WorldWideScience

Sample records for ir reflectance spectra

  1. Library search with regular reflectance IR spectra

    International Nuclear Information System (INIS)

    Staat, H.; Korte, E.H.; Lampen, P.

    1989-01-01

    Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)

  2. FT-IR reflection spectra of single crystals: resolving phonons of different symmetry without using polarised radiation

    Directory of Open Access Journals (Sweden)

    METODIJA NAJDOSKI

    2000-07-01

    Full Text Available Fourier-transform infrared (FT-IR reflection spectra, asquired at nearnormal incidence, were recorded from single crystals belonging to six crystal systems: CsCr(SO42.12H2O (alum, cubic, K2CuCl2·2H2O (Mitscherlichite, tetragonal, CaCO3 (calcite, hexagonal, KHSO4 (mercallite, orthorhombic, CaSO4·2H2O (gypsum, monoclinic and CuSO4·5H2O (chalcantite, triclinic. The acquired IR reflection spectra were further transformed into absorption spectra, employing the Kramers-Kronig transformation. Except for the cubic alums, the spectra strongly depend on the crystal face from which they were recorded; this is a consequence of anisotropy. Phonons of a given symmetry (E-species, in tetragonal/hexagonal and B-species, in monoclinic crystals may be resolved without using a polariser. The spectrum may be simplified in the case of an orthorhombic crystal, as well. The longitudinal-optical (LO and transversal-optical (TO mode frequencies were calculated in the case of optically isotropic and the simplified spectra of optically uniaxial crystals.

  3. Manifestation of Crystal Lattice Distortions in the IR Reflection Spectra of Abrasion-Treated ZnSe Ceramics

    Science.gov (United States)

    Sitnikova, V. E.; Dunaev, A. A.; Mamalimov, R. I.; Pakhomov, P. M.; Khizhnyak, S. D.; Chmel, A. E.

    2017-07-01

    The Fourier IR reflection spectra of ZnSe ceramics prepared by hot pressing (HP), physical vapor deposition (PVD), and PVD combined with hot isostatic pressing (HIP) are presented. The optical constants of polished and dry-ground specimens were used for comparison. The grinding treatment simulated the erosion of the outer surface of optical elements made of zinc selenide under the influence of solid dust particles and deposits. In the polished specimens residual stresses showed up in the IR reflection spectra of the ZnSePVD and ZnSeHIP ceramics, which had well-defined orientation of grains, but were not present in the spectra of the ZnSeHIP ceramics as a result of mutual compensation of the stresses in the randomly oriented grains of the material. The stresses, which appeared as a shift of the absorption bands calculated by the Kramers-Kronig method, increased significantly after abrasive treatment of the specimens. For all the treated ceramics the intensity of the absorption bands resulting from the anharmonicity of the vibrations in the distorted crystal lattice increased by several times. The last effect also depends on the production prehistory of the ceramics.

  4. Visible and Near-IR Reflectance Spectra of Smectite Acquired Under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Science.gov (United States)

    Morris, Richard V.; Achilles, Cherie N; Archer, Paul D.; Graff, Trevor G.; Agresti, David G.; Ming, Douglas W; Golden, Dadi C.; Mertzman, Stanley A.

    2011-01-01

    Visible and near-IR (VNIR) spectra from the MEx OMEGA and the MRO CRISM hyper-spectral imaging instruments have spectral features associated with the H2O molecule and M OH functional groups (M = Mg, Fe, Al, and Si). Mineralogical assignments of martian spectral features are made on the basis of laboratory VNIR spectra, which were often acquired under ambient (humid) conditions. Smectites like nontronite, saponite, and montmorillionite have interlayer H2O that is exchangeable with their environment, and we have acquired smectite reflectance spectra under dry environmental conditions for interpretation of martian surface mineralogy. We also obtained chemical, Moessbauer (MB), powder X-ray diffraction (XRD), and thermogravimetric (TG) data to understand variations in spectral properties. VNIR spectra were recorded in humid lab air at 25-35C, in a dynamic dry N2 atmosphere (50-150 ppmv H2O) after exposing the smectite samples (5 nontronites, 3 montmorillionites, and 1 saponite) to that atmosphere for up to approximately l000 hr each at 25-35C, approximately 105C, and approximately 215C, and after re-exposure to humid lab air. Heating at 105C and 215C for approximately 1000 hr is taken as a surrogate for geologic time scales at lower temperatures. Upon exposure to dry N2, the position and intensity of spectral features associated with M-OH were relatively insensitive to the dry environment, and the spectral features associated with H2O (e.g., approximately 1.90 micrometers) decreased in intensity and are sometimes not detectable by the end of the 215C heating step. The position and intensity of H2O spectral features recovered upon re-exposure to lab air. XRD data show interlayer collapse for the nontronites and Namontmorillionites, with the interlayer remaining collapsed for the latter after re-exposure to lab air. The interlayer did not collapse for the saponite and Ca-montmorillionite. TG data show that the concentration of H2O derived from structural OH was invariant

  5. LO-TO splittings, effective charges and interactions in electro-optic meta-nitroaniline crystal as studied by polarized IR reflection and transmission spectra

    Science.gov (United States)

    Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.

    1994-10-01

    The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.

  6. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  7. Determination of the Ability to Measure Traces of Water in Dehydrated Residues of Waste Water by IR Diffuse Reflectance Spectra

    Science.gov (United States)

    Pratsenka, S. V.; Voropai, E. S.; Belkin, V. G.

    2018-01-01

    Rapid measurement of the moisture content of dehydrated residues is a critical problem, the solution of which will increase the efficiency of treatment facilities and optimize the process of applying flocculants. The ability to determine the moisture content of dehydrated residues using a meter operating on the IR reflectance principle was confirmed experimentally. The most suitable interference filters were selected based on an analysis of the obtained diffuse reflectance spectrum of the dehydrated residue in the range 1.0-2.7 μm. Calibration curves were constructed and compared for each filter set. A measuring filter with a transmittance maximum at 1.19 μm and a reference filter with a maximum at 1.3 μm gave the best agreement with the laboratory measurements.

  8. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  9. Reflections on Conformal Spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function. (based on 1510.08772 with Kim & Ooguri). This seminar will be given via videolink

  10. Far-UV, visible, and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2

    Science.gov (United States)

    Hapke, B.; Wells, E.; Wagner, J.; Partlow, W.

    1981-01-01

    Measurements in the 0.1-2.5 micron range are presented for the reflectance spectra of the frosts of several volatiles pertinent to the study of comet nuclei. The frost spectra have distinctive features permitting their identification by spectroscopic reflectance remote sensing, notably in the far UV. It is found that: (1) H2O has a minimum at 0.16 microns and a maximum at 0.13 microns; (2) CO2 has minima near 0.21, 0.18 and 0.125 microns, with maxima at 0.19, 0.135 and 0.120 microns; (3) NH3 is bright at wavelengths longer than 0.21 microns, where reflectance drops to a value of only a few per cent at shorter wavelengths; (4) SO2 has a sharp drop at 0.32 microns, with a minimum at 0.18 microns and a maximum at 0.13 microns. The features in the frost spectra largely correspond to absorption line bands in the gas phase.

  11. Visible and Near-IR Reflectance Spectra for Smectite, Sulfate And Perchlorate under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Science.gov (United States)

    Morris, R.V.; Ming, W.; Golden, D.C.; Arvidson, R.E.; Wiseman, S.M.; Lichtenberg, K.A.; Cull, S.; Graff, T.G.

    2009-01-01

    Visible and near-IR (VNIR) spectral data for the martian surface obtained from orbit by the MRO-CRISM and OMEGA instruments are interpreted as having spectral signatures of H2O/OH-bearing phases, including smectites and other phyllosilicates, sulfates, and high-SiO2 phases [e.g., 1-4]. Interpretations of martian spectral signatures are based on and constrained by spectra that are obtained in the laboratory on samples with known mineralogical compositions and other physicochemical characteristics under, as appropriate, Mars-like environmental conditions (e.g., temperature, pressure, and humidity). With respect to environmental conditions, differences in the absolute concentration of atmospheric H2O can effect the hydration state and therefore the spectra signatures of smectite phyllosilicates (solvation H2O) and certain sulfates (hydration H2O) [e.g., 5-7]. We report VNIR spectral data acquired under humid (laboratory air) and dry (dry N2 gas) environments for two natural smectites (nontronite API-33A and saponite SapCa-1) to characterize the effect of solvation H2O on spectral properties. We also report spectral data for the thermal dehydration products of (1) melanterite (FeSO4.7H2O) in both air and dry N2 gas and (2) Mg-perchlorate (Mg(ClO4)2.6H2O) in dry N2 environments. Spectral measurements for samples dehydrated in dry N2 were made without exposing them to humid laboratory air.

  12. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  13. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  14. Uranyl oxalate hydrates: structures and IR spectra

    International Nuclear Information System (INIS)

    Giesting, P.A.; Porter, N.J.; Burns, P.C.

    2006-01-01

    The novel compound (UO 2 ) 2 C 2 O 4 (OH) 2 (H 2 O) 2 (UrOx2A) and the previously studied compound UO 2 C 2 O 4 (H 2 O) 3 (UrOx3) have been synthesized by mild hydrothermal methods. Single crystal diffraction data collected at 125 K using MoK α radiation and a CCD-based area detector were used to solve and refine the crystal structures by full-matrix least-squares techniques to agreement indices (UrOx2A, UrOx3) wR 2 = 0.037, 0.049 for all data, and R1 0.015, 0.024 calculated for 1285, 2194 unique reflections respectively. The compound UrOx2A is triclinic, space group P1, Z = 1, a = 5.5353(4), b 6.0866(4), c = 7.7686(6) Aa, α = 85.6410(10) , β = 89.7740(10) , γ = 82.5090(10) , V = 258.74(3) Aa 3 . The compound UrOx3 is monoclinic, space group P2 1 /c, Z = 4, a = 5.5921(4), b = 16.9931(13), c = 9.3594(7) Aa, β = 99.5330(10) , V = 877.11(11) Aa 3 . The structures consist of chains of uranyl pentagonal bipyramids connected by oxalate groups and, in UrOx2A, hydroxyl groups; UrOx2A is also notable for its high (2:1) ratio of uranyl to oxalate groups, higher than any observed in other published structures of uranyl oxalates. The structure determined for UrOx3, previously studied by Jayadevan and Chackraburtty (1972); Mikhailov et al. (1999) is in agreement with the previous results; however, the increased precision of the present low-temperature structure refinement allows for the assignment of H atom positions based on the difference Fourier map of electron density. The infrared spectra of these two materials collected at room temperature are also presented and compared with previous work on uranyl oxalate systems. (orig.)

  15. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  16. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  17. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  18. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  19. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  20. A climatology of visible surface reflectance spectra

    International Nuclear Information System (INIS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-01-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290–740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment–2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes. - Highlights: • Our goals was visible surface reflectance for satellite trace gas measurements. • Captured the range of surface reflectance spectra through EOF analysis. • Used satellite surface reflectance products for each given scene to anchor EOFs. • Generated a climatology of time/geometry dependent surface reflectance spectra. • Demonstrated potential to

  1. Mid-IR spectra of different conformers of phenylalanine in the gas phase

    NARCIS (Netherlands)

    von Helden, G.; Compagnon, I.; Blom, M. N.; Frankowski, M.; Erlekam, U.; Oomens, J.; Brauer, B.; Gerber, R. B.; Meijer, G.

    2008-01-01

    The experimental mid- and far-IR spectra of six conformers of phenylalanine in the gas phase are presented. The experimental spectra are compared to spectra calculated at the B3LYP and at the MP2 level. The differences between B3LYP and MP2 IR spectra are found to be small. The agreement between

  2. Mid-IR Spectra of Refractory Minerals Relevant to Comets

    Science.gov (United States)

    Jauhari, Shekeab

    2008-09-01

    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  3. Simulation of attenuated total reflection infrared absorbance spectra: applications to automotive clear coat forensic analysis.

    Science.gov (United States)

    Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; Nishikida, Koichi; Campbell, Jay

    2014-01-01

    Attenuated total reflection (ATR) is a widely used sampling technique in infrared (IR) spectroscopy because minimal sample preparation is required. Since the penetration depth of the ATR analysis beam is quite shallow, the outer layers of a laminate or multilayered paint sample can be preferentially analyzed with the entire sample intact. For this reason, forensic laboratories are taking advantage of ATR to collect IR spectra of automotive paint systems that may consist of three or more layers. However, the IR spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band broadening and lower relative intensities at higher wavenumbers, compared with its transmission counterpart. This hinders library searching because most library spectra are measured in transmission mode. Furthermore, the angle of incidence for the internal reflection element, the refractive index of the clear coat, and surface contamination due to inorganic contaminants can profoundly influence the quality of the ATR spectrum obtained for automotive paints. A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of the paint data query (PDQ) automotive database is presented. The proposed correction algorithm to convert transmission spectra from the PDQ library to ATR spectra is able to address distortion issues such as the relative intensities and broadening of the bands, and the introduction of wavelength shifts at lower frequencies, which prevent library searching of ATR spectra using archived IR transmission data.

  4. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  5. Synoptic Mid-IR Spectra ToO Novae

    Science.gov (United States)

    Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team

    2007-02-01

    Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.

  6. Interpretation of the Near-IR Spectra of the Kuiper Belt Object

    Science.gov (United States)

    Eluszkiewicz, Janusz; Cady-Pereira, Karen; Brown, Michael E.; Stansberry, John A.

    2007-01-01

    Visible and near-IR observations of the Kuiper Belt Object (136472) 2005 FY(9) have indicated the presence of unusually long (1 cm or more) optical path lengths in a layer of methane ice. Using microphysical and radiative transfer modeling, we show that even at the frigid temperatures in the outer reaches of the solar system, a slab of low porosity methane ice can indeed form by pressureless sintering of micron-sized grains, and it can qualitatively reproduce the salient features of the measured spectra. A good semiquantitative match with the near-IR spectra can be obtained with a realistic slab model, provided the spectra are scaled to a visible albedo of 0.6, at the low end of the values currently estimated from Spitzer thermal measurements. Consistent with previous modeling studies, matching spectra scaled to higher albedos requires the incorporation of strong backscattering effects. The albedo may become better constrained through an iterative application of the slab model to the analysis of the thermal measurements from Spitzer and the visible/near-IR reflectance spectra. The slab interpretation offers two falsifiable predictions (1) Absence of an opposition surge, which is commonly attributed to the fluffiness of the optical surface. This prediction is best testable with a spacecraft, as Earth-based observations at true opposition will not be possible until early next century. (2) Unlikelihood of the simultaneous occurrence of very long spectroscopic path lengths in both methane and nitrogen ice on the surface of any Kuiper Belt Object, as the more volatile nitrogen would hinder densification in methane ice.

  7. Polar phonons in β-Ga2O3 studied by IR reflectance spectroscopy and first-principle calculations

    Science.gov (United States)

    Azuhata, Takashi; Shimada, Kazuhiro

    2017-08-01

    IR reflectance spectra of β-Ga2O3 are measured in the range from 400 to 1100 cm-1 using the (\\bar{2}01) and (010) planes for pure transverse Au- and Bu-mode phonons, respectively. The spectra measured using the (010) plane depend remarkably on the polarization direction of the incident light because of the monoclinic symmetry. Reflectance spectra simulated using parameters obtained from first-principle calculations are in good agreement with the experimental spectra. By adjusting the calculated phonon parameters so as to reproduce the experimental spectra, the polar phonon parameters were determined for six modes above 400 cm-1.

  8. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  9. Attenuated total reflection design for in situ FT-IR spectroelectrochemical studies

    International Nuclear Information System (INIS)

    Visser, Hendrik; Curtright, Aimee E.; McCusker, James K.; Sauer, Kenneth

    2000-01-01

    A versatile spectroelectrochemical apparatus is introduced to study the changes in IR spectra of organic and inorganic compounds upon oxidation or reduction. The design is based on an attenuated total reflection (ATR) device, which permits the study of a wide spectral range of 16,700 cm-1 (600 nm) - 250 cm-1 with a small opaque region of 2250 - 1900 cm-1. In addition, an IR data collection protocol is introduced to deal with electrochemically non-reversible background signals. This method is tested with ferrocene in acetonitrile, producing results that agree with those in the literature

  10. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    Science.gov (United States)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  11. Effects of Space Weathering on Reflectance Spectra of Ureilites: First Studies

    Science.gov (United States)

    Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Takir, D.; Hibbitts, C.; Christoffersen, R.; Fries, M.; Klima, R.; Decker, S.

    2018-01-01

    Ureilites are differentiated meteorites (ultramafic rocks interpreted to be mantle residues) that contain as much carbon as the most carbon-rich carbonaceous chondrites (CCs). Reflectance spectra of ureilites are similar to those of some CCs. Hence, ureilitic asteroids may accidentally be categorized as primitive because their spectra could resemble those of C-complex asteroids, which are thought to be CC-like. We began spectral studies of progressively laser-weathered ureilites with the goals of predicting UV-VIS-IR spectra of ureilitic asteroids, and identifying features that could distinguish differentiated from primitive dark asteroids. Space weathering has not previously been studied for ureilites, and, based on space weathering studies of CCs and other C-rich materials, it could significantly alter their reflectance spectra.

  12. HARDERSEN IRTF ASTEROID NIR REFLECTANCE SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  13. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  14. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 2

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ external reflection FT-IR measurements are performed during cyclic voltammetric scans on electrochemically polymerized polyphenylene films. The films are polymerized either in 0.1 or 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. Changes in the IR spectrum of films of different thicknesses are studied when the films are potentially cycled from the neutral to the oxidized states of the polymer. No differences between films made in high or low dimer concentration can be observed in the spectra. The potential-dependent insertion and expulsion of solvent, residual water, anions and cations in and out of the film have different behaviour in films of different thicknesses. Changes in the structure of the segments in the film, from the benzenoid form into the quinoid form, can be followed. Differences between the first and subsequent cyclic potential scans are observed. (orig.)

  15. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  16. OD bands in the IR spectra of a deuterated soda-lime-silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuker, C.; Brzezinka, K.W.; Gaber, M.; Kohl, A.; Geissler, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2001-07-01

    IR spectra of a deuterated glass of the composition (in mol%) 16 Na{sub 2}O . 10 CaO . 74 SiO{sub 2} complete earlier spectroscopic studies on water-poor soda-lime-silica glasses. The approved IR spectroscopic method of the deuterium exchange allows a reliable assignment of the hydroxyl bands also in the case of glasses. By spectra comparison the assignment of the IR bands at 3500 and 2800 cm{sup -1} to hydroxyl groups with different hydrogen bonding is verified. The IR band at about 4500 cm{sup -1} is interpreted as both a combination of the stretching vibrations {nu}O-H and {nu}Si-OH and a combination of the stretching vibration {nu}O-H and the deformation vibration {delta}SiOH. The bands at 1763 and 1602 cm{sup -1} are attributed to combination vibrations of the glass network. (orig.)

  17. UV, visible, and near-IR reflectivity data for magnetic soils/rocks from Brazil

    Science.gov (United States)

    Vempati, R. K.; Morris, R. V.; Lauer, H. V., Jr.; Coey, J. M. D.

    1991-01-01

    The objective is to obtain UV, visible, and near-IR reflectivity spectra for several magnetic Brazilian soils/rocks and compare them to corresponding data for Mars to see if these materials satisfy both magnetic and spectral constraints for Mars. Selected physical properties of the magnetic Brazilian soils/rocks are presented. In general, the spectral features resulting from ferric crystal-field transitions are much better defined in the spectra of the magnetic Brazilian soils/rocks than in Martian spectral data. Presumably, this results from a relatively higher proportion of crystalline ferric oxides for the former. The apparent masking of the spectral signature of maghemite by hematite or goethite for the Brazilian samples implies the magnetic and spectral constraints for Mars can be decoupled. That is, maghemite may be present in magnetically-significant but optically-insignificant amounts compared to crystalline hematite.

  18. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals.

    Science.gov (United States)

    Flakus, Henryk T; Michta, Anna

    2010-02-04

    This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.

  19. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    Science.gov (United States)

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-06

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

  20. Influence of fluctuating strain on exciton reflection spectra

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1982-01-01

    The influence of an internal distribution of strain on the exciton reflection spectra is investigated. The resulting fluctuating optical constants give rise to a fluctuating phase of reflectivity. The standard deviation σ of these phase fluctuations is the quantity which can be observed...... to derive the dependence of the phase of reflectivity on the direction of the fluctuating optical axis. The results obtained for σ are compared with the experimental depolarization spectra of ZnO. The only fitting parameter is the common standard deviation of the strain components. It is found......, for example, between crossed polarizers or from ellipsometric measurements. Assuming the phase fluctuations to obey a Gaussian distribution, σ can be expressed in a simple way in terms of the degree of polarization or the depolarization of the reflected light. σ is then derived in terms of the standard...

  1. Vibration-rotation band intensities in the IR spectra of polyatomic molecules

    International Nuclear Information System (INIS)

    El'kin, M.D.; Kosterina, E.K.; Berezin

    1995-01-01

    Using the curvilinear vibrational coordinates for a nuclear subsystem, expressions for the effective dipole-moment operators are derived in order to analyze the vibrational-rotational transitions in the IR spectra of polyatomic rigid molecules. The explicit expressions obtained for the intensities of hot bands allow one to estimate the influence of the vibration-rotation interaction within the framework of the adopted molecular-vibration model. The suggested method is shown to be suitable for Raman spectra analysis. 12 refs

  2. DETERMINING REFLECTANCE SPECTRA OF SURFACES AND CLOUDS ON EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B.; Strait, Talia E., E-mail: n-cowan@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, 2131 Tech Dr., IL 60208 (United States)

    2013-03-01

    Planned missions will spatially resolve temperate terrestrial planets from their host star. Although reflected light from such a planet encodes information about its surface, it has not been shown how to establish surface characteristics of a planet without assuming known surfaces to begin with. We present a reanalysis of disk-integrated, time-resolved, multiband photometry of Earth obtained by the Deep Impact spacecraft as part of the EPOXI Mission of Opportunity. We extract reflectance spectra of clouds, ocean, and land without a priori knowledge of the numbers or colors of these surfaces. We show that the inverse problem of extracting surface spectra from such data is a novel and extreme instance of spectral unmixing, a well-studied problem in remote sensing. Principal component analysis is used to determine an appropriate number of model surfaces with which to interpret the data. Shrink-wrapping a simplex to the color excursions of the planet yields a conservative estimate of the planet's endmember spectra. The resulting surface maps are unphysical, however, requiring negative or larger-than-unity surface coverage at certain locations. Our ''rotational unmixing'' supersedes the endmember analysis by simultaneously solving for the surface spectra and their geographical distributions on the planet, under the assumption of diffuse reflection and known viewing geometry. We use a Markov Chain Monte Carlo to determine best-fit parameters and their uncertainties. The resulting albedo spectra are similar to clouds, ocean, and land seen through a Rayleigh-scattering atmosphere. This study suggests that future direct-imaging efforts could identify and map unknown surfaces and clouds on exoplanets.

  3. New Solid-Phase IR Spectra of Solar-System Molecules: Methanol, Ethanol, and Methanethiol

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2017-10-01

    The presence and abundances of organic molecules in extraterrestrial environments, such as on TNOs, can be determined with infrared (IR) spectroscopy, but significant challenges exist. Reference IR spectra for organics under relevant conditions are vital for such work, yet for many compounds such data either are lacking or fragmentary. In this presentation we describe new laboratory results for methanol (CH3OH), the simplest alcohol, which has been reported to exist in planetary and interstellar ices. Our new results include near- and mid-IR spectra, band strengths, and optical constants at various ice temperatures. Moreover, the influence of H2O-ice is examined. In addition to CH3OH, we also have new results for the related cometary molecules CH3SH and CH3CH2OH. Although IR spectra of such molecules have been reported by many groups over the past 60 years, our work appears to be the first to cover densities, refractive indices, band strengths and optical constants of both the amorphous and crystalline phases. Our results are compared to earlier work, the influence of literature assumptions is explored, and possible revisions to the literature are described. Support from the following is acknowledged: (a) NASA-SSERVI's DREAM2 program, (b) the NASA Astrobiology Institute's Goddard Center for Astrobiology, and (c) a NASA-APRA award.

  4. Effects of Space Weathering on Reflectance Spectra of Ureilites: A Proof-of-Concept Study

    Science.gov (United States)

    Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Hibbits, C.; Klima, R.; Christoffersen, R.; Fries, M.; Decker, S.

    2017-07-01

    Space weathering and spectral studies of three ureilitic samples show that space weathering causes significant changes in UV-VIS-IR spectra and Raman spectra. Changes due to amorphization of carbon could disguise ureilitic asteroids as CC-like.

  5. Evaluation of MidIR fibre optic reflectance: Detection limit, reproducibility and binary mixture discrimination

    Science.gov (United States)

    Sessa, Clarimma; Bagán, Héctor; García, José Francisco

    2013-11-01

    MidIR fibre optic reflectance (MidIR-FORS) is a promising analytical technique in the field of science conservation, especially because it is non-destructive. Another advantage of MidIR-FORS is that the obtained information is representative, as a large amount of spectral data can be collected. Although the technique has a high potential and is almost routinely applied, its quality parameters have not been thoroughly studied in the specific application of analysis of artistic materials. The objective of this study is to evaluate the instrumental capabilities of MidIR-FORS for the analysis of artwork materials in terms of detection limit, reproducibility, and mixture characterisation. The study has been focused on oil easel painting and several paints of known composition have been analysed. Paint layers include blue pigments not only because of their important role along art history, but also because their physical and spectroscopic characteristics allow a better evaluation of the MidIR-FORS capabilities. The results of the analysis indicate that MidIR-FORS supplies a signal affected by different factors, such as the optical, morphological and physical properties of the surface, in addition to the composition of materials analysed. Consequently, the detection limits established are relatively high for artistic objects (Prussian blue - PB 2.1-6.5%; Phthalocyanine blue - Pht 6.3-10.2%; synthetic Ultramarine blue - UM 12.1%) and may therefore lead to an incomplete description of the artwork. Reproducibility of the technique over time and across surface has been determined. The results show that the major sources of dispersion are the heterogeneity of the pigments distribution, physical features, and band shape distortions. The total dispersion is around 4% for the most intense bands (oil) and increases up to 26% when weak or overlapped bands are considered (PB, Pht, UM). The application of different pre-treatments (cutoff of fibres absorption, Savizky-Golay smoothing

  6. Organic and inorganic interpretations of the martian UV-IR reflectance spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Pang, K D; Ajello, J M [Jet Propulsion Lab., Pasadena, CA (USA); Chun, S F.S. [California Univ., San Francisco (USA). School of Medicine; Nansheng, Z [Beijing Planetarium (China); Minji, L [Beijing Glass Institute (China)

    1982-01-07

    The Viking gas chromatography-mass spectrometer analysis of martian soil samples are discussed, in particular why no organic molecules were detected at the landing sites, whether the sterility of the two sites is representative of the entire planet and if there are locations on Mars more conducive to the formation and preservation of organics. The destruction of organic compounds has been simulated in Mars-like laboratory conditions and the possible planetwide destructive mechanism considered. The UV and IR reflectance spectra of Mars has been re-examined for any evidence of organic molecules and an upper limit on the organic carbon content of average martian soil has been set. The results reveal that the average martian soil is organic-poor, makes an unfavourable habitat for life forms based on carbon chemistry, and there is no reason to believe that organic molecules are preferentially preserved anywhere on the planet.

  7. Organic and inorganic interpretations of the martian UV-IR reflectance spectrum

    International Nuclear Information System (INIS)

    Pang, K.D.; Ajello, J.M.; Chun, S.F.S.; Minji, L.

    1982-01-01

    The Viking gas chromatography-mass spectrometer analysis of martian soil samples are discussed, in particular why no organic molecules were detected at the landing sites, whether the sterility of the two sites is representative of the entire planet and if there are locations on Mars more conducive to the formation and preservation of organics. The destruction of organic compounds has been simulated in Mars-like laboratory conditions and the possible planetwide destructive mechanism considered. The UV and IR reflectance spectra of Mars has been re-examined for any evidence of organic molecules and an upper limit on the organic carbon content of average martian soil has been set. The results reveal that the average martian soil is organic-poor, makes an unfavourable habitat for life forms based on carbon chemistry, and there is no reason to believe that organic molecules are preferentially preserved anywhere on the planet. (U.K.)

  8. VizieR Online Data Catalog: IRS spectra with features of crystalline silicates (Chen+, 2016)

    Science.gov (United States)

    Chen, R.; Luo, A.; Liu, J.; Jiang, B.

    2018-04-01

    Spectra taken by the IRS (Houck et al. 2004ApJS..154...18H) on the Spitzer space telescope (Werner et al. 2004ApJS..154....1W) are now publicly available. These spectra are produced using the bksub.tbl products from SL and LL modules of final SSC pipeline, version 18.18. From the IRS data archive, we found a collection of 16986 low-resolution spectra. The spectra are merged by four slits: SL2 (5.21-7.56 μm), SL1 (7.57-14.28 μm), LL2 (14.29-20.66 μm), and LL1 (20.67-38.00 μm). As crystalline silicates have no features in the SL2 band, we choose the spectra that include all the other three bands: SL1, LL2, and LL1 so that the object has a continuous spectrum from about 7.5-38 μm. In this way, five of the seven infrared complexes of crystalline silicates are covered, i.e., the 10, 18, 23, 28, and 33 μm complexes. (5 data files).

  9. An IR investigation of solid amorphous ethanol - Spectra, properties, and phase changes

    Science.gov (United States)

    Hudson, Reggie L.

    2017-12-01

    Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160 K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160 K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670 nm of amorphous ethanol at 16 K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study.

  10. Signal-to-noise ratio of FT-IR CO gas spectra

    DEFF Research Database (Denmark)

    Bak, J.; Clausen, Sønnik

    1999-01-01

    in emission and transmission spectrometry, an investigation of the SNR in CO gas spectra as a function of spectral resolution has been carried out. We present a method to (1) determine experimentally the SNR at constant throughput, (2) determine the SNR on the basis of measured noise levels and Hitran......The minimum amount of a gaseous compound which can be detected and quantified with Fourier transform infrared (FT-IR) spectrometers depends on the signal-to-noise ratio (SNR) of the measured gas spectra. In order to use low-resolution FT-IR spectrometers to measure combustion gases like CO and CO2...... simulated signals, and (3) determine the SNR of CO from high to low spectral resolutions related to the molecular linewidth and vibrational-rotational lines spacing. In addition, SNR values representing different spectral resolutions but scaled to equal measurement times were compared. It was found...

  11. Study of wide band-gap crystal LiCaAlF6 by IR-reflection spectroscopy and ab initio calculations

    International Nuclear Information System (INIS)

    Novikova, N.N.; Klimin, S.A.; Mavrin, B.N.

    2017-01-01

    Polarized IR-reflection spectra and results of ab initio calculations of vibrational and electronic properties of LiCaAlF6 single crystal are presented. It is shown that the crystal band gap is direct. Experimental and theoretical parameters are obtained for dipole-active and all phonons, respectively, including silent modes. Experimental IR-reflection and Raman spectra are well described in the frame of results obtained by ab initio calculations. The peculiarities are discussed concerning the structure of electronic bands, the interatomic interactions, the character of lattice vibrations, and the phonon dispersion.

  12. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  13. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr

    2007-01-01

    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  14. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  15. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    Science.gov (United States)

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.

  16. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  17. Analyzing reflectance spectra of human skin in legal medicine

    Science.gov (United States)

    Belenki, Liudmila; Sterzik, Vera; Schulz, Katharina; Bohnert, Michael

    2013-01-01

    Our current research in the framework of an interdisciplinary project focuses on modelling the dynamics of the hemoglobin reoxygenation process in post-mortem human skin by reflectance spectrometry. The observations of reoxygenation of hemoglobin in livores after postmortem exposure to a cold environment relate the reoxygenation to the commonly known phenomenon that the color impression of livores changes from livid to pink under low ambient temperatures. We analyze the spectra with respect to a physical model describing the optical properties of human skin, discuss the dynamics of the reoxygenation, and propose a phenomenological model for reoxygenation. For additional characterization of the reflectance spectra, the curvature of the local minimum and maximum in the investigated spectral range is considered. There is a strong correlation between the curvature of specra at a wavelength of 560 nm and the concentration of O2-Hb. The analysis is carried out via C programs, as well as MySQL database queries in Java EE, JDBC, Matlab, and Python.

  18. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    Science.gov (United States)

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  19. Model and measurements of linear mixing in thermal IR ground leaving radiance spectra

    Science.gov (United States)

    Balick, Lee; Clodius, William; Jeffery, Christopher; Theiler, James; McCabe, Matthew; Gillespie, Alan; Mushkin, Amit; Danilina, Iryna

    2007-10-01

    Hyperspectral thermal IR remote sensing is an effective tool for the detection and identification of gas plumes and solid materials. Virtually all remotely sensed thermal IR pixels are mixtures of different materials and temperatures. As sensors improve and hyperspectral thermal IR remote sensing becomes more quantitative, the concept of homogeneous pixels becomes inadequate. The contributions of the constituents to the pixel spectral ground leaving radiance are weighted by their spectral emissivities and their temperature, or more correctly, temperature distributions, because real pixels are rarely thermally homogeneous. Planck's Law defines a relationship between temperature and radiance that is strongly wavelength dependent, even for blackbodies. Spectral ground leaving radiance (GLR) from mixed pixels is temperature and wavelength dependent and the relationship between observed radiance spectra from mixed pixels and library emissivity spectra of mixtures of 'pure' materials is indirect. A simple model of linear mixing of subpixel radiance as a function of material type, the temperature distribution of each material and the abundance of the material within a pixel is presented. The model indicates that, qualitatively and given normal environmental temperature variability, spectral features remain observable in mixtures as long as the material occupies more than roughly 10% of the pixel. Field measurements of known targets made on the ground and by an airborne sensor are presented here and serve as a reality check on the model. Target spectral GLR from mixtures as a function of temperature distribution and abundance within the pixel at day and night are presented and compare well qualitatively with model output.

  20. IR reflectance spectroscopy of carbon dioxide clathrate hydrates. Implications for Saturn's icy moons.

    Science.gov (United States)

    Oancea, A.; Grasset, O.; Le Menn, E.; Bezacier, L.; Bollengier, O.; Le Mouélic, S.; Tobie, G.

    2012-04-01

    A CO2 spectral band was discovered by VIMS on the Saturn's satellites Dione, Hyperion, Iapetus and Phoebe [1]. The band position on the three first satellites corresponds to CO2 trapped in a complex material, but no indication exists whether this latter is water ice or some mineral or complex organic compound [1]. On Phoebe, the CO2 spectral band is consistent with solid CO2 or CO2 molecules trapped in the small cages of a clathrate hydrate structure [2]. It is thought that clathrate hydrates could play a significant role in the chemistry of the solar nebula [3] and in the physical evolution of astrophysical objects [4]. But so far, no clathrate hydrate structure has been observed in astrophysical environments. Moreover, identification of molecules trapped in a clathrate hydrate structure is extremely difficult because of the strong IR vibration modes of the water ice matrix. In this work, experimental IR reflectance spectra for CO2 clathrate hydrates are studied on grains and films. Clathrates are synthesized in a high pressure autoclave at low temperatures. IR spectral analysis is made with a low pressure and low temperature cryostat. These experimental conditions - 80 spectrum will be presented. A comparison between the absorption bands of CO2 clathrate hydrates obtained in our lab and CO2 absorption bands as detected by VIMS on the icy satellites of Saturn will be shown. This experimental work confirms that VIMS data are not consistent with the presence of structure I CO2 clathrate hydrates on the surface of the icy moons. Possibility of having metastable structure II still remains unsolved and will be discussed. [1] Dalton et al., Space Sci. Rev. 2010, 153 : 113-154. [2] Cruikshank D.P. et al, Icarus, 2010, 206: 561-572. [3] Mousis O. et al , Ap. J. 2009, 691: 1780-1786. [4] Choukroun M. et al, in Solar System Ices, edited by Castillo-Rogez, J. et al., 2011.

  1. Far IR spectra of Th(IV) halide complexes of some heterocyclic bases

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Agarwal, R.K.; Srivastava, M.; Kapoor, V.; Srivastava, T.N.

    1981-01-01

    The synthesis and IR spectra of Th(IV) perchlorato, nitrato and thiocyanato complexes of some heterocyclic bases have been reported. Halogens are common ligands in coordination chemistry forming coordinate bonds with metals readily. Metal halogen (M-X) stretching bands show a strong absorption in the far-IR region. Very little information is available on Th-X stretching frequencies. In the present communication, adducts of Th(IV) halide with certain nitrogen heterocyclic bases such as pyridine, α-picoline, 2-amino pyridine, 2:4-lutidine, 2:6-lutidine, quinoline, 2,2'-bipyridine and 1,10-phenanthroline were synthesised and characterised. Experimental details are given. Results are presented and discussed. (author)

  2. THE STUDY OF CLINOPTILOLITE MODIFIED WITH3d METALS HALIDES BY IR AND DIFFUSE REFLECTANCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The results of investigation of natural clinoptilolite (N-CLI and that modified with 3d metal halides (MeCl2/N-CLI, where Me are Cu, Co, and Mn by IR and diffuse reflectance spectroscopy are summarized. A band at 3437 cm-1 assigned to stretching vibrations of hydroxyl groups (nOH is found in the IR spectrum of the N-CLI sample. A location of the band was practically the same as for all above MeCl2/N-CLI samples. A band of middle intensity at 1638 cm-1 in the range of deformation vibrations of zeolite water observed in the IR spectrum of N-CLI slightly displays to lower frequencies in the case of the modified samples. An intensive wide band of a complex shape in the range from 1250 to 980 cm-1 assigned to Si–O–Si and Si–O–Al vibrations appears in IR spectra of all samples. A doublet band of middle intensity at 797 and 778 cm-1 is assigned to external symmetric stretching T-O vibrations and a band at 606 cm-1-to vibrations of a double ring. A location of the above bands is the same for all listed samples but their intensity is higher for MnCl2/N-CLI and CoCl2/N-CLI samples. After the reaction with ozone, significant changes in the IR spectra are observed only for MnCl2/N-CLI. They are due to MnO2 formation on the clinoptilolite surface resulting in a high frequency displacement of some bands. Based on UV-vi spectroscopy results, it is reasonable to make conclusions about the coordination and valence state of a central atom in the MeCl2/N-CLI samples under study. A location of charge transfer bands for these samples only slightly differs from that for N-CLI however the intensity of such bands increases for the MeCl2/N-CLI samples. The UV-vis spectrum of MnCl2/N-CLI changes after the reaction with ozone: the appearance of new bands of  charge transfer at 363 and 354 nm and also the two-fold increase in intensity of a charge transfer band at 272 nm in comparison with those of N-CLI and MnCl2/N-CLI are the evidence of change in both the

  3. IR spectra and properties of solid acetone, an interstellar and cometary molecule

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2018-03-01

    Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of 13C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73% error in previous work is identified and corrected.

  4. TERAHERTZ REFLECTANCE SPECTRA OF SKIN DERMATITIS AND MORPHOLOGICAL CHANGES

    Directory of Open Access Journals (Sweden)

    E. A. Strepitov

    2013-05-01

    Full Text Available The article deals withthe diagnostics possibility of dermatitis and morphological changes of human skin using terahertz frequency range equal to 2,0¸0,05 THz. Features of different types of human skin diseases occur in vivo over the entire frequency range, especially in the field of vibration: 2,0¸1,5 THz. They were caused by the backscattering on skin new formations in its upper layers. In terahertz reflection spectra spectral lines of different dermatitis, age spots, haematoma are well distinguishable. Terahertz radiation penetrates well through the medical bandages. At the same time in a single scan, lasting about one minute, the spectrum is processed not only of the bandages, but of different skin layers.

  5. IR spectra and structure of uranyl pivaloyltrifluoroacetylacetonate isolated in argon matrix

    International Nuclear Information System (INIS)

    Belyaeva, A.A.; Dushin, R.B.; Sidorenko, G.V.; Suglobov, D.N.

    1985-01-01

    When studying IR absorption spectra of a number of isotopomers of uranyl pivaloyl trifluoroacetonate (UPTFA), isolated in the matrix of argon and dissolved in benzene, and comparing them with the spectra of uranyl hexafluoroacetylacetonate (UHFA) vapours, it has been ascertained, that UPTFA vapours consist of monomers and dimers, and UPTFA solution in benzene - of dimers.It is shown, that the dimers have T-shaped structure, at that, the bond inside the dimer is realized by yl-atom of oxygen of an uranyl ion, included in the equatorial coordination sphere of another uranyl ion. Proofs of the dimer T-like structure distortion in gaseous or matrix-isolated state, as a result of which the difference of the angles between uranyl axes from 90 deg is observed, are given. In the framework of approximated model of isolated uranyl-ion the force constants for all the compounds investigated are calaculted

  6. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  7. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  8. Par and IR reflectance, transmittance, and absorptance of four crop canopies

    International Nuclear Information System (INIS)

    Wanjura, D.F.; Hatfield, J.L.

    1986-01-01

    Reflectance, transmittance and absorptance of electromagnetic radiation by cotton, soybeans, grain sorghum, and sunflower was measured at three growth stages in two wavebands (PAR: 0.4 to 0.7 pun and IR: 0.7 to 1.1 yim). As leaf area increased in each crop there were increases in IR reflectance and PAR absorptance and decreases in PAR reflectance and both PAR and IR transmittance. IR radiation was concentrated at the soil surface between rows by reflectance from the sides of canopies when crop cover was less than 80%. Across all crops one parameter, leaf overlap index, explained 81 and 71% of the PAR reflectance and another, crop cover, explained 86 and 94% of IR reflectance from rows and interrows, respectively. Attenuation of PAR radiation through the canopies of cotton and sunflower was similar (K = 0.62 and 0.67) but different from that of soybeans and grain sorghum (K = 0.46 and 0.43) which were the same

  9. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    Science.gov (United States)

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.

  10. Rotational Isomers, Intramolecular Hydrogen Bond, and IR Spectra of o-Vinylphenol Homologs

    Science.gov (United States)

    Glazunov, V. P.; Berdyshev, D. V.; Balaneva, N. N.; Radchenko, O. S.; Novikov, V. L.

    2018-03-01

    The ν(OH) stretching-mode bands in solution IR spectra of five o-vinylphenol (o-VPh) homologs in the slightly polar solvents CCl4 and n-hexane were studied. Several rotamers with free OH groups were found in solutions of o-VPh and its methyl-substituted derivatives in n-hexane. The proportion of rotamers in o-VPh homologs with intramolecular hydrogen bonds (IHBs) O-H...π varied from 22 to 97% in the gas and cyclohexane according to B3LYP/cc-pVTZ calculations. The theoretically estimated effective enthalpies -ΔH of their IHBs varied in the range 0.20-2.24 kcal/mol.

  11. IR and Raman spectra of nitroanthracene isomers: substitional effects based on density functional theory study.

    Science.gov (United States)

    Alparone, Andrea; Librando, Vito

    2012-04-01

    Structure, IR and Raman spectra of 1-, 2- and 9-nitroanthracene isomers (1-NA, 2-NA and 9-NA) were calculated and analyzed through density functional theory computations using the B3LYP functional with the 6-311+G** basis set. Steric and π-conjugative effects determine the characteristic ONCC dihedral angles, which vary from 0° (2-NA) to 28-29° (1-NA) and 59° (9-NA), influencing the relative order of stability along the series 9-NA3000 cm(-1) and utility to discriminate the NA isomers. Structural and spectroscopic results suggest that the unknown mutagenic activity of 1-NA is expected to be between that of 9-NA and 2-NA. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Chen, Christine H.; Mittal, Tushar; Lisse, Carey M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005 (India); Watson, Dan [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Nesvold, Erika; Kuchner, Marc [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  14. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  15. FT-IR, FT-Raman and UV-visible spectra of potassium 3-furoyltrifluoroborate salt

    Science.gov (United States)

    Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia

    2018-04-01

    The potassium 3-furoyltrifluoroborate salt has been experimentally characterized by means of FT-IR, FT-Raman and UV-Visible spectroscopies. Here, the predicted FT-IR, FT-Raman and UV-visible spectra by using theoretical B3LYP/6-31G* and 6-311++G** calculations show very good correlations with the corresponding experimental ones. The solvation energies were predicted by using both levels of calculations. The NBO analyses reveal the high stability of the salt by using the B3LYP/6-31G* level of theory while the AIM studies evidence the ionic characteristics of the salt in both media. The strong blue colour observed on the K atom by using the molecular electrostatic potential mapped suggests that this region act as typical electrophilic site. The gap values have revealed that the salt in gas phase is more reactive than in solution, as was reported in the literature while, the F13⋯H6 interaction together with the Ksbnd O bond observed by the studies of their charges could probably modulate the reactivities of this salt in aqueous solution. The force fields were computed with the SQMFF methodology and the Molvib program to perform the complete vibrational analysis. Then, the 39 vibration normal modes classified as 26 A'+ 13 A″ were completely assigned and their force constants are also reported.

  16. Influence of composition and roughness on the pigment mapping of paintings using mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) and multivariate calibration.

    Science.gov (United States)

    Sessa, Clarimma; Bagán, Héctor; García, Jose Francisco

    2014-10-01

    Mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) is a very interesting technique for artwork characterization purposes. However, the fact that the spectra obtained are a mixture of surface (specular) and volume (diffuse) reflection is a significant drawback. The physical and chemical features of the artwork surface may produce distortions in the spectra that hinder comparison with reference databases acquired in transmission mode. Several studies attempted to understand the influence of the different variables and propose procedures to improve the interpretation of the spectra. This article is focused on the application of mid-IR FORS and multivariate calibration to the analysis of easel paintings. The objectives are the evaluation of the influence of the surface roughness on the spectra, the influence of the matrix composition for the classification of unknown spectra, and the capability of obtaining pigment composition mappings. A first evaluation of a fast procedure for spectra management and pigment discrimination is discussed. The results demonstrate the capability of multivariate methods, principal component analysis (PCA), and partial least squares discrimination analysis (PLS-DA), to model the distortions of the reflectance spectra and to delimitate and discriminate areas of uniform composition. The roughness of the painting surface is found to be an important factor affecting the shape and relative intensity of the spectra. A mapping of the major pigments of a painting is possible using mid-IR FORS and PLS-DA when the calibration set is a palette that includes the potential pigments present in the artwork mixed with the appropriate binder and that shows the different paint textures.

  17. Adding a dimension to the infrared spectra of interfaces: 2D SFG spectroscopy via mid-IR pulse shaping

    Science.gov (United States)

    Zanni, Martin

    2012-02-01

    Sum-frequency generation spectroscopy provides an infrared spectrum of interfaces and thus has widespread use in the materials and chemical sciences. In this presentation, I will present our recent work in developing a 2D pulse sequence to generate 2D SFG spectra of interfaces, in analogy to 2D infrared spectra used to measure bulk species. To develop this spectroscopy, we have utilized many of the tricks-of-the-trade developed in the 2D IR and 2D Vis communities in the last decade, including mid-IR pulse shaping. With mid-IR pulse shaping, the 2D pulse sequence is manipulated by computer programming in the desired frequency resolution, rotating frame, and signal pathway. We believe that 2D SFG will become an important tool in the interfacial sciences in an analogous way that 2D IR is now being used in many disciplines.

  18. Matrix-isolation FT-IR spectra and theoretical study of dimethyl sulfate

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Simões, Pedro N. N. L.; Fausto, Rui

    2005-05-01

    The preferred conformations of dimethyl sulfate and their vibrational spectra were studied by matrix-isolation FT-IR spectroscopy and theoretical methods (DFT and MP2, with basis sets of different sizes, including the quadruple-zeta, aug-cc-pVQZ basis). Conformer GG (of C 2 symmetry and exhibiting O sbnd S sbnd O sbnd C dihedral angles of 74.3°) was found to be the most stable conformer in both the gaseous phase and isolated in argon. Upon annealing of the matrix, the less stable observed conformer (GT; with C 1 symmetry) quickly converts to the GG conformer, with the resulting species being embedded in a matrix-cage which corresponds to the most stable matrix-site for GG form. The highest energy TT conformer, which was assumed to be the most stable conformer in previous studies, is predicted by the calculations to have a relative energy of ca. 10 kJ mol -1 and was not observed in the spectra of the matrix-isolated compound.

  19. Interpretation of IR and Raman spectra of dopamine neurotransmitter and effect of hydrogen bond in HCl

    Science.gov (United States)

    Yadav, T.; Mukherjee, V.

    2018-05-01

    The potential energy scanning with respect to the different dihedral angles were performed to search possible numbers of dopamine (neutral) conformers and further, fifteen conformers of dopamine were identified on the basis of energy minima. Vibrational frequencies were calculated for all the conformers of dopamine. Density functional theory was employed to carry out all the computations. The exchange correlation functional B3LYP and the basis set 6-31++G(d,p) were included in DFT calculation. The FTIR and FT-Raman spectra of dopamine hydrochloride were also recorded in the spectral region 400-4000 cm-1 and 50-4000 cm-1 respectively. The normal coordinate analysis was also performed to scale DFT calculated force constants and to calculate potential energy distributions. The detailed vibrational spectral analysis and the assignments of the bands, done on the best-fit basis comparison of the experimentally obtained and theoretically calculated IR and Raman spectra, match quite well indicating DFT calculations as very accurate source of normal mode assignments. The interaction of the most stable conformer of dopamine with HCl was also studied to know the effect of hydrogen bond on its geometry and dynamics. The stability of the dopamine in isolated and protonated forms arising from hyperconjugative interactions was also analyzed by natural bond orbital analysis.

  20. Theoretical study of IR and photoelectron spectra of small gallium-arsenide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pouchan, Claude; Marchal, Rémi; Hayashi, Shinsuke [Université de Pau et des Pays de l' Adour, IPREM/ECP, UMR CNRS 5254 (France)

    2015-01-22

    Relative stabilities of small Ga{sub n}As{sub m} clusters, as well as their structural electronic and vibrational properties, were computed and analysed using a CCSD(T) reference method since experimental data in this area are sparse or unknown. With the aim of investigating larger clusters, we explored several DFT functionals and basis sets able to mimic the reliable CCSD(T) approach. Among them, the PBE0/SBKJC+sp,d appears as the most efficient to describe the structural and vibrational properties since average differences of about 0.042Å and 5.1cm{sup −1} were obtained for bond lengths and fundamental vibrational frequencies, respectively for the first small clusters [1] of the series found from our GSAM method [2]. As further test, this model is used in order to investigate and revisit an experimental IR spectrum of Ga{sub n}As{sub m} mixture previously published by Li et al. [3]. More complicated is the difficulty which arises in the electronic description due to the presence of numerous low lying electronic states nearly degenerated to correctly describe the electronic structure. The case of Ga{sub 2}As will be discussed and the photoelectron spectra of the Ga{sub 2}As anion reanalyzed on the ground of our calculations [4] comparatively to the experimental spectra obtained by Neumark and co-workers [5].

  1. Effect of second-sphere cation nature on the character of IR spectra of molybdeum(4, 5) cyanide complexes

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Semenishin, D.I.; Vretsena, N.B.; Chernyak, B.I.

    1989-01-01

    The effect of nature of second-sphere cations on IR spectra of molybdeum (4, 5) cyanide complexes is studied. It is found that the increase in the first ionization potential (radius decrease) brings about the increase in the frequency of valent variations ν (CN). This proves the possibility of formation of bridge bonds Mo-CN-M in the compounds (M-alkali, alkaline earth or rare earth metal, Cs, Y). The conclusion is made on a considerable effect of the nature of second-sphere cations and oxidation degree of complexing agent atoms on the nature of IR spectra of octacyanomolybdates (4, 5)

  2. Effect of source encapsulation on the energy spectra of sup 192 Ir and sup 137 Cs seed sources

    Energy Technology Data Exchange (ETDEWEB)

    Thomason, C [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics; Mackie, T R [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics Wisconsin Univ., Madison, WI (USA). Dept. of Human Oncology; Lindstrom, M J [Wisconsin Univ., Madison, WI (USA). Biostatistics Center

    1991-04-01

    The effect of source encapsulation on the energy spectra of {sup 192}Ir and {sup 137}Cs seed sources, both with stainless steel and with platinum encapsulation, was determined from results of Monte Carlo simulation. The fractional scatter dose around these sources has also been determined from Monte Carlo simulation. The platinum-encapsulated {sup 192}Ir source exhibited greater attenuation of the primary spectrum, as expected, and, consistent with this greater attenuation, exhibited more scattered radiation. Significantly less scatter was seen with the {sup 137}Cs source than with either {sup 192}Ir source, as is consistent with the higher-energy photons from {sup 137}Cs. (author).

  3. The characteristics of the IR emission features in the spectra of Herbig Ae stars : evidence for chemical evolution

    NARCIS (Netherlands)

    Boersma, C.; Bouwman, J.; Lahuis, F.; van Kerckhoven, C.; Tielens, A. G. G. M.; Waters, L. B. F. M.; Henning, T.

    Context. Infrared ( IR) spectra provide a prime tool to study the characteristics of polycyclic aromatic hydrocarbon ( PAH) molecules in regions of star formation. Herbig Ae/Be stars are a class of young pre-main sequence stellar objects of intermediate mass. They are known to have varying amounts

  4. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL

    2004-01-01

    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increased...

  5. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.

    Science.gov (United States)

    Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr

    2007-06-14

    The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third

  6. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-01-01

    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  7. Resonant inelastic X-ray scattering spectra at the Ir L-edge in Na{sub 2}IrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Jun-ichi, E-mail: junichi.igarashi.kiryu@vc.ibaraki.ac.jp [Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Nagao, Tatsuya, E-mail: nagao@gunma-u.ac.jp [Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan)

    2016-10-15

    Highlights: • A theoretical framework of resonant inelastic X-ray scattering (RIXS) on the basis of the itinerant electron scheme has been developed. • The RIXS theory is applied to iridate Na{sub 2}IrO{sub 3}. • The origins of the multi-peak structure of the excitation spectra found in the RIXS experiment have been assigned to the magnetic and excitonic excitations. - Abstract: We analyze resonant X-ray scattering (RIXS) spectra in Na{sub 2}IrO{sub 3} on the basis of the itinerant electron picture. Employing a multi-orbital tight-binding model on a honeycomb lattice, we find that the zigzag magnetic order is the most stable with sizable energy gap in the one-electron band within the Hartree–Fock approximation. We derive the RIXS spectra, which are connected to the generalized density–density correlation function. We calculate the spectra as a function of excitation energy ω, within the random phase approximation. The spectra consist of the peaks with ω < 20 meV, and of the peaks with 0.4 < ω < 0.8 eV. The former peaks are composed of four bound states in the density–density correlation function, and may be identified as the magnetic excitations, while the latter peaks are composed of 16 bound states below the energy continuum of individual electron–hole pair excitations, and may be identified as the excitonic excitations. The calculated spectra agree qualitatively with the recent RIXS experiment.

  8. Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system.

    Science.gov (United States)

    Awaji, Naoki; Miyajima, Toyoo; Doi, Shuuichi; Nomura, Kenji

    2010-12-01

    It has recently been found that the exchange bias of a MnIr/CoFe system can be increased significantly by adding a thermal treatment to the bilayer. To reveal the origin of the higher exchange bias, we performed polarized neutron reflectivity measurements at the JRR-3 neutron source. The magnetization vector near the MnIr/CoFe interface for thermally treated samples differed from that for samples without the treatment. We propose a model in which the pinned spin area at the interface is extended due to the increased roughness and atomic interdiffusion that result from the thermal treatment.

  9. Research advances in reflectance spectra of plant leafs

    Science.gov (United States)

    Zhu, Taotao; Yang, Ting; Guo, Yanxin; Xu, Jingqi; Chang, Wandong; Fang, Siyi; Zhu, Kangkang; Xu, Tingyan

    2018-02-01

    Leaves are an important factor when we study plants because their water content, pigment content and nutrient content of leaves can reflect the current growth status of the whole plant. The methods of spectral diagnosis technology or image technology mainly are the pre-detection technique which can be used to invert the color, texture and spectral reflectance of the leaves. From this we can obtain the changes of the internal components and the external morphological characteristics of the plant leaves in different states changes. In this paper, the reflection spectral response mechanism of plant water content, pigment and nutrient elements at domestic and overseas are reviewed and compared.

  10. EFFECTS OF FATLIQURING PROCESS ON LEATHERS COLOURED WITH IR REFLECTIVE DYES AND PIGMENTS

    Directory of Open Access Journals (Sweden)

    MUTLU Mehmet Mete

    2017-05-01

    Full Text Available Black coloured materials and consumer goods are known to be heating up more, because they absorb sun radiation more than light colours. This heating is a problem for the users for black automotive or motorcycle leathers and also for dark shoes and boots which are exposed to sun heat. Human vision system can distinguish visible colours between the wavelengths of 390-700 nm. So reflecting the sun radiation in the infrared area of radiation spectrum higher than 700nm, is a solution for heating problem without affecting the visible colour. For this reason IR reflective dyes and pigments are designed. A leading Leather Chemical Company has developed an IR reflecting dyeing system for leather keeping the dark coloured leathers cooler under sun radiation. Additionally in theory, fat and water content of leather affects its heating properties. In this study, effect of natural, synthetic and waterproof fatliquoring systems on heating properties of leathers coloured with IR reflective dyes and pigments are investigated.

  11. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    Science.gov (United States)

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic

  12. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    Science.gov (United States)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for

  13. SPITZER IRS SPECTRA OF LUMINOUS 8 μm SOURCES IN THE LARGE MAGELLANIC CLOUD: TESTING COLOR-BASED CLASSIFICATIONS

    International Nuclear Information System (INIS)

    Buchanan, Catherine L.; Kastner, Joel H.; Hrivnak, Bruce J.; Sahai, Raghvendra

    2009-01-01

    We present archival Spitzer Infrared Spectrograph (IRS) spectra of 19 luminous 8 μm selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on Two Micron All Sky Survey (2MASS)/MSX (J, H, K, and 8 μm) colors in order to test the 'JHK8' (Kastner et al.) classification scheme. The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich AGB stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission through the use of IRAC [3.6]-[4.5] and 2MASS colors.

  14. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

    Science.gov (United States)

    Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang

    2016-02-01

    We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

  15. Polarized IR spectra of resonance assisted hydrogen bond (RAHB) in 2-hydroxyazobenzenes

    International Nuclear Information System (INIS)

    Rospenk, Maria; Majewska, Paulina; Czarnik-Matusewicz, Boguslawa; Sobczyk, Lucjan

    2006-01-01

    The polarized IR spectra in the region 4000-400 cm -1 over the temperature range 298-370 K of liquid crystalline (LC) 4-chloro-2'-hydroxy-4'-pentyloxyazobenzene (CHPAB) containing strong O-H...N RAHBs were studied. It has been established that molecules of this compound undergoes a spontaneous ordering in thin layers (10-20 μm) between the KRS-5 plates. The order degree expressed by the S parameter exceeds 0.6 for the Smectic A and crystalline phases. The best indicator of orientation is the mode at 1084 cm -1 as its transition dipole moment is oriented parallel to the long axis of the molecule. A good marker is also the γ(OH) band with the transition dipole moment nearly perpendicular to the long axis. The intramolecular O-H...N hydrogen bonding shows features characteristic of RAHB. The transition dipole moment of the ν(OH) vibrations forms with the long axis of the molecule the angle equal to 43 ± 3 deg. (the OH bond is oriented to this axis at the angle of 9 deg.) that convincingly speaks in favour of a coupling between the proton and π-electron motions. Similar behaviour is manifested by a broad absorption in the finger print region that can be interpreted in terms of the modification of the potential energy shape due to the plane-to-plane intermolecular interaction and appearance of the second minimum. A marked ordering of molecules in the isotropic phase is also observed evidencing some alignment of molecules extended far beyond the monomolecular layers on the surfaces of the KRS-5 windows

  16. DFT study of structure, IR and Raman spectra of the fluorescent "Janus" dendron built from cyclotriphosphazene core

    Science.gov (United States)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-11-01

    The FTIR and FT-Raman spectra of the zero generation dendron, possessing five fluorescent dansyl terminal groups, cyclotriphosphazene core, and one carbamate function G0v were studied. The structural optimization and normal mode analysis were performed for G0v dendron on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G0v dendron were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The frequency of ν(N-H) band in the IR spectrum reveal the presence of H-bonds in the G0v dendron.

  17. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  18. Diffuse reflectance infrared Fourier-Transform spectra of selected organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, S.H.; Caton, J.E.

    1982-05-01

    Diffuse reflectance infrared spectra of a variety of different organic compounds have been determined. Profiles of the spectra along with the location and relative intensity of the principal bands have been included for each compound studied. In addition both diffuse reflectance and transmittance infrared spectra were obtained for the same samples, and the spectral results were compared. Although some minor variations are observed between a diffuse reflectance spectrum and the corresponding transmittance spectrum, the diffuse reflectance is quite useful and may be a superior technique for the study of many samples because it possesses an inherently higher signal-to-noise response, requires less sample preparation and allows a very wide range of samples (solids, liquids of low volatility, neat sample, or sample diluted in a reflecting medium) to be studied under very similar conditions.

  19. Retrieval of Tropospheric Profiles from IR Emission Spectra: Field Experiment and Sensitivity Study

    National Research Council Canada - National Science Library

    Theriault, J

    1993-01-01

    .... The goal of this project was the retrieval of atmospheric temperature and water vapor profiles and possibly over relevant information on clouds and aerosol properties from high resolution IR emission...

  20. Developing Integral Review:IR Editors Reflect on Meta-theory,the Concept of

    Directory of Open Access Journals (Sweden)

    Russ Volckmann

    2007-12-01

    Full Text Available Over the past three years our journey as editors of Integral Review has been full of rich learning. The processes of providing authors with feedback, going over reviews of articles as well as writing ourselves have all contributed to our growth. The primary forum for this learning has been the many conversations amongst us to deal with the various issues that arise in publishing IR. Our intention in this brief piece is to share some of our reflections on this learning journey with you. These will take the form of contributions/reflections from individual editors, allowing us to share with you the particular issues we feel of value in this process.By writing these short pieces, we aim to provide additional resources for understanding how IR works. While we have guidelines and criteria for submissions on our website, it seems that narrative voices from individuals may add some flesh to them. Relating how we perceive issues around writing for an “integral” journal offers a supplement for engaging these criteria, and will hopefully bring them to life. As well, we hope that our writing provides insights into how and what we think about issues relevant to IR’s mission. These pieces reflect the unique voices we have as editors of Integral Review, and demonstrate some of the thinking and passions behind this journal.

  1. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    Science.gov (United States)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  2. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    International Nuclear Information System (INIS)

    Meglinskii, I V

    2001-01-01

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)

  3. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    Science.gov (United States)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  4. 2DCOS and PCMW2D analysis of FT-IR/ATR spectra measured at variable temperatures on-line to a polyurethane polymerization

    Science.gov (United States)

    Schuchardt, Patrick; Unger, Miriam; Siesler, Heinz W.

    2018-01-01

    In the present communication the potential of 2DCOS analysis and the spin-off technique perturbation-correlation moving window 2D (PCMW2D) analysis is illustrated with reference to spectroscopic changes observed in a data set recorded by in-line fiber-coupled FT-IR spectroscopy in the attenuated total reflection (ATR) mode during a polyurethane solution polymerization at different temperatures. In view of the chemical functionalities involved, hydrogen bonding plays an important role in this polymerization reaction. Based on the 2DCOS and PCMW2D analysis, the sequence of hydrogen bonding changes accompanying the progress of polymerization and precipitation of solid polymer can be determined. Complementary to the kinetic data derived from the original variable-temperature spectra in a previous publication the results provide a more detailed picture of the investigated solution polymerization.

  5. Similarity analysis of spectra obtained via reflectance spectrometry in legal medicine.

    Science.gov (United States)

    Belenki, Liudmila; Sterzik, Vera; Bohnert, Michael

    2014-02-01

    In the present study, a series of reflectance spectra of postmortem lividity, pallor, and putrefaction-affected skin for 195 investigated cases in the course of cooling down the corpse has been collected. The reflectance spectrometric measurements were stored together with their respective metadata in a MySQL database. The latter has been managed via a scientific information repository. We propose similarity measures and a criterion of similarity that capture similar spectra recorded at corpse skin. We systematically clustered reflectance spectra from the database as well as their metadata, such as case number, age, sex, skin temperature, duration of cooling, and postmortem time, with respect to the given criterion of similarity. Altogether, more than 500 reflectance spectra have been pairwisely compared. The measures that have been used to compare a pair of reflectance curve samples include the Euclidean distance between curves and the Euclidean distance between derivatives of the functions represented by the reflectance curves at the same wavelengths in the spectral range of visible light between 380 and 750 nm. For each case, using the recorded reflectance curves and the similarity criterion, the postmortem time interval during which a characteristic change in the shape of reflectance spectrum takes place is estimated. The latter is carried out via a software package composed of Java, Python, and MatLab scripts that query the MySQL database. We show that in legal medicine, matching and clustering of reflectance curves obtained by means of reflectance spectrometry with respect to a given criterion of similarity can be used to estimate the postmortem interval.

  6. Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo

    Science.gov (United States)

    Popov, Alexey P.; Bykov, Alexander V.; Meglinski, Igor V.

    2017-11-01

    Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters.

  7. Effect of low-temperature argon matrices on IR spectra and structure of flexible N-acetylglycine molecules

    International Nuclear Information System (INIS)

    Stepan'yan, S.G.; Ivanov, A.Yu.; Adamowicz, L.

    2016-01-01

    The influence of the matrix environment on structure and IR spectra of the N-acetylglycine conformers was studied. Based on the FTIR spectra of N-acetyl-glycine isolated in low temperature argon matrices we determined its conformational composition. The spectra bands of main and two minor conformers of N-acetylglycine were identified in the FTIR spectra. The structure of the observed conformers was stabilized by different intramolecular hydrogen bonds. The Gibbs free energies of the conformers (CCSD(T)/CBS method) were performed and population of the con-formers at 360 K were determined. They were 85.3% for the main conformer and 9.6 and 5.1% for the mi-nor N-acetylglycine conformers. We also determined size and shape of the cavities which were formed by embedding of the N-acetylglycine conformers in argon matrices during deposition. It was found that for the planar main conformer the most energetically preferred cavity was formed by substituting of 7 argon atoms. At the same time, bulky minor conformers were embedded in a cavity formed by substituting of 8 argon atoms. Complexation energies as well as the deformation energies of the argon crystal and conformers of N-acetylglycine were calculated. Also we determined values of the matrix shifts of vibrational frequencies of N-acetylglycine conformers.

  8. Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity

    Science.gov (United States)

    Chevrot, C.; Teyssié, D.; Verge, P.; Goujon, L.; Tran-Van, F.; Vidal, F.; Aubert, P. H.; Peralta, S.; Sauques, L.

    2011-04-01

    A promising alternative of multi-layered devices showing electrochromic properties results from the design of a self-supported semi-interpenetrating polymer network (semi-IPN) including an electronic conductive polymer (ECP) formed within. The formation of the ECP in the network has already been described by oxidative polymerization using iron trichloride as an oxidant and leading to conducting semi-IPN with mixed electronic and ionic conductivities as well as convenient mechanical properties. This presentation relates to the elaboration of such semi-IPN using polyethyleneoxide (PEO) network or a PEO/NBR (Nitrile Butadiene Rubber) IPN in which a linear poly (3,4-ethylenedioxythiophene) (PEDOT) is formed symmetrically and selectively as very thin layers very next to the two main faces of the film matrix. PEO/PEDOT semi-IPNs lead to interesting optical reflective properties in the IR between 0.8 and 25 μm. Reflectance contrasts up to 35 % is observed when, after swelling in an ionic liquid, a low voltage is applied between the two main faces of the film. However the low flexibility and brittleness of the film and a slow degradation in air at temperature up from 60°C prompted to replace the PEO matrix by a flexible PEO/NBR IPN one. Indeed, the combination of NBR and PEO in an IPN leads to materials possessing flexible properties, good ionic conductivity at 25°C as well as a better resistance to thermal ageing. Finally, NBR/PEO/PEDOT semi-IPNs allow observing comparable reflectance contrast in the IR range than those shown by PEO/PEDOT semi-IPNs.

  9. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    Science.gov (United States)

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  10. A series of sheet-structured alkali metal uranyl oxalate hydrates: structures and IR spectra

    International Nuclear Information System (INIS)

    Giesting, P.A.; Porter, N.J.; Burns, P.C.

    2006-01-01

    The novel compounds K[(UO 2 ) 2 (C 2 O 4 ) 2 OH] . 2 H 2 O (KUrO x ), Rb[(UO 2 ) 2 (C 2 O 4 ) 2 OH] . 2 H 2 O (RbUrO x ), and Cs[(UO 2 ) 2 (C 2 O 4 ) 2 OH] . H 2 O (CsUrO x ) have been synthesized by mild hydrothermal methods. Single crystal diffraction data collected at 125 K using MoK α radiation and a CCD-based area detector were used to solve and refine the crystal structures by full-matrix least-squares techniques to agreement indices (KUrO x , RbUrO x , CsUrO x ) wR 2 = 0.045, 0.062, 0.042 for all data, and R1 = 0.023, 0.030, 0.022 calculated for 1834, 1863, 1821 unique reflections respectively. The compounds KUrO x , RbUrO x , and CsUrO x are all monoclinic, space group P2 1 /m, Z = 2. The unit cell of KUrO x has the dimensions a = 5.6427(4), b = 13.7123(9), c = 9.2669(6) Aa, β = 98.7490(10) , V = 708.68(8) Aa 3 . The unit cell of RbUrO x has the dimensions a = 5.6225(4), b = 13.8339(9), c = 9.3308(6) Aa, β = 98.1590(10) , V = 718.41(8) Aa 3 . The unit cell of CsUrO x has the dimensions a = 5.4688(3), b = 13.5710(8), c = 9.5408(5) Aa, β = 97.5830(10) , V = 701.90(7) Aa 3 . The structures consist of chains of uranyl pentagonal bipyramids connected by oxalate groups and hydroxyl groups, and are isotypic with the compound NR 4 [(UO 2 ) 2 (C 2 O 4 ) 2 OH] . 2 H 2 O studied by Artem'eva et al. (2003); all four of these compounds are structurally composed of sheets made by polymerizing the chains of UO 2 C 2 O 4 (H 2 O) . 2 H 2 O (Jayadevan and Chackraburtty, 1972; Mikhailov et al., (1999)), this being achieved by removing a H atom from an H 2 O group in the coordination sphere of the uranyl ion to form a hydroxyl vertex that is shared by two uranyl ions. Compensating positive charges are provided by the inclusion of large monovalent cations in channels that run through the sheets; these channels also contain hydrogen-bound H 2 O groups. The positions of the cations and H 2 O groups change in relation to the uranyl oxalate sheets and to each other through the

  11. Constrained energy minimization applied to apparent reflectance and single-scattering albedo spectra: a comparison

    Science.gov (United States)

    Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.

    1996-11-01

    Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.

  12. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    Science.gov (United States)

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  13. Reconstruction of fiber grating refractive-index profiles from complex bragg reflection spectra.

    Science.gov (United States)

    Huang, D W; Yang, C C

    1999-07-20

    Reconstruction of the refractive-index profiles of fiber gratings from their complex Bragg reflection spectra is experimentally demonstrated. The amplitude and phase of the complex reflection spectrum were measured with a balanced Michelson interferometer. By integrating the coupled-mode equations, we built the relationship between the complex coupling coefficient and the complex reflection spectrum as an iterative algorithm for reconstructing the index profile. This method is expected to be useful for reconstructing the index profiles of fiber gratings with any apodization, chirp, or dc structures. An apodized chirped grating and a uniform grating with a depression of index modulation were used to demonstrate the technique.

  14. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  15. A system for the obtention and analysis of diffuse reflection spectra from biological tissue

    International Nuclear Information System (INIS)

    La Cadena, A. de; La Rosa, J. de; Stolik, S.

    2012-01-01

    The diffuse reflection spectroscopy is a technique with is possible to study biological tissue. In the field of the biomedical applications is useful for diagnostic purposes, since is possible to analyze biological tissue in a non invasive way. also, can be used with therapeutical purposes, for example in photodynamic therapy or laser surgery because with this technique it can be determined the biological effects produced by these treatments. In this paper is shown the development of a system to obtain and analyze diffuse reflection spectra of biological tissues, using a LED as a light source, that emits light between 400-700nm. The system has an interface for the regulation of the emittance of the LED. For diffuse reflectance spectra analysis, we use an HR4000CG-UV-NIR spectrometer. (Author)

  16. Interlayer interactions in absorption and reflection spectra of bismuth HTSC crystals

    International Nuclear Information System (INIS)

    Kruchinin, S.P.; Yaremko, A.M.

    1992-01-01

    The HTSC reflection and absorption optic spectra peculiarities are analysed in the paper on the basis of bismuth and thallium. The approach suggested takes into account the complex character of crystals structure, possible localization of excitations in the isolated layers and further excitations exchange due to the interlayer interaction between cuprate (Cu O) and quasi-degenerate bismuth layers (Bi O/3pO). The expressions for the excitation and intensity energies of the corresponding transitions are obtained. It is shown that only part of excitations whose number is determined by the number of layers in the unit cell will be manifest in optical reflection and absorption spectra. The experimental results on spectral dependence of crystal reflection coefficients are analysed

  17. IR spectra and structure of glasses in the BaO-WO3-P2O5 system

    International Nuclear Information System (INIS)

    Miroshnichenko, O.Ya.; Mombelli, V.V.

    1979-01-01

    Studied are IR absorption spectra and determined are the main structural characteristics of tungstophosphate glasses of the BaO-WO 3 -P 2 O 5 system in all the area of glass formation. It is shown that the main structural components of their anion network are phosphate chains consisting of PO 4 tetrahedrons and tungstate chains consisting of WO 4 tetrahedrons and of WO 6 octahedrons. These chains are connected by P-O-W bridges into three-dimentional tungstophosphate network, where the ratio of phosphate and tungstate structural units and their polymerization degree change without limits depending on the glass composition. Analysis of concentration frequency dependence and spectral band intensity permit to clarify the effect of each component on the glass structure in all the area of glass formation of the triple system

  18. Ab initio and density functional force field studies on the IR spectra and structure of diazonium dicyanomethylide (diazodicyanomethane)

    Science.gov (United States)

    Georgieva, Miglena K.

    2004-03-01

    The structure of diazonium dicyanomethylide (diazodicyanomethane) +N 2-C(CN) 2-↔N 2C(CN) 2 has been studied on the basis of ab initio HF, MP2 and DFT BLYP force field calculations, as well as of literature IR spectra and X-ray diffraction structural data. The results have been compared with those obtained for a series of chemical relatives of the title compound, i.e. molecules, push-pull molecules, anions and zwitterions, containing α-dicyano or diazo fragments, and especially substituted ammonium dicyanomethylides and diazomethane +N 2-CH 2-↔N 2CH 2. It has been found on the basis of spectral, bond length, bond order and electric charge analyses that the diazonium (or carbanionic, left) canonical form is much more important for the title zwitterion, than the corresponding one for diazomethane. So, the title compound can be named (and considered as) both diazonium dicyanomethylide and dicyanodiazomethane.

  19. Optimized geometry, vibration (IR and Raman spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

    Directory of Open Access Journals (Sweden)

    Tamer Ömer

    2016-03-01

    Full Text Available The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT. The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.

  20. Thiobarbiturate and barbiturate salts of pefloxacin drug: Growth, structure, thermal stability and IR-spectra

    Science.gov (United States)

    Golovnev, Nicolay N.; Molokeev, Maxim S.; Lesnikov, Maxim K.; Sterkhova, Irina V.; Atuchin, Victor V.

    2017-12-01

    Three new salts of pefloxacin (PefH) with thiobarbituric (H2tba) and barbituric (H2ba) acids, pefloxacinium 2-thiobarbiturate trihydrate, PefH2(Htba)·3H2O (1), pefloxacinium 2-thiobarbiturate, PefH2(Htba) (2) and bis(pefloxacinium barbiturate) hydrate, (PefH2)2(Hba)2·2.56H2O (3) are synthesized and structurally characterized by the X-ray single-crystal diffraction. The structures of 1-3 contain intramolecular hydrogen bonds Csbnd H⋯F, Osbnd H⋯O. Intermolecular hydrogen bonds Nsbnd H⋯O and Osbnd H⋯O form a 2D plane network in 1. In 2 and 3, intermolecular hydrogen bonds Nsbnd H⋯O form the infinite chains. In 1-3, the Htba- and Hba- ions are connected with PefH2+ only by one intermolecular hydrogen bond Nsbnd H⋯O. In 2 and 3, two Htba- and Hba- ions are connected by two hydrogen bonds Nsbnd H⋯O. These pairs form infinite chains. All three structures are stabilized by the π-π interactions of the head-to-tail type between PefH2+ ions. Compounds 2 and 3 are characterized by powder XRD, TG-DSC and FT-IR.

  1. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  2. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    Energy Technology Data Exchange (ETDEWEB)

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  3. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 1

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ spectroelectrochemical measurements with external reflection FT-IR are performed at different stages of polymerization of 0.05, 0.1 and 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. The biphenyl concentration is not found to have any effect on the structure of the polymer formed. Formation of oligomers and the ratio of ortho/para-substituted polymer chains during film growth are studied. The first coupling of dimers to oligomers is found to take place in the vicinity of the electrode surface and at a later stage of polymerization the oligomers start to form polymer film on the electrode. A mixed para and ortho coupling resulting in crosslinking between chains is observed already at the early stage of polymerization. However, when a lower current density is used a more ordered polymer structure is obtained. A breakdown of the polymer film due to overoxidation can be seen when the potential is increased to 2.0 V. (orig.)

  4. Formulation comprising silicon microparticles, as a pigment that can absorb visible UV radiation and reflect ir radiation

    OpenAIRE

    Rodríguez, Marie-Isabelle; Fenollosa Esteve, Roberto; Meseguer, Francisco

    2011-01-01

    [EN] The invention relates to a formulation characterised in that it comprises silicon microparticles having a size between 0.010 um and 50 um in diameter, and to the use thereof as a pigment that can absorb visible UV radiation and reflect IR radiation.

  5. Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids

    Science.gov (United States)

    Jarvis, Kandy S.; Vilas, Faith; Gaffey, Michael J.

    1993-01-01

    High resolution reflectance spectra of primitive asteroids (C, P, and D class and associated subclasses) have commonly revealed an absorption feature centered at 0.7 microns attributed to an Fe(2+)-Fe(3+) charge transfer transition in iron oxides and/or oxidized iron in phyllosilicates. A smaller feature identified at 0.43 microns has been attributed to an Fe(3+) spin-forbidden transition in iron oxides. In the spectra of the two main-belt primitive asteroids 368 Haidea (D) and 877 Walkure (F), weak absorption features which were centered near the location of 0.60-0.65 microns and 0.80-0.90 microns prompted a search for features at these wavelengths and an attempt to identify their origin(s). The CCD reflectance spectra obtained between 1982-1992 were reviewed for similar absorption features located near these wavelengths. The spectra of asteroids in which these absorption features have been identified are shown. These spectra are plotted in order of increasing heliocentric distance. No division of the asteroids by class has been attempted here (although the absence of these features in the anhydrous S-class asteroids, many of which have presumably undergone full heating and differentiation should be noted). For this study, each spectrum was treated as a continuum with discrete absorption features superimposed on it. For each object, a linear least squares fit to the data points defined a simple linear continuum. The linear continuum was then divided into each spectrum, thus removing the sloped continuum and permitting the intercomparison of residual spectral features.

  6. Analysis of Fe species in zeolites by UV-VIS-NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Kreibich, Viktor; Dědeček, Jiří; Grygar, Tomáš; Wichterlová, Blanka; Sobalík, Zdeněk; Martens, J. A.; Brosius, R.; Tokarová, V.

    2005-01-01

    Roč. 80, 1-3 (2005), s. 279-289 ISSN 1387-1811 R&D Projects: GA MŠk OC D15.20 Grant - others:European Union(XE) G5RD-CT-2001-00595 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fe-zeolites * UV-VIS spectra * IR spectra * voltammetry * Fe complexes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.355, year: 2005

  7. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    , suggesting the possibility of a compact energy source and stratified interstellar medium in their nuclei. We confirm a strong correlation between the sum of the [Ne II]{sub 12.8{sub μm}} and [Ne III]{sub 15.5{sub μm}} emission, as well as [S III]{sub 33.5{sub μm}}, with both the infrared luminosity and the 24 μm warm dust emission measured from the spectra, consistent with all three lines tracing ongoing star formation. Finally, we find no correlation between the hardness of the radiation field or the emission-line width and the ratio of the total infrared to 8 μm emission (IR8), a measure of the strength of the starburst and the distance of the LIRGs from the star-forming main sequence. This may be a function of the fact that the infrared luminosity and the mid-infrared fine-structure lines are sensitive to different timescales over the starburst, or that IR8 is more sensitive to the geometry of the region emitting the warm dust than the radiation field producing the H II region emission.

  8. Mid-IR Reflectance (DRIFT) Spectral Variations in Basaltic Mineralogy with Direction of Impact at Lonar Crater, India

    Science.gov (United States)

    Basavaiah, N.; Chavan, R. S.; Arif, M.

    2012-12-01

    Identification of spectral changes with the direction of impact has important implications for understanding the impact cratering phenomenon occurring on both terrestrial and extraterrestrial planets and also for geology of the crater. Fortuitously, Lonar Impact Crater (India) is the only well-preserved terrestrial simple crater excavated on Deccan basalts and serves as an excellent analogue to craters on Mars and Moon. An ~570 ka old Lonar crater was suggested to be formed by an oblique impact of a chondritic impactor that struck the pre-impact target from the east into a sequence of six basaltic Deccan flows and created a 1.88 km diameter crater with two layers of ejecta blanket. Here we report preliminary laboratory studies of spectral results on fine-grained rock powers (IR (4000-400 cm-1) Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The basalts were collected from two profiles in the east and south sections of the crater wall and the upper most crater rim, which later subdivided into sector-wise samples to carry out a systematic study of spectral properties of Lonar basalts, together with impact related samples of breccias and impact melts. For the first time, data of the shock metamorphism of Lonar basalt is examined using DRIFT spectroscopy. Infrared spectra of rock powders of relatively unshocked and shocked basalts are obtained to document the mineralogical variations and the distribution of primary (e.g. Plagioclase Feldspar, Pyroxene), and secondary Phyllosilicate minerals (e.g. Illite, Smectite, Montmorillonite, Saponite, Serpentine) with direction of impact. The spectral data between pre-impact unshocked and post-impact shocked basalts are interpreted to reflect the effect of shock pressure and alteration that rock have undergone. On western crater rim sector, typical silicate spectral features in 900-1200 cm-1 which attributed to Si-O stretching, are observed to change slightly in the width and shift in position as a result of

  9. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  10. The effect of grain size and phosphorous-doping of polycrystalline 3C–SiC on infrared reflectance spectra

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Engelbrecht, J.A.A.; Henry, A.; Janzén, E.; Neethling, J.H.; Rooyen, P.M. van

    2012-01-01

    Highlights: ► IR is investigated as a technique to measure grain size and P-doping of polycrystalline SiC. ► Infrared plasma minima can be used to determine doping levels in 3C–SiC for doping levels greater than 5 × 10 17 cm −3 . ► A linear relationship is found between FWHM and the inverse of grain size of 3C–SiC irrespective of P-doping level. ► It is further found that ω p is not influenced by the grain size. ► P-doping level has no significant effect on the linear relationship between grain size and surface roughness. - Abstract: The effect of P-doping and grain size of polycrystalline 3C–SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behavior of the 3C–SiC with the highest phosphorous doping level (of 1.2 × 10 19 at. cm −3 ) is different from those with lower doping levels ( 18 at. cm −3 ). It is also further demonstrated that the plasma resonance frequency (ω p ) is not influenced by the grain size.

  11. The effect of grain size and phosphorous-doping of polycrystalline 3C-SiC on infrared reflectance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabella.vanRooyen@inl.gov [Fuel Performance and Design Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Engelbrecht, J.A.A. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A.; Janzen, E. [Department of Physics, Chemistry and Biology, Semiconductor Materials, Linkoeping University, Linkoeping 58183 (Sweden); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Philip M van Rooyen Network Consultants, Midlands Estates (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer IR is investigated as a technique to measure grain size and P-doping of polycrystalline SiC. Black-Right-Pointing-Pointer Infrared plasma minima can be used to determine doping levels in 3C-SiC for doping levels greater than 5 Multiplication-Sign 10{sup 17} cm{sup -3}. Black-Right-Pointing-Pointer A linear relationship is found between FWHM and the inverse of grain size of 3C-SiC irrespective of P-doping level. Black-Right-Pointing-Pointer It is further found that {omega}{sub p} is not influenced by the grain size. Black-Right-Pointing-Pointer P-doping level has no significant effect on the linear relationship between grain size and surface roughness. - Abstract: The effect of P-doping and grain size of polycrystalline 3C-SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behavior of the 3C-SiC with the highest phosphorous doping level (of 1.2 Multiplication-Sign 10{sup 19} at. cm{sup -3}) is different from those with lower doping levels (<6.6 Multiplication-Sign 10{sup 18} at. cm{sup -3}). It is also further demonstrated that the plasma resonance frequency ({omega}{sub p}) is not influenced by the grain size.

  12. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.

    Science.gov (United States)

    Lee, Christopher M; Kubicki, James D; Fan, Bingxin; Zhong, Linghao; Jarvis, Michael C; Kim, Seong H

    2015-12-10

    Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iβ crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.

  13. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    Science.gov (United States)

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Reactions of laser-ablated Co, Rh, and Ir with CO: Infrared spectra and density functional calculations of the metal carbonyl molecules, cations and anions in solid neon

    International Nuclear Information System (INIS)

    Zhou, M.; Andrews, L.

    1999-01-01

    Laser ablation produces metal atoms, cations, and electrons for reaction with CO during condensation in excess neon at 4 K. Infrared spectra are observed for the metal carbonyls, cations, and anions, which are identified from isotopic shifts ( 13 CO, C 18 O) and splittings using mixed isotopic precursors. Density functional calculations with pseudopotentials for Rh and Ir predict the observed carbonyl stretching frequencies within 1--2%. This characterization of the simple RhCO + , RhCO, and RhCO - (and Ir) species over a 350 cm -1 range provides a scale for comparison of larger catalytically active Rh and Ir carbonyl complexes in solution and on surfaces to estimate charge on the metal center. This work provides the first spectroscopic characterization of Rh and Ir carbonyl cations and anions except for the stable tetracarbonyl anions in solution

  15. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    Science.gov (United States)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  16. Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets

    Science.gov (United States)

    MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.

    2018-05-01

    The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (T eff clouds brighten the planet: T eff ∼ 150 K, g ≳ 20 ms‑2, f sed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and T eff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High f sed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.

  17. Reconstruction of structural damage based on reflection intensity spectra of fiber Bragg gratings

    International Nuclear Information System (INIS)

    Huang, Guojun; Wei, Changben; Chen, Shiyuan; Yang, Guowei

    2014-01-01

    We present an approach for structural damage reconstruction based on the reflection intensity spectra of fiber Bragg gratings (FBGs). Our approach incorporates the finite element method, transfer matrix (T-matrix), and genetic algorithm to solve the inverse photo-elastic problem of damage reconstruction, i.e. to identify the location, size, and shape of a defect. By introducing a parameterized characterization of the damage information, the inverse photo-elastic problem is reduced to an optimization problem, and a relevant computational scheme was developed. The scheme iteratively searches for the solution to the corresponding direct photo-elastic problem until the simulated and measured (or target) reflection intensity spectra of the FBGs near the defect coincide within a prescribed error. Proof-of-concept validations of our approach were performed numerically and experimentally using both holed and cracked plate samples as typical cases of plane-stress problems. The damage identifiability was simulated by changing the deployment of the FBG sensors, including the total number of sensors and their distance to the defect. Both the numerical and experimental results demonstrate that our approach is effective and promising. It provides us with a photo-elastic method for developing a remote, automatic damage-imaging technique that substantially improves damage identification for structural health monitoring. (paper)

  18. Infrared polarimetry of the reflection nebula near L 1551 IRS 5

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuya; Yamashita, Takuya; Sato, Shuji; Suzuki, Hiro; Hough, J H; Garden, R; Gatley, I

    1986-11-01

    The K-band polarization has been measured in the region extending 30 arcsec to the SW of L 1551 IRS5. The degree of polarization is exceptionally high, reaching approx. 67 per cent. The large polarizations and the azimuthal pattern of the position angles are attributed to scattering of infrared radiation from IRS5 by dust grains. The infrared brightness distribution resembles that of the optical nebulosity. It is proposed that infrared scattering occurs at the 'walls' of a cavity formed by the interaction of stellar winds with the ambient cloud.

  19. Plasmonic properties of gold nanoparticles on silicon substrates: Understanding Fano-like spectra observed in reflection

    Science.gov (United States)

    Bossard-Giannesini, Léo; Cruguel, Hervé; Lacaze, Emmanuelle; Pluchery, Olivier

    2016-09-01

    Gold nanoparticles (AuNPs) are known for their localized surface plasmon resonance (LSPR) that can be measured with UV-visible spectroscopy. AuNPs are often deposited on silicon substrates for various applications, and the LSPR is measured in reflection. In this case, optical spectra are measured by surface differential reflectance spectroscopy (SDRS) and the absorbance exhibits a negative peak. This article studies both experimentally and theoretically on the single layers of 16 nm diameter spherical gold nanoparticles (AuNPs) grafted on silicon. The morphology and surface density of AuNPs were investigated by atomic force microscopy (AFM). The plasmon response in transmission on the glass substrate and in reflection on the silicon substrate is described by an analytical model based on the Fresnel equations and the Maxwell-Garnett effective medium theory (FMG). The FMG model shows a strong dependence to the incidence angle of the light. At low incident angles, the peak appears negatively with a shallow intensity, and at angles above 30°, the usual positive shape of the plasmon is retrieved. The relevance of the FMG model is compared to the Mie theory within the dipolar approximation. We conclude that no Fano effect is responsible for this derivative shape. An easy-to-use formula is derived that agrees with our experimental data.

  20. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  1. Fundamental quantification procedure for total reflection X-ray fluorescence spectra analysis and elements determination

    International Nuclear Information System (INIS)

    Wegrzynek, D.; Holynska, B.

    1997-01-01

    A method for the determination of the concentrations of elements in particulate-like samples measured in total reflection geometry is proposed. In the proposed method the fundamental parameters are utilized for calculating the sensitivities of elements and an internal standard is used to account for the unknown mass per unit area of a sample and geometrical constant of the spectrometer. The modification of the primary excitation spectrum on its way to a sample has been taken into consideration. The concentrations of the elements to be determined are calculated simultaneously with the spectra deconvolution procedure. In the process of quantitative analysis the intensities of all X-ray peaks corresponding to K and L-series lines present in the analyzed spectrum are taken into account. (Author)

  2. Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra

    Science.gov (United States)

    Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.

    2011-07-01

    We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.

  3. Visible Wavelength Reflectance Spectra and Taxonomies of Near-Earth Objects from Apache Point Observatory

    Science.gov (United States)

    Hammergren, Mark; Brucker, Melissa J.; Nault, Kristie A.; Gyuk, Geza; Solontoi, Michael R.

    2015-11-01

    Near-Earth Objects (NEOs) are interesting to scientists and the general public for diverse reasons: their impacts pose a threat to life and property; they present important albeit biased records of the formation and evolution of the Solar System; and their materials may provide in situ resources for future space exploration and habitation.In January 2015 we began a program of NEO astrometric follow-up and physical characterization using a 17% share of time on the Astrophysical Research Consortium (ARC) 3.5-meter telescope at Apache Point Observatory (APO). Our 500 hours of annual observing time are split into frequent, short astrometric runs (see poster by K. A. Nault et. al), and half-night runs devoted to physical characterization (see poster by M. J. Brucker et. al for preliminary rotational lightcurve results). NEO surface compositions are investigated with 0.36-1.0 μm reflectance spectroscopy using the Dual Imaging Spectrograph (DIS) instrument. As of August 25, 2015, including testing runs during fourth quarter 2014, we have obtained reflectance spectra of 68 unique NEOs, ranging in diameter from approximately 5m to 8km.In addition to investigating the compositions of individual NEOs to inform impact hazard and space resource evaluations, we may examine the distribution of taxonomic types and potential trends with other physical and orbital properties. For example, the Yarkovsky effect, which is dependent on asteroid shape, mass, rotation, and thermal characteristics, is believed to dominate other dynamical effects in driving the delivery of small NEOs from the main asteroid belt. Studies of the taxonomic distribution of a large sample of NEOs of a wide range of sizes will test this hypothesis.We present a preliminary analysis of the reflectance spectra obtained in our survey to date, including taxonomic classifications and potential trends with size.Acknowledgements: Based on observations obtained with the Apache Point Observatory 3.5-meter telescope, which

  4. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures

    Science.gov (United States)

    Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.

    2018-04-01

    A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.

  5. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  6. The investigation of hydrogens bonds between sulphur-bearing heterocyclic and proton-donor compounds by IR absorption spectra

    International Nuclear Information System (INIS)

    Narziev, B.N.; Nurulloev, M.; Makhkambaev, D.

    1982-01-01

    In this article the results of intermolecular interaction study of sulfur-containing heterocyclic (thiophene, thiophane) and proton-donar (water, alcohol, carbonic acids, chlorophon) molecules for measuring of IR spectrum absorption of protondonar compounds in soluted shape are presented

  7. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  8. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  9. On the use of spectra from portable Raman and ATR-IR instruments in synthesis route attribution of a chemical warfare agent by multivariate modeling.

    Science.gov (United States)

    Wiktelius, Daniel; Ahlinder, Linnea; Larsson, Andreas; Höjer Holmgren, Karin; Norlin, Rikard; Andersson, Per Ola

    2018-08-15

    Collecting data under field conditions for forensic investigations of chemical warfare agents calls for the use of portable instruments. In this study, a set of aged, crude preparations of sulfur mustard were characterized spectroscopically without any sample preparation using handheld Raman and portable IR instruments. The spectral data was used to construct Random Forest multivariate models for the attribution of test set samples to the synthetic method used for their production. Colored and fluorescent samples were included in the study, which made Raman spectroscopy challenging although fluorescence was diminished by using an excitation wavelength of 1064 nm. The predictive power of models constructed with IR or Raman data alone, as well as with combined data was investigated. Both techniques gave useful data for attribution. Model performance was enhanced when Raman and IR spectra were combined, allowing correct classification of 19/23 (83%) of test set spectra. The results demonstrate that data obtained with spectroscopy instruments amenable for field deployment can be useful in forensic studies of chemical warfare agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Retrieving CO concentrations from FT-IR spectra with nonmodeled interferences and fluctuating baselines using PCR model parameters

    DEFF Research Database (Denmark)

    Bak, J.

    2001-01-01

    It is demonstrated that good predictions of gas concentrations based on measured spectra can be made even if these spectra contain totally overlapping spectral features from nonidentified and non-modeled interfering compounds and fluctuating baselines. The prediction program (CONTOUR) is based...... solely on principal component regression (PCR) model parameters, CONTOUR consists of two smaller algorithms. The first of these is used to calculate pure component spectra based on the PCR model parameters at different concentrations. In the second algorithm, the calculated pure component spectra...... remains. The assumptions are that the background and analytical signals must be additive and that no accidental match between these signals takes place. The best results are obtained with the use of spectra with a high selectivity. The use of the program is demonstrated hg applying simple single...

  11. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS.

    Science.gov (United States)

    Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw

    2016-07-01

    Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. © The Author(s) 2016.

  12. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  13. Analyzing asteroid reflectance spectra with numerical tools based on scattering simulations

    Science.gov (United States)

    Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are developing a set of numerical tools that can be used in analyzing the reflectance spectra of granular materials such as the regolith surface of atmosphereless Solar system objects. Our goal is to be able to explain, with realistic numerical scattering models, the spectral features arising when materials are intimately mixed together. We include the space-weathering -type effects in our simulations, i.e., mixing host mineral locally with small inclusions of another material in small proportions. Our motivation for this study comes from the present lack of such tools. The current common practice is to apply a semi-physical approximate model such as some variation of Hapke models [e.g., 1] or the Shkuratov model [2]. These models are expressed in a closed form so that they are relatively fast to apply. They are based on simplifications on the radiative transfer theory. The problem is that the validity of the model is not always guaranteed, and the derived physical properties related to particle scattering properties can be unrealistic [3]. We base our numerical tool into a chain of scattering simulations. Scattering properties of small inclusions inside an absorbing host matrix can be derived using exact methods solving the Maxwell equations of the system. The next step, scattering by a single regolith grain, is solved using a geometrical optics method accounting for surface reflections, internal absorption, and possibly the internal diffuse scattering. The third step involves the radiative transfer simulations of these regolith grains in a macroscopic planar element. The chain can be continued next with shadowing simulation over the target surface elements, and finally by integrating the bidirectional reflectance distribution function over the object's shape. Most of the tools in the proposed chain already exist, and one practical task for us is to tie these together into an easy-to-use toolchain that can be publicly distributed. We plan to open the

  14. Statistical inference for classification of RRIM clone series using near IR reflectance properties

    Science.gov (United States)

    Ismail, Faridatul Aima; Madzhi, Nina Korlina; Hashim, Hadzli; Abdullah, Noor Ezan; Khairuzzaman, Noor Aishah; Azmi, Azrie Faris Mohd; Sampian, Ahmad Faiz Mohd; Harun, Muhammad Hafiz

    2015-08-01

    RRIM clone is a rubber breeding series produced by RRIM (Rubber Research Institute of Malaysia) through "rubber breeding program" to improve latex yield and producing clones attractive to farmers. The objective of this work is to analyse measurement of optical sensing device on latex of selected clone series. The device using transmitting NIR properties and its reflectance is converted in terms of voltage. The obtained reflectance index value via voltage was analyzed using statistical technique in order to find out the discrimination among the clones. From the statistical results using error plots and one-way ANOVA test, there is an overwhelming evidence showing discrimination of RRIM 2002, RRIM 2007 and RRIM 3001 clone series with p value = 0.000. RRIM 2008 cannot be discriminated with RRIM 2014; however both of these groups are distinct from the other clones.

  15. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    Science.gov (United States)

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

  16. Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. III: atmospheric emission spectra

    International Nuclear Information System (INIS)

    Niro, F.; Clarmann, T. von; Jucks, K.; Hartmann, J.-M.

    2005-01-01

    A theoretical model for the prediction of CO 2 absorption in both central and wing regions of infrared absorption bands was presented in the companion paper I. It correctly accounts for line-mixing effects and was validated by comparisons with laboratory spectra in the 600-1000 cm -1 region. This quality was confirmed using atmospheric transmissions measured by solar occultation experiments in the second paper. The present work completes these studies by now considering atmospheric emission in the 10-20 μm range. Comparisons are made between computed atmospheric radiances and measurements obtained using four different Fourier transform experiments collecting spectra for nadir, up-looking, as well as limb (from balloon and satellite) geometries. Our results confirm that using a Voigt model can lead to very large errors that affect the spectrum more than 300 cm -1 away from the center of the CO 2 ν 2 band. They also demonstrate the capability of our model to represent accurately the radiances in the entire region for a variety of atmospheric paths. This success opens interesting perspectives for the sounding of pressure and temperature profiles, particularly at low altitudes. Another benefit of the quality of the model should be an increased accuracy in the retrieval of atmospheric state parameters from broad features in the measured spectra (clouds, aerosols, heavy trace gases)

  17. EFFECTS OF FATLIQURING PROCESS ON LEATHERS COLOURED WITH IR REFLECTIVE DYES AND PIGMENTS

    OpenAIRE

    MUTLU Mehmet Mete; ORK Nilay; YAKUT Fatih

    2017-01-01

    Black coloured materials and consumer goods are known to be heating up more, because they absorb sun radiation more than light colours. This heating is a problem for the users for black automotive or motorcycle leathers and also for dark shoes and boots which are exposed to sun heat. Human vision system can distinguish visible colours between the wavelengths of 390-700 nm. So reflecting the sun radiation in the infrared area of radiation spectrum higher than 700nm, is a solution for heating p...

  18. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    Science.gov (United States)

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  19. Sensing cocaine in saliva with attenuated total reflection infrared (ATR-IR) spectroscopy combined with a one-step extraction method

    Science.gov (United States)

    Hans, Kerstin M.-C.; Gianella, Michele; Sigrist, Markus W.

    2012-03-01

    On-site drug tests have gained importance, e.g., for protecting the society from impaired drivers. Since today's drug tests are majorly only positive/negative, there is a great need for a reliable, portable and preferentially quantitative drug test. In the project IrSens we aim to bridge this gap with the development of an optical sensor platform based on infrared spectroscopy and focus on cocaine detection in saliva. We combine a one-step extraction method, a sample drying technique and infrared attenuated total reflection (ATR) spectroscopy. As a first step we have developed an extraction technique that allows us to extract cocaine from saliva to an almost infrared-transparent solvent and to record ATR spectra with a commercially available Fourier Transform-infrared spectrometer. To the best of our knowledge this is the first time that such a simple and easy-to-use one-step extraction method is used to transfer cocaine from saliva into an organic solvent and detect it quantitatively. With this new method we are able to reach a current limit of detection around 10 μg/ml. This new extraction method could also be applied to waste water monitoring and controlling caffeine content in beverages.

  20. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    Science.gov (United States)

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  1. A new tridentate Schiff base Cu(II) complex: synthesis, experimental and theoretical studies on its crystal structure, FT-IR and UV-Visible spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Setoodeh, Nasim; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2013-06-01

    A new Cu(II) complex [Cu(L)(NCS)] has been synthesized, using 1-(N-salicylideneimino)-2-(N,N-methyl)-aminoethane as tridentate ONN donor Schiff base ligand (HL). The dark green crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FT-IR) and UV-Visible spectra. Electronic structure calculations at the B3LYP and MP2 levels of theory are performed to optimize the molecular geometry and to calculate the UV-Visible and FT-IR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TD-DFT) method is used to calculate the electronic transitions of the complex. A scaling factor of 1.015 is obtained for vibrational frequencies computed at the B3LYP level using basis sets 6-311G(d,p). It is found that solvent has a profound effect on the electronic absorption spectrum. The UV-Visible spectrum of the complex recorded in DMSO and DMF solution can be correctly predicted by a model in which DMSO and DMF molecules are coordinated to the central Cu atom via their oxygen atoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites

    Science.gov (United States)

    Reggente, Matteo; Dillner, Ann M.; Takahama, Satoshi

    2016-02-01

    Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric particulate matter (PM), which has been associated with increased morbidity and mortality, climate change, and reduced visibility. Typically OC and EC concentrations are measured using thermal-optical methods such as thermal-optical reflectance (TOR) from samples collected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE Teflon) filters using partial least square regression (PLSR) calibrated to TOR OC and EC measurements for a wide range of samples. The proposed method can be integrated with analysis of routinely collected PTFE filter samples that, in addition to OC and EC concentrations, can concurrently provide information regarding the functional group composition of the organic aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations collected in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models, and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from six sites are present both in the calibration and test sets. The calibrations produce accurate predictions both for samples collected at the same six sites present in the calibration set (R2 = 0.97 and R2 = 0.95 for OC and EC respectively), and for samples from 9 of the 11 sites not included in the calibration set (R2 = 0.96 and R2 = 0.91 for OC and EC respectively). Samples collected at the other two sites require a different calibration model to achieve accurate predictions. We also propose a method to anticipate the prediction error; we calculate the squared Mahalanobis distance in the feature space (scores determined by PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis distance provides a crude method for assessing the

  3. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle

    2006-01-01

    an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...... of the growing yeast biofilm, the gas correction revealed otherwise hidden variations of relevance for modeling the growth dynamics. As the presented method improved the interpretation of the principle component analysis (PCA) models, it has proven to be a valuable tool for filtering atmospheric variation in ATR...

  4. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Francesca R. Bertani

    2013-10-01

    Full Text Available A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods.

  5. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin.

    Science.gov (United States)

    Stumpe, B; Engel, T; Steinweg, B; Marschner, B

    2012-04-03

    In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.

  6. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    International Nuclear Information System (INIS)

    Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V

    2011-01-01

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)

  7. Reflectance spectra characteristics from an SPR grating fabricated by nano-imprint lithography technique for biochemical nanosensor applications

    Science.gov (United States)

    Setiya Pradana, Jalu; Hidayat, Rahmat

    2018-04-01

    In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.

  8. Properties of spectra of the reflected and transmitted radiation during propagation of relativistically strong laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Z.; Naumova, N.M.

    1996-01-01

    Particle-in-cell simulation has been performed to study the spatial-temporal evolution of the pulse propagating in an underdense plasma. The spectra both of the reflected and transmitted radiation are investigated. The spectrum structure of the reflected radiation is due to the backward stimulated Raman scattering meanwhile the transmitted radiation structure is mainly due to the nonlinear self-phase-modulation. The influence of the pulse shape on the transmitted radiation spectrum is revealed. The dependence of the main features of the spectrum and the self-consistent pulse distortion is found. The pulse distortion is accompanied by the relativistic electrons generation. copyright 1996 American Institute of Physics

  9. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25–500 °C

    International Nuclear Information System (INIS)

    Campbell, M.F.; Freeman, K.G.; Davidson, D.F.; Hanson, R.K.

    2014-01-01

    Gas-phase mid-infrared (IR) absorption spectra (2500–3400 cm −1 ) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm −1 . Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium–neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of C-H bonds in the molecule. - Highlights: • Infrared spectra of 11 fatty acid methyl esters (C 3 –C 11 ) have been measured. • A linear relationship for predicting 3.39 μm cross section values is proposed. • A molecule’s integrated area is linearly related to its number of C-H bonds. • Mono-unsaturation decreases cross section values

  10. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  11. Spectroscopic studies of ozone in cryosolutions: FT-IR spectra of 16O3 in liquid nitrogen, oxygen, argon and krypton

    Science.gov (United States)

    Bulanin, Kirill M.; Bulanin, Michael O.; Rudakova, Aida V.; Kolomijtsova, Tatiana D.; Shchepkin, Dmitrij N.

    2018-03-01

    We have measured and interpreted the IR spectra of ozone dissolved in liquid nitrogen, oxygen, argon, and krypton in the 650-4700 cm-1 spectral region at 79-117 K. Frequency shifts, band intensities and bandshapes of 22 spectral features of soluted ozone were analyzed. The bands of the A1 symmetry have a complex contour and possess an excess intensity with respect to the value of the purely vibrational transition moment. It was found that this effect is related to the manifestation of the Coriolis interaction. The bandshape distortion manifests itself as an additional intensity from the side of the B1 symmetry band being an intensity source in the case of the Coriolis interaction.

  12. Alteration of the UV-visible reflectance spectra of H2O ice by ion bombardment

    Science.gov (United States)

    Sack, N. J.; Boring, J. W.; Johnson, R. E.; Baragiola, R. A.; Shi, M.

    1991-01-01

    Satellite in the Jovian and Saturnian system exhibit differences in reflectivity between their 'leading' and 'trailing' surfaces which can affect the local vapor pressure. Since these differences are thought to be due to differences in the flux of bombarding magnetospheric ions, the influence of ion impact on the UV-visible reflectance of water ice surfaces (20-90 K) by keV ion bombardment was studied. An observed decrease in reflectance in the UV is attributed to rearrangement processes that affect the physical microstructure and surface 'roughness'. The ratio in reflectance of bombarded to freshly deposited films is compared to the ratio of the reflectance of the leading and trailing hemispheres for Europa and Ganymede.

  13. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    Science.gov (United States)

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra.

    Science.gov (United States)

    Nguyen, Minh-Hang; Tsai, Hau-Jie; Wu, Jen-Kuei; Wu, Yi-Shiuan; Lee, Ming-Chang; Tseng, Fan-Gang

    2013-09-15

    We present a chemical-biosensor in the Mid-IR range and based on cascaded porous silicon made on p- and n-type (100) silicon substrates of resistivities between 0.001Ωcm and 0.005Ωcm. The stacked porous layers of various porosities (20-80%) and thicknesses (5-9μm) are formed by successive electrochemical etchings with different current densities. Working with FTIR technique that possesses fast response, high sensitivity, and capability of detecting and identifying functional groups, the cascaded porous structures provided enhanced refractive index sensitivities and reduced detection limits in chemical and biodetection. The largest wavenumber shifts were 50cm(-1)/mM obtained for d-(+)-glucose and 96cm(-1)/μg/mL for Cy5-conjungated Rabbit Anti-Mouse IgG. The lowest detectable concentration of glucose was 80μM (1.4mg/mL) with PS porosity of 40% and thickness of about 9μm while it was 40ng/mL for Cy5-conjugated Rabbit Anti-Mouse IgG which is 2.5×10(5) folds better than those in literature. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.

    2015-01-01

    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  16. Study of the photoexcited carrier dynamics in InP:Fe using time-resolved reflection and photoluminescence spectra

    International Nuclear Information System (INIS)

    Huang Shihua; Li Xi; Lu Fang

    2004-01-01

    The photoexcited carrier dynamics and photoluminescence of the undoped InP and Fe implanted InP was studied by time-resolved reflection and photoluminescence spectra. The decay times of reflection recovery and the radiative recombination for Fe implanted InP are shorter than those of undoped InP. Considering the surface recombination, a model was developed to simulate the reflection recovery dynamics, it agrees with the experimental results very well. Moreover, we obtained the ambipolar diffusion coefficient and the surface recombination velocity by using the model. For Fe-doped InP, the surface recombination velocity is much larger than that for the undoped InP, which is probably due to Fe 2+/3+ trapping centers and the large surface band bending. The PL decay time for Fe implanted InP is shorter than that for undoped InP, which is ascribed to the capture centers introduced by metallic precipitates

  17. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    Science.gov (United States)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  18. Microcavity-coupled fiber Bragg grating with tunable reflection spectra and speed of light.

    Science.gov (United States)

    Chen, Lei; Han, Ya; Liu, Qian; Liu, Yan-Ge; Zhang, Weigang; Chou, Keng C

    2018-04-15

    After a fiber Bragg grating (FBG) is fabricated, the reflection spectrum of the FBG is generally not tunable without mechanical deformation or temperature adjustment. Here we present a microcavity-coupled FBG with both a tunable reflection lineshape and dispersion using electromagnetically induced transparency. The Fano interference of light in the FBG and the microcavity allows for dramatic modification of the reflection spectrum. The phase of the reflected spectrum is continuously tunable between 0 and 2π to produce various Fano lineshapes. The dispersion of the output light is adjustable from normal dispersion to abnormal dispersion, consequently providing an adjustable speed of light. Additionally, it allows the FBG to switch from a notch filter to a bandpass filter at the resonant wavelength, which is not possible in a conventional uniform FBG.

  19. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Science.gov (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  20. Beer-Lambert-Law Parametric Model of Reflectance Spectra for Dyed Fabrics

    Science.gov (United States)

    2016-06-06

    reflections from layered systems (i.e., scattering matrix formulations) [12,13,14], the Kubelka-Munk theory of diffuse reflectance (and formulations...mode. The Lambda 1050 incorporated a double beam, 150 mm integrating sphere housing a photomultiplier tube (PMT) detector for the UV-Vis (175 – 860 nm...of the combined system of dye and fabric. This relation follows from the Beer-Lambert law and formalism of the scattering- matrix [20]. In particular

  1. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    Science.gov (United States)

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Seasonal trends in separability of leaf reflectance spectra for Ailanthus altissima and four other tree species

    Science.gov (United States)

    Burkholder, Aaron

    This project investigated the spectral separability of the invasive species Ailanthus altissima, commonly called tree of heaven, and four other native species. Leaves were collected from Ailanthus and four native tree species from May 13 through August 24, 2008, and spectral reflectance factor measurements were gathered for each tree using an ASD (Boulder, Colorado) FieldSpec Pro full-range spectroradiometer. The original data covered the range from 350-2500 nm, with one reflectance measurement collected per one nm wavelength. To reduce dimensionality, the measurements were resampled to the actual resolution of the spectrometer's sensors, and regions of atmospheric absorption were removed. Continuum removal was performed on the reflectance data, resulting in a second dataset. For both the reflectance and continuum removed datasets, least angle regression (LARS) and random forest classification were used to identify a single set of optimal wavelengths across all sampled dates, a set of optimal wavelengths for each date, and the dates for which Ailanthus is most separable from other species. It was found that classification accuracy varies both with dates and bands used. Contrary to expectations that early spring would provide the best separability, the lowest classification error was observed on July 22 for the reflectance data, and on May 13, July 11 and August 1 for the continuum removed data. This suggests that July and August are also potentially good months for species differentiation. Applying continuum removal in many cases reduced classification error, although not consistently. Band selection seems to be more important for reflectance data in that it results in greater improvement in classification accuracy, and LARS appears to be an effective band selection tool. The optimal spectral bands were selected from across the spectrum, often with bands from the blue (401-431 nm), NIR (1115 nm) and SWIR (1985-1995 nm), suggesting that hyperspectral sensors with

  3. Application of the Polynomial-Based Least Squares and Total Least Squares Models for the Attenuated Total Reflection Fourier Transform Infrared Spectra of Binary Mixtures of Hydroxyl Compounds.

    Science.gov (United States)

    Shan, Peng; Peng, Silong; Zhao, Yuhui; Tang, Liang

    2016-03-01

    An analysis of binary mixtures of hydroxyl compound by Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR FT-IR) and classical least squares (CLS) yield large model error due to the presence of unmodeled components such as H-bonded components. To accommodate these spectral variations, polynomial-based least squares (LSP) and polynomial-based total least squares (TLSP) are proposed to capture the nonlinear absorbance-concentration relationship. LSP is based on assuming that only absorbance noise exists; while TLSP takes both absorbance noise and concentration noise into consideration. In addition, based on different solving strategy, two optimization algorithms (limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm and Levenberg-Marquardt (LM) algorithm) are combined with TLSP and then two different TLSP versions (termed as TLSP-LBFGS and TLSP-LM) are formed. The optimum order of each nonlinear model is determined by cross-validation. Comparison and analyses of the four models are made from two aspects: absorbance prediction and concentration prediction. The results for water-ethanol solution and ethanol-ethyl lactate solution show that LSP, TLSP-LBFGS, and TLSP-LM can, for both absorbance prediction and concentration prediction, obtain smaller root mean square error of prediction than CLS. Additionally, they can also greatly enhance the accuracy of estimated pure component spectra. However, from the view of concentration prediction, the Wilcoxon signed rank test shows that there is no statistically significant difference between each nonlinear model and CLS. © The Author(s) 2016.

  4. Mineralogy and chemistry of Ti-bearing lunar soils: Effects on reflectance spectra and remote sensing observations

    Science.gov (United States)

    Coman, Ecaterina O.; Jolliff, Bradley L.; Carpenter, Paul

    2018-05-01

    This paper presents results of coordinated ultraviolet and visible wavelength reflectance measurements, X-ray diffraction analyses of mineral components, and micro X-ray fluorescence analyses of Ti concentrations of 13 lunar soil samples (Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) spectral data for the 321/415 ratio of Apollo ground-truth sites. The correlation between lab-derived 321/415 ratios and TiO2 content for measured samples improves when low-maturity samples are excluded from the dataset, implying that the LROC WAC spectra at 400 m/pix spatial resolution senses mostly mature soil.

  5. Infrared reflection spectra of multilayer epitaxial heterostructures with embedded InAs and GaAs layers

    International Nuclear Information System (INIS)

    Seredin, P. V.; Domashevskaya, E. P.; Lukin, A. N.; Arsent'ev, I. N.; Vinokurov, D. A.; Tarasov, I. S.

    2008-01-01

    The effect of the thickness of embedded InAs and GaAs layers on the infrared reflection spectra of lattice vibrations for AlInAs/InAs/AlInAs, InGaAs/GaAs/InGaAs, and AlInAs/InGaAs/GaAs/InGaAs/AlInAs multilayer epitaxial heterostructures grown by MOC hydride epitaxy on InP (100) substrates is studied. Relative stresses emerging in the layers surrounding the embedded layers with variation in the number of monolayers from which the quantum dots are formed and with variation the thickness of the layers themselves surrounding the embedded layers are evaluated.

  6. HYDROGEN PERMITTED LINES IN THE FIRST NEAR-IR SPECTRA OF Th 28 MICROJET: ACCRETION OR EJECTION TRACERS?

    International Nuclear Information System (INIS)

    Coffey, Deirdre; Podio, Linda; Bacciotti, Francesca; Nisini, Brunella

    2010-01-01

    We report the first near-infrared detection of the bipolar microjet from T Tauri star ThA 15-28 (hereafter Th 28). Spectra were obtained with Very Large Telescope (VLT)/ISAAC for the slit both perpendicular and parallel to the flow to examine jet kinematics and gas physics within the first arcsecond from the star. The jet was successfully detected in both molecular and atomic lines. The H 2 component was found to be entirely blueshifted around the base of the bipolar jet. It shows that only the blue lobe is emitting in H 2 while light is scattered in the direction of the red lobe, highlighting an asymmetric extinction and/or excitation between the two lobes. Consistent with this view, the red lobe is brighter in all atomic lines. Interestingly, the jet was detected not only in [Fe II], but also in Brγ and Paβ lines. Though considered tracers mainly of accretion, we find that these high excitation hydrogen permitted lines trace the jet as far as 150 AU from the star. This is confirmed in a number of ways: the presence of the [Fe II] 2.13 μm line which is of similarly high excitation; H I velocities which match the jet [Fe II] velocities in both the blue and red lobe; and high electron density close to the source of >6 x 10 4 cm -3 derived from the [Fe II] 1.64, 1.60 μm ratio. These near-infrared data complement Hubble Space Telescope Imaging Spectrograph (HST/STIS) optical and near-ultraviolet data for the same target which were used in a jet rotation study, although no rotation signature could be identified here due to insufficient angular resolution. The unpublished HST/STIS Hα emission is included here alongside the other H I lines. Identifying Brγ and Paβ as tracers of ejection is significant because of the importance of finding strong near-infrared probes close to the star, where forbidden lines are quenched, which will help understand accretion ejection when observed with high spatial resolution instruments such as VLTI/AMBER.

  7. Water vapour in the middle atmosphere of Venus:. An improved treatment of the Venera 15 ir spectra

    Science.gov (United States)

    Ignatiev, N. i.; Moroz, V. i.; Zasova, L. V.; Khatuntsev, I. v.

    1999-08-01

    In 1983, spectra of Venus in the region of 6-40 μm were measured by means of the Fourier Spectrometer aboard the Venera 15 orbiter. It covered local solar times from 4 am to 10 am and from 4 pm to 10 pm in the latitude range from 65°S up to 87°N. The results of an extended processing and analysis of these data are presented. Time and spatial variations of the water vapour were found. Most of the measurements fall in the range of 5-15 ppm, which is close to earlier results. The effective altitude of sounding is approximately equal to the altitude where the optical depth τ = 1. In the northern hemisphere, which was mainly covered by the measurements, two latitude regions can be distinguished; (A) 20° 60°, which are characterised by different altitudes of the level of τ = 1, 62 and 55 km respectively. Mean mixing ratios near this level in the two regions are almost the same, but the partial pressures and mass densities in the region (B) are 2-4 times greater than those in region (A). In region (A) a weak maximum was detected near 10 am local solar time (17 ppm at φ = 35°) and a minimum-near 10 pm (2ppm at φ = 30°). Region (B) is of inhomogeneous structure, and the retrieved mixing ratio has greater uncertainty and may probably change from the low values up to 30 ppm. In region (A) the water vapour mass density at the level of τ = 1 is 2-4 times greater than the mean density of the water contained in aerosol particles, while in region (B) this ratio may vary in the limits 0.5-5. Although the retrieval of H2O mixing ratio altitude profile from the Venera 15 data appeared to be impossible, indirect indications were found that at least in region (A) the mixing ratio decreases with altitude.

  8. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials

    International Nuclear Information System (INIS)

    Prasad, S.; Singh, Vivek; Singh, A. K.

    2013-01-01

    The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters. (plasma technology)

  9. Solubility and IR studies of gamma-irradiated arabinoxylan

    International Nuclear Information System (INIS)

    Ebringerova, A.; Kacurakova, M.; Hromadkova, Z.; Pruzinec, J.

    1989-01-01

    The structural and solubility changes of a water-insoluble arabinoxylan with a low degree of branching was studied after γ-irradiation by IR spectroscopy and chemical analysis of the polysaccharide and its polymeric fractions. New functional groups like hydroperoxidic, carbonylic and endiolic ones were found after irradiation. The IR spectra shows that the structural changes involved by radiolytic treatment are reflected in the shape of the IR spectra of both polymeric fractions. The ratio of absorbance of the peaks at 1725 and 2920 cm -1 increased with radiation dose. (author) 17 refs.; 2 figs.; 2 tabs

  10. Clinical system model for monitoring the physiological status of jaundice by extracting bilirubin components from skin diffuse reflectance spectra

    Science.gov (United States)

    Kumar, Alla S.; Clark, Joseph; Beyette, Fred R., Jr.

    2009-02-01

    Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. The excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. As the bilirubin levels rise in the blood stream, there is a continuous exchange between the extra vascular bilirubin and bilirubin in the blood stream. Exposure to phototherapy alters the concentration of bilirubin in the vascular and extra vascular regions by causing bilirubin in the skin layers to be broken down. Thus, the relative concentration of extra vascular bilirubin is reduced leading to a diffusion of bilirubin out of the vascular region. Diffuse reflectance spectra from human skin contains physiological and structural information of the skin and nearby tissue. A diffuse reflectance spectrum must be captured before and after blanching in order to isolate the intravascular and extra vascular bilirubin. A new mathematical model is proposed with extra vascular bilirubin concentration taken into consideration along with other optical parameters in defining the diffuse reflectance spectrum from human skin. A nonlinear optimization algorithm has been adopted to extract the optical properties (including bilirubin concentration) from the skin reflectance spectrum. The new system model and nonlinear algorithm have been combined to enable extraction of Bilirubin concentrations within an average error of 10%.

  11. IR spectroscopy at the ITO-organic interface

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Milan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Shazada, Ahmad [Max-Planck Institut fuer Polymerforschung, Mainz (Germany); Tamanai, Akemi; Trollmann, Jens; Glaser, Tobias; Beck, Sebastian; Tengeler, Sven; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany)

    2012-07-01

    Thin films of P3HT have been prepared by spin coating and electrooxidative polymerization on platinum- and ITO-coated substrates. Additionally, P3HT-films on silicon substrates have been prepared by spin coating only. The measured IR spectra of the spin coated films allowed for an elaboration of a detailed optical model for P3HT, which has been used to simulate IR reflection-absorption spectra on ITO and Pt substrates. Comparison of simulated spectra with measurements revealed no substrate influence on the IR spectra for the spincoated films. In case of spincoated P3HT-films on ITO-substrate, the obtained IR spectra correspond to simulation data very well up to 6000 wavenumbers. In the electropolymerized P3HT films we have identified residuals of the electrolyte ionic liquid, acting as dopand for P3HT. While IR spectra of the electropolymerized P3HT films on Pt substrate could be explained reasonably well as a superposition of chemically doped P3HT and the ionic electrolyte, the IR spectra of electropolymerized P3HT films on ITO substrates showed strongly deposition-time dependent deviations. These were most likely related to varying properties of the ITO surface between reference and sample measurement due to an interaction of ITO and the electrolyte at the film-substrate interface.

  12. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H{sub 2}O){sub n} clusters, n = 2-4

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S., E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084 (United States)

    2015-04-21

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H{sub 2}O){sub n} clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C{sub 6}H{sub 5}-O-CH{sub 2}-CH{sub 2}-O-C{sub 6}H{sub 5}, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer “chain” bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S{sub 1}/S{sub 2} excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  13. Psyche's UV Reflectance Spectra: Exploring the origins of the largest exposed-core metallic asteroid

    Science.gov (United States)

    Becker, Tracy

    2016-10-01

    (16) Psyche is the largest of the M-class asteroids, and is presumed to be the exposed core of a differentiated asteroid stripped of its mantle through hit-and-run collisions. However, other origins for Psyche have been proposed, including that it formed from a highly-reduced, metal rich material in the inner solar system or that its surface is olivine that has been space weathered. If (16) Psyche is an exposed core, then studying its properties enhances our understanding of the cores of all terrestrial planets, including the Earth's. If it accreted in the inner part of the solar system and was later injected into the asteroid belt, then Psyche sheds light on the conditions and subsequent evolution of the early solar system. Lastly, if Psyche is weathered olivine, then olivine may be more abundant in the solar system than currently measured, rectifying the so-called Great Dunite Shortage. Our program to obtain high-resolution UV spectra of Psyche with the COS G140L mode and the STIS NUV MAMA G230L mode to measure spectral signatures between 90 - 315 nm is designed to distinguish between the 3 hypothesized cases. These observations will enable identification of absorption bands, especially Fe-O charge transfer bands and will be sensitive to spectral blueing that occurs at UV wavelengths for space-weathered objects. When combined, the presence of these UV features, or not, provides a novel test of Psyche formation theories.

  14. Kinetics of physical adsorption of ethane on Ir(110)-(1×2): Molecular beam reflectivity measurements and Monte Carlo simulations

    OpenAIRE

    Kang, H. C.; Mullins, C. B.; Weinberg, W. H.

    1990-01-01

    Experimental results, obtained using a reflectivity method, for the probability of physical adsorption of ethane on the Ir(110)-(1×2) surface are presented. We analyze these results using Monte Carlo simulations and show that physical adsorption can occur either directly or through a precursor state in which an ethane molecule is trapped in a second layer above a first layer of physically adsorbed ethane. From the Monte Carlo simulations, we are able to establish that the energy barrier for d...

  15. Investigating the optical modes of InxGa1xN alloy and In0.5Ga0.5N/GaN MQW in far-infrared reflectivity spectra

    International Nuclear Information System (INIS)

    Mirjalili, G.; Amraei, R.

    2006-01-01

    Optical properties of In x Ga 1 x N alloy and In 0 .5Ga 0 .5N/GaN multi quantum wells have been investigated in the region of far infrared. Far-IR reflectivity spectra of In 0 .5Ga 0 .5N/GaN multi quantum wells on GaAs substrate have been obtained by oblique incidence p- and s- polarization light using effective medium approximation. The spectra and the dielectric functions response give a good information about the phonon and plasmon contribution in doped MQW as well as the mole fraction of compounds in the alloys. The changes in position of optical modes are good tools for measurement of the amount of free carrier and the amount of mole fraction in the samples. During study of In x Ga 1 x N reflectivity spectra, two distinct reststrahl bands with frequency near those of pure InN and GaN were observed over entire composition range. Each band shifts to lower frequencies and decreases in amplitude as the concentration of corresponding compound in alloy decreased. Analysis of dielectric function gives the TO-like and LO-like mode frequencies. The changes in LO mode frequencies, due to coupling of phonon-plasmon, have been observed

  16. Defects in UV-vis-NIR reflectance spectra as method for forgery detections in writing documents

    Energy Technology Data Exchange (ETDEWEB)

    Somma, F; Aloe, P; Schirripa Spagnolo, G

    2010-11-01

    Documents have taken up a very important place in our society. Frauds committed in connection with documents are not at all uncommon, and, in fact, represent a very large domain of the forensic science called 'questioned documents'. In the field of forensic examination of questioned documents, the legitimacy of an ink entry is often an essential question. A common type of forgery consists in materially altering an existing writing or adding a new writing. These changes can be characterized by means of optical spectroscopy. The aim of this work is to perform the UV-vis-NIR reflectance spectrophotometry to analyze a range of blue and black commercial ballpoint pens, in order to investigate the discriminating abilities of the different inks found on the same document.

  17. Reflectance, absorbance and transmittance spectra of bermudagrass and manilagrass turfgrass canopies.

    Directory of Open Access Journals (Sweden)

    Marco Volterrani

    Full Text Available Leaves act as a primary organ for the interception of solar radiation and their spatial arrangement determines how the plant canopy interacts with light. Many studies have been carried out on the penetration of radiation into crops however to date, few results are available on turfgrasses, mainly due to the difficulties of introducing sensors into the turf without disturbing the natural position of the leaves. In the present research two warm season turfgrasses, hybrid bermudagrass (Cynodon dactylon × transvaalensis 'Patriot' and manilagrass (Zoysia matrella 'Zeon', were studied. The aim was to describe their canopy architecture grown with minimal disturbance to the natural arrangement of the leaves and stems, and to determine the potential effects of canopy architecture on light penetration and reflectance. Radiometric measurements were carried out at eight different profile levels of turfgrasses that were up to 12 cm tall. A LI-COR 1800 spectroradiometer with an optical fiber cable and a 7 mm diameter sensor was used. Measurements were carried out in the 390-1100 nm region at 5 nm intervals. The LAI value was higher for the manilagrass (9.0 than for the hybrid bermudagrass (5.6. The transmitted radiation was found to be closely dependent on downward cumulative LAI. Despite a more upright habit (mean insertion angle of 22.4° ±3.4, Zoysia matrella showed a higher NIR reflectance compared to Cdxt, which has a horizontal leaf arrangement (mean insertion angle 62.1° ± 9.6. The species studied showed substantial differences both in terms of phytometric characteristics and in the capacity to attenuate solar radiation.

  18. Reflectance, absorbance and transmittance spectra of bermudagrass and manilagrass turfgrass canopies.

    Science.gov (United States)

    Volterrani, Marco; Minelli, Alberto; Gaetani, Monica; Grossi, Nicola; Magni, Simone; Caturegli, Lisa

    2017-01-01

    Leaves act as a primary organ for the interception of solar radiation and their spatial arrangement determines how the plant canopy interacts with light. Many studies have been carried out on the penetration of radiation into crops however to date, few results are available on turfgrasses, mainly due to the difficulties of introducing sensors into the turf without disturbing the natural position of the leaves. In the present research two warm season turfgrasses, hybrid bermudagrass (Cynodon dactylon × transvaalensis) 'Patriot' and manilagrass (Zoysia matrella) 'Zeon', were studied. The aim was to describe their canopy architecture grown with minimal disturbance to the natural arrangement of the leaves and stems, and to determine the potential effects of canopy architecture on light penetration and reflectance. Radiometric measurements were carried out at eight different profile levels of turfgrasses that were up to 12 cm tall. A LI-COR 1800 spectroradiometer with an optical fiber cable and a 7 mm diameter sensor was used. Measurements were carried out in the 390-1100 nm region at 5 nm intervals. The LAI value was higher for the manilagrass (9.0) than for the hybrid bermudagrass (5.6). The transmitted radiation was found to be closely dependent on downward cumulative LAI. Despite a more upright habit (mean insertion angle of 22.4° ±3.4), Zoysia matrella showed a higher NIR reflectance compared to Cdxt, which has a horizontal leaf arrangement (mean insertion angle 62.1° ± 9.6). The species studied showed substantial differences both in terms of phytometric characteristics and in the capacity to attenuate solar radiation.

  19. Relationship between reflection spectra of breast adipose tissue with histologic grade

    Science.gov (United States)

    Muñoz Morales, Aarón; Vázquez Y Montiel, Sergio; Reigosa, Aldo

    2011-08-01

    Optical spectroscopy allows the characterization, recognition and differentiation of subcutaneous tissues healthy and no-healthy, to facilitate the diagnosis or early detection for breast cancer are studied white adipose tissue by the subcutaneous region with the help of the diffuse reflection spectroscopy in the visible areas (400 to 700 nm) of electromagnetic spectrum for them using a spectrometer portable of integrating sphere, Hunter lab Model Mini-Scan. The problem to be solved for cancer detection by optical techniques is to find the solution to the inverse problem of scattering of radiation in tissue where it is necessary to solve the equation of energy transfer. us through the trigonometric interpolation and by the data adjustment by least squares using Fourier series expansion to parameterize the spectral response curves of each sample of breast adipose tissue then correlated with histological grades established by the optical biopsy for each one of the samples, allowing use this technique to the study of anomalies in White Adipose Tissue Breast, changes are evident in the spectral response for Breast Adipose Tissue carcinogens with respect to healthy tissues and for the different histological grades.

  20. Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peter; Marley, Mark S.; Zahnle, Kevin [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Robinson, Tyler D. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lewis, Nikole K., E-mail: pgao@caltech.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2017-03-01

    Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H{sub 2}S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope ( WFIRST ), a planned NASA space telescope. For temperate (250 K <  T {sub eq} < 700 K) Jupiter-mass planets, photochemical destruction of H{sub 2}S results in the production of ∼1 ppmv of S{sub 8} between 100 and 0.1 mbar, which, if cool enough, will condense to form a haze. Nominal haze masses are found to drastically alter a planet’s geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μ m, due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ∼0.7, due to scattering. Strong absorption by the haze shortward of 0.4 μ m results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere. As a result, the color of the planet shifts from blue to orange. The existence of a sulfur haze masks the molecular signatures of methane and water, thereby complicating the characterization of atmospheric composition. Detection of such a haze by WFIRST is possible, though discriminating between a sulfur haze and any other highly reflective, high-altitude scatterer will require observations shortward of 0.4 μ m, which is currently beyond WFIRST ’s design.

  1. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.

    Science.gov (United States)

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    Science.gov (United States)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  3. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR.

    Science.gov (United States)

    Gonzalez, Federico Lora; Gordon, Michael J

    2014-06-02

    Quasi-ordered moth-eye arrays were fabricated in Si using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering was explored experimentally and modeled quantitatively using effective medium theory. The highest aspect ratio structures (AR = 9.4) achieved peak transmittance of 98%, with >85% transmission for λ = 7-30 μm. A detailed photon balance was constructed by measuring transmission, forward scattering, specular reflection and diffuse reflection to quantify optical losses due to near-field effects. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior anti-reflective properties compared to unstructured interfaces over a wide angular range (0-60° incidence). The colloidal lithography method presented here is scalable and substrate-independent, providing a general approach to realize moth-eye structures and anti-reflection in many IR-compatible material systems.

  4. Reflectance Spectra Diversity of Silica-Rich Materials: Sensitivity to Environment and Implications for Detections on Mars

    Science.gov (United States)

    Rice, M. S.; Cloutis, E. A.; Bell, J. F., III; Bish, D. L.; Horgan, B. H.; Mertzman, S. A.; Craig, M. A.; Renault, R. W.; Gautason, B.; Mountain, B.

    2013-01-01

    Hydrated silica-rich materials have recently been discovered on the surface of Mars by the Mars Exploration Rover (MER) Spirit, the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), and the Mars Express Observatoire pour la Mineralogie, l'Eau, les Glaces, et l'Activite'(OMEGA) in several locations. Having been interpreted as hydrothermal deposits and aqueous alteration products, these materials have important implications for the history of water on the martian surface. Spectral detections of these materials in visible to near infrared (Vis NIR) wavelengths have been based on a H2O absorption feature in the 934-1009 nm region seen with Spirit s Pancam instrument, and on SiOH absorption features in the 2.21-2.26 micron range seen with CRISM. Our work aims to determine how the spectral reflectance properties of silica-rich materials in Vis NIR wavelengths vary as a function of environmental conditions and formation. Here we present laboratory reflectance spectra of a diverse suite of silica-rich materials (chert, opal, quartz, natural sinters and synthetic silica) under a range of grain sizes and temperature, pressure, and humidity conditions. We find that the H2O content and form of H2O/OH present in silica-rich materials can have significant effects on their Vis NIR spectra. Our main findings are that the position of the approx.1.4 microns OH feature and the symmetry of the approx.1.9 microns feature can be used to discern between various forms of silica-rich materials, and that the ratio of the approx.2.2 microns (SiOH) and approx.1.9 microns (H2O) band depths can aid in distinguishing between silica phases (opal-A vs. opal-CT) and formation conditions (low vs. high temperature). In a case study of hydrated silica outcrops in Valles Marineris, we show that careful application of a modified version of these spectral parameters to orbital near-infrared spectra (e.g., from CRISM and OMEGA) can aid in characterizing the

  5. Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis-NIR fibre optics reflection spectra.

    Science.gov (United States)

    Gál, Lukáš; Oravec, Michal; Gemeiner, Pavol; Čeppan, Michal

    2015-12-01

    Nineteen black inkjet inks of six different brands were examined by fibre optics reflection spectroscopy in Visible and Near Infrared Region (Vis-NIR FORS) directly on paper with a view to achieving good resolution between them. These different inks were tested on nineteen different inkjet printers from three brands. Samples were obtained from prints by reflection probe. Processed reflection spectra in the range 500-1000 nm were used as samples in principal component analysis. Variability between spectra of the same ink obtained from different prints, as well as between spectra of square areas and lines was examined. For both spectra obtained from square areas and lines reference, Principal Component Analysis (PCA) models were created. According to these models, the inkjet inks were divided into clusters. PCA method is able to separate inks containing carbon black as main colorant from the other inks using other colorants. Some spectra were recorded from another piece of printer and used as validation samples. Spectra of validation samples were projected onto reference PCA models. According to position of validation samples in score plots it can be concluded that PCA based on Vis-NIR FORS can reliably differentiate inkjet inks which are included in the reference database. The presented method appears to be a suitable tool for forensic examination of questioned documents containing inkjet inks. Inkjet inks spectra were obtained without extraction or cutting sample with possibility to measure out of the laboratory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Microsolvation of the acetanilide cation (AA(+)) in a nonpolar solvent: IR spectra of AA(+)-L(n) clusters (L = He, Ar, N2; n ≤ 10).

    Science.gov (United States)

    Schmies, Matthias; Patzer, Alexander; Schütz, Markus; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2014-05-07

    Infrared photodissociation (IRPD) spectra of mass-selected cluster ions of acetanilide (N-phenylacetamide), AA(+)-Ln, with the ligands L = He (n = 1-2), Ar (n = 1-7), and N2 (n = 1-10) are recorded in the hydride stretch (amide A, νNH, νCH) and fingerprint (amide I-III) ranges of AA(+) in its (2)A'' ground electronic state. Cold AA(+)-Ln clusters are generated in an electron impact ion source, which predominantly produces the most stable isomer of a given cluster ion. Systematic vibrational frequency shifts of the N-H stretch fundamentals (νNH) provide detailed information about the sequential microsolvation process of AA(+) in a nonpolar (L = He and Ar) and quadrupolar (L = N2) solvent. In the most stable AA(+)-Ln clusters, the first ligand forms a hydrogen bond (H-bond) with the N-H proton of trans-AA(+) (t-AA(+)), whereas further ligands bind weakly to the aromatic ring (π-stacking). There is no experimental evidence for complexes with the less stable cis-AA(+) isomer. Quantum chemical calculations at the M06-2X/aug-cc-pVTZ level confirm the cluster growth sequence derived from the IR spectra. The calculated binding energies of De(H) = 720 and 1227 cm(-1) for H-bonded and De(π) = 585 and 715 cm(-1) for π-bonded Ar and N2 ligands in t-AA(+)-L are consistent with the observed photofragmentation branching ratios of AA(+)-Ln. Comparison between charged and neutral AA((+))-L dimers indicates that ionization switches the preferred ion-ligand binding motif from π-stacking to H-bonding. Electron removal from the HOMO of AA(+) delocalized over both the aromatic ring and the amide group significantly strengthens the C[double bond, length as m-dash]O bond and weakens the N-H bond of the amide group.

  7. Developing Integral Review: IR Editors Reflect on Meta-theory, the Concept of “Integral,” Submission Acceptance Criteria, our Mission, and more.

    Directory of Open Access Journals (Sweden)

    Russ Volckmann

    2007-12-01

    Full Text Available Over the past three years our journey as editors of Integral Review has been full of rich learning. The processes of providing authors with feedback, going over reviews of articles as well as writing ourselves have all contributed to our growth. The primary forum for this learning has been the many conversations amongst us to deal with the various issues that arise in publishing IR. Our intention in this brief piece is to share some of our reflections on this learning journey with you. These will take the form of contributions/reflections from individual editors, allowing us to share with you the particular issues we feel of value in this process. By writing these short pieces, we aim to provide additional resources for understanding how IR works. While we have guidelines and criteria for submissions on our website, it seems that narrative voices from individuals may add some flesh to them. Relating how we perceive issues around writing for an “integral” journal offers a supplement for engaging these criteria, and will hopefully bring them to life. As well, we hope that our writing provides insights into how and what we think about issues relevant to IR’s mission. These pieces reflect the unique voices we have as editors of Integral Review, and demonstrate some of the thinking and passions behind this journal.

  8. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  9. RESEARCH OF THE ENTRANCE ANGLE EFFECT ON THE REFLECTANCE SPECTRA OF THE STAINLESS STEEL SURFACE OXIDIZED BY PULSED LASER RADIATION

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2016-05-01

    Full Text Available Subject of Research.Oxide films on the metal surfaces can be obtained both by surface-uniform infrared heating and local laser treatment e.g. by sequence of nanosecond laser pulses. Due to interference in created films the coloration of treated area is observed. The present work shows the results of spectrophotometric measurements for various light entrance angles in the range of 10-60°. Method. AISI 304 stainless steel plates were oxidized by two methods: in muffle furnace FM - 10 (Т= 500-600° С, t = 5-7 min. and at line-by-line scanning by sequence of nanosecond laser pulses (λ = 1.06 μm, τ =100 ns, r = 25 μm,q=2.91∙107 W/cm2, Nx = 30, Ny = 1. Surface research in optical resolution was realized by Carl Zeiss Axio Imager A1M. Reflectance spectra were obtained with spectrophotometer Lambda Perkin 1050 with integrating sphere at different fixed light incidence angles. Topographic features were detected by scanning probe microscopy investigation with NanoEducator equipment. Main Results. The quantitative surface geometry characteristics of AISI 304 stainless steel patterns treated by different methods are obtained. It was found that the increase of light entrance angle has no influence on the form of reflection coefficient dependence from a wavelength, but a blue-shift occurs especially for the case of laser treatment. This difference can be caused by surface topology formed by laser heating and variety of oxide film thickness. This effect results in more significant change in observed sample color for laser treatment then for infrared heating. Practical Relevance. The results obtained in the present work can be used to implement a new element of product protection against forgery with the product marking.

  10. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.)

    International Nuclear Information System (INIS)

    Dunagan, Sarah C.; Gilmore, Martha S.; Varekamp, Johan C.

    2007-01-01

    Mustard spinach plants were grown in mercury-spiked and contaminated soils collected in the field under controlled laboratory conditions over a full growth cycle to test if vegetation grown in these soils has discernible characteristics in visible/near-infrared (VNIR) spectra. Foliar Hg concentrations (0.174-3.993 ppm) of the Mustard spinach plants were positively correlated with Hg concentration of soils and varied throughout the growing season. Equations relating foliar Hg concentration to spectral reflectance, its first derivative, and selected vegetation indices were generated using stepwise multiple linear regression. Significant correlations are found for limited wavelengths for specific treatments and dates. Ratio Vegetation Index (RVI) and Red Edge Position (REP) values of plants in Hg-spiked and field-contaminated soils are significantly lower relative to control plants during the early and middle portions of the growth cycle which may be related to lower chlorophyll abundance or functioning in Hg-contaminated plants. - Some spectral characteristics of leaves of Brassica rapa P. may be associated with foliar mercury content

  11. TiO2-coated Hollow Glass Microspheres with Superhydrophobic and High IR-reflective Properties Synthesized by a Soft-chemistry Method.

    Science.gov (United States)

    Wong, Yinting; Zhong, Dan; Song, Aotian; Hu, Yan

    2017-04-26

    This manuscript proposes a soft-chemistry method to develop superhydrophobic and highly IR-reflective hollow glass microspheres (HGM). The anatase TiO2 and a superhydrophobic agent were coated on the HGM surface in one step. TBT and PFOTES were selected as the Ti source and the superhydrophobic agent, respectively. They were both coated on the HGM, and after the hydrothermal process, the TBT turned to anatase TiO2. In this way, a PFOTES/TiO2-coated HGM (MCHGM) was prepared. For comparison, PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The PFOTES and TiO2 coatings on the HGM surface were demonstrated through X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive detector (EDS) characterizations. The MCHGM showed a higher contact angle (153°) but a lower sliding angle (16°) than F-SCHGM, with a contact angle of 141.2° and a sliding angle of 67°. In addition, both Ti-SCHGM and MCHGM displayed similar IR reflectivity values, which were about 5.8% higher than the original HGM and F-SCHGM. Also, the PFOTES coating barely changed the thermal conductivity. Therefore, F-SCHGM, with a thermal conductivity of 0.0479 W/(m·K), was quite like the original HGM, which was 0.0475 W/(m·K). MCHGM and Ti-SCHGM were also similar. Their thermal conductivity values were 0.0543 W/(m·K) and 0.0543 W/(m·K), respectively. The TiO2 coating slightly increased the thermal conductivity, but with the increase in reflectivity, the overall heat-insulation property was enhanced. Finally, since the IR-reflecting property is provided by the HGM coating, if the coating is fouled, the reflectivity decreases. Therefore, with the superhydrophobic coating, the surface is protected from fouling, and its lifetime is also prolonged.

  12. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) for Rapid Determination of Microbial Cell Lipid Content: Correlation with Gas Chromatography-Mass Spectrometry (GC-MS).

    Science.gov (United States)

    Millan-Oropeza, Aaron; Rebois, Rolando; David, Michelle; Moussa, Fathi; Dazzi, Alexandre; Bleton, Jean; Virolle, Marie-Joelle; Deniset-Besseau, Ariane

    2017-10-01

    There is a growing interest worldwide for the production of renewable oil without mobilizing agriculture lands; fast and reliable methods are needed to identify highly oleaginous microorganisms of potential industrial interest. The aim of this study was to demonstrate the relevance of attenuated total reflection (ATR) spectroscopy to achieve this goal. To do so, the total lipid content of lyophilized samples of five Streptomyces strains with varying lipid content was assessed with two classical quantitative but time-consuming methods, gas chromatography-mass spectrometry (GC-MS) and ATR Fourier transform infrared (ATR FT-IR) spectroscopy in transmission mode with KBr pellets and the fast ATR method, often questioned for its lack of reliability. A linear correlation between these three methods was demonstrated allowing the establishment of equations to convert ATR values expressed as CO/amide I ratio, into micrograms of lipid per milligram of biomass. The ATR method proved to be as reliable and quantitative as the classical GC-MS and FT-IR in transmission mode methods but faster and more reproducible than the latter since it involves far less manipulation for sample preparation than the two others. Attenuated total reflection could be regarded as an efficient fast screening method to identify natural or genetically modified oleaginous microorganisms by the scientific community working in the field of bio-lipids.

  13. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser.

    Science.gov (United States)

    Bathe-Peters, M; Annibale, P; Lohse, M J

    2018-02-05

    Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.

  14. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Science.gov (United States)

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  15. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels

    Science.gov (United States)

    Bian, Meng; Skidmore, Andrew K.; Schlerf, Martin; Wang, Tiejun; Liu, Yanfang; Zeng, Rong; Fei, Teng

    2013-04-01

    Some biochemical compounds are closely related with the quality of tea (Camellia sinensis (L.)). In this study, the concentration of these compounds including total tea polyphenols, free amino acids and soluble sugars were estimated using reflectance spectroscopy at three different levels: powder, leaf and canopy, with partial least squares regression. The focus of this study is to systematically compare the accuracy of tea quality estimations based on spectroscopy at three different levels. At the powder level, the average r2 between predictions and observations was 0.89 for polyphenols, 0.81 for amino acids and 0.78 for sugars, with relative root mean square errors (RMSE/mean) of 5.47%, 5.50% and 2.75%, respectively; at the leaf level, the average r2 decreased to 0.46-0.81 and the relative RMSE increased to 4.46-7.09%. Compared to the results yielded at the leaf level, the results from canopy spectra were slightly more accurate, yielding average r2 values of 0.83, 0.77 and 0.56 and relative RMSE of 6.79%, 5.73% and 4.03% for polyphenols, amino acids and sugars, respectively. We further identified wavelength channels that influenced the prediction model. For powder and leaves, some bands identified can be linked to the absorption features of chemicals of interest (1648 nm for phenolic, 1510 nm for amino acids, 2080 nm and 2270 nm for sugars), while more indirectly related wavelengths were found to be important at the canopy level for predictions of chemical compounds. Overall, the prediction accuracies achieved at canopy level in this study are encouraging for future study on tea quality estimated at the landscape scale using airborne and space-borne sensors.

  16. Use of total internal reflection Raman (TIR) and attenuated total reflection infrared (ATR-IR) spectroscopy to analyze component separation in thin offset ink films after setting on coated paper surfaces.

    Science.gov (United States)

    Kivioja, Antti; Hartus, Timo; Vuorinen, Tapani; Gane, Patrick; Jääskeläinen, Anna-Stiina

    2013-06-01

    The interactive behavior of ink constituents with porous substrates during and after the offset print process has an important effect on the quality of printed products. To help elucidate the distribution of ink components between the retained ink layer and the substrate, a variety of spectroscopic and microscopic analysis techniques have been developed. This paper describes for the first time the use of total internal reflection (TIR) Raman spectroscopy to analyze the penetration behavior of separated offset ink components (linseed oil, solid color pigment) in coated papers providing chemically intrinsic information rapidly, nondestructively, and with minimal sample preparation. In addition, the already widely applied technique of attenuated total reflection infrared spectroscopy (ATR-IR) was evaluated in parallel and compared. The results of the ATR-IR Raman clearly revealed an improvement in uppermost depth resolution compared with values previously published from other nondestructive techniques, and the method is shown to be capable of providing new knowledge of the setting of thin (0.25-2 μm) offset ink films, allowing the spreading and the penetration behavior on physically different paper coating surfaces to be studied.

  17. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    Science.gov (United States)

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  18. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 7-chloro-5-(2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one.

    Science.gov (United States)

    Muthu, S; Prasath, M; Paulraj, E Isac; Balaji, R Arun

    2014-01-01

    The Fourier Transform infrared and Fourier Transform Raman spectra of 7-chloro-5 (2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one (7C3D4B) were recorded in the regions 4000-400 and 4000-100 cm(-1), respectively. The appropriate theoretical spectrograms for the IR and Raman spectra of the title molecule were also constructed. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they supported each other. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  20. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites

    Science.gov (United States)

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-01

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.

  1. Spectral analysis and classification of igneous and metamorphic rocks of Hamedan region for remote sensing studies; using laboratory reflectance spectra (350-2500 nm)

    International Nuclear Information System (INIS)

    Rangzan, K.; Saki, A.; Hassanshahi, H.; Mojaradi, B.

    2012-01-01

    Reflectance spectrometry techniques with the integration of remote sensing data help us in identifying and mapping the phenomena on the earth. Using these techniques to discriminate the petrologic units independently and without knowing the spectral behavior of rocks along the electromagnetic wavelengths can not be so much useful. For the purposes of this study, 65 samples of igneous and metamorphic rocks from Hamedan region were collected and their spectra were measured using Fieldspec3 device in laboratory. The spectra were analyzed on the basis of absorption, position and shape. Petrographic analyses were used to interpret the absorption patterns as well. Then the spectra were classified according to spectral patterns. This measurement was done on both freshly cut and exposed surfaces of the samples and except a few samples, the two sets of spectra did not differ significantly. Finally, to evaluate the possibility of recognition of these targets, the responses of two hyper spectral and multispectral sensors were simulated from spectra representative of the spectral classes, showing that significant identification and classification of well exposed rocks are potentially possible using remote instruments providing high quality spectra. Also Aster simulation showed that a preliminary gross discrimination of rocks was however possible.

  2. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching.

    Science.gov (United States)

    Chan, Lesley W; Morse, Daniel E; Gordon, Michael J

    2018-05-08

    Near- and sub-wavelength photonic structures are used by numerous organisms (e.g. insects, cephalopods, fish, birds) to create vivid and often dynamically-tunable colors, as well as create, manipulate, or capture light for vision, communication, crypsis, photosynthesis, and defense. This review introduces the physics of moth eye (ME)-like, biomimetic nanostructures and discusses their application to reduce optical losses and improve efficiency of various optoelectronic devices, including photodetectors, photovoltaics, imagers, and light emitting diodes. Light-matter interactions at structured and heterogeneous surfaces over different length scales are discussed, as are the various methods used to create ME-inspired surfaces. Special interest is placed on a simple, scalable, and tunable method, namely colloidal lithography with plasma dry etching, to fabricate ME-inspired nanostructures in a vast suite of materials. Anti-reflective surfaces and coatings for IR devices and enhancing light extraction from visible light emitting diodes are highlighted.

  3. Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy

    Science.gov (United States)

    Holman, Hoi-Ying N

    2013-10-29

    A method of characterizing conditions in a tissue, by (a) providing a catheter that has a light source that emits light in selected wavenumbers within the range of mid-IR spectrum; (b) directing the light from the catheter to an area of tissue at a location inside a blood vessel of a subject; (c) collecting light reflected from the location and generating a reflectance spectra; and (d) comparing the reflectance spectra to a reference spectra of normal tissue, whereby a location having an increased number of absorbance peaks at said selected wavenumbers indicates a tissue inside the blood vessel containing a physiological marker for atherosclerosis.

  4. Spatially resolved star formation and dust attenuation in Mrk 848: Comparison of the integral field spectra and the UV-to-IR SED

    Science.gov (United States)

    Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai

    2018-05-01

    We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.

  5. FT-IR and FT-Raman spectra of 5-chlorocytosine: Solid state simulation and tautomerism. Effect of the chlorine substitution in the Watson-Crick base pair 5-chlorodeoxycytidine-deoxyguanosine

    Science.gov (United States)

    Alcolea Palafox, M.; Rastogi, V. K.; Singh, S. P.

    2018-01-01

    The laser Raman and IR spectra of 5-chlorocytosine have been recorded and accurately assigned in the solid state using Density functional calculations (DFT) together with the linear scaling equation procedure (LSE) and the solid state simulation of the crystal unit cell through a tetramer form. These results remarkably improve those reported previously by other authors. Several new scaling equations were proposed to be used in related molecules. The six main tautomers of the biomolecule 5-chlorocytosine were determined and optimized at the MP2 and CCSD levels, using different basis sets. The relative stabilities were compared with those obtained in cytosine and their 5-halo derivatives. Several relationships between energies, geometric parameters and NBO atomic charges were established. The effect of the chlorine substitution in the fifth position was evaluated through the stability of the Watson-Crick (WC) base pair of 5-chlorodeoxycytidine with deoxyguanosine, and through their vibrational spectra.

  6. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  7. Elimination of interference from water in KBr disk FT-IR spectra of solid biomaterials by chemometrics solved with kinetic modeling

    Science.gov (United States)

    Infrared analysis of proteins and polysaccharides by the well known KBr disk technique is notoriously frustrated and defeated by absorbed water interference in the important amide and hydroxyl regions of spectra. This interference has too often been overlooked or ignored even when the resulting dist...

  8. Vibrational investigation on FT-IR and FT-Raman spectra, IR intensity, Raman activity, peak resemblance, ideal estimation, standard deviation of computed frequencies analyses and electronic structure on 3-methyl-1,2-butadiene using HF and DFT (LSDA/B3LYP/B3PW91) calculations.

    Science.gov (United States)

    Ramalingam, S; Jayaprakash, A; Mohan, S; Karabacak, M

    2011-11-01

    FT-IR and FT-Raman (4000-100 cm(-1)) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H). Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  10. Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John [3M Company, St. Paul, MN (United States)

    2016-09-16

    The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or other material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.

  11. Reflections

    Directory of Open Access Journals (Sweden)

    Joanne Embree

    2001-01-01

    Full Text Available Ideally, editorials are written one to two months before publication in the Journal. It was my turn to write this one. I had planned to write the first draft the evening after my clinic on Tuesday, September 11. It didn't get done that night or during the next week. Somehow, the topic that I had originally chosen just didn't seem that important anymore as I, along my friends and colleagues, reflected on the changes that the events of that day were likely to have on our lives.

  12. Application of fiber-optic attenuated total reflection-FT-IR methods for in situ characterization of protein delivery systems in real time.

    Science.gov (United States)

    McFearin, Cathryn L; Sankaranarayanan, Jagadis; Almutairi, Adah

    2011-05-15

    A fiber-optic coupled attenuated total reflection (ATR)-FT-IR spectroscopy technique was applied to the study of two different therapeutic delivery systems, acid degradable hydrogels and nanoparticles. Real time exponential release of a model protein, human serum albumin (HSA), was observed from two different polymeric hydrogels formulated with a pH sensitive cross-linker. Spectroscopic examination of nanoparticles formulated with an acid degradable polymer shell and encapsulated HSA exhibited vibrational signatures characteristic of both particle and payload when exposed to lowered pH conditions, demonstrating the ability of this methodology to simultaneously measure phenomena arising from a system with a mixture of components. In addition, thorough characterization of these pH sensitive delivery vehicles without encapsulated protein was also accomplished in order to separate the effects of the payload during degradation. When in situ, real time detection in combination with the ability to specifically identify different components in a mixture without involved sample preparation and minimal sample disturbance is provided, the versatility and suitability of this type of experiment for research in the pharmaceutical field is demonstrated.

  13. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  14. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels

    NARCIS (Netherlands)

    Bian, B.M.; Skidmore, A.K.; Schlerf, M.; Wang, T.; Liu, X.; Zeng, R.; Fei, T.

    2013-01-01

    Some biochemical compounds are closely related with the quality of tea (Camellia sinensis (L.)). In this study, the concentration of these compounds including total tea polyphenols, free amino acids and soluble sugars were estimated using reflectance spectroscopy at three different levels: powder,

  15. Optical spectra of Zn{sub 1-x}Be{sub x}Te mixed crystals determined by IR-VIS-UV ellipsometry and photoluminescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wronkowska, A.A., E-mail: aleksandra.wronkowska@utp.edu.p [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland); Arwin, H. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden); Firszt, F.; Legowski, S. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5, PL-87100 Torun (Poland); Wronkowski, A.; Skowronski, L. [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85796 Bydgoszcz (Poland)

    2011-02-28

    Spectroscopic ellipsometry in the photon energy range from 0.04 eV to 6.50 eV is used for investigation of the optical response of Zn{sub 1-x}Be{sub x}Te crystals grown by a high-pressure Bridgman method in the composition range x {<=} 0.12. Infrared spectra display absorption bands centred between 411 cm{sup -1} and 420 cm{sup -1} associated with BeTe-type optical phonon modes. The positions of the transverse-optical and longitudinal-optical phonon modes have been found by modelling the line shape of the complex dielectric functions, {epsilon}-tilde and Im(-{epsilon}-tilde{sup -1}), using a classical damped Lorentzian oscillator approach. Ellipsometric measurements in the VIS-UV range allow determination of the fundamental energy-gap (E{sub 0}) and the higher threshold energies (E{sub 1}, E{sub 1} + {Delta}{sub 1}, E{sub 2}) originating from the band edge and spin-orbit splitting critical points. We have found that the Be content x = 0.12 causes an increase of the fundamental energy gap about 0.15 eV at room temperature when compared to the E{sub 0} = 2.23 eV of ZnTe crystal at the same temperature. Photoluminescence spectra were measured in the temperature range from 30 K to room temperature. Luminescence at temperature T > 200 K is very weak. The peak positions of the exciton emission lines agree well with the E{sub 0} band-gaps derived from ellipsometric data if corrected for their temperature dependence.

  16. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    Science.gov (United States)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  17. Processing of phase pure and dense bulk EuTiO.sub.3./sub. ceramics and their infrared reflectivity spectra

    Czech Academy of Sciences Publication Activity Database

    Kachlik, M.; Máca, K.; Goian, Veronica; Kamba, Stanislav

    2012-01-01

    Roč. 74, MAY (2012), s. 16-18 ISSN 0167-577X R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GA202/09/0682 Grant - others:GAUK(CZ) SVV-2011-263303 Institutional research plan: CEZ:AV0Z10100520 Keywords : functional ceramics, * europium titanate * sintering * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.224, year: 2012

  18. Discovery of the Linear Region of Near Infrared Diffuse Reflectance Spectra Using the Kubelka-Munk Theory

    Directory of Open Access Journals (Sweden)

    Shengyun Dai

    2018-05-01

    Full Text Available Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS models of harpagoside. Data showed that the particle size distribution of 125–150 μm for Radix Scrophulariae exhibited the best prediction ability with Rpre2 = 0.9513, RMSEP = 0.1029 mg·g−1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90–180 μm exhibited the best prediction ability with Rpre2 = 0.8919, RMSEP = 0.1632 mg·g−1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent and scatter coefficient s (particle size-dependent. The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was >4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90–180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  19. ON ESTIMATING THE HIGH-ENERGY CUTOFF IN THE X-RAY SPECTRA OF BLACK HOLES VIA REFLECTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    García, Javier A.; Steiner, James F.; McClintock, Jeffrey E.; Keck, Mason L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Dauser, Thomas; Wilms, Jörn, E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@head.cfa.harvard.edu, E-mail: keckm@bu.edu, E-mail: thomas.dauser@sternwarte.uni-erlangen.de [Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2015-08-01

    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope Γ of the power-law continuum and the energy E{sub cut} at which it rolls over. Remarkably, this latter parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that by fitting simultaneous NuSTAR (3–79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model relxill one can obtain reasonable constraints on E{sub cut} at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.

  20. Characterization and identification of microorganisms by FT-IR microspectrometry

    Science.gov (United States)

    Ngo-Thi, N. A.; Kirschner, C.; Naumann, D.

    2003-12-01

    We report on a novel FT-IR approach for microbial characterization/identification based on a light microscope coupled to an infrared spectrometer which offers the possibility to acquire IR-spectra of microcolonies containing only few hundred cells. Microcolony samples suitable for FT-IR microspectroscopic measurements were obtained by a replica technique with a stamping device that transfers spatially accurate cells of microcolonies growing on solid culture plates to a special, IR-transparent or reflecting stamping plate. High quality spectra could be recorded either by applying the transmission/absorbance or the reflectance/absorbance mode of the infrared microscope. Signal to noise ratios higher than 1000 were obtained for microcolonies as small as 40 μm in diameter. Reproducibility levels were established that allowed species and strain identification. The differentiation and classification capacity of the FT-IR microscopic technique was tested for different selected microorganisms. Cluster and factor analysis methods were used to evaluate the complex spectral data. Excellent discrimination between bacteria and yeasts, and at the same time Gram-negative and Gram-positive bacterial strains was obtained. Twenty-two selected strains of different species within the genus Staphylococcus were repetitively measured and could be grouped into correct species cluster. Moreover, the results indicated that the method allows also identifications at the subspecies level. Additionally, the new approach allowed spectral mapping analysis of single colonies which provided spatially resolved characterization of growth heterogeneity within complex microbial populations such as colonies.

  1. Optical properties of reduced graphene oxide and CuFe2O4 composites in the IR region

    Science.gov (United States)

    Ma, De-yue; Li, Xiao-xia; Guo, Yu-xiang; Zeng, Yu-run

    2018-01-01

    The complex refractive index of reduced graphene oxide and CuFe2O4 composites prepared by hydrothermal method was calculated using infrared Micro-reflective spectra and K-K relation, and the calculation errors were analyzed according to its IR transmission and spectral reflectivity calculated by Fresnel formula. And then normal emissivity of the composite in IR atmospheric window was calculated by means of Fresnel formula and modified refraction angle formula. The calculation accuracy was verified by comparing measured normal total emissivity with the calculated one. The results show that complex refractive index and normal emissivity calculated by the formulas have a high accuracy. It has been found that the composite has a good absorption and radiation characteristics in IR atmospheric window and a strong scattering ability in middle IR region by analyzing its extinction, absorption and radiation properties in IR region. Therefore, it may be used as IR absorption, extinction and radiation materials in some special fields.

  2. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  3. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations

    Science.gov (United States)

    Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.

    2018-02-01

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.

  4. Exceptionally slow rise in differential reflectivity spectra of excitons in GaN: effect of excitation-induced dephasing

    International Nuclear Information System (INIS)

    Stanton, C.J.; Kenrow, J.; El Sayed, K.; Jho, Y.D.; Kim, D.S.; Song, J.J.; Fischer, Arthur Joseph

    2004-01-01

    Femtosecond differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found only for positive time delay in both DRS and FWM experiments. The rise time at negative time delay for the DRS was much slower than the FWM signal or differential transmission spectroscopy at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing, that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.

  5. METHODS OF ANALYSIS AND CLASSIFICATION OF THE COMPONENTS OF GRAIN MIXTURES BASED ON MEASURING THE REFLECTION AND TRANSMISSION SPECTRA

    Directory of Open Access Journals (Sweden)

    Artem O. Donskikh*

    2017-10-01

    Full Text Available The paper considers methods of classification of grain mixture components based on spectral analysis in visible and near-infrared wavelength ranges using various measurement approaches - reflection, transmission and combined spectrum methods. It also describes the experimental measuring units used and suggests the prototype of a multispectral grain mixture analyzer. The results of the spectral measurement were processed using neural network based classification algorithms. The probabilities of incorrect recognition for various numbers of spectral parts and combinations of spectral methods were estimated. The paper demonstrates that combined usage of two spectral analysis methods leads to higher classification accuracy and allows for reducing the number of the analyzed spectral parts. A detailed description of the proposed measurement device for high-performance real-time multispectral analysis of the components of grain mixtures is given.

  6. Absorption infrared spectra of interaction products of cyclic polyethers 18-crown-6 and dibenzo-18-crown-6 with uranyl dinitrate hexahydrate

    International Nuclear Information System (INIS)

    Chumaevskij, N.A.; Belomestnykh, V.I.; Razgonyaeva, G.A.; Shabel'nik, K.S.; Afanas'eva, E.E.

    1988-01-01

    Using the method of IR spectroscopy it is established that during interaction of uranyl nitrate hexahydrate (UNH) with crown-ethers under investigation macrocycles adhere to UO 2 2+ via hydrogen bonds between water molecules and oxygen of polyethers. Interaction of UNH with the above-mentioned crowns leads to conformational rearrangement of cycles of polyethers and improvement of their symmetry, reflecting in noticeable simplification of IR spectra of interaction products as compared to spectra of initial cyclic polyethers

  7. On the Determination of the Spin of the Black Hole in Cyg X-1 from X-Ray Reflection Spectra

    Science.gov (United States)

    Fabian, A. C.; Wilkins, D.; Miller, J. M.; Reis, R. C.; Reynolds, C. S.; Cackett, E. M.; Nowak, M. A.; Pooley, G.; Pottschmidt, K.; Sanders, J. S.; hide

    2012-01-01

    The spin of Cygnus X-I is measured by fitting reflection models to Suzaku data covering the energy band 0.9-400 keY. The inner radius of the accretion disc is found to lie within 2 gravitational radii (rg = GM/c(exp 2)) and a value for the dimensionless black hole spin is obtained of 0.97(sup .0.14) (sup -0.02). This agrees with recent measurements using the continuum fitting method by Gou et al. and of the broad iron line by Duro et al. The disc inclination is measured at 23.7(sup +6.7) (sup -5.4) deg. which is consistent with the recent optical measurement of the binary system inclination by Orosz et al of 27+/- 0.8 deg. We pay special attention to the emissivity profile caused by irradiation of the inner disc by the hard power-law source. 1be X-ray observations and simulations show that the index q of that profile deviates from the commonly used, Newtonian, value of 3 within 3r(sub g), steepening considerably within 2r(sub g). as expected in the strong gravity regime.

  8. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  9. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  10. Using visible and near-infrared diffuse reflectance spectroscopy for predicting soil properties based on regression with peaks parameters as derived from continuum-removed spectra

    Science.gov (United States)

    Vasat, Radim; Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

    2014-05-01

    Visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) provides a rapid and inexpensive tool for simultaneous prediction of a variety of soil properties. Usually, some sophisticated multivariate mathematical or statistical methods are employed in order to extract the required information from the raw spectra measurement. For this purpose especially the Partial least squares regression (PLSR) and Support vector machines (SVM) are the most frequently used. These methods generally benefit from the complexity with which the soil spectra are treated. But it is interesting that also techniques that focus only on a single spectral feature, such as a simple linear regression with selected continuum-removed spectra (CRS) characteristic (e.g. peak depth), can often provide competitive results. Therefore, we decided to enhance the potential of CRS taking into account all possible CRS peak parameters (area, width and depth) and develop a comprehensive methodology based on multiple linear regression approach. The eight considered soil properties were oxidizable carbon content (Cox), exchangeable (pHex) and active soil pH (pHa), particle and bulk density, CaCO3 content, crystalline and amorphous (Fed) and amorphous Fe (Feox) forms. In four cases (pHa, bulk density, Fed and Feox), of which two (Fed and Feox) were predicted reliably accurately (0.50 interestingly, in the case of particle density, the presented approach outperformed the PLSR and SVM dramatically offering a fairly accurate prediction (R2cv = 0.827) against two failures (R2cv = 0.034 and 0.121 for PLSR and SVM, resp.). In last two cases (Cox and CaCO3) a slightly worse results were achieved then with PLSR and SVM with overall fairly accurate prediction (R2cv > 0.80). Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319).

  11. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  12. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  13. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  14. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  15. Analysis of the structure and the FT-IR and Raman spectra of 2-(4-nitrophenyl)-4H-3,1-benzoxazin-4-one. Comparisons with the chlorinated and methylated derivatives

    Science.gov (United States)

    Castillo, María V.; Rudyk, Roxana A.; Davies, Lilian; Brandán, Silvia Antonia

    2017-07-01

    In this work, the structural, topological and vibrational properties of the monomer and three dimers of the 2-(4-nitrophenyl)-4H-3,1-benzoxazin-4-one (NPB) derivative were studied combining the experimental FTIR and FT-Raman spectra in the solid phase with DFT calculations. Here, Natural Bond Orbital (NBO), Atoms in Molecules (AIM) and HOMO and LUMO calculations were performed by using the hybrid B3LYP/6-31G*and B3LYP/6-311++G** methods in order to compute those properties and to predict their reactivities. The comparisons with the properties reported for the chlorinated (Cl-PB) and methylated (CH3-PB) derivatives at the same levels of theory can be clearly justified by the activating (CH3) and deactivating (NO2 and Cl) characteristics of the different groups linked to oxaxin rings. The NBO and AIM studies evidence the following stability orders: Cl-PB > NO2-PB > CH3-PB in very good concordance with the f(νC23-X26) force constants values. The frontier orbitals analyses reveal that the Cl-PB and NO2-PB derivatives have good stabilities and high chemical hardness while CH3-PB has a higher chemical reactivity. On the other hand, the complete vibrational assignments for monomer and dimers species of NPB were presented. The presence of the IR bands at 1574 and 1037 cm-1 and, of the Raman bands at 1571 and 1038 cm-1 support clearly the presence of the different dimeric species proposed for NPB.

  16. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  17. The effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst. II. UV-Vis diffuse reflectance spectra of surface compounds after irradiation

    International Nuclear Information System (INIS)

    Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.

    1993-01-01

    Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs

  18. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  19. Effects of Sm3+/Yb3+ co-doping and temperature on the Raman, IR spectra and structure of [TeO2-GeO2-K2O-Sm2O3/Yb2O3] glasses

    International Nuclear Information System (INIS)

    Shaltout, I.; Badr, Y.

    2006-01-01

    Effects of Sm 3+ /Yb 3+ co-doping on Raman scattering, IR absorption, temperature dependence of the Raman spectra up to 210 o C and the structure of two glass systems of the composition (80TeO 2 -10GeO 2 -8K 2 O-2Sm 2 O 3 /Yb 2 O 3 ) is discussed. It was found that the addition of Yb 3+ to the glass very strongly enhances the intensities of the antistokes' Raman bands at 155, 375, 557 and 828 cm -1 and quenches both the intensities of the stokes' vibration modes of the TeO 4 units in the range of 120-770 cm -1 and the intensities of the OH - stretching vibration modes in the range of 2600-3300 cm -1 . Sm 2 O 3 /Yb 2 O 3 rare earth co-doping has a great influence on removing and/or changing the nature of the OH - groups. The appearance and splitting of the stretching vibration modes of the OH - groups at lower frequencies (2770, 2970 cm -1 ) for the Sm +3 singly doped glass sample, compared to the band at ∼3200 cm -1 for the Sm 3+ /Yb 3+ co-doped glass sample, suggested that the OH - groups are more strongly bonded and incorporated with the glass matrix for the singly doped glass. Heating the sample up continuously weakens the hydrogen bonding of the OH - groups to the glass matrix leading to creation of NBO and breakdown of the connectivity of the OH - groups to the TeO 4 , TeO 3+1 and TeO 3 structural units. Raman bands at 286, 477, 666 and 769 cm -1 were assigned to its respective vibrations of Te 2 O 7 , TeO 4 -4 species, the (Te-O-Te) bending vibrations of the TeO 4 triagonal bipyramids (tbps), the axial symmetric stretching vibration modes (Te ax -O) s with bridging oxygen BO atoms and to the (Te-O) nbo non-bridging stretching vibration modes of the TeO 3+1 and/or TeO 3 pyramids

  20. Anisotropy in Bone Demineralization Revealed by Polarized Far-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Roman Schuetz

    2015-04-01

    Full Text Available Bone material is composed of an organic matrix of collagen fibers and apatite nanoparticles. Previously, vibrational spectroscopy techniques such as infrared (IR and Raman spectroscopy have proved to be particularly useful for characterizing the two constituent organic and inorganic phases of bone. In this work, we tested the potential use of high intensity synchrotron-based far-IR radiation (50–500 cm−1 to gain new insights into structure and chemical composition of bovine fibrolamellar bone. The results from our study can be summarized in the following four points: (I compared to far-IR spectra obtained from synthetic hydroxyapatite powder, those from fibrolamellar bone showed similar peak positions, but very different peak widths; (II during stepwise demineralization of the bone samples, there was no significant change neither to far-IR peak width nor position, demonstrating that mineral dissolution occurred in a uniform manner; (III application of external loading on fully demineralized bone had no significant effect on the obtained spectra, while dehydration of samples resulted in clear differences. (IV using linear dichroism, we showed that the anisotropic structure of fibrolamellar bone is also reflected in anisotropic far-IR absorbance properties of both the organic and inorganic phases. Far-IR spectroscopy thus provides a novel way to functionally characterize bone structure and chemistry, and with further technological improvements, has the potential to become a useful clinical diagnostic tool to better assess quality of collagen-based tissues.

  1. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as a Forensic Method to Determine the Composition of Inks Used to Print the United States One-cent Blue Benjamin Franklin Postage Stamps of the 19th Century.

    Science.gov (United States)

    Brittain, Harry G

    2016-01-01

    Through the combined use of infrared (IR) absorption spectroscopy and attenuated total reflectance (ATR) sampling, the composition of inks used to print the many different types of one-cent Benjamin Franklin stamps of the 19th century has been established. This information permits a historical evaluation of the formulations used at various times, and also facilitates the differentiation of the various stamps from each other. In two instances, the ink composition permits the unambiguous identification of stamps whose appearance is identical, and which (until now) have only been differentiated through estimates of the degree of hardness or softness of the stamp paper, or through the presence or absence of a watermark in the paper. In these instances, the use of ATR Fourier transform infrared spectroscopy (FT-IR) spectroscopy effectively renders irrelevant two 100-year-old practices of stamp identification. Furthermore, since the use of ATR sampling makes it possible to obtain the spectrum of a stamp still attached to its cover, it is no longer necessary to identify these blue Franklin stamps using their cancellation dates. © The Author(s) 2015.

  2. Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models

    DEFF Research Database (Denmark)

    Rice, J.; Gislason, Henrik

    1996-01-01

    data. The shape showed no overall trend, but diversity of smaller size classes showed a different temporal pattern from the diversity of intermediate and large size classes. The patterns in modelled output are consistent with, but do not prove, the hypothesis that trophic interactions are an important...... were very similar. Annual abundance spectra were linear and slopes increased significantly and fairly smoothly over the 20 years? indicating significant effects of fishing on the size composition of the exploited fish assemblage. The annual diversity spectra were more dome-shaped than in the survey...... factor in the fish community structure in the North Sea. (C) 1996 International Council for the Exploration of the Sea....

  3. Classification of sugar beet and volunteer potato reflection spectra with a neural network and statistical discriminant analysis to select discriminative wavelengths

    NARCIS (Netherlands)

    Nieuwenhuizen, A.T.; Hofstee, J.W.; Zande, van de J.C.; Meuleman, J.; Henten, van E.J.

    2010-01-01

    The objectives of this study were to determine the reflectance properties of volunteer potato and sugar beet and to assess the potential of separating sugar beet and volunteer potato at different fields and in different years, using spectral reflectance characteristics. With the ImspectorMobile,

  4. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Science.gov (United States)

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  5. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  6. Detecting infrared luminescence and non-chemical signaling of living cells: single cell mid-IR spectroscopy in cryogenic environments

    Science.gov (United States)

    Pereverzev, Sergey

    2017-02-01

    Many life-relevant interaction energies are in IR range, and it is reasonable to believe that some biochemical reactions inside cells can results in emission of IR photons. Cells can use this emission for non-chemical and non-electrical signaling. Detecting weak infrared radiation from live cells is complicated because of strong thermal radiation background and absorption of radiation by tissues. A microfluidic device with live cells inside a vacuum cryogenic environment should suppress this background, and thereby permit observation of live cell auto-luminescence or signaling in the IR regime. One can make IR-transparent windows not emitting in this range, so only the cell and a small amount of liquid around it will emit infrared radiation. Currently mid-IR spectroscopy of single cells requires the use of a synchrotron source to measure absorption or reflection spectra. Decreasing of thermal radiation background will allow absorption and reflection spectroscopy of cells without using synchrotron light. Moreover, cell auto-luminescence can be directly measured. The complete absence of thermal background radiation for cryogenically cooled samples allows the use IR photon-sensitive detectors and obtaining single molecule sensitivity in IR photo-luminescence measurements. Due to low photon energies, photo-luminescence measurements will be non-distractive for pressures samples. The technique described here is based upon US patent 9366574.

  7. Prediction of the oversulphated chondroitin sulphate contamination of unfractionated heparin by ATR-IR spectrophotometry.

    Science.gov (United States)

    Norwig, J; Beyer, T; Brinz, D; Holzgrabe, U; Diller, M; Manns, D

    2009-03-01

    The detection of a contamination of heparin with oversulphated chondroitin sulphate (OSCS) was first analysed in an unfractionated heparin batch supplied to the US API-market in April 2006. OSCS is a semi-synthetic derivative of the natural occuring glycosaminoglycan chondroitin sulphate. Moreover some spectroscopic characteristics of the substance overlap with those of heparin, so that the infrared (IR) spectra are visually difficult to distinguish whereas (1)H-NMR (Nuclear Magnetic Resonance) spectroscopy or capillary electrophoresis (CE) provides identification by a simple visual inspection of either the spectrum or the electropherogram respectively. However, applying special tools of Multivariate Data Analysis (MVA) to the IR spectra an identification of the contaminated samples is possible. In detail a rapid Attenuation Total Reflectance-Infrared (ATR-IR) measurement was selected, which does not require any sample preparation. The result (contaminated or not contaminated) is predicted within a few minutes. A method transfer to mobile ATR-IR spectrometers seems to be possible. The analysis is based on the fact that the fingerprint of the OSCS IR spectrum (1st derivative) complies with a theoretically calculated principal component in the MVA.

  8. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  9. Optical Response of Cu1-xZnxIr2S4 Due to Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Chen, L.; Matsunami, M.; Nanba, T.; Cao, G.; Suzuki, H.; Isobe, M.; Matsumoto, T.

    2003-01-01

    The mother material CuIr 2 S 4 of the thiospinel system Cu 1-x Zn x Ir 2 S 4 undergoes a temperature-induced metal--insulator (Mi) transition. We report the temperature dependence of the optical reflection spectra of Cu 1-x Zn x Ir 2 S 4 (x ≤ 0.5) at the temperatures of 8-300 K in the energy regions of 0.005--30 eV in order to study the change in the electronic structure due to the Zn substitution for Cu. Zn substitution induced mainly the splitting of the hybridization band between the Ir-5d(t 2g ) and S-3 p states crossing the E F . Obtained optical conductivity (σ ) spectrum is discussed in relation to the change in the electronic structure close to the E F . (author)

  10. Effects of terraces, surface steps and 'over-specular' reflection due to inelastic energy losses on angular scattering spectra for glancing incidence scattering

    CERN Document Server

    Danailov, D; O'Connor, D J

    2002-01-01

    Recent experiments and our molecular-dynamics simulations indicate that the main signal of the angular scattering spectra of glancing incidence scattering are not affected by the thermal motion of surface atoms and can be explained by our row-model with averaged cylindrical potentials. At the ICACS-18 Conference [Nucl. Instr. and Meth. B 164-165 (2000) 583] we reported good agreement between experimental and calculated multimodal azimuthal angular scattering spectra for the glancing scattering of 10 and 15 keV [Nucl. Instr. and Meth. B 180 (2001) 265, Appl. Surf. Sci. 171 (2001) 113] He sup 0 beam along the [1 0 0] direction on the Fe(1 0 0) face. Our simulations also predicted that in contrast to the 2D angular scattering distribution, the 1D azimuthal angular distribution of scattered particles is very sensitive to the interaction potential used. Here, we report more detailed calculations incorporating the influence of terraces and surface steps on surface channeling, which show a reduction of the angular s...

  11. Critical Dispersion-Theory Tests of Silicon's IR Refractive Index

    Science.gov (United States)

    Karstens, William; Smith, D. Y.

    Silicon strongly absorbs both visible and UV light, but is highly transparent in the IR. Hence, it is a common choice for infrared windows and lenses. However, optical design is hindered by literature index values that disagree by up to 1%. In contrast optical-glass indices are known to 0.01% or better. The most widely available silicon IR indices are based on bulk measurements using either Snell's-Law refraction by a prism or channel-spectra interference of front- and backsurface reflections from a planar sample. To test the physical acceptability of these data, we have developed criteria based on a Taylor expansion of the Kramers-Kronig relation for the index at energies below strong inter-band transitions. These tests require that the coefficients of the series in powers of energy squared must be positive within the region of transparency. This is satisfied by essentially all prism measurements; their small scatter arises primarily from impurities and doping. In contrast, channel-spectra data fail in the second and third coefficients. A review of the experimental analysis indicates three problems besides purity: incorrect channel number arising from a channel-spectra model that neglects spectrum distortion by the weak lattice absorption; use of a series expansion of mixed parity in photon energy to describe the even-parity index; and use of an incorrect absorption energy in the Li-Sellmeier dispersion formula. Recommendations for IR index values for pure silicon will be discussed. Supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  12. Using Fourier transform IR spectroscopy to analyze biological materials

    Science.gov (United States)

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  13. Reflection Spectra of the Black Hole Binary Candidate MAXI J1535-571 in the Hard State Observed by NuSTAR

    Science.gov (United States)

    Xu, Yanjun; Harrison, Fiona A.; García, Javier A.; Fabian, Andrew C.; Fürst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Madsen, Kristin K.; Miller, Jon M.; Parker, Michael L.; Tomsick, John A.; Walton, Dominic J.

    2018-01-01

    We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently discovered bright black hole candidate MAXI J1535-571. NuSTAR observed the source on MJD 58003 (five days after the outburst was reported). The spectrum is characteristic of a black hole binary in the hard state. We observe clear disk reflection features, including a broad Fe Kα line and a Compton hump peaking around 30 keV. Detailed spectral modeling reveals a narrow Fe Kα line complex centered around 6.5 keV on top of the strong relativistically broadened Fe Kα line. The narrow component is consistent with distant reflection from moderately ionized material. The spectral continuum is well described by a combination of cool thermal disk photons and a Comptonized plasma with the electron temperature {{kT}}{{e}}=19.7+/- 0.4 keV. An adequate fit can be achieved for the disk reflection features with a self-consistent relativistic reflection model that assumes a lamp-post geometry for the coronal illuminating source. The spectral fitting measures a black hole spin a> 0.84, inner disk radius {R}{in}lamp-post height h={7.2}-2.0+0.8 {r}{{g}} (statistical errors, 90% confidence), indicating no significant disk truncation and a compact corona. Although the distance and mass of this source are not currently known, this suggests the source was likely in the brighter phases of the hard state during this NuSTAR observation.

  14. A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments.

    Science.gov (United States)

    Tian, Xi; Li, Jiangbo; Wang, Qingyan; Fan, Shuxiang; Huang, Wenqian

    2018-01-15

    Hyperspectral imaging technology was used to investigate the effect of various peel colors on soluble solids content (SSC) prediction model and build a SSC model insensitive to the color distribution of apple peel. The SSC and peel pigments were measured, effective wavelengths (EWs) of SSC and pigments were selected from the acquired hyperspectral images of the intact and peeled apple samples, respectively. The effect of pigments on the SSC prediction was studied and optimal SSC EWs were selected from the peel-flesh layers spectra after removing the chlorophyll and anthocyanin EWs. Then, the optimal bi-layer model for SSC prediction was built based on the finally selected optimal SSC EWs. Results showed that the correlation coefficient of prediction, root mean square error of prediction and selected bands of the bi-layer model were 0.9560, 0.2528 and 41, respectively, which will be more acceptable for future online SSC prediction of various colors of apple. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microscale Solubility Measurements of Matrix-Assisted Laser Desorption-Ionization (MALDI) Matrices Using Attenuated Total Reflection (ATR) Fourier Transform Infrared Spectroscopy (FT-IR) Coupled with Partial Least Squares (PLS) Analysis.

    Science.gov (United States)

    Gorre, Elsa; Owens, Kevin G

    2016-11-01

    In this work an attenuated total reflection Fourier transform infrared (FT-IR) absorption based method is used to measure the solubility of two matrix-assisted laser desorption-ionization (MALDI) matrices in a few pure solvents and mixtures of acetonitrile and water using low microliter amounts of solution. Results from a method that averages the values obtained from multiple calibration curves created by manual peak picking are compared to those predicted using a partial least squares (PLS) chemometrics approach. The PLS method provided solubility values that were in good agreement with the manual method with significantly greater ease of analysis. As a test, the solubility of adipic acid in acetone was measured using the two methods of analysis, and the values are in good agreement with solubility values reported in literature. The solubilities of the MALDI matrices α-cyano-4-hydroxy cinnamic acid (CHCA) and sinapinic acid (SA) were measured in a series of mixtures made from acetonitrile (ACN) and water; surprisingly, the results show a highly nonlinear trend. While both CHCA and SA show solubility values of less than 10 mg/mL in the pure solvents, the solubility value for SA increases to 56.3 mg/mL in a 75:25 v/v ACN:water mixture. This can have a significant effect on the matrix-to-analyte ratios in the MALDI experiment when sample protocols call for preparation of a saturated solution of the matrix in the chosen solvent system. © The Author(s) 2016.

  16. Three inorganic-organic hybrids of bismuth(III) iodide complexes containing substituted 1,2,4-triazole organic components with charaterizations of diffuse reflectance spectra

    International Nuclear Information System (INIS)

    Liu Bing; Xu Ling; Guo Guocong; Huang Jinshun

    2006-01-01

    The reactions of two kinds of substituted 1,2,4-triazoles with BiI 3 yielded three inorganic-organic hybrids: [HL1] 4 [Bi 6 I 22 ].[L1] 4 .4H 2 O (1) (L1=3-(1,2,4-triazole-4-yl)-1H-1,2,4-triazole); [HL2] 4 [Bi 6 I 22 ].6H 2 O (2); [HL2] 2 [Bi 2 I 8 ].[L2] 2 (3) (L2=(m-phenol)-1,2,4-triazole). Both 1 and 2 have polynuclear anions of [Bi 6 I 22 ] 4- to build up the inorganic layers and substituted 1,2,4-triazoles as the organic layers. Hybrid 3 consists of two BiI 5 square pyramids as inorganic layers. There exist hydrogen bondings and I...;I interactions in the structures of 1, 2 and 3. Optical absorption spectra of 1, 2 and 3 reveal the presence of sharp optical gaps of 1.77, 1.77 and 2.07 eV, respectively, suggesting that these materials behave as semiconductors. - Graphical abstract: The reactions of two kinds of the substituted 1,2,4-triazoles with BiI 3 yielded three layered inorganic-organic hybrids [HL1] 4 [Bi 6 I 22 ].[L1] 4 .4H 2 O (1), [HL2] 4 [Bi 6 I 22 ].6H 2 O (2), [HL2] 2 [Bi 2 I 8 ].[L2] 2 (3) with optical gaps of 1.77, 1.77 and 2.07 eV, respectively. The structures of 1-3 are constructed from inorganic layers of polynuclear anions of bismuth iodine and organic layers of the substituted 1,2,4-triazoles

  17. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  18. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters.

    Science.gov (United States)

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-05

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ammonia IR Absorbance Measurements with an Equilibrium Vapor Cell

    National Research Council Canada - National Science Library

    Field, Paul

    2004-01-01

    Infrared (IR) absorbance spectra were acquired for 18 ammonia vapor pressures. The vapor pressures were generated with 15 gravimetrically prepared aqueous solutions and three commercial aqueous solutions using a dynamic method I.E...

  20. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  1. Atmospheric chemistry of CH3O(CF2CF2O)(n)CH3 (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Wallington, TJ

    2004-01-01

    Smog chambers equipped with FTIR spectrometers were used to study the Cl atom and OH radical initiated oxidation of CH3O(CF2CF2O)(n)CH3 (n = 1-3) in 720 +/- 20 Torr of air at 296 +/- 3 K. Relative rate techniques were used to measure k(Cl + CH3O(CF2CF2O)(n)CH3) (3.7 +/- 10.7) x 10(-13) and k......(OH + CH3O(CF2CF2O)(n)CH3) = (2.9 +/- 0.5) x 10(-11) cm(3) molecule(-1) s(-1) leading to an estimated atmospheric lifetime of 2 years for CH3O(CF2CF2O),CH3. The Cl initiated oxidation of CH3O(CF2CF2O),CH3 in air diluent gives CH3O(CF2CF2O)(n)C(O)H in a yield which is indistinguishable from 100 Further...... oxidation leads to the diformate, H(O)CO(CF2CF2O)(n)C(O)H. A rate constant of k(Cl + CH3O(CF2CF2O)(n)CHO) = (1.81 +/- 0.36) x 10(-13) cm(3) molecule(-1) s-1 was determined. Quantitative infrared spectra for CH3O(CF2CF2O)(n)CH3 (n = 1-3) were recorded and used to estimate halocarbon global warming potentials...

  2. [Application of FT-IR pattern recognition method for the quality control of pharmaceutical ingredients].

    Science.gov (United States)

    Horgos, József; Kóger, Péter; Zelkó, Romána

    2009-01-01

    Nowadays infrared spectroscopy and chemometrics have proven their effectiveness for both qualitative and quantitative analyses in different fields like agriculture, food, chemical and oil industry. Furier Transformation Infrared Spectroscopy (FT-IR) combined with Attenuated Total Reflectance (ATR) plate is a fast identification instrument. It is suitable for analysis of solid and liquid phase, too. Associated with chemometrics, it would be a powerful tool for the pharmaceutical wholesalers to detect the insufficient quality of pharmaceutical ingredients. In the present study beside the review of the infra red technology, pharmaceutical ingredients were examined with the help of our spectra library.

  3. IDENTIFICATION OF SOME COMPOSITE MEDICINAL DRUGS CONTAINING PARACETAMOL, WITH IR-SPECTROMETRY METHOD

    Directory of Open Access Journals (Sweden)

    A. S. Saushkina

    2017-01-01

    Full Text Available A serious threat to the health of the population is falsified medicines. In a number of cases, they are identified in the process of incoming quality control for compliancewith the requirements of regulatory documents for indicators “Description”, “Packaging”, “Marking”. However, in order to identify sophisticated counterfeits, only a visual assessment of the drug is not enough. Purpose screening evaluation of potentiallycounterfeited or poor-quality drugs using the IR spectrometry along the total spectrum.Materials and methods. The objects of research were available in freely availablecommercially available tablets produced by domestic and foreign manufacturers“Paracetamol Extratab”, “Solpadein fast”, “Citrapac”, “Citramon P”, “Ascofen-P”,  corresponding to the requirements of the current regulatory documents. The studies were carried out on a Fourier-Spectrophotometer infrared “FSM 1201”. Results and discussion. On the example of the tablets “Citramon P”, “Ascophen-P”, “Citrapac”, “Paracetamol Extratab”, “Solpadein Fast” the possibility of using the total IR spectra as a primary screening index of authenticity is shown. It was established that the total IR spectra of medicines of similar composition reflect the similarity of serial samples of the products ofone manufacturer and the difference in serial samples of products of different manufacturers.

  4. Berlin Reflectance Spectral Library (BRSL)

    Science.gov (United States)

    Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.

    2017-09-01

    The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.

  5. Solvent effect in implicit/explicit model on FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra, linear, second- and third-nonlinear optical parameters of 2-(trifluoromethyl)benzoic acid: Experimental and computational study

    Science.gov (United States)

    Avcı, Davut; Altürk, Sümeyye; Tamer, Ömer; Kuşbazoğlu, Mustafa; Atalay, Yusuf

    2017-09-01

    FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra for 2-(trifluoromethyl)benzoic acid (2-TFMBA) were recorded. DFT//B3LYP/6-31++G(d,p) calculations were used to determine the optimized molecular geometry, vibrational frequencies, 1H, 13C and 19F GIAO-NMR chemical shifts of 2-TFMBA. The detailed assignments of vibrational frequencies were carried out on the basis of potential energy distribution (PED) by using VEDA program. TD-DFT/B3LYP/6-31++G(d,p) calculations with the PCM (polarizable continuum model) in ethanol and DMSO solvents based on implicit/explicit model and gas phase in the excited state were employed to investigate UV-vis absorption and fluorescence emission wavelengths. The UV-vis and emission spectra were given in ethanol and DMSO solvents, and the major contributions to the electronic transitions were obtained. In addition, the NLO parameters (β, γ and χ(3)) and frontier molecular orbital energies of 2-TFMBA were calculated by using B3LYP/6-31++G(d,p) level. The NLO parameters of 2-TFMBA were compared with that of para-Nitroaniline (pNA) and urea which are the typical NLO materials. The refractive index (n) is calculated by using the Lorentz-Lorenz equation to observe polarization behavior of 2-TFMBA in DMSO and ethanol solvents. In order to investigate intramolecular and hydrogen bonding interactions, NBO calculations were also performed by the same level. To sum up, considering the well-known biological role, photochemical properties of 2-TFMBA were discussed.

  6. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy

    Science.gov (United States)

    Hachuła, Barbara

    2018-01-01

    The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the νOsbnd H band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293 K and 77 K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals.

  7. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  8. Communication: IR spectroscopy of neutral transition metal clusters through thermionic emission

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Haertelt, M.; Meijer, G.; Fielicke, A.; Bakker, J. M.

    2013-01-01

    The resonant multiple photon excitation of neutral niobium clusters using tunable infrared (IR) radiation leads to thermionic emission. By measuring the mass-resolved ionization yield as a function of IR wavenumber species selective IR spectra are obtained for Nb-n (n = 5-20) over the 200-350 cm(-1)

  9. Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lee, S.C.; Ng, S.S.; Hassan, H. Abu; Hassan, Z.; Zainal, N.; Novikov, S.V.; Foxon, C.T.; Kent, A.J.

    2014-01-01

    Optical properties of free standing cubic gallium nitride grown by molecular beam epitaxy system are investigated by a polarized infrared (IR) reflectance technique. A strong reststrahlen band, which reveals the bulk-like optical phonon frequencies, is observed. Meanwhile, continuous oscillation fringes, which indicate the sample consists of two homogeneous layers with different dielectric constants, are observed in the non-reststrahlen region. By obtaining the first derivative of polarized IR reflectance spectra measured at higher angles of incidence, extra phonon resonances are identified at the edges of the reststrahlen band. The observations are verified with the theoretical results simulated based on a multi-oscillator model. - Highlights: • First time experimental studies of IR optical phonons in bulk like, cubic GaN layer. • Detection of extra phonon modes of cubic GaN by polarized IR reflectance technique. • Revelation of IR multiphonon modes of cubic GaN by first derivative numerical method. • Observation of multiphonon modes requires very high angle of incidence. • Resonance splitting effect induced by third phonon mode is a qualitative indicator

  10. Deconvoluting double Doppler spectra

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Chan, K.L.; Tang, H.W.

    2001-01-01

    The successful deconvolution of data from double Doppler broadening of annihilation radiation (D-DBAR) spectroscopy is a promising area of endeavour aimed at producing momentum distributions of a quality comparable to those of the angular correlation technique. The deconvolution procedure we test in the present study is the constrained generalized least square method. Trials with computer simulated DDBAR spectra are generated and deconvoluted in order to find the best form of regularizer and the regularization parameter. For these trials the Neumann (reflective) boundary condition is used to give a single matrix operation in Fourier space. Experimental D-DBAR spectra are also subject to the same type of deconvolution after having carried out a background subtraction and using a symmetrize resolution function obtained from an 85 Sr source with wide coincidence windows. (orig.)

  11. Mid IR-fiber spectroscopy in the 2-17μm range

    Science.gov (United States)

    Artyushenko, Viatcheslav G.; Bocharnikov, A.; Colquhoun, Gary; Leach, Clive A.; Lobachov, Vladimir; Pirogova, Lyudmila; Sakharova, Tatjana; Savitskij, Dmitrij; Ezhevskaya, Tatjana; Bublikov, Alexandr

    2007-10-01

    The latest development in IR-fibre optics enables us to expand the spectral range of process spectroscopy from 2μm out to 17μm (5000 to 600cm-1) i.e. into the most informative "finger-print" part of the spectrum. Mid-IR wavelength ranges from 2 to 6-10μm may be covered by Chalcogenide IR-glass CIR-fibres while Polycrystalline PIR-fibres made of Silver Halides solid solutions transmit 4-17 μm wavelength radiation. PIR-fibre immersion ATR probes and Transmission/Reflection probes had been manufactured and successfully tested with different FTIR spectrometers in the field of remote spectroscopy for forensic substances identification, chemical reaction control, and monitoring of exhaust or exhalation gases. Using these techniques no sample preparation is necessary for fibre probes to measure evanescent, reflection and transmission spectra, in situ and in real time. QCL spectrometer may be used as a portable device for multispectral gas analysis at 1ppb level of detectivity for various applications in environmental pollution monitoring.

  12. Direct determination of lycopene content in tomatoes (Lycopersicon esculentum) by attenuated total reflectance infrared spectroscopy and multivariate analysis.

    Science.gov (United States)

    Halim, Yuwana; Schwartz, Steven J; Francis, David; Baldauf, Nathan A; Rodriguez-Saona, Luis E

    2006-01-01

    Lycopene is a potent antioxidant that has been shown to play critical roles in disease prevention. Efficient assays for detection and quantification of lycopene are desirable as alternatives to time- and labor-intensive methods. Attenuated total reflectance infrared (ATR-IR) spectroscopy was used for quantification of lycopene in tomato varieties. Calibration models were developed by partial least-squares regression (PLSR) using quantitative measures of lycopene concentration from liquid chromatography as reference method. IR spectra showed a distinct marker band at 957 cm(-1) for trans Carbon-Hydrogen (CH) deformation vibration of lycopene. PLSR models predicted the lycopene content accurately and reproducibly with a correlation coefficient (sigma) of 0.96 and standard error of cross-validation ATR-IR spectroscopy allowed for rapid, simple, and accurate determination of lycopene in tomatoes with minimal sample preparation. Results suggest that the ATR-IR method is applicable for high-throughput quantitative analysis and screening for lycopene in tomatoes.

  13. The study of the radiation chemical transformation of the hexane on the surface of aluminium by IR-spectroscopy method

    International Nuclear Information System (INIS)

    Rimikhanova, A.N.

    2006-01-01

    Full text: In this work the experimental results of the radiation-chemical transformation of hexane on the aluminum surface obtained by IR spectroscopy method at room temperature have been presented. The metallic aluminum plates which was obtained by stage pressing granules by mark of AD-00 with the reflection coefficient R=0,85 in the middle infrared range of waves length λ=15 ± 2,2 mkm were used. As an adsorbate unsaturated vapors of hexane were used, the absorption of which was being carried out at the room temperature by the method. The radiation of system was carried out with γ-quanta of Co 60 with doze rate of 1,03 Gy/s - 1, and the absorbed doze in the system was (0,5-2)10 4 Gy. IR reflection spectra when beams fall on the sample under angle near the slipping were measured in diapason of 3600-650 cm - 1 by the spectrophotometer S pecord 71IR . The radiation chemical decomposition of hexane in heterosystem was being traced in stretching (3000-2700 cm - 1) and deformation (1500-1300 cm - 1) vibration diapasons of C-H bonds. The analysis of IR reflection spectra of Al-ads.hexane heterosystem showed that the main products of radiation chemical transformation are hydrocarbons C1-C5, olefins: propylene, butene-1, hexene-1, transhexene-3 and hydrocarbons more heavy than hexane. In frequency range of 1700-2000 cm - 1 the absorption bands of Al-H vibration which concern to aluminum hydrides are founded. By increasing of radiation dose the tendency of increasing of hydrogen accumulation as aluminum hydrides has been established

  14. A study of muscular tissue of animal origin by reflection-spectroscopy methods

    Science.gov (United States)

    Plotnikova, L. V.; Nechiporenko, A. P.; Orekhova, S. M.; Plotnikov, P. P.; Ishevskii, A. L.

    2017-06-01

    A comparative analysis of the spectral characteristics of the surface of muscular tissue of animal origin (pork) and its main components has been performed by the methods of diffuse reflection electronic spectroscopy (DRES) and frustrated total internal reflection IR spectroscopy. The experiments have shown that the application of the DRES method makes it possible to detect more pronounced changes in the surface optical characteristics of muscular tissue and obtain electronic spectra containing information about the component composition of its main parts under successive extraction of sarcoplasmic materials, myofibrillar proteins of the actomyosin complex, and stroma mucopolysaccharides.

  15. Infrared reflectance studies of hillock-like porous zinc oxide thin films

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ng, S.S.; Hassan, Z.; Abu Hassan, H.

    2013-01-01

    We investigated the infrared (IR) reflectance characteristics of hillock-like porous zinc oxide (ZnO) thin films on silicon substrates. The IR reflectance spectra of the porous samples exhibited an extra resonance hump in the reststrahlen region of ZnO compared with the as-grown sample. Oscillation fringes with different behaviors were also observed in the non-reststrahlen region of ZnO. Standard multilayer optic technique was used with the effective medium theory to analyze the observations. Results showed that the porous ZnO layer consisted of several sublayers with different porosities and thicknesses. These findings were confirmed by scanning electron microscopy measurements. - Highlights: • Multilayer porous assumption qualitatively increased the overall spectra fitting. • IR reflectance is a sensitive method to probe the multilayer porous structure. • Hillock-like porous ZnO thin films fabricated using electrochemical etching method. • The thickness and porosity of the samples were determined. • Formation of extra resonance hump was due to splitting of reststrahlen band

  16. Synchrotron far-IR RAIRS studies of interfaces created by polyfunctional organic molecules at defined metal surfaces

    International Nuclear Information System (INIS)

    Raval, R.; Williams, J.; Roberts, A.J.; Nunney, T.S.; Surman, M.

    1998-01-01

    Far-IR Reflection Absorption Infrared Spectroscopy (RAIRS) has been used to probe sub monolayers and multilayers of polyfunctional organic ad layers deposited under clean controlled conditions on small-area single-crystal surfaces, using the newly commissioned Daresbury 13.3 far-IR synchrotron beamline. It's shown that the current performance of the beamline allows to monitor fractions of monolayers of formate species on Cu(110), formed at 300 K from the deprotonation of formic acid. Two distinct vCu-O vibrations are observed for coverages up to 0.25 monolayer. The paper attributes the two bands to at least two chemically distinct species, each possessing a local site symmetry of C 2v and bonded to the metal surface via the two oxygen atoms. The two types of formate species are thought to arise from local density fluctuations in formate coverage across the ad layer which leads to local changes in the Cu-O bond. In additions, it's reported far-IR RAIRS spectra of bio molecule/metal interfaces created by depositing thin films (3-10 layers) of the chiral amino-acid, L-methionine, on Cu(110) at 300 K. The multilayer spectra closely resemble the far-IR spectra obtained from crystalline L-methionine, suggesting that the thin layer consists of the zwitterionic species. These thin bio films are stable on the surface to >330 K. No growth of metal-ligand vibrations in the multilayer phase is observed, demonstrating that corrosive chemisorption processes that create Cu-methionine complexes in the multilayer by leaching of surface Cu atoms do not occur in these conditions

  17. PCA: Principal Component Analysis for spectra modeling

    Science.gov (United States)

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  18. Secondary structure and lipid interactions of the N-terminal segment of pulmonary surfactant SP-C in Langmuir films: IR reflection-absorption spectroscopy and surface pressure studies

    DEFF Research Database (Denmark)

    Bi, Xiaohong; Flach, Carol R; Pérez-Gil, Jesus

    2002-01-01

    reversibly with surface pressure (pi), suggestive of the peptide being squeezed out from hydrophobic regions of the monolayer. No such effect was observed for DPPG/peptide monolayers, indicative of stronger, probably electrostatic, interactions. Depalmitoylation produced a weakened interaction with either...... phospholipid as deduced from IRRAS spectra and from pi-area isotherms. S-Palmitoylation may modulate peptide hydration and conformation in the N-terminal region of SP-C and may thus permit the peptide to remain in the film at the high surface pressures present during lung compression. The unique capability...... of IRRAS to detect the surface pressure dependence of protein or peptide structure/interactions in a physiologically relevant model for surfactant is clearly demonstrated. Udgivelsesdato: 2002-Jul-2...

  19. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  20. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...... the current reflective paradigm I supervision and relate this to emotive, normative and formative views supervision. The paper is relevant for Nordic educational research into the supervision and guidance...

  1. Artificial neural networks as a tool for identity confirmation of infrared spectra

    NARCIS (Netherlands)

    Visser T; Luinge HJ; LOC

    1995-01-01

    Onderzoek is uitgevoerd naar de bruikbaarheid van kunstmatige neurale netwerken als criterium voor de identiteitsbevestiging van infrarood-(IR) spectra. Doel van het onderzoek is de identificatie van spectra met hoge ruisniveaus, verkregen met behulp van gecombineeerde gaschromatografie (GC)IR

  2. Raman and IR-ATR spectroscopy studies of heteroepitaxial structures with a GaN:C top layer

    Science.gov (United States)

    Cerqueira, M. F.; Vieira, L. G.; Alves, A.; Correia, R.; Huber, M.; Andreev, A.; Bonanni, A.; Vasilevskiy, M. I.

    2017-09-01

    This work, motivated by the technologically important task of determination of carbon dopant location in the GaN crystal lattice, employed Raman spectroscopy, with both resonant and non-resonant excitation, and infrared (IR) spectroscopy, in the attenuated total reflection (ATR) configuration, to study lattice vibration modes in a set of carbon-doped GaN (GaN:C) epilayers grown by metalorganic vapour phase epitaxy. We analyse Raman and IR-ATR spectra from the point of view of possible effects of the carbon doping, namely: (i) local vibration mode of C atoms in the nitrogen sublattice (whose frequency we theoretically estimate as 768 cm-1 using an isotope defect model), and (ii) shift in the positions of longitudinal modes owing to the phonon-plasmon coupling. We find only indirect hints of the doping effect on the resonant Raman spectra. However, we show theoretically and confirm experimentally that the IR-ATR spectroscopy can be a much more sensitive tool for this purpose, at least for the considered structures. A weak perturbation of the dielectric function of GaN:C, caused by the substitutional carbon impurity, is shown to produce a measurable dip in the ATR reflectivity spectra at  ≈770 cm-1 for both p- and s-polarizations. Moreover, it influences a specific (guided-wave type) mode observed at  ≈737 cm-1, originating from the GaN layer, which appears in the narrow frequency window where the real parts of the two components of the dielectric tensor of the hexagonal crystal have opposite signs. This interpretation is supported by our modelling of the whole multilayer structure, using a transfer matrix formalism.

  3. Characterization and quantitation of aprepitant drug substance polymorphs by attenuated total reflectance fourier transform infrared spectroscopy.

    Science.gov (United States)

    Helmy, Roy; Zhou, George X; Chen, Yadan W; Crocker, Louis; Wang, Tao; Wenslow, Robert M; Vailaya, Anant

    2003-02-01

    In this study, we report the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) for the identification and quantitation of two polymorphs of Aprepitant, a substance P antagonist for chemotherapy-induced emesis. Mixtures of the polymorph pair were prepared by weight and ATR-FT-IR spectra of the powdered samples were obtained over the wavelength range of 700-1500 cm(-1). Significant spectral differences between the two polymorphs at 1140 cm(-1) show that ATR-FT-IR can provide definitive identification of the polymorphs. To investigate the feasibility of ATR-FT-IR for quantitation of polymorphic forms of Aprepitant, a calibration plot was constructed with known mixtures of the two polymorphs by plotting the peak ratio of the second derivative of absorbance spectra against the weight percent of form II in the polymorphic mixture. Using this novel approach, 3 wt % of one crystal form could be detected in mixtures of the two polymorphs. The accuracy of ATR-FT-IR in determining polymorph purity of the drug substance was tested by comparing the results with those obtained by X-ray powder diffractometry (XRPD). Indeed, polymorphic purity results obtained by ATR-FT-IR were found to be in good agreement with the predictions made by XRPD and compared favorably with actual values in the known mixtures. The present study clearly demonstrates the potential of ATR-FT-IR as a quick, easy, and inexpensive alternative to XRPD for the determination of polymorphic identity and purity of solid drug substances. The technique is ideally suited for polymorph analysis, because it is precise, accurate, and requires minimal sample preparation.

  4. IR Spectroscopy. An introduction

    International Nuclear Information System (INIS)

    Guenzler, H.; Gremlich, H.U.

    2002-01-01

    The following topics are dealt with: absorption and molecular design, spectrometers, sample preparation, qualitative spectral interpretation and assertions, near-infrared and far-infrared spectroscopy, reference spectra and expert systems

  5. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    Science.gov (United States)

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending

  6. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  7. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  8. Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE)

    Science.gov (United States)

    2016-04-22

    biomaterials , and nanocomposites. Based on this base user group it is estimated that...Engineering; and Barbara Calcagno, Department of General Engineering) 5. The Role of Mechanical Stimulus on Collagen Expression During Bone Repair (Paul...Polymeric Biomaterials Laboratory Principal Investigator: Jorge Almodóvar, PhD - The IR spectra

  9. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  10. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  11. Wave reflections from breakwaters

    OpenAIRE

    Dickson, William S.

    1994-01-01

    A new method is presented for estimating the reflection of a random, multi-directional sea from a coastal structure. The technique is applicable to an array of wave gauges of arbitrary geometry deployed seaward of the reflector. An expansion for small oblique wave incidence angles is used to derive an approximate relationship between measured array cross-spectra and a small number of parameters that describe the incident wave properties and the reflectivity of the structure. Model tests with ...

  12. Highly doped InP as a low loss plasmonic material for mid-IR region

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Takayama, Osamu; Morozov, S. V.

    2016-01-01

    by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom......We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found...... interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated...

  13. A comparison of telescopic and Phobos-2 ISM spectra of Mars in the short-wave near-infrared (0.76-1.02 microns)

    Science.gov (United States)

    Bell, James F., III; Mustard, John F.

    1993-01-01

    Recent analyses of near-IR (0.76-3.16 microns) Mars surface reflectance spectra obtained by the Phobos-2 ISM instrument during early 1989 have revealed the presence of substantial variability in surface spectral properties. Strong absorption features seen in the 0.85-1.05 micron region are up to 10-15 percent deep relative to the local continuum and have been interpreted as evidence of Fe(2+) and Fe(3+) bearing minerals (pyroxenes and iron oxides, respectively). Though these observed band depths are comparable to those seen in laboratory reflectance spectra, they are up to three times larger than most previously reported band depths for Mars spectra at these wavelengths. Six regions of variable albedo and geologic setting were identified where ISM and 1988 opposition telescopic coverage either overlapped physically or sampled the same surface geologic unit. The areal sizes and positions of the regions measured telescopically were compiled by Bell et al. ISM pixels falling within these spots were averaged to produce a spatially convolved spectrum that simulates what would have been seen telescopically. To facilitate comparisons of absorption band positions and relative strengths, the convolved ISM data and the 1988 telescopic spectra were scaled to unity at 0.81 microns and are presented. The data have also been convolved to equivalent band pass normalized reflectances in the region of spectral overlap. A scatter diagram of telescopic vs. ISM reflectances is shown. The results from the investigation are discussed.

  14. Determination of continuous complex refractive index dispersion of biotissue based on internal reflection

    Science.gov (United States)

    Deng, Zhichao; Wang, Jin; Ye, Qing; Sun, Tengqian; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2016-01-01

    The complex refractive index dispersion (CRID), which contains the information on the refractive index dispersion and extinction coefficient spectra, is an important optical parameter of biotissue. However, it is hard to perform the CRID measurement on biotissues due to their high scattering property. Continuous CRID measurement based on internal reflection (CCRIDM-IR) is introduced. By using a lab-made apparatus, internal reflectance spectra of biotissue samples at multiple incident angles were detected, from which the continuous CRIDs were calculated based on the Fresnel formula. Results showed that in 400- to 750-nm range, hemoglobin solution has complicated dispersion and extinction coefficient spectra, while other biotissues have normal dispersion properties, and their extinction coefficients do not vary much with different wavelengths. The normal dispersion can be accurately described by several coefficients of dispersion equations (Cauchy equation, Cornu equation, and Conrady equation). To our knowledge, this is the first time that the continuous CRID of scattering biotissue over a continuous spectral region is measured, and we hereby have proven that CCRIDM-IR is a good method for continuous CRID research of biotissue.

  15. FT-IR spectroscopic studies of protein secondary structures for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karamancheva, I; Simonova, D.; Milev, A.

    2013-01-01

    Full text: Roughly 14 million new cancer cases and 8 million cancer deaths have occurred worldwide in 2012. At least 30 % of all cancer cases and 40 % of the cancer deaths should be avoided by improving the early detection. Fourier transform infrared (FT-IR) spectroscopy has shown many advantages as a tool for the detection of cancer over the traditional methods such as histopathological analysis, X-ray transmission, ultrasonic and computer tomography techniques. With the aim to establish the FT-IR spectroscopy as an alternative method for the diagnosis of human cancers, we have made several studies to examine in details the spectroscopic properties of normal and carcinomatous tissues. Human breast tissues were obtained immediately after surgical breast resection with the informed patient's consent. In our studies we made extensive use of Fourier self-deconvolution, second-order derivatization, difference spectra, curve-fitting procedures and quantitative determinations according to Beer's law. Cancer is a multi-step process. Characteristic differences in both the frequencies and the intensity ratios of several bands have been revealed. Considerable differences have been found in the spectral patterns. The most important and informative region in the mid-IR for determination of protein secondary structure is the amide I and amide II region. The bands between 1730 and 1600 cm -1 are highly sensitive to conformational changes. Considerable changes were observed in the A1735/A1652 absorbance ratio, which provides a measure for the content of a- helix and P-sheet domains. Our investigations have shown that the major biomarker peaks are in the amide I and amide II regions. In the so called 'fingerprint region' many molecular constituents such as lipids, phospholipids, proteins, DNA and RNA, carbohydrates and metabolites may overlap and the quantitative interpretation is impossible. The spectrum may therefore reflect only the average biochemical composition.; key words

  16. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  17. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  18. Application of laboratory and portable attenuated total reflectance infrared spectroscopic approaches for rapid quantification of alpaca serum immunoglobulin G

    Science.gov (United States)

    Burns, Jennifer B.; Riley, Christopher B.; Shaw, R. Anthony; McClure, J. Trenton

    2017-01-01

    The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR) spectroscopic approaches in combination with partial least squares regression (PLSR) for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training) and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG portable ATR-IR spectrometer performed slightly better, and provides more flexibility for potential application in the field. PMID:28651006

  19. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  20. Infrared spectra of interstellar deuteronated PAHs

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter

    2015-08-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules have emerged as a potential constituent of the ISM that emit strong features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm with weaker and blended features in the 3-20μm region. These features are proposed to arise from the vibrational relaxation of PAH molecules on absorption of background UV photons (Tielens 2008). These IR features have been observed towards almost all types of astronomical objects; say H II regions, photodissociation regions, reflection nebulae, planetary nebulae, young star forming regions, external galaxies, etc. A recent observation has proposed that interstellar PAHs are major reservoir for interstellar deuterium (D) (Peeters et al. 2004). According to the `deuterium depletion model' as suggested by Draine (2006), some of the Ds formed in the big bang are depleted in PAHs, which can account for the present value of D/H in the ISM. Hence, study of deuterated PAHs (PADs) is essential in order to measure D/H in the ISM.In this work, we consider another probable category of the large PAH family, i.e. Deuteronated PAHs (DPAH+). Onaka et al. have proposed a D/H ratio which is an order of magnitude smaller than the proposed value of D/H by Draine suggesting that if Ds are depleted in PAHs, they might be accommodated in large PAHs (Onaka et al. 2014). This work reports a `Density Functional Theory' calculation of large deuteronated PAHs (coronene, ovalene, circumcoronene and circumcircumcoronene) to determine the expected region of emission features and to find a D/H ratio that is comparable to the observational results. We present a detailed analysis of the IR spectra of these molecules and discuss the possible astrophysical implications.ReferencesDraine B. T. 2006, in ASP Conf. Ser. 348, Proc. Astrophysics in the Far Ultraviolet: Five Years of Discovery with FUSE, ed. G. Sonneborn, H. Moos, B-G Andersson (San Francisco, CA:ASP) 58Onaka T., Mori T. I., Sakon I., Ohsawa R., Kaneda H., Okada Y., Tanaka M

  1. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  2. Visible-IR and Raman micro-spectroscopic investigation of three Itokawa particles collected by Hayabusa

    Science.gov (United States)

    Brunetto, R.; Bonal, L.; Beck, P.; Dartois, E.; Dionnet, Z.; Djouadi, Z.; Füri, E.; Kakazu, Y.; Oudayer, P.; Quirico, E.; Engrand, C.

    2014-07-01

    HAYABUSA grains offer a unique perspective to better understand the link between asteroids and cosmomaterials available in the laboratory and to get an insight on the early stages of surface space weathering. The scientific objectives of our consortium are threefold: (i) the characterization of asteroidal surface processes (e.g., space weathering alteration); (ii) the assessment of parent-body alteration processes; (iii) the search for a possible association between S-type asteroids and micrometeorites. To this aim, our strategy is based on a combination of analytical techniques. Here we report a first series of results obtained through Visible-Infrared and Raman spectroscopy of three Itokawa particles (RA-QD02-0163, -0174, and -0213) collected by the Hayabusa spacecraft and provided by JAXA for our consortium. In a first step, our main objective was to collect maximum information without altering the particles. Reported results were thus obtained on the raw particles, both (i) in their original containers, and (ii) deposited on diamond windows. Raman and IR confocal spectra were acquired at the SMIS beamline of the French national synchrotron facility SOLEIL and at the Lyon Raman national facility using spots of 2 μ m for the Raman, and 10--20 μ m for the IR analyses. Point analyses and automatic mapping were performed. Analytical parameters (e.g., laser power on the sample) were optimized to prevent any damage. Diffuse reflectance spectra (i=45°, e=0°) in the visible and near-IR wavelengths were obtained with an IAS-CSNSM in-home system coupling a fiber spectrometer to an optical microscope, providing a 20-μ m spot on sample. In the case of particle -0163, Raman and IR results reveal a heterogeneous mixing of minerals, mostly olivine (Fo76), and Ca-rich (En50, Wo50) and Ca-poor (En85) pyroxenes. The modal distribution of these minerals is determined based on the spectral maps. The mineral compositions of -0163 are consistent with those previously reported on

  3. Using mid-Infrared External Reflectance Spectroscopy to Distinguish Between Different Commercially Produced Poly[Methyl MethAcrylate] (PMMA) Samples - A Null Result

    Science.gov (United States)

    Fajardo, Mario; Neel, Christopher; Lacina, David

    2017-06-01

    We report (null) results of experiments testing the hypothesis that mid-infrared (mid-IR) spectroscopy can be used to distinguish samples of poly[methyl methacrylate] (PMMA) obtained from different commercial suppliers. This work was motivated by the desire for a simple non-destructive and non-invasive test for pre-sorting PMMA samples prior to use in shock and high-strain-rate experiments, where PMMA is commonly used as a standard material. We discuss: our choice of mid-IR external reflectance spectroscopy, our approach to recording reflectance spectra at near-normal (θ = 0 + / - 5 degree) incidence and for extracting the wavelength-weighted absorption spectrum from the raw reflectance data via a Kramers-Krönig analysis. We employ extensive signal, which necessitates adopting a special experimental protocol to mitigate the effects of instrumental drift. Finally, we report spectra of three PMMA samples with different commercial pedigrees, and show that they are virtually identical (+ / - 1 % error, 95% confidence); obviating the use of mid-IR reflectance spectroscopy to tell the samples apart.

  4. Infrared reflection nebulae in Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Pendleton, Y.; Werner, M.W.; Capps, R.; Lester, D.; Hawaii Univ., Honolulu; Texas Univ., Austin)

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08. 27 references

  5. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials.

    Science.gov (United States)

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-14

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    Science.gov (United States)

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  7. Computer analysis of ATR-FTIR spectra of paint samples for forensic purposes

    Science.gov (United States)

    Szafarska, Małgorzata; Woźniakiewicz, Michał; Pilch, Mariusz; Zięba-Palus, Janina; Kościelniak, Paweł

    2009-04-01

    A method of subtraction and normalization of IR spectra (MSN-IR) was developed and successfully applied to extract mathematically the pure paint spectrum from the spectrum of paint coat on different bases, both acquired by the Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) technique. The method consists of several stages encompassing several normalization and subtraction processes. The similarity of the spectrum obtained with the reference spectrum was estimated by means of the normalized Manhattan distance. The utility and performance of the method proposed were tested by examination of five different paints sprayed on plastic (polyester) foil and on fabric materials (cotton). It was found that the numerical algorithm applied is able - in contrast to other mathematical approaches conventionally used for the same aim - to reconstruct a pure paint IR spectrum effectively without a loss of chemical information provided. The approach allows the physical separation of a paint from a base to be avoided, hence a time and work-load of analysis to be considerably reduced. The results obtained prove that the method can be considered as a useful tool which can be applied to forensic purposes.

  8. Acid-base titrations of functional groups on the surface of the thermophilic bacterium Anoxybacillus flavithermus: comparing a chemical equilibrium model with ATR-IR spectroscopic data.

    Science.gov (United States)

    Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James

    2007-02-27

    Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.

  9. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  10. Structural Changes Induced in Grapevine (Vitis vinifera L. DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study

    Directory of Open Access Journals (Sweden)

    Nicoleta E. Dina

    2016-05-01

    Full Text Available In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L. varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs infrared (IR laser pulse irradiation (λ = 1100 nm are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA, eight different grapevine varieties were discriminated.

  11. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  12. Application of linear discriminant analysis and Attenuated Total Reflectance Fourier Transform Infrared microspectroscopy for diagnosis of colon cancer.

    Science.gov (United States)

    Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad

    2011-06-01

    Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.

  13. Using reflectance anisotropy spectroscopy to characterize capped silver nanostructures grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, K.; Jacob, J.; McGilp, J.F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Chandola, S. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany); Esser, N. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

    2008-07-01

    Using the single domain Si(111)-3 x 1-Ag surface as a template, room temperature deposition of two or more monolayers of Ag leads to the formation of metallic nanostructures. Reflectance anisotropy spectroscopy (RAS) in the infrared (IR) spectral region is used to analyse the anisotropic conductivity of the structures. The anisotropy is found to be influenced by the offcut angle of the substrate, and hence the terrace width. The Ag nanostructures were capped with Si to form a near-IR transparent protecting layer. The samples are stable to exposure to ambient conditions for significant periods. The RAS spectra are compared to model calculations, which support the conclusion that the buried metallic Ag nanostructures survive the capping process. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Rapid intra-operative diagnosis of kidney cancer by attenuated total reflection infrared spectroscopy of tissue smears.

    Science.gov (United States)

    Pucetaite, Milda; Velicka, Martynas; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Zelvys, Arunas; Sablinskas, Valdas; Steiner, Gerald

    2018-01-09

    Herein, a technique to analyze air-dried kidney tissue impression smears by means of attenuated total reflection infrared (ATR-IR) spectroscopy is presented. Spectral tumor markers-absorption bands of glycogen-are identified in the ATR-IR spectra of the kidney tissue smear samples. Thin kidney tissue cryo-sections currently used for IR spectroscopic analysis lack such spectral markers as the sample preparation causes irreversible molecular changes in the tissue. In particular, freeze-thaw cycle results in degradation of the glycogen and reduction or complete dissolution of its content. Supervised spectral classification was applied to the recorded spectra of the smears and the test spectra were classified with a high accuracy of 92% for normal tissue and 94% for tumor tissue, respectively. For further development, we propose that combination of the method with optical fiber ATR probes could potentially be used for rapid real-time intra-operative tissue analysis without interfering with either the established protocols of pathological examination or the ordinary workflow of operating surgeon. Such approach could ensure easier transition of the method to clinical applications where it may complement the results of gold standard histopathology examination and aid in more precise resection of kidney tumors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms

    Science.gov (United States)

    Jung, Melissa R.; Horgen, F. David; Orski, Sara V.; Rodriguez, Viviana; Beers, Kathryn L.; Balazs, George H.; Jones, T. Todd; Work, Thierry M.; Brignac, Kayla C.; Royer, Sarah-Jeanne; Hyrenbach, David K.; Jensen, Brenda A.; Lynch, Jennifer M.

    2018-01-01

    Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1–6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.

  16. Highly doped InP as a low loss plasmonic material for mid-IR region.

    Science.gov (United States)

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  17. FT-IR microspectroscopy characterization of supports for enzyme immobilization in biosensing applications

    Science.gov (United States)

    Portaccio, M.; Della Ventura, B.; Gabrovska, K.; Marinov, I.; Godjevargova, T.; Mita, D. G.; Lepore, M.

    2010-04-01

    The investigation of materials suitable for enzyme immobilization in biosensing applications has a widespread interest. There are many studies on physico-chemical properties of these materials at macroscopic level but few studies have been devoted to examine and correlate these properties at microscopic level. FT-IR spectroscopy with Micro-Attenuated Total Reflection (Micro-ATR) approach can be extremely useful for understanding a variety of aspects of materials which can be used for optimising immobilization procedures. Moreover, this experimental approach is particularly simple to use (no sample preparation is required) and minimally invasive. Using a Perkin Elmer Spectrum One FT-IR spectrometer equipped with a mercury-cadmium-telluride detector and a micro-ATR element we investigated different materials used for immobilization procedures with various enzymes widely used for biosensing in environmental and clinical applications. In particular, composite membranes constituted by a chemically modified poly-acrylonitrile (PAN) membrane plus layers of tethered chitosan of different molecular weight have been examined. Also silica gel matrices without and with glucose oxidase have been investigated. Spectra have been analysed and the contribution of principal functional groups has been evidenced.

  18. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)

    2015-11-24

    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  19. FT-IR spectroscopy of lipoproteins—A comparative study

    Science.gov (United States)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  20. Molecular orbital calculations of the unpaired electron distribution and electric field gradients in divalent paramagnetic Ir complexes

    International Nuclear Information System (INIS)

    Nogueira, S.R.; Vugman, N.V.; Guenzburger, D.

    1988-01-01

    Semi-empirical Molecular Orbital calculations were performed for the paramagnetic complex ions [Ir(CN) 5 ] 3- , [Ir(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- . Energy levels schemes and Mulliken-type populations were obtained. The distribution of the unpaired spin over the atoms in the complexes was derived, and compared to data obtained from Electron Paramagnetic Resonance spectra with the aid of a Ligand Field model. The electric field gradients at the Ir nucleus were calculated and compared to experiment. The results are discussed in terms of the chemical bonds formed by Ir and the ligands. (author) [pt

  1. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  2. Camouflage in thermal IR: spectral design

    Science.gov (United States)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman

    2016-10-01

    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  3. Study on seasonal IR signature change of a ship by considering seasonal marine environmental conditions

    Science.gov (United States)

    Kim, Do-Hwi; Han, Kuk-Il; Choi, Jun-Hyuk; Kim, Tae-Kuk

    2017-05-01

    Infrared (IR) signal emitted from objects over 0 degree Kelvin has been used to detect and recognize the characteristics of those objects. Recently more delicate IR sensors have been applied for various guided missiles and they affect a crucial influence on object's survivability. Especially, in marine environment it is more vulnerable to be attacked by IR guided missiles since there are nearly no objects for concealment. To increase the survivability of object, the IR signal of the object needs to be analyzed properly by considering various marine environments. IR signature of a naval ship consists of the emitted energy from ship surface and the reflected energy by external sources. Surface property such as the emissivity and the absorptivity on the naval ship varies with different paints applied on the surface and the reflected IR signal is also affected by the surface radiative property, the sensor's geometric position and various climatic conditions in marine environment. Since the direct measurement of IR signal using IR camera is costly and time consuming job, computer simulation methods are developing rapidly to replace those experimental tasks. In this study, we are demonstrate a way of analyzing the IR signal characteristics by using the measured background IR signals using an IR camera and the estimated target IR signals from the computer simulation to find the seasonal trends of IR threats of a naval ship. Through this process, measured weather data are used to analyze more accurate IR signal conditions for the naval ship. The seasonal change of IR signal contrast between the naval ship and the marine background shows that the highest contrast radiant intensity (CRI) value is appeared in early summer.

  4. Completely automated open-path FT-IR spectrometry.

    Science.gov (United States)

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  5. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

    Science.gov (United States)

    Kuzmiakova, Adele; Dillner, Ann M.; Takahama, Satoshi

    2016-06-01

    , and (3) thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) predictions. The discrepancy rate for a four-cluster solution is 10 %. For all functional groups but carboxylic COH the discrepancy is ≤ 10 %. Performance metrics obtained from TOR OC and EC predictions (R2 ≥ 0.94 %, bias ≤ 0.01 µg m-3, and error ≤ 0.04 µg m-3) are on a par with those obtained from uncorrected and PB-corrected spectra. The proposed protocol leads to visually and analytically similar estimates as those generated by the polynomial method. More importantly, the automated solution allows us and future users to evaluate its analytical reproducibility while minimizing reducible user bias. We anticipate the protocol will enable FT-IR researchers and data analysts to quickly and reliably analyze a large amount of data and connect them to a variety of available statistical learning methods to be applied to analyte absorbances isolated in atmospheric aerosol samples.

  6. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    International Nuclear Information System (INIS)

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization

  7. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  8. Iterative random vs. Kennard-Stone sampling for IR spectrum-based classification task using PLS2-DA

    Science.gov (United States)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2018-04-01

    External testing (ET) is preferred over auto-prediction (AP) or k-fold-cross-validation in estimating more realistic predictive ability of a statistical model. With IR spectra, Kennard-stone (KS) sampling algorithm is often used to split the data into training and test sets, i.e. respectively for model construction and for model testing. On the other hand, iterative random sampling (IRS) has not been the favored choice though it is theoretically more likely to produce reliable estimation. The aim of this preliminary work is to compare performances of KS and IRS in sampling a representative training set from an attenuated total reflectance - Fourier transform infrared spectral dataset (of four varieties of blue gel pen inks) for PLS2-DA modeling. The `best' performance achievable from the dataset is estimated with AP on the full dataset (APF, error). Both IRS (n = 200) and KS were used to split the dataset in the ratio of 7:3. The classic decision rule (i.e. maximum value-based) is employed for new sample prediction via partial least squares - discriminant analysis (PLS2-DA). Error rate of each model was estimated repeatedly via: (a) AP on full data (APF, error); (b) AP on training set (APS, error); and (c) ET on the respective test set (ETS, error). A good PLS2-DA model is expected to produce APS, error and EVS, error that is similar to the APF, error. Bearing that in mind, the similarities between (a) APS, error vs. APF, error; (b) ETS, error vs. APF, error and; (c) APS, error vs. ETS, error were evaluated using correlation tests (i.e. Pearson and Spearman's rank test), using series of PLS2-DA models computed from KS-set and IRS-set, respectively. Overall, models constructed from IRS-set exhibits more similarities between the internal and external error rates than the respective KS-set, i.e. less risk of overfitting. In conclusion, IRS is more reliable than KS in sampling representative training set.

  9. The Reflective Learning Continuum: Reflecting on Reflection

    Science.gov (United States)

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  10. A comparison of the performance of a fundamental parameter method for analysis of total reflection X-ray fluorescence spectra and determination of trace elements, versus an empirical quantification procedure

    Science.gov (United States)

    W(egrzynek, Dariusz; Hołyńska, Barbara; Ostachowicz, Beata

    1998-01-01

    The performance has been compared of two different quantification methods — namely, the commonly used empirical quantification procedure and a fundamental parameter approach — for determination of the mass fractions of elements in particulate-like sample residues on a quartz reflector measured in the total reflection geometry. In the empirical quantification procedure, the spectrometer system needs to be calibrated with the use of samples containing known concentrations of the elements. On the basis of intensities of the X-ray peaks and the known concentration or mass fraction of an internal standard element, by using relative sensitivities of the spectrometer system the concentrations or mass fractions of the elements are calculated. The fundamental parameter approach does not require any calibration of the spectrometer system to be carried out. However, in order to account for an unknown mass per unit area of a sample and sample nonuniformity, an internal standard element is added. The concentrations/mass fractions of the elements to be determined are calculated during fitting a modelled X-ray spectrum to the measured one. The two quantification methods were applied to determine the mass fractions of elements in the cross-sections of a peat core, biological standard reference materials and to determine the concentrations of elements in samples prepared from an aqueous multi-element standard solution.

  11. New infrared observations of IRS 1, IRS 3, and the adjacent nebula in the OMC-2 cluster

    International Nuclear Information System (INIS)

    Pendelton, Y.; Werner, M.; Dinerstein, H.

    1984-01-01

    Recent reports show that near infrared reflection nebulae are often observed around embedded protostellar objects. New observations are here reported of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2). It has been determined that the asymmetric distribution of the extended emission seen about IRS1 is in fact another infrared reflection nebula. Observations of near infrared polarimetry, photometry, and spectrophotometry were carried out at the NASA Infrared Telescope Facility October 1982 and January 1983. (author)

  12. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  13. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  14. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  15. Automated Endmember Selection for Nonlinear Unmixing of Lunar Spectra

    Science.gov (United States)

    Felder, M. P.; Grumpe, A.; Wöhler, C.; Mall, U.

    2013-09-01

    An important aspect of the analysis of remotely sensed lunar reflectance spectra is their decomposition into intimately mixed constituents. While some methods rely on unmixing of the observed reflectance spectra [1] or on the identification of minerals by extracting the depths and positions of mineral-specific absorption troughs [2, 3], these approaches do not allow for an automated selection of the (a priori unknown) endmembers from a large set of possible constituents. In this study, a non-linear spectral unmixing approach combined with an automated endmember selection scheme is proposed. This method is applied to reflectance spectra of the SIR-2 point spectrometer [4] carried by the Chandrayaan-1 spacecraft.

  16. Synthesis IR spectra and crystal structure of N-(4-bromophenyl)-1,1,1-trifluoroacetyl-acetonimine HN(C6H4Br)xC(Me)xCHxC(CF3)xO(HL) and its molecular complex with tungstene(4) oxotetrachloride WOCl4xHL

    International Nuclear Information System (INIS)

    Sergienko, V.S.; Ilyukhin, A.B.; Abramenko, V.L.

    1997-01-01

    Synthesis, IR spectroscopic and X-ray diffraction studies of compound HN(C 6 H 4 Br)xC(Me)xCHxC(CF 3 )xO(HL) (1) and of molecular complex WOCl 4 xHL(2) have been conducted. In 1 and 2 HL molecule exists in ketoamine tautomeric form (acid proton is localized at nitrogen atom). The results of 1 and 2 study are compared with literature data on structures of HL type molecules and Mo(6) molecular complexes with β-enaminevinylketone, as well as with the structure of chelate compound WOCl 3 L 1 , where L 1 - anion of N-phenylacetylacetonimine

  17. Polarization Spectra of Extrasolar Giant Planets

    NARCIS (Netherlands)

    Stam, D.M.

    2004-01-01

    We present simulated spectra of the flux and degree of polarization of starlight that is reflected by extrasolar giant planets (EGPs). In particular the polarization depends strongly on the structure of the planetary atmosphere, and appears to be a valuable tool for the characterization of EGPs.

  18. A Simple Approach to Distinguish Classic and Formaldehyde-Free Tannin Based Rigid Foams by ATR FT-IR

    Directory of Open Access Journals (Sweden)

    Gianluca Tondi

    2015-01-01

    Full Text Available Tannin based rigid foams (TBRFs have been produced with formaldehyde since 1994. Only recently several methods have been developed in order to produce these foams without using formaldehyde. TBRFs with and without formaldehyde are visually indistinguishable; therefore a method for determining the differences between these foams had to be found. The attenuated total reflectance infrared spectroscopy (ATR FT-IR investigation of the TBRFs presented in this paper allowed discrimination between the formaldehyde-containing (classic and formaldehyde-free TBRFs. The spectra of the formaldehyde-free TBRFs, indeed, present decreased band intensity related to the C–O stretching vibration of (i the methylol groups and (ii the furanic rings. This evidence served to prove the chemical difference between the two TBRFs and explained the slightly higher mechanical properties measured for the classic TBRFs.

  19. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  20. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  1. Reviewing History and IR Journals : Academic Publication Practices and Dominance in World Society

    NARCIS (Netherlands)

    Duijvendak, Maarten; de Wilde, J.H.

    2016-01-01

    1 Reviewing History and IR Journals: Academic Publication Practices and dominance in World Society Maarten Duijvendak & Jaap de Wilde Groningen, 2016 This article reflects on analyses of academic History journals and International Relations (IR) journals conducted by students in our Research

  2. Mid-Infrared Spectral Properties of IR QSOs

    International Nuclear Information System (INIS)

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-01-01

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from ∼5 to 30 μm, including the spectral slopes, 6.2 μm PAH emission strengths and [NeII] 12.81 μm luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 μm) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  3. THE INFRARED SPECTRA OF VERY LARGE IRREGULAR POLYCYCLIC AROMATIC HYDROCARBONS (PAHs): OBSERVATIONAL PROBES OF ASTRONOMICAL PAH GEOMETRY, SIZE, AND CHARGE

    International Nuclear Information System (INIS)

    Bauschlicher, Charles W.; Peeters, Els; Allamandola, Louis J.

    2009-01-01

    The mid-infrared (IR) spectra of six large, irregular polycyclic aromatic hydrocarbons (PAHs) with formulae (C 84 H 24 -C 120 H 36 ) have been computed using density functional theory (DFT). Trends in the dominant band positions and intensities are compared to those of large, compact PAHs as a function of geometry, size, and charge. Irregular edge moieties that are common in terrestrial PAHs, such as bay regions and rings with quartet hydrogens, are shown to be uncommon in astronomical PAHs. As for all PAHs comprised solely of C and H reported to date, mid-IR emission from irregular PAHs fails to produce a strong CC str band at 6.2 μm, the position characteristic of the important, class A astronomical PAH spectra. Earlier studies showed that inclusion of nitrogen within a PAH shifts this to 6.2 μm for PAH cations. Here we show that this band shifts to 6.3 μm in nitrogenated PAH anions, close to the position of the CC stretch in class B astronomical PAH spectra. Thus, nitrogenated PAHs may be important in all sources and the peak position of the CC stretch near 6.2 μm appears to directly reflect the PAH cation to anion ratio. Large irregular PAHs exhibit features at 7.8 μm but lack them near 8.6 μm. Hence, the 7.7 μm astronomical feature is produced by a mixture of small and large PAHs while the 8.6 μm band can only be produced by large compact PAHs. As with the CC str , the position and profile of these bands reflect the PAH cation to anion ratio.

  4. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  5. The Charge State of Polycyclic Aromatic Hydrocarbons across a Reflection Nebula, an H II Region, and a Planetary Nebula

    Science.gov (United States)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2018-05-01

    Low-resolution Spitzer-IRS spectral map data of a reflection nebula (NGC 7023), H II region (M17), and planetary nebula (NGC 40), totaling 1417 spectra, are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbon (PAH) emission is broken down into PAH charge and size subclass contributions using a database-fitting approach. The resulting charge breakdown results are combined with those derived using the traditional PAH band strength ratio approach, which interprets particular PAH band strength ratios as proxies for PAH charge. Here the 6.2/11.2 μm PAH band strength ratio is successfully calibrated against its database equivalent: the {n}PAH}+}/{n}PAH}0} ratio. In turn, this ratio is converted into the PAH ionization parameter, which relates it to the strength of the radiation field, gas temperature, and electron density. Population diagrams are used to derive the {{{H}}}2 density and temperature. The bifurcated plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo dissociation region in NGC 7023 is shown to be a robust diagnostic template for the {n}PAH}+}/{n}PAH}0} ratio in all three objects. Template spectra for the PAH charge and size subclasses are determined for each object and shown to favorably compare. Using the determined template spectra from NGC 7023 to fit the emission in all three objects yields, upon inspection of the Structure SIMilarity maps, satisfactory results. The choice of extinction curve proves to be critical. Concluding, the distinctly different astronomical environments of a reflection nebula, H II region, and planetary nebula are reflected in their PAH emission spectra.

  6. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    Science.gov (United States)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  7. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  8. Prediction of long-residue properties of potential blends from mathematically mixed infrared spectra of pure crude oils by partial least-squares regression models

    NARCIS (Netherlands)

    de Peinder, P.; Visser, T.; Petrauskas, D.D.; Salvatori, F.; Soulimani, F.; Weckhuysen, B.M.

    2009-01-01

    Research has been carried out to determine the feasibility of partial least-squares (PLS) regression models to predict the long-residue (LR) properties of potential blends from infrared (IR) spectra that have been created by linearly co-adding the IR spectra of crude oils. The study is the follow-up

  9. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    Science.gov (United States)

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  10. Spectral Mining for Discriminating Blood Origins in the Presence of Substrate Interference via Attenuated Total Reflection Fourier Transform Infrared Spectroscopy: Postmortem or Antemortem Blood?

    Science.gov (United States)

    Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ikegaya, Hiroshi; Ozawa, Takeaki

    2017-09-19

    Often in criminal investigations, discrimination of types of body fluid evidence is crucially important to ascertain how a crime was committed. Compared to current methods using biochemical techniques, vibrational spectroscopic approaches can provide versatile applicability to identify various body fluid types without sample invasion. However, their applicability is limited to pure body fluid samples because important signals from body fluids incorporated in a substrate are affected strongly by interference from substrate signals. Herein, we describe a novel approach to recover body fluid signals that are embedded in strong substrate interferences using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and an innovative multivariate spectral processing. This technique supported detection of covert features of body fluid signals, and then identified origins of body fluid stains on substrates. We discriminated between ATR FT-IR spectra of postmortem blood (PB) and those of antemortem blood (AB) by creating a multivariate statistics model. From ATR FT-IR spectra of PB and AB stains on interfering substrates (polyester, cotton, and denim), blood-originated signals were extracted by a weighted linear regression approach we developed originally using principal components of both blood and substrate spectra. The blood-originated signals were finally classified by the discriminant model, demonstrating high discriminant accuracy. The present method can identify body fluid evidence independently of the substrate type, which is expected to promote the application of vibrational spectroscopic techniques in forensic body fluid analysis.

  11. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  12. Third-harmonic generation in silicon and photonic crystals of macroporous silicon in the spectral intermediate-IR range; Erzeugung der Dritten Harmonischen in Silizium und Photonischen Kristallen aus makroporoesem Silizium im spektralen mittleren IR-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Mitzschke, Kerstin

    2007-11-01

    Nonlinear optical spectroscopy is a powerful method to study surface or bulk properties of condensed matter. In centrosymmetric materials like silicon even order nonlinear optical processes are forbidden. Besides self-focussing or self phase modulation third-harmonic-generation (THG) is the simplest process that can be studied. This work demonstrates that THG is a adapted non-contact and non-invasive optical method to get information about bulk structures of silicon and Photonic crystals (PC), consisting of silicon. Until now most studies are done in the visible spectral range being limited by the linear absorption losses. So the extension of THG to the IR spectral range is extremely useful. This will allow the investigation of Photonic Crystals, where frequencies near a photonic bandgap are of special interest. 2D- photonic structures under investigation were fabricated via photoelectrochemical etching of the Si (100) wafer (thickness 500 {mu}m) receiving square and hexagonal arranged pores. The typical periodicity of the structures used is 2 {mu}m and the length of the pores reached to 400 {mu}m. Because of stability the photonic structures were superimposed on silicon substrate. The experimental set-up used for the THG experiments generates tuneable picosecond IR pulses (tuning range 1500-4000 cm{sup -1}). The IR-pulse hit the sample either perpendicular to the sample surface or under an angle {theta}. The sample can be rotated (f) around the surface normal. The generated third harmonic is analysed by a polarizer, spectrally filtered by a polychromator and registered by a CCD camera. The setup can be used either in transmission or in reflection mode. Optical transmission and reflection spectra of the Si bulk correspond well with the theoretical description, a 4-fold and a 8-fold dependencies of the azimuth angle resulting in the structure of the x{sup (3)}-tensor of (100)-Si. The situation changes dramatically if the PC with hexagonal structure is investigated

  13. Density functional study of the L10-αIrV transition in IrV and RhV

    International Nuclear Information System (INIS)

    Mehl, Michael J.; Hart, Gus L.W.; Curtarolo, Stefano

    2011-01-01

    Research highlights: → The computational determination of the ground state of a material can be a difficult task, particularly if the ground state is uncommon and so not found in usual databases. In this paper we consider the alpha-IrV structure, a low temperature structure found only in two compounds, IrV and RhV. In both cases this structure can be considered as a distorted tetragonal structure, and the tetragonal 'L1 0 ' structure is the high temperature structure for both compounds. We show, however, that the logical path for the transition from the L1 0 to the alpha-IrV structure is energetically forbidden, and find a series of unstable and metastable structures which have a lower energy than the L1 0 phase, but are higher in energy than the alpha-IrV phase. We also consider the possibility of the alpha-IrV structure appearing in neighboring compounds. We find that both IrTi and RhTi are candidates. - Abstract: Both IrV and RhV crystallize in the αIrV structure, with a transition to the higher symmetry L1 0 structure at high temperature, or with the addition of excess Ir or Rh. Here we present evidence that this transition is driven by the lowering of the electronic density of states at the Fermi level of the αIrV structure. The transition has long been thought to be second order, with a simple doubling of the L1 0 unit cell due to an unstable phonon at the R point (0 1/2 1/2). We use first-principles calculations to show that all phonons at the R point are, in fact, stable, but do find a region of reciprocal space where the L1 0 structure has unstable (imaginary frequency) phonons. We use the frozen phonon method to examine two of these modes, relaxing the structures associated with the unstable phonon modes to obtain new structures which are lower in energy than L1 0 but still above αIrV. We examine the phonon spectra of these structures as well, looking for instabilities, and find further instabilities, and more relaxed structures, all of which have

  14. Ultraviolet spectra of planetary nebulae

    International Nuclear Information System (INIS)

    Harrington, J.P.; Seaton, M.J.; Adams, S.; Lutz, J.H.

    1982-01-01

    A detailed study of NGC 7662 is based on UV results obtained from 15 IUE spectra and on observations of other workers at optical, IR and radio wavelengths. Improved techniques are used to extract IUE data for an extended source. Relative fluxes in the different apertures which have been used are obtained using the brightness contours of Coleman, Reay and Worswick. There is close agreement between the reddening deduced from the ratios He II (lambda 1640)/(lambda 4686) and (radio)/(Hβ) and the nebular continuum emission observed with the IUE large slots agrees closely with that predicted using absolute radio and Hβ fluxes. The fluxes in nebular emission lines observed with the small slots are smaller than expected from brightness distributions; it is concluded that, for an extended source, the small slots have aperture transmission factors of 0.85 for SWP and 0.46 for LWR. The central star is fainter than has been previously supposed (by more than two magnitudes). The blackbody He II Zanstra temperature of 113 000 K is consistent with the UV colour temperature. Previous work on colour temperatures of central stars is discussed critically. Two models are discussed. (author)

  15. FBRDLR: Fast blind reconstruction approach with dictionary learning regularization for infrared microscopy spectra

    Science.gov (United States)

    Liu, Tingting; Liu, Hai; Chen, Zengzhao; Chen, Yingying; Wang, Shengming; Liu, Zhi; Zhang, Hao

    2018-05-01

    Infrared (IR) spectra are the fingerprints of the molecules, and the spectral band location closely relates to the structure of a molecule. Thus, specimen identification can be performed based on IR spectroscopy. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances. In this paper, we propose a fast blind reconstruction approach for IR spectra, which is based on sparse and redundant representations over a dictionary. The proposed method recovers the spectrum with the discrete wavelet transform dictionary on its content. The experimental results demonstrate that the proposed method is superior because of the better performance when compared with other state-of-the-art methods. The method the authors used remove the instrument aging issue to a large extent, thus leading the reconstruction IR spectra a more convenient tool for extracting features of an unknown material and interpreting it.

  16. Alternative interpretation of infrared spectra of the zeolite NaHY and 1-butene system

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, H.; Seelemann, R.

    1979-01-01

    A Fourier transform IR study of the adsorption and isomerization of n-butenes on type A zeolites showed an essential similarity of the IR spectra of pure 1-butene absorbed on NaY and NaA zeolites. This led to an interpretation of the IR spectra of 1-butene on NaHY zeolites in terms of the isomerization to the cis- and trans-2-butene, rather than oligomerization on NaY and oligomerization, isomerization, fragmentation, or further side reaction on NaHY, as suggested by Ceckiewicz et al. The temperature-programed desorption measurements at temperatures up to 700/sup 0/K used by Ceckiewicz to analyze IR spectra taken at room temperature seem to be unsuitable for this purpose since subsequent reactions at higher temperatures cannot be ruled out.

  17. The Electronic Structure and Spectra of Triphenylamines Functionalized by Phenylethynyl Groups

    Science.gov (United States)

    Baryshnikov, G. V.; Minaeva, V. A.; Minaev, B. F.; Grigoras, M.

    2018-01-01

    We study the features of the electronic structure and the IR, UV, and visible spectra of a series of triphenylamines substituted with phenylethynyl groups. The analysis is performed at the level of the density functional theory (DFT) and its nonstationary version in comparison with the experimental data of IR and electron spectroscopy. It is shown that, in the excited state, there is a change in the alternation of single, double, and triple bonds in accordance with the character of bonding and antibonding in the lowest vacant molecular orbital. The gradual introduction of additional phenylethynyl groups does not cause frequency shifts in the IR spectra of the molecules under study, but significantly affects the intensity of the corresponding IR bands. A similar effect is also observed in the electronic-absorption spectra of these compounds. This can be used for optical tuning of triphenylamines as promising materials for organic light-emitting diodes and solar cells.

  18. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  19. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    Science.gov (United States)

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  20. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    Science.gov (United States)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  1. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  2. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    Science.gov (United States)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  3. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Science.gov (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  4. Regioselective aromatic substitution reactions of cyclometalated Ir(III) complexes: synthesis and photochemical properties of substituted Ir(III) complexes that exhibit blue, green, and red color luminescence emission.

    Science.gov (United States)

    Aoki, Shin; Matsuo, Yasuki; Ogura, Shiori; Ohwada, Hiroki; Hisamatsu, Yosuke; Moromizato, Shinsuke; Shiro, Motoo; Kitamura, Masanori

    2011-02-07

    In this manuscript, the regioselective halogenation, nitration, formylation, and acylation of Ir(tpy)(3) and Ir(ppy)(3) (tpy = 2-(4'-tolyl)pyridine and ppy = 2-phenylpyridine) and the subsequent conversions are described. During attempted bromination of the three methyl groups in fac-Ir(tpy)(3) using N-bromosuccinimide (NBS) and benzoyl peroxide (BPO), three protons at the 5'-position (p-position with respect to the C-Ir bond) of phenyl rings in tpy units were substituted by Br, as confirmed by (1)H NMR spectra, mass spectra, and X-ray crystal structure analysis. It is suggested that such substitution reactions of Ir complexes proceed via an ionic mechanism rather than a radical mechanism. UV-vis and luminescence spectra of the substituted Ir(III) complexes are reported. The introduction of electron-withdrawing groups such as CN and CHO groups at the 5'-position of tpy induces a blue shift of luminescence emission to about 480 nm, and the introduction of electron-donating groups such as an amino group results in a red shift to about 600 nm. A reversible change of emission for the 5'-amino derivative of Ir(tpy)(3), Ir(atpy)(3), between red and green occurs upon protonation and deprotonation.

  5. Personal Reflections

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Personal Reflections. Articles in Resonance – Journal of Science Education. Volume 6 Issue 3 March 2001 pp 90-93 Personal Reflections. Why did I opt for Career in Science? Jayant V Narlikar · More Details Fulltext PDF. Volume 9 Issue 8 August 2004 pp 89-89 ...

  6. Reflection groups

    International Nuclear Information System (INIS)

    Eggermont, G.

    2006-01-01

    In 2005, PISA organised proactive meetings of reflection groups on involvement in decision making, expert culture and ethical aspects of radiation protection.All reflection group meetings address particular targeted audiences while the output publication in book form is put forward

  7. Reflection ciphers

    DEFF Research Database (Denmark)

    Boura, Christina; Canteaut, Anne; Knudsen, Lars Ramkilde

    2017-01-01

    study the necessary properties for this coupling permutation. Special care has to be taken of some related-key distinguishers since, in the context of reflection ciphers, they may provide attacks in the single-key setting.We then derive some criteria for constructing secure reflection ciphers...

  8. Quantifying Reflection

    DEFF Research Database (Denmark)

    Alcock, Gordon Lindsay

    2013-01-01

    ´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark...

  9. Characterization of additives typically employed in EPDM formulations by using FT-IR of gaseous pyrolyzates

    Directory of Open Access Journals (Sweden)

    Natália Beck Sanches

    2014-06-01

    Full Text Available In this study, Fourier transform infrared spectroscopy (FT-IR was employed to investigate the gaseous pyrolysis products of ethylene - propylene - diene rubber (EPDM. The objective was to evaluate the potential of FT-IR analysis of gaseous pyrolyzates (PY-G/FT-IR for characterization of EPDM additives. Two EPDM formulations, containing additives typically employed in EPDM rubbers, were analyzed. Initially, gaseous pyrolysis products from paraffin oil, stearic acid, 2,2,4-trimethyl-1,2-dihydroquinoline, tetramethylthiuram monosulfide (TMTM, tetramethylthiuram disulfide (TMTD, and 2-mercaptobenzothiazole (MBT were characterized separately, and their main absorptions were identified. Subsequently, the gaseous pyrolysis products of raw, unvulcanized, and vulcanized EPDM formulations were analyzed. The similarities observed in the FT-IR spectra of unvulcanized and vulcanized EPDM show that the vulcanization process does not interfere with the pyrolysis products. The identification of the functional groups of the studied additives was possible in both unvulcanized and vulcanized EPDM samples, without solvent extraction. Results also demonstrate that the PY-G/FT-IR technique can identify additives containing sulfur in concentrations as low as 1.4 phr (1.26% in both unvulcanized and vulcanized EPDM. However, the method showed some limitation due to overlapping and to similarities of TMTM and TMTD PY-G/FT-IR spectra, which could not be distinguished from each other. The PY-G/FT-IR technique is a faster and cheaper alternative to the sophisticated techniques usually applied to detection of additives in rubbers.

  10. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  11. Identification of solution products of lanthanoid (3) diethyldithiocarbamatohexamethyl phosphotriamide compounds from IR, electron and sup 1 H, sup 13 C, sup 31 P NMR absorption spectra. Identifikatsiya produktov rastvoreniya diehtilditiokarbamatogeksametil fosfotriamidnykh soedinenij lantanoidov (3) po IK, ehlektronnym i YaMR sup 1 H, sup 13 C, sup 31 P spektram pogloshcheniya

    Energy Technology Data Exchange (ETDEWEB)

    Skopenko, V V; Savost' yanova, A F; Trachevskij, V V; Gorbalyuk, A D; Sukhan, T A [Kievskij Gosudarstvennyj Univ., Kiev (Ukrainian SSR)

    1991-01-01

    By the methods of conductometry, IR, electron and {sup 1}H, {sup 13}C, {sup 31}P NMR spectroscopy nonaqueous solutions of the compounds (La(S{sub 2}CNEt{sub 2})Hmpa{sub 5})(BPh{sub 4}){sub 2}, Hmpa=OP(NMe{sub 2}){sub 3}; (Ln(S{sub 2}CNEt{sub 2}){sub 2}Hmpa{sub 3})BPh{sub 4}, Ln=Y, La-Lu; (Ln(S{sub 2}CNEt{sub 2}){sub 3}Hmpa{sub 2}), Ln=La-Gd, have been investigated. It is ascertained that bis-dithiocarbamate compounds are dissolved in all the studied solvents with preservation of composition and structure of lanthanide (3) inner coordination sphere. Tris-dithiocarbamates in nonaqueous solutions are subjected to reactions of ligand redistribution according to schemes depending on the solvent nature. In the process of dissolving of lanthanum monodithiocarbamate bond isomerization of dithiocarbamate groups occurs, which is pronounced in splitting of {sup 1}H and {sup 13}C NMR signals.

  12. Application of laboratory and portable attenuated total reflectance infrared spectroscopic approaches for rapid quantification of alpaca serum immunoglobulin G.

    Directory of Open Access Journals (Sweden)

    Ibrahim Elsohaby

    Full Text Available The objective of this study was to develop and compare the performance of laboratory grade and portable attenuated total reflectance infrared (ATR-IR spectroscopic approaches in combination with partial least squares regression (PLSR for the rapid quantification of alpaca serum IgG concentration, and the identification of low IgG (<1000 mg/dL, which is consistent with the diagnosis of failure of transfer of passive immunity (FTPI in neonates. Serum samples (n = 175 collected from privately owned, healthy alpacas were tested by the reference method of radial immunodiffusion (RID assay, and laboratory grade and portable ATR-IR spectrometers. Various pre-processing strategies were applied to the ATR-IR spectra that were linked to corresponding RID-IgG concentrations, and then randomly split into two sets: calibration (training and test sets. PLSR was applied to the calibration set and calibration models were developed, and the test set was used to assess the accuracy of the analytical method. For the test set, the Pearson correlation coefficients between the IgG measured by RID and predicted by both laboratory grade and portable ATR-IR spectrometers was 0.91. The average differences between reference serum IgG concentrations and the two IR-based methods were 120.5 mg/dL and 71 mg/dL for the laboratory and portable ATR-IR-based assays, respectively. Adopting an IgG concentration <1000 mg/dL as the cut-point for FTPI cases, the sensitivity, specificity, and accuracy for identifying serum samples below this cut point by laboratory ATR-IR assay were 86, 100 and 98%, respectively (within the entire data set. Corresponding values for the portable ATR-IR assay were 95, 99 and 99%, respectively. These results suggest that the two different ATR-IR assays performed similarly for rapid qualitative evaluation of alpaca serum IgG and for diagnosis of IgG <1000 mg/dL, the portable ATR-IR spectrometer performed slightly better, and provides more flexibility for

  13. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1979-01-01

    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  14. Shock-reflected electrons and X-ray line spectra

    Czech Academy of Sciences Publication Activity Database

    Dzifčáková, Elena; Vandas, Marek; Karlický, Marian

    2017-01-01

    Roč. 603, July (2017), A17/1-A17/8 E-ISSN 1432-0746 R&D Projects: GA ČR(CZ) GA17-16447S; GA ČR GAP209/12/0103; GA ČR(CZ) GA14-19376S; GA ČR(CZ) GA17-06065S; GA ČR GA15-17490S; GA ČR(CZ) GA16-13277S Institutional support: RVO:67985815 Keywords : Sun * flares * line formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  15. TLC/IR (UATR off-line coupling for the characterization of additives in EPDM rubber compositions

    Directory of Open Access Journals (Sweden)

    Denis Damazio

    2016-02-01

    Full Text Available Abstract The knowledge of the components that constitutes a rubber composition is important to justify the properties of the final device, particularly when it comes to elastomeric compositions used in the aerospace industry. The development of methodologies that can detect components, specially the smallest proportion of the rubbers composition is a constant challenge and an important gap in the studies of this nature. Therefore, methodologies by using standard techniques and/or of last generation are important in rubber industry and research laboratories, aiming application in related research. In this context, this study shows the coupling/association techniques (off-line of thin layer chromatography and infrared spectroscopy (TLC/IR, being the IR spectra obtained by universal attenuated total reflection (UATR, applied to the analysis of additives in rubber compositions of ethylene-propylene-diene rubber (EPDM. Two EPDM compositions, a kind of eluent system and Gibbs' reagent, as developer, were used. Basically, all organic components were detected by this methodology, being possible to suggest that it can be applied for detecting additives of similar chemical structures, even though it's presents in small amounts in the composition.

  16. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  17. Pigments which reflect infrared radiation from fire

    Science.gov (United States)

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  18. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    Science.gov (United States)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  19. IR and UV spectroscopic analysis of TBP complexes

    International Nuclear Information System (INIS)

    Azzouz, A.; Berrak, A.; Seridi, L.; Attou, M.

    1985-06-01

    The complexity of TBP molecule and the limited number of references stimulated the elaboration of this report. The spectroscopic of TBP and its complexes in the IR and UV fields permitted to elucidate or to confirm certain aspects concerning the solvation phenomenum. In IR spectroscopy, the stretching band of the P→O bond only is characteristic of the complex formed. The position of this band gives sufficient information about the kind and the stability of a complex. The TBP electronic spectra are characterized by two bands (200-220 nm) 1 and (268-290 nm) 2 whose intensity ratio (2/1) is about 0,13. The solvent nature seems to influence the positions of these bands and that of the inflexion point. The band 2 disappears when the TBP is complexed and the position and the intensity of the band 1 depend upon the complex nature

  20. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  1. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  2. Improving interpretation of infrared spectra for OM characterization by subtraction of spectra from incinerated samples

    Science.gov (United States)

    Ellerbrock, Ruth H.; Gerke, Horst H.; Leue, Martin

    2017-04-01

    Non-destructive methods such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) have been applied to characterize organic matter (OM) at intact structural surfaces among others. However, it is often difficult to distinguish effects of organic components on DRIFT signal intensities from those of mineral components. The objective of this study was to re-evaluate DRIFT spectra from intact earthworm burrow walls and coated cracks to improve the interpretation of C-H and C=O bands. We compared DRIFT and transmission Fourier transform infrared (FTIR) spectra of entire samples that were from the same pedogenetic soil horizon, but different in mineral composition and texture (i.e., glacial till versus loess). Spectra of incinerated samples were subtracted from the original spectra. Transmission FTIR and DRIFT spectra were almost identical for entire soil samples. However, the DRIFT spectra were affected by the bulk mode bands (i.e., wavenumbers 2000 to 1700 cm-1) that affected spectral resolution and reproducibility. The ratios between C-H and C=O band intensities as indicator for OM quality obtained with DRIFT were smaller than those obtained from transmission FTIR. A spectral subtraction procedure was found to reduce effects of mineral absorption bands on DRIFT spectra allowing an improved interpretation. DRIFT spectroscopy as a non-destructive method for analyzing OM composition at intact surfaces in structured soils could be calibrated with information obtained with the more detailed transmission FTIR and complementary methods.

  3. UNTANGLING THE NEAR-IR SPECTRAL FEATURES IN THE PROTOPLANETARY ENVIRONMENT OF KH 15D

    Energy Technology Data Exchange (ETDEWEB)

    Arulanantham, Nicole A.; Herbst, William; Gilmore, Martha S.; Cauley, P. Wilson [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Leggett, S. K., E-mail: nicole.arulanantham@colorado.edu [Gemini Observatory (North), Hilo, HI 96720 (United States)

    2017-01-10

    We report on Gemini/GNIRS observations of the binary T Tauri system V582 Mon (KH 15D) at three orbital phases. These spectra allow us to untangle five components of the system: the photosphere and magnetosphere of star B, the jet, scattering properties of the ring material, and excess near-infrared (near-IR) radiation previously attributed to a possible self-luminous planet. We confirm an early-K subgiant classification for star B and show that the magnetospheric He i emission line is variable, possibly indicating increased mass accretion at certain times. As expected, the H{sub 2} emission features associated with the inner part of the jet show no variation with orbital phase. We show that the reflectance spectrum for the scattered light has a distinctive blue slope and spectral features consistent with scattering and absorption by a mixture of water and methane ice grains in the 1–50 μ m size range. This suggests that the methane frost line is closer than ∼5 au in this system, requiring that the grains be shielded from direct radiation. After correcting for features from the scattered light, jet, magnetosphere, and photosphere, we confirm the presence of leftover near-IR light from an additional source, detectable near minimum brightness. A spectral emission feature matching the model spectrum of a 10 M {sub J}, 1 Myr old planet is found in the excess flux, but other expected features from this model are not seen. Our observations, therefore, tentatively support the picture that a luminous planet is present within the system, although they cannot yet be considered definitive.

  4. Synthesis and Fluorescence Spectra of Triazolylcoumarin Fluorescent Dyes

    Institute of Scientific and Technical Information of China (English)

    PENG Xian-fu; LI Hong-qi

    2009-01-01

    Much attention is devoted to fluorescent dyes especially those with potential in versatile applications. Reactions under "click" conditions between nonfluorescent 3 - azidocoumarins and terminal alkynes produced 3 -(1, 2, 3- triazol- 1 - yl)cournarins, a novel type of fluorescent dyes with intense fluorescence. The structures of the new coumarins were characterized by 1H NMR, MS, and IR spectra. Fluorescence spectra measurement demonstrated excellent fluorescence performance of the triazolylcoumarins and this click reaction is a promising candidate for bioconjugation and bioimaging applications since both azide and alkynes are quite inert to biological systems.

  5. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  6. Deposition and characterization of IrOx nanofoils on carbon nanotube templates by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2012-01-01

    Large surface area IrO x nanofoils (IrO x NF) were deposited on multi-wall carbon nanotube (MWCNT) templates, forming IrO x /MWCNT nanocomposites, by reactive radio frequency magnetron sputtering using Ir metal target. The structural and spectroscopic properties of IrO x NF were characterized. The micrographs of field emission scanning electron microscopy showed the formation of foil-like structure for the as-deposited samples. Transmission electron microscopy analysis revealed the contiguous presence of glassy iridium oxide, iridium metal, and iridium dioxide nanocrystals in the foil. X-ray photoelectron spectroscopy analysis provided the information of the oxidation states and the stoichiometry of IrO x NF. Raman spectra revealed the amorphous-like phase of the as-deposited IrO x NF. The nanofoil structure provided ultra-high surface area for electrical charge storage which made the IrO x /MWCNT nanocomposites as an attractive candidate for the supercapacitor applications.

  7. Differentiation of Candida albicans, Candida glabrata, and Candida krusei by FT-IR and chemometrics by CHROMagar™ Candida.

    Science.gov (United States)

    Wohlmeister, Denise; Vianna, Débora Renz Barreto; Helfer, Virginia Etges; Calil, Luciane Noal; Buffon, Andréia; Fuentefria, Alexandre Meneghello; Corbellini, Valeriano Antonio; Pilger, Diogo André

    2017-10-01

    Pathogenic Candida species are detected in clinical infections. CHROMagar™ is a phenotypical method used to identify Candida species, although it has limitations, which indicates the need for more sensitive and specific techniques. Infrared Spectroscopy (FT-IR) is an analytical vibrational technique used to identify patterns of metabolic fingerprint of biological matrixes, particularly whole microbial cell systems as Candida sp. in association of classificatory chemometrics algorithms. On the other hand, Soft Independent Modeling by Class Analogy (SIMCA) is one of the typical algorithms still little employed in microbiological classification. This study demonstrates the applicability of the FT-IR-technique by specular reflectance associated with SIMCA to discriminate Candida species isolated from vaginal discharges and grown on CHROMagar™. The differences in spectra of C. albicans, C. glabrata and C. krusei were suitable for use in the discrimination of these species, which was observed by PCA. Then, a SIMCA model was constructed with standard samples of three species and using the spectral region of 1792-1561cm -1 . All samples (n=48) were properly classified based on the chromogenic method using CHROMagar™ Candida. In total, 93.4% (n=45) of the samples were correctly and unambiguously classified (Class I). Two samples of C. albicans were classified correctly, though these could have been C. glabrata (Class II). Also, one C. glabrata sample could have been classified as C. krusei (Class II). Concerning these three samples, one triplicate of each was included in Class II and two in Class I. Therefore, FT-IR associated with SIMCA can be used to identify samples of C. albicans, C. glabrata, and C. krusei grown in CHROMagar™ Candida aiming to improve clinical applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Rapid Method of Crude Oil Analysis Using FT-IR Spectroscopy

    African Journals Online (AJOL)

    HP USER

    Nigerian Journal of Basic and Applied Science (June,2016), 24(1): 47-55 ... ABSTRACT: This study determines the viability of the use of Fourier Transform ... IR spectra of Crude oil sample containing a mixture of both degraded (sample 151).

  9. Reflectance Modeling

    Science.gov (United States)

    Smith, J. A.; Cooper, K.; Randolph, M.

    1984-01-01

    A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.

  10. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  11. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  12. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  13. Climate Prediction Center IR 4km Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  14. Lattice vibration spectra. 16

    International Nuclear Information System (INIS)

    Lutz, H.D.; Willich, P.

    1977-01-01

    The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)

  15. Spectra, Winter 2014

    Science.gov (United States)

    2014-01-01

    additional copies or more information, please email spectra@nrl.navy.mil. LEADINGEDGE 1 Contents 30 Navy Launches UAV from Submerged Submarine 31... multitasking have become mainstream concerns. For example, the New York Times in 2005 and Time magazine in 2006 both reported stories about...interruptions and multitasking , and how they affect performance by increasing human er- ror. In 2005, the information technol- ogy research firm Basex

  16. Thermoluminescence spectra of amethyst

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. [Suzhou Railway Teachers College (China). Dept. of Physics; Yang, B. [Beijing Normal University (China). Dept. of Physics; Wood, R.A.; White, D.R.R.; Townsend, P.D.; Luff, B.J. [Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences

    1994-04-01

    Thermoluminescence and cathodoluminescence data from natural and synthetic amethyst and synthetic quartz samples are compared. The spectra include features from the quartz host lattice and from impurity-generated recombination sites. Emission features exist throughout the wavelength range studied, 250-800 nm. The near infrared emission at 740-750 nm appears to be characteristic of the amethyst and is proposed to be due to Fe ion impurity. (Author).

  17. OSL, TL and IRSL emission spectra of sedimentary quartz and feldspar samples

    International Nuclear Information System (INIS)

    Lomax, Johanna; Mittelstraß, Dirk; Kreutzer, Sebastian; Fuchs, Markus

    2015-01-01

    This contribution presents a variety of different luminescence emission spectra from sedimentary feldspar and quartz samples under various stimulation modes. These are green stimulated quartz (OSL-) spectra, quartz TL spectra, feldspar IRSL and post-IR IRSL spectra. A focus was set at recording OSL and IRSL spectra at elevated stimulation temperatures such as routinely applied in luminescence dating. This was to test whether optical stimulation at elevated temperatures results in a shift of emission peaks. For OSL emissions of quartz, this has so far not been tested. In case of feldspar emissions, post-IR IRSL conditions, hence IRSL emissions at a low temperature, directly followed by high temperature post-IRSL emissions, are explicitly investigated. All spectra were recorded using a new system incorporated into a Lexsyg luminescence reader. Thus, this study, besides presenting new spectral data, also serves as a feasibility study for this new device. It is shown that (a) the new device is capable of automatically measuring different sorts of spectra, also at elevated temperatures, (b) known thermally and optically stimulated peak emissions of quartz and feldspar are confirmed, (c) obtained IRSL and OSL spectra indicate that there is no significant relation between peak emission and stimulation temperature. - Highlights: • We have measured OSL, IRSL and TL emission spectra of sedimentary quartz and feldspar samples. • Spectral analyses were performed at elevated stimulation temperatures. • Emission spectra show very little variation with stimulation temperatures.

  18. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  19. Auger spectra of alkanes

    International Nuclear Information System (INIS)

    Rye, R.R.; Jennison, D.R.; Houston, J.E.

    1980-01-01

    The gas-phase Auger line shapes of the linear alkanes C 1 through C 6 and of neopentane are presented and analyzed. The general shape of the spectra are characteristic of carbon in a tetrahedral environment with the major feature in all cases occurring at approx.249 eV. The relatively large spectral changes found between methane and ethane results from the direct interaction of the terminal methyl groups in ethane, and the spectra of the higher alkanes are shown to be a composite of contributions from terminal methyl and interior methylene group carbon atoms. Theoretical analysis based on a one-electron approximation is shown to be capable of making a molecular orbital assignment by comparing calculated vertical transitions to features in the Auger spectra of ethane and propane, and, in the case of ethane, of differentiating between the 2 E/sub g/ and 2 A/sub 1g/ assignment of the ground state of (C 2 H 6 ) + . A one-electron based molecular orbital treatment, however, is shown to partially break down in propane and neopentane. Analysis of neopentane and the observed absence of any noticeable major peak energy shift with increasing molecular size (as predicted by the one-electron treatment) suggests that some Auger final states occur in which both valence holes are localized on the same subunit of the molecule

  20. Pattern recognition in spectra

    International Nuclear Information System (INIS)

    Gebran, M; Paletou, F

    2017-01-01

    We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)

  1. Arsenic sulfide layers for dielectric reflection mirrors prepared from solution

    Science.gov (United States)

    Matějec, Vlastimil; Pedlikova, Jitka; BartoÅ, Ivo; Podrazký, Ondřej

    2017-12-01

    Chalcogenide materials due to high refractive indices, transparency in the mid-IR spectral region, nonlinear refractive indices, etc, have been employed as fibers and films in different photonic devices such as light amplifiers, optical regenerators, broadband radiation sources. Chalcogenide films can be prepared by physical methods as well as by solution-based techniques in which solutions of chalcogenides in amines are used. This paper presents results on the solution-based fabrication and optical characterization of single arsenic sulfide layers and multilayer stacks containing As2S3 layers together with porous silica layers coated on planar and fiber-optic substrates. Input As2S3 solutions for the layer fabrications were prepared by dissolving As2S3 powder in n-propylamine in a concentration of 0.50 mol/l. These solutions were applied on glass slides by dip-coating method and obtained layers were thermally treated in vacuum at temperatures up to 180 °C. Similar procedure was used for As2S3 layers in multilayer stacks. Such stacks were fabricated by repeating the application of one porous silica layer prepared by the sol-gel method and one As2S3 layer onto glass slides or silica fibers (a diameter of 0.3 mm) by using the dip-coating method. It has been found that the curing process of the applied layers has to be carefully controlled in order to obtain stacks with three pairs of such layers. Single arsenic and porous silica layers were characterized by optical microscopy, and by measuring their transmission spectra in a range of 200-2500 nm. Thicknesses and refractive indices were estimated from the spectra. Transmission spectra of planar multilayer stacks were measured, too. Interference bands have been determined from optical measurements on the multilayer stacks with a minimum transmittance of about 50% which indicates the possibility of using such stacks as reflecting mirrors.

  2. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  3. Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR.

    Science.gov (United States)

    Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo

    2005-12-01

    The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.

  4. Mapping SOC in a river catchment by integrating laboratory spectra wavelength with remote sensing spectra

    DEFF Research Database (Denmark)

    Peng, Yi; Xiong, Xiong; Knadel, Maria

    There is potential to use soil ·-proximal and remote sensing derived spectra concomitantly to develop soil organic carbon (SOC) models. Yet mixing spectral data from different sources and technologies to improve soil models is still in its infancy. The objective of this study was to incorporate...... soil spectral features indicative of SOC from laboratory visible near-infrared reflectance (vis-NlR) spectra and incorporate them with remote sensing (RS) images to improve predictions of top SOC in the Skjem river catchment, Denmark. The secondary objective was to improve prediction results...

  5. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    Science.gov (United States)

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with

  6. Assessing various Infrared (IR microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Directory of Open Access Journals (Sweden)

    Claudia Woess

    Full Text Available Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio

  7. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Science.gov (United States)

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time

  8. VizieR Online Data Catalog: IR-bright MSX sources in the SMC with Spitzer/IRS (Kraemer+, 2017)

    Science.gov (United States)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-07-01

    Our original set of infrared spectra of MSX SMC sources was obtained in Spitzer Cycle 1 (Program ID 3277, P.I. M. Egan). This program included 35 targets from the MSX SMC catalog. 24 targets were discussed in previous papers; this paper examines the remaining 11 sources in the sample. We also selected 4 objects in the MSX SMC catalog with similar photometric characteristics in an effort to uncover additional sources with crystalline dust. We observed these targets in Spitzer Cycle 3 (Program ID 30355, P.I. J. Houck). See tables 1 and 2 for observation data and basic properties of the targets. Table 3 lists 20 additional MSX SMC sources that were observed by other Spitzer IRS programs. Overall, 59 MSX SMC sources were observed with the IRS. The spectra were observed using the low-resolution modules of the IRS, Short-Low (SL) and Long-Low (LL), which provided spectra in the 5-14 and 14-37um ranges, respectively, at a resolution between ~60 and 120. For 10 evolved stars with oxygen-rich dust in our Cycle 1 program, we obtained spectra from 0.45 to 1.03um with the Double-Beam Spectrograph at the 2.3m telescope of the Australian National University at Siding Spring Observatory. A 0.45-0.89um spectrum for one of the stars in program 30355 was also observed. These spectra have a resolution of 10Å. Tables 5-7: catalog based on the 243 sources detected in the MSX survey of the SMC, updated with positions and photometry from more recent space-based missions and ground-based surveys. See the Appendix section for more details. The SMC catalog from MSX consists of the 243 sources in the main MSX catalog (Egan+ 2003, see V/114) that lie within the region 7°

  9. Maturation of EEG Power Spectra in Early Adolescence: A Longitudinal Study

    Science.gov (United States)

    Cragg, Lucy; Kovacevic, Natasa; McIntosh, Anthony Randal; Poulsen, Catherine; Martinu, Kristina; Leonard, Gabriel; Paus, Tomas

    2011-01-01

    This study investigated the fine-grained development of the EEG power spectra in early adolescence, and the extent to which it is reflected in changes in peak frequency. It also sought to determine whether sex differences in the EEG power spectra reflect differential patterns of maturation. A group of 56 adolescents were tested at age 10 years and…

  10. Spectra from 2.5-15 μm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin

    International Nuclear Information System (INIS)

    Viator, John A; Choi, Bernard; Peavy, George M; Kimel, Sol; Nelson, J Stuart

    2003-01-01

    Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 μm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, Topicare TM ), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 μm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 μm. Dermis was similar to water, with collagen structure evident in the 6-10 μm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 μm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant μ ir is used. In such cases, overestimating μ ir will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth. (note)

  11. CHARACTERIZING THE INFRARED SPECTRA OF SMALL, NEUTRAL, FULLY DEHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, C. J.; Peeters, E.; Cami, J. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bauschlicher, C. W. Jr., E-mail: mackie@strw.leidenuniv.nl [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States)

    2015-02-01

    We present the results of a computational study to investigate the infrared spectroscopic properties of a large number of polycyclic aromatic hydrocarbon (PAH) molecules and their fully dehydrogenated counterparts. We constructed a database of fully optimized geometries for PAHs that is complete for eight or fewer fused benzene rings, thus containing 1550 PAHs and 805 fully dehydrogenated aromatics. A large fraction of the species in our database have clearly non-planar or curved geometries. For each species, we determined the frequencies and intensities of their normal modes using density functional theory calculations. Whereas most PAH spectra are fairly similar, the spectra of fully dehydrogenated aromatics are much more diverse. Nevertheless, these fully dehydrogenated species show characteristic emission features at 5.2 μm, 5.5 μm, and 10.6 μm; at longer wavelengths, there is a forest of emission features in the 16-30 μm range that appears as a structured continuum, but with a clear peak centered around 19 μm. We searched for these features in Spitzer-IRS spectra of various positions in the reflection nebula NGC 7023. We find a weak emission feature at 10.68 μm in all positions except that closest to the central star. We also find evidence for a weak 19 μm feature at all positions that is not likely due to C{sub 60}. We interpret these features as tentative evidence for the presence of a small population of fully dehydrogenated PAHs, and discuss our results in the framework of PAH photolysis and the formation of fullerenes.

  12. FT-IR spectrum of grape seed oil and quantum models of fatty acids triglycerides

    Science.gov (United States)

    Berezin, K. V.; Antonova, E. M.; Shagautdinova, I. T.; Chernavina, M. L.; Dvoretskiy, K. N.; Grechukhina, O. N.; Vasilyeva, L. M.; Rybakov, A. V.; Likhter, A. M.

    2018-04-01

    FT-IR spectra of grape seed oil and glycerol were registered in the 650-4000 cm-1 range. Molecular models of glycerol and some fatty acids that compose the oil under study - linoleic, oleic, palmitic and stearic acids - as well as their triglycerides were developed within B3LYP/6-31G(d) density functional model. A vibrating FT-IR spectrum of grape seed oil was modeled on the basis of calculated values of vibrating wave numbers and IR intensities of the fatty acids triglycerides and with regard to their percentage. Triglyceride spectral bands that were formed by glycerol linkage vibrations were revealed. It was identified that triglycerol linkage has a small impact on the structure of fatty acids and, consequently, on vibrating wave numbers. The conducted molecular modeling became a basis for theoretical interpretation on 10 experimentally observed absorption bands in FT-IR spectrum of grape seed oil.

  13. Preliminary study of corrosion mechanisms of actinides alloys: calibration of FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Magnien, Veronique; Cadignan, Marx; Faivret, Olivier; Rosa, Gaelle

    2008-01-01

    In situ analyzes of gaseous atmospheres could be performed by FT-IR spectroscopy in order to study the corrosion reactions of actinides. Nevertheless experimental conditions and the nature of studied species have a strong effect on IR absorption laws. Thus a prior calibration of our set-up is required to obtain an accurate estimation of gas concentration. For this purpose, the behavior of several air pure gases has been investigated according to their concentration from IR spectra. Reproducible results revealed subsequent increases of the most significant peak areas with gas pressure and small deviations from Beer Lambert's law. This preliminary work allowed to determine precise absorption laws for each studied pure gas in our in situ experimental conditions. Besides our FT-IR set-up was well suitable to quantitative analysis of gaseous atmosphere during corrosion reactions. Finally the effect of foreign gas will be investigated through more complex air mixtures to obtain a complete calibration network. (authors)

  14. Closed N-shell alkali spectra

    International Nuclear Information System (INIS)

    Ellis, D.G.; Curtis, L.J.

    1982-01-01

    Term values and ionization potentials have been calculated for several ions in the promethium (N = 61) isoelectronic sequence. As the nuclear charge is increased, the ground configuration changes from 4f 13 5s 2 to 4f 14 5s giving the upper portion of the sequence an alkali-like character. According to our most recent Hartree-Fock calculations with first-order relativistic corrections, the ground term is 5s 2 S for Z > 77 (Ir XVII) and the first excited term is 5p 2 P 0 for Z > 84 (P 0 XXIV). Comparisons are made with calculations of Cowan in W XIV. The prospects for observation of these spectra in fast ion beams are discussed. (orig.)

  15. Infrared Model Spectra for Evolving Red Supergiants

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1993-06-01

    Full Text Available The space and ground based infrared spectra of red supergiants are modeled and arranged in order of their evolutionary status with their theoretical model parameters. The chemical compositions of the dust shells around red supergiants are affected by the nuclear reaction and dredge-up processes of the cental stars. The processes are sensitively dependent on the initial mass, the initial chemical composition, and the evolutionary status. Miras, infrared carbon stars, and OH/IR stars have close link in their evolution in manu aspects, i,e., the chemical composition, the optical depths and the mass loss rates. The evolutionary tracks for the three classes of red supergiants on infrared two-color diagrams have been made from model calculations and IRAS observational data.

  16. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  17. Reflective Efficacy

    Directory of Open Access Journals (Sweden)

    Carla Bagnoli

    2018-04-01

    Full Text Available The purpose of this paper is to highlight some difficulties of Neil Sinhababu’s Humean theory of agency, which depend on his radically reductivist approach, rather than to his Humean sympathies. The argument is that Sinhababu’s theory builds upon a critique of reflective agency which is based on equivocation and misunderstandings of the Kantian approach. Ultimately, the objection is that his reductivist view is unequipped to address the rclassical problems of rational deliberation and agential authority.

  18. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  19. Observational and theoretical spectra of supernovae

    Science.gov (United States)

    Wheeler, J. Craig; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    Progress in nuclear astrophysics by means of quantitative supernova spectroscopy is discussed with special concentration on type Ia, Ib and Ic and on SN 1987A. Spectral calculations continue to support an exploding C/O white dwarf as the best model of a SN Ia. Deflagration model W7 produces good maximum light spectra of SN Ia and seems to have a better composition distribution compared to delayed detonation models, but proper treatment of opacity remains a problem and the physical basis of SN Ia explosions is still not completely understood. All models for SN Ia predict large quantities of 56Co in the ejecta, but it is not clear that observations confirm this. Although the evolutionary origin of SN Ia remains uncertain, there is recent evidence that transfer of hydrogen in a binary system may be involved, as long suspected. There has been progress in comparing dynamical models with the optical/IR spectra of SN 1987A. The evolution of the [OI] λλ6300, 6364 feature and the presence of strong persistent HeI λ10 830 indicate that both the envelope and core material contribute substantially to the formation of emission lines in the nebular phase and that neither the core nor the envelope can be neglected. Blending with nearby hydrogen lines may affect both of these spectral features, thereby complicating the analysis of the lines. The effects of continuum transfer and photoionization have been included and are under study. The discrepancies between theoretical and observed spectra are due primarily to the one-dimensional hydrodynamic models. The spectral data are not consistent with the high density ``spike'' (in radial coordinate) of the core material that is predicted by all such models. Analysis of the light curves of SN Ib and SN Ic supernovae implies that there are significant differences in their physical properties. Some SN Ib have considerably more ejecta mass than SN Ic events. SN Ib require He-rich atmospheres to produce the observed strong optical lines of

  20. Structure and linear spectroscopic properties of near IR polymethine dyes

    International Nuclear Information System (INIS)

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  1. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  2. Polycyclic Aromatic Hydrocarbon Emission in Spitzer /IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Peeters, E., E-mail: dstock84@gmail.com [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2017-03-10

    We decompose the observed 7.7 μ m polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer /IRS-SL instrument. In order to fit the 7.7 μ m PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μ m) is linearly related to the UV-field intensity (log G {sub 0}). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μ m spectral profiles.

  3. Quantitative Interpretation of Polarization SFG Vibrational Spectra of Air/Methanol Interface

    Science.gov (United States)

    Wu, Hui; Zhang, Wen-kai; Gan, Wei; Cui, Zhi-feng; Wang, Hong-fei

    2006-06-01

    Even though in IR and Raman spectra of liquid methanol there is always an apparent feature for the asymmetric stretching mode of the CH3 group around 2970 cm-1, this feature has not been observed in the Sum Frequency Generation Vibrational Spectroscopy (SFG-VS) in any polarizations from the air/methanol interface. Here we present a treatment based on a corrected bond additivity model to quantitatively interpret the SFG-VS of the air/methanol interface from the IR and Raman spectra of liquid methanol.

  4. Infrared spectra of lunar soils. [using a Michelson interferometer

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1979-01-01

    Measured data obtained by Michelson interferometer spectrometer were stored in a computer file and smoothed by being passed forward and backward through a digital four-pole low pass filter. Infrared spectra of the 10 lunar samples are presented in the format of brightness temperature versus frequency. The mol % of feldspar, pyroxene, olivine, ilmenite and ferromagnetic silicate in each sample is presented in tables. The reflectance spectra of ilmenite and enstatite are shown in graphs.

  5. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  6. Vibronic spectra of Gd3+ in metaphosphate glasses: Comparison with Raman and infrared spectra

    International Nuclear Information System (INIS)

    Hall, D.W.; Brawer, S.A.; Weber, M.J.

    1982-01-01

    Vibronic sidebands associated with the 6 P/sub 7/2/→ 8 S/sub 7/2/ transition of Gd 3+ -doped metaphosphate glasses are observed using line-narrowed fluorescence techniques. Glasses having metal cations of different mass and charge (La,Al,Mg,Ba) are examined. Vibronic spectra, which probe vibrations about the rare-earth element site, are compared with polarized Raman scattering data and the infrared dielectric constant obtained from near-normal reflectance measurements. Results indicate that in metaphosphate glasses vibronic selection rules are similar to HV (vertical height) Raman selection rules. The wavelengths and relative intensities of peaks in the high-frequency portion of the vibronic spectra change with respect to corresponding peaks in the Raman spectra when the mass and/or charge of Gd 3+ differs significantly from that of the metal cation

  7. Improving the performance of infrared reflective night curtains for warming field plots

    DEFF Research Database (Denmark)

    Bruhn, Dan; Larsen, Klaus S.; de Dato, Giovanbattista D.

    2013-01-01

    Infrared reflective (IR) curtains have been widely used to obtain passive nighttime warming in field ecosystem experiments in order to simulate and study climate warming effects on ecosystems. For any field installation with IR-reflective curtains in an ecosystem the achieved heating effect depen...

  8. Hygrothermal degradation of (3-glycidoxypropyl)trimethoxysilane films studied by neutron and X-ray reflectivity and attenuated total reflection infrared spectroscopy

    International Nuclear Information System (INIS)

    Tallant, David Robert; Garcia, Manuel Joseph; Majewski, Jaroslaw; Kent, Michael Stuart; Yim, Hyun

    2005-01-01

    for the spin-coated samples. The IR spectra revealed an increase in vicinal silanol generation over the first 3 days of conditioning followed by geminal silanol generation. Thus, the structural change detected by NR and XR roughly coincided with the onset of geminal silanol generation. Finally, little change in the reflectivity data was observed for films conditioned with D 2 O at 80 C for 1 month. This indicates that hydrolysis of Si-O-Si is much slower with D 2 O than with H 2 O.

  9. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies

    International Nuclear Information System (INIS)

    Takahashi, W.; Nguyen-Cong, V.; Kawaguchi, S.; Minamiyama, M.; Ninomiya, S.

    2000-01-01

    Various multivariate regression models were examined with ten-fold cross-validation to develop efficient, accurate models to predict dry weight and nitrogen accumulation of rice crops (cultivars Koshihikari, Hanaechizen, Nipponbare, and IR-36) from the maximum tiller number stage to the meiosis stage, using plant-canopy reflectance of hyper-spectra within the 400-1100 nm domain without any variable selection. The results showed that the principal component regression using hyper-spectra gave better fits and predictability than that using specific wavelengths. On the other hand, partial least squares regression was the most useful among the models tested; this method avoided overfitting and multicollinearity by using all wavelength information without variable selection and by inclusion of both x and y variations in its latent variables. (author)

  10. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  11. Exploiting external reflection FTIR spectroscopy for the in-situ identification of pigments and binders in illuminated manuscripts. Brochantite and posnjakite as a case study

    Science.gov (United States)

    Zaffino, Chiara; Guglielmi, Vittoria; Faraone, Silvio; Vinaccia, Alessandro; Bruni, Silvia

    2015-02-01

    In the present work, the use of portable instrumentation allowing in-situ reflection FTIR analyses is exploited to identify the coloring matters of northern-Italian illuminations dating to the XVI century. In order to build a database of spectra, reference paint samples were prepared spreading the pigments on parchment with two different binders, i.e. gum arabic and egg white, used in antiquity. Pigments for the database were chosen considering their use in the Middle Ages and in the Renaissance and their response in the mid- and near-IR region. The reflection FTIR spectra obtained resulted to be dominated by the specular reflection component, allowing the use of the Kramers-Kronig transform to convert them to the more conventional absorbance FTIR spectra. Several pigments could thus be identified in ancient illuminations, even if some green details showed a spectral pattern different with respect to the most common commercial green pigments of the database. Therefore, in addition, basic copper sulfates brochantite and posnjakite were synthesized and characterized. In three green details, posnjakite was identified, both as a pure compound and together with malachite.

  12. On Reflection

    DEFF Research Database (Denmark)

    Blasco, Maribel

    2012-01-01

    produces: that the self is accessible and transcendable, that reflexivity is universal across space and time, and that the self can act as its own remedial change agent or ‘inner consultant.’ I argue that because reflexivity is understood in many different ways, attention to definition is crucial, both...... on the concepts of selfhood that prevail and how notions of difference are constructed. First, I discuss how the dominant usages of reflexivity in intercultural education reflect and reproduce a Cartesian view of the self that shapes how ICC is conceptualized and taught. I discuss three assumptions that this view...

  13. Inspiring Reflections

    DEFF Research Database (Denmark)

    Muchie, Mammo

    2011-01-01

    A numberof Chris Freeman's colleagues were asked to reflect on what they thought describes his life and work in a few words. Some of the colleagues replied including former SPRU students that were taught or supervised by Chris Freeman. Their views on what they thought were Chris Freeman's defining...... life is not free from fluctuations, cycles, disruptions, crises and destructions both human and ecological. Innovation research ought to position itself to address environmental, financial and economic crises. The third is innovation research for development by addressing not only poverty erdaication...

  14. Reflective Writing

    DEFF Research Database (Denmark)

    Ahrenkiel Jørgensen, Andriette

    2016-01-01

    In Breve fra min Have (Letters from my Garden), the Swedish landscape architect, Sven-Ingvar Andersson, produces dialogues about his garden to a wide circle of friends, colleagues, deceased and still living acquaintances such as Karen Blixen, Gertrude Stein, C. Th. Sørensen, Albrecht Dürer, Peter...... Høeg etetera. The dialogues work as a tool of reflection in terms of providing opportunity to examine his own beliefs, to explore the possible reasons for engaging in a particular activity. On the basis of Sven-Ingvar Andersson’s book a teaching program at the Aarhus School of Architecture provides...

  15. Reflective Packaging

    Science.gov (United States)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  16. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  17. Predicting transmittance spectra of electrophotographic color prints

    Science.gov (United States)

    Mourad, Safer; Emmel, Patrick; Hersch, Roger D.

    2000-12-01

    For dry toner electrophotographic color printers, we present a numerical simulation model describing the color printer responses based on a physical characterization of the different electrophotographic process steps. The proposed model introduces a Cross Transfer Efficiency designed to predict the color transmittance spectra of multi-color prints by taking into account the transfer influence of each deposited color toner layer upon the other layers. The simulation model leads to a better understanding of the factors that have an impact on printing quality. In order to avoid the additional optical non-linearities produced by light reflection on paper, we have limited the present investigation to transparency prints. The proposed model succeeded to predict the transmittance spectra of printed wedges combining two color toner layers with a mean deviation less than CIE-LAB (Delta) E equals 2.5.

  18. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  19. Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-μm sized cosmochemical analogues

    Science.gov (United States)

    Rousseau, B.; Érard, S.; Beck, P.; Quirico, É.; Schmitt, B.; Brissaud, O.; Montes-Hernandez, G.; Capaccioni, F.; Filacchione, G.; Bockelée-Morvan, D.; Leyrat, C.; Ciarniello, M.; Raponi, A.; Kappel, D.; Arnold, G.; Moroz, L. V.; Palomba, E.; Tosi, F.; Virtis Team

    2018-05-01

    Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 μm, excluding the organics band centred at 3.2 μm. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role.

  20. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  1. IR and NMR spectroscopic correlation of enterobactin by DFT

    Science.gov (United States)

    Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.

    2018-06-01

    Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.

  2. Catalogue of neutron spectra

    International Nuclear Information System (INIS)

    Buxerolle, M.; Massoutie, M.; Kurdjian, J.

    1987-09-01

    Neutron dosimetry problems have arisen as a result of developments in the applications of nuclear energy. The largest number of possible irradiation situations has been collected: they are presented in the form of a compilation of 44 neutron spectra. Diagrams show the variations of energy fluence and energy fluence weighted by the dose equivalent/fluence conversion factor, with the logarithm of the corresponding energy. The equivalent dose distributions are presented as percentages for the following energy bins: 0.01 eV/0.5 eV/50 keV/1 MeV/5 MeV/15 MeV. The dose equivalent, the mean energy and the effective energy for the dose equivalent for 1 neutron cm -2 are also given [fr

  3. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2018-01-01

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra.

  4. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  5. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  6. Discrimination of the hard keratins animal horn and chelonian shell using attenuated total reflection-infrared spectroscopy.

    Science.gov (United States)

    Biscardi, Brianna; Welsh, Wendy; Kennedy, Anthony

    2012-05-01

    The ability to discriminate between objects manufactured from animal horn and chelonian (turtle, tortoise, or terrapin) shell is important from a cultural and archeological perspective such that it may allow conservators to determine the appropriate treatment and long-term care solution. It would also aid curators in identifying and cataloging items manufactured from these materials. Discrimination and classification is also a valuable tool for those involved in tracking the illegal trade in restricted materials of this nature. Attenuated total reflection infrared (ATR-IR) spectroscopy, using a single reflection diamond internal reflection element (IRE), coupled with discrimination analysis was used to analyze a total of thirty-nine samples (29 calibration samples, 10 validation samples). A discrimination analysis model was constructed using Mahalanobis distances to classify spectra into one of two classes. The model was then subsequently used to successfully classify all validation samples and correctly identify them as animal horn or chelonian shell based on second-derivative spectra of the amide I and II regions. This technique requires minimal to no sample preparation and may be used to nondestructively identify very small samples successfully without performing detailed secondary structural curve-fitting routines. This model should be a valuable resource to museums, conservators, and wildlife management programs for rapidly and reliably discriminating between animal horn and chelonian shell.

  7. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  8. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  9. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  10. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  11. Vibrational spectra and crystal lattice dynamics of hexahydrates of zinc potassium and ammonium sulfates

    Science.gov (United States)

    Barashkov, M. V.; Komyak, A. I.; Shashkov, S. N.

    2000-03-01

    The IR spectra and polarized Raman spectra of crystals of hexahydrates of zinc potassium and ammonium sulfates have been obtained experimentally at 93 K and at room temperature. The frequencies and modes of normal vibrations of the octahedral complex [Zn(H2O)6]2+ have been calculated. The assignment of the observed lines of the internal and external vibrations of the crystal cell has been made by calculations and by factor-group analysis.

  12. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    Science.gov (United States)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color-magnitude diagram (CMD) discretization. Johnson-Cousins-Bessel U - B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe I, Ca I, and Ti I, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  13. Hermann agreement updates IRS guidelines for incentives.

    Science.gov (United States)

    Broccolo, B M; Peregrine, M W

    1995-01-01

    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  14. Surface composition of Mercury from reflectance spectrophotometry

    Science.gov (United States)

    Vilas, Faith

    1988-01-01

    The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.

  15. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  16. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  17. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  18. Reflected Glory

    Science.gov (United States)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  19. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    Science.gov (United States)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  20. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  1. Design energy spectra for Turkey

    OpenAIRE

    López Almansa, Francisco; Yazgan, Ahmet Utku; Benavent Climent, Amadeo

    2012-01-01

    This work proposes design energy spectra in terms of velocity, derived through linear dynamic analyses on Turkish registers and intended for regions with design peak acceleration 0.3 g or higher. In the long and mid period ranges the analyses are linear, taking profit of the rather insensitivity of the spectra to the structural parameters other than the fundamental period; in the short period range, the spectra are more sensitive to the structural parameters and nonlinear analyses would be re...

  2. Teaching IR to Medical Students: A Call to Action.

    Science.gov (United States)

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  3. Spectra of chemical trees

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees

  4. Sequencing BPS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2016-03-02

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  5. Sequencing BPS spectra

    International Nuclear Information System (INIS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  6. Study of Chemical Intermediates by Means of ATR-IR Spectroscopy and Hybrid Hard- and Soft-Modelling Multivariate Curve Resolution-Alternating Least Squares

    Directory of Open Access Journals (Sweden)

    Junxiu Ma

    2017-01-01

    Full Text Available 3,5-Diamino-1,2,4-triazole (DAT became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT synthesis processes. The subspace comparison method (SCM was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects.

  7. Study of Chemical Intermediates by Means of ATR-IR Spectroscopy and Hybrid Hard- and Soft-Modelling Multivariate Curve Resolution-Alternating Least Squares.

    Science.gov (United States)

    Ma, Junxiu; Qi, Juan; Gao, Xinyu; Yan, Chunhua; Zhang, Tianlong; Tang, Hongsheng; Li, Hua

    2017-01-01

    3,5-Diamino-1,2,4-triazole (DAT) became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR) spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR) analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT) synthesis processes. The subspace comparison method (SCM) was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA) and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects.

  8. Structures, Energetics, and IR Spectra of Monohydrated Inorganic Acids: Ab initio and DFT Study.

    Science.gov (United States)

    Kołaski, Maciej; Zakharenko, Aleksey A; Karthikeyan, S; Kim, Kwang S

    2011-10-11

    We carried out extensive calculations of diverse inorganic acids interacting with a single water molecule, through a detailed analysis of many possible conformations. The optimized structures were obtained by using density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2). For the most stable conformers, we calculated the interaction energies at the complete basis set (CBS) limit using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The -OH stretching harmonic and anharmonic frequencies are provided as fingerprints of characteristic conformers. The zero-point energy (ZPE) uncorrected/corrected (ΔEe/ΔE0) interaction energies and the enthalpies/free energies (ΔHr/ΔGr at room temperature and 1 bar) are reported. Various comparisons are made between many diverse inorganic acids (HmXOn where X = B/N/P/Cl/Br/I, m = 1-3, and n = 0-4) as well as other simple inorganic acids. In many cases, we find that the dispersion-driven van der Waals interactions between X in inorganic acid molecules and O in water molecules as well as the X(+)···O(-) electrostatic interactions are important.

  9. Simulated aging of lubricant oils by chemometric treatment of infrared spectra: potential antioxidant properties of sulfur structures.

    Science.gov (United States)

    Amat, Sandrine; Braham, Zeineb; Le Dréau, Yveline; Kister, Jacky; Dupuy, Nathalie

    2013-03-30

    Lubricant oils are complex mixtures of base oils and additives. The evolution of their performance over time strongly depends on its resistance to thermal oxidation. Sulfur compounds revealed interesting antioxidant properties. This study presents a method to evaluate the lubricant oil oxidation. Two samples, a synthetic and a paraffinic base oils, were tested pure and supplemented with seven different sulfur compounds. An aging cell adapted to a Fourier Transform InfraRed (FT-IR) spectrometer allows the continuous and direct analysis of the oxidative aging of base oils. Two approaches were applied to study the oxidation/anti-oxidation phenomena. The first one leads to define a new oxidative spectroscopic index based on a reduced spectral range where the modifications have been noticed (from 3050 to 2750 cm(-1)). The second method is based on chemometric treatments of whole spectra (from 4000 to 400 cm(-1)) to extract underlying information. A SIMPLe-to-use Interactive Self Modeling Analysis (SIMPLISMA) method has been used to identify more precisely the chemical species produced or degraded during the thermal treatment and to follow their evolution. Pure spectra of different species present in oil were obtained without prior information of their existence. The interest of this tool is to supply relative quantitative information reflecting evolution of the relative abundance of the different products over thermal aging. Results obtained by these two ways have been compared to estimate their concordance. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Developing the Infrared PAH Emission Bands Into Calibrated Probes of Astrophysical Conditions with The NASA Ames PAH IR Spectroscopic Database

    Science.gov (United States)

    Boersma, Christiaan

    We propose to quantitatively calibrate the PAH band strength ratios that have been traditionally used as qualitative proxies of PAH properties and linking PAH observables with local astrophysical conditions, thus developing PAHs into quantitative probes of astronomical environments. This will culminate in a toolbox (calibration charts) that can be used by PAH experts and non-PAH experts alike to unlock the information hidden in PAH emission sources that are part of the Spitzer and ISO archives. Furthermore, the proposed work is critical to mine the treasure trove of information JWST will return as it will capture, for the first time, the complete mid-infrared (IR) PAH spectrum with fully resolved features, through a single aperture, and along single lines-of-sight; making it possible to fully extract the information contained in the PAH spectra. In short, the work proposed here represents a major step in enabling the astronomical PAH model to reach its full potential as a diagnostic of the physical and chemical conditions in objects spanning the Universe. Polycyclic aromatic hydrocarbons (PAHs), a common and important reservoir of accessible carbon across the Universe, play an intrinsic part in the formation of stars, planets and possibly even life itself. While most PAH spectra appear quite similar, they differ in detail and contain a wealth of untapped information. Thanks to recent advances in laboratory studies and computer-based calculations of PAH spectra, the majority of which have been made at NASA Ames, coupled with the astronomical modeling tools we have developed, we can interpret the spectral details at levels never before possible. This enables us to extract local physical conditions and track subtle changes in these conditions at levels previously impossible. Building upon the tools and paradigms developed as part of the publicly available NASA Ames PAH IR Spectroscopic Database (PAHdb; www.astrochem.org/pahdb/), the purpose of our proposed research is

  11. Comet Mineralogy as Inferred from Infrared Spectra of Comets

    Science.gov (United States)

    Wooden, Diane H.

    2006-01-01

    For most comets, infrared (IR) spectroscopy (remote sensing) is the method through which we diagnose the mineralogy and size distribution of dust in their comae. The shape and contrast of the IR spectral features depend on the particle size: optically active minerals (absorbing of visible and near-IR solar photons) and submicron solid grains or highly porous (> 90% vacuum) grains primarily contribute to the shapes of the observed resonances. Comet mineralogies typically are determined by fitting thermal emission models of ensembles of discrete mineral grains to observed IR spectral energy distributions. The absorptivities (Q-abs) and scattering efficiencies (Q-scat) of the discrete mineral grains are computed using Mie scattering, Maxwell-Garnet mixing, Discrete Dipole Approximation, and Multi-Layered Sphere codes. These techniques when applied to crystalline minerals, specifically olivine (Mg_x, Fe_1-x)2 Si04, x>0.9, require the use of ellipsoidal shaped particles with elongated axial ratios or hollow spheres to produce the shapes of the resonances observed both from comet comae and laboratory samples. The wavelength positions of the distinct resonances from submicron-radii crystalline silicates, as well as their thermal equilibrium temperatures, constrain the crystalline olivine to have a relatively high Mg-content (x>0.9, or Fo>90). Only resonances computed for submicron Mg-rich crystalline olivine and crystalline orthopyroxene match the observed IR spectral features. However, this has led to the interpretation that micron-radii and larger crystals are absent from comet comae. Furthermore, the mass fraction of silicate crystals is dependent upon whether just the submicron portion of the size distribution is being compared or the submicron crystals compare to the aggregates of porous amorphous silicates that are computationally tractable as porous spheres. We will discuss the Deep Impact results as examples of these challenges to interpreting mid-IR spectra of

  12. Compendium on neutron spectra in criticality accident dosimetry

    International Nuclear Information System (INIS)

    Ing, H.

    1978-01-01

    Graphical and tabulated neutron spectra are presented: from selected critical assemblies; from critical solutions; of fission neutrons through shielding; of H 2 O-moderated fission neutrons through shielding; of D 2 O-moderated fission neutrons through shielding; of fission neutrons reflected from various materials; from the D(T, 4 He)n reaction (''14 MeV'' neutrons) through shielding and of ''14 MeV'' neutrons reflected from various materials

  13. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  14. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  15. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  16. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  17. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...

  18. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  19. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  20. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs