted tetragonal structure, and the tetragonal 'L1 0 ' structure is the high temperature structure for both compounds. We show, however, that the logical path for the transition from the L1 0 to the alpha-IrV structure is energetically forbidden, and find a series of unstable and metastable structures which have a lower energy than the L1 0 phase, but are higher in energy than the alpha-IrV phase. We also consider the possibility of the alpha-IrV structure appearing in neighboring compounds. We find that both IrTi and RhTi are candidates. - Abstract: Both IrV and RhV crystallize in the αIrV structure, with a transition to the higher symmetry L1 0 structure at high temperature, or with the addition of excess Ir or Rh. Here we present evidence that this transition is driven by the lowering of the electronic density of states at the Fermi level of the αIrV structure. The transition has long been thought to be second order, with a simple doubling of the L1 0 unit cell due to an unstable phonon at the R point (0 1/2 1/2). We use first-principles calculations to show that all phonons at the R point are, in fact, stable, but do find a region of reciprocal space where the L1 0 structure has unstable (imaginary frequency) phonons. We use the frozen phonon method to examine two of these modes, relaxing the structures associated with the unstable phonon modes to obtain new structures which are lower in energy than L1 0 but still above αIrV. We examine the phonon spectra of these structures as well, looking for instabilities, and find further instabilities, and more relaxed structures, all of which have

  1. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to

  2. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy.

    Science.gov (United States)

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-15

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy

    Science.gov (United States)

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-01

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs.

  4. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  5. Stereoselective synthesis and spectral studies of some benzotriazolylacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones

    Science.gov (United States)

    Pillai, M. Velayutham; Rajeswari, K.; Kumar, C. Udhaya; Krishnan, K. Gokula; Mahendran, S.; Ramalingan, C.; Nagarajan, E. R.; Vidhyasagar, T.

    2017-12-01

    An effort to include biologically potent benzotriazole nucleus into piperidine ring is achieved through hydrazone formation. The characterization of the synthesized compounds was carried out using FT-IR, 1H &13C NMR, 1H-1H COSY, 1H-13C COSY, NOESY spectral techniques and GC-Mass spectrum. The spectral assignments were done without ambiguity using 2D-NMR techniques. The conformational preference of the piperidine ring deduced from the spectral studies is 'chair'. The diastereotopic nature of the methylene protons/methyl groups present in the molecules is revealed clearly in their spectral pattern observed.

  6. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    Science.gov (United States)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  7. Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging.

    Science.gov (United States)

    Nallala, Jayakrupakar; Lloyd, Gavin Rhys; Stone, Nicholas

    2015-04-07

    In infrared spectral histopathology, paraffin embedded tissues are often de-paraffinized using chemical agents such as xylene and hexane. These chemicals are known to be toxic and the routine de-waxing procedure is time consuming. A comparative study was carried out to identify alternate de-paraffinization methods by using paraffin oil and electronic de-paraffinization (using a mathematical computer algorithm) and their effectiveness was compared to xylene and hexane. Sixteen adjacent tissue sections obtained from a single block of a normal colon tissue were de-paraffinized using xylene, hexane and paraffin oil (+ hexane wash) at five different time points each for comparison. One section was reserved unprocessed for electronic de-paraffinization based on a modified extended multiplicative signal correction (EMSC). IR imaging was carried out on these tissue sections. Coefficients based on the fit of a pure paraffin model to the IR images were then calculated to estimate the amount of paraffin remaining after processing. Results indicate that on average xylene removes more paraffin in comparison to hexane and paraffin oil although the differences were small. This makes paraffin oil, followed by a hexane wash, an interesting and less toxic alternative method of de-paraffinization. However, none of the chemical methods removed paraffin completely from the tissues at any given time point. Moreover, paraffin was removed more easily from the glandular regions than the connective tissue regions indicating a form of differential paraffin retention based on the histology. In such cases, the use of electronic de-paraffinization to neutralize such variances across different tissue regions might be considered. Moreover it is faster, reduces scatter artefacts by index matching and enables samples to be easily stored for further analysis if required.

  8. Measurement of IR optics with linear coupling’s action-angle parametrization

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2005-08-01

    Full Text Available Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs, using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  9. IR reflectance spectroscopy of carbon dioxide clathrate hydrates. Implications for Saturn's icy moons.

    Science.gov (United States)

    Oancea, A.; Grasset, O.; Le Menn, E.; Bezacier, L.; Bollengier, O.; Le Mouélic, S.; Tobie, G.

    2012-04-01

    A CO2 spectral band was discovered by VIMS on the Saturn's satellites Dione, Hyperion, Iapetus and Phoebe [1]. The band position on the three first satellites corresponds to CO2 trapped in a complex material, but no indication exists whether this latter is water ice or some mineral or complex organic compound [1]. On Phoebe, the CO2 spectral band is consistent with solid CO2 or CO2 molecules trapped in the small cages of a clathrate hydrate structure [2]. It is thought that clathrate hydrates could play a significant role in the chemistry of the solar nebula [3] and in the physical evolution of astrophysical objects [4]. But so far, no clathrate hydrate structure has been observed in astrophysical environments. Moreover, identification of molecules trapped in a clathrate hydrate structure is extremely difficult because of the strong IR vibration modes of the water ice matrix. In this work, experimental IR reflectance spectra for CO2 clathrate hydrates are studied on grains and films. Clathrates are synthesized in a high pressure autoclave at low temperatures. IR spectral analysis is made with a low pressure and low temperature cryostat. These experimental conditions - 80 spectrum will be presented. A comparison between the absorption bands of CO2 clathrate hydrates obtained in our lab and CO2 absorption bands as detected by VIMS on the icy satellites of Saturn will be shown. This experimental work confirms that VIMS data are not consistent with the presence of structure I CO2 clathrate hydrates on the surface of the icy moons. Possibility of having metastable structure II still remains unsolved and will be discussed. [1] Dalton et al., Space Sci. Rev. 2010, 153 : 113-154. [2] Cruikshank D.P. et al, Icarus, 2010, 206: 561-572. [3] Mousis O. et al , Ap. J. 2009, 691: 1780-1786. [4] Choukroun M. et al, in Solar System Ices, edited by Castillo-Rogez, J. et al., 2011.

  10. Remote sensing of petroleum contaminated water by IR lasers. Distantsionnoe obnaruzhenie neftyanykh zagryaznenii vod IK lazerom

    Energy Technology Data Exchange (ETDEWEB)

    Bogorodskii, V V; Kropotkin, M A

    1975-01-01

    The most important aspect of the protection of the environment is the prevention and elimination of the consequences of the pollution of seas, oceans, and inner water reservoirs by oil and oil products. The present booklet in a concise form presents the quantitative data characterizing the degree of sea and oceanic pollution, enumerates main sources of oil pollution, and considers the influence of the latter on ecology of the World Ocean. The available ways of water purification from surface oil products are discussed and techniques of remote sensing of oil pollution considered. The content of the work is the exposition of the results of investigations of optical properties of oil products and their films on the water in the ir spectral region and the conclusion on the possibility of the application of active remote laser radar technique for the detection of oil pollution.

  11. Extending Supernova Spectral Templates for Next Generation Space Telescope Observations

    Science.gov (United States)

    Roberts-Pierel, Justin; Rodney, Steven A.; Steven Rodney

    2018-01-01

    Widely used empirical supernova (SN) Spectral Energy Distributions (SEDs) have not historically extended meaningfully into the ultraviolet (UV), or the infrared (IR). However, both are critical for current and future aspects of SN research including UV spectra as probes of poorly understood SN Ia physical properties, and expanding our view of the universe with high-redshift James Webb Space Telescope (JWST) IR observations. We therefore present a comprehensive set of SN SED templates that have been extended into the UV and IR, as well as an open-source software package written in Python that enables a user to generate their own extrapolated SEDs. We have taken a sampling of core-collapse (CC) and Type Ia SNe to get a time-dependent distribution of UV and IR colors (U-B,r’-[JHK]), and then generated color curves are used to extrapolate SEDs into the UV and IR. The SED extrapolation process is now easily duplicated using a user’s own data and parameters via our open-source Python package: SNSEDextend. This work develops the tools necessary to explore the JWST’s ability to discriminate between CC and Type Ia SNe, as well as provides a repository of SN SEDs that will be invaluable to future JWST and WFIRST SN studies.

  12. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  13. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  14. Planck intermediate results: XLIII. Spectral energy distribution of dust in clusters of galaxies

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degene...

  15. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Dickinson, Mark [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Altieri, Bruno; Coia, Daniela [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Buat, Veronique [Laboratoire d' Astrophysique de Marseille (LAM), Universite d' Aix-Marseille, CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Dannerbauer, Helmut, E-mail: kirkpatr@astro.umass.edu [Institut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  16. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  17. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    Science.gov (United States)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  18. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    Science.gov (United States)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  19. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  20. Spatio-Spectral Method for Estimating Classified Regions with High Confidence using MODIS Data

    International Nuclear Information System (INIS)

    Katiyal, Anuj; Rajan, Dr K S

    2014-01-01

    In studies like change analysis, the availability of very high resolution (VHR)/high resolution (HR) imagery for a particular period and region is a challenge due to the sensor revisit times and high cost of acquisition. Therefore, most studies prefer lower resolution (LR) sensor imagery with frequent revisit times, in addition to their cost and computational advantages. Further, the classification techniques provide us a global estimate of the class accuracy, which limits its utility if the accuracy is low. In this work, we focus on the sub-classification problem of LR images and estimate regions of higher confidence than the global classification accuracy within its classified region. The spectrally classified data was mined into spatially clustered regions and further refined and processed using statistical measures to arrive at local high confidence regions (LHCRs), for every class. Rabi season MODIS data of January 2006 and 2007 was used for this study and the evaluation of LHCR was done using the APLULC 2005 classified data. For Jan-2007, the global class accuracies for water bodies (WB), forested regions (FR) and Kharif crops and barren lands (KB) were 89%, 71.7% and 71.23% respectively, while the respective LHCRs had accuracies of 96.67%, 89.4% and 80.9% covering an area of 46%, 29% and 14.5% of the initially classified areas. Though areas are reduced, LHCRs with higher accuracies help in extracting more representative class regions. Identification of such regions can facilitate in improving the classification time and processing for HR images when combined with the more frequently acquired LR imagery, isolate pure vs. mixed/impure pixels and as training samples locations for HR imagery

  1. New horizons for Supercontinuum light sources: from UV to mid-IR

    DEFF Research Database (Denmark)

    Thomsen, Carsten L.; Nielsen, Frederik Donbæk; Johansen, Jeppe

    2013-01-01

    Commercially available supercontinuum sources continue to experience a strong growth in a wide range of industrial and scientific applications. In addition, there is a significant research effort focused on extending the wavelength coverage both towards UV and Mid-IR. Broadband sources covering...... and novel pumping schemes, whereas shifting the spectrum further towards the UV has been based on sophisticated microstructure fiber designs. Here we present our latest developments in tailoring the power and spectral coverage of spatially coherent broadband supercontinuum sources....

  2. High spin states in 181Ir and backbending phenomena in the Os-Pt region

    Science.gov (United States)

    Kaczarowski, R.; Garg, U.; Funk, E. G.; Mihelich, J. W.

    1992-01-01

    The 169Tm(16O,4n)181Ir reaction has been employed to investigate the high spin states of 181Ir using in-beam γ spectroscopy. A well-developed system of levels built on the h9/2 subshell was identified up to a maximum spin of (41/2-). Two rotational bands built on the isomeric states with τ1/2=0.33 μs (Ex=289.2 keV) and 0.13 μs (Ex=366.2 keV), respectively, were observed. The deduced gK values of 1.19+/-0.11 and 1.50+/-0.12 indicate Nilsson assignments of 9/2-[514] and 5/2+[402], respectively, for the bandheads of these bands. A high spin (I>=19/2) isomer with τ1/2=22 ns was found at an excitation energy above 1.96 MeV. The experimental results are discussed in terms of rotational models including Coriolis coupling and providing for a stable triaxial shape of the 181Ir nucleus.

  3. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  4. Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration

    International Nuclear Information System (INIS)

    Radziemski, Leon; Cremers, David A.; Benelli, Katharine; Khoo, Cynthia; Harris, Ronny D.

    2005-01-01

    Several elements important to planetary geology (e.g. Br, C, Cl, P, S) and the human exploration of Mars (e.g. toxic elements such as As) have strong emission lines in the purge and vacuum ultraviolet (VUV) spectral region (100-200 nm). This spectral region has not been extensively studied for space applications using geological samples. We studied emissions from the laser-induced breakdown spectroscopy (LIBS) plasma in this region using a sample chamber filled with 7 torr (930 Pa) of CO 2 to simulate the Martian atmosphere. Pressures down to 0.02 torr were also used to evaluate the effect of the residual CO 2 on the spectra and to begin investigating the use of VUV-LIBS for airless bodies such as asteroids and the Moon. Spectra were recorded using a 0.3-m vacuum spectrometer with an intensified CCD (ICCD) camera. The effects of time delay and laser energy on LIBS detection at reduced pressure were examined. The effect of ambient CO 2 on the detection of C in soil was also evaluated. Lines useful for the spectrochemical analysis of As, Br, C, Cl, P, and S were determined and calibration curves were prepared for these elements. Although LIBS is being developed for stand-off analysis at many meters distance, the experiments reported here were aimed at in-situ (close-up) analysis

  5. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    Science.gov (United States)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  6. Mars atmosphere studies with the SPICAM IR emission phase function observations

    Science.gov (United States)

    Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup

    Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.

  7. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  8. Estimating Leaf Area Index for an arid region using Spectral Data ...

    African Journals Online (AJOL)

    In this study, spectral reflectance of pearl millet was computed at various wavelengths and at different times during the cropping season, using a spectroradiometer. Three main indices (Normalised Difference Vegetation Index, Ratio Vegetation Index, and Perpendicular Vegetation Index)were derived from the spectral data.

  9. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  10. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  11. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  12. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  13. Determination of space charge region width and diffusion length in Cu(In,Ga)(S,Se)2 absorber from solar cell spectral characteristic

    International Nuclear Information System (INIS)

    Tivanov, M.; Mazanik, A.; Drozdov, N.; Zaretskaya, E.

    2010-01-01

    Full text : The space-charge region width and diffusion length of minority charge carriers in the base region (Cu(In,Ga)(S,Se) 2 absorber) are the most important parameters of the solar cell. These parameters determine the efficiency of a solar cell therefore the problem of their control is essential. In this work it is present simple non-destructive method of extracting the parameters of Cu(In,Ga)(S,Se) 2 -based solar cell (space-charge region width and diffusion length of minority charge carriers in Cu(In,Ga)(S,Se) 2 absorber) from the analysis of solar cell spectral photoresponse. The method is based on one-dimensional model of a solar cell and on the change of in-depth distribution of the photogenerated carriers in the solar cell and, hence, on the change of its photoresponse with the wave-length variation. The following assumptions are accepted: the reflection of charge carriers from a back contact and the ''drawing'' field in the quasi-neutral area of the absorber layers are absent, window and buffer layers are transparent in the analyzed part of photoresponse spectrum, the injection level of minority charge carriers is low, the recombination losses at the metallurgical p-n-junction interface of the studied photosensitive structure linearly depend on the photocurrent density. For the calculation it is necessary to obtain the following set of the experimental data: the spectral density of incident radiation, the spectral dependence of photocurrent or photovoltage of the studied photosensitive structure, the spectral dependences of optical absorption coefficient and reflectance.

  14. Interpretation of IR and Raman spectra of dopamine neurotransmitter and effect of hydrogen bond in HCl

    Science.gov (United States)

    Yadav, T.; Mukherjee, V.

    2018-05-01

    The potential energy scanning with respect to the different dihedral angles were performed to search possible numbers of dopamine (neutral) conformers and further, fifteen conformers of dopamine were identified on the basis of energy minima. Vibrational frequencies were calculated for all the conformers of dopamine. Density functional theory was employed to carry out all the computations. The exchange correlation functional B3LYP and the basis set 6-31++G(d,p) were included in DFT calculation. The FTIR and FT-Raman spectra of dopamine hydrochloride were also recorded in the spectral region 400-4000 cm-1 and 50-4000 cm-1 respectively. The normal coordinate analysis was also performed to scale DFT calculated force constants and to calculate potential energy distributions. The detailed vibrational spectral analysis and the assignments of the bands, done on the best-fit basis comparison of the experimentally obtained and theoretically calculated IR and Raman spectra, match quite well indicating DFT calculations as very accurate source of normal mode assignments. The interaction of the most stable conformer of dopamine with HCl was also studied to know the effect of hydrogen bond on its geometry and dynamics. The stability of the dopamine in isolated and protonated forms arising from hyperconjugative interactions was also analyzed by natural bond orbital analysis.

  15. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  16. Pulse shaping for high data rate ultra-wideband wireless transmission under the Russian spectral emission mask

    DEFF Research Database (Denmark)

    Rommel, Simon; Grakhova, Elizaveta P.; Jurado-Navas, Antonio

    2017-01-01

    This paper addresses impulse-radio ultra-wideband (IR-UWB) transmission under the Russian spectral emission mask for unlicensed UWB radio communications. Four pulse shapes are proposed and their bit error rate (BER) performance is both estimated analytically and evaluated experimentally. Well......-known shapes such as the Gaussian, root-raised cosine, hyperbolic secant, and the frequency B-spline wavelet are used to form linear combinations of component pulses, shaped to make efficient use of the spectral emission mask. Analytical BER values are derived using a Nakagami-m model, and good agreement......-UWB transmission under the strict regulations of the Russian spectral emission mask....

  17. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    OpenAIRE

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-01-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. Th...

  18. FAR-INFRARED OBSERVATIONS OF THE VERY LOW LUMINOSITY EMBEDDED SOURCE L1521F-IRS IN THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Terebey, Susan; Fich, Michel; Noriega-Crespo, Alberto; Padgett, Deborah L.; Brooke, Tim; Carey, Sean; McCabe, Caer-Eve; Rebull, Luisa; Fukagawa, Misato; Audard, Marc; Evans, Neal J.; Guedel, Manuel; Hines, Dean; Huard, Tracy; Knapp, Gillian R.; Menard, Francois; Monin, Jean-Louis

    2009-01-01

    We investigate the environment of the very low luminosity object L1521F-IRS using data from the Taurus Spitzer Legacy Survey. The MIPS 160 μm image shows both extended emission from the Taurus cloud and emission from multiple cold cores over a 1 0 x 2 0 region. Analysis shows that the cloud dust temperature is 14.2 ± 0.4 K and the extinction ratio is A 160 /A K = 0.010 ± 0.001 up to A V ∼ 4 mag. We find κ 160 = 0.23 ± 0.046 cm 2 g -1 for the specific opacity of the gas-dust mixture. Therefore, for dust in the Taurus cloud we find that the 160 μm opacity is significantly higher than that measured for the diffuse interstellar medium, but not too different from dense cores, even at modest extinction values. Furthermore, the 160 μm image shows features that do not appear in the IRAS 100 μm image. We identify six regions as cold cores, i.e., colder than 14.2 K, all of which have counterparts in extinction maps or C 18 O maps. Three of the six cores contain embedded young stellar objects, which demonstrates the cores are sites of current star formation. We compare the effects of L1521F-IRS on its natal core and find there is no evidence for dust heating at 160 or 100 μm by the embedded source. From the infrared luminosity L TIR = 0.024 L sun we find L bol-int =0.034-0.046 L odot , thus confirming the source's low luminosity. Comparison of L1521F-IRS with theoretical simulations for the very early phases of star formation appears to rule out the first core collapse phase. The evolutionary state appears similar to or younger than the class 0 phase, and the estimated mass is likely to be substellar.

  19. IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION

    International Nuclear Information System (INIS)

    LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

    2005-01-01

    A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics

  20. US-LHC IR magnet error analysis and compensation

    International Nuclear Information System (INIS)

    Wei, J.; Ptitsin, V.; Pilat, F.; Tepikian, S.; Gelfand, N.; Wan, W.; Holt, J.

    1998-01-01

    This paper studies the impact of the insertion-region (IR) magnet field errors on LHC collision performance. Compensation schemes including magnet orientation optimization, body-end compensation, tuning shims, and local nonlinear correction are shown to be highly effective

  1. Bottomside sinusoidal irregularities in the equatorial F region. II - Cross-correlation and spectral analysis

    Science.gov (United States)

    Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.

    1985-01-01

    Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.

  2. Water masers in NGC7538 region

    Science.gov (United States)

    Kameya, Osamu

    We observed H2O masers towards NGC7538 molecular-cloud core using VERA (VLBI Experiment of Radio Astrometry). This region is in the Perseus arm at a distance of about 2.7 kpc and is famous for its multiple, massive star formation. There are three areas there, N(IRS1-3), E(IRS9), and S(IRS11), each having a strong IR source(s), ultra-compact HII region(s), bipolar outflow, high-density core, and OH/H2O/CH3OH masers. We made differential VLBI observations towards the NGC7538 H2O maser sources at N and S and a reference source, Cepheus A H2O maser, simultaneously. The Cepheus A region is separated by 2 degrees from the NGC7538 region. The positions of H2O masers in N and S regions, distributed around the ultra-compact HII regions, are basically consistent with those found by means of interferometric observations of past 29 years. The masers may come from interface regions between the ultra-compact HII regions and the environments of dense molecular gas.

  3. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest.

    Science.gov (United States)

    Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  4. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    Science.gov (United States)

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  5. Nightside studies of coherent HF Radar spectral width behaviour

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2002-09-01

    Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1 exists poleward of a region of low HF spectral width (<200 ms-1. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1 have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the

  6. Nightside studies of coherent HF Radar spectral width behaviour

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1 exists poleward of a region of low HF spectral width (<200 ms-1. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1 have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to

  7. FT-IR spectroscopy and multivariate analysis as an auxiliary tool for diagnosis of mental disorders: Bipolar and schizophrenia cases

    Science.gov (United States)

    Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.

    2016-01-01

    In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.

  8. YSOVAR: MID-INFRARED VARIABILITY AMONG YSOs IN THE STAR FORMATION REGION GGD12-15

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Günther, H. Moritz; Poppenhaeger, Katja; Forbrich, J. [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [NASA Ames Research Center, M/S 244-5 Moffett Field, CA 94035 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [Department of Physics Astronomy and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Covey, K. R. [Department of Physics and Astronomy, Western Washington Univ., Bellingham, WA 98225-9164 (United States); Song, Inseok, E-mail: swolk@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2015-11-15

    We present an IR-monitoring survey with the Spitzer Space Telescope of the star-forming region GGD 12-15. More than 1000 objects were monitored, including about 350 objects within the central 5′, which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability project. The region was also the subject of a contemporaneous 67 ks Chandra observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5′ are young stellar objects (YSOs) based on a combination of their spectral energy distribution, IR variability, and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-infrared (mid-IR) variability. There are 39 periodic sources, and all but one is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded YSOs. Most of the Class I/II objects exhibit redder colors in a fainter state, which is compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR light curves. However, we find that X-ray detected Class II sources have longer timescales for change in the MIR than a similar set of non-X-ray detected Class IIs.

  9. Comparison of Off-Line IR Bump and Action-Angle Kick Minimization

    CERN Document Server

    Luo, Yun; Ptitsyn, Vadim; Trbojevic, Dejan; Wei, Jie

    2005-01-01

    The interaction region bump (IR bump) nonlinear correction method has been used for the sextupole and octupole field error on-line corrections in the Relativistic Heavy Ion Collider (RHIC). Some differences were found for the sextupole and octupole corrector strengths between the on-line IR bump correction and the predictions from the action-angle kick minimization. In this report we compare the corrector strengths from these two methods based on the RHIC Blue ring lattice with the IR nonlinear modeling. The comparison confirms the differences between resulting corrector strengths. And the reason for the differences is found and discussed. It is followed by a further discussion of the operational IR bump applications to the octupole, and skew sextupole and skew quadrupole field error corrections.

  10. Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems

    Science.gov (United States)

    Chandrasekhar, Prasanna; Dooley, T. J.

    1995-09-01

    Materials which possess transparency, coupled with active controllability of this transparency in the infrared (IR), are today an increasingly important requirement, for varied applications. These applications include windows for IR sensors, IR-region flat panel displays used in camouflage as well as in communication and sight through night-vision goggles, coatings with dynamically controllable IR-emissivity, and thermal conservation coatings. Among stringent requirements for these applications are large dynamic ranges (color contrast), 'multi-color' or broad-band characteristics, extended cyclability, long memory retention, matrix addressability, small area fabricability, low power consumption, and environmental stability. Among materials possessing the requirements for variation of IR signature, conducting polymers (CPs) appear to be the only materials with dynamic, actively controllable signature and acceptable dynamic range. Conventional CPs such as poly(alkyl thiophene), poly(pyrrole) or poly(aniline) show very limited dynamic range, especially in the far-IR, while also showing poor transparency. We have developed a number of novel CP systems ('system' implying the CP, the selected dopant, the synthesis method, and the electrolyte) with very wide dynamic range (up to 90% in both important IR regions, 3 - 5 (mu) and 8 - 12 (mu) ), high cyclability (to 105 cycles with less than 10% optical degradation), nearly indefinite optical memory retention, matrix addressability of multi-pixel displays, very wide operating temperature and excellent environmental stability, low charge capacity, and processability into areas from less than 1 mm2 to more than 100 cm2. The criteria used to design and arrive at these CP systems, together with representative IR signature data, are presented in this paper.

  11. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  12. THE SPECTACULAR RADIO-NEAR-IR-X-RAY JET OF 3C 111: THE X-RAY EMISSION MECHANISM AND JET KINEMATICS

    Energy Technology Data Exchange (ETDEWEB)

    Clautice, Devon; Perlman, Eric S. [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL 32901 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland—Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Lister, Matthew L.; Hogan, Brandon [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Tombesi, Francesco [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cara, Mihai [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Kazanas, Demos [NASA’s Goddard Space Flight Center, Astrophysics Science Division, Code 663, Greenbelt, MD 20771 (United States)

    2016-08-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and Hubble Space Telescope ( HST ) observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray, and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical, and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR , HST , and Chandra will allow us to further constrain the emission mechanisms.

  13. Robustness of the charge-ordered phases in IrTe2 against photoexcitation

    Science.gov (United States)

    Monney, C.; Schuler, A.; Jaouen, T.; Mottas, M.-L.; Wolf, Th.; Merz, M.; Muntwiler, M.; Castiglioni, L.; Aebi, P.; Weber, F.; Hengsberger, M.

    2018-02-01

    We present a time-resolved angle-resolved photoelectron spectroscopy study of IrTe2, which undergoes two first-order structural and charge-ordered phase transitions on cooling below 270 K and below 180 K. The possibility of inducing a phase transition by photoexcitation with near-infrared femtosecond pulses is investigated in the charge-ordered phases. We observe changes of the spectral function occurring within a few hundreds of femtoseconds and persisting up to several picoseconds, which we interpret as a partial photoinduced phase transition (PIPT). The necessary time for photoinducing these spectral changes increases with increasing photoexcitation density and reaches time scales longer than the rise time of the transient electronic temperature. We conclude that the PIPT is driven by a transient increase of the lattice temperature following the energy transfer from the electrons. However, the photoinduced changes of the spectral function are small, which indicates that the low-temperature phase is particularly robust against photoexcitation. We suggest that the system might be trapped in an out-of-equilibrium state, for which only a partial structural transition is achieved.

  14. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    Science.gov (United States)

    Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.

    1981-01-01

    Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.

  15. Nuclear deformations, level assignments and static nuclear moments of isotopes in the region 72Hf-77Ir

    International Nuclear Information System (INIS)

    Ekstroem, C.; Rubinsztein, H.; Moeller, P.

    1976-01-01

    A comparison is made between experimental and theoretical level assignments and static electromagnetic moments of nuclei in the region 72 Hf- 77 Ir. The theoretical calculations are based on the modified oscillator model. Equilibrium deformation values, epsilon and epsilon 4 , are determined for doubly-even and odd-mass nuclei from the minima in the potential energy surfaces. The influence of the different parameters entering the expressions for the magnetic dipole moment is analysed. The electric quadrupole and hexadecapole moments are calculated on the assumption that the nucleus is a homogeneously charged body with a sharp surface and a shape corresponding to that of an equipotential surface. In some selected cases, the electric multipole moments are evaluated by use of the single-particle wave functions. (Auth.)

  16. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    Science.gov (United States)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  17. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  18. MULTIPLICITY, DISKS, AND JETS IN THE NGC 2071 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Gonzalez, Carlos [Max-Planck-Institut fuer Radioastronomie (MPIfR), Auf dem Huegel 69, 53121 Bonn (Germany); Osorio, Mayra; Anglada, Guillem; Gomez, Jose F. [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); D' Alessio, Paola; Rodriguez, Luis F. [Centro de Radioastronomia y Astrofisica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacan (Mexico); Torrelles, Jose M., E-mail: carrasco@mpifr-bonn.mpg.de [Instituto de Ciencias del Espacio (CSIC)-UB/IEEC, Universitat de Barcelona, Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-02-10

    We present centimeter (cm) and millimeter (mm) observations of the NGC 2071 star-forming region performed with the Very Large Array (VLA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources show spectral energy distributions (SEDs) dominated by free-free thermal emission at cm wavelengths and thermal dust emission at mm wavelengths, suggesting that all of them are associated with young stellar objects (YSOs). IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a timespan of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of {approx}120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.

  19. MULTIPLICITY, DISKS, AND JETS IN THE NGC 2071 STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Carrasco-González, Carlos; Osorio, Mayra; Anglada, Guillem; Gómez, José F.; D'Alessio, Paola; Rodríguez, Luis F.; Torrelles, José M.

    2012-01-01

    We present centimeter (cm) and millimeter (mm) observations of the NGC 2071 star-forming region performed with the Very Large Array (VLA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources show spectral energy distributions (SEDs) dominated by free-free thermal emission at cm wavelengths and thermal dust emission at mm wavelengths, suggesting that all of them are associated with young stellar objects (YSOs). IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a timespan of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of ∼120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.

  20. IR and NMR characterisation of extraction products of radioactively deuteromethylated coals

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, M.; Wachowska, H.; Adriaensens, P.; Gelan, J. [Adam Mickiewicz University, Poznan (Poland). Faculty of Chemistry

    1999-12-01

    Products of reductive methylation and deuteromethylation of two Polish coals of different rank performed in the potassium/liquid ammonia system were subjected to extraction by dichloromethane. Spectral analysis of the extracts was made. A comparison of {sup 1}H and {sup 2}H NMR spectra indicated that the cleavage of C-C bonds in methylene bridges is of substantial importance for the fragmentation of the coal structure taking place under the effect of potassium in liquid ammonia. This finding was confirmed by results of IR analysis. 25 refs., 3 figs., 2 tabs.

  1. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    Science.gov (United States)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  2. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    International Nuclear Information System (INIS)

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2011-01-01

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 ≤ z ≤ 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ∼0.1-5 μm spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  3. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ryan A.; Shemmer, Ohad [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Fan Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Strauss, Michael A., E-mail: RyanLane@my.unt.edu, E-mail: ohad@unt.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  4. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity

  5. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    International Nuclear Information System (INIS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-01-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  6. [An improved low spectral distortion PCA fusion method].

    Science.gov (United States)

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  7. Protonation of benzimidazoles and 1,2,3-benzotriazoles Solid-state linear dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    Science.gov (United States)

    Ivanova, Bojidarka B.; Pindeva, Liliya I.

    2006-09-01

    IR-LD spectroscopic data obtained by the orientated solid samples as a suspension in a nematic liquid crystal of 1-hydroxy-1,2,3-benzotriazole, 2-methyl-, 2-acetonitrilebenzimidazoles and their protonated salts have been presented. The stereo-structures have been predicted and compared with theoretical ones. The IR-characteristic bands assignments of all molecule systems have been achieved.

  8. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  9. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  10. Surface core level shifts of clean and oxygen covered Ir(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M; Cassese, D; Cavallin, A; Comin, R; Orlando, F; Postregna, L [Universita degli Studi di Trieste, Via A Valerio 2, 34127, Trieste (Italy); Golfetto, E; Baraldi, A [Dipartimento di Fisica e CENMAT, Universita degli Studi di Trieste, Via A Valerio 2, 34127, Trieste (Italy); Lizzit, S [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, 34012 Trieste (Italy)], E-mail: alessandro.baraldi@elettra.trieste.it

    2009-06-15

    We present the results of high resolution core level photoelectron spectroscopy employed to investigate the electronic structure of clean and oxygen covered Ir(111) surface. Ir 4f{sub 7/2} core level spectra are shown to be very sensitive to the local atomic environment. For the clean surface we detected two distinct components shifted by 550 meV, originated by surface and bulk atoms. The larger Gaussian width of the bulk component is explained as due to experimentally unresolved subsurface components. In order to determine the relevance of the phonon contribution we examined the thermal behaviour of the core level lineshape using the Hedin-Rosengren theory. From the phonon-induced spectral broadening we found the Debye temperature of bulk and surface atoms to be 298 and 181 K, respectively, which confirms the softening of the vibrational modes at the surface. Oxygen adsorption leads to the appearance of new surface core level components at -200 meV and +230 meV, which are interpreted as due to first-layer Ir atoms differently coordinated with oxygen. The coverage dependence of these components demonstrates that the oxygen saturation corresponds to 0.38 ML, in good agreement with recent density functional theory calculations.

  11. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Rieke, G. H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Shi, Yong, E-mail: jianwei@email.arizona.edu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  12. Study of transition metal cations state on the catalyst surface by IR-spectroscopy of adsorbed test-molecules (CO, NO)

    International Nuclear Information System (INIS)

    Davydov, A.A.

    1993-01-01

    Using the methods of IR spectroscopy and ESR spectral manifestations of CO and NO in complexes with cations of vanadium in different oxidation degrees and coordination states have been studied. V 5+ cations do not coordinate NO and CO, but coordinate ammonia. Regular decrease of νCO values in V n+ -CO complexes with vanadium oxidation degree decrease has been shown. Spectral manifestation of NO complexes with V 4+ and V 3+ have been followed. The formation of V 4+ -NO, V 3+ -NO and V 3+ (NO) complexes has been established

  13. Analysis of effect of cable degradation on SPND IR calculation

    International Nuclear Information System (INIS)

    Tamboli, P.K.; Sharma, A.; Prasad, A.D.; Singh, Nita; Antony, J.; Kelkar, M.G.; Kaurav, Reetesh; Pramanik, M.

    2013-01-01

    Neutron flux is the most vital parameter in the nuclear reactor safety against Neutronic over power. The modern days Indian PHWRs with large core size are loosely coupled reactors and hence In-core Self Power Neutron Detectors (SPNDs) are most suitable for monitoring local neutron power for generating Regional Overpower Trip. However the SPNDs and its Mineral Insulation Cable are prone to IR loss due to use of ceramic insulation which are highly hygroscopic. The present paper covers the online analysis of IR f degraded cable as per the surveillance requirement of monitoring the IR to assess the healthiness of SPNDs which are part of SSC/SSE for Reactor Protection Systems. The paper also proposes an alternative method for monitoring IR for startup//low power range when SPND signals are yet to pick up and Reactor Control and Protection are based on out of core Ionization Chambers. (author)

  14. [Possibility of the spectral analysis of heterogeneous biological systems. The determination of the mycelium concentration of Actinomyces aureofaciens, a producer of tetracycline, cultured on a medium with corn meal].

    Science.gov (United States)

    Korolev, Iu N; Slugina, M D; Makarevich, V G; Telegin, N L

    1979-03-01

    A possibility of using spectroscopy of attenuated total reflection in the IR region for analysis of the heterogenic system consisting of the microorganisms and plant cells is discussed. The method of spectroscopy is proposed for estimating the mycelium concentration of Act. aureofaciens producing tetracycline in the presence of corn meal in the medium. The experimental data confirming this possibility are presented. The peculiar properties of the spectral analysis under these particular conditions are discussed. It is supposed that the method may be used for analysis of heterogenous systems including other microorganisms.

  15. CO Spectral Line Energy Distributions of Infrared-Luminous Galaxies and Active Galactic Nuclei

    Science.gov (United States)

    Papadopoulos, Padeli P.; van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR(8-1000 μm) >~ 1011 L sun), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR>1012 L sun), and two powerful local active galactic nuclei (AGNs)—the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293—using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C+ line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  16. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-01-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR (8-1000 μm) ∼> 10 11 L sun ), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR >10 12 L sun ), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C + line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  17. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Science.gov (United States)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.

    2011-01-01

    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  18. Quantitative analysis of semivolatile organic compounds in selected fractions of air sample extracts by GC/MI-IR spectrometry

    International Nuclear Information System (INIS)

    Childers, J.W.; Wilson, N.K.; Barbour, R.K.

    1990-01-01

    The authors are currently investigating the capabilities of gas chromatography/matrix isolation infrared (GC/MI-IR) spectrometry for the determination of semivolatile organic compounds (SVOCs) in environmental air sample extracts. Their efforts are focused on the determination of SVOCs such as alkylbenzene positional isomers, which are difficult to separate chromatographically and to distinguish by conventional electron-impact ionization GC/mass spectrometry. They have performed a series of systematic experiments to identify sources of error in quantitative GC/MI-IR analyses. These experiments were designed to distinguish between errors due to instrument design or performance and errors that arise from some characteristic inherent to the GC/MI-IR technique, such as matrix effects. They have investigated repeatability as a function of several aspects of GC/MI IR spectrometry, including sample injection, spectral acquisition, cryogenic disk movement, and matrix deposition. The precision, linearity, dynamic range, and detection limits of a commercial GC/MI-IR system for target SVOCs were determined and compared to those obtained with the system's flame ionization detector. The use of deuterated internal standards in the quantitative GC/MI-IR analysis of selected fractions of ambient air sample extracts will be demonstrated. They will also discuss the current limitations of the technique in quantitative analyses and suggest improvements for future consideration

  19. Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland

    Science.gov (United States)

    Tanikawa, T.

    2017-12-01

    The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.

  20. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  1. Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    Upconversion detection is a promising technology for measurement of IR signals in the 1.5 μm–2 μm region used for lidar remote sensing [1-2]. In comparison to conventional InGaAs detector, the upconversion detector can achieve IR detection with better signal-to-noise ratio (SNR), not only due...

  2. Photometric behavior of spectral parameters in Vesta dark and bright regions as inferred by the Dawn VIR spectrometer

    Science.gov (United States)

    Longobardo, Andrea; Palomba, Ernesto; Capaccioni, Fabrizio; De Sanctis, Maria Cristina; Tosi, Federico; Ammannito, Eleonora; Schröder, Stefan E.; Zambon, Francesca; Raymond, Carol A.; Russell, Christopher T.

    2014-09-01

    NASA’s Dawn spacecraft orbited Vesta for approximately one year, collecting thousands of hyperspectral images of its surface. The mission revealed that Vesta’s surface shows the largest variations in surface albedo on asteroids visited thus far, due to the presence of dark and bright materials at the local scale (i.e. 0.1-10 km). The aim of this work is to characterize the photometric properties of bright and dark regions, and thus derive and apply an empirical photometric correction to all the hyperspectral observations of Vesta. The very large dataset (i.e. more than 20 million spectra) provided by the VIR imaging spectrometer onboard Dawn enabled accurate statistical analysis of the spectral dataset, aimed at retrieving empirical relations between several spectral parameters (i.e. visible and infrared reflectance, band depths, band centers, Band Area Ratio) and the illumination/viewing angles. The derived relations made it possible to derive photometrically corrected maps of these spectral parameters and to infer information on the regolith shadowing effect in the Vestan dark and bright regions. As an additional analysis, we also evaluated the correlation between surface temperature and band center position. A general conclusion of this analysis is that, from a photometric point of view, the distinction between bright and dark material units lies mainly in the larger contribution due to multiple scattering in the bright units. We observed reflectance and band depth variations over Vesta’s entire surface, but these variations were much larger in the dark regions than in the bright ones. Band centers have been found to shift to longer wavelengths at increasing temperatures, with a trend that is the same observed for HED meteorites (Reddy et al. [2012]. Icarus 217, 153-158). Finally, the Band Area Ratio (i.e. the ratio between areas of the main pyroxene absorption bands located at 1.9 μm and at 0.9 μm, respectively) did not show any dependence on

  3. Influence of induced colour centres on the frequency - angular spectrum of a light bullet of mid-IR radiation in lithium fluoride

    Science.gov (United States)

    Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.

    2017-04-01

    The influence of the occurrence of a structure consisting of long-lived colour centres, formed in an LiF crystal upon filamentation of femtosecond mid-IR radiation, on the supercontinuum characteristics is investigated. With an increase in the number of incident pulses, the length and transverse size of the structure of colour centres induced in LiF increase, and the supercontinuum spectrum in the short-wavelength region is markedly transformed due to the occurrence of the waveguide propagation regime, absorption, and scattering of radiation from the newly formed structure of colour centres. Under these conditions, the intensity of the anti-Stokes wing decreases by two orders of magnitude after several tens of pulses. Spectral components arise in the visible range, the angular divergence of which increases with increasing wavelength.

  4. Achromatization In The 3 To 5 μm Spectral Region With Visible Light Transmitting Materials

    Science.gov (United States)

    McDowell, M. W.; Klee, H. W.

    1984-04-01

    The theoretical performances of several f/1.5 triplet lenses suitable for use in the 3 to 5um spectral region are compared. Examples are given in which all the materials used have a finite visible transmittance. As centering errors can thus be considerably reduced, it is expected that such a lens will in practice approach more closely its theoretical performance. These lenses are also considerably less sensitive to manufacturing tolerances as a result of lower index materials, and the use of low dn/dT materials offers other advantages over the more usual silicon-germanium combination.

  5. PACS spectroscopy of OH/IR stars

    NARCIS (Netherlands)

    Lombaert, R.; de Vries, B.L.; Decin, L.; Blommaert, J.A.D.L.; Royer, Pierre; De Beck, E.; de Koter, A.; Waters, L.B.F.M.

    2011-01-01

    Observations of high-excitation molecular emission lines can greatly increase our understanding of AGB winds, as they trace the innermost regions of the circumstellar envelope. The PACS spectrometer on-board the Herschel Space Telescope1, provides for the first time the spectral resolution and

  6. Determine the optimum spectral reflectance of juniper and pistachio in arid and semi-arid region

    Science.gov (United States)

    Fadaei, Hadi; Suzuki, Rikie

    2012-11-01

    Arid and semi-arid areas of northeast Iran cover about 3.4 million ha are populated by two main tree species, the broadleaf Pistacia vera. L (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but genetically essential as seed sources for pistachio production in orchards. In this study, we estimated the optimum spectral reflectance of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. In this research spectral reflectance are able to specify of multispectral from Advanced Land Observing Satellite (ALOS) that provided by JAXA. These data included PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, has one band with a wavelength of 0.52-0.77 μm and AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm). Total ratio vegetation index (TRVI) of optimum spectral reflectance of juniper and pistachio have been evaluated. The result of TRVI for Pistachio and juniper were (R2= 0.71 and 0.55). I hope this research can provide decision of managers to helping sustainable management for arid and semi-arid regions in Iran.

  7. Spectral data based vegetation indices to characterise crop growth parameters and radiation interception in brassica

    International Nuclear Information System (INIS)

    Kar, G.; Chakravarty, N.V.K.

    2001-01-01

    Four spectral data based vegetation indices viz., infra-red/red (IR/R) ratio, normalized difference (N.D.), greenness index (GNI) and brightness index (BNI) were derived to characterise leaf area index, above ground biomass production and intercepted photosynthetically active radiation in Brassica oilseed crop. It was found from correlation study among different spectral indices, plant growth parameters and radiation interception that there was strong relationship between infrared/red and normalized difference with green area index for all the three Brassica cultivars whereas these spectral were not significantly correlated with above ground biomass. On the other hand, the brightness and greenness indices were closely correlated with above groundry biomass as compared to infrared/red ratio and normalized difference. All the four spectral indices were correlated with intercepted photosynthetically active radiation (IP AR). The best fit equations relating them were derived, which can be incorporated in the algorithms of crop growth simulation model to estimate plant growth parameters and radiation interception using spectral indices

  8. A UV to mid-IR study of AGN selection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sun Mi; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Jannuzi, Buell T. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  9. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    Energy Technology Data Exchange (ETDEWEB)

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Rubtsov, Grigory I. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation)

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  10. Recent Advances in IR and UV/VIS Spectroscopic Characterization of the C76 and C84 Isomers of D2 Symmetry

    Directory of Open Access Journals (Sweden)

    Tamara Jovanović

    2014-01-01

    Full Text Available The stable isomers of the higher fullerenes C76 and C84 with D2 symmetry as well as the basic fullerenes C60 and C70 were isolated from carbon soot and characterized by the new and advanced methods, techniques, and processes. The validity of several semiempirical, ab initio, and DFT theoretical calculations in predicting the general pattern of IR absorption and the vibrational frequencies, as well as the molecular electronic structure of the C76 and C84 isomers of D2 symmetry, is confirmed, based on recent experimental results. An excellent correlation was found between the previously reported theoretical data and the recently obtained experimental results for these molecules over the relevant spectral range for the identification of fullerenes. These results indicate that there are no errors in the calculations in the significant spectral regions, the assumptions that were based on previous comparisons with partial experimental results. Isolated fullerenes are important for their applications in electronic and optical devices, solar cells, optical limiting, sensors, polymers, nanophotonic materials, diagnostic and therapeutic agents, health and environment protection, and so forth.

  11. Identification of Quercus agrifolia (coast live oak resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Anna Olivia Conrad

    2014-10-01

    Full Text Available Over the last two decades coast live oak (CLO dominance in many California coastal ecosystems has been threatened by the alien invasive pathogen Phytophthora ramorum, the causal agent of sudden oak death. In spite of high infection and mortality rates in some areas, the presence of apparently resistant trees has been observed, including trees that become infected but recover over time. However, identifying resistant trees based on recovery alone can take many years. The objective of this study was to determine if Fourier-transform infrared (FT-IR spectroscopy, a chemical fingerprinting technique, can be used to identify CLO resistant to P. ramorum prior to infection. Soft independent modeling of class analogy identified spectral regions that differed between resistant and susceptible trees. Regions most useful for discrimination were associated with carbonyl group vibrations. Additionally, concentrations of two putative phenolic biomarkers of resistance were predicted using partial least squares regression; > 99% of the variation was explained by this analysis. This study demonstrates that chemical fingerprinting can be used to identify resistance in a natural population of forest trees prior to infection with a pathogen. FT-IR spectroscopy may be a useful approach for managing forests impacted by sudden oak death, as well as in other situations where emerging or existing forest pests and diseases are of concern.

  12. Radiation-resistance assessment of IR fibres for ITER thermography diagnostic system

    International Nuclear Information System (INIS)

    Brichard, B.; Ierschot, S. van; Ooms, H.; Berghmans, F.; Reichle, R.; Pocheau, C.; Decreton, M.

    2006-01-01

    The actively cooled target plates in the divertor of ITER will be subjected to high thermal fluxes (∼ 10 MW/m 2 ). These target plates are compound structures of an armour material at the surface - either carbon fibre reinforced carbon (CFC) or tungsten - and a water cooled CuCrZr structure inside or below. The thermal limit of the interface between the two materials must not exceed 550 o C. Therefore, the temperature must be carefully monitored to prevent structural damages of the divertor plates. Non contact measurements of the temperature offer the advantage to avoid weakening of the cooling plate structure which is already quite complex to manufacture. Infrared thermography of the target surface is therefore considered as a possible solution. Recently a diagnostic concept for spectrally resolved ITER divertor thermography using optical fibres has been proposed by CEA-Cadarache. However, the divertor region will have to face high-radiation flux and the radiation-resistance of InfraRed (IR)-fibres must be evaluated. In collaboration with CEA-Cadarache, an irradiation program has been started at SCK-CEN (Mol, Belgium) with the aim to measure the radiation-induced absorption of different IR fibre candidates operating in the 1-5 μm range. We selected various commercially available IR technologies: ZrF 4 , Hollow-Waveguide, Sapphire and Chalcogenide. For wavelengths below 2 μm we also tested low-OH silica fibres. We carried out a gamma irradiation at a maximum dose-rate of 0.42 Gy/s up to a total dose of about 5000 Gy. We showed that the optical transmission of ZrF 4 fibres strongly decreased under gamma radiation, primarily for wavelengths below 2 μm. In this type of fibre typical optical losses can reach 50 % at 5000 Gy around 3 μm. Nevertheless, the optical transmission can be significantly recovered by performing a thermal annealing treatment at a temperature of 100 o C. We also irradiated a Silver-coated hollow waveguide fibre at the same dose-rate but up

  13. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  14. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  15. Spectral analysis of pipe-to-soil potentials with variations of the Earth's magnetic field in the Australian region

    Science.gov (United States)

    Marshall, R. A.; Waters, C. L.; Sciffer, M. D.

    2010-05-01

    Long, steel pipelines used to transport essential resources such as gas and oil are potentially vulnerable to space weather. In order to inhibit corrosion, the pipelines are usually coated in an insulating material and maintained at a negative electric potential with respect to Earth using cathodic protection units. During periods of enhanced geomagnetic activity, potential differences between the pipeline and surrounding soil (referred to as pipe-to-soil potentials (PSPs)) may exhibit large voltage swings which place the pipeline outside the recommended "safe range" and at an increased risk of corrosion. The PSP variations result from the "geoelectric" field at the Earth's surface and associated geomagnetic field variations. Previous research investigating the relationship between the surface geoelectric field and geomagnetic source fields has focused on the high-latitude regions where line currents in the ionosphere E region are often the assumed source of the geomagnetic field variations. For the Australian region Sq currents also contribute to the geomagnetic field variations and provide the major contribution during geomagnetic quiet times. This paper presents the results of a spectral analysis of PSP measurements from four pipeline networks from the Australian region with geomagnetic field variations from nearby magnetometers. The pipeline networks extend from Queensland in the north of Australia to Tasmania in the south and provide PSP variations during both active and quiet geomagnetic conditions. The spectral analyses show both consistent phase and amplitude relationships across all pipelines, even for large separations between magnetometer and PSP sites and for small-amplitude signals. Comparison between the observational relationships and model predictions suggests a method for deriving a geoelectric field proxy suitable for indicating PSP-related space weather conditions.

  16. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  17. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  18. Solvent-free synthesis of azomethines, spectral correlations and antimicrobial activities of some E-benzylidene-4-chlorobenzenamines

    Directory of Open Access Journals (Sweden)

    R. Suresh

    2015-07-01

    Full Text Available Some azomethines including substituted benzylidene-4-chlorobenzenamines (E-imines have been synthesized by fly-ash: PTS catalyzed microwave assisted condensation of 4-chloroaniline and substituted benzaldehydes under solvent-free conditions. The yield of the imines has been found to be more than 85%. The purity of all imines has been checked using their physical constants and UV, IR and NMR spectral data. These spectral data have been correlated with Hammett substituent constants and F and R parameters using single and multi-linear regression analysis. From the results of statistical analysis, the effect of substituents on the above spectral data has been studied. The antimicrobial activities of all imines have been studied using standard methods.

  19. Spectral studies of coordination compounds of cobalt(II) with thiosemicarbazone of heterocyclic ketone

    Science.gov (United States)

    Chandra, Sulekh; Kumar, Umendra

    2005-12-01

    The paper presents the spectral analysis of cobalt(II) complexes with indoxyl thiosemicarbazone (ITSC) of general composition [CoL 2X 2] (where L = ITSC, X = Cl -, NO 3-, (1/2)SO 42-, NCS -). The geometry of the complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility measurements and spectral (electronic, IR, EPR, 1H NMR, mass) studies. The various physico-chemical techniques suggested a coordination number of six (octahedral) for chloro, nitrato and thiocyanato complexes. Whereas sulfato complex was found to have five coordinate trigonal-bipyramidal geometry. All the complexes are of high spin type showing magnetic moment corresponding to three unpaired electrons.

  20. EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kaltenegger, L. [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Linsky, J. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States); Mohanty, S. [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-10

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with T{sub eff} = 2300 K to T{sub eff} = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4–20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H{sub 2}O, O{sub 3}, CH{sub 4}, N{sub 2}O, and CH{sub 3}Cl. To observe signatures of life—O{sub 2}/O{sub 3} in combination with reducing species like CH{sub 4}—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O{sub 2} spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N{sub 2}O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH{sub 3}Cl could become detectable, depending on the depth of the overlapping N{sub 2}O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  1. EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS

    International Nuclear Information System (INIS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-01-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with T eff = 2300 K to T eff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4–20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H 2 O, O 3 , CH 4 , N 2 O, and CH 3 Cl. To observe signatures of life—O 2 /O 3 in combination with reducing species like CH 4 —we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O 2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N 2 O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH 3 Cl could become detectable, depending on the depth of the overlapping N 2 O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities

  2. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  3. SPECTRAL CHARACTERISTICS OF SELECTED HERMATYPIC CORALS FROM GULF OF KACHCHH, INDIA

    Directory of Open Access Journals (Sweden)

    N. Ray Chaudhury

    2012-07-01

    Full Text Available Hermatypic, scleractinian corals are the most important benthic substrates in a coral reef ecosystem. The existing, high (spatial resolution, broad-band, multi-spectral, space-borne sensors have limited capability to spatially detect and spectrally discriminate coral substrates. In situ hyperspectral signatures of eight coral targets were collected with the help of Analytical Spectral Devices FieldSpec spectroradiometer from Paga and Laku Point reefs of Gulf of Kachchh, India to study the spectral behaviour of corals. The eight coral targets consisted of seven live corals representing four distinct colony morphologies and one bleached coral target. The coral spectra were studied over a continuous range of 350 to 1350 nm. The corals strongly reflected in the NIR and MIR regions with regional central maximas located at 820 and 1070 nm respectively. In the visible region the live coral spectra conformed to "brown mode" of coral reflectance with triple-peaked pattern at 575, 600 and 650 nm. All coral spectra are characterized with two distinct absorption features: chlorophyll absorption at 675 nm and water absorption at 975 nm. The live and the bleached corals get distinguished in the visible region over 400 to 600 nm region. Water column over the targets modifies the spectral shape and magnitude. First and second-order derivatives help in identifying spectral windows to distinguish live and bleached corals.

  4. Investigation of spectral characteristics of tunnel photodiodes based on DLC nanofilms

    Science.gov (United States)

    Akchurin, Garif G.; Aban'shin, Nickolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Kochubey, Vyacheslav I.; Yakunin, Alexander N.

    2018-04-01

    The tunneling photo effect has been studied in a microdiode with an electrostatic field localized at an emitter based on a nanosized DLC structure. It is established the photocurrent, when the carbon nanoemitter is exposed by laser and tunable low-coherent radiation in the spectral range from UV to near IR with photons of low energy (below work function). A linear dependence of the photocurrent on the level of optical power in the range of micro- and milliwatt power is established. The effect of saturation of the current-voltage characteristics of the tunnel photocurrent associated with a finite concentration of non-equilibrium photoelectrons is observed. The observed spectral Watt-Amper characteristics can be adequately interpreted using a modified Fowler-Nordheim equation for non-equilibrium photoelectrons.

  5. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    Science.gov (United States)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  6. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  7. A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS

    International Nuclear Information System (INIS)

    Beirão, P.; Armus, L.; Helou, G.; Appleton, P. N.; Smith, J.-D. T.; Croxall, K. V.; Murphy, E. J.; Dale, D. A.; Draine, B. T.; Aniano, G.; Wolfire, M. G.; Bolatto, A. D.; Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H.-W.; Brandl, B. R.; Crocker, A. F.; Hinz, J. L.; Kennicutt, R. C.

    2012-01-01

    NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 μm and [O I]63 μm lines and mid-infrared H 2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 μm+[O I]63 μm)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 μm PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 μm/PAH(5.5-14 μm) is found. PAHs in the ring are responsible for a factor of two more [C II]158 μm and [O I]63 μm emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G 0 ∼ 10 2.3 and n H ∼ 10 3.5 cm –3 in the ring. For these values of G 0 and n H , PDR models cannot reproduce the observed H 2 emission. Much of the H 2 emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

  8. Development of Ir/Au-TES microcalorimeter

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Fukuda, Daiji; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Ataka, Manabu; Ohkubo, Masataka; Hirayama, Fuminori

    2004-01-01

    We are developing X-ray microcalorimeters using transition edge sensors (TES) for high resolution x-ray spectroscopy. Microcalorimeters are thermal detectors which measure the energy of an incident x-ray photon using a TES thermometer operated at a sharp transition edge between normal and superconducting states. TES microcalorimeters can achieve faster response than conventional microcalorimeters by keeping the operating point of TES in the transition region through the use of strong negative electrothermal feedback (ETF). We developed a bilayer TES where a normal metal Au was deposited on a superconductor Ir in order to improve the thermal conductivity of the Ir-TES. We investigated resistance-temperature characteristics. As a result, it showed a very sharp transition within 1 mK at the temperature of 110 mK. The energy resolution of 9.4 eV (FWHM) was achieved for a 5899 eV Mn K al line. (author)

  9. Multivariat least-squares methods applied to the quantitative spectral analysis of multicomponent samples

    International Nuclear Information System (INIS)

    Haaland, D.M.; Easterling, R.G.; Vopicka, D.A.

    1985-01-01

    In an extension of earlier work, weighted multivariate least-squares methods of quantitative FT-IR analysis have been developed. A linear least-squares approximation to nonlinearities in the Beer-Lambert law is made by allowing the reference spectra to be a set of known mixtures, The incorporation of nonzero intercepts in the relation between absorbance and concentration further improves the approximation of nonlinearities while simultaneously accounting for nonzero spectra baselines. Pathlength variations are also accommodated in the analysis, and under certain conditions, unknown sample pathlengths can be determined. All spectral data are used to improve the precision and accuracy of the estimated concentrations. During the calibration phase of the analysis, pure component spectra are estimated from the standard mixture spectra. These can be compared with the measured pure component spectra to determine which vibrations experience nonlinear behavior. In the predictive phase of the analysis, the calculated spectra are used in our previous least-squares analysis to estimate sample component concentrations. These methods were applied to the analysis of the IR spectra of binary mixtures of esters. Even with severely overlapping spectral bands and nonlinearities in the Beer-Lambert law, the average relative error in the estimated concentration was <1%

  10. Pulse Shaping for High Capacity Impulse Radio Ultra-Wideband Wireless Links Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Two pulse shapes for IR-UWB transmission under the Russian spectral emission mask are proposed and their potential experimentally demonstrated. Pulses based on the hyperbolic secant square function and the frequency B-spline wavelet are shown to enable transmission of 1.25 Gbit/s signals, reaching...

  11. A reflectivity profilometer for the optical characterisation of graded reflectivity mirrors in the 250 nm - 1100 nm spectral region

    International Nuclear Information System (INIS)

    Colucci, Alessandro; Nichelatti, Enrico

    1998-04-01

    It's developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It's tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8% [it

  12. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.

    Science.gov (United States)

    Bhave, Sampada; Eslami, Ramin; Jacob, Mathews

    2014-02-01

    To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging (MRSI). A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvolution. A spiral MRSI sequence that heavily oversamples the central k-space regions is used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain and extracranial fat regions to recover the metabolite spectra and nuisance signals at two different resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain acceptable signal-to-noise ratio. The comparisons of the algorithm against Tikhonov regularized reconstructions demonstrates considerably reduced line-shape distortions and improved metabolite maps. The proposed sparsity constrained spectral deconvolution scheme is effective in minimizing the line-shape distortions. The dual resolution reconstruction scheme is capable of minimizing spectral leakage artifacts. Copyright © 2013 Wiley Periodicals, Inc.

  13. MEOS Microsatellite Earth Observation using Miniature Integrated-Optic IR Spectrometers

    Science.gov (United States)

    Kruzelecky, Roman

    future, the MEOS Miniature Earth Observing Satellite will innovatively combine remote atmospheric/land-cover measurements with ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of surface ecosystems. MEOS will provide lower tropospheric CO2 , CH4 , CO, N2 O, H2 O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of miniature lineimaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 2.5-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. The separate limb and nadir instrument suites each feature two complementary NIR miniature spectrometers that will operate in parallel, alternating the collected optical signal between the high-resolution Fabry-Perot guided-wave FP-IOSPEC spectrometer with simultaneous multiple microchannels at 0.03 FWHM with SNR>400 and the 1220 to 2450 nm broad-band spectrometer with 1.2 nm FWHM such that one undergoes the illuminated segment of the processing while the other spectrometer undergoes its dark signal processing. This spectral region provides several harmonic optical absorption bands associated with CO2 , CH4 , CO, H2 O and N2 O. The innovative data synergy of the coarse resolution broad-band spectra with the scanned spectral measurements of the trace-gas fine features at 0.03 nm FWHM in multiple microchannels will be used to improve the accuracy of the trace gas retrievals relative to current missions. In addition, the mission will retrieve cloud top pressures to better than

  14. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  15. Isolation and Spectral Analysis of Naturally Occurring Thiarubrine A

    Science.gov (United States)

    Reyes, Juan; Morton, Melita; Downum, Kelsey; O'Shea, Kevin E.

    2001-06-01

    We have designed an experiment in which students isolate and characterize thiarubrine A, a pseudo-antiaromatic 1,2-dithia-3,5-cyclohexadiene derivative. Thiarubrines are an important class of compounds which have recently received attention because of their unusual reactivity, unique biological activity, and potential medicinal applications. They possess a distinctive red color and structure features that are particularly useful for demonstrating UV-vis, NMR, and IR spectral analyses. A crude mixture containing thiarubrine A is obtained by methanol (liquid-solid) extraction of the roots of short ragweed, Ambrosia artemisiifolia. Alternatively, these compounds can be isolated from numerous taxa within the family Asteraceae. Thiarubrine A possesses alkyl, alkenyl, and alkynyl functionality, which is useful in illustrating the utility of IR and NMR in the characterization of natural products. The long wavelength UV-vis absorption band of thiarubrine is indication of the nonplanarity of dithiin ring and provides an excellent opportunity to discuss the concepts of aromaticity, conjugation, and molecular orbital theory.

  16. Rapid determination and chemical change tracking of benzoyl peroxide in wheat flour by multi-step IR macro-fingerprinting

    Science.gov (United States)

    Guo, Xiao-Xi; Hu, Wei; Liu, Yuan; Sun, Su-Qin; Gu, Dong-Chen; He, Helen; Xu, Chang-Hua; Wang, Xi-Chang

    2016-02-01

    BPO is often added to wheat flour as flour improver, but its excessive use and edibility are receiving increasing concern. A multi-step IR macro-fingerprinting was employed to identify BPO in wheat flour and unveil its changes during storage. BPO contained in wheat flour (treatment of BPO in wheat flour based on 2DCOS-IR and spectral subtraction analysis, it was found that BPO in wheat flour not only decomposed into benzoic acid and benzoate, but also produced other deleterious substances, e.g., benzene. This study offers a promising method with minimum pretreatment and time-saving to identify BPO in wheat flour and its chemical products during storage in a holistic manner.

  17. Investigation of hybrid molecular material prepared by ionic liquid ...

    Indian Academy of Sciences (India)

    Wintec

    Near IR spectral region (1000–2500 nm) shows the elimination of water in the compound which ... 1-Butyl 3-methyl imidazolium bromide; molecular material; phosphotungstic acid; near IR. ..... attributable to the first overtone of hydroxyl groups,.

  18. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin.

    Science.gov (United States)

    Stumpe, B; Engel, T; Steinweg, B; Marschner, B

    2012-04-03

    In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.

  19. Wolf-Rayet stars in the central region of the Milky Way

    Science.gov (United States)

    Hamann, Wolf-Rainer; Graefener, Goetz; Oskinova, Lidia; Zinnecker, Hans

    2004-09-01

    We propose to take mid-IR spectra of two Wolf-Rayet stars in the inner part of our Galaxy, within 30pc projected distance from the central Black Hole. Massive stars dominate the central galactic region by their mass-loss and ionizing radiation. A quantitative analysis of this stellar inventory is essential for understanding the energy, momentum and mass budget, for instance with respect to the feeding of the central black hole. Our group developed a highly advanced model code for the expanding atmospheres of WR stars. Recently we extended the spectrum synthesis to IR wavelengths. These models will be applied for the analysis of the Spitzer IRS data. The proposed mid-IR observations will provide a wide spectral range with many lines which are needed to determine the stellar parameters, such as stellar luminosity, effective temperature, mass-loss rate and chemical composition. Near-IR spectra of the program stars are available and will augment the analysis. The capability of our code to reproduce the observed mid-IR spectrum of a WN star has been demonstrated. The two targets we selected are sufficiently isolated, while the Galactic center cluster is too crowded for the size of Spitzer's spectrograph slit. As estimated from the K-band spectra, one of the stars (WR102ka) is of very late subtype (WN9), while the other star (WR102c) has the early subtype WN6. Hence they represent different stages in the evolutionary sequence of massive stars, the late-WN just having entered the Wolf-Rayet phase and the early WN being further evolved. We expect that the parameters of massive stars in the inner galaxy differ from the usual Galactic population. One reason is that higher metallicity should lead to stronger mass-loss, which affects the stellar evolution. The Spitzer IRS, with its high sensitivity, provides a unique opportunity to study representative members of the stellar population in the vicinity of the Galactic center.

  20. Differentiation of Candida albicans, Candida glabrata, and Candida krusei by FT-IR and chemometrics by CHROMagar™ Candida.

    Science.gov (United States)

    Wohlmeister, Denise; Vianna, Débora Renz Barreto; Helfer, Virginia Etges; Calil, Luciane Noal; Buffon, Andréia; Fuentefria, Alexandre Meneghello; Corbellini, Valeriano Antonio; Pilger, Diogo André

    2017-10-01

    Pathogenic Candida species are detected in clinical infections. CHROMagar™ is a phenotypical method used to identify Candida species, although it has limitations, which indicates the need for more sensitive and specific techniques. Infrared Spectroscopy (FT-IR) is an analytical vibrational technique used to identify patterns of metabolic fingerprint of biological matrixes, particularly whole microbial cell systems as Candida sp. in association of classificatory chemometrics algorithms. On the other hand, Soft Independent Modeling by Class Analogy (SIMCA) is one of the typical algorithms still little employed in microbiological classification. This study demonstrates the applicability of the FT-IR-technique by specular reflectance associated with SIMCA to discriminate Candida species isolated from vaginal discharges and grown on CHROMagar™. The differences in spectra of C. albicans, C. glabrata and C. krusei were suitable for use in the discrimination of these species, which was observed by PCA. Then, a SIMCA model was constructed with standard samples of three species and using the spectral region of 1792-1561cm -1 . All samples (n=48) were properly classified based on the chromogenic method using CHROMagar™ Candida. In total, 93.4% (n=45) of the samples were correctly and unambiguously classified (Class I). Two samples of C. albicans were classified correctly, though these could have been C. glabrata (Class II). Also, one C. glabrata sample could have been classified as C. krusei (Class II). Concerning these three samples, one triplicate of each was included in Class II and two in Class I. Therefore, FT-IR associated with SIMCA can be used to identify samples of C. albicans, C. glabrata, and C. krusei grown in CHROMagar™ Candida aiming to improve clinical applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis, spectral and photophysical properties of novel phthalocyanines bearing bulky phenantroxy moiety

    International Nuclear Information System (INIS)

    Erdogmuş, Ali; Lütfi Ugur, Ahmet; Memişoglu, Abdussamed; Erden, İbrahim

    2013-01-01

    The synthesis, characterization, spectral and photophysical properties of soluble 9-Phenanthroxy substituted oxo-titanium (IV), zinc, magnesium and nickel phthalocyanines (1a, 1b, 1c and 1d) are reported for the first time. The new compounds have been characterized by elemental analysis, FT-IR, 1 H–NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for spectral, fluorescence properties and fluorescence quantum yields of these compounds in dimethylsulfoxide (DMSO) and toluene. All phthalocyanine complexes (1a to 1d) exhibited excellent solubility in organic solvents such as dichloromethane, chloroform, THF, toluene, DMF and DMSO. - Highlights: ► New metallophthalocyanines (1a–1d) were synthesized. ► These new phthalocyanine derivatives show the enhanced solubility in organic solvents. ► The spectral and photophysical properties of TiO(IV), zinc (II) and Mg(II) phthalocyanine (1a–1c) are investigated in DMSO and toluene. ► Ground state electronic absorption and fluorescence spectra.

  2. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  3. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  4. Thermo spectral analysis (TSA) of living human skin by FT-IR -Development of a diagnostic method for the early detection of chronic diseases

    Science.gov (United States)

    Folberth, W.; Heim, G.

    1985-12-01

    A Fourier spectrometer was used in order to measure the spectral emissivity E(k) of human skin in the FIR region k=190-420 cm-1. Three studies on patient groups with defined chronic diseases have been performed: patients with untreated bronchial carcinoma, patients with rheumatic arthritis and patients with chronic renal insufficiency. In comparison with a symptomfree control group all patient groups show significant differences in E(k). As result of a discriminant analysis a separation of 95.7% between carcinoma patients and control persons is possible. The separation quotes between the other groups indicate that patients with malignant neoplasms can be discriminated from other chronically ill persons.

  5. Spectral curves of surface reflectance in some Antarctic regions

    International Nuclear Information System (INIS)

    Lupi, A.; Tomasi, C.; Orsini, A.; Cacciari, A.; Vitale, V.; Georgiadis, T.; Casacchia, R.; Salvatori, R.; Salvi, S.

    2001-01-01

    Four surface reflectance models of solar radiation were determined by examining several sets of field measurements taken for clear-sky conditions at various sites in Antarctica. Each model consists of the mean spectral curve of surface reflectance in the 0.25-2.7 μm wavelength range and of the dependence curve of total abedo on the solar elevation angle h, within the range from 5 0 to 55 0 . The TNB (Terra Nova Bay) model refers to a rocky terrain where granites are predominant; the NIS (Nansen Ice Sheet) model to a glacier surface made uneven by sastrugi and streaked by irregular fractures; the HAP (High Altitude Plateau) model to a flat ice surface covered by fresh snow and scored by light sastrugi; and the RIS (Ross Ice Shelf) model to an area covered by the sea ice pack presenting many discontinuities in the reflectance features, due to melt water lakes, puddles, refrozen ice and snow pots. The reflectance curve obtained for the TNB model presents gradually increasing values as wavelength increases through the visible spectral range and almost constant values at infrared wavelengths, giving a total albedo value equal to 0.264 at = 30 0 , which increases by about 80% through the lower range of h and decreases by 12% through the upper range. The reflectance curves of the NIS, HAP and RIS models are all peaked at visible wavelengths and exhibit decreasing values throughout the infrared spectral range, giving values of total albedo equal to 0.464, 0.738 and 0.426 at h 30 0 , respectively. These values were estimated to increase by 8-14% as h decreases from 30 0 to 5 0 and to decrease by 2-4% only as h increases from 30 0 to 55 0

  6. THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER

    International Nuclear Information System (INIS)

    Illingworth, G. D.; Magee, D.; Oesch, P. A.; Bouwens, R. J.; Labbé, I.; Franx, M.; Stiavelli, M.; Van Dokkum, P. G.; Trenti, M.; Carollo, C. M.; Gonzalez, V.

    2013-01-01

    The eXtreme Deep Field (XDF) combines data from 10 years of observations with the Hubble Space Telescope Advanced Camera for Surveys (ACS) and the Wide-Field Camera 3 Infra-Red (WFC3/IR) into the deepest image of the sky ever in the optical/near-IR. Since the initial observations of the Hubble Ultra-Deep Field (HUDF) in 2003, numerous surveys and programs, including supernovae follow-up, HUDF09, CANDELS, and HUDF12, have contributed additional imaging data across this region. However, these images have never been combined and made available as one complete ultra-deep image dataset. We combine them now with the XDF program. Our new and improved processing techniques provide higher quality reductions of the total dataset. All WFC3/IR and optical ACS data sets have been fully combined and accurately matched, resulting in the deepest imaging ever taken at these wavelengths, ranging from 29.1 to 30.3 AB mag (5σ in a 0.''35 diameter aperture) in 9 filters. The combined image therefore reaches to 31.2 AB mag 5σ (32.9 at 1σ) for a flat f ν source. The gains in the optical for the four filters done in the original ACS HUDF correspond to a typical improvement of 0.15 mag, with gains of 0.25 mag in the deepest areas. Such gains are equivalent to adding ∼130 to ∼240 orbits of ACS data to the HUDF. Improved processing alone results in a typical gain of ∼0.1 mag. Our 5σ (optical+near-IR) SExtractor catalogs reveal about 14,140 sources in the full field and about 7121 galaxies in the deepest part of the XDF

  7. Perceptual sensitivity to spectral properties of earlier sounds during speech categorization.

    Science.gov (United States)

    Stilp, Christian E; Assgari, Ashley A

    2018-02-28

    Speech perception is heavily influenced by surrounding sounds. When spectral properties differ between earlier (context) and later (target) sounds, this can produce spectral contrast effects (SCEs) that bias perception of later sounds. For example, when context sounds have more energy in low-F 1 frequency regions, listeners report more high-F 1 responses to a target vowel, and vice versa. SCEs have been reported using various approaches for a wide range of stimuli, but most often, large spectral peaks were added to the context to bias speech categorization. This obscures the lower limit of perceptual sensitivity to spectral properties of earlier sounds, i.e., when SCEs begin to bias speech categorization. Listeners categorized vowels (/ɪ/-/ɛ/, Experiment 1) or consonants (/d/-/g/, Experiment 2) following a context sentence with little spectral amplification (+1 to +4 dB) in frequency regions known to produce SCEs. In both experiments, +3 and +4 dB amplification in key frequency regions of the context produced SCEs, but lesser amplification was insufficient to bias performance. This establishes a lower limit of perceptual sensitivity where spectral differences across sounds can bias subsequent speech categorization. These results are consistent with proposed adaptation-based mechanisms that potentially underlie SCEs in auditory perception. Recent sounds can change what speech sounds we hear later. This can occur when the average frequency composition of earlier sounds differs from that of later sounds, biasing how they are perceived. These "spectral contrast effects" are widely observed when sounds' frequency compositions differ substantially. We reveal the lower limit of these effects, as +3 dB amplification of key frequency regions in earlier sounds was enough to bias categorization of the following vowel or consonant sound. Speech categorization being biased by very small spectral differences across sounds suggests that spectral contrast effects occur

  8. Photodissociation Spectroscopy of Cold Protonated Synephrine: Surprising Differences between IR-UV Hole-Burning and IR Photodissociation Spectroscopy of the O-H and N-H Modes.

    Science.gov (United States)

    Nieuwjaer, N; Desfrançois, C; Lecomte, F; Manil, B; Soorkia, S; Broquier, M; Grégoire, G

    2018-04-19

    We report the UV and IR photofragmentation spectroscopies of protonated synephrine in a cryogenically cooled Paul trap. Single (UV or IR) and double (UV-UV and IR-UV) resonance spectroscopies have been performed and compared to quantum chemistry calculations, allowing the assignment of the lowest-energy conformer with two rotamers depending on the orientation of the phenol hydroxyl (OH) group. The IR-UV hole burning spectrum exhibits the four expected vibrational modes in the 3 μm region, i.e., the phenol OH, C β -OH, and two NH 2 + stretches. The striking difference is that, among these modes, only the free phenol OH mode is active through IRPD. The protonated amino group acts as a proton donor in the internal hydrogen bond and displays large frequency shifts upon isomerization expected during the multiphoton absorption process, leading to the so-called IRMPD transparency. More interestingly, while the C β -OH is a proton acceptor group with moderate frequency shift for the different conformations, this mode is still inactive through IRPD.

  9. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  10. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs.

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-22

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10(-7) in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  11. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  12. Exchange, x-ray and IR spectral behaviour of lanthanum and praseodymium exchanged zeolite X

    International Nuclear Information System (INIS)

    Das, D.; Upreti, M.C.

    1995-01-01

    Exchange behaviour of lanthanum and praseodymium ions in zeolite X involves three steps: preferential exchange, intrazeolitic exchange and irreversible exchange. At room temperature , higher exchange has been observed with La(III) than with Pr(III) which is attributed to the smaller hydrosphere of lanthanum than praseodymium. IR spectra of these zeolites in KBr pellets show a shift in the major Si-O stretching vibration of 972 cm -1 to higher frequencies. Their x-ray diffraction patterns remain unchanged except a large decrease of the line intensities caused by the absorption of x-rays by heavy La(III) and Pr(III) ions. The present study reports the preparation and physicochemical properties of lanthanum and praseodymium exchanged zeolite X. (author). 12 refs., 3 figs., 3 tabs

  13. Spectral backward radiation profile

    International Nuclear Information System (INIS)

    Kwon, Sung Duck; Lee, Keun Hyun; Kim, Bo Ra; Yoon, Suk Soo

    2004-01-01

    Ultrasonic backward radiation profile is frequency-dependent when incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of used transducers so that it was not easy to understand the change of the frequency component and spectrum of backward radiation from the profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) Lecroy DSO. The very big changes in the shape and pattern of spectral backward radiation profiles leads to the conclusion that this new try could be very effective tool to evaluate frequency dependent surface area.

  14. Automated multifunction apparatus for spectral and polarization measurements

    International Nuclear Information System (INIS)

    Stepanov, A.N.; Kurakov, A.Ya.

    1992-01-01

    An automated spectral apparatus is described that is based on an SDL-2 spectrometer for spectral and polarization measurements with small specimens (0.15 x 0.15 mm) by the Fourier-coefficient method in the visible and ultraviolet regions over a wide range of temperatures. The absorption, dichroism, birefringence, and polarization orientation of natural waves are determined simultaneously in a single measurement cycle. Polarization-luminescence spectra can also be recorded from one region of the specimen without its adjustment. 3 refs., 3 figs

  15. YSOVAR: Mid-infrared variability in the star-forming region Lynds 1688

    Energy Technology Data Exchange (ETDEWEB)

    Günther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Covey, K. R. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Allen, L. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bayo, A. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Meng, H. Y. A. [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Morales-Calderón, M. [Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Canada (Spain); Parks, J. R. [Department of Physics and Astronomy, Georgia State University, 25 Park Place South, Atlanta, GA 30303 (United States); Song, Inseok, E-mail: hguenther@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2014-12-01

    The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ∼800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6 yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.

  16. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  17. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  18. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    Science.gov (United States)

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.

  19. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  20. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    Science.gov (United States)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study is needed to quantify the relationship between lipid molecular structure changes and functionality/availability.

  1. Qualitative infrared spectral analysis of products adsorbed by silica gel from ditolylmethane coolant and their adsorption isotherm

    International Nuclear Information System (INIS)

    Ermakov, V.A.; Benderskaya, O.S.

    1987-01-01

    The IR-spectral analysis has been applied to study the products adsorbed from ditolylmethane first-circuit coolant, as well as from still bottoms after coolant distillation on silicagel of various makes. The qualitative study of desorbate IR-spectra has shown that they refer to the classes of arylaldehydes, diarylketones and carbonic acids. Under actual conditions first-circuit reactor coolant also has a wide set of products of its radiolysis, therefore the spectrum of coolant oxidaton products must be wider. It is noted that adsorption on silica gel, ASK of oxygen-bearing compounds which are present in ditolyl methane coolant has 2 stages

  2. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.

    Science.gov (United States)

    Otte, Marinus A; Sepúlveda, Borja; Ni, Weihai; Juste, Jorge Pérez; Liz-Marzán, Luis M; Lechuga, Laura M

    2010-01-26

    We present a theoretical and experimental study involving the sensing characteristics of wavelength-interrogated plasmonic sensors based on surface plasmon polaritons (SPP) in planar gold films and on localized surface plasmon resonances (LSPR) of single gold nanorods. The tunability of both sensing platforms allowed us to analyze their bulk and surface sensing characteristics as a function of the plasmon resonance position. We demonstrate that a general figure of merit (FOM), which is equivalent in wavelength and energy scales, can be employed to mutually compare both sensing schemes. Most interestingly, this FOM has revealed a spectral region for which the surface sensitivity performance of both sensor types is optimized, which we attribute to the intrinsic dielectric properties of plasmonic materials. Additionally, in good agreement with theoretical predictions, we experimentally demonstrate that, although the SPP sensor offers a much better bulk sensitivity, the LSPR sensor shows an approximately 15% better performance for surface sensitivity measurements when its FOM is optimized. However, optimization of the substrate refractive index and the accessibility of the relevant molecules to the nanoparticles can lead to a total 3-fold improvement of the FOM in LSPR sensors.

  3. Resequencing IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children

    Science.gov (United States)

    Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5' and 3' flanking regions of IRS2 (approx. 14.5 kb), were bidirectionally sequenced for single nucleotide...

  4. Spectral Analysis of Quantum-Dash Lasers: Effect of Inhomogeneous Broadening of the Active-Gain Region

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2012-05-01

    The effect of the active region inhomogeneity on the spectral characteristics of InAs/InP quantum-dash (Qdash) lasers is examined theoretically by solving the coupled set of carrier-photon rate equations. The inhomogeneity due to dash size or composition fluctuation is included in the model by considering dispersive energy states and characterized by a Gaussian envelope. In addition, the technique incorporates multilongitudinal photon modes and homogeneous broadening of the optical gain. The results predict a red shift in the central lasing wavelength of Qdash lasers on increasing the inhomogeneous broadening either explicitly or implicitly, which supports various experimental observations. The threshold current density and the lasing bandwidth are also found to increase. © 2012 IEEE.

  5. Spectral Analysis of Quantum-Dash Lasers: Effect of Inhomogeneous Broadening of the Active-Gain Region

    KAUST Repository

    Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Ooi, Boon S.; Schwingenschlö gl, Udo

    2012-01-01

    The effect of the active region inhomogeneity on the spectral characteristics of InAs/InP quantum-dash (Qdash) lasers is examined theoretically by solving the coupled set of carrier-photon rate equations. The inhomogeneity due to dash size or composition fluctuation is included in the model by considering dispersive energy states and characterized by a Gaussian envelope. In addition, the technique incorporates multilongitudinal photon modes and homogeneous broadening of the optical gain. The results predict a red shift in the central lasing wavelength of Qdash lasers on increasing the inhomogeneous broadening either explicitly or implicitly, which supports various experimental observations. The threshold current density and the lasing bandwidth are also found to increase. © 2012 IEEE.

  6. Observed Spectral Invariant Behavior of Zenith Radiance in the Transition Zone Between Cloud-Free and Cloudy Regions

    Science.gov (United States)

    Marshak, A.; Knyazikhin, Y.; Chiu, C.; Wiscombe, W.

    2010-01-01

    The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets.

  7. Evans hole and non linear optical activity in Bis(melaminium) sulphate dihydrate: A vibrational spectral study.

    Science.gov (United States)

    Suresh Kumar, V R; Binoy, J; Dawn Dharma Roy, S; Marchewka, M K; Jayakumar, V S

    2015-01-01

    Bis(melaminium) sulphate dihydrate (BMSD), an interesting melaminium derivative for nonlinear optical activity, has been subjected to vibrational spectral analysis using FT IR and FT Raman spectra. The analysis has been aided by the Potential Energy Distribution (PED) of vibrational spectral bands, derived using density functional theory (DFT) at B3LYP/6-31G(d) level. The geometry is found to correlate well with the XRD structure and the band profiles for certain vibrations in the finger print region have been theoretically explained using Evans hole. The detailed Natural Bond Orbital (NBO) analysis of the hydrogen bonding in BMSD has also been carried out to understand the correlation between the stabilization energy of hyperconjugation of the lone pair of donor with the σ(∗) orbital of hydrogen-acceptor bond and the strength of hydrogen bond. The theoretical calculation shows that BMSD has NLO efficiency, 2.66 times that of urea. The frontier molecular orbital analysis points to a charge transfer, which contributes to NLO activity, through N-H…O intermolecular hydrogen bonding between the melaminium ring and the sulphate. The molecular electrostatic potential (MEP) mapping has also been performed for the detailed analysis of the mutual interactions between melaminium ring and sulphate ion. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermal structure of the Martian atmosphere retrieved from the IR- spectrometry in the 15 mkm CO2 band

    Science.gov (United States)

    Zasova, L.; Formisano, V.; Grassi, D.; Igantiev, N.; Moroz, V.

    Thermal IR spectrometry is one of the methods of the Martian atmosphere investigation below 55 km. The temperature profiles retrieved from the 15 μm CO2 band may be used for MIRA database. This approach gives the vertical resolution of several kilometers and accuracy of several Kelvins. An aerosol abundance, which influences the temperature profiles, is obtained from the continuum of the same spectrum. It is taken into account in the temperature retrieval procedure in a self- consistent way. Although this method has limited vertical resolution it possesses some advantages. For example, the radio occultation method gives the temperature profiles with higher spectral resolution, but the radio observations are sparse in space and local time. Direct measurements, which give the most accurate results, enable to obtain the temperature profiles only for some chosen points (landing places). Actually, the thermal IR-spectrometry is the only method, which allows to monitor the temperature profiles with good coverage both in space and local time. The first measurements of this kind were fulfilled by IRIS, installed on board of Mariner 9. This spectrometer was characterized by rather high spectral resolution (2.4 cm-1). The temperature profiles vs. local time dependencies for different latitudes and seasons were retrieved, including dust storm conditions, North polar night, Tharsis volcanoes. The obtained temperature profiles have been compared with the temperature profiles for the same conditions, taken from Climate Data Base (European GCM). The Planetary Fourier Spectrometer onboard Mars Express (which is planned to be launched in 2003) has the spectral range 1.2-45 μm and spectral resolution of 1.5 cm- 1. Temperature retrieval is one of the main scientific goals of the experiment. It opens a possibility to get a series of temperature profiles taken for different conditions, which can later be used in MIRA producing.

  9. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul; Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho [Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  10. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    International Nuclear Information System (INIS)

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-01-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd 3 Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd 3 Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts

  11. Spectrally- and Time-Resolved Sum Frequency Generation (STiR-SFG): a new tool for ultrafast hydrogen bond dynamics at interfaces.

    Science.gov (United States)

    Benderskii, Alexander; Bordenyuk, Andrey; Weeraman, Champika

    2006-03-01

    The recently developed spectrally- and time-resolved Sum Frequency Generation (STiR-SFG) is a surface-selective 3-wave mixing (IR+visible) spectroscopic technique capable of measuring ultrafast spectral evolution of vibrational coherences. A detailed description of this measurement will be presented, and a noniterative method or deconvolving the laser pulses will be introduced to obtain the molecular response function. STiR-SFG, combined with the frequency-domain SFG spectroscopy, was applied to study hydrogen bonding dynamics at aqueous interfaces (D2O/CaF2). Spectral dynamics of the OD-stretch on the 50-150 fs time scale provides real-time observation of ultrafast H-bond rearrangement. Tuning the IR wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different sub-ensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding) shows monotonic red-shift of the OD-frequency. In contrast, the red-side excitation (stronger H-bonding structures) produces a blue-shift and a recursion, which may indicate the presence of an underdamped intermolecular mode of interfacial water. Effect of electrolyte concentration on the H-bond dynamics will be discussed.

  12. Spectral features in the cosmic ray fluxes

    Science.gov (United States)

    Lipari, Paolo

    2018-01-01

    The cosmic ray energy distributions contain spectral features, that is narrow energy regions where the slope of the spectrum changes rapidly. The identification and study of these features is of great importance to understand the astrophysical mechanisms of acceleration and propagation that form the spectra. In first approximation a spectral feature is often described as a discontinuous change in slope, however very valuable information is also contained in its width, that is the length of the energy interval where the change in spectral index develops. In this work we discuss the best way to define and parameterize the width a spectral feature, and for illustration discuss some of the most prominent known structures.

  13. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  14. Infrared polarimetry of the reflection nebula near L 1551 IRS 5

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuya; Yamashita, Takuya; Sato, Shuji; Suzuki, Hiro; Hough, J H; Garden, R; Gatley, I

    1986-11-01

    The K-band polarization has been measured in the region extending 30 arcsec to the SW of L 1551 IRS5. The degree of polarization is exceptionally high, reaching approx. 67 per cent. The large polarizations and the azimuthal pattern of the position angles are attributed to scattering of infrared radiation from IRS5 by dust grains. The infrared brightness distribution resembles that of the optical nebulosity. It is proposed that infrared scattering occurs at the 'walls' of a cavity formed by the interaction of stellar winds with the ambient cloud.

  15. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  16. pp Interaction Regions. [Superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, R.; Johnson, D.E.

    1984-01-01

    This group served as the interface between experimenters and accelerator physicists. A start was made on a portfolio of IR's, building on previous studies including the Reference Designs Study (RDS). The group also looked at limits on time structure and luminosity, the clustering of IR's, external beams of secondary particles from the IR's, and various operational issues connected with the IR's. Designs were developed for interaction regions for RDS-B (individual cryostats for two 5-T rings, separated by 60 cm vertically). For a fixed geometry, the quadrupoles have been tuned over a range to give a factor of 100 variation in ..beta..* (1 to 100 m) and thus in luminosity; an even larger variation may well be possible. Variation of the minimum ..beta..* with free space between the quadrupole triplets, for a quad strength of 280 T/m and under the constraint of fixed chromaticity, showed a factor of five decrease in maximum luminosity in going from a high luminosity region with +-20 m free space to a small-angle region with +-100 m. Similar variants of the RDS-A IR were also found.

  17. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    Science.gov (United States)

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  18. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  19. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  20. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares

    Science.gov (United States)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean

    2015-10-01

    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  1. Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2012-06-01

    Full Text Available Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II-5-(4-acetoxy-3-methoxyphenyl-10,15,20-tris-(4-carboxymethylphenylporphyrin, Zn(II-5-[(3,4-methylenedioxyphenyl]-10,15,20-tris-(4-carboxymethylphenylporphyrin, Cu(II-5-(4-acetoxy-3-methoxyphenyl-10,15,20-tris-(4-carboxymethylphenylporphyrin and Cu(II-5-[(3,4-methylenedioxyphenyl]-10,15,20-tris-(4-carboxymethylphenylporphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation.

  2. Collision-induced absorption in the region of the ν2 + ν3 band of carbon dioxide

    Science.gov (United States)

    Baranov, Yu. I.

    2018-03-01

    The IR absorption spectra of pure carbon dioxide in the region of the forbidden ν2 + ν3 vibrational transition at 3004 cm-1 have been recorded using a Fourier-transform spectrometer. A multipass-optical cell with the path length of 100 m was used in the study. The data were taken at room temperature of 294.8 K with a resolution of 0.02 cm-1 over the spectral region 2500-3500 cm-1. A sample pressures varied from 207 to 463 kPa (2.04-4.57 atm). The measured binary absorption coefficients provide the band integrated intensity value of (2.39 ± 0.04) ∗ 10-4 cm-2 amagat-2. The result is compared with those from previous works. The observed band profile features are discussed.

  3. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.; Favre, Cécile [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Schilke, Peter [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Lis, Dariusz C.; Emprechtinger, Martin; Phillips, Thomas G. [Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Bell, Tom A.; Cernicharo, José; Esplugues, Gisela B. [Centro de Astrobiología (CSIC/INTA), Laboratiorio de Astrofísica Molecular, Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Blake, Geoffrey; Kleshcheva, Maria [Division of Geological and Planetary Sciences, California Institute of Technology, MS 150-21, Pasadena, CA 91125 (United States); Gupta, Harshal; Pearson, John [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lord, Steven [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Marcelino, Nuria [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); McGuire, Brett A. [Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125 (United States); Plume, Rene [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 (Canada); Van der Tak, Floris [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen (Netherlands); and others

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.

  4. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  5. Ames S-32 O-16 O-18 Line List for High-Resolution Experimental IR Analysis

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2016-01-01

    By comparing to the most recent experimental data and spectra of the SO2 628 ?1/?3 bands (see Ulenikov et al., JQSRT 168 (2016) 29-39), this study illustrates the reliability and accuracy of the Ames-296K SO2 line list, which is accurate enough to facilitate such high-resolution spectroscopic analysis. The SO2 628 IR line list is computed on a recently improved potential energy surface (PES) refinement, denoted Ames-Pre2, and the published purely ab initio CCSD(T)/aug-cc-pVQZ dipole moment surface. Progress has been made in both energy level convergence and rovibrational quantum number assignments agreeing with laboratory analysis models. The accuracy of the computed 628 energy levels and line list is similar to what has been achieved and reported for SO2 626 and 646, i.e. 0.01-0.03 cm(exp -1) for bands up to 5500 cm(exp -1). During the comparison, we found some discrepancies in addition to overall good agreements. The three-IR-list based feature-by-feature analysis in a 0.25 cm(exp -1) spectral window clearly demonstrates the power of the current Ames line lists with new assignments, correction of some errors, and intensity contributions from varied sources including other isotopologues. We are inclined to attribute part of detected discrepancies to an incomplete experimental analysis and missing intensity in the model. With complete line position, intensity, and rovibrational quantum numbers determined at 296 K, spectroscopic analysis is significantly facilitated especially for a spectral range exhibiting such an unusually high density of lines. The computed 628 rovibrational levels and line list are accurate enough to provide alternatives for the missing bands or suspicious assignments, as well as helpful to identify these isotopologues in various celestial environments. The next step will be to revisit the SO2 828 and 646 spectral analyses.

  6. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  7. A spectral atlas of λ Bootis stars

    Directory of Open Access Journals (Sweden)

    Paunzen E.

    2014-01-01

    Full Text Available Since the discovery of λ Bootis stars, a permanent confusion about their classification can be found in literature. This group of non-magnetic, Population I, metal-poor A to F-type stars, has often been used as some sort of trash can for "exotic" and spectroscopically dubious objects. Some attempts have been made to establish a homogeneous group of stars which share the same common properties. Unfortunately, the flood of "new" information (e.g. UV and IR data led again to a whole zoo of objects classified as λ Bootis stars, which, however, are apparent non-members. To overcome this unsatisfying situation, a spectral atlas of well established λ Bootis stars for the classical optical domain was compiled. It includes intermediate dispersion (40 and 120Å mm-1 spectra of three λ Bootis, as well as appropriate MK standard stars. Furthermore, "suspicious" objects, such as shell and Field Horizontal Branch stars, have been considered in order to provide to classifiers a homogeneous reference. As a further step, a high resolution (8Å mm-1 spectrum of one "classical" λ Bootis star in the same wavelength region (3800-4600Å is presented. In total, 55 lines can be used for this particular star to derive detailed abundances for nine heavy elements (Mg, Ca, Sc, Ti, Cr, Mn, Fe, Sr and Ba.

  8. Infrared absorption cross sections for ethane (C2H6) in the 3 μm region

    International Nuclear Information System (INIS)

    Harrison, Jeremy J.; Allen, Nicholas D.C.; Bernath, Peter F.

    2010-01-01

    Infrared absorption cross sections for ethane have been measured in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125/HR). Results are presented for pure ethane gas from spectra recorded at 0.004 cm -1 resolution and for mixtures with dry synthetic air from spectra obtained at 0.015 cm -1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution), at a number of temperatures and pressures appropriate for atmospheric conditions. Intensities were calibrated using three ethane spectra (recorded at 278, 293, and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  9. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  10. Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT methods.

    Science.gov (United States)

    Babu, N Ramesh; Subashchandrabose, S; Ali Padusha, M Syed; Saleem, H; Erdoğdu, Y

    2014-01-01

    The Spectral Characterization of (E)-1-(Furan-2-yl) methylene)-2-(1-phenylvinyl) hydrazine (FMPVH) were carried out by using FT-IR, FT-Raman and UV-Vis., Spectrometry. The B3LYP/6-311++G(d,p) level of optimization has been performed on the title compound. The conformational analysis was performed for this molecule, in which the cis and trans conformers were studied for spectral characterization. The recorded spectral results were compared with calculated results. The optimized bond parameters of FMPVH molecule was compared with X-ray diffraction data of related molecule. To study the intra-molecular charge transfers within the molecule the Lewis (bonding) and Non-Lewis (anti-bonding) structural calculation was performed. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. The atomic charges were calculated and analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Spectral Properties of Novel 1,3-oxazol-5(4H)-ones With Substituted Benzylidene and Phenyl Rings

    DEFF Research Database (Denmark)

    Palcut, Marián

    2009-01-01

    In the present work, five novel (4Z)-4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-ones (azlactones) were investigated by the infra-red (IR) and nuclear magnetic resonance spectroscopy (NMR) of the 1H and 13C nuclei. The spectral properties of the oxazolone ring were monitored with respect to the subst...

  12. WHY IS NON-THERMAL LINE BROADENING OF SPECTRAL LINES IN THE LOWER TRANSITION REGION OF THE SUN INDEPENDENT OF SPATIAL RESOLUTION?

    International Nuclear Information System (INIS)

    De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.; Peter, H.; Pereira, T. M. D.

    2015-01-01

    Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s −1 ) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s −1 . This invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)

  13. On the potential of the 2041–2047 nm spectral region for remote sensing of atmospheric CO2 isotopologues

    International Nuclear Information System (INIS)

    Reuter, M.; Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Deutscher, N.M.; Heymann, J.; Rozanov, A.; Schneising, O.; Suto, H.; Toon, G.C.; Warneke, T.

    2012-01-01

    Pressing open questions about the carbon cycle can be addressed with precise measurements of the three most abundant CO 2 isotopologues 16 O 12 C 16 O, 16 O 13 C 16 O, and 16 O 12 C 18 O. Such measurements can, e.g., help to further constrain oceanic and biospheric net fluxes or to differentiate between the gross biospheric fluxes photosynthesis and respiration. The 2041–2047nm (about 4885–4900cm −1 ) spectral region contains separated absorption lines of the three most abundant CO 2 isotopologues. Their spectral properties make this spectral region well suited for the use of a light path proxy method for the retrieval of δ 13 C and δ 18 O (the ratio of heavier to lighter isotopologues relative to a standard). An optimal estimation based light path proxy retrieval for δ 13 C and δ 18 O has been set up, applicable to GOSAT (Greenhouse gases Observing Satellite) and ground-based FTS (Fourier transform spectrometer) measurements. Initial results show that it is possible to retrieve δ 13 C and δ 18 O from ground-based FTS instruments with a precision of 0.6–1.6‰ and from GOSAT with a precision of about 30‰. Comparison of the achievable precision with the expected atmospheric signals shows that ground-based FTS remote sensing measurements have the potential to gain valuable information on δ 13 C and δ 18 O if averaging a sufficient number of measurements. It seems unlikely that this applies also to GOSAT because of the lower precision and a conceptual larger sensitivity to scattering related errors in satellite viewing geometry. -- Highlights: ► The 2041–2047 nm region is suited for remote sensing atmospheric CO 2 isotopologues. ► A δ 13 C and δ 18 O retrieval was set up for ground-based FTS and the GOSAT satellite. ► The retrieval precision of δ 13 C and δ 18 O is about 0.6–1.6‰ (FTS) and 30‰ (GOSAT). ► FTS measurements can give valuable information on atmospheric δ 13 C and δ 18 O.

  14. A Study of Spectral Integration and Normalization in NMR-based Metabonomic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Lowry, David F.; Jarman, Kristin H.; Harbo, Sam J.; Meng, Quanxin; Fuciarelli, Alfred F.; Pounds, Joel G.; Lee, Monica T.

    2005-09-15

    Metabonomics involves the quantitation of the dynamic multivariate metabolic response of an organism to a pathological event or genetic modification (Nicholson, Lindon and Holmes, 1999). The analysis of these data involves the use of appropriate multivariate statistical methods. Exploratory Data Analysis (EDA) linear projection methods, primarily Principal Component Analysis (PCA), have been documented as a valuable pattern recognition technique for 1H NMR spectral data (Brindle et al., 2002, Potts et al., 2001, Robertson et al., 2000, Robosky et al., 2002). Prior to PCA the raw data is typically processed through four steps; (1) baseline correction, (2) endogenous peak removal, (3) integration over spectral regions to reduce the number of variables, and (4) normalization. The effect of the size of spectral integration regions and normalization has not been well studied. We assess the variability structure and classification accuracy on two distinctly different datasets via PCA and a leave-one-out cross-validation approach under two normalization approaches and an array of spectral integration regions. This study indicates that independent of the normalization method the classification accuracy achieved from metabonomic studies is not highly sensitive to the size of the spectral integration region. Additionally, both datasets scaled to mean zero and unity variance (auto-scaled) has higher variability within classification accuracy over spectral integration window widths than data scaled to the total intensity of the spectrum.

  15. UV-Vis-IR spectral complex refractive indices and optical properties of brown carbon aerosol from biomass burning

    Science.gov (United States)

    Sumlin, Benjamin J.; Heinson, Yuli W.; Shetty, Nishit; Pandey, Apoorva; Pattison, Robert S.; Baker, Stephen; Hao, Wei Min; Chakrabarty, Rajan K.

    2018-02-01

    Constraining the complex refractive indices, optical properties and size of brown carbon (BrC) aerosols is a vital endeavor for improving climate models and satellite retrieval algorithms. Smoldering wildfires are the largest source of primary BrC, and fuel parameters such as moisture content, source depth, geographic origin, and fuel packing density could influence the properties of the emitted aerosol. We measured in situ spectral (375-1047 nm) optical properties of BrC aerosols emitted from smoldering combustion of Boreal and Indonesian peatlands across a range of these fuel parameters. Inverse Lorenz-Mie algorithms used these optical measurements along with simultaneously measured particle size distributions to retrieve the aerosol complex refractive indices (m = n + iκ). Our results show that the real part n is constrained between 1.5 and 1.7 with no obvious functionality in wavelength (λ), moisture content, source depth, or geographic origin. With increasing λ from 375 to 532 nm, κ decreased from 0.014 to 0.003, with corresponding increase in single scattering albedo (SSA) from 0.93 to 0.99. The spectral variability of κ follows the Kramers-Kronig dispersion relation for a damped harmonic oscillator. For λ ≥ 532 nm, both κ and SSA showed no spectral dependency. We discuss differences between this study and previous work. The imaginary part κ was sensitive to changes in FPD, and we hypothesize mechanisms that might help explain this observation.

  16. Mapping the spectral phase of isolated attosecond pulses by extreme-ultraviolet emission spectrum.

    Science.gov (United States)

    Liu, Candong; Zeng, Zhinan; Li, Ruxin; Xu, Zhizhan; Nisoli, Mauro

    2015-04-20

    An all-optical method is proposed for the measurement of the spectral phase of isolated attosecond pulses. The technique is based on the generation of extreme-ultraviolet (XUV) radiation in a gas by the combination of an attosecond pulse and a strong infrared (IR) pulse with controlled electric field. By using a full quantum simulation, we demonstrate that, for particular temporal delays between the two pulses, the IR field can drive back to the parent ions the photoelectrons generated by the attosecond pulse, thus leading to the generation of XUV photons. It is found that the generated XUV spectrum is notably sensitive to the chirp of the attosecond pulse, which can then be reliably retrieved. A classical quantum-path analysis is further used to quantitatively explain the main features exhibited in the XUV emission.

  17. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  18. Shaping and detecting mid-IR light with a spatial light modulator

    CSIR Research Space (South Africa)

    Maweza, Elijah L

    2016-10-01

    Full Text Available modulator Maweza, Elijah L Gailele, Lucas M Strauss, Hencharl J Litvin, Ihar Forbes, Andrew Dudley, Angela L ABSTRACT: We demonstrate the operation and calibration of a spatial light modulator in the mid-IR region by creating and measuring...

  19. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    Science.gov (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  20. An Objective Approach to Identify Spectral Distinctiveness for Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2013-01-01

    Full Text Available To facilitate the process of developing speech perception, speech-language pathologists have to teach a subject with hearing loss the differences between two syllables by manually enhancing acoustic cues of speech. However, this process is time consuming and difficult. Thus, this study proposes an objective approach to automatically identify the regions of spectral distinctiveness between two syllables, which is used for speech-perception training. To accurately represent the characteristics of speech, mel-frequency cepstrum coefficients are selected as analytical parameters. The mismatch between two syllables in time domain is handled by dynamic time warping. Further, a filter bank is adopted to estimate the components in different frequency bands, which are also represented as mel-frequency cepstrum coefficients. The spectral distinctiveness in different frequency bands is then easily estimated by using Euclidean metrics. Finally, a morphological gradient operator is applied to automatically identify the regions of spectral distinctiveness. To evaluate the proposed approach, the identified regions are manipulated and then the manipulated syllables are measured by a close-set based speech-perception test. The experimental results demonstrated that the identified regions of spectral distinctiveness are very useful in speech perception, which indeed can help speech-language pathologists in speech-perception training.

  1. Insight into regulation of emission color and photodeactivation process from heteroleptic to homoleptic Ir(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Zheng, Danning; Feng, Songyan; Wang, Li, E-mail: chemwangl@henu.edu.cn; Li, Junfeng, E-mail: jfli@theochem.kth.se; Zhang, Jinglai, E-mail: zhangjinglai@henu.edu.cn

    2017-03-15

    The phosphorescent process of two heteroleptic ((DMDPI){sub 2}Ir(tftap) and (tftap){sub 2}Ir(DMDPI)) and one homoleptic (Ir(DMDPI){sub 3}) Ir(III) complexes (See ) is theoretically investigated by density functional theory (DFT) and quadratic response (QR) time-dependent density functional theory (TDDFT) calculations including spin-orbit coupling (SOC). Two or three triplet excited states are confirmed for three complexes, respectively. On the basis of the respective optimized triplet geometry, the emissive wavelength is determined by the ΔSCF-DFT method. Furthermore, the radiative rate constant (k{sub r}) is also calculated corresponding to each triplet state. Combination of k{sub r} and emissive energy, the emission rule is determined. It is found that complex (DMDPI){sub 2}Ir(tftap) follows the dual emission scenarios, while complexes (tftap){sub 2}Ir(DMDPI) and Ir(DMDPI){sub 3} obey the Kasha rule. The nonradiative rate constant (k{sub nr}) is qualitatively evaluated by the construction of triplet potential surface via metal centered ({sup 3}MC d-d) state. Finally, the sequence of quantum yield is compared by both k{sub r} and k{sub nr}. The quantum yield of homoleptic Ir(III) complex Ir(DMDPI){sub 3} is higher than that of heteroleptic Ir(III) complexes (DMDPI){sub 2}Ir(tftap) and (tftap){sub 2}Ir(DMDPI). However, the emissive wavelength of Ir(DMDPI){sub 3} is in the red color region rather than blue color.

  2. Spectral analysis and classification of igneous and metamorphic rocks of Hamedan region for remote sensing studies; using laboratory reflectance spectra (350-2500 nm)

    International Nuclear Information System (INIS)

    Rangzan, K.; Saki, A.; Hassanshahi, H.; Mojaradi, B.

    2012-01-01

    Reflectance spectrometry techniques with the integration of remote sensing data help us in identifying and mapping the phenomena on the earth. Using these techniques to discriminate the petrologic units independently and without knowing the spectral behavior of rocks along the electromagnetic wavelengths can not be so much useful. For the purposes of this study, 65 samples of igneous and metamorphic rocks from Hamedan region were collected and their spectra were measured using Fieldspec3 device in laboratory. The spectra were analyzed on the basis of absorption, position and shape. Petrographic analyses were used to interpret the absorption patterns as well. Then the spectra were classified according to spectral patterns. This measurement was done on both freshly cut and exposed surfaces of the samples and except a few samples, the two sets of spectra did not differ significantly. Finally, to evaluate the possibility of recognition of these targets, the responses of two hyper spectral and multispectral sensors were simulated from spectra representative of the spectral classes, showing that significant identification and classification of well exposed rocks are potentially possible using remote instruments providing high quality spectra. Also Aster simulation showed that a preliminary gross discrimination of rocks was however possible.

  3. The mid-IR silicon photonics sensor platform (Conference Presentation)

    Science.gov (United States)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.

    2017-02-01

    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in

  4. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  5. Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K

    International Nuclear Information System (INIS)

    Kalden, J; Sebald, K; Gutowski, J; Tessarek, C; Figge, S; Kruse, C; Hommel, D

    2010-01-01

    We present electrically driven luminescence from single InGaN quantum dots embedded into a light emitting diode structure grown by metal-organic vapor-phase epitaxy. Single sharp emission lines in the green spectral region can be identified. Temperature dependent measurements demonstrate thermal stability of the emission of a single quantum dot up to 150 K. These results are an important step towards applications like electrically driven single-photon emitters, which are a basis for applications incorporating plastic optical fibers as well as for modern concepts of free space quantum cryptography.

  6. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    Science.gov (United States)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  7. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Sharma, S.D.; Palaniselvam, T.; Vandana, S.; Bhatt, B.C.; Vinatha, S.; Patki, V.S.; Pendse, A.M.; Kannan, V.

    2004-01-01

    A HDR 1000 PLUS well type ionization chamber, procured from Standard Imaging, USA, and maintained by medical Physics and Safety Section (MPSS), Bhabha Atomic Research Centre (BARC), India, as a reference well chamber 1 (RWCH1), was traceably calibrated against the primary standard established by Radiological Standards Laboratory (RSL), BARC for 192 Ir HDR source, in terms of air kerma strength (AKS). An indigenously developed well-type ionization chamber, reference well chamber 2 (RWCH2) and electrometer system, fabricated by CD High Tech (CDHT) Instruments Private Ltd., Bangalore, India, was in turn calibrated against RWCH1. The CDHT system (i.e. RWCH2 and CDHT electrometer system) was taken to several hospitals, in different regions of the country, to check the calibration status of 192 Ir HDR sources. The result of this calibration audit work is reported here. (author)

  8. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  9. Irán jako regionální mocnost

    OpenAIRE

    Kotubejová, Karina

    2017-01-01

    This thesis addresses position of Iran in the Middle East and is trying to find out whether Iran is regional power or not. In the first part the key concepts for defining regional power are explained. Because of absence of unified view on phenomenon of regional power, our own characteristics of it are introduced. Second part is focused on Iran and its position as an actor of international relations in five areas: identity, geopolitical position, foreign policy, regional security and economy. ...

  10. Highly doped InP as a low loss plasmonic material for mid-IR region.

    Science.gov (United States)

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  11. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models

    Science.gov (United States)

    Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies. PMID:26559822

  12. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  13. Observation of Switchable Photoresponse of a Monolayer WSe 2 –MoS 2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging

    KAUST Repository

    Son, Youngwoo; Li, Ming-yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S.

    2016-01-01

    spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic

  14. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  15. A dearth of OH/IR stars in the Small Magellanic Cloud

    Science.gov (United States)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  16. Visible-IR and Raman micro-spectroscopic investigation of three Itokawa particles collected by Hayabusa

    Science.gov (United States)

    Brunetto, R.; Bonal, L.; Beck, P.; Dartois, E.; Dionnet, Z.; Djouadi, Z.; Füri, E.; Kakazu, Y.; Oudayer, P.; Quirico, E.; Engrand, C.

    2014-07-01

    HAYABUSA grains offer a unique perspective to better understand the link between asteroids and cosmomaterials available in the laboratory and to get an insight on the early stages of surface space weathering. The scientific objectives of our consortium are threefold: (i) the characterization of asteroidal surface processes (e.g., space weathering alteration); (ii) the assessment of parent-body alteration processes; (iii) the search for a possible association between S-type asteroids and micrometeorites. To this aim, our strategy is based on a combination of analytical techniques. Here we report a first series of results obtained through Visible-Infrared and Raman spectroscopy of three Itokawa particles (RA-QD02-0163, -0174, and -0213) collected by the Hayabusa spacecraft and provided by JAXA for our consortium. In a first step, our main objective was to collect maximum information without altering the particles. Reported results were thus obtained on the raw particles, both (i) in their original containers, and (ii) deposited on diamond windows. Raman and IR confocal spectra were acquired at the SMIS beamline of the French national synchrotron facility SOLEIL and at the Lyon Raman national facility using spots of 2 μ m for the Raman, and 10--20 μ m for the IR analyses. Point analyses and automatic mapping were performed. Analytical parameters (e.g., laser power on the sample) were optimized to prevent any damage. Diffuse reflectance spectra (i=45°, e=0°) in the visible and near-IR wavelengths were obtained with an IAS-CSNSM in-home system coupling a fiber spectrometer to an optical microscope, providing a 20-μ m spot on sample. In the case of particle -0163, Raman and IR results reveal a heterogeneous mixing of minerals, mostly olivine (Fo76), and Ca-rich (En50, Wo50) and Ca-poor (En85) pyroxenes. The modal distribution of these minerals is determined based on the spectral maps. The mineral compositions of -0163 are consistent with those previously reported on

  17. EYE REGIONALIZATION AND SPECTRAL TUNING OF RETINAL PIGMENTS IN INSECTS

    NARCIS (Netherlands)

    STAVENGA, DG

    The spatial and spectral properties of an eye can often be directly linked to the behaviour and habitat of the animal. In a honey bee (Apis mellifera) society, the drones use the well-developed dorsal part of the eye to detect the queen against the sky during her nuptial flight. Recently it has

  18. Evaluation of MidIR fibre optic reflectance: Detection limit, reproducibility and binary mixture discrimination

    Science.gov (United States)

    Sessa, Clarimma; Bagán, Héctor; García, José Francisco

    2013-11-01

    MidIR fibre optic reflectance (MidIR-FORS) is a promising analytical technique in the field of science conservation, especially because it is non-destructive. Another advantage of MidIR-FORS is that the obtained information is representative, as a large amount of spectral data can be collected. Although the technique has a high potential and is almost routinely applied, its quality parameters have not been thoroughly studied in the specific application of analysis of artistic materials. The objective of this study is to evaluate the instrumental capabilities of MidIR-FORS for the analysis of artwork materials in terms of detection limit, reproducibility, and mixture characterisation. The study has been focused on oil easel painting and several paints of known composition have been analysed. Paint layers include blue pigments not only because of their important role along art history, but also because their physical and spectroscopic characteristics allow a better evaluation of the MidIR-FORS capabilities. The results of the analysis indicate that MidIR-FORS supplies a signal affected by different factors, such as the optical, morphological and physical properties of the surface, in addition to the composition of materials analysed. Consequently, the detection limits established are relatively high for artistic objects (Prussian blue - PB 2.1-6.5%; Phthalocyanine blue - Pht 6.3-10.2%; synthetic Ultramarine blue - UM 12.1%) and may therefore lead to an incomplete description of the artwork. Reproducibility of the technique over time and across surface has been determined. The results show that the major sources of dispersion are the heterogeneity of the pigments distribution, physical features, and band shape distortions. The total dispersion is around 4% for the most intense bands (oil) and increases up to 26% when weak or overlapped bands are considered (PB, Pht, UM). The application of different pre-treatments (cutoff of fibres absorption, Savizky-Golay smoothing

  19. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    International Nuclear Information System (INIS)

    Shaikh, M.; Shaygi, B.; Asadi, H.; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M.

    2016-01-01

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  20. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M. [Bradford Royal Infirmary, Department of Radiology, Bradford Teaching Hospital Foundation Trust (United Kingdom); Shaygi, B. [Royal Devon and Exeter Hospital, Interventional Radiology Department (United Kingdom); Asadi, H., E-mail: asadi.hamed@gmail.com; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M., E-mail: mlee@rcsi.ie [Beaumont Hospital, Interventional Radiology Service, Department of Radiology (Ireland)

    2016-04-15

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  1. PEP-II IR-2 Alignment

    International Nuclear Information System (INIS)

    Seryi, A

    2004-01-01

    This paper describes the first results and preliminary analysis obtained with several alignment monitoring systems recently installed in the PEP-II interaction region. The hydrostatic level system, stretched wire system, and laser tracker have been installed in addition to the existing tiltmeters and LVDT sensors. These systems detected motion of the left raft, which correlated primarily with the low energy ring (LER) current. The motion is of the order of 120 micrometers. The cause was identified as synchrotron radiation heating the beampipe, causing its expansion which then results in its deformation and offset of the IR quadrupoles. We also discuss further plans on measurements, analysis and means to counteract this motion

  2. Ion beam synthesis of IrSi3 by implantation of 2 MeV Ir ions

    International Nuclear Information System (INIS)

    Sjoreen, T.P.; Chisholm, M.F.; Hinneberg, H.J.

    1992-11-01

    Formation of a buried IrSi 3 layer in (111) oriented Si by ion implantation and annealing has been studied at an implantation energy of 2 MeV for substrate temperatures of 450--550C. Rutherford backscattering (RBS), ion channeling and cross-sectional transmission electron microscopy showed that a buried epitaxial IrSi 3 layer is produced at 550C by implanting ≥ 3.4 x 10 17 Ir/cm 2 and subsequently annealing for 1 h at 1000C plus 5 h at 1100C. At a dose of 3.4 x 10 17 Ir/cm 2 , the thickness of the layer varied between 120 and 190 nm and many large IrSi 3 precipitates were present above and below the film. Increasing the dose to 4.4 x 10 17 Ir/cm 2 improved the layer uniformity at the expense of increased lattice damage in the overlying Si. RBS analysis of layer formation as a function of substrate temperature revealed the competition between the mechanisms for optimizing surface crystallinity vs. IrSi 3 layer formation. Little apparent substrate temperature dependence was evident in the as-implanted state but after annealing the crystallinity of the top Si layer was observed to deteriorate with increasing substrate temperature while the precipitate coarsening and coalescence improved

  3. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje

    OpenAIRE

    Vijeikis, Juozas; Makštutis, Antanas

    2009-01-01

    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  4. A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS

    Energy Technology Data Exchange (ETDEWEB)

    Beirao, P.; Armus, L. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Helou, G. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. N. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Smith, J.-D. T.; Croxall, K. V. [Department of Physics and Astronomy, Mail Drop 111, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Murphy, E. J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Draine, B. T.; Aniano, G. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wolfire, M. G.; Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H.-W. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Crocker, A. F. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hinz, J. L. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Kennicutt, R. C., E-mail: pedro@ipac.caltech.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2012-06-01

    NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 {mu}m and [O I]63 {mu}m lines and mid-infrared H{sub 2} emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 {mu}m+[O I]63 {mu}m)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 {mu}m PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 {mu}m/PAH(5.5-14 {mu}m) is found. PAHs in the ring are responsible for a factor of two more [C II]158 {mu}m and [O I]63 {mu}m emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G{sub 0} {approx} 10{sup 2.3} and n{sub H} {approx} 10{sup 3.5} cm{sup -3} in the ring. For these values of G{sub 0} and n{sub H}, PDR models cannot reproduce the observed H{sub 2} emission. Much of the H{sub 2} emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

  5. Infrared autofluorescence, short-wave autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytomas

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-05-01

    Full Text Available AIM: To investigate the findings of infrared fundus autofluorescence (IR-AF and spectral-domain optical coherence tomography (SD-OCT in eyes with optic disc melanocytoma (ODM. METHODS: IR-AF findings and those of other ophthalmologic imaging examinations, including short-wave autofluorescence (SW-AF, fluorescein angiography (FA, fundus color photography, and SD-OCT of 8 eyes of 8 consecutive cases with ODM were assessed. RESULTS: The ODMs in all cases (100% presented similar IR-AF, SW-AF, and FA findings. On IR-AF images, ODMs showed outstanding hyper-AF with well-defined outline. On SW-AF images, the area of ODMs presented as hypo-AF. FA images revealed the leaking retinal telangiectasia on the surface of the ODMs. On SD-OCT images in 8 cases (100%, the ODMs were sloped with highly reflective surface, which were disorganized retina and optic nerve layers. In 7 cases (87.5%, peripapillary choroids were involved. The melanocytomas of 8 cases (100% presented as optically empty spaces. Vitreous seeds were found in one case (12.5%. CONCLUSION: IR-AF imaging may provide a new modality to evaluate the pathologic features of ODMs, and together with SW-AF imaging, offers a new tool to study biological characteristics associated with ODMs. SD-OCT is a valuable tool in delimitating the tumor extension and providing morphological information about the adjacent retinal tissue.

  6. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  7. Multiple scattering wavelength dependent backscattering of kaolin dust in the IR: Measurements and theory

    Science.gov (United States)

    Ben-David, Avishai

    1992-01-01

    Knowing the optical properties of aerosol dust is important for designing electro-optical systems and for modeling the effect on propagation of light in the atmosphere. As CO2 lidar technology becomes more advanced and is used for multiwavelength measurements, information on the wavelength dependent backscattering of aerosol dust particles is required. The volume backscattering coefficient of aerosols in the IR is relatively small. Thus, only a few field measurements of backscattering, usually at only a few wavelengths, are reported in the literature. We present spectral field measurements of backscattering of kaolin dust in the 9-11 micron wavelength range. As the quantity of dust increases, multiple scattering contributes more to the measured backscattered signal. The measurements show the effect of the dust quantity of the spectral backscatter measurements. A simple analytical two stream radiative transfer model is applied to confirm the measurements and to give insight to the multiple scattering spectra of backscattering.

  8. Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter

    International Nuclear Information System (INIS)

    Yanes, A. C.; Castillo, J. del; Méndez-Ramos, J.; Rodríguez, V. D.

    2011-01-01

    We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot), and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.Graphical AbstractWe report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot) and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

  9. Spectral zone selection methodology for pebble bed reactors

    International Nuclear Information System (INIS)

    Mphahlele, Ramatsemela; Ougouag, Abderrafi M.; Ivanov, Kostadin N.; Gougar, Hans D.

    2011-01-01

    A methodology is developed for determining boundaries of spectral zones for pebble bed reactors. A spectral zone is defined as a region made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. The spectral zones are selected in such a manner that the difference (error) between the reference transport solution and the diffusion code solution takes a minimum value. This is achieved by choosing spectral zones through optimally minimizing this error. The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates errors in each zone. The selection of these spectral zones is such that the core calculation results based on diffusion theory are within an acceptable tolerance as compared to a proper transport reference solution. Through this work, a consistent approach for identifying spectral zones that yield more accurate diffusion results is introduced.

  10. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin β

    International Nuclear Information System (INIS)

    Kabuta, Tomohiro; Take, Kazumi; Kabuta, Chihana; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2008-01-01

    Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin β directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin β interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin β with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.

  11. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...

  12. Fundus autofluorescence in central serous chorioretinopathy:association with spectral-domain optical coherence tomography and fluorescein angiography

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-10-01

    Full Text Available AIM: To evaluate the correlation among changes in fundus autofluorescence (AF measured using infrared fundus AF (IR-AF and short-wave length fundus AF (SW-AF with changes in spectral-domain optical coherence tomography (SD-OCT and fluorescein angiography (FA in central serous chorioretinopathy (CSC.METHODS:Two hundred and twenty consecutive patients with CSC were included. In addition to AF, patients were assessed by means of SD-OCT and FA. Abnormalities in images of IR-AF, SW-AF, FA were analyzed and correlated with the corresponding outer retinal alterations in SD-OCT findings.RESULTS:Eyes with abnormalities on either IR-AF or SW-AF were found in 256 eyes (58.18%, among them 256 eyes (100% showed abnormal IR-AF, but SW-AF abnormalities were present only in 213 eyes (83.20%. The hypo-IR-AF corresponded to accumulation of sub-retinal liquid, collapse of retinal pigment epithelium (RPE or detachment of RPE with or without RPE leakage point in the corresponding area. The hyper-IR-AF corresponded to the area with loss of the ellipsoid portion of the inner segments and sub-sensory retinal deposits or focal melanogenesis under sensory retina. The hypo-SW-AF corresponded to accumulation of sub-retinal liquid or atrophy of RPE. The hyper-SW-AF associated with sub-sensory retinal deposits, detachment of RPE and focal melanogenesis.CONCLUSION:IR-AF was more sensitive than SW-AF and FA for identifying pathological abnormalities in CSC. The characteristics of IR-AF in CSC were attributable to the modification of melanin in the RPE. IR-AF should be used as a common diagnostic tool for identifying pathological lesion in CSC.KEYWORDS:central serous chorioretinopathy; fluorescein angiography; fundus autofluorescence; optical coherence tomography

  13. Synthesis and Spectral Study of Novel Norfloxacin Derivatives

    Directory of Open Access Journals (Sweden)

    Pradeep Yadav

    2008-01-01

    Full Text Available Reaction of [1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl-quinolone-3-carboxylic acid (norfloxacin with thiazole / benzothiazole diazonium chloride to get new piperazine substituted norfloxacin derivative. These norfloxacin derivatives were further condensed with various β-diketone to get novel acid derivatives of 1-Ethyl-6-fluoro-4-oxo-7- [4 (thiazol-2-yldiazenyl-piperzin-1-yl]-1,4-dihydro-quinoline-3-carboxylic acid (6a-e and 7-(4-(benzo[d]thiazol-2-yldiazenylpiperazin-1-yl-1-ethyl-6-fluoro-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid (6 f-j. Structures of these compounds were established on the basis of spectral studies viz. IR, 1H NMR etc.

  14. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    Science.gov (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  15. Iterative random vs. Kennard-Stone sampling for IR spectrum-based classification task using PLS2-DA

    Science.gov (United States)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2018-04-01

    External testing (ET) is preferred over auto-prediction (AP) or k-fold-cross-validation in estimating more realistic predictive ability of a statistical model. With IR spectra, Kennard-stone (KS) sampling algorithm is often used to split the data into training and test sets, i.e. respectively for model construction and for model testing. On the other hand, iterative random sampling (IRS) has not been the favored choice though it is theoretically more likely to produce reliable estimation. The aim of this preliminary work is to compare performances of KS and IRS in sampling a representative training set from an attenuated total reflectance - Fourier transform infrared spectral dataset (of four varieties of blue gel pen inks) for PLS2-DA modeling. The `best' performance achievable from the dataset is estimated with AP on the full dataset (APF, error). Both IRS (n = 200) and KS were used to split the dataset in the ratio of 7:3. The classic decision rule (i.e. maximum value-based) is employed for new sample prediction via partial least squares - discriminant analysis (PLS2-DA). Error rate of each model was estimated repeatedly via: (a) AP on full data (APF, error); (b) AP on training set (APS, error); and (c) ET on the respective test set (ETS, error). A good PLS2-DA model is expected to produce APS, error and EVS, error that is similar to the APF, error. Bearing that in mind, the similarities between (a) APS, error vs. APF, error; (b) ETS, error vs. APF, error and; (c) APS, error vs. ETS, error were evaluated using correlation tests (i.e. Pearson and Spearman's rank test), using series of PLS2-DA models computed from KS-set and IRS-set, respectively. Overall, models constructed from IRS-set exhibits more similarities between the internal and external error rates than the respective KS-set, i.e. less risk of overfitting. In conclusion, IRS is more reliable than KS in sampling representative training set.

  16. DUST IN THE POLAR REGION AS A MAJOR CONTRIBUTOR TO THE INFRARED EMISSION OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, S. F.; Antonucci, R. [Department of Physics, University of California in Santa Barbara, Broida Hall, Santa Barbara, CA 93109 (United States); Kishimoto, M.; Tristram, K. R. W.; Asmus, D.; Weigelt, G. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Prieto, M. A. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Gandhi, P. [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Burtscher, L. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrae, D-85748 Garching (Germany); Duschl, W. J., E-mail: shoenig@physics.ucsb.edu [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts-Universitaet zu Kiel, Leibnizstr. 15, D-24098, Kiel (Germany)

    2013-07-10

    misaligned with the mid-IR emitting source, which also finds a correspondence in the two distinct 3-5 {mu}m and 20 {mu}m bumps seen in the high angular resolution spectral energy distribution (SED). Based on this SED, we determine covering factors for the hot and warm dust components of C{sub hot}= 0.42{sup +0.42}{sub -0.21} and C{sub warm}= 0.92{sup +0.92}{sub -0.46}, respectively. We conclude that these observations support a scenario where the majority of the mid-IR emission in Seyfert AGNs originate from a dusty wind in the polar region of the AGN.

  17. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Spectral Slope as an Indicator of Pasture Quality

    Directory of Open Access Journals (Sweden)

    Rachel Lugassi

    2014-12-01

    Full Text Available In this study, we develop a spectral method for assessment of pasture quality based only on the spectral information obtained with a small number of wavelengths. First, differences in spectral behavior were identified across the near infrared–shortwave infrared spectral range that were indicative of changes in chemical properties. Then, slopes across different spectral ranges were calculated and correlated with the changes in crude protein (CP, neutral detergent fiber (NDF and metabolic energy concentration (MEC. Finally, partial least squares (PLS regression analysis was applied to identify the optimal spectral ranges for accurate assessment of CP, NDF and MEC. Six spectral domains and a set of slope criteria for real-time evaluation of pasture quality were suggested. The evaluation of three level categories (low, medium, high for these three parameters showed a success rate of: 73%–96% for CP, 72%–87% for NDF and 60%–85% for MEC. Moreover, only one spectral range, 1748–1764 nm, was needed to provide a good estimation of CP, NDF and MEC. Importantly, five of the six selected spectral regions were not affected by water absorbance. With some modifications, this rationale can be applied to further analyses of pasture quality from airborne sensors.

  19. Laboratory oscillator strengths of Sc i in the near-infrared region for astrophysical applications

    Science.gov (United States)

    Pehlivan, A.; Nilsson, H.; Hartman, H.

    2015-10-01

    Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims: This paper investigates the spectrum of neutral scandium, Sc I, from laboratory measurements and improves the atomic data of Sc I lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc I lines connecting the levels with 4p and 4s configurations. Methods: We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f-values). Intensity-calibrated spectra with high spectral resolution were recorded with Fourier transform spectrometer from a hollow cathode discharge lamp. The spectra were used to derive accurate oscillator strengths and wavelengths for Sc I lines, with emphasis on the infrared region. Results: This project provides the first set of experimental Sc I lines in the near-infrared region for accurate spectral analysis of astronomical objects. We derived 63 log(gf) values for the lines between 5300 Å and 24 300 Å. The uncertainties in the f-values vary from 5% to 20%. The small uncertainties in our values allow for an increased accuracy in astrophysical abundance determinations.

  20. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  1. Lanthanide ions as absorption spectral probes in biochemical reactions

    International Nuclear Information System (INIS)

    Misra, S.N.

    1989-01-01

    The interactions of adenine, adenosine, adenosine 5'-monophosphate, 5'-diphosphate and 5'-triphosphate with Pr(III) and Nd(III) in different stoichiometries and at varying pH levels have been investigated by electronic spectral studies. The intra 4f-4f transitions yield sharp bands which were analysed individually by Gaussian curve analysis. The energy interaction (Fsup(k),Esup(k)) spin orbit interaction (ζ4f), bonding(b), nephelauxetic (β,δ) and intensity parameters (Tsub(τ.P)) have been computed on HP-1000/45 computer using regression analyses refined by least square fit. The nature of bonding, coordination environment, outer and inner sphere coordination have been interpreted in terms of the magnitude of these parameters as compared to the lanthanide free ion. In order to supplicate the solution studies the crystalline compounds of AMP, ADP and ATP with Pr(III) and Nd(III) have been isolated and characterized by IR, 1 H and 31 P NMR studies. The infrared spectral data indicated weak interaction with the imidazole nitrogen of adenine moiety and bidentate attachment of oxygen. (author). 10 refs

  2. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  3. Mid-IR DIAL for high-resolution mapping of explosive precursors

    Science.gov (United States)

    Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Sobolev, I.

    2013-10-01

    A DIAL instrument on a moving platform is seen as a valuable remote sensing component in a sensor network for area monitoring, targeting sites involved in unauthorised explosive manufacturing. Such instrument will perform the area mapping of the vapour concentration of key substances, known to be used as precursors in explosive fabrication, such as acetone and nitromethane. The IR spectra of acetone and nitromethane vapours have been defined from available spectroscopy databases and from laboratory measurements as showing optimal spectral band for the DIAL operation in the spectral range of 3.0 μm - 3.5 μm. The DIAL operation has been numerically simulated, with inputs based on the HITRAN database, the U.S. Standard Atmosphere and aerosol simulation software package OPAC. A combination of OPO and OPA has been chosen as a transmitter, where the idler wavelength is used for probing, with wavelength tuning in sequence. A scanner mounted on top of the coaxially aligned laser and receiver, is capable of covering almost 360 degrees horizontally and +/-30 degrees vertically. The detection is performed by a photovoltaic photodiode with 4-stage cooling, with a signal digitalisation having 14 bit amplitude resolution and 125 Ms/s sampling rate. Here we present the development and the first test of the DIAL instrument.

  4. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  5. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel [Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Medeiros, Lia [Department of Physics, Broida Hall, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Sadowski, Aleksander [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Narayan, Ramesh, E-mail: chanc@email.arizona.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  6. A novel FT-IR spectroscopic method based on lipid characteristics for qualitative and quantitative analysis of animal-derived feedstuff adulterated with ruminant ingredients.

    Science.gov (United States)

    Gao, Fei; Zhou, Simiao; Han, Lujia; Yang, Zengling; Liu, Xian

    2017-12-15

    The objective of this study was to explore the ability of Fourier transform infrared (FT-IR) spectroscopy to authenticate adulterated animal-derived feedstuff. A total of 18 raw meat and bone meals (MBMs), including 9 non-ruminant MBMs and 9 ruminant MBMs, were mixed to obtain 81 binary mixtures with specific proportions (1-35%). Lipid spectral characteristics were analyzed by FT-IR spectroscopy combined with chemometrics. Changes in FT-IR spectra were observed as adulterant concentration was varied. The results illustrate ruminant adulteration can be successfully distinguished based on lipid characteristics. PLS model was established to quantify ruminant adulteration, which was shown to be valid (R 2 P >0.90). Furthermore, the ratios of CC/CO and CC/CH(CH 2 ), as well as the number of CH(CH 2 ) in the fatty acids of adulterated lipids, were calculated, which showed that differences in the trans fatty acid content and the degree of unsaturation were the main contributors to determination of adulteration based on FT-IR spectroscopy. Copyright © 2017. Published by Elsevier Ltd.

  7. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  8. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  9. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  10. Extreme spectral richness in the eye of the Common Bluebottle butterfly, Graphium sarpedon

    Directory of Open Access Journals (Sweden)

    Pei-Ju eChen

    2016-03-01

    Full Text Available Butterfly eyes are furnished with a variety of photoreceptors of different spectral sensitivities often in species-specific manner. We have conducted an extensive comparative study to address the question of how their spectrally complex retinas evolved. Here we investigated the structure and function of the eye of the common bluebottle butterfly (Graphium sarpedon, using electrophysiological, anatomical and molecular approaches. Intracellular electrophysiology revealed that the eye contains photoreceptors of fifteen distinct spectral sensitivities. These can be divided into six spectral receptor classes: ultraviolet- (UV, violet- (V, blue- (B, blue-green- (BG, green- (G, and red- (R sensitive. The B, G and R classes respectively contain three, four and five subclasses. Fifteen is the record number of spectral receptors so far reported in a single insect eye. We localized these receptors by injecting dye into individual photoreceptors after recording their spectral sensitivities. We thus found that four of them are confined to the dorsal region, eight to the ventral, and three exist throughout the eye; the ventral eye region is spectrally richer than the dorsal region. We also identified mRNAs encoding visual pigment opsins of one ultraviolet, one blue and three long wavelength-absorbing types. Localization of these mRNAs by in situ hybridization revealed that the dorsal photoreceptors each express a single opsin mRNA, but more than half of the ventral photoreceptors coexpress two or three L opsin mRNAs. This expression pattern well explains the spectral organization of the Graphium compound eye.

  11. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    Science.gov (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  12. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-01-01

    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  13. IR imaging of blood circulation of patients with vascular disease

    Science.gov (United States)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  14. High resolution OSL and post-IR IRSL dating of the last interglacialeglacial cycle at the Sanbahuo loess site (northeastern China)

    DEFF Research Database (Denmark)

    Yi, Shuangwen; Buylaert, Jan-Pieter; Murray, Andrew

    2015-01-01

    Northeastern China is located in the East Asian monsoon region; it is sensitive to both high and low latitude global climate systems. Loess deposits in the region have considerable potential as sensitive archives of past climate changes. However, research into loess deposition and climate change...... to have been a period of fast loess deposition at ~62 ka, perhaps indicative of winter monsoon intensification with a very cold and dry climate that lead to a serious desertification of dunefields in northeastern China. © 2015 Elsevier B.V. All rights reserved....... in this region is restricted by the lack of independent age control. In this study, coarse-grained quartz SAR OSL and K-feldspar post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) methods have been used to date the Sanbahuo loess site in northeastern China. The quartz OSL characteristics...

  15. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  16. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  17. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  18. QEEG Spectral and Coherence Assessment of Autistic Children in Three Different Experimental Conditions

    Science.gov (United States)

    Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos

    2015-01-01

    We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma…

  19. Remote Thermal IR Spectroscopy of our Solar System

    Science.gov (United States)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  20. Thin film optical coatings for the ultraviolet spectral region

    Science.gov (United States)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  1. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Nonlinear spectral mixing theory to model multispectral signatures

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C. [Los Alamos National Lab., NM (United States). Astrophysics and Radiation Measurements Group

    1996-02-01

    Nonlinear spectral mixing occurs due to multiple reflections and transmissions between discrete surfaces, e.g. leaves or facets of a rough surface. The radiosity method is an energy conserving computational method used in thermal engineering and it models nonlinear spectral mixing realistically and accurately. In contrast to the radiative transfer method the radiosity method takes into account the discreteness of the scattering surfaces (e.g. exact location, orientation and shape) such as leaves and includes mutual shading between them. An analytic radiosity-based scattering model for vegetation was developed and used to compute vegetation indices for various configurations. The leaf reflectance and transmittance was modeled using the PROSPECT model for various amounts of water, chlorophyll and variable leaf structure. The soil background was modeled using SOILSPEC with a linear mixture of reflectances of sand, clay and peat. A neural network and a geometry based retrieval scheme were used to retrieve leaf area index and chlorophyll concentration for dense canopies. Only simulated canopy reflectances in the 6 visible through short wave IR Landsat TM channels were used. The authors used an empirical function to compute the signal-to-noise ratio of a retrieved quantity.

  3. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  4. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy.

    Science.gov (United States)

    Szypryt, P; Meeker, S R; Coiffard, G; Fruitwala, N; Bumble, B; Ulbricht, G; Walter, A B; Daal, M; Bockstiegel, C; Collura, G; Zobrist, N; Lipartito, I; Mazin, B A

    2017-10-16

    We have fabricated and characterized 10,000 and 20,440 pixel Microwave Kinetic Inductance Detector (MKID) arrays for the Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARKNESS) and the MKID Exoplanet Camera (MEC). These instruments are designed to sit behind adaptive optics systems with the goal of directly imaging exoplanets in a 800-1400 nm band. Previous large optical and near-IR MKID arrays were fabricated using substoichiometric titanium nitride (TiN) on a silicon substrate. These arrays, however, suffered from severe non-uniformities in the TiN critical temperature, causing resonances to shift away from their designed values and lowering usable detector yield. We have begun fabricating DARKNESS and MEC arrays using platinum silicide (PtSi) on sapphire instead of TiN. Not only do these arrays have much higher uniformity than the TiN arrays, resulting in higher pixel yields, they have demonstrated better spectral resolution than TiN MKIDs of similar design. PtSi MKIDs also do not display the hot pixel effects seen when illuminating TiN on silicon MKIDs with photons with wavelengths shorter than 1 µm.

  5. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect

    Science.gov (United States)

    Olsztyńska-Janus, S.; Pietruszka, A.; Kiełbowicz, Z.; Czarnecki, M. A.

    2018-01-01

    In this work we report the studies of the effect of temperature on skin components, such as lipids, proteins and water. Modifications of lipids structure induced by increasing temperature (from 20 to 90 °C) have been studied using ATR-IR (Attenuated Total Reflectance Infrared) spectroscopy, which is a powerful tool for characterization of the molecular structure and properties of tissues, such as skin. Due to the small depth of penetration (0.6-5.6 μm), ATR-IR spectroscopy probes only the outermost layer of the skin, i.e. the stratum corneum (SC). The assignment of main spectral features of skin components allows for the determination of phase transitions from the temperature dependencies of band intensities [e.g. νas(CH2) and νs(CH2)]. The phase transitions were determined by using two methods: the first one was based on the first derivative of the Boltzmann function and the second one employed tangent lines of sigmoidal, aforementioned dependencies. The phase transitions in lipids were correlated with modifications of the structure of water and proteins.

  6. A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-11-01

    Full Text Available Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is investigated. For a given hyperspectral image, the principle component analysis (PCA transform is first performed. Then, the first principle component of the input image is segmented into non-overlapping homogeneous regions by using the entropy rate superpixel (ERS algorithm. Next, the local spectral histogram model is applied to each homogeneous region to obtain the corresponding texture features. Because this step is performed within each homogenous region, instead of within a fixed-size image window, the obtained local texture features in the image are more accurate, which can effectively benefit the improvement of classification accuracy. In the following step, a contextual spectral-texture kernel is constructed by combining spectral information in the image and the extracted texture information using the linearity property of the kernel methods. Finally, the classification map is achieved by the support vector machines (SVM classifier using the proposed spectral-texture kernel. Experiments on two benchmark airborne hyperspectral datasets demonstrate that our method can effectively improve classification accuracies, even though only a very limited training sample is available. Specifically, our method can achieve from 8.26% to 15.1% higher in terms of overall accuracy than the traditional SVM classifier. The performance of our method was further compared to several state-of-the-art classification methods of hyperspectral images using objective quantitative measures and a visual qualitative evaluation.

  7. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  8. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  9. Fluorescence, aggregation properties and FT-IR microspectroscopy of elastin and collagen fibers.

    Science.gov (United States)

    Vidal, Benedicto de Campos

    2014-10-01

    Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  11. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  12. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Science.gov (United States)

    Ni, Yicun; Skinner, J. L.

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm-1 and a positive band centered at 1670 cm-1. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  13. PENDIDIKAN AKHLAK MUSLIMAT MELALUISYA’IR : ANALISIS GENDER ATAS AJARAN SYI’IR MUSLIMAT KARYA NYAI WANIFAH KUDUS

    Directory of Open Access Journals (Sweden)

    Nur Said

    2016-03-01

    Full Text Available Penelitian ini difokuskan pada tiga hal: (1 Apakah karakteristik lingkup isi Syi’ir Muslimat?, (2 Bagai-manakah kondisi sosial budaya pada saat naskah ditulis oleh penulis?, (3 Apa nilai-nilai pendidikan moral bagi perempuan Muslim di isi Syi’ir Muslimat dalam perspektif gender?. Penelitian ini menggunakan pendekatan filologi dengan meningkatkan penggunaan analisis gender. Hasil dari penelitian ini adalah: Pertama, Syi’ir Muslimat ditulis oleh Nyai Wanifah, seorang wanita yang hidup pada zaman kolonial Belanda dipesantren tradisi di Kudus, Jawa Tengah. Kedua, beberapa nilai pendidikan moral di Syi’ir Muslimatantara lain: (1 Pentingnya pendidikan moral, (2 Bahaya perempuan bodoh; (3 Pentingnya belajar bagi perempuan di usia dini, (4 Etika menghias diri; (5 Bahaya materialisme, (6 Etika hubungan keluarga; (7 Dari rumah untuk mencapai surga; (8 Berhati-hatilah dengan tipu iblis; (9 Hindari perzinahan; (10 yang penting dari penutupan aurot; (11 yang ditujukan kepada orang tua. Ketiga, meskipun ada beberapa senyawa yang bias gender dalam Syi’ir Muslimat misalnya: (a Ada penjelasan yang menunjukkan bahwa perempuan lebih rendah dibandingkan laki-laki dalam derajat, (2 Pernyataan bahwa wanita bicara dibandingkan laki-laki, (3 wanita hanya cocok di wilayah domestik; Namun secara umum nasihat di syi’ir masih sangat relafen dalam konteks sekarang, terutama untuk memberikan solusi alternatif dalam merespon krisis moral bangsa terutama pada wanita generasi muda. Kata kunci: Syi’ir Muslimat, Pendidikan Karakter, Analisis Gender. This study focused on three things: (1 What is the characteristics of the scope of contents of Syi’ir Muslimat?, (2 What is the socio-cultural conditions at the time the manuscript was written by the author?, (3 What are the moral education values for Muslim women in the content of Syi’ir Muslimat in the perspective of gender?. This research uses a philological approach with enhanced use of gender analysis. The

  14. Visible and Near-IR Reflectance Spectra for Smectite, Sulfate And Perchlorate under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Science.gov (United States)

    Morris, R.V.; Ming, W.; Golden, D.C.; Arvidson, R.E.; Wiseman, S.M.; Lichtenberg, K.A.; Cull, S.; Graff, T.G.

    2009-01-01

    Visible and near-IR (VNIR) spectral data for the martian surface obtained from orbit by the MRO-CRISM and OMEGA instruments are interpreted as having spectral signatures of H2O/OH-bearing phases, including smectites and other phyllosilicates, sulfates, and high-SiO2 phases [e.g., 1-4]. Interpretations of martian spectral signatures are based on and constrained by spectra that are obtained in the laboratory on samples with known mineralogical compositions and other physicochemical characteristics under, as appropriate, Mars-like environmental conditions (e.g., temperature, pressure, and humidity). With respect to environmental conditions, differences in the absolute concentration of atmospheric H2O can effect the hydration state and therefore the spectra signatures of smectite phyllosilicates (solvation H2O) and certain sulfates (hydration H2O) [e.g., 5-7]. We report VNIR spectral data acquired under humid (laboratory air) and dry (dry N2 gas) environments for two natural smectites (nontronite API-33A and saponite SapCa-1) to characterize the effect of solvation H2O on spectral properties. We also report spectral data for the thermal dehydration products of (1) melanterite (FeSO4.7H2O) in both air and dry N2 gas and (2) Mg-perchlorate (Mg(ClO4)2.6H2O) in dry N2 environments. Spectral measurements for samples dehydrated in dry N2 were made without exposing them to humid laboratory air.

  15. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy

    Science.gov (United States)

    Hachuła, Barbara

    2018-01-01

    The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the νOsbnd H band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293 K and 77 K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals.

  16. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  17. Conversion of broadband IR radiation and structural disorder in lithium niobate single crystals with low photorefractive effect

    Science.gov (United States)

    Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.

    2016-11-01

    The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.

  18. Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region

    Science.gov (United States)

    Sharma, Anuj K.

    2018-05-01

    Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.

  19. Inter-comparison of MARS and FLUKA: Predictions on Energy Deposition in LHC IR Quadrupoles

    CERN Document Server

    Hoa, C; Cerutti, F; Ferrai, A

    2008-01-01

    Detailed modellings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes - based on different independent physics models - for the identical geometry and initial conditions of a simple model representing the IR5 and ...

  20. Inter-comparison of MARS and FLUKA: Predictions on energy deposition in LHC IR quadrupoles

    International Nuclear Information System (INIS)

    Hoa, Christine; Cerutti, F.; Ferrari, A.; Mokhov, N.V.

    2008-01-01

    Detailed modelings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes--based on different independent physics models--for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole