WorldWideScience

Sample records for ionospheric modification induced

  1. Search of archived data sources for rocket exhaust-induced modifications of the ionosphere

    International Nuclear Information System (INIS)

    Chacko, C.C.; Mendillo, M.

    1980-09-01

    The emergence of the Satellite Power System (SPS) concept as a way of augmenting the dwindling energy sources available for commercial power usage involved such a large and unprecendented technological program that detailed assessment and feasibility studies were undertaken in an attempt to specify the true impact such a program would have. As part of the issues addressed, a comprehensive environmental impact study was initiated that involved an unprecedented scope of concerns ranging from ground-level noise and weather modifications to possible planetary-scale perturbations caused by SPS activity in distant Earth orbits. This report describes results of a study of an intermediate region of the Earth's environment (the ionosphere) where large-scale perturbations are caused by routine rocket activity. The SPS program calls for vast transportation demands into and out from the ionosphere (h approx. = 200 to 1000 km), and thus the well-known effect of chemical depletions of the ionosphere (so-called ionospheric holes) caused by rocket exhaust signaled a concern over the possible large-scale and long-term consequences of the induced effects

  2. Modification of the ionosphere by VLF wave-induced electron precipitation

    International Nuclear Information System (INIS)

    Doolittle, J.H.

    1982-01-01

    Very low frequency (VLF) waves propagating in the whistler mode in the magnetosphere are known to cause precipitation of energetic electrons at middle latitudes. The interactions between the waves and electrons trapped in the magnetic field are believed to occur through cyclotron resonance. As a monochromatic wave propagates along a field line, the condition for resonance can be satisfied by electrons of a minimum energy at the equator and higher energies at increasing latitudes. Resonant interactions occurring in a field aligned region extending several thousand kilometers on both sides of the equator can therefore result in a precipitation flux with a wide range of energies. Electrons which are scattered into the loss cone will collide with the constituents of the ionosphere, causing additional ionization optical emissions, x-rays and heating. A computational technique is introduced which allows the temporal shape of pulse of precipitation to be modeled. A realistic energy distribution is used to weigh the contribution to the total precipitation energy flux resulting from resonant interactions in each segment of the duct. Wave growth along the path is found to affect the shape of the pulse. In its simplest application, the model sets limits on the time window in which a precipitation event can occur. The model arrival times are shown to agree with experimental correlations of VLF waves and effects of precipitation occurring on three occasions, thus supporting the assumption, that the precipitation results from cyclotron resonant scattering. Various techniques that have been employed for detecting wave-induced precipitation are compared. A quantitative analysis of the use of an HF radar for this purpose is introduced, based on the changes in the phase and group paths of the radar signals that are reflected from the perturbed ionosphere

  3. Theory of HF induced turbulence in the ionosphere: Status and challenges

    Science.gov (United States)

    Dubois, D. F.

    In the past five years the combination of new theoretical concepts and computer simulations along with dramatically improved observational diagnostics appear to have led to a detailed, quantitative, understanding of the properties of the Langmuir turbulence induced in the unpreconditioned ionosphere at Arecibo during the first tens of milliseconds following the turn-on of the HF heater. This is the only observational regime in which the initial ionospheric conditions are known to a high level of confidence. The so called strong Langmuir turbulence (SLT) theory predicts observed features in this early time heating which are completely at odds with the prediction of the traditional weak turbulence approximation. The understanding of the observed signatures for times greater than say 30-50 ms following the onset of heating at Arecibo is still incomplete. The same is apparently true for the observations at Tromso where the unique predictions of SLT theory are not so clearly observed. Density irregularities, induced by heating at Arecibo and perhaps present in the ambient ionosphere at Tromso, appear to control the properties of the turbulence. The proper description of the coexistence of Langmuir turbulence with various density irregularities and accounting for the turbulent modification of the electron velocity distribution are challenges for the theory. In this paper the author reviews, starting from the Vlasov-Poisson equations, the fundamental basis of the reduced models used to describe SLT and suggest improvements to the standard model including a new local quasi linear theory for the treatment of hot electron acceleration and transit time damping or burnout of collapsing Langmuir cavitons.

  4. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  5. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  6. A modification to the standard ionospheric correction method used in GPS radio occultation

    Directory of Open Access Journals (Sweden)

    S. B. Healy

    2015-08-01

    Full Text Available A modification to the standard bending-angle correction used in GPS radio occultation (GPS-RO is proposed. The modified approach should reduce systematic residual ionospheric errors in GPS radio occultation climatologies. A new second-order term is introduced in order to account for a known source of systematic error, which is generally neglected. The new term has the form κ(a × (αL1(a-αL2(a2, where a is the impact parameter and (αL1, αL2 are the L1 and L2 bending angles, respectively. The variable κ is a weak function of the impact parameter, a, but it does depend on a priori ionospheric information. The theoretical basis of the new term is examined. The sensitivity of κ to the assumed ionospheric parameters is investigated in one-dimensional simulations, and it is shown that κ ≃ 10–20 rad−1. We note that the current implicit assumption is κ=0, and this is probably adequate for numerical weather prediction applications. However, the uncertainty in κ should be included in the uncertainty estimates for the geophysical climatologies produced from GPS-RO measurements. The limitations of the new ionospheric correction when applied to CHAMP (Challenging Minisatellite Payload measurements are noted. These arise because of the assumption that the refractive index is unity at the satellite, made when deriving bending angles from the Doppler shift values.

  7. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    O. Molchanov

    2004-01-01

    Full Text Available We present a general concept of mechanisms of preseismic phenomena in the atmosphere and ionosphere. After short review of observational results we conclude: 1. Upward migration of fluid substrate matter (bubble can lead to ousting of the hot water/gas near the ground surface and cause an earthquake (EQ itself in the strength-weakened area; 2. Thus, time and place of the bubble appearance could be random values, but EQ, geochemistry anomaly and foreshocks (seismic, SA and ULF electromagnetic ones are casually connected; 3. Atmospheric perturbation of temperature and density could follow preseismic hot water/gas release resulting in generation of atmospheric gravity waves (AGW with periods in a range of 6–60min; 4. Seismo-induced AGW could lead to modification of the ionospheric turbulence and to the change of over-horizon radio-wave propagation in the atmosphere, perturbation of LF waves in the lower ionosphere and ULF emission depression at the ground.

  8. Experimental reslts from the HERO project: In situ measurements of ionospheric modifications using sounding rockets

    International Nuclear Information System (INIS)

    Rose, G.; Grandal, B.; Neske, E.; Ott, W.; Spenner, K.; Maseide, K.; Troim, J.

    1985-01-01

    The Heating Rocket project HERO comprised the first in situ experiments to measure artifical ionospheric modifications at F layer heights set up by radio waves transmitted from the Heating facility at Ramfjord near Tromso in Northern Norway. Four instrumented payloads were launched on sounding rockets from Andoya Rocket Range during the autumn of 1982 into a sunlit ionosphere with the sun close to the horizon. The payloads recorded modifications, in particular, the presence of electron plasma waves near the reflection level of the heating wave. The amplitude and phase of the three components of the electric and magnetic fields of the heating wave were measured simultaneously as a function of altitude. Coherent spectra of the three electric field components of the locally generated electron plasma waves were obtained in a 50-kHz-wide band. At the same time quasi-continuous measurements were made on several fixed frequencies from 4 kHz to 16 kHz below the heating frequency and in the VLF-range using linear dipole antennas. Moreover, measurements were made of electron temperature, suprathermal electrons and local electron density along the rocket trajectory. The experimental results will be presented and discussed

  9. Interaction of plasma cloud with external electric field in lower ionosphere

    Directory of Open Access Journals (Sweden)

    Y. S. Dimant

    2010-03-01

    Full Text Available In the auroral lower-E and upper-D region of the ionosphere, plasma clouds, such as sporadic-E layers and meteor plasma trails, occur daily. Large-scale electric fields, created by the magnetospheric dynamo, will polarize these highly conducting clouds, redistributing the electrostatic potential and generating anisotropic currents both within and around the cloud. Using a simplified model of the cloud and the background ionosphere, we develop the first self-consistent three-dimensional analytical theory of these phenomena. For dense clouds, this theory predicts highly amplified electric fields around the cloud, along with strong currents collected from the ionosphere and circulated through the cloud. This has implications for the generation of plasma instabilities, electron heating, and global MHD modeling of magnetosphere-ionosphere coupling via modifications of conductances induced by sporadic-E clouds.

  10. Variations of the ionospheric electron density during the Bhuj seismic event

    Directory of Open Access Journals (Sweden)

    A. Trigunait

    2004-12-01

    Full Text Available Ionospheric perturbations by natural geophysical activity, such as volcanic eruptions and earthquakes, have been studied since the great Alaskan earthquake in 1964. Measurements made from the ground show a variation of the critical frequency of the ionosphere layers before and after the shock. In this paper, we present an experimental investigation of the electron density variations around the time of the Bhuj earthquake in Gujarat, India. Several experiments have been used to survey the ionosphere. Measurements of fluctuations in the integrated electron density or TEC (Total Electron Content between three satellites (TOPEX-POSEIDON, SPOT2, SPOT4 and the ground have been done using the DORIS beacons. TEC has been also evaluated from a ground-based station using GPS satellites, and finally, ionospheric data from a classical ionospheric sounder located close to the earthquake epicenter are utilized. Anomalous electron density variations are detected both in day and night times before the quake. The generation mechanism of these perturbations is explained by a modification of the electric field in the global electric circuit induced during the earthquake preparation. Key words. Ionosphere (ionospheric disturbances – Radio Science (ionospheric physics – History of geophysics (seismology

  11. Can earth's magnetic micropulsations induce brain activities modifications?

    International Nuclear Information System (INIS)

    Assis, Altair Souza de

    2008-01-01

    Full text: We present in this paper preliminary study on which level earth's magnetic micro pulsations might interact with human brain activities. Magnetic micro pulsations are magnetospheric plasma wave Eigenmodes that are generated at the earth's magnetosphere and, via magnetospheric-ionospheric coupling induce ionospheric currents, and this ionospheric current pattern creates surface geomagnetic perturbations, which induce earth's surface electrical currents, and they are easily detected by earth's based magnetometers. These Eigenmodes are basically of Alfven type, and can be generated, for instance, by magnetic storms, situation where they are more intense and, in principle, might be felt by a more sensible human brain. Here, we also show how the modes are generated and present theirs basic physical properties. Finally, we compare the magnetic field level at the brain with the micro pulsation magnetic intensity. (author)

  12. Phenomena in the ionosphere-magnetosphere system induced by injection of powerful HF radio waves into nightside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2005-01-01

    Full Text Available Experimental results from three ionospheric HF pumping experiments in overdense E or F regions are summarized. The experiments were conducted by the use of the EISCAT HF Heating facility located near Tromsø, Norway, allowing HF pumping the ionosphere in a near geomagnetic field-aligned direction. Distinctive features related to auroral activations in the course of the experiments are identified. Typical features observed in all experiments are the following: generation of scattered components in dynamic HF radio scatter Doppler spectra; strong increase of ion temperatures Ti and local ionospheric electric field E0; modification of the auroral arc and local spiral-like formation. However, some effects were observed only when the HF pump wave was reflected from the F2 layer. Among them are the generation of intense field-aligned ion outflows, and a strong increase in the electron temperature Te with altitude. A possible scenario for the substorm triggering due to HF pumping into an auroral ionosphere is discussed. The authors present their interpretation of the data as follows. It is suggested that two populations of charged particles are at play. One of them is the runaway population of electrons and ions from the ionosphere caused by the effects of the powerful HF radio wave. The other is the population of electrons that precipitate from the magnetosphere. It is shown that the hydrodynamical equilibrium was disrupted due to the effects of the HF pumping. We estimate that the parallel electric field can reach values of the order of 30mV/m during substorm triggering.

  13. Ionospheric modification and parametric instabilities

    International Nuclear Information System (INIS)

    Fejer, J.A.

    1979-01-01

    Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level

  14. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    Science.gov (United States)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  15. Effects of multiple scatter on the propagation and absorption of electromagnetic waves in a field-aligned-striated cold magneto-plasma: implications for ionospheric modification experiments

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available A new theory of the propagation of low power electromagnetic test waves through the upper-hybrid resonance layer in the presence of magnetic field-aligned plasma density striations, which includes the effects of multiple scatter, is presented. The case of sinusoidal striations in a cold magnetoplasma is treated rigorously and then extended, in an approximate manner, to the broad-band striation spectrum and warm plasma cases. In contrast to previous, single scatter theories, it is found that the interaction layer is much broader than the wavelength of the test wave. This is due to the combined electric fields of the scattered waves becoming localised on the contour of a fixed plasma density, which corresponds to a constant value for the local upper-hybrid resonance frequency over the whole interaction region. The results are applied to the calculation of the refractive index of an ordinary mode test wave during modification experiments in the ionospheric F-region. Although strong anomalous absorption arises, no new cutoffs occur at the upper-hybrid resonance, so that in contrast to the predictions of previous single scatter theories, no additional reflections occur there. These results are consistent with observations made during ionospheric modification experiments at Tromsø, Norway.

    Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  16. Massive Statistics of VLF-Induced Ionospheric Disturbances

    Science.gov (United States)

    Pailoor, N.; Cohen, M.; Golkowski, M.

    2017-12-01

    The impact of lightning of the D-region of the ionosphere has been measured by Very Low Frequency (VLF) remote sensing, and can be seen through the observance of Early-Fast events. Previous research has indicated that several factors control the behavior and occurrence of these events, including the transmitter-receiver geometry, as well as the peak current and polarity of the strike. Unfortunately, since each event is unique due to the wide variety of impacting factors, it is difficult to make broad inferences about the interactions between the lightning and ionosphere. By investigating a large database of lightning-induced disturbances over a span of several years and over a continental-scale region, we seek to quantify the relationship between geometry, lightning parameters, and the apparent disturbance of the ionosphere as measured with VLF transmitters. We began with a set of 860,000 cases where an intense lightning stroke above 150 kA occurred within 300 km of a transmiter-receiver path. To then detect ionospheric disturbances from the large volume of VLF data and lightning incidents, we applied a number of classification methods to the actual VLF amplitude data, and find that the most accurate is a convolutional neural network, which yielded a detection efficiency of 95-98%, and a false positive rate less than 25%. Using this model, we were able to assemble a database of more than 97,000 events, with each event stored with its corresponding time, date, receiver, transmitter, and lightning parameters. Estimates for the peak and slope of each disruption were also calculated. From this data, we were able to chart the relationships between geometry and lightning parameters (peak current and polarity) towards the occurrence probability, perturbation intensity, and recovery time, of the VLF perturbation. The results of this analysis are presented here.

  17. Macroscopic time and altitude distribution of plasma turbulence induced in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Rose, H.; Dubois, D.; Russell, D.; Hanssen, A.

    1996-01-01

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflection altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic

  18. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha

    2017-12-01

    During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.

  19. Distribution of ionospheric currents induced by the solar wind interaction with Venus

    International Nuclear Information System (INIS)

    Daniell, R.E. Jr.; Cloutier, P.A.

    1977-01-01

    The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus. Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed. (author)

  20. HAARP-Induced Ionospheric Ducts

    International Nuclear Information System (INIS)

    Milikh, Gennady; Vartanyan, Aram

    2011-01-01

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  1. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  2. Ionospheric modification induced by high-power HF transmitters: a potential for extended range VHF--UHF communications and plasma physics research

    International Nuclear Information System (INIS)

    Utlaut, W.F.

    1975-01-01

    When the ionized upper atmosphere of the earth is illuminated by high-power HF radio waves at appropriate frequencies, the temperature of electrons in the ionosphere can be raised substantially. In addition, radio waves with sufficient energy cause parametric instabilities that generate a spectrum of intense plasma waves. Observations of these phenomena have produced new understanding of plasma processes. One consequence of heating and plasma wave generation is that irregularities are formed in the electron distribution which are aligned with the earth's magnetic field. Because of this, a scatterer of large radar cross section is produced, which scatters HF through UHF communication signals over long distance paths, that would not otherwise be normally possible by ionospheric means. Results of radio, radar, communication, and photometric experiments that explored the characteristics of the volume of ionosphere which has been intentionally modified, temporarily, above facilities near Boulder (Platteville), Colo., and at Arecibo, Puerto Rico are summarized

  3. Electrodynamics of the Martian Ionosphere

    Science.gov (United States)

    Ledvina, S. A.; Brecht, S. H.

    2017-12-01

    The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.

  4. Ionospheric error analysis in gps measurements

    Directory of Open Access Journals (Sweden)

    G. Pugliano

    2008-06-01

    Full Text Available The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km; the second group is characterized by greater distances (up to 90 km. The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.

  5. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust

    International Nuclear Information System (INIS)

    Huang Yong; Shi Jiaming; Yuan Zhongcai

    2011-01-01

    In terms of the diffusive process of the gases injected from rocket exhaust into the ionosphere and the relevant chemical reactions between the gases and the composition of ionosphere, the modifications in ionosphere caused by the injected hydrogen and carbon dioxide gas from the rocket exhaust are investigated. The results show that the diffusive process of the injected gases at the ionospheric height is very fast, and the injected gases can lead to a local depletion of electron concentration in the F-region. Furthermore, the plasma 'hole' caused by carbon dioxide is larger, deeper and more durable than that by the hydrogen. (astrophysics and space plasma)

  6. UK review of radio science, 1984-1986. Ionosphere and magnetosphere

    International Nuclear Information System (INIS)

    Rishbeth, H.; Jones, D.

    1986-12-01

    The paper contains the United Kingdom (U.K.) review of Radio Science, 1984-1986, covering ionospheric and magnetospheric science. This is the current UK contribution towards an international review published by the International Union of Radio Science (URSI). The UK review is divided into topics prescribed by URSI and covers work that is actually published within the period October 1983 - Sept. 1986, also as prescribed by URSI. The topics discussed in the review include: incoherent and coherent scatter, probing the magnetosphere, plasma instabilities, ionospheric modification, composition, ionization and chemistry and ionospheric dynamics. (U.K.)

  7. Ionospheric behaviour during storm recovery phase

    Science.gov (United States)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  8. Observation of suprathermal electron fluxes during ionospheric modification experiments

    International Nuclear Information System (INIS)

    Fejer, J.A.; Sulzer, M.P.

    1987-01-01

    The temporal behavior of backscatter by ionospheric Langmuir waves was observed with the 430-MHz radar at Arecibo while a powerful HF wave was cycled 2 s on, 3 s off. The time resolution was 0.1 s. Late at night, in the absence of photoelectrons, using an HF equivalent radiated power of 80 MW at 3.175 MHz, the initial enhancement of about 6% above system noise of the backscattered power with Doppler shifts between -3.75 and -3.85 MHz was reached about 0.25 s after switching on the HF transmitter. In the following second the enhancement gradually decreased to about 3% and remained there until switching off. During the late afternoon, in the presence of photoelectrons, using the same HF power at 5.1 MHz, an initial enhancement by 25% of the backscattered power with Doppler shifts between -5.25 and -5.35 MHz appeared within less than 0.1 s after switching on the HF transmitter. The incoherent backscatter by Langmuir waves enhanced by photoelectrons was already above system noise by a factor greatly in excess of 10 before switching on the HF transmitter; the 25% enhancement thus corresponds to an enhancement greatly in excess of 250% above system noise. The enhancement drops to less than one tenth of its original value in less than a second. The nighttime effect is attributed to multiple acceleration of electrons from the high-energy tail of the Maxwellian distribution. The daytime effect is believed to be due to a modification in the distribution function of photoelectrons

  9. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    Science.gov (United States)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  10. 22 July 2009 total solar eclipse induced gravity waves in ionosphere as inferred from GPS observations over EIA

    Science.gov (United States)

    Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh

    2016-11-01

    In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.

  11. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    Science.gov (United States)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    . Performance tests are being conducted at the moment in order to improve UPC predicted products for 1-, 2-days ahead. In addition, UPC is working to enable short-term predictions based on UPC real-time GIMs (labelled URTG) and implementing an improved prediction approach. TUM developed a forecast method based on a time series analysis of TEC products which are either B-spline coefficients estimated by a Kalman filter or TEC grid maps derived from the B-spline coefficients. The forecast method uses a Fourier series expansion to extract the trend functions from the estimated TEC product. Then the trend functions are carried out to provide predicted TEC products. The forecast algorithm developed by GMV is based on the ionospheric delay estimation from previous epochs using GNSS data and the main dependence of ionospheric delays on solar and magnetic conditions. Since the ionospheric behavior is highly dependent on the region of the Earth, different region-based algorithmic modifications have been implemented in GMV's magicSBAS ionospheric algorithms to be able to estimate and forecast ionospheric delays worldwide. Different TEC prediction approaches outlined here will certainly help to learn about forecasting ionospheric ionization.

  12. Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

    Science.gov (United States)

    Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.

    2011-12-01

    A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program

  13. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination

    Science.gov (United States)

    Mao, X.; Visser, P. N. A. M.; van den IJssel, J.

    2018-05-01

    The European Space Agency (ESA) Swarm mission is a satellite constellation launched on 22 November 2013 aiming at observing the Earth geomagnetic field and its temporal variations. The three identical satellites are equipped with high-precision dual-frequency Global Positioning System (GPS) receivers, which make the constellation an ideal test bed for baseline determination. From October 2014 to August 2016, a number of GPS receiver modifications and a new GPS Receiver Independent Exchange Format (RINEX) converter were implemented. Moreover, the on-board GPS receiver performance has been influenced by the ionospheric scintillations. The impact of these factors is assessed for baseline determination of the pendulum formation flying Swarm-A and -C satellites. In total 30 months of data - from 15 July 2014 to the end of 2016 - is analyzed. The assessment includes analysis of observation residuals, success rate of GPS carrier phase ambiguity fixing, a consistency check between the so-called kinematic and reduced-dynamic baseline solution, and validations of orbits by comparing with Satellite Laser Ranging (SLR) observations. External baseline solutions from The German Space Operations Center (GSOC) and Astronomisches Institut - Universität Bern (AIUB) are also included in the comparison. Results indicate that the GPS receiver modifications and RINEX converter changes are effective to improve the baseline determination. This research eventually shows a consistency level of 9.3/4.9/3.0 mm between kinematic and reduced-dynamic baselines in the radial/along-track/cross-track directions. On average 98.3% of the epochs have kinematic solutions. Consistency between TU Delft and external reduced-dynamic baseline solutions is at a level of 1 mm level in all directions.

  14. Ionospheric Impacts on UHF Space Surveillance

    Science.gov (United States)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  15. Observations of an ionospheric perturbation arising from the Coalinga earthquake of May 2, 1983

    International Nuclear Information System (INIS)

    Wolcott, J.H.; Simons, D.J.; Lee, D.D.; Nelson, R.A.

    1984-01-01

    An ionospheric perturbation that was produced by the Coalinga earthquake of May 2, 1983, was detected by a network of high-frequency radio links in northern California. The ionospheric refraction regions of all five HF propagation paths, at distances between 160 and 285 km (horizontal range) from the epicenter, were affected by a ground-motion-induced acoustic pulse that propagated to ionospheric heights. The acoustic pulse was produced by the earthquake-induced seismic waves rather than the vertical ground motion above the epicenter. These observations appear to be the first ionospheric disturbances to be reported this close to an earthquake epicenter

  16. Martian Ionospheric Observation and Modeling

    Science.gov (United States)

    González-Galindo, Francisco

    2018-02-01

    The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous

  17. Tracker: A three-dimensional raytracing program for ionospheric radio propagation

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.; Farrer, R.G.

    1994-12-01

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuous raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.

  18. Upper ionosphere and magnetospheric-ionospheric coupling

    International Nuclear Information System (INIS)

    Manzano, J.R.

    1989-02-01

    After a presentation of the ionospheric physics and of the earth magnetosphere morphology, generation and dynamics, the magnetosphere-ionosphere coupling in quiet and perturbed conditions is discussed. Some summary information about other planetary magnetospheres, particularly Venus and Jupiter magnetospheres, are finally given. 41 refs, 24 figs

  19. Auroral particle acceleration by Alfvén waves and ionospheric feedback

    Science.gov (United States)

    Lysak, R. L.; Song, Y.

    2003-12-01

    Recent observations, particularly by Polar and FAST, have indicated that Alfvén waves can directly accelerate auroral electrons. A model for this interaction has been developed that can describe the linear modification of the Alfvén wave profile by the kinetic effects of electrons, including acceleration and heating of the electron population. While many of the heated electrons are accelerated upward into the magnetosphere by the mirror force, a significant fraction of the input Poynting flux due to Alfvén waves can be converted into precipitating electron energy flux. An important aspect of this particle precipitation is that the hot electrons do not arrive at the ionosphere in phase with the field-aligned current, which at ionospheric altitudes is largely carried by cold electrons. This phase shift has direct implications for models of ionospheric feedback that usually assume that the precipitating flux is in phase with the field-aligned current. The effects of quasi-static electric fields can be included in the model, which will introduce new particle populations such as the effects of secondary electrons of ionospheric origin that are reflected by the parallel potential drop. The possible role of Alfvén waves trapped in the ionospheric resonator in creating small-scale auroral structures through feedback and nonlinear interactions will be discussed.

  20. LIFDAR: A Diagnostic Tool for the Ionosphere

    Science.gov (United States)

    Kia, O. E.; Rodgers, C. T.; Batholomew, J. L.

    2011-12-01

    ITT Corporation proposes a novel system to measure and monitor the ion species within the Earth's ionosphere called Laser Induced Fluorescence Detection and Ranging (LIFDAR). Unlike current ionosphere measurements that detect electrons and magnetic field, LIFDAR remotely measures the major contributing ion species to the electron plasma. The LIFDAR dataset has the added capability to demonstrate stratification and classification of the layers of the ionosphere to ultimately give a true tomographic view. We propose a proof of concept study using existing atmospheric LIDAR sensors combined with a mountaintop observatory for a single ion species that is prevalent in all layers of the atmosphere. We envision the LIFDAR concept will enable verification, validation, and exploration of the physics of the magneto-hydrodynamic models used in ionosphere forecasting community. The LIFDAR dataset will provide the necessary ion and electron density data for the system wide data gap. To begin a proof of concept, we present the science justification of the LIFDAR system based on the model photon budget. This analysis is based on the fluorescence of ionized oxygen within the ionosphere versus altitude. We use existing model abundance data of the ionosphere during normal and perturbed states. We propagate the photon uncertainties from the laser source through the atmosphere to the plasma and back to the collecting optics and detector. We calculate the expected photon budget to determine signal to noise estimates based on the targeted altitude and detection efficiency. Finally, we use these results to derive a LIFDAR observation strategy compatible with operational parameters.

  1. Solar Eclipse-Induced Changes in the Ionosphere over the Continental US

    Science.gov (United States)

    Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.

    2017-12-01

    For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT

  2. Ionospheric errors compensation for ground deformation estimation with new generation SAR

    Science.gov (United States)

    Gomba, Giorgio; De Zan, Francesco; Rodriguez Gonzalez, Fernando

    2017-04-01

    Synthetic aperture radar (SAR) and interferometric SAR (InSAR) measurements are disturbed by the propagation velocity changes of microwaves that are caused by the high density of free electrons in the ionosphere. Most affected are low-frequency (L- or P-band) radars, as the recently launched ALOS-2 and the future Tandem-L and NISAR, although higher frequency (C- or X-band) systems, as the recently launched Sentinel-1, are not immune. Since the ionosphere is an obstacle to increasing the precision of new generation SAR systems needed to remotely measure the Earth's dynamic processes as for example ground deformation, it is necessary to estimate and compensate ionospheric propagation delays in SAR signals. In this work we discuss about the influence of the ionosphere on interferograms and the possible correction methods with relative accuracies. Consequently, the effect of ionospheric induced errors on ground deformation measurements prior and after ionosphere compensation will be analyzed. Examples will be presented of corrupted measurements of earthquakes and fault motion along with the corrected results using different methods.

  3. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    Science.gov (United States)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  4. Seismo-ionospheric anomalies and implications from recent GNSS observations in India and South-East Asia

    Directory of Open Access Journals (Sweden)

    C.D. Reddy

    2016-01-01

    Full Text Available The lithosphere and the atmosphere/ionosphere, continuously exchange energy through various coupling mechanisms. Earthquake creates waves of energy, e.g. direct shock acoustic waves (SAWs and Rayleigh wave induced acoustic waves (RAWs. In the event of an earthquake occurring beneath the sea, atmospheric gravity waves (AGWs are also generated. If the earthquake is large enough (Mw > 6, SAWs, RAWs and AGWs induce detectable ionospheric plasma perturbations. Inferring the seismological information from these seismo-ionospheric manifestations is the subject that pertains to ionospheric seismology. Both ground and satellite based advanced radio techniques are being used in monitoring ionospheric plasma perturbations. In this study, seismo-ionospheric anomalies and implications from recent GNSS observations in India and South-East Asia are discussed, mainly pertaining to the following. (1 From the ionospheric plasma response to 2015 Nepal earthquake, the estimated group velocity for Andaman and Indian shield regions are 2100 ms−1 and 3900 ms−1 respectively and validated from ground measurements. (2 Atmospheric acoustic resonance at 4.0 mHz and a train of wave packet of TEC variation resulting from the beat phenomenon observed at the site ‘umlh’ and (3 GNSS-based tsunami warning which is going to be promising tool in augmenting the existing tsunami warning systems.

  5. Fourier and Wavelet Based Characterisation of the Ionospheric Response to the Solar Eclipse of August, the 11th, 1999, Measured Through 1-minute Vertical Ionospheric Sounding

    Science.gov (United States)

    Sauli, P.; Abry, P.; Boska, J.

    2004-05-01

    The aim of the present work is to study the ionospheric response induced by the solar eclipse of August, the 11th, 1999. We provide Fourier and wavelet based characterisations of the propagation of the acoustic-gravity waves induced by the solar eclipse. The analysed data consist of profiles of electron concentration. They are derived from 1-minute vertical incidence ionospheric sounding measurements, performed at the Pruhonice observatory (Czech republic, 49.9N, 14.5E). The chosen 1-minute high sampling rate aims at enabling us to specifically see modes below acoustic cut-off period. The August period was characterized by Solar Flux F10.7 = 128, steady solar wind, quiet magnetospheric conditions, a low geomagnetic activity (Dst index varies from -10 nT to -20 nT, Σ Kp index reached value of 12+). The eclipse was notably exceptional in uniform solar disk. These conditions and fact that the culmination of the solar eclipse over central Europe occurred at local noon are such that the observed ionospheric response is mainly that of the solar eclipse. We provide a full characterization of the propagation of the waves in terms of times of occurrence, group and phase velocities, propagation direction, characteristic period and lifetime of the particular wave structure. However, ionospheric vertical sounding technique enables us to deal with vertical components of each characteristic. Parameters are estimated combining Fourier and wavelet analysis. Our conclusions confirm earlier theoretical and experimental findings, reported in [Altadill et al., 2001; Farges et al., 2001; Muller-Wodarg et al.,1998] regarding the generation and propagation of gravity waves and provide complementary characterisation using wavelet approaches. We also report a new evidence for the generation and propagation of acoustic waves induced by the solar eclipse through the ionospheric F region. Up to our knowledge, this is the first time that acoustic waves can be demonstrated based on ionospheric

  6. Ionosphere Waves Service - A demonstration

    Science.gov (United States)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  7. Simulation of D and E region high-power microwave heating with HF ionospheric modification experiments

    International Nuclear Information System (INIS)

    Meltz, G.; Rush, C.M.; Violette, E.J.

    1981-01-01

    The microwave power beam from a Solar Power Satellite (SPS) is sufficiently intense to cause large changes in the properties of the lower ionosphere by ohmic heating of the plasma. Power is absorbed from the beam at a rate that is proportional to the ratio of the flux s and the square of an effective frequency f/sub e/. Throughout most of the lower ionosphere f/sub e/ = f -+ f/sub L/, where f is the wave frequency and f/sub L is a reduced electron gyrofrequency. It follows that SPS equivalent heating can be simulated at much lower power fluxes with HF radio waves. A detailed examination of the frequency scaling, based on fluid and kinetic theory estimates of the change in electron temperature and density, shows that the high-power HF facility at Platteville, CO, can simulate or exceed the ohmic effects of the SPS beam up to 90 km. This paper describes the results of a series of 5.2 and 9.9 MHz underdense heating experiments undertaken to study the effect of high-power microwaves on the lower ionosphere. A pulsed ionosonde probe, located nearly below the most intense portion of the high-power beam, was used to observe the changes in the D and lower E region. Both phase and amplitude measurements were recorded during CW and intermittent heating

  8. Ionospheric research at INPE

    International Nuclear Information System (INIS)

    Abdu, M.A.

    1984-01-01

    Ionosphere investigations at INPE are mainly concerned with the problems of equatorial and tropical ionospheres and their electrodynamic coupling with the high latitude ionosphere. Present research objectives include investigations in the following specific areas: equatorial ionospheric plasma dynamics; plasma irregularity generation and morphology, and effects on space borne radar operations; ionospheric response to disturbance dynamo and magnetospheric electric fields; aeronomic effcts of charged particle precipitation in the magnetic anomaly, etc. These problems are being investigated using experimental datacollected from ionospheric diagnostic instruments being operated at different locations in Brazil. These instruments are: ionosondes, VHF electronic polarimeters, L-band scintillation receivers, airglow photometers, riometers and VLF receivers. A brief summary of the research activities and some recnet results will be presented. (Author) [pt

  9. High latitude ionospheric structure

    International Nuclear Information System (INIS)

    1984-06-01

    The Earth's ionosphere is an important element in solar-terrestrial energy transfer processes. As a major terrestrial sink for many solar and magnetospheric events, the ionosphere has characteristic features that are traced to such seemingly remote phenomena as solar flares, radiation belt wave-particle interactions and magnetospheric substorms. In considering the multiple of solar-terrestrial plasma interactions, it is important to recognize that the high-latitude ionosphere is not altogether a simple receptor of various energy deposition processes. The high-altitude ionosphere plays an active feedback role by controlling the conductivity at the base of far-reaching magnetic field lines and by providing a plasma source for the magnetosphere. Indeed, the role of the ionosphere during magnetospheric substorms is emerging as a topic for meaningful study in the overall picture of magnetospheric-ionospheric coupling

  10. Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Tang, L. [Wuhan Univ. (China). School of Geodesy and Geomatics

    2015-04-01

    Underground nuclear explosions (UNEs) can induce acoustic-gravity waves, which disturb the ionosphere and initiate traveling ionospheric disturbances (TIDs). In this paper, we employ a multi-step and multi-order numerical difference method with dual-frequency GPS data to detect ionospheric disturbances triggered by the North Korean UNE on 25 May 2009. Several International GNSS Service (IGS) stations with different distances (400 to 1200 km) from the epicenter were chosen for the experiment. The results show that there are two types of disturbances in the ionospheric disturbance series: high-frequency TIDs with periods of approximately 1 to 2 min and low-frequency waves with period spectrums of 2 to 5 min. The observed TIDs are situated around the epicenter of the UNE, and show similar features, indicating the origin of the observed disturbances is the UNE event. According to the amplitudes, periods and average propagation velocities, the high-frequency and low-frequency TIDs can be attributed to the acoustic waves in the lower ionosphere and higher ionosphere, respectively. (orig.)

  11. An ionospheric index suitable for estimating the degree of ionospheric perturbations

    Science.gov (United States)

    Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.

  12. Ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, C [Centre National d' Etudes des Telecommunications (CNET), 92 - Issy-les-Moulineaux (France)

    1977-11-01

    This paper comprises four parts. The first one deals with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements.

  13. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation

    Science.gov (United States)

    Vilà-Valls, Jordi; Closas, Pau; Curran, James T.

    2017-10-01

    Ionospheric scintillation is the physical phenomena affecting radio waves propagating from the space through the ionosphere to earth. The signal distortion induced by scintillation can pose a major threat to some GNSS application. Scintillation is one of the more challenging propagation scenarios, particularly affecting high-precision GNSS receivers which require high quality carrier phase measurements; and safety critical applications which have strict accuracy, availability and integrity requirements. Under ionospheric scintillation conditions, GNSS signals are affected by fast amplitude and phase variations, which can compromise the receiver synchronization. To take into account the underlying correlation among different frequency bands, we propose a new multivariate autoregressive model (MAR) for the multi-frequency ionospheric scintillation process. Multi-frequency GNSS observations and the scintillation MAR are modeled in state-space, allowing independent tracking of both line-of-sight phase variations and complex gain scintillation components. The resulting joint synchronization and scintillation mitigation problem is solved using a robust nonlinear Kalman filter, validated using real multi-frequency scintillation data with encouraging results.

  14. Review of radio-frequency, nonlinear effects on the ionosphere

    International Nuclear Information System (INIS)

    Gordon, W.E.; Duncan, L.M.

    1983-01-01

    Modification of the ionosphere by high power radio waves in the megahertz band has been intensively investigated over the past two decades. This research has yielded advances in aeronomy, geophysics, and plasma physics with applications to radio communication and has provided a fruitful interaction of radio theorists and experimentalists. There being almost no linear effects of powerful radio waves on the ionosphere, we concentrate on the nonlinear effects. To put the subject in perspective we trace its history beginning in the early 1930s and highlight the important events up to the late 1960s. We then shift to a phenomenological approach and deal in order with ohmic heating, parametric instabilities, self-focusing and kilometer-scale irregularities, meter-scale irregularities, and a collection of recently discovered effects. We conclude with the observation that stronger international cooperation would benefit this research, and describe a list of promising, difficult challenges

  15. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  16. Tsunami Ionospheric warning and Ionospheric seismology

    Science.gov (United States)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  17. Ionospheric Storm Effects and Equatorial Plasma Irregularities During the 17-18 March 2015 Event

    Science.gov (United States)

    Zhou, Yun-Liang; Luhr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-01-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (E (sub m)). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/pre-noon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the post-sunset sector. As a response to a short-lived decline of E (sub m), EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 hours. Only after the onset of recovery phase does EPI activity start again in the post-midnight sector, lasting more than 7 hours

  18. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    Science.gov (United States)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  19. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    Science.gov (United States)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  20. Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith

    Directory of Open Access Journals (Sweden)

    T. B. Leyser

    2018-02-01

    Full Text Available The response of ionospheric plasma to pumping by powerful HF (high frequency electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.

  1. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    DEFF Research Database (Denmark)

    Yuan, Y.; Tscherning, C.C.; Knudsen, Per

    2006-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) lambda of the ionospheric pierce point (IPP....... The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM...

  2. Ionospheric Digital Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ionosphere is that part of the Earth's atmosphere that results mainly from the photo ionization of the upper atmosphere. Traditionally, the following ionospheric...

  3. Problems related to stimulated electromagnetic emissions, strong turbulence and ionospheric modification

    International Nuclear Information System (INIS)

    Goodman, S.

    1993-05-01

    Optical pumping of the ionospheric plasma by high-frequency radio waves produces a state of turbulence. Several consequences of the pumping are considered in this thesis. At reflection altitude the plasma is thought to be dominated by parametric instabilities and strong turbulence; these are both encapsulated in the so called Zakharov equations. The Zakharov equations are derived and generalised from kinetic theory. Limits of validity, corrections to the ion sound speed,effective ponderomotive force, nonlinear damping and other generalisation are included. As an example of the difference a kinetic approach makes, the threshold for parametric instabilities is seen to be lowered in a kinetic plasma. Mostly relevant to the upper hybrid layer is the recent discovery in the pumping experiments of stimulated electromagnetic emissions (SEE). In particular one feature of SEE which occurs around the cyclotron harmonics and depends on density striations is investigated. The observed frequency of emission, dependency on striations, time evolution and cutoff frequency below which the feature does not occur, are explained. Two theoretical approaches are taken. The first is a parametric three wave decay instability followed by a nonlinear mixing to produce SEE. Thresholds for the instability are well within experimental capacity. The second, less orthodox, approach, is a finite amplitude model. The finite amplitude model goes beyond the traditional parametric approach by being able to predict radiated power output. Miscellaneous aspects of a turbulent ionosphere are also examined. The dependency of the scattering cross section of a turbulent plasma upon higher order perturbations is considered. In a turbulent plasma, density gradients steeper than characteristic plasma scales may develop. The case of calculating the dielectric permittivity for a linear gradient of arbitrary steepness is considered

  4. Southern European ionospheric TEC maps based on Kriging technique to monitor ionosphere behavior

    Science.gov (United States)

    Rodríguez-Bouza, Marta; Paparini, Claudia; Otero, Xurxo; Herraiz, Miguel; Radicella, Sandro M.; Abe, Oladipo E.; Rodríguez-Caderot, Gracia

    2017-10-01

    Global or regional Maps of the ionospheric Total Electron Content (TEC) are an efficient tool to monitor the delay introduced by the ionosphere in the satellite signals. Ionospheric disturbance periods are of particular interest because these conditions can strongly affect satellite navigation range measurements. This work presents post-processing regional vertical TEC maps over Southern Europe ([35°N-50°N] latitude) obtained by applying Kriging interpolation to GPS derived TEC over more than 100 Global Navigation Satellite System (GNSS) stations. These maps are used to study the behavior of the ionosphere during space weather events and their effects. To validate these maps, hereafter called Southern European Ionospheric Maps (SEIMs), their TEC values have been compared with those obtained from EGNOS Message Server (EMS) and with direct experimental TEC data from GNSS stations. Ionospheric space weather events related to geomagnetic storms of March 17th, 2013, February 19th, 2014 and March 17th, 2015 have been selected. To test the methodology, one period of quiet days has been also analyzed. TEC values obtained by SEIMs in the Ionospheric Grid Points (IGPs) defined by EGNOS are very close to those given by EMS and in the period of major geomagnetic storms the difference does not exceed 6 TEC units. These results confirm the good performance of the technique used for obtaining the SEIMs that can be a useful tool to study the ionosphere behavior during geomagnetic storms and their effects in the region of interest.

  5. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  6. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  7. Modification of radiation-induced murine thymic lymphoma incidence by curcumin

    International Nuclear Information System (INIS)

    Dange, P.S.; Yadav, H.D.; Kumar, Vimalesh; Bhilwade, H.N.; Pandey, B.N.; Sarma, H.D.

    2017-01-01

    Curcumin is a known antioxidant, preventing radiation damage including carcinogenesis. However, concentration and feeding schedule of curcumin in modification of radiation induced thymic lymphoma incidence in vivo model has not been studied. We report here modification of incidence of γ-radiation-induced thymic lymphoma in mice fed with different doses of curcumin (0.05 to 1 %) in diet. Results: Female Swiss mice (6-8 weeks) fed with normal diet and exposed to 3 Gy whole body "6"0Co γ-irradiation (WBI) showed 85 % incidence of thymic lymphoma (TL) at 120 days post-irradiation. A concentration of 1 % curcumin was found the most effective in TL incidence prevention than other fed concentrations. The TL incidence was remarkably reduced when curcumin was fed to the mice before than after the radiation exposure. These results suggest modification of TL incidence by curcumin in irradiated mice involving DNA damage and apoptotic death mechanisms

  8. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges

    Science.gov (United States)

    Inan, U. S.; Cummer, S. A.; Marshall, R. A.

    2010-06-01

    Extremely low frequency (ELF) and very low frequency (VLF) observations have formed the cornerstone of measurement and interpretation of effects of lightning discharges on the overlying upper atmospheric regions, as well as near-Earth space. ELF (0.3-3 kHz) and VLF (3-30 kHz) wave energy released by lightning discharges is often the agent of modification of the lower ionospheric medium that results in the conductivity changes and the excitation of optical emissions that constitute transient luminous events (TLEs). In addition, the resultant ionospheric changes are best (and often uniquely) observable as perturbations of subionospherically propagating VLF signals. In fact, some of the earliest evidence for direct disturbances of the lower ionosphere in association with lightning discharges was obtained in the course of the study of such VLF perturbations. Measurements of the detailed ELF and VLF waveforms of parent lightning discharges that produce TLEs and terrestrial gamma ray flashes (TGFs) have also been very fruitful, often revealing properties of such discharges that maximize ionospheric effects, such as generation of intense electromagnetic pulses (EMPs) or removal of large quantities of charge. In this paper, we provide a review of the development of ELF and VLF measurements, both from a historical point of view and from the point of view of their relationship to optical and other observations of ionospheric effects of lightning discharges.

  9. Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector

    Directory of Open Access Journals (Sweden)

    Olushola Abel Oladipo

    2014-01-01

    Full Text Available Large-scale ionospheric irregularities usually measured by GPS TEC fluctuation indices are regular occurrence at the equatorial region shortly after sunset around solar maximum. Magnetic storm can trigger or inhibit the generation of these irregularities depending on the local time the main phase of a particular storm occurs. We studied the effect of nine (9 distinct storms on the occurrence of ionospheric irregularities at Fraceville in Gabon (Lat = −1.63˚, Long = 13.55˚, dip lat. = −15.94˚, an equatorial station in the African sector. These storms occurred between November 2001 and September 2002. We used TEC fluctuation indices (i.e. ROTI and ROTIAVE estimated from 30 s interval Rinex data and also we used the storm indices (i.e. Dst, dDst/dt, and IMF BZ to predict the likely effect of each storm on the irregularities occurrence at this station. The results obtained showed that most of the storms studied inhibited ionospheric irregularities. Only one out of all the storms studied (i.e. September 4, 2002 storms with the main phase on the night of September 7-8 triggered post-midnight ionospheric irregularities. There are two of the storms during which ionospheric irregularities were observed. However, these may not be solely attributed to the storms event because the level of irregularities observed during these two storms is comparable to that observed during previous days before the storms. For this station and for the storms investigated, it seems like a little modification to the use of Aarons categories in terms of the local time the maximum negative Dst occurs could lead to a better prediction. However, it would require investigating many storms during different level of solar activities and at different latitudes to generalize this modification.

  10. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation

    Directory of Open Access Journals (Sweden)

    Vilà-Valls Jordi

    2017-01-01

    Full Text Available Ionospheric scintillation is the physical phenomena affecting radio waves propagating from the space through the ionosphere to earth. The signal distortion induced by scintillation can pose a major threat to some GNSS application. Scintillation is one of the more challenging propagation scenarios, particularly affecting high-precision GNSS receivers which require high quality carrier phase measurements; and safety critical applications which have strict accuracy, availability and integrity requirements. Under ionospheric scintillation conditions, GNSS signals are affected by fast amplitude and phase variations, which can compromise the receiver synchronization. To take into account the underlying correlation among different frequency bands, we propose a new multivariate autoregressive model (MAR for the multi-frequency ionospheric scintillation process. Multi-frequency GNSS observations and the scintillation MAR are modeled in state-space, allowing independent tracking of both line-of-sight phase variations and complex gain scintillation components. The resulting joint synchronization and scintillation mitigation problem is solved using a robust nonlinear Kalman filter, validated using real multi-frequency scintillation data with encouraging results.

  11. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  12. Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America

    Science.gov (United States)

    Li, Wang; Yue, Jianping; Yang, Yang; Li, Zhen; Guo, Jinyun; Pan, Yi; Zhang, Kefei

    2017-08-01

    East Asia and North America are the regions most heavily affected by powerful cyclones. In this paper we investigate the morphological characteristics of ionospheric disturbances induced by cyclones in different continents. The global ionosphere map supplied by the Center for Orbit Determination in Europe (CODE), International Reference Ionosphere Model (IRI) 2012, and Wallops Island ionosonde station data are used to analyse the ionospheric variations during powerful typhoons/hurricanes in East Asia and North America, respectively. After eliminating the ionospheric anomalies due to the solar-terrestrial environment, the total electron content (TEC) time series over the point with maximum wind speed is detected by the sliding interquartile range method. The results indicate that significant ionospheric disturbances are observed during powerful tropical cyclones in East Asia and North America, respectively, and that all the ionospheric anomalies are positive. In addition, the extent and magnitude of travelling ionospheric disturbances are associated with the category of tropical cyclone, and the extent of TEC anomalies in longitude is more pronounced than that in latitude. Furthermore, the maximum ionospheric anomaly does not coincide with the eye of the storm, but appears in the region adjacent to the centre. This implies that ionospheric disturbances at the edges of cyclones are larger than those in the eye of the winds. The phenomenon may be associated with the gravity waves which are generated by strong convective cells that occur in the spiral arms of tropical cyclones. This comprehensive analysis suggests that the presence of powerful typhoons/hurricanes may be a possible source mechanism for ionospheric anomalies.

  13. HF-induced airglow at magnetic zenith: theoretical considerations

    Directory of Open Access Journals (Sweden)

    E. V. Mishin

    2005-01-01

    Full Text Available Observations of airglow at 630nm (red line and 557.7nm (green line during HF modification experiments at the High Frequency Active Auroral Research Program (HAARP heating facility are analyzed. We propose a theoretical framework for understanding the generation of Langmuir and ion acoustic waves during magnetic zenith injections. We show that observations of HF-induced airglow in an underdense ionosphere as well as a decrease in the height of the emitting volume are consistent with this scenario.

  14. Ionospheric Change and Solar EUV Irradiance

    Science.gov (United States)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  15. Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes

    International Nuclear Information System (INIS)

    Tereshchenko, E.D.; Khudukon, B.Z.; Gurevich, A.V.; Zybin, K.P.; Frolov, V.L.; Myasnikov, E.N.; Muravieva, N.V.; Carlson, H.C.

    2004-01-01

    Observations of the ionospheric electron density modified by a powerful wave of the Sura HF heating facility were carried out in Russia at middle latitudes in August 2002. Amplitude scintillations and variations of the phase of VHF signals from Russian orbiting satellites passing over the heated region along the chain of three satellite receivers have been recorded. The experimental data were converted to electron density maps using a stochastic inversion. Tomographic measurements conducted during a low magnetic activity revealed that HF powerful waves can produce significant electron density disturbances up to heights significantly exceeding altitudes of the F layer peak. Both large-scale plasma enhancements and small-scale density irregularities can be generated by the HF radiation. Wavy density structures were also observed within a sector which is much wider than the area covered by the main lobe of the heating antenna. Small-scale density irregularities are mostly field-aligned although large-scale structures can be detected within a much larger area. A distinctive peculiarity of electron density changes occurred during heating is producing a zone of low density inside the area illuminated by the antenna beam. The results indicate that satellite radio tomography and scintillation measurements are effective diagnostic techniques giving a valuable information to studies of effects induced by HF modification. The complete system of plasma density disturbances describing by the theory of 'the magnetic zenith effect' has been for the first time studied in this Letter. A good agreement between the theory and experimental data has been obtained

  16. CARINA Satellite Mission to Investigate the Upper Atmosphere below the F-Layer Ionosphere

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Huba, J.; Montgomery, J. A., Jr.

    2017-12-01

    A new satellite design permits broad science measurements from the ocean to the ionosphere by flying below the F-Layer. The satellite called CARINA for Coastal-Ocean, Assimilation, Radio, Ionosphere, Neutral-Drag, and Atmospherics. The unique system capabilities are long duration orbits below the ionosphere and a HF receiver to measure broadband signals. The CARINA science products include recording the ocean surface properties, data for assimilation into global ionosphere models, radio wave propagation measurements, in-situ observations of ionospheric structures, validating neutral drag models and theory, and broadband atmospheric lightning characterization. CARINA will also measure nonlinear wave-generation using ionospheric modification sites in Alaska, Norway, Puerto Rico, and Russia and collaborate with geophysics HF radars (such as Super-DARN) for system calibration. CARINA is a linear 6-U CubeSat with a long antenna extended in the wake direction. The CARINA science mission is supported by three instruments. First, the Electric Field Instrument (EFI) is a radio receiver covering the 2 to 18 MHz range. The receiver can capture both narrow and wide bandwidths for up to 10 minutes. EFI is designed to provide HF signal strength and phase, radar Doppler shift and group delay, and electron plasma density from photoelectron excited plasma waves. Second a Ram Langmuir Probe (RLP) measures high-resolution ion currents at a 10 kHz rate. These measurements yield electron and ion density at the spacecraft. Finally, the Orbiting GPS Receiver (OGR) provides dual frequency GPS position with ionosphere correction. OGR also measures total electron content above the spacecraft and L-Band scintillations. CARINA will be the lowest satellite in orbit at 250 km altitude, <0.01 eccentricity, and up to 4-month lifetime. The design supports unique capabilities with broad applications to the geosciences. Remote sensing of the ocean will sample the HF signals scattered from the rough

  17. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012

    Science.gov (United States)

    Kakinami, Yoshihiro; Yamamoto, Masayuki; Chen, Chia-Hung; Watanabe, Shigeto; Lin, Charles; Liu, Jenn-Yanq; Habu, Hiroto

    2013-08-01

    disturbances caused by a missile launched from North Korea on 12 December 2012 were investigated by using the GPS total electron content (TEC). The spatial characteristic of the front edge of V-shaped disturbances produced by missiles and rockets was first determined. Considering the launch direction and the height of estimated ionospheric points at which GPS radio signal pierces the ionosphere, the missile passed through the ionosphere at heights of 391, 425, and 435 km at 0056:30, 0057:00, and 0057:30 UT, respectively. The observed velocities of the missile were 2.8 and 3.2 km/s at that time, which was estimated from the traveling speed of the front edge of V-shaped disturbances. Westward and eastward V-shaped disturbances propagated at 1.8-2.6 km/s. The phase velocities of the westward and eastward V-shaped disturbances were much faster than the speed of acoustic waves reported in previous studies, suggesting that sources other than acoustic waves may have played an important role. Furthermore, the plasma density depletion that is often observed following missile and rocket launches was not found. This suggests that the depletion resulting from the missile's exhaust was not strong enough to be observed in the TEC distribution in the topside ionosphere.

  18. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    Science.gov (United States)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    We present the results of the experiments carried out in 2009-2012 on the Sura heating facility (Radio Physical Research Institute, N. Novgorod, Russia) on modification of the midlatitude ionosphere by powerful HF radiowaves. The experiments were conducted using O-mode radiowaves at frequencies lower than critical frequency of the ionospheric F2 layer both in daytime and nighttime ionosphere. Various schemes of the radiation of the heating wave were used including square wave modulation of the effective radiated power (ERP) at various frequencies and power stepping. Radio transmissions of the low- (Parus/Tsikada) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. The variations in the slant total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for the satellite passes for which ionospheric penetration points crossed the disturbed area during HF heating. The variations in TEC caused by HF heating are identified in a number of examples. It is shown that the GNSS TEC spectra contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. Different behavior of TEC variations was observed during nighttime and daytime heating experiments. In daytime conditions the pump wave switched ON causes the increase of TEC while in the nighttime it causes a decrease in TEC. This can be explained by the different contribution of the processes responsible for the increase and decrease of TEC in daytime in nighttime conditions. In this work we also present the first time radiotomographic reconstructions of the spatial structure of the wave-like disturbances, generated in the ionosphere by high-power radio waves radiated by the Sura heater

  19. Interaction with the lower ionosphere of electromagnetic pulses from lightning - Heating, attachment, and ionization

    Science.gov (United States)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A Boltzmann formulation of the electron distribution function and Maxwell's equations for the EM fields are used to simulate the interaction of lightning radiated EM pulses with the lower ionosphere. Ionization and dissociative attachment induced by the heated electrons cause significant changes in the local electron density, N(e). Due to 'slow' field changes of typical lightning EM pulses over time scales of tens of microsec, the distribution function follows the quasi-equilibrium solution of the Boltzmann equation in the altitude range of interest (70 to 100 km). The EM pulse is simulated as a planar 100 microsec long single period oscillation of a 10 kHz wave injected at 70 km. Under nighttime conditions, individual pulses of intensity 10-20 V/m (normalized to 100 km horizontal distance) produce changes in N(e) of 1-30 percent while a sequence of pulses leads to strong modification of N(e) at altitudes less than 95 km. The N(e) changes produce a 'sharpening' of the lower ionospheric boundary by causing a reduction in electron density at 75-85 km (due to attachment) and a substantial increase at 85-95 km (due to ionization) (e.g., the scale height decreases by a factor of about 2 at about 85 km for a single 20 V/m EM pulse). No substantial N(e) changes occur during daytime.

  20. Isolated ionospheric disturbances as deduced from global GPS network

    Directory of Open Access Journals (Sweden)

    E. L. Afraimovich

    2004-01-01

    Full Text Available We investigate an unusual class of medium-scale traveling ionospheric disturbances of the nonwave type, isolated ionospheric disturbances (IIDs that manifest themselves in total electron content (TEC variations in the form of single aperiodic negative TEC disturbances of a duration of about 10min (the total electron content spikes, TECS. The data were obtained using the technology of global detection of ionospheric disturbances using measurements of TEC variations from a global network of receivers of the GPS. For the first time, we present the TECS morphology for 170 days in 1998–2001. The total number of TEC series, with a duration of each series of about 2.3h (2h18m, exceeded 850000. It was found that TECS are observed in no more than 1–2% of the total number of TEC series mainly in the nighttime in the spring and autumn periods. The TECS amplitude exceeds the mean value of the "background" TEC variation amplitude by a factor of 5–10 as a minimum. TECS represent a local phenomenon with a typical radius of spatial correlation not larger than 500km. The IID-induced TEC variations are similar in their amplitude, form and duration to the TEC response to shock-acoustic waves (SAW generated during rocket launchings and earthquakes. However, the IID propagation velocity is less than the SAW velocity (800–1000m/s and are most likely to correspond to the velocity of background medium-scale acoustic-gravity waves, on the order of 100–200m/s. Key words. Ionosphere (ionospheric irregularities, instruments and techniques - Radio science (ionospheric propagation

  1. Ionospheric effects during severe space weather events seen in ionospheric service data products

    Science.gov (United States)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  2. Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields

    Directory of Open Access Journals (Sweden)

    M. D. Sciffer

    2004-04-01

    Full Text Available Solutions for ultra-low frequency (ULF wave fields in the frequency range 1–100mHz that interact with the Earth's ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect (ISE arises from the generation of an "inductive" rotational current by the induced part of the divergent electric field in the ionosphere which reduces the wave amplitude detected on the ground. The inductive response of the ionosphere is described by Faraday's law and the ISE depends on the horizontal scale size of the ULF disturbance, its frequency and the ionosphere conductivities. The ISE for ULF waves in a vertical background magnetic field is limited in application to high latitudes. In this paper we examine the ISE within the context of oblique background magnetic fields, extending studies of an inductive ionosphere and the associated shielding of ULF waves to lower latitudes. It is found that the dip angle of the background magnetic field has a significant effect on signals detected at the ground. For incident shear Alfvén mode waves and oblique background magnetic fields, the horizontal component of the field-aligned current contributes to the signal detected at the ground. At low latitudes, the ISE is larger at smaller conductivity values compared with high latitudes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; electric fields and currents; wave propagation

  3. Complex network description of the ionosphere

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.

  4. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    Science.gov (United States)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  5. Challenges Handling Magnetospheric and Ionospheric Signals in Internal Geomagnetic Field Modelling

    DEFF Research Database (Denmark)

    Finlay, Chris; Lesur, V.; Thébault, E.

    2017-01-01

    systems in the ionosphere and magnetosphere. In order to fully exploit magnetic data to probe the physical properties and dynamics of the Earth’s interior, field models with suitable treatments of external sources, and their associated induced signals, are essential. Here we review the methods presently......-by-track analysis to characterize magnetospheric field fluctuations, differences in internal field models that result from alternative treatments of the quiet-time ionospheric field, and challenges associated with rapidly changing, but spatially correlated, magnetic signatures of polar cap current systems. Possible...

  6. The ionosphere

    International Nuclear Information System (INIS)

    Taieb, C.

    1977-01-01

    This paper comprises four parts. The first one is dealing with the neutral atmosphere, its structure, its composition, its variations. The second one describes the ionospheric plasma, (the ionized part) and explains its formation. The influence of the geomagnetic field is discussed in the third chapter, the fourth one being concerned with the means of studying the ionosphere: ionograms obtained by ionosondes or incoherent scattering sounding or from satellite measurements [fr

  7. Magnetotail processes and their ionospheric signatures

    Science.gov (United States)

    Ferdousi, B.; Raeder, J.; Zesta, E.; Murphy, K. R.; Cramer, W. D.

    2017-12-01

    In-situ observations in the magnetotail are sparse and limited to single point measurements. In the ionosphere, on the other hand, there is a broad range of observations, including magnetometers, auroral imagers, and various radars. Since the ionosphere is to some extent a mirror of plasmasheet processes it can be used as a monitor of magnetotail dynamics. Thus, it is of great importance to understand the coupling between the ionosphere and the magnetosphere in order to properly interpret the ionosphere and ground observations in terms of magnetotail dynamics. For this purpose, the global magnetohydrodynamic model OpenGGCM is used to investigate magnetosphere-ionosphere coupling. One of the key processes in magnetotail dynamics are bursty bulk flows (BBFs) which are the major means by which momentum and energy get transferred through the magnetotail and down to the ionosphere. BBFs often manifested in the ionosphere as auroral streamers. This study focuses on mapping such flow bursts from the magnetotail to the ionosphere along the magnetic field lines for three states of the magnetotail: pre-substorm onset through substorm expansion and during steady magnetospheric convection (SMC) following the substorm. We find that the orientation of streamers in the ionosphere differes for different local times, and that, for both tail and ionospheric signatures, activity increases during the SCM configutation compared to the pre-onset and quiet times. We also find that the background convection in the tail impacts the direction and deflection of the BBFs and the subsequent orientation of the auroral streamers in the ionosphere.

  8. The worldwide ionospheric data base

    International Nuclear Information System (INIS)

    Bilitza, D.

    1989-04-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory

  9. The worldwide ionospheric data base

    Science.gov (United States)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  10. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    International Nuclear Information System (INIS)

    Deng, W.; Killeen, T.L.; Burns, A.G.; Roble, R.G.; Slavin, J.A.; Wharton, L.E.

    1993-01-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere

  11. Mapping ionospheric backscatter measured by the SuperDARN HF radars – Part 2: Assessing SuperDARN virtual height models

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    2008-05-01

    Full Text Available The Super Dual Auroral Radar Network (SuperDARN network of HF coherent backscatter radars form a unique global diagnostic of large-scale ionospheric and magnetospheric dynamics in the Northern and Southern Hemispheres. Currently the ground projections of the HF radar returns are routinely determined by a simple rangefinding algorithm, which takes no account of the prevailing, or indeed the average, HF propagation conditions. This is in spite of the fact that both direct E- and F-region backscatter and 1½-hop E- and F-region backscatter are commonly used in geophysical interpretation of the data. In a companion paper, Chisham et al. (2008 have suggested a new virtual height model for SuperDARN, based on average measured propagation paths. Over shorter propagation paths the existing rangefinding algorithm is adequate, but mapping errors become significant for longer paths where the roundness of the Earth becomes important, and a correct assumption of virtual height becomes more difficult. The SuperDARN radar at Hankasalmi has a propagation path to high power HF ionospheric modification facilities at both Tromsø on a ½-hop path and SPEAR on a 1½-hop path. The SuperDARN radar at Þykkvibǽr has propagation paths to both facilities over 1½-hop paths. These paths provide an opportunity to quantitatively test the available SuperDARN virtual height models. It is also possible to use HF radar backscatter which has been artificially induced by the ionospheric heaters as an accurate calibration point for the Hankasalmi elevation angle of arrival data, providing a range correction algorithm for the SuperDARN radars which directly uses elevation angle. These developments enable the accurate mappings of the SuperDARN electric field measurements which are required for the growing number of multi-instrument studies of the Earth's ionosphere and magnetosphere.

  12. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  13. Ionospheric effects on DInSAR measurements of interseismic deformation in China

    Science.gov (United States)

    Gong, W.; Shan, X.; Song, X.; Liao, H.; Meyer, F. J.

    2017-12-01

    Interseismic deformation signals are small ground displacement that is critical to monitor the strain accumulates of major faults to foresee the potential seismic hazard. Accurate measurements of surface deformation could help recognize and interpret even subtle displacement and to give a better understanding of active fault behavior. However, the value and applicability of InSAR for inter-seismic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations (atmospheric disturbance), both reducing the sensitivity and accuracy of the technique. Ionospheric signal, a major part of atmospheric disturbance in InSAR, is related to the density of free electrons along the ray path, thus, that is dependent on the SAR signal frequency. Ionosphere induced phase distortions can lead to azimuth/range defocusing, geometry distortions and interferometric phase distortions. Some ionosphere phenomenon have been reported more severe at equatorial region and polar zones, e.g., ionosphere irregularity, while for middle latitude regions like West China it has not been thoroughly analyzed. Thus, this study is focus on the evaluation of ionosphere impacts in middle latitude zone, and its impacts in monitoring interseismic deformation in West China. The outcome would be useful to provide an empiric prior error condition of ionosphere disturbance, which can further benefit InSAR result interpretation and geophysical inversion, as well as the SAR data arrangement in future operational-(cloud) InSAR processing system. The study focus on two parts: 1. We will analyze the temporal-spatial variation of ionosphere and its magnitude at middle latitude zone, and investigate its impacts to current satellite SAR (C-band (Sentinel-1) and L-band (ALOS2) dataset) in earthquake-related deformation studies, especially inter-seismic study. 2. Ionosphere phase patterns at mid latitudes is typically small and the structure is compatibly smooth. This

  14. Ionospheric detection of tsunami earthquakes: observation, modeling and ideas for future early warning

    Science.gov (United States)

    Occhipinti, G.; Manta, F.; Rolland, L.; Watada, S.; Makela, J. J.; Hill, E.; Astafieva, E.; Lognonne, P. H.

    2017-12-01

    Detection of ionospheric anomalies following the Sumatra and Tohoku earthquakes (e.g., Occhipinti 2015) demonstrated that ionosphere is sensitive to earthquake and tsunami propagation: ground and oceanic vertical displacement induces acoustic-gravity waves propagating within the neutral atmosphere and detectable in the ionosphere. Observations supported by modelling proved that ionospheric anomalies related to tsunamis are deterministic and reproducible by numerical modeling via the ocean/neutral-atmosphere/ionosphere coupling mechanism (Occhipinti et al., 2008). To prove that the tsunami signature in the ionosphere is routinely detected we show here perturbations of total electron content (TEC) measured by GPS and following tsunamigenic earthquakes from 2004 to 2011 (Rolland et al. 2010, Occhipinti et al., 2013), nominally, Sumatra (26 December, 2004 and 12 September, 2007), Chile (14 November, 2007), Samoa (29 September, 2009) and the recent Tohoku-Oki (11 Mars, 2011). Based on the observations close to the epicenter, mainly performed by GPS networks located in Sumatra, Chile and Japan, we highlight the TEC perturbation observed within the first 8 min after the seismic rupture. This perturbation contains information about the ground displacement, as well as the consequent sea surface displacement resulting in the tsunami. In addition to GNSS-TEC observations close to the epicenter, new exciting measurements in the far-field were performed by airglow measurement in Hawaii show the propagation of the internal gravity waves induced by the Tohoku tsunami (Occhipinti et al., 2011). This revolutionary imaging technique is today supported by two new observations of moderate tsunamis: Queen Charlotte (M: 7.7, 27 October, 2013) and Chile (M: 8.2, 16 September 2015). We finally detail here our recent work (Manta et al., 2017) on the case of tsunami alert failure following the Mw7.8 Mentawai event (25 October, 2010), and its twin tsunami alert response following the Mw7

  15. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  16. A proposal of a novel DNA modification mechanism induced by irradiation

    International Nuclear Information System (INIS)

    Oka, Toshitaka

    2016-01-01

    This article depicts a proposal of a novel DNA modification mechanism induced by irradiation, and is written as an award work from Japanese Society of Radiation Chemistry. The mechanism of DNA modification induced by K-shell photoabsorption of nitrogen and oxygen atoms was investigated by electron paramagnetic resonance and x-ray absorption near edge structure measurements of calf thymus DNA film. The EPR intensities for DNA film were twofold times larger than those estimated based on the photoabsorption cross section. This suggests that the DNA film itself forms unpaired electron species through the excitation of enhanced electron recapturing, known as the postcollision interaction process. (author)

  17. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Science.gov (United States)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  18. Ion escape fluxes from the terrestrial high-latitude ionosphere

    International Nuclear Information System (INIS)

    Barakat, A.R.; Schunk, R.W.; Moore, T.E.; Waite, J.H. Jr.

    1987-01-01

    The coupled continuity and momentum equations for H + , O + , and electrons were solved for the terrestrial ionosphere in order to determine the limiting ion escape fluxes at high latitudes. The effects of solar cycle, season, geomagnetic activity, and the altitude of the acceleration region on the ion escape fluxes were studied for average conditions. In addition, a systematic parameter study was conducted to determine the extent to which variations in ionospheric conditions (for example, electron temperature, ion temperature, induced vertical ion drifts, etc.) can affect the results. The main conclusions of the study are as follows: (1) as solar activity increases, the general trend is for an increase in the limiting O + escape flux and a decrease in the limiting H + escape flux; (2) in winter the limiting escape fluxes of both O + and H + are larger than those in summer, particularly for low geomagnetic activity; (3) the O + content of the ion outflow increases with increasing ''demand'' imposed on the ionosphere by a high-altitude acceleration process, with increasing solar activity, with increasing geomagnetic activity, with increasing solar elevation from winter to summer, and with a lowering of the altitude of the acceleration region; (4) when H + is in a near-diffusive equilibrium state and a selective mechanism accelerates O + , the limiting O + escape flux is significantly reduced compared to that obtained when an H + outflow also occurs; and (5) at a given time or location the general trends described above can be significantly modified or even reversed owing to natural variations of the ionospheric ion and electron temperatures, induced vertical ion drifts, etc. The general trends obtained for average conditions appear to mimic the qualitative behavior determined from statistically averaged data for comparable absolute escape flux magnitudes

  19. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016)

    Science.gov (United States)

    Chou, M. Y.; Lin, C. C. H.; Yue, J.; Chang, L. C.; Tsai, H. F.; Chen, C. H.

    2017-12-01

    Two remarkable typhoon-induced traveling ionospheric disturbances (TIDs) with concentric andnorthwest-southeast (NW-SE) alignments, respectively, associated with concentric gravity waves (CGWs) andionospheric instabilities possibly seeded by CGWs, were observed in total electron content (TEC) derived fromground-based Global Navigation Satellite System networks in Taiwan and Japan when the Category 5 SuperTyphoon Nepartak approached Taiwan on 7 July 2016. The concentric TIDs (CTIDs) first appear withhorizontal phase velocities of 161-200 m/s, horizontal wavelengths of 160-270 km, and periods of 15-22 min during 08:00-11:20 UT. Following the CTIDs, the NW-SE aligned nighttime medium-scale TIDs(MSTIDs) are formed on the west edge of the CTIDs over the Taiwan Strait during 11:30-14:00 UT. It issuggested that the MSTIDs are produced by the electrodynamical coupling of Perkins instability andCGW-induced polarization electric fields. This study proposes connections of typhoon-induced CTIDs andsubsequently occurring MSTIDs in the low-latitude ionosphere.

  20. Ionospheric topside sounding.

    Science.gov (United States)

    Calvert, W

    1966-10-14

    Over the past few years, the satellite topside sounders have significantly contributed to the understanding of the upper ionosphere. A great quantity of radio echo data has been accumulated, from which the ionospheric electrondensity distribution can be determined. The topside measurements of electron density essentially agree with similar measurements from the ground, except for an occasional 10-percent discrepancy near the peak of the ionosphere. While horizontal non-uniformity is a likely cause, this discrepancy has not yet been adequately explained. The electron-density scale heights measured at a constant altitude indicate both a higher temperature and a heavier mean ion mass at high latitudes. At low latitudes the topside measurements have shown the detailed latitudinal structure of the equatorial anomaly, demonstrating control by the geomagnetic field. A variety of electron-density irregularities have been studied. Most are greatly elongated along the magnetic field, and produce echoes either by lateral scattering, if they are thin, or by longitudinal ducting, if they are thick. Some of the thick irregularities are continuous between the hemispheres and support conjugate echo propagation. The topside sounders have revealed the complex structure of the ionosphere near the auroral zone and at higher latitudes. At night an east-west trough of greatly reduced electron density occurs equatorward of the auroral zone. At the auroral zone itself the electron density is high and quite variable, both in space and time. The electron density at the polar cap within the auroral zone is often uniform and smooth. Ionospheric irregularities are common in the area of the trough and the auroral zone. Among other satellites, the topside sounders have been used in various plasma studies involving the excitation and propagation of waves. These studies suggest that the ionosphere is an appropriate region for future plasma physics investigations, especially with rocket and

  1. Ionospheric research for space weather service support

    Science.gov (United States)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  2. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  3. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  4. Ionospheric effects of thunderstorms and lightning

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Erin H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm. We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.

  5. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2006-10-01

    Full Text Available We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS. This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  6. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    Science.gov (United States)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  7. Ionospheric and boundary contributions to the Dessler-Parker-Sckopke formula for Dst

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliūnas

    2006-05-01

    Full Text Available The Dessler-Parker-Sckopke formula for the disturbance magnetic field averaged over the Earth's surface, universally used to interpret the geomagnetic Dst index, can be generalized, by using the well known method of deriving it from the virial theorem, to include the effects of ionospheric currents. There is an added term proportional to the global integral of the vertical mechanical force that balances the vertical component of the Lorentz force J×B/c in the ionosphere; a downward mechanical force reduces, and an upward increases, the depression of the magnetic field. If the vertical component of the ionospheric Ohm's law holds exactly, the relevant force on the plasma is the collisional friction between the neutral atmosphere and the vertically flowing plasma. An equal and opposite force is exerted on the neutral atmosphere and thus appears in its virial theorem. The ionospheric effect on Dst can then be related to the changes of kinetic and gravitational energy contents of the neutral atmosphere; since these changes are brought about by energy input from the magnetosphere, there is an implied upper limit to the effect on Dst which in general is relatively small in comparison to the contribution of the plasma energy content in the magnetosphere. Hence the Dessler-Parker-Sckopke formula can be applied without major modification, even in the case of strong partial ring currents; the ionospheric closure currents implied by the local time asymmetry have only a relatively small effect on the globally averaged disturbance field, comparable to other sources of uncertainty. When derived from the virial theorem applied to a bounded volume (e.g. the magnetosphere bounded by the magnetopause and a cross-section of the magnetotail, the Dessler-Parker-Sckopke formula contains also several boundary surface terms which can be identified as contributions of the magnetopause (Chapman-Ferraro and of the magnetotail currents.

  8. On the Accuracy of the Conjugation of High-Orbit Satellites with Small-Scale Regions in the Ionosphere

    Science.gov (United States)

    Safargaleev, V. V.; Safargaleeva, N. N.

    2018-03-01

    The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 R E from the Earth's surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.

  9. Ionosphere Waves Service (IWS – a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    Directory of Open Access Journals (Sweden)

    Ferencz Csaba

    2014-05-01

    Full Text Available In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  10. Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano

    2013-06-01

    Full Text Available In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS ionospheric scintillation and TEC monitor (GISTM receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions, there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.

  11. Multi-Instrument Investigation of Ionospheric Flow Channels and Their Impact on the Ionosphere and Thermosphere during Geomagnetic Storms

    Science.gov (United States)

    2017-12-29

    AFRL-AFOSR-JP-TR-2018-0009 Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during...SUBTITLE Multi-instrument investigation of ionospheric flow channels and their impact on the ionosphere and thermosphere during geomagnetic storms 5a...Experiment) and GOCE (Gravity field and steady- state Ocean Circulation Explorer) satellite data. We also created a series of computer algorithms to

  12. Alteration of human serum albumin binding properties induced by modifications: A review

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  13. Radio Observations of the Ionosphere From an Imaging Array and a CubeSat

    Science.gov (United States)

    Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.

    2017-12-01

    The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the

  14. Assessing ionospheric activity by long time series of GNSS signals: the search of possible connection with seismicity

    Science.gov (United States)

    Galeandro, Angelo; Mancini, Francesco; De Giglio, Michaela; Barbarella, Maurizio

    2014-05-01

    The modifications of some atmospheric physical properties prior to a high magnitude earthquake were recently debated in the frame of the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena, the ionization of air at the ionospheric levels due to leaking of gases from earth crust through the analysis of long time series of GNSS (Global Navigation Satellite System) signals was investigated in this work. Several authors used the dispersive properties of the ionospheric strata towards the GNSS signals to detect possible ionospheric anomalies over areas affected by earthquakes and some evidences were encountered. However, the spatial scale and temporal domains over which such disturbances come into evidence is still a controversial item. Furthermore, the correspondence by chance between ionospheric disturbances and relevant seismic activity is even more difficult to model whenever the reference time period and spatial extent of investigation are confined. Problems could also arise from phenomena due to solar activity (now at culmination within the 11 years-long solar cycle) because such global effects could reduce the ability to detect disturbances at regional or local spatial scale. In this work, two case studies were investigated. The first one focuses on the M = 6.3 earthquake occurred on April 6, 2009, close to the city of L'Aquila (Abruzzo, Italy). The second concerns the M = 5.9 earthquake occurred on May 20, 2012, between the cities of Ferrara and Modena (Emilia Romagna, Italy). To investigate possible connections between the ionospheric activity and seismicity for such events, a five-year (2008-2012) long series of high resolution ionospheric maps was used. These maps were produced by authors from GNSS data collected by permanent stations uniformly distributed around the epicenters and allowed to assess the ionospheric activity through the analysis of the TEC (Total Electron Content). To avoid the influence of solar activity

  15. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  16. Lagopedo: two F-region ionospheric depletion experiments

    International Nuclear Information System (INIS)

    Pongratz, M.B.; Smith, G.M.; Sutherland, C.D.; Zinn, J.

    1977-01-01

    A significant depletion of ionospheric plasma was produced by a chemical release experiment in the F-layer ionosphere over Hawaii. The results of measurements of the hole produced in the ionospheric plasma are reported

  17. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  18. Ionospheric measurements for the Non-Proliferation Experiment

    International Nuclear Information System (INIS)

    Fitzgerald, T.J.

    1994-01-01

    The detection of explosions using ionospheric techniques relies on measuring perturbations induced in radio propagation by acoustics waves which disturb the electron density of the ionosphere. Such techniques have been applied to the detection of atmospheric explosions, underground nuclear tests, earthquakes, and surface mining explosions. The nighttime ionosphere presents a difficulty for the detection of explosions because in the absence of solar ionization radiation the electron density in the altitude range of 90 to 200 km decays after sunset and perturbation effects are correspondingly reduced. On the other hand, acoustic waves produced by weak sources reach a maximum amplitude in the altitude range of 100 to 150 km and are highly attenuated at altitudes above 200 km. For safety reasons, most planned explosions are conducted during daylight which has limited the experimental measurements during nighttime. However a recent opportunity for a nighttime measurement occurred in connection with the Non-Proliferation Experiment which consisted of the detonation of a large chemical charge underground at the Nevada Test Site near midnight local time. the results, based on a new technique of using medium frequency radio transmissions provided by commercial broadcasts to detect explosion effects, were negative. The most likely explanation for the negative result is that the radio transmissions did not reflect at a low enough altitude to sense the perturbations produced by the acoustic waves

  19. Effect of seismic activities on ion temperature in the F{sub 2} region of the ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K.; Rai, J. [Department of Physics, Indian Institute of Technology, Roorkee (India); Chand, R.; Israil, M. [Department of Earth Sciences, Indian Institute of Technology, Roorkee (India)]. E-mail: ramesh20june@yahoo.co.in

    2006-01-15

    Ionospheric anomalies related to the seismic events have been analyzed in the present paper. The ionospheric ion temperature data recorded by the Retarded Potential Analyzer (RPA) payload aboard the Indian SROSS-C2 satellite are used for the period from January 1995 to December 1996. Earthquake events recorded in the region of interest from United State Geological Survey (USGS) were used to define the ionospheric ion temperature anomalies associated with the earthquake preparation, occurrence and relaxation. Ionospheric ion temperature data were analyzed in such a way that the anomalies due to other phenomena will not be masked over the temperature anomalies due to earthquakes. Ion temperature enhancements in the ionosphere were observed during earthquake events and few pre-post days to the events. The seismogenic vertical electric field propagation up to ionospheric height induces the Joule heating that may cause the ion temperature enhancement. [Spanish] En este articulo se analizan anomalias ionosfericas relacionadas con eventos sismicos. Se utilizaron los datos de temperatura ionosferica registrados por el Analizador Potencial Retrasado (RPA) del satelite hindu SROSS-C2 para el periodo de enero de 1995 a diciembre de 1996. Para definir las anomalias de la temperatura ionica de la ionosfera asociadas con la preparacion, ocurrencia y relajacion de los eventos sismicos se utilizaron los datos de estos eventos registrados por el Estudio Geologico de Estado Unido (USGS) para la region de interes. Los datos de temperatura ionica fueron analizados de manera que las anomalias debidas a otros fenomenos no enmascararan aquellas relacionadas con los eventos sismicos. La propagacion del campo electrico vertical sismogenico hacia la ionosfera induce el calentamiento joulico que podria causar el incremento de la temperatura ionica.

  20. Electron energy budget in the high-latitude ionosphere during Viking/EISCAT coordinated measurements

    International Nuclear Information System (INIS)

    Lilensten, J.; Kofman, W.; Lathuillere, C.; Fontaine, D.; Eliasson, L.; Oran, E.S.

    1990-01-01

    The magnetospheric electron fluxes precipitating at the top of the auroral ionosphere contribute to the production of ionization, to the excitation of atmospheric constituents, and to the heating of the ambient electrons. This last process occurs essentially when the energy of the initial precipitated electrons and photoelectrons has been degraded to values lower than approximately 10 eV. The heated ambient electron gas loses this energy to the neutral gas and ambient ions. Finally, the temperature gradient produced in the ionospheric plasma induces a heat flux. In the absence of an electric field and for stationary conditions, the energy budget of ionospheric electrons results from the balance between these processes of heating, cooling, and heat conduction. The intensity of these different processes is quantitatively computed at each altitude in the ionosphere by combining simultaneous EISCAT and Viking in situ measurements, and by means of an electron transport model. The stationary electron flux, which leads to the heating rate, is computed, and remaining differences in the energy budget are discussed

  1. Ionospheric cusp flows pulsed by solar wind Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2002-02-01

    Full Text Available Pulsed ionospheric flows (PIFs in the cusp foot-print have been observed by the SuperDARN radars with periods between a few minutes and several tens of minutes. PIFs are believed to be a consequence of the interplanetary magnetic field (IMF reconnection with the magnetospheric magnetic field on the dayside magnetopause, ionospheric signatures of flux transfer events (FTEs. The quasiperiodic PIFs are correlated with Alfvénic fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfvén waves coupling to the day-side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfvén wave electric field modulates the reconnection rate as evidenced by the radar observations of the ionospheric cusp flows. The arrival of the IMF southward turning at the magnetopause is determined from multipoint solar wind magnetic field and/or plasma measurements, assuming plane phase fronts in solar wind. The cross-correlation lag between the solar wind data and ground magnetograms that were obtained near the cusp footprint exceeded the estimated spacecraft-to-magnetopause propagation time by up to several minutes. The difference can account for and/or exceeds the Alfvén propagation time between the magnetopause and ionosphere. For the case of short period ( < 13 min PIFs, the onset times of the flow transients appear to be further delayed by at most a few more minutes after the IMF southward turning arrived at the magnetopause. For the case of long period (30 – 40 min PIFs, the observed additional delays were 10–20 min. We interpret the excess delay in terms of an intrinsic time scale for reconnection (Russell et al., 1997 which can be explained by the surface-wave induced magnetic reconnection mechanism (Uberoi et al., 1999. Here, surface waves with wavelengths larger than the thickness of the neutral layer induce a tearing-mode instability whose rise time explains the

  2. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  3. Developing an ionospheric map for South Africa

    Directory of Open Access Journals (Sweden)

    D. I. Okoh

    2010-07-01

    Full Text Available The development of a map of the ionosphere over South Africa is presented in this paper. The International Reference Ionosphere (IRI model, South African Bottomside Ionospheric Model (SABIM, and measurements from ionosondes in the South African Ionosonde Network, were combined within their own limitations to develop an accurate representation of the South African ionosphere. The map is essentially in the form of a computer program that shows spatial and temporal representations of the South African ionosphere for a given set of geophysical parameters. A validation of the map is attempted using a comparison of Total Electron Content (TEC values derived from the map, from the IRI model, and from Global Positioning System (GPS measurements. It is foreseen that the final South African ionospheric map will be implemented as a Space Weather product of the African Space Weather Regional Warning Centre.

  4. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    Science.gov (United States)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  5. New Model for Ionospheric Irregularities at Mars

    Science.gov (United States)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  6. Ion-Induced Surface Modification of Magnetically Operated Contacts

    Directory of Open Access Journals (Sweden)

    Karen Arushanov

    2012-02-01

    Full Text Available A study has been made of permalloy (iron-nickel contacts of reed switches before and after ion-induced surface modification using atomic force and optical microscopy, Auger electron and X-ray photoelectron spectroscopy. It has been found that the formation of surface nitride layers enhances corrosion and erosion resistance of contacts. We proposed to produce such layers directly into sealed reed switches by means of pulsing glow-discharge nitrogen plasma.

  7. Application of Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS) for the investigation of midlatitude ionospheric irregularities

    Science.gov (United States)

    Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin

    2018-03-01

    An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.

  8. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Science.gov (United States)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  9. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  10. Beating HF waves to generate VLF waves in the ionosphere

    Science.gov (United States)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2012-03-01

    Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

  11. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  12. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Science.gov (United States)

    Tricker, Penny J

    2015-01-01

    The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defense "priming" and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity's adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  13. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Directory of Open Access Journals (Sweden)

    Penny J Tricker

    2015-09-01

    Full Text Available The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defence ‘priming’ and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  14. Electron beam induced modification of grafted polyamides

    International Nuclear Information System (INIS)

    Timus, D.M.; Brasoveanu, M.M.; Bradley, D.A.; Popov, A.M.

    1998-01-01

    It is well known that irradiation, when applied on its own or in combination with other physical and chemical treatments, can manifest in radiation damage to materials. Radiation processing technology focuses upon producing favourable modification of materials through use of relatively high dose and dose rates. Current interest is in modifying the thermal and electrical properties of textured polymers in an effort to improve safety and wear comfort of clothing. No less important is the production of textiles which are safe to use, both in homes and offices. Present investigations provide additional data in support of findings which show that polyamides, a particular class of textured polymer, are amenable to radiation processing. Accelerated electron beam irradiation of sheets of polyamide fibre results in induced grafting of acrylic and methacrylic acids. The degree of grafting is critically dependent upon irradiation dose and the extent of monomers dilution. Of particular importance is the high correlation which is found between degree of grafting and a decrease in the softening rate of the modified polyamide. A systematic modification of electrical conductivity is also observed. (author)

  15. Applications of high power microwaves to atmospheric modification and measurement

    International Nuclear Information System (INIS)

    Benford, J.

    1993-01-01

    The current state of proposals to use high power microwaves in the atmosphere is reviewed. HPM has been proposed to aid in the conservation of stratospheric ozone by partial breakdown, facilitating chemistry to eliminate chlorine. Another proposal is over-the-horizon radar using a partial breakdown area in the ionosphere. A key to any such effort is rapid diagnosis of the state of the atmosphere before, during and after intervention. Technology requirements of these modification and measurement proposals are reviewed. The elements of an atmospheric modification program are identified and political, economic and ideological factors are discussed

  16. Severe ionosphere disturbances caused by the sudden response of evening subequatorial ionospheres to geomagnetic storms

    International Nuclear Information System (INIS)

    Tanaka, T.

    1981-01-01

    By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents

  17. Swift Heavy Ion Induced Modification of Aliphatic Polymers

    OpenAIRE

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy I...

  18. Application of TaiWan Ionosphere Model to Single-Frequency Ionospheric Delay Correction for GPS Static Position Positioning

    Science.gov (United States)

    Macalalad, E. P.; Tsai, L.; Wu, J.

    2011-12-01

    Ionospheric delay is one of the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges can vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. This effect can be practically removed using dual-frequency receivers. However, these types of receivers are very expensive and thus, impractical for most users. Therefore, for single-frequency receivers, ionosphere is usually modeled to attempt to remove this effect analytically. Numerous ionosphere models have been introduced in the past. Some of which are the Klobuchar (or broadcast) model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, another model, called the TaiWan Ionosphere Model (TWIM) was used to correct this effect. TWIM is a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, was used to calculate ionospheric delay for GPS single-frequency positioning. The ne profiles were used to calculate the slant TEC (STEC) between a receiver and each GPS satellite and correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to calculate the position of the receiver. Observations were made in a low-latitude location near one of the peaks of the equatorial anomaly. It was shown that TEC maps generated using TWIM exhibited detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models. That is, on the average, the horizontal accuracy, represented by the circular error probable (CEP), distance RMS (DRMS) and twice the DRMS (2DRMS), were better by 15-18% as compared with the CEP, DRMS and 2DRMS of uncorrected, Klobuchar and GIM. Moreover

  19. Impact of the Lower Atmosphere on the Ionosphere Response to a Geomagnetic Superstorm

    Science.gov (United States)

    Pedatella, N. M.

    2016-12-01

    Numerical simulations in the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) are performed to elucidate the impacts of lower atmosphere forcing on the ionosphere response to a geomagnetic superstorm. In particular, how the ionosphere variability due to the October 2003 Halloween storm would be different if it occurred in January coincident with a major sudden stratosphere warming (SSW) event is investigated. The TIE-GCM simulations reveal that the E x B vertical drift velocity and total electron content (TEC) respond differently to the geomagnetic disturbance when the lower atmosphere forcing is representative of SSW conditions compared to climatological lower atmosphere forcing conditions. Notably, the storm time variations in the E x B vertical drift velocity differ when the effects of the SSW are considered, and this is in part due to effects of the SSW on the equatorial ionosphere being potentially misinterpreted as being of geomagnetic origin. Differences in the TEC response to the geomagnetic storm can be up to 100% ( 30 TECU) of the storm induced TEC change, and the temporal variability of the TEC during the storm recovery phase is considerably different if SSW effects are considered. The results demonstrate that even during periods of extreme geomagnetic forcing it is important to consider the effects of lower atmosphere forcing on the ionosphere variability.

  20. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    Science.gov (United States)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  1. A modern trans-ionospheric propagation sensing system

    Science.gov (United States)

    Bishop, G. J.; Klobuchar, J. A.; Ronn, A. E.; Bedard, M. G.

    1989-09-01

    One of the most important potential problems with modern military systems which utilize spacecraft is the effect of the ionosphere on the radio signals which pass to and from the spacecraft. Such systems include active communications and navigation satellites as well as both ground-based and potential space-based ranging systems. The major effects the ionosphere can have on such systems are the additional time delay the electrons in the earth's ionosphere add to the free space path delay, the short term rate of change of this additional delay, amplitude scintillation or fading effects the signal encounters due to irregularities in the ionosphere, and Faraday rotation of linearly polarized radio waves transmitted through the ionosphere. While some of these effects were studied adequate models of these effects on military systems still do not exist. A modern trans-ionospheric sensing system, called TISS, is being procured which will consist of a number of stations located throughout the world, making real time measurements of the time delay of the ionosphere, and its rate of change, as well as amplitude scintillation, along several different viewing directions from each station. These trans-ionospheric measurements will be used to allow models, which currently provide only monthly propagation parameters. The real-time specifications of these parameters can then be used as decision aids in both the tactical and the strategic military environments. The TISS will include first order artificial intelligence design to aid in gathering the most appropriate sets of available real-time trans-ionospheric propagation data, and will communicate these data sets to the Air Weather Service Forecasting Center where they will be tailored to specific military customers.

  2. The zonal-mean and regional tropospheric pressure responses to changes in ionospheric potential

    Science.gov (United States)

    Zhou, Limin; Tinsley, Brian; Wang, Lin; Burns, Gary

    2018-06-01

    Global reanalysis data reveal daily surface pressure responses to changes in the global ionospheric potential in both polar and sub-polar regions. We use 21 years of data to show that the pressure response to externally-induced ionospheric potential changes, that are due to the interplanetary magnetic field east-west (IMF By) component, are present in two separate decadal intervals, and follow the opposite ionospheric potential changes in the Arctic and Antarctic for a given By. We use the 4 years of available data to show that the pressure responses to changes in internally generated ionospheric potential, that are caused by low-latitude thunderstorms and highly electrified clouds, agree in sign and sensitivity with those externally generated. We have determined that the daily varying pressure responses are stronger in local winter and spring. The pressure responses at polar latitudes are predominantly over the Antarctic and Greenland ice caps, and those at sub-polar latitudes are of opposite sign, mainly over oceans. A lead-lag analysis confirms that the responses maximize within two days of the ionospheric potential input. Regions of surface pressure fluctuating by about 4 hPa in winter are found with ionospheric potential changes of about 40 kV. The consistent pressure response to the independent external and internal inputs strongly supports the reality of a cloud microphysical mechanism affected by the global electric circuit. A speculative mechanism involves the ionosphere-earth current density Jz, which produces space charge at cloud boundaries and electrically charged droplets and aerosol particles. Ultrafine aerosol particles, under the action of electro-anti-scavenging, are enabled to grow to condensation nuclei size, affecting cloud microphysics and cloud opacity and surface pressure on time scales of hours.

  3. Application of small-size antennas for estimation of angles of arrival of HF signals scattered by ionospheric irregularities

    Science.gov (United States)

    Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu

    2018-05-01

    A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.

  4. Low-latitude ionospheric disturbances associated with earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Depueva, A.; Rotanova, N. [Russian Academy of Sciences, Inst. of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Moscow (Russian Federation)

    2001-04-01

    Topside electron density measured on satellite board was analysed. It was shown that before the two considered earthquakes with their epicenters located at low and equatorial latitudes the stable modification of the ionosphere both at and above the height of the F-layer peak was observed. Electron density gradually decreased and its spatial distribution looked like a funnel located either immediately over the epicenter or from its one side. Electron density irregularities of 300-500 km size in a meridional direction also occurred side by side with aforesaid background large-scale depletions. For detection of local structures of more than 1000 km extent, the method of natural orthogonal component expansion was applied; spectra of smaller scale inhomogeneities were investigated by means of the Blackman-Tukey method. A proposal is made for observed experimental data interpretation.

  5. Time series of GNSS-derived ionospheric maps to detect anomalies as possible precursors of high magnitude earthquakes

    Science.gov (United States)

    Barbarella, M.; De Giglio, M.; Galeandro, A.; Mancini, F.

    2012-04-01

    The modification of some atmospheric physical properties prior to a high magnitude earthquake has been recently debated within the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena the ionization of air at the higher level of the atmosphere, called ionosphere, is investigated in this work. Such a ionization occurrences could be caused by possible leaking of gases from earth crust and their presence was detected around the time of high magnitude earthquakes by several authors. However, the spatial scale and temporal domain over which such a disturbances come into evidence is still a controversial item. Even thought the ionospheric activity could be investigated by different methodologies (satellite or terrestrial measurements), we selected the production of ionospheric maps by the analysis of GNSS (Global Navigation Satellite Data) data as possible way to detect anomalies prior of a seismic event over a wide area around the epicentre. It is well known that, in the GNSS sciences, the ionospheric activity could be probed by the analysis of refraction phenomena occurred on the dual frequency signals along the satellite to receiver path. The analysis of refraction phenomena affecting data acquired by the GNSS permanent trackers is able to produce daily to hourly maps representing the spatial distribution of the ionospheric Total Electron Content (TEC) as an index of the ionization degree in the upper atmosphere. The presence of large ionospheric anomalies could be therefore interpreted in the LAI Coupling model like a precursor signal of a strong earthquake, especially when the appearance of other different precursors (thermal anomalies and/or gas fluxes) could be detected. In this work, a six-month long series of ionospheric maps produced from GNSS data collected by a network of 49 GPS permanent stations distributed within an area around the city of L'Aquila (Abruzzi, Italy), where an earthquake (M = 6.3) occurred on April 6, 2009

  6. Plasma Physics Research Institute, Lawrence Livermore National Laboratory, University of California, Davis annual report for fiscal year 1989

    International Nuclear Information System (INIS)

    Killeen, J.; Drake, R.P.

    1991-01-01

    This report discusses: The Davis Diverted Tokamak; Particle Simulation of Transport in Fusion Devices; Astrophysical Plasmas; Statistical Dynamics of Multi-Field Models for Plasma; Large Scale Density Modifications Induced in the Ionosphere; Studies of the Ion Acoustic Decay Instability; and Computer Simulation of Ionospheric Radio Frequency Heating

  7. Thermospheric storms and related ionospheric effects

    International Nuclear Information System (INIS)

    Chandra, S.; Spencer, N.W.

    1976-01-01

    A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms

  8. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan

    Science.gov (United States)

    Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi

    2017-09-01

    The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.

  9. Ionospheric response over Europe during the solar eclipse of March 20, 2015

    Directory of Open Access Journals (Sweden)

    Hoque Mohammed Mainul

    2016-01-01

    Full Text Available The solar eclipse on March 20, 2015 was a fascinating event for people in Northern Europe. From a scientific point of view, the solar eclipse can be considered as an in situ experiment on the Earth’s upper atmosphere with a well-defined switching off and on of solar irradiation. Due to the strong changes in solar radiation during the eclipse, dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact, for example, on temperature and ionization. We analyzed the behavior of total ionospheric ionization over Europe by reconstructing total electron content (TEC maps and differential TEC maps. Investigating the large depletion zone around the shadow spot, we found a TEC reduction of up to 6 TEC units, i.e., the total plasma depletion reached up to about 50%. However, the March 20, 2015 eclipse occurred during the recovery phase of a strong geomagnetic storm and the ionosphere was still perturbed and depleted. Therefore, the unusual high depletion is due to the negative bias of up to 20% already observed over Northern Europe before the eclipse occurred. After removing the negative storm effect, the eclipse-induced depletion amounts to about 30%, which is in agreement with previous observations. During the solar eclipse, ionospheric plasma redistribution processes significantly affected the shape of the electron density profile, which is seen in the equivalent slab thickness derived by combining vertical incidence sounding (VS and TEC measurements. We found enhanced slab thickness values revealing, on the one hand, an increased width of the ionosphere around the maximum phase and, on the other, evidence for delayed depletion of the topside ionosphere. Additionally, we investigated very low frequency (VLF signal strength measurements and found immediate amplitude changes due to ionization loss at the lower ionosphere during the eclipse time. We found that the magnitude of TEC depletion is linearly dependent on the

  10. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    Science.gov (United States)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  11. Metrology and ionospheric observation standards

    Science.gov (United States)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  12. Influence of Ionospheric Irregularities on GNSS Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. V. Tinin

    2015-01-01

    Full Text Available We have used numerical simulation to study the effects of ionospheric irregularities on accuracy of global navigation satellite system (GNSS measurements, using ionosphere-free (in atmospheric research and geometry-free (in ionospheric research dual-frequency phase combinations. It is known that elimination of these effects from multifrequency GNSS measurements is handi-capped by diffraction effects during signal propagation through turbulent ionospheric plasma with the inner scale being smaller than the Fresnel radius. We demonstrated the possibility of reducing the residual ionospheric error in dual-frequency GNSS remote sensing in ionosphere-free combination by Fresnel inversion. The inversion parameter, the distance to the virtual screen, may be selected from the minimum of amplitude fluctuations. This suggests the possibility of improving the accuracy of GNSS remote sensing in meteorology. In the study of ionospheric disturbances with the aid of geometry-free combination, the Fresnel inversion eliminates only the third-order error. To eliminate the random TEC component which, like the measured average TEC, is the first-order correction, we should use temporal filtering (averaging.

  13. A STUDY ON THE KOREAN IONOSPHERIC VARIABILITY

    Directory of Open Access Journals (Sweden)

    Seok-Hee Bae

    1992-06-01

    Full Text Available The ionosphere in accordance with solar activity can affect the transmission of radio waves. The effect of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. The present study is based on the Korean ionospheirc data obtained at the AnYang Radio Research Laboratory from January 1985 through October 1989. The data are analyzed to show the daily and the annual variations of the ionosphere. The data are also used to simulate the density distribution of the Korean ionosphere following the Chapman law.

  14. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    Science.gov (United States)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  15. Oxidative modification of ferritin induced by methylglyoxal

    Directory of Open Access Journals (Sweden)

    Sung Ho An

    2012-03-01

    Full Text Available Methylglyoxal (MG was identified as an intermediate innon-enzymatic glycation and increased levels were reported inpatients with diabetes. In this study, we evaluated the effects ofMG on the modification of ferritin. When ferritin wasincubated with MG, covalent crosslinking of the proteinincreased in a time- and MG dose-dependent manner.Reactive oxygen species (ROS scavengers, N-acetyl-L-cysteineand thiourea suppressed the MG-mediated ferritinmodification. The formation of dityrosine was observed inMG-mediated ferritin aggregates and ROS scavengers inhibitedthe formation of dityrosine. During the reaction betweenferritin and MG, the generation of ROS was increased as afunction of incubation time. These results suggest that ROSmay play a role in the modification of ferritin by MG. Thereaction between ferritin and MG led to the release of ironions from the protein. Ferritin exposure to MG resulted in aloss of arginine, histidine and lysine residues. It was assumedthat oxidative damage to ferritin caused by MG may induce anincrease in the iron content in cells, which is deleterious tocells. This mechanism, in part, may provide an explanation orthe deterioration of organs under diabetic conditions. [BMBreports 2012; 45(3: 147-152

  16. The D-Region Ionospheric Response to the 2017 Solar Eclipse

    Science.gov (United States)

    Cohen, M.; McCormick, J.; Gross, N. C.; Higginson-Rollins, M. A.

    2017-12-01

    VLF/LF radio remote sensing (0.5-500 kHz) is an effective means for quantifying the D-region ionosphere (60-90 km altitude). Disturbances in the ionospheric electron density induce changes in the propagation of VLF/LF signals, so a network of transmitters and receivers can effectively "image" a disturbed region. VLF/LF signals can all be detected from 100s-1000s of km away. We utilize Georgia Tech's network of highly-sensitive VLF/LF receivers to quantify the lower ionospheric response to the "Great American Eclipse". Nine of these were deployed and operational across the Continental US, Alaska and Puerto Rico all operated successfully. Each receiver synchronously recorded the full radio spectrum between 0.5-470 kHz. The included figure shows the eclipse track at 80 km altitude with a green swath. The nine operational receivers are shown with blue stars, and operational VLF/LF transmitters in dark red. Gray lines are shown for each great-circle path linking a VLF/LF transmitter to a receiver. This constellation forms a dense spider's-web grid of radio links, with which we can effectively image the disturbed patch of the D-region ionosphere as it moves across the country. In addition, shown in yellow are NDGPS transmitters which lie between 285-325 kHz. The red dots are the 230,000 geolocated lightning strokes during the 90-mintue eclipse pass, each of which emitted an intense VLF/LF impulse. These are also detected by our receivers. We present our observations and comparison with a theoretical model, using a combination of three techniques established by a series of three 2017 journal papers: (1) Polarization measurements of VLF/LF transmitter signals, (2) Lightning-generated VLF sferics detected 1000s of km away, and (3) NDGPS beacons near 300 kHz for shorter-range sounding of a small patch of the ionosphere. We find evidence of large scale ionospheric changes which affect the D-region over the entire continental region with a slowly-varying signal perturbation

  17. Predicting ionospheric scintillation: Recent advancements and future challenges

    Science.gov (United States)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  18. Comparative ionospheres: Terrestrial and giant planets

    Science.gov (United States)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  19. A review of ionospheric effects on Earth-space propagation

    Science.gov (United States)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  20. Production of Ionospheric Perturbations by Cloud-to-Ground Lightning and the Recovery of the Lower Ionosphere

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph; Rassoul, Hamid

    2013-04-01

    The fact that lightning/thunderstorm activities can directly modify the lower ionosphere has long been established by observations of the perturbations of very low frequency (VLF) signals propagating in the earth-ionosphere waveguide. These perturbations are known as early VLF events [Inan et al., 2010, JGR, 115, A00E36, 2010]. More recently discovered transient luminous events caused by the lightning/thunderstorm activities only last ~1-100 ms, but studies of the early VLF events show that the lightning ionospheric effects can persist much longer, >10s min [Cotts and Inan, GRL, 34, L14809, 2007; Haldoupis et al., JGR, 39, L16801, 2012; Salut et al., JGR, 117, A08311, 2012]. It has been suggested that the long recovery is caused by long-lasting conductivity perturbations in the lower ionosphere, which can be created by sprites/sprite halos which in turn are triggered by cloud-to-ground (CG) lightning [Moore et al., JGR, 108, 1363, 2003; Haldoupis et al., 2012]. We recently developed a two-dimensional fluid model with simplified ionospheric chemistry for studying the quasi-electrostatic effects of lightning in the lower ionosphere [Liu, JGR, 117, A03308, 2012]. The model chemistry captures major ion species and reactions in the lower ionosphere. Additional important features of the model include self-consistent background ion density profiles and full description of electron and ion transport. In this talk, we present the simulation results on the dynamics of sprite halos caused by negative CG lightning. The modeling results indicate that electron density around 60 km altitude can be enhanced in a region as wide as 80 km. The enhancement reaches its full extent in ~1 s and recovers in 1-10 s, which are on the same orders as the durations of slow onset and post-onset peaks of some VLF events, respectively. In addition, long-lasting electron and ion density perturbations can occur around 80 km altitude due to negative halos as well as positive halos, which can explain

  1. Assessing the Suitability of the ClOud Reflection Algorithm (CORA) in Modelling the Evolution of an Artificial Plasma Cloud in the Ionosphere

    Science.gov (United States)

    Jackson-Booth, N.

    2016-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.

  2. Using DORIS measurements for ionosphere modeling

    Science.gov (United States)

    Dettmering, Denise; Schmidt, Michael; Limberger, Marco

    2013-04-01

    Nowadays, most of the ionosphere models used in geodesy are based on terrestrial GNSS measurements and describe the Vertical Total Electron Content (VTEC) depending on longitude, latitude, and time. Since modeling the height distribution of the electrons is difficult due to the measurement geometry, the VTEC maps are based on the the assumption of a single-layer ionosphere. Moreover, the accuracy of the VTEC maps is different for different regions of the Earth, because the GNSS stations are unevenly distributed over the globe and some regions (especially the ocean areas) are not very well covered by observations. To overcome the unsatisfying measurement geometry of the terrestrial GNSS measurements and to take advantage of the different sensitivities of other space-geodetic observation techniques, we work on the development of multi-dimensional models of the ionosphere from the combination of modern space-geodetic satellite techniques. Our approach consists of a given background model and an unknown correction part expanded in terms of B-spline functions. Different space-geodetic measurements are used to estimate the unknown model coefficients. In order to take into account the different accuracy levels of the observations, a Variance Component Estimation (VCE) is applied. We already have proven the usefulness of radio occultation data from space-borne GPS receivers and of two-frequency altimetry data. Currently, we test the capability of DORIS observations to derive ionospheric parameters such as VTEC. Although DORIS was primarily designed for precise orbit computation of satellites, it can be used as a tool to study the Earth's ionosphere. The DORIS ground beacons are almost globally distributed and the system is on board of various Low Earth Orbiters (LEO) with different orbit heights, such as Jason-2, Cryosat-2, and HY-2. The last generation of DORIS receivers directly provides phase measurements on two frequencies. In this contribution, we test the DORIS

  3. New Near-Real Time Monitoring of the Ionosphere over Europe Available On-line

    Science.gov (United States)

    Chevalier, J. M.; Bergeot, N.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.

    2012-04-01

    With the beginning of the 24th Solar cycle, the increased Solar activity requires having a close eye on the ionosphere for better understanding Space Weather physics and its effects on radio communications. In that frame, near-real time ionospheric models over Europe are now routinely generated at the Royal Observatory of Belgium (ROB). These models are made available to the public through new interactive web pages at the web site of the GNSS team (www.gnss.be) and the Solar Influences Data Analysis Center (www.sidc.be) of ROB. The models are ionospheric Vertical Total Electron Content (VTEC) maps estimated every 15 minutes on a 0.5°x0.5° grid. They use the high-rate GPS observations of the real-time stations in the EUREF Permanent Network (EPN) provided by the ROB NTRIP broadcaster. The maps are published on the ROB web site with a latency of 7-15 minutes with respect to the last GPS measurement included in the 15-minute observation files. In a first step, this paper presents the processing strategy used to generate the VTEC maps: input data, parameter estimation, data cleaning and interpolation method. In addition, the tools developed to further exploit the product are introduced, e.g. on-demand animated VTEC maps. In a second step, the VTEC maps are compared with external ionospheric products and models such as Global Ionospheric Maps and IRI 2011. These new near-real time VTEC maps will allow any user within the geographical scope of the maps to estimate in near-real time the ionospheric delay induced along the signal of any observed satellite. In the future, the web site will continuously be updated in response to evolving user needs. This paper opens doors to discussions with the user community to target their needs.

  4. Impulsive Alfven coupling between the magnetosphere and ionosphere

    International Nuclear Information System (INIS)

    Reddy, R.V.; Watanabe, K.; Sato, T.; Watanabe, T.H.

    1994-04-01

    Basic properties of the impulsive Alfven interaction between the magnetosphere and ionosphere have been studied by means of a three-dimensional self-consistent simulation of the coupled magnetosphere and ionosphere system. It is found that the duration time of an impulsive perturbation at the magnetospheric equator, the latitudinal distribution of the Alfven propagation time along the field lines, and the ratio between the magnetospheric impedance and the ionospheric resistance is the main key factors that determine the propagation dynamics and the ionospheric responses for an impulsive MHD perturbation in the magnetosphere. (author)

  5. Characteristics of low latitude ionospheric E-region irregularities ...

    Indian Academy of Sciences (India)

    154°E, dip angle = 37.3°, sub-ionospheric dip = 34°) have been analyzed to study the behaviour of ionospheric E-region irregularities during the active solar and magnetic periods. The autocorrelation functions, power spectral densities, signal de-correlation times are computed to study the temporal features of ionospheric ...

  6. Inverse problem of radiofrequency sounding of ionosphere

    Science.gov (United States)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  7. The effects of 450 kg surface explosions at the E layer of the ionosphere

    International Nuclear Information System (INIS)

    Fitzgerald, T.J.; Carlos, R.C.

    1992-01-01

    A network of hf ionospheric sounders consisting of two transmitter and two receiver stations was deployed to detect the effects of acoustic waves generated by surface ground motion following an underground nuclear test (UGT) at the Nevada Test Site. The frequency of the transmissions were chosen so that the hf radio waves were totally reflected in the E layer of the ionosphere at an altitude of approximately 100 km. The transmissions were highly stable cw tones at two frequencies separated by 100 kHz so that two altitudes separated by approximately .5 km could be sensed. The network sampled four geographic locations in the ionosphere ranging from almost directly overhead of the UGT out to a horizontal range of 60 km. The ionospheric sounders detected disturbances on all the paths beginning at approximately 325 s after the UGT which persisted for up to 100 s. These disturbances will be described in detail in a later paper. Shortly after the UGT an extended series of ionospheric disturbances were detected which we ascribe to the arrival of acoustic shock waves at the E layer caused by the surface detonation of ordinance with effective yields of 450 kg of high explosive during an unrelated exercise conducted by the U. S. Air Force at a nearby bombing range. The conjunction of these disturbances produced a direct comparison of the effects of UGT's and surface explosions in the ionosphere. In this paper we describe the effects produced by the surface explosions and interpret the disturbance in terms of diffraction induced by electron density changes accompanying the passage of the acoustic waves from the explosions through the reflection altitudes

  8. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    Science.gov (United States)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  9. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    Science.gov (United States)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  10. Ionospheric Modeling for Precise GNSS Applications

    NARCIS (Netherlands)

    Memarzadeh, Y.

    2009-01-01

    The main objective of this thesis is to develop a procedure for modeling and predicting ionospheric Total Electron Content (TEC) for high precision differential GNSS applications. As the ionosphere is a highly dynamic medium, we believe that to have a reliable procedure it is necessary to transfer

  11. Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site

    Science.gov (United States)

    Schmitter, E. D.

    2013-04-01

    Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going strong and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no. 24 a parameterized electron density profile is calculated as a function of time and fed into propagation calculations using the LWPC (Long Wave Propagation Capability). The model allows to include lower ionosphere recombination and attachment coefficients, as well as to identify the relevant forcing X-ray wavelength band, and is intended to be a small step forward to a better understanding of the solar-lower ionosphere interaction mechanisms within a consistent framework.

  12. An electrodynamic model of the solar wind interaction with the ionospheres of Mars and Venus

    International Nuclear Information System (INIS)

    Cloutier, P.A.; Daniell, R.E. Jr.

    1979-01-01

    the electrodynamic model for the solar wind interaction with non-magnetic planets (Cloutier and Daniell, Planet. Space Sci. 21, 463, 1973; Daniell and Cloutier, Planet. Space Sci. 25, 621, 1977) is modified to include the effects of non-ohmic currents in the upper ionosphere. The model is then used to calculate convection patterns induced by the solar wind in the ionospheres of Mars and Venus. For Mars the observations of the neutral mass spectrometer or Vikings 1 and 2 provided the neutral atmosphere. Model calculations reproduced the retarding potential analyzer data and indicate that the ionosphere above about 200 km is probably controlled by convection rather than chemistry or diffusion. For Venus a model atmosphere based on Dickenson and Ridley, J. Atmos. Sci. 32, 1219 (1975) and Mayr et al., J. Geophys. Res. 83, 4411 (1978) was used. The resulting model calculations were compared to radio occultation data from Mariners 5 and 10 and Venera 9 which represent extremes in the variability of the upper Cytherean ionosphere. The model calculations are shown to fall within this variation. These results represent the state of the theory immediately prior to the Pioneer-Venus encounter. (author)

  13. A study of the ionospheric signature of ion supply from the ionosphere to the magnetosphere

    International Nuclear Information System (INIS)

    Loranc, M.A.P.

    1988-01-01

    Recent studies have demonstrated the importance of the ionosphere as a source of magnetospheric plasma; in particular, the observations of upwelling ions (UWI) by the DE-1 Retarding Ion Mass Spectrometer have illustrated the significance of low-energy ion supply to the magnetosphere. The composition of the UWI implies an ionospheric source, and the Dynamics Explorer dual satellite mission provides an opportunity to search for the ionospheric signature of UWI. Magnetometer data from both satellites are used to determine magnetic conjunctions of the satellites; these conjunctions are searched for correlated observations of UWI and upward flowing thermal ion (UFI) events. Four cases of correlated observations are presented as proof of that the UFI are indeed the ionospheric signature of UWI; it is found from these examples that the event are associated with intense field-aligned currents at both satellites and with anti-sunward convection, enhanced fluxes of low-energy precipitating electrons from the boundary plasma sheet, and upward thermal ion fluxes in excess of 10 9 cm -2 s -1 at DE-2. While USI are primarily a dayside phenomena, UFI are found in all local time sectors sampled by DE-2

  14. The mid-latitude ionosphere under quiet geomagnetic conditions: propagation analysis of SuperDARN radar observations from large ionospheric perturbations

    OpenAIRE

    De Larquier, Sebastien

    2013-01-01

    The Earth's ionosphere is a dynamic environment strongly coupled to the neutral atmosphere, magnetosphere and solar activity. In the context of this research, we restrict our interest to the mid-latitude (a.k.a., sub-auroral) ionosphere during quiet geomagnetic conditions. The Super Dual Auroral Radar Network (SuperDARN) is composed of more than 30 low-power High Frequency (HF, from 8-18 MHz) Doppler radars covering the sub-auroral, auroral and polar ionosphere in both hemispheres. SuperDARN ...

  15. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP

    Energy Technology Data Exchange (ETDEWEB)

    Kimler, B.F.; Leeper, D.B.; Snyder, M.H.; Rowley, R.; Schneiderman, M.H. (Thomas Jefferson Univ., Philadelphia, PA (USA). Hospital)

    1982-01-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of x-radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 ..mu..g/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 ..mu..g/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 ..mu..g/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 ..mu..g/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered.

  16. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP

    International Nuclear Information System (INIS)

    Kimler, B.F.; Leeper, D.B.; Snyder, M.H.; Rowley, R.; SChneiderman, M.H.

    1982-01-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of x-radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 μg/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 μg/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 μg/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 μg/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered. (author)

  17. Ionosphere research with a HF/MF cubesat radio instrument

    Science.gov (United States)

    Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka

    2017-04-01

    New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the

  18. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase

    Science.gov (United States)

    Liu, Yang

    2017-04-01

    Ionospheric anomalies linked with devastating earthquakes have been widely investigated by scientists. It was confirmed that GNSS TECs suffered from drastically increase or decrease in some diurnal periods prior to the earthquakes. Liu et al (2008) applied a TECs anomaly calculation method to analyze M>=5.9 earthquakes in Indonesia and found TECs decadence within 2-7 days prior to the earthquakes. Nevertheless, strong TECs enhancement was observed before M8.0 Wenchuan earthquake (Zhao et al 2008). Moreover, the ionospheric plasma critical frequency (foF2) has been found diminished before big earthquakes (Pulinets et al 1998; Liu et al 2006). But little has been done regarding ionospheric irregularities and its association with earthquake. Still it is difficult to understand real mechanism between ionospheric anomalies activities and its precursor for the huge earthquakes. The M9.0 Tohoku earthquake, happened on 11 March 2011, at 05:46 UT time, was recognized as one of the most dominant events in related research field (Liu et al 2011). A median geomagnetic disturbance also occurred accompanied with the earthquake, which makes the ionospheric anomalies activities more sophisticated to study. Seismic-ionospheric disturbance was observed due to the drastic activities of earth. To further address the phenomenon, this paper investigates different categories of ionospheric anomalies induced by seismology activity, with multiple data sources. Several GNSS ground data were chosen along epicenter from IGS stations, to discuss the spatial-temporal correlations of ionospheric TECs in regard to the distance of epicenter. We also apply GIM TEC maps due to its global coverage to find diurnal differences of ionospheric anomalies compared with geomagnetic quiet day in the same month. The results in accordance with Liu's conclusions that TECs depletion occurred at days quite near the earthquake day, however the variation of TECs has special regulation contrast to the normal quiet

  19. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  20. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  1. Space-polarization Collaborative Suppression Method for Ionospheric Clutter in HFSWR

    Directory of Open Access Journals (Sweden)

    Yang Yunlong

    2016-12-01

    Full Text Available High Frequency Surface Wave Radar (HFSWR is able to receive surface target and low-flying aircraft echoes at a long-distance, but it suffers severely from ionospheric clutter. In this paper, a spacepolarization collaborative-based filter is introduced to mitigate ionospheric clutter. For parameter estimation on ionospheric clutter used for filters, a spatial parameter estimation algorithm based on compressive sensing is introduced to the DOA estimation of ionospheric clutter. In addition, a polarized parameter estimation algorithm based on statistical characteristics is proposed for ionospheric clutter in the range-Doppler spectrum. Higher estimation accuracy is achieved as a result of the range-Doppler spectrum; therefore, these two estimation algorithms enhance the performance of the space-polarization collaborative suppression method for ionospheric clutter. Experimental results of practical dual-polarized HFSWR data show the effectiveness of the two algorithms and the above mentioned filter for ionospheric clutter suppression.

  2. Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect.

    Science.gov (United States)

    Otaki, Joji M; Ogasawara, Tsuyoshi; Yamamoto, Haruhiko

    2005-06-01

    Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.

  3. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration

    Science.gov (United States)

    Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Mazzoni, Augusto; Crespi, Mattia; Wei, Yong; Mannucci, Anthony J.

    2017-04-01

    It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and estimate slant TEC (sTEC) variations in a real-time scenario. Using the VARION algorithm we compute TEC variations at 56 GPS receivers in Hawaii as induced by the 2012 Haida Gwaii tsunami event. We observe TEC perturbations with amplitudes of up to 0.25 TEC units and traveling ionospheric perturbations (TIDs) moving away from the earthquake epicenter at an approximate speed of 316 m/s. We perform a wavelet analysis to analyze localized variations of power in the TEC time series and we find perturbation periods consistent with a tsunami typical deep ocean period. Finally, we present comparisons with the real-time tsunami MOST (Method of Splitting Tsunami) model produced by the NOAA Center for Tsunami Research and we observe variations in TEC that correlate in time and space with the tsunami waves.

  4. Low-Frequency Waves in HF Heating of the Ionosphere

    Science.gov (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  5. A numerical study of ionospheric profiles for mid-latitudes

    Directory of Open Access Journals (Sweden)

    S.-R. Zhang

    1995-05-01

    Full Text Available This paper presents a numerical model and results for the mid-latitude ionospheric profile below the peak of the F2-layer. The basis of the model is the solving of equations for four ionic species O+, NO+, O+2 and N+2, as well as the meta-stable O+(2D and O+(2P. Diffusion and wind-induced drifts and 21 photo-chemical reactions are also taken into account. Neutral atmospheric density and temperature are derived from the MSIS86 model and solar extreme ultraviolate irradiance from the EUV91 model. In an effort to obtain a more realistic ionospheric profile, the key point at foF2 and hmF2 is fitted from the simulation to observations. The model also utilizes the vertical drifts derived from ionosonde data with the help of the Servo model. It is shown that the ionospheric height of peak can be reproduced more accurately under the derived vertical drifts from the Servo theory than with the HWM90 model. Results from the simulation are given for Wuchang (30.5°N, 114.4°E and Wakkanai (45.6°N, 141.7°E, showing the profile changes with season and solar activity, and the E-F valley structure (the depth and the width. This simulation also reveals the importance of meta-stable ions and dynamical transport processes on the formation of the F1-ledge and F1-F2 valley.

  6. Considering the potential of IAR emissions for ionospheric sounding

    Science.gov (United States)

    Potapov, A. S.; Polyushkina, T. N.; Tsegmed, B.; Oinats, A. V.; Pashinin, A. Yu.; Edemskiy, I. K.; Mylnikova, A. A.; Ratovsky, K. G.

    2017-11-01

    Knowledge of the ionospheric state allows us to adjust the forecasts of radio wave propagation, specify the environment models, and follow the changes of space weather. At present, probing of the ionosphere is produced by radio sounding with ground ionosondes, as well as by raying signals from satellites. We want to draw attention to the possibility of the diagnosis of the ionospheric parameters by detecting ultra-low frequency (ULF) electromagnetic emission generated in the so-called ionospheric Alfvén resonator (IAR). To do this, we present observations of the IAR emission made simultaneously for the first time at three stations using identical induction magnetometers. The stations are within one-hour difference of local time, two of them are mid-latitudinal; the third one is situated in the auroral zone. We compare frequency and frequency difference between adjacent harmonics of the observed multi-band emission with ionospheric parameters measured at the stations using ionosondes and GPS-observations. Diurnal variations of the ionospheric and ULF emission characteristics are also compared. The results show that there is quite a stable correlation between the resonant frequencies of the resonator bands and the critical frequency of the F2 layer of the ionosphere, namely, the frequency of the IAR emission varies inversely as the critical frequency of the ionosphere. This is due to the fact that the frequency of oscillation captured in the resonator is primarily determined by the Alfvén velocity (which depends on the plasma density) in the ionospheric F2 layer. The correlation is high; it varies at different stations, but is observed distinctly along the whole meridian. However, coefficients of a regression equation that connects the ionosphere critical frequency with DSB frequency vary significantly from day to day at all stations. The reason for such a big spread of the regression parameters is not clear and needs further investigation before we are able to

  7. Space weather and the Earth ionosphere from auroral zone to equator

    Science.gov (United States)

    Biktash, L.

    2007-08-01

    Space weather conditions, geomagnetic variations, virtual ionospheric height and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We examine the solar wind conditions and the auroral equatorial ionosphere response to illustrate what kind of solar wind parameters during the geomagnetic storms leads to short-term variations of the critical frequency foF2 and virtual height at the Earth ionosphere from the auroral zone to the equator. Model simulations as disturbed ionospheric wind dynamo do not allow explaining a significant part of the experimental data. Additional investigations of the ionospheric characteristics are required to clear up the origin of the short-term equatorial ionospheric variations. The critical frequency foF2 and virtual heights observed by the ionosondes are good indicators of the true layer heights and electron concentration and may provide information about the equatorial ionosphere dynamics. Intensive magnetospheric and ionospheric currents during geomagnetic storms disturb the quiet ionosphere and cause the observed short-term variations of the ionospheric characteristics. The ionosheric wind dynamo is considered as an important and the main mechanism in generation of ionospheric electric currents and fields. The disturbed ionospheric wind dynamo can be the generator of the equatorial ionospheric electric currents during geomagnetic storms in the aftermath of strong auroral heating. The magnetospheric electric field directly penetrating into the low-latitude ionosphere can be another source of electric field. During disturbed space weather conditions magnetospheric electric fields disturb the auroral ionosphere forming auroral electrojets and by the high-latitude electric field and termospheric disturbances can penetrate to the equatorial ionosphere. That is the reason the equatorial ionospheric electric field variations like geomagnetic variations are complex

  8. Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations

    Science.gov (United States)

    Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying

    2018-04-01

    The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to

  9. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  10. Generation of a severe convective ionospheric storm under stable Rayleigh–Taylor conditions: triggering by meteors?

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2016-02-01

    Full Text Available Here we report on four events detected using the Jicamarca Radio Observatory (JRO over an 18-year period, in which huge convective ionospheric storms (CISs occur in a stable ionosphere. We argue that these rare events could be initiated by meteor-induced electric fields. The meteor-induced electric fields map to the bottomside of the F region, causing radar echoes and a localized CIS. If and when a localized disturbance reaches 500 km, we argue that it becomes two-dimensionally turbulent and cascades structure to both large and small scales. This leads to long-lasting structure and, almost certainly, to scintillations over a huge range of latitudes some ±15° wide and to 3 m irregularities, which backscatter the VHF radar waves. These structures located at high altitudes are supported by vortices shed by the upwelling bubble in a vortex street.

  11. Pivotal Role of O-GlcNAc Modification in Cold-Induced Thermogenesis by Brown Adipose Tissue Through Mitochondrial Biogenesis.

    Science.gov (United States)

    Ohashi, Natsuko; Morino, Katsutaro; Ida, Shogo; Sekine, Osamu; Lemecha, Mengistu; Kume, Shinji; Park, Shi-Young; Choi, Cheol Soo; Ugi, Satoshi; Maegawa, Hiroshi

    2017-09-01

    Adipose tissues considerably influence metabolic homeostasis, and both white (WAT) and brown (BAT) adipose tissue play significant roles in lipid and glucose metabolism. O -linked N -acetylglucosamine ( O -GlcNAc) modification is characterized by the addition of N -acetylglucosamine to various proteins by O -GlcNAc transferase (Ogt), subsequently modulating various cellular processes. However, little is known about the role of O -GlcNAc modification in adipose tissues. Here, we report the critical role of O -GlcNAc modification in cold-induced thermogenesis. Deletion of Ogt in WAT and BAT using adiponectin promoter-driven Cre recombinase resulted in severe cold intolerance with decreased uncoupling protein 1 (Ucp1) expression. Furthermore, Ogt deletion led to decreased mitochondrial protein expression in conjunction with decreased peroxisome proliferator-activated receptor γ coactivator 1-α protein expression. This phenotype was further confirmed by deletion of Ogt in BAT using Ucp1 promoter-driven Cre recombinase, suggesting that O -GlcNAc modification in BAT is responsible for cold-induced thermogenesis. Hypothermia was significant under fasting conditions. This effect was mitigated after normal diet consumption but not after consumption of a fatty acid-rich ketogenic diet lacking carbohydrates, suggesting impaired diet-induced thermogenesis, particularly by fat. In conclusion, O -GlcNAc modification is essential for cold-induced thermogenesis and mitochondrial biogenesis in BAT. Glucose flux into BAT may be a signal to maintain BAT physiological responses. © 2017 by the American Diabetes Association.

  12. Low ionospheric reactions on tropical depressions prior hurricanes

    Science.gov (United States)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  13. The Response of the Thermosphere and Ionosphere to Magnetospheric Forcing

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    1989-06-01

    During the past six years, rapid advances in three observational techniques (ground-based radars, optical interferometers and satellite-borne instruments) have provided a means of observing a wide range of spectacular interactions between the coupled magnetosphere, ionosphere and thermosphere system. Perhaps the most fundamental gain has come from the combined data-sets from the NASA Dynamics Explorer (DE) Satellites. These have unambiguously described the global nature of thermospheric flows, and their response to magnetospheric forcing. The DE spacecraft have also described, at the same time, the magnetospheric particle precipitation and convective electric fields which force the polar thermosphere and ionosphere. The response of the thermosphere to magnetospheric forcing is far more complex than merely the rare excitation of 1 km s-1 wind speeds and strong heating; the heating causes large-scale convection and advection within the thermosphere. These large winds grossly change the compositional structure of the upper thermosphere at high and middle latitudes during major geomagnetic disturbances. Some of the major seasonal and geomagnetic storm-related anomalies of the ionosphere are directly attributable to the gross wind-induced changes of thermospheric composition; the mid-latitude ionospheric storm `negative phase', however, is yet to be fully understood. The combination of very strong polar wind velocities and rapid plasma convection forced by magnetospheric electric fields strongly and rapidly modify F-region plasma distributions generated by the combination of local solar and auroral ionization sources. Until recently, however, it has been difficult to interpret the observed complex spatial and time-dependent structures and motions of the thermosphere and ionosphere because of their strong and nonlinear coupling. It has recently been possible to complete a numerical and computational merging of the University College London (UCL) global thermospheric

  14. Performance Analysis of Different NeQuick Ionospheric Model Parameters

    Directory of Open Access Journals (Sweden)

    WANG Ningbo

    2017-04-01

    Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.

  15. Ionospheric Caustics in Solar Radio Observations

    Science.gov (United States)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  16. Excitation of a magnetospheric maser through modification of the Earth’s ionosphere by high-power HF radio emission from a ground-based transmitter

    International Nuclear Information System (INIS)

    Markov, G. A.; Belov, A. S.; Frolov, V. L.; Rapoport, V. O.; Parrot, M.

    2010-01-01

    A method for controlled excitation of a magnetospheric maser through the production of artificial density ducts by high-power HF radio emission from the Earth’s surface has been proposed and implemented in an in-situ experiment. Artificial density ducts allow one to affect the maser resonator system and the excitation and propagation of low-frequency electromagnetic waves in a disturbed magnetic flux tube. The experimental data presented here were obtained at the mid-latitude Sura heating facility. The characteristics of electromagnetic and plasma disturbances at outer-ionosphere altitudes were measured using the onboard equipment of the DEMETER satellite as it passed through the magnetic flux tube rested on the region of intense generation of artificial ionospheric turbulence.

  17. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    Science.gov (United States)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  18. Ionospheric effects of rocket exhaust products: Skylab and HEAO-C

    International Nuclear Information System (INIS)

    Zinn, J.; Sutherland, C.D.; Duncan, L.M.; Stone, S.N.

    1981-01-01

    This paper is about ionospheric F-layer depletions produced by chemical reactions with exhaust gases from large rockets. It describes a 2-dimensional computer model of the ionosphere, and it compares model results with experimental data on the structure and variability of the natural ionosphere, as well as data on ionospheric holes produced by the launches of Skylab (May, 1973) and HEAO-C (September, 1979). It also describes measurements made in conjunction with the HEAO-C launch. The computer model includes an approximate representation of thermospheric tidal winds and E fields in addition to vertical motions associated with diurnal changes in temperature. The computed ionospheric structure is sensitive to all the above. For a small number of cases, results are compared of computations of the normal diurnal variations of ionospheric structure with incoherent scatter and total electron content data. Computations of ionospheric depletions from the Skylab and HEAO-C launches are in satisfactory agreement with the observations. The winds appear to be essential for interpretation of the Skylab results

  19. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes

    Directory of Open Access Journals (Sweden)

    Masashi Hayakawa

    2007-07-01

    Full Text Available It is recently recognized that the ionosphere is very sensitive to seismic effects,and the detection of ionospheric perturbations associated with earthquakes, seems to bevery promising for short-term earthquake prediction. We have proposed a possible use ofVLF/LF (very low frequency (3-30 kHz /low frequency (30-300 kHz radio sounding ofthe seismo-ionospheric perturbations. A brief history of the use of subionospheric VLF/LFpropagation for the short-term earthquake prediction is given, followed by a significantfinding of ionospheric perturbation for the Kobe earthquake in 1995. After showingprevious VLF/LF results, we present the latest VLF/LF findings; One is the statisticalcorrelation of the ionospheric perturbation with earthquakes and the second is a case studyfor the Sumatra earthquake in December, 2004, indicating the spatical scale and dynamicsof ionospheric perturbation for this earthquake.

  20. Ion Internal Excitation and Co++ 2 Reactivity: Effect On The Titan, Mars and Venus Ionospheric Chemistry

    Science.gov (United States)

    Nicolas, C.; Zabka, J.; Thissen, R.; Dutuit, O.; Alcaraz, C.

    In planetary ionospheres, primary molecular and atomic photoions can be produced with substantial electronic and vibrational internal energy. In some cases, this is known to strongly affect both the rate constants and the branching ratio between the reac- tion products. A previous experimental study (Nicolas et al.) made at the Orsay syn- chrotron radiation facility has shown that many endothermic charge transfer reactions which were not considered in the ionospheric chemistry models of Mars, Venus and Earth have to be included because they are driven by electronic excitation of the parent ions. New measurements on two important reactions for Titan and Mars ionospheres, N+ + CH4 and O+ + CO2, will be presented. Branching ratios between products are very different when the parent atomic ions are prepared in their ground states, N+(3P) and O+(4S), or in their first electronic metastable states N+(1D) and O+(2D or P). 2 As the lifetime of these states are long enough, they survive during the mean time be- tween two collisions in the ionospheric conditions. So, the reactions of these excited states must be included in the ionospheric models. Absolute cross section measurements of the reactivity of stable doubly charged molec- ular ions CO++ and their implications for the Martian ionosphere will also be pre- 2 sented. The molecular dication CO++ production by VUV photoionisation and elec- 2 tron impact in the upper ionosphere of Mars is far from being negligible. However, to determine its concentration, it was necessary to evaluate the major loss channels of these ions. For this purpose, we measured the absolute reaction cross section of the sta- ble dications with CO2, the major neutral species of the Mars ionosphere. CO++ ions 2 were produced either by photoionisation or by electron impact, and a reaction cross section of 45 Å2 with 13CO2 was measured. The reaction leads to charge transfer or to collision induced dissociation. These results were integrated in a model

  1. Ionospheric disturbance dynamo

    International Nuclear Information System (INIS)

    Blanc, M.; Richmond, A.D.

    1980-01-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes

  2. Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales

    International Nuclear Information System (INIS)

    Mahalov, Alex

    2014-01-01

    Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)

  3. Ionospheric/protonospheric electron content studies using ATS-6

    International Nuclear Information System (INIS)

    Hajeb-Hosseinieh, H.; Kersley, L.; Edwards, K.J.

    1978-01-01

    Measurements of ionospheric and protonospheric contents obtained at Aberystwyth from observations of the ATS-6 satellite radio beacon are reported. The monthly median diurnal behavior shows protonospheric contributions of approximately 15 to 20% to the total content along the ray path by day, rising to a predawn maximum of 35% in summer and more than 40% in winter. The protonospheric results are shown to be typical of those expected from other European stations and differences from earlier American measurements are explained in terms of ionospheric interactions in the conjugate hemisphere. The temporal gradients of protonospheric content provide information on the net integrated ionospheric/protonospheric plasma fluxes and the results obtained indicate the importance of plasma exchange with both local and conjugate ionospheres

  4. Hypoxia-induced oxidative base modifications in the VEGF hypoxia-response element are associated with transcriptionally active nucleosomes.

    Science.gov (United States)

    Ruchko, Mykhaylo V; Gorodnya, Olena M; Pastukh, Viktor M; Swiger, Brad M; Middleton, Natavia S; Wilson, Glenn L; Gillespie, Mark N

    2009-02-01

    Reactive oxygen species (ROS) generated in hypoxic pulmonary artery endothelial cells cause transient oxidative base modifications in the hypoxia-response element (HRE) of the VEGF gene that bear a conspicuous relationship to induction of VEGF mRNA expression (K.A. Ziel et al., FASEB J. 19, 387-394, 2005). If such base modifications are indeed linked to transcriptional regulation, then they should be detected in HRE sequences associated with transcriptionally active nucleosomes. Southern blot analysis of the VEGF HRE associated with nucleosome fractions prepared by micrococcal nuclease digestion indicated that hypoxia redistributed some HRE sequences from multinucleosomes to transcriptionally active mono- and dinucleosome fractions. A simple PCR method revealed that VEGF HRE sequences harboring oxidative base modifications were found exclusively in mononucleosomes. Inhibition of hypoxia-induced ROS generation with myxathiozol prevented formation of oxidative base modifications but not the redistribution of HRE sequences into mono- and dinucleosome fractions. The histone deacetylase inhibitor trichostatin A caused retention of HRE sequences in compacted nucleosome fractions and prevented formation of oxidative base modifications. These findings suggest that the hypoxia-induced oxidant stress directed at the VEGF HRE requires the sequence to be repositioned into mononucleosomes and support the prospect that oxidative modifications in this sequence are an important step in transcriptional activation.

  5. Variations of the electron concentration in the polar ionosphere

    International Nuclear Information System (INIS)

    Chasovitin, Yu.K.; Shushkova, V.B.

    1980-01-01

    The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified

  6. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  7. Assimilative model for ionospheric dynamics employing delay, Doppler, and direction of arrival measurements from multiple HF channels

    Science.gov (United States)

    Fridman, Sergey V.; Nickisch, L. J.; Hausman, Mark; Zunich, George

    2016-03-01

    We describe the development of new HF data assimilation capabilities for our ionospheric inversion algorithm called GPSII (GPS Ionospheric Inversion). Previously existing capabilities of this algorithm included assimilation of GPS total electron content data as well as assimilation of backscatter ionograms. In the present effort we concentrated on developing assimilation tools for data related to HF propagation channels. Measurements of propagation delay, angle of arrival, and the ionosphere-induced Doppler from any number of known propagation links can now be utilized by GPSII. The resulting ionospheric model is consistent with all assimilated measurements. This means that ray tracing simulations of the assimilated propagation links are guaranteed to be in agreement with measured data within the errors of measurement. The key theoretical element for assimilating HF data is the raypath response operator (RPRO) which describes response of raypath parameters to infinitesimal variations of electron density in the ionosphere. We construct the RPRO out of the fundamental solution of linearized ray tracing equations for a dynamic magnetoactive plasma. We demonstrate performance and internal consistency of the algorithm using propagation delay data from multiple oblique ionograms (courtesy of Defence Science and Technology Organisation, Australia) as well as with time series of near-vertical incidence sky wave data (courtesy of the Intelligence Advanced Research Projects Activity HFGeo Program Government team). In all cases GPSII produces electron density distributions which are smooth in space and in time. We simulate the assimilated propagation links by performing ray tracing through GPSII-produced ionosphere and observe that simulated data are indeed in agreement with assimilated measurements.

  8. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012

    Science.gov (United States)

    Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin

    2015-04-01

    The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.

  9. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2017-02-01

    Full Text Available Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2 with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the

  10. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  11. Updated climatological model predictions of ionospheric and HF propagation parameters

    International Nuclear Information System (INIS)

    Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.

    1991-01-01

    The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs

  12. Earthquakes & Tsunamis flirting with the Ionosphere: the Sumatra gossip !!

    Science.gov (United States)

    Occhipinti, G.; Coïsson, P.; Rolland, L. M.; Lognonne, P.

    2009-12-01

    The December 26, 2004 Sumatra Earthquake and the related Indian Ocean Tsunami generated the largest remote sensing data-set observing natural hazards. The observations showed both, ground motion and ocean sea surface displacement, as well as the related strong ionospheric anomalies. Total electron content (TEC) perturbations have been observed on a global scale, using ground-based GPS receivers [DasGupta et al., 2006, Liu et al., 2006b] and dual-frequency altimeters (e.g., Jason-1 and Topex/Poseidon [Artru et al., 2005]); plasma velocity perturbation has been observed by Doppler soundings [Liu et al., 2006b, Occhipinti et al., 2009]. The observed perturbations may be characterized as two different waves: the first one is an atmospheric wave in the acoustic domain induced by propagation of Rayleigh waves on the Earth surface; the second one is a slower atmospheric wave in the gravity domain strongly coupled with the generated tsunami. Both waves are reproduced by our accurate modeling taking into account the earthquake/tsunami-neutral atmosphere coupling at the base of the atmosphere, as well as the neutral-plasma coupling in the overlying ionosphere [Occhipinti et al., 2006, 2006, 2009]. Here we present a review of the ionospheric observations related to the Sumatra event in the light of modeling to deeply investigate the coupling mechanism between Solid-Earth/Ocean/Atmosphere/Ionosphere. The matching between data and modeling opens new perspectives in the solid earth research as well as in the tsunami detection providing a new insight into the role of the remote sensing in the monitoring of natural hazard. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006a] Geophys. Res. Lett., 33, L02103, 2006. [Liu et al., 2006b] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., 173, 3, 753-1135, 2008. [Occhipinti et

  13. A Methodology to Assess Ionospheric Models for GNSS

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume; González-Casado, Guillermo; Ibánez, Deimos

    2015-04-01

    Testing the accuracy of the ionospheric models used in the Global Navigation Satellite System (GNSS) is a long-standing issue. It is still a challenging problem due to the lack of accurate enough slant ionospheric determinations to be used as a reference. The present study proposes a methodology to assess any ionospheric model used in satellite-based applications and, in particular, GNSS ionospheric models. The methodology complements other analysis comparing the navigation based on different models to correct the code and carrier-phase observations. Specifically, the following ionospheric models are assessed: the operational models broadcast in the Global Positioning System (GPS), Galileo and the European Geostationary Navigation Overlay System (EGNOS), the post-process Global Ionospheric Maps (GIMs) from different analysis centers belonging to the International GNSS Service (IGS) and, finally, a new GIM computed by the gAGE/UPC research group. The methodology is based in the comparison between the predictions of the ionospheric model with actual unambiguous carrier-phase measurements from a global distribution of permanent receivers. The differences shall be separated into the hardware delays (a receiver constant plus a satellite constant) per data interval, e.g., a day. The condition that these Differential Code Biases (DCBs) are commonly shared throughout the world-wide network of receivers and satellites provides a global character to the assessment. This approach generalizes simple tests based on double differenced Slant Total Electron Contents (STECs) between pairs of satellites and receivers on a much local scale. The present study has been conducted during the entire 2014, i.e., the last Solar Maximum. The seasonal and latitudinal structures of the results clearly reflect the different strategies used by the different models. On one hand, ionospheric model corrections based on a grid (IGS-GIMs or EGNOS) are shown to be several times better than the models

  14. VHF Scintillation in an Artificially Heated Ionosphere

    Science.gov (United States)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  15. Modeling the Ionosphere with GPS and Rotation Measure Observations

    Science.gov (United States)

    Malins, J. B.; Taylor, G. B.; White, S. M.; Dowell, J.

    2017-12-01

    Advances in digital processing have created new tools for looking at and examining the ionosphere. We have combined data from dual frequency GPSs, digital ionosondes and observations from The Long Wavelength Array (LWA), a 256 dipole low frequency radio telescope situated in central New Mexico in order to examine ionospheric profiles. By studying polarized pulsars, the LWA is able to very accurately determine the Faraday rotation caused by the ionosphere. By combining this data with the international geomagnetic reference field, the LWA can evaluate ionospheric profiles and how well they predict the actual Faraday rotation. Dual frequency GPS measurements of total electron content, as well as measurements from digisonde data were used to model the ionosphere, and to predict the Faraday rotation to with in 0.1 rad/m2. Additionally, it was discovered that the predicted topside profile of the digisonde data did not accurate predict faraday rotation measurements, suggesting a need to reexamine the methods for creating the topside predicted profile. I will discuss the methods used to measure rotation measure and ionosphere profiles as well as discuss possible corrections to the topside model.

  16. Thermospheric/ionospheric disturbances under quiet and magneto-perturbed conditions

    Science.gov (United States)

    Zakharov, Ivan G.; Mozgovaya, O. L.

    2003-04-01

    The basic mechanisms of ionospheric storms (IS) are investigated sufficiently full. Despite of it a quantitative forecast of ionospheric disturbance is not always satisfactory. One of the possible causes can be related to the insufficient account of a background ionospheric. In particualr using electron concentration Ne in the peak of F2-region and total electron content are shown, that the amplitude of a IS positive phase for similar magnetic storms can differ by ~1,5 times. Hence a cause of distinction can be variations in the thermosphere conditions, not reflected by known activity indices. For further research we used the incoherent scatter radar data of the Institute of ionosphere in height range 200-1000 km in the very quiet periods coming to the geomagnetic disturbance. A steady periodic disturbance in Ne during quiet conditions in all heights is established, which can be identified as tidal moda m=6. The amplitude of wave is ~15%, the phase changes with a height. The storm onset leads to an increase of the amplitudes approximately twice without a change in the phase. An ionospheric disturbance in very quiet conditions can lead to additional complicating an ionosphere reaction to magnetic storm.

  17. Evaluation of Inversion Methods Applied to Ionospheric ro Observations

    Science.gov (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia

    The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.

  18. CubeSat for Natural-Hazard Estimation With Ionospheric Sciences (CNEWS): A Concept Development to Aid Tsunami Early Warning Systems

    Science.gov (United States)

    Komjathy, A.; Romero-Wolf, A.; Yang, Y. M.; Langley, R. B.; Foster, J. H.

    2014-12-01

    The Jet Propulsion Laboratory, the University New Brunswick (Canada) and the University of Hawaii have developed a concept to provide open ocean tsunami wave height estimates using very accurate measurements of absolute total electron content (TEC) perturbations. Ionosphere-derived tsunami wave height estimates from our CubeSat for Natural-Hazard Estimation With Ionospheric Sciences (CNEWS) mission will refine the tsunami source energy calculation and improve the tsunami scale calculation for a localized region. As a secondary science objective, transmitting impulsive HF/VHF (10-40 MHz) transmissions through the ionosphere will provide in-situ geomagnetic disturbance measurements, which allow for discrimination between tsunami-induced signatures and space-weather-related fluctuations. NASA has invested several millions of dollars in the development of a tsunami warning system based on geodetic measurements from ground-based GPS stations. Leveraging this investment by simultaneously using ionospheric measurement from this GPS network for the detection of tsunamis represents a significant step forward. GPS ionospheric imaging is limited, however, by the slowly changing satellite geometry and its weak absolute TEC resolution (about 3 TECU). It has also been shown that GPS ionospheric imaging alone cannot distinguish between space weather fluctuations and those due to natural hazards. The very precise ionospheric measurements generated by CNEWS are expected to provide a quasi-static image of tsunami ionospheric signatures that we will use in an advanced model inversion technique to estimate tsunami wave heights at 10 cm (one sigma) uncertainty. The geomagnetic field strength resolution is also a key constraint for discriminating between natural hazards and space weather effects. HF/VHF impulses can resolve absolute TEC measurements at the 0.02 TECU level and geomagnetic field strength may be measured at 50 nT resolution.

  19. Present situation of researches on polar ionosphere by C.C.I.R

    International Nuclear Information System (INIS)

    Ishikawa, Saburo

    1974-01-01

    Various subjects of studies made by the sixth research committee of C.C.I.R. (International Radio Consultative Committee) are reported. The C.C.I.R. has not any definite study programme and question concerning polar ionosphere, because it studies and delivers opinion on the techniques and operation of radio communication especially in developing countries. The subjects of study programme by the sixth research committee are as follows: estimation of the intensity and transmission loss of space wave electric field in a zone between 1.5 and 40 MHz, observation of the ionosphere of oblique entrance, scattering propagation of ionosphere, back scattering, fading of signal transmitted through ionosphere, transmission of space waves in the zone between 150 and 1,500 kHz, and effect of ionosphere on space communication. In addition, the following fourteen reports are cited: confirmation of prodromal phenomena of ionosphere disturbances, observation of the ionosphere of oblique entrance, remote propagation with supermode, basic information on forecast, back scattering, side scattering from the ground surface and ionosphere, Esub(s) propagation, scattering propagation, Esub(s) forecast, fading, effect of ionosphere on the transmission between the earth and space, radio noise produced in and above ionosphere, and propagation of standard broadcast wave. (Iwakiri, K.)

  20. GNSS monitoring of the ionosphere for Space Weather services

    Science.gov (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  1. Formation of dipole vortex in the ionosphere

    International Nuclear Information System (INIS)

    Shukla, P.K.; Yu, M.Y.

    1985-01-01

    It is shown that isolated dipole vortices can exist in the F-region of the ionosphere. These are associated with the Rayleigh-Taylor and E x B 0 gradient drift instabilities. The vortices may be responsible for the rapid structuring of barium clouds as well as other phenomena observed in the upper ionosphere

  2. The F-Region Equatorial Ionospheric Electrodynamics Drifts ...

    African Journals Online (AJOL)

    The ionospheric plasma drift is one of the most essential parameters for understanding the dynamics of ionospheric F-region. F-region electromagnetic drifts are calculated for three seasonal conditions from ionosonde observations acquired during quiet period of a typical year of high and low solar activity at Ibadan (7.4oN, ...

  3. Ionospheric threats to the integrity of airborne GPS users

    Science.gov (United States)

    Datta-Barua, Seebany

    The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.

  4. High Resolution Reconstruction of the Ionosphere for SAR Applications

    Science.gov (United States)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  5. Monitoring the three-dimensional ionospheric electron density ...

    Indian Academy of Sciences (India)

    In this paper, an IRI model assisted GPS-based Computerized Ionospheric Tomography (CIT) technique is developed to inverse the ionospheric ... are usually installed along a fixed longitude chain. Kunitsyn et al (1997) first confirmed the .... The IED value at the center of each pixel is gen- erated from the IRI2001 model and ...

  6. The impact of large scale ionospheric structure on radio occultation retrievals

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci

    2011-12-01

    Full Text Available We study the impact of large-scale ionospheric structure on the accuracy of radio occultation (RO retrievals. We use a climatological model of the ionosphere as well as an ionospheric data assimilation model to compare quiet and geomagnetically disturbed conditions. The presence of ionospheric electron density gradients during disturbed conditions increases the physical separation of the two GPS frequencies as the GPS signal traverses the ionosphere and atmosphere. We analyze this effect in detail using ray-tracing and a full geophysical retrieval system. During quiet conditions, our results are similar to previously published studies. The impact of a major ionospheric storm is analyzed using data from the 30 October 2003 "Halloween" superstorm period. At 40 km altitude, the refractivity bias under disturbed conditions is approximately three times larger than quiet time. These results suggest the need for ionospheric monitoring as part of an RO-based climate observation strategy. We find that even during quiet conditions, the magnitude of retrieval bias depends critically on assumed ionospheric electron density structure, which may explain variations in previously published bias estimates that use a variety of assumptions regarding large scale ionospheric structure. We quantify the impact of spacecraft orbit altitude on the magnitude of bending angle and retrieval error. Satellites in higher altitude orbits (700+ km tend to have lower residual biases due to the tendency of the residual bending to cancel between the top and bottomside ionosphere. Another factor affecting accuracy is the commonly-used assumption that refractive index is unity at the receiver. We conclude with remarks on the implications of this study for long-term climate monitoring using RO.

  7. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  8. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  9. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  10. Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide

    International Nuclear Information System (INIS)

    Rybachek, S.T.

    1985-01-01

    This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented

  11. Bayesian estimation for ionospheric calibration in radio astronomy

    NARCIS (Netherlands)

    Van der Tol, S.

    2009-01-01

    Radio astronomical observations at low frequencies (< 250 MHz), can be severely distorted by fluctuations in electron density in the ionosphere. The free electrons cause a phase change of electromagnetic waves traveling through the ionosphere. This effect increases for lower frequencies. For this

  12. Global scale ionospheric irregularities associated with thunderstorm activity

    International Nuclear Information System (INIS)

    Pulinets, Sergey A.; Depuev, Victor H.

    2003-01-01

    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstorm electric fields onto the Earth's ionosphere. (author)

  13. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    Science.gov (United States)

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured

  14. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    International Nuclear Information System (INIS)

    Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references

  15. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  16. A Study on the Radio Propagation in the Korean Ionosphere

    Directory of Open Access Journals (Sweden)

    Seok-Hee Bae

    1992-06-01

    Full Text Available The effects of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. If ionospheric conditions are suitable, the charged particles can remove energy from radio waves and thus attenuate the signal. Also, a radio wave traveling a path along which the electron density is not constant undergoes changes in direction, position and time of propagation. The present study is based on Korean ionospheric data obtained at the AnYong Radio Research Institute from Jan. 1985 through Oct. 1989. The data are used to simulate the Korean ionosphere following the Chapman law. The effects of the model ionosphere on the radio wave propagation, such as the angle, position error, time delay, and the attenuation, are studies for the various cases of the wave frequency and the altitude.

  17. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  18. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  19. Ionospheric reflection of the magnetic activity described by the index η

    Science.gov (United States)

    Dziak-Jankowska, Beata; Stanisławska, Iwona; Ernst, Tomasz; Tomasik, Łukasz

    2011-09-01

    Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h'E, h'F2) during 28-day long quiet day conditions (Kp = 0-2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence - ionospheric E layer data (foE characteristic) - reaches median deviations up to (+0.8 MHz and -0.8 MHz) during very low magnetic activity (Kp = 0-1). The high peaks (2-2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h'F2 (in some cases up to -90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.

  20. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    Science.gov (United States)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  1. Impact of Galileo on Global Ionosphere Map Estimation

    NARCIS (Netherlands)

    Undetermined, U.

    2006-01-01

    The upcoming GNSS Galileo, with its new satellite geometry and frequency plan, will not only bring many benefits for navigation and positioning but also help to improve ionosphere delay estimation. This paper investigates ionosphere estimation with Galileo and compares it with the results from

  2. The Effect of Ionospheric Variability on the Accuracy of High Frequency Position Location

    Science.gov (United States)

    1981-08-01

    these problems are not the major ones in radio source location 1H. Rishbeth and 0. K. Garriot, 1969, Introduction to Ionospheric Physics, Academic Press ...ionospheric distur- banca ; and (4) employ an integrated network of ionosondes. The firt option recognizes the basic constraints of the available ionospheric...Rishbeth, H., and 0. K. Garriot, 1969, Introduction to Ionospheric Physics, Academic Press , NY. 2. Georges, T. M., 1967, Ionospheric Effects of

  3. A joint study of the lower ionosphere by radar, lidar, and spectrometer

    International Nuclear Information System (INIS)

    Zhou, Qihou.

    1991-01-01

    The dynamics and associated phenomena occurring in the lower ionospheric-E region, especially the mesopause region between 80 km to 110 km at low latitude, are studied. In particular, incoherent scatter radar (ISR), sodium lidar and airglow spectrometry are used to study the ionospheric structure and neutral sodium structure. The simultaneous study of the ionospheric plasma and neutral atomic sodium is unprecedented in scope and detail. The joint study of the mesopause region reveals that plasma, neutral densities and temperature are interconnected through the same atmospheric dynamics. The theme of the thesis is to explain the formation of the controversial sporadic sodium layer (SSL) events. Strong correlation is established between the average total ion and sodium concentrations, and between sporadic-E and SSL events. The mechanism proposed in the thesis, which invokes temperature fluctuations induced by tides and gravity waves, finds good agreement with observations. Tides and gravity waves can converge ions into thin layers through the windshear mechanisms and can influence the concentration of atomic sodium through temperature fluctuations. Sodium abundance is shown to augment rapidly when the temperature is increased. Gravity wave theory states that the ion convergence node coincides with a temperature maximum for a westward propagating gravity wave, and coincides with a temperature minimum for an eastward propagating wave. Because tidal winds propagate westward, the ion layer coincides with the temperature maximum which consequently induces higher sodium concentration. This can account for the general correlation between sodium and total ion concentration and is supported by the O2(0-1) rotational temperature. Gravity waves and their interaction with tidal winds are believed to be responsible for the close association between sudden sodium layers and sporadic-E layers

  4. Common Observations for Near-Source Ground Motions and Seismo-Traveling Ionosphere Disturbances Following the 2011 off the Pacific Coast of Tohoku Earthquake, Japan

    Directory of Open Access Journals (Sweden)

    Bor-Shouh Huang

    2012-01-01

    Full Text Available The time history and spatial dependence of seismic-wave propagation on the ground surface and through the ionosphere following the 2011 off the Pacific coast of Tohoku Earthquake were reconstructed from dense seismic networks and from Global Positioning System (GPS array observations, respectively. Using total electron content (TEC data recorded by a dense GPS receiver network, the near-source ionosphere perturbations induced by this giant earthquake were analyzed and high-resolution images of seismic-wave propagation in the ionosphere are presented. Similar spatial images of ground motions were reconstructed from observations by a dense seismic array. Observations of this event provide, for the first time, the opportunity to compare near-source ground motions with the near-field seismo-traveling ionosphere disturbance (STID excited by the ground motions. Based on the results, the nature of the source rupture and seismic-wave propagation are discussed. Both seismic and ionosphere observations indicate that seismic energy propagated radially outward initially from the hypocenter, but that the circular shape of the propagation front became gradually distorted as the source rupture became extended. Coherent wavefronts from the two analyses show contrasting patterns during the later stage of propagation, possibly due to different patterns of spatial variations in the physical properties of the solid earth and of the ionosphere.

  5. DESIGN AND ENGINEERING BACKGROUND FOR STATION NETWORKS OF VERTICAL IONOSPHERE SOUNDING

    Directory of Open Access Journals (Sweden)

    A. Y. Grishentsev

    2013-05-01

    Full Text Available The paper deals with analysis of the network stations structure for ionosphere vertical sounding. Design features and creation principle of the program complexes for automated processing, analysis and storage of ionosphere sounding are considered. Conceptual model of complex database control system is created. The results of work are used in research practice of leading national organizations to study the ionosphere. Obtained application results of suggested algorithms and programs for automated processing and analysis of ionosphere vertical sounding are shown.

  6. Evaluation of the performance of DIAS ionospheric forecasting models

    Directory of Open Access Journals (Sweden)

    Tsagouri Ioanna

    2011-08-01

    Full Text Available Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr. Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i the solar wind driven autoregression model for ionospheric short-term forecast (SWIF, which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii the geomagnetically correlated autoregression model (GCAM, which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007 at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.

  7. Detection of ionospheric scintillation effects using LMD-DFA

    Science.gov (United States)

    Tadivaka, Raghavendra Vishnu; Paruchuri, Bhanu Priyanka; Miriyala, Sridhar; Koppireddi, Padma Raju; Devanaboyina, Venkata Ratnam

    2017-08-01

    The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)-Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD-DFA was better than that of empirical mode decomposition (EMD)-DFA.

  8. Reconstruction of the ionospheric electron density by geostatistical inversion

    Science.gov (United States)

    Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana

    2015-04-01

    The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be

  9. Radiation-induced-radioresistance: mechanisms and modification radioprotection

    International Nuclear Information System (INIS)

    Bala, Madhu

    2005-01-01

    Full text: The term radiation-induced-radioresistance (RIR) has been chosen to explain a particular class of resistance against lethal doses of radiation, which is transient and is induced by pre-exposure to low doses of radiation. This is a genetically governed phenomenon and is different from adaptation which in one of its several senses, refers to evolutionary transformation into new behavioural patterns. RIR is understood to be an evolutionarily conserved fundamental cellular defense mechanism. Small doses of radiation acting as stress stimuli evoke a concerted action of molecular pathways which help the organism to cope-up with the genotoxic effects of lethal doses of radiation given subsequently. Such molecular pathways are a complex interplay of genetic and biochemical entities and are increasingly becoming the focus of research world over. Most of our information on this subject has been gathered from prokaryotes, simpler eukaryotes, human cells and the epidemiological studies. A number of genes such as GADD 45, CDKN1A, PBP74, DIR1, DDR have been reported by to participate in RIR. However, till date, the mechanism of RIR remain poorly understood. In this deliberation some of our findings on mechanisms of RIR will be presented. Further, modification of RIR by a metabolic modifier, presently under clinical investigations for tumor radiotherapy, will also be presented

  10. Ionospheric storms at geophysically-equivalent sites – Part 1: Storm-time patterns for sub-auroral ionospheres

    Directory of Open Access Journals (Sweden)

    M. Mendillo

    2009-04-01

    Full Text Available The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions, the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA and Hobart (Tasmania have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2 spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964–1976, 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means showed a remarkable

  11. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    Science.gov (United States)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  12. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  13. Response of the ionosphere to natural and man-made acoustic sources

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov

    Full Text Available A review is presented of the effects influencing the ionosphere which are caused by acoustic emission from different sources (chemical and nuclear explosions, bolides, meteorites, earthquakes, volcanic eruptions, hurricanes, launches of spacecrafts and flights of supersonic jets. A terse statement is given of the basic theoretical principles and simplified theoretical models underlying the physics of propagation of infrasonic pulses and gravity waves in the upper atmosphere. The observations of "quick" response by the ionosphere are pointed out. The problem of magnetic disturbances and magnetohydrodynamic (MHD wave generation in the ionosphere is investigated. In particular, the supersonic propagation of ionospheric disturbances, and the conversion of the acoustic energy into the so-called gyrotropic waves in the ionospheric E-layer are considered.

  14. Probing ionospheric structures using the LOFAR radio telescope

    NARCIS (Netherlands)

    Mevius, M.; van der Tol, S.; Pandey, V.N.; Vedantham, H. K.; Brentjens, M. A.; Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelic, Vibor; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.

    2016-01-01

    LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total

  15. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    Science.gov (United States)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  16. Atmosphere-ionosphere coupling from convectively generated gravity waves

    Science.gov (United States)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  17. Ionospheric disturbances under low solar activity conditions

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia; Laštovička, Jan; Hejda, Pavel; Bochníček, Josef

    2014-01-01

    Roč. 54, č. 2 (2014), s. 185-196 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GAP209/11/1908 Institutional support: RVO:68378289 ; RVO:67985530 Keywords : ionosphere * solar minimum * magnetic storm s * ionospheric variability Subject RIV: DG - Athmosphere Sciences, Meteorology; DG - Athmosphere Sciences, Meteorology (GFU-E) Impact factor: 1.358, year: 2014 http://www.sciencedirect.com/science/article/pii/S027311771400221X

  18. Lightning impact on micro-second long ionospheric variability

    Science.gov (United States)

    Koh, Kuang Liang; Liu, Zhongjian; Fullekrug, Martin

    2017-04-01

    Lightning discharges cause electron heating and enhanced ionisation in the D region ionosphere which disturb the transmission of VLF communications [Inan et al., 2010]. A disturbance of such nature was measured in a VLF transmission with a sampling rate of 1 MHz, enabling much faster ionospheric variability to be observed when compared to previous studies which typically report results with a time resolution >5-20ms. The disturbance resembles "Long Recovery Early VLF" (LORE) events [Haldoupis et al. 2013, Cotts & Inan 2007]. LOREs exhibit observable ionospheric effects that last longer (>200s) than other lightning related disturbances. It was proposed that the mechanism behind the long-lasting effects of LOREs is different to shorter events [Gordillo-Vázquez et al. 2016]. The ionospheric variability inferred from the transmitted signal is seen to change dramatically after the lightning onset, suggesting that there are fast processes in the ionosphere affected or produced which have not been considered in previous research. The ionospheric variability inferred from the main two frequencies of the transmission is different. A possible explanation is a difference in the propagation paths of the two main frequencies of the transmission [Füllekrug et al., 2015]. References Inan, U.S., Cummer, S.A., Marshall, R.A., 2010. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. 115, A00E36. doi:10.1029/2009JA014775 Cotts, B.R.T., Inan, U.S., 2007. VLF observation of long ionospheric recovery events. Geophys. Res. Lett. 34, L14809. doi:10.1029/2007GL030094 Haldoupis, C., Cohen, M., Arnone, E., Cotts, B., Dietrich, S., 2013. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses. J. Geophys. Res. Space Physics 118, 5392-5402. doi:10.1002/jgra.50489 Gordillo-Vázquez, F.J., Luque, A., Haldoupis, C., 2016. Upper D region chemical kinetic modeling of

  19. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  20. Effect of heavy-metal insertions at Fe/MgO interfaces on electric-field-induced modification of magnetocrystalline anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K.; Nomura, T. [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Pradipto, A.-M. [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Nawa, K.; Akiyama, T.; Ito, T. [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan)

    2017-05-01

    Magnetocrystalline anisotropy (MCA) at Fe/MgO interfaces with insertions of 3d (Co, Ni), 4d (Ru, Rh, Pd), and 5d (Os, Ir, Pt) elements in external electric fields was investigated from first-principles calculations. The MCA energy and the electric-field-induced MCA modification dramatically depend on the inserted elements. Large MCA modification may be achieved by heavy-metal insertions, in which the strength of spin-orbit coupling of inserted elements and the position of the Fermi level relative to d band level play key roles. - Highlights: • MCA at Fe/MgO interface dramatically depends on insertions of 3d, 4d, and 5d elements. • Large electric-field-induced MCA modification is achieved by heavy-metal insertions. • Position of Fermi level relative to d band level plays key role in determining MCA.

  1. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

    Directory of Open Access Journals (Sweden)

    X. Xu

    2016-09-01

    Full Text Available Powerful high-frequency (HF radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012 model and the neutral atmosphere model (NRLMSISE-00, including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W, Wuhan (30.52° N, 114.32° E and Jicamarca (11.95° S, 76.87° W at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature

  2. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite

    Science.gov (United States)

    Chou, Min-Yang; Shen, Ming-Hsueh; Lin, Charles C. H.; Yue, Jia; Chen, Chia-Hung; Liu, Jann-Yenq; Lin, Jia-Ting

    2018-02-01

    The launch of SpaceX Falcon 9 rocket delivered Taiwan's FORMOSAT-5 satellite to orbit from Vandenberg Air Force Base in California at 18:51:00 UT on 24 August 2017. To facilitate the delivery of FORMOSAT-5 to its mission orbit altitude of 720 km, the Falcon 9 made a steep initial ascent. During the launch, the supersonic rocket induced gigantic circular shock acoustic waves (SAWs) in total electron content (TEC) over the western United States beginning approximately 5 min after the liftoff. The circular SAWs emanated outward with 20 min duration, horizontal phase velocities of 629-726 m/s, horizontal wavelengths of 390-450 km, and period of 10.28 ± 1 min. This is the largest rocket-induced circular SAWs on record, extending approximately 114-128°W in longitude and 26-39°N in latitude ( 1,500 km in diameter), and was due to the unique, nearly vertical attitude of the rocket during orbit insertion. The rocket-exhaust plume subsequently created a large-scale ionospheric plasma hole ( 900 km in diameter) with 10-70% TEC depletions in comparison with the reference days. While the circular SAWs, with a relatively small amplitude of TEC fluctuations, likely did not introduce range errors into the Global Navigation Satellite Systems navigation and positioning system, the subsequent ionospheric plasma hole, on the other hand, could have caused spatial gradients in the ionospheric plasma potentially leading to a range error of 1 m.

  3. Longitudinal Ionospheric Variability Observed by LITES on the ISS

    Science.gov (United States)

    Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.

  4. Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2010-12-01

    Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

  5. Propagation and reflection of chirped pulses in the nonuniform ionospheric plasma

    International Nuclear Information System (INIS)

    Levitsky, S.M.

    2009-01-01

    By passing of a chirped pulse in a inhomogeneous ionospheric plasma this pulses due to the dispersion futures of the plasma becomes deformed and can be strongly compressed. The chirped pulse can be compressed also being reflected by the ionosphere. This can give some advantage using such pulses in the experiments of ionospheric zoning.

  6. Characterising the Ionosphere (La caracterisation de l’ionosphere)

    Science.gov (United States)

    2009-01-01

    2003; Valdivia , 2003; Tong et al ., 2004). Tidal motions and planetary waves in the thermosphere have significant influence on ionospheric...such as storms, earthquakes and volcanic explosions may produce F2-layer signatures (Rishbeth, 2006 ). Kazimirovsky et al . (2003) have reviewed such...possible effects. Pulinets et al . ( 2006 ) have published a case study of anomalous variations of the total electron content (TEC) registered over the

  7. Broadband Ionospheric Scintillation Measurements from Space

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  8. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    Science.gov (United States)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  9. Sudden Ionospheric Disturbances (SID)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden ionospheric disturbances (SID) are caused by solar flare enhanced X-rays in the 1 to 10 angstrom range. Solar flares can produce large increases of ionization...

  10. Structure and dynamics of the ionosphere. [Venus atmosphere

    Science.gov (United States)

    Nagy, A. F.; Brace, L. H.

    1982-01-01

    The structure of the Venus ionosphere and the major processes occurring within it are summarized. The daytime ionosphere is created by solar EUV radiation incident on the thermosphere; it is in photochemical equilibrium near its peak at about 142 km, where O2(+) is the major ion, and near diffusive equilibrium in its upper regions, where the major ion is O(+). The day-to-night plasma pressure gradient across the terminator drives a nightward ion flow which, together with electron precipitation, contributes to the formation of the nighttime ionosphere. Large-scale radial holes or plasma depletions extending downwards to nearly the ionization peak in the antisolar region are also observed which are associated with regions of strong radial magnetic fields. The ionopause is a highly dynamic and complex surface, extending from an average altitude of 290 km at the subsolar point to about 1000 km at the terminator and from 200 to over 3000 km on the nightside. A variety of solar wind interaction products are observed in the mantle, a transition region between the ionospheric plasma and the flowing shocked solar wind.

  11. Ionospheric response to particle precipitation within aurora

    International Nuclear Information System (INIS)

    Wahlund, J.E.

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au)

  12. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  13. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China

    Science.gov (United States)

    He, L. M.; Wu, L. X.; Liu, S. J.; Liu, S. N.

    2015-11-01

    Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after both launches. Meanwhile, we found for the first time that the ionospheric waves were made up of two periods of wave by wavelet analysis. The first period of ∼ 4 min shows one event in the near stations and two sub-events in the few far stations. The second period of ∼ 9 min shows only one event in all the observed stations. Finally, the time characteristics for ionospheric waves and depletions were examined.

  14. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China

    Directory of Open Access Journals (Sweden)

    L. M. He

    2015-11-01

    Full Text Available Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after both launches. Meanwhile, we found for the first time that the ionospheric waves were made up of two periods of wave by wavelet analysis. The first period of ∼ 4 min shows one event in the near stations and two sub-events in the few far stations. The second period of ∼ 9 min shows only one event in all the observed stations. Finally, the time characteristics for ionospheric waves and depletions were examined.

  15. First demonstration of HF-driven ionospheric currents

    Science.gov (United States)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  16. Simulating the dependence of seismo-ionospheric coupling on the magnetic field inclination

    Science.gov (United States)

    Mohan Joshi, Lalit; Sripathi, Samireddipelle; Kumar, Muppidi Ravi; Alam Kherani, Esfhan

    2018-01-01

    Infrasound generated during a seismic event upon reaching the ionospheric heights possesses the ability to perturb the ionosphere. Detailed modelling investigation considering 1-D dissipative linear dynamics, however, indicates that the magnitude of ionospheric perturbation strongly depends on the magnetic field inclination. Physics-based SAMI2 model codes have been utilized to simulate the ionosphere perturbations that are generated due to the action of the vertical wind perturbations associated with the seismic infrasound. The propagation of the seismic energy and the vertical wind perturbations associated with the infrasound in the model has been considered to be symmetric about the epicentre in the north-south directions. Ionospheric response to the infrasound wind, however, has been highly asymmetric in the model simulation in the north-south directions. This strong asymmetry is related to the variation in the inclination of the Earth's magnetic field north and south of the epicentre. Ionospheric monitoring generally provides an efficient tool to infer the crustal propagation of the seismic energy. However, the results presented in this paper indicate that the mapping between the crustal process and the ionospheric response is not a linear one. These results also imply that the lithospheric behaviour during a seismic event over a wide zone in low latitudes can be estimated through ionospheric imaging only after factoring in the magnetic field geometry.

  17. Simulating the dependence of seismo-ionospheric coupling on the magnetic field inclination

    Directory of Open Access Journals (Sweden)

    L. M. Joshi

    2018-01-01

    Full Text Available Infrasound generated during a seismic event upon reaching the ionospheric heights possesses the ability to perturb the ionosphere. Detailed modelling investigation considering 1-D dissipative linear dynamics, however, indicates that the magnitude of ionospheric perturbation strongly depends on the magnetic field inclination. Physics-based SAMI2 model codes have been utilized to simulate the ionosphere perturbations that are generated due to the action of the vertical wind perturbations associated with the seismic infrasound. The propagation of the seismic energy and the vertical wind perturbations associated with the infrasound in the model has been considered to be symmetric about the epicentre in the north–south directions. Ionospheric response to the infrasound wind, however, has been highly asymmetric in the model simulation in the north–south directions. This strong asymmetry is related to the variation in the inclination of the Earth's magnetic field north and south of the epicentre. Ionospheric monitoring generally provides an efficient tool to infer the crustal propagation of the seismic energy. However, the results presented in this paper indicate that the mapping between the crustal process and the ionospheric response is not a linear one. These results also imply that the lithospheric behaviour during a seismic event over a wide zone in low latitudes can be estimated through ionospheric imaging only after factoring in the magnetic field geometry.

  18. Investigation of Pre-Earthquake Ionospheric Disturbances by 3D Tomographic Analysis

    Science.gov (United States)

    Yagmur, M.

    2016-12-01

    Ionospheric variations before earthquakes have been widely discussed phenomena in ionospheric studies. To clarify the source and mechanism of these phenomena is highly important for earthquake forecasting. To well understanding the mechanical and physical processes of pre-seismic Ionospheric anomalies that might be related even with Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling, both statistical and 3D modeling analysis are needed. For these purpose, firstly we have investigated the relation between Ionospheric TEC Anomalies and potential source mechanisms such as space weather activity and lithospheric phenomena like positive surface electric charges. To distinguish their effects on Ionospheric TEC, we have focused on pre-seismically active days. Then, we analyzed the statistical data of 54 earthquakes that M≽6 between 2000 and 2013 as well as the 2011 Tohoku and the 2016 Kumamoto Earthquakes in Japan. By comparing TEC anomaly and Solar activity by Dst Index, we have found that 28 events that might be related with Earthquake activity. Following the statistical analysis, we also investigate the Lithospheric effect on TEC change on selected days. Among those days, we have chosen two case studies as the 2011 Tohoku and the 2016 Kumamoto Earthquakes to make 3D reconstructed images by utilizing 3D Tomography technique with Neural Networks. The results will be presented in our presentation. Keywords : Earthquake, 3D Ionospheric Tomography, Positive and Negative Anomaly, Geomagnetic Storm, Lithosphere

  19. Magnetic and solar effects on ionospheric absorption at high latitude

    Directory of Open Access Journals (Sweden)

    M. Pietrella

    2002-06-01

    Full Text Available Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E. It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2.

  20. AATR an ionospheric activity indicator specifically based on GNSS measurements

    Science.gov (United States)

    Juan, José Miguel; Sanz, Jaume; Rovira-Garcia, Adrià; González-Casado, Guillermo; Ibáñez, D.; Perez, R. Orus

    2018-03-01

    This work reviews an ionospheric activity indicator useful for identifying disturbed periods affecting the performance of Global Navigation Satellite System (GNSS). This index is based in the Along Arc TEC Rate (AATR) and can be easily computed from dual-frequency GNSS measurements. The AATR indicator has been assessed over more than one Solar Cycle (2002-2017) involving about 140 receivers distributed world-wide. Results show that it is well correlated with the ionospheric activity and, unlike other global indicators linked to the geomagnetic activity (i.e. DST or Ap), it is sensitive to the regional behaviour of the ionosphere and identifies specific effects on GNSS users. Moreover, from a devoted analysis of different Satellite Based Augmentation System (SBAS) performances in different ionospheric conditions, it follows that the AATR indicator is a very suitable mean to reveal whether SBAS service availability anomalies are linked to the ionosphere. On this account, the AATR indicator has been selected as the metric to characterise the ionosphere operational conditions in the frame of the European Space Agency activities on the European Geostationary Navigation Overlay System (EGNOS). The AATR index has been adopted as a standard tool by the International Civil Aviation Organization (ICAO) for joint ionospheric studies in SBAS. In this work we explain how the AATR is computed, paying special attention to the cycle-slip detection, which is one of the key issues in the AATR computation, not fully addressed in other indicators such as the Rate Of change of the TEC Index (ROTI). After this explanation we present some of the main conclusions about the ionospheric activity that can extracted from the AATR values during the above mentioned long-term study. These conclusions are: (a) the different spatial correlation related with the MOdified DIP (MODIP) which allows to clearly separate high, mid and low latitude regions, (b) the large spatial correlation in mid

  1. Particle precipitation influence in the conductivity of the auroral ionosphere during magnetic storms

    International Nuclear Information System (INIS)

    Monreal M, R.; Llop, C.

    2002-01-01

    The study of the energy transfer between the different regions of the solar wind - magnetosphere - ionosphere system is probably the main goal in Solar-Terrestrial Physics. In the magnetosphere - ionosphere coupling, the ionosphere power dissipation is highly sensitive to the conductivity in such a way that a detailed knowledge of this property in the auroral and polar ionosphere is of great interest because it is important not only to determine Joule heat, but also for electric fields and currents models including the field aligned currents coupling the magnetosphere and ionosphere. The main sources of ionization and subsequent conductivity in the ionosphere are due to the emission of electromagnetic radiation and charged energetic particles from the sun. In this work it is analysed the influence of the precipitating electrons on the auroral ionosphere conductivity during magnetic storms. It is shown that the conductance values appear sub estimated for high levels of activity due to the saturation produced during very intense magnetic storms. (Author)

  2. Methylglyoxal-induced modification causes aggregation of myoglobin

    Science.gov (United States)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  3. Digital processing of ionospheric electron content data

    Science.gov (United States)

    Bernhardt, P. A.

    1979-01-01

    Ionospheric electron content data contain periodicities that are produced by a diversity of sources including hydromagnetic waves, gravity waves, and lunar tides. Often these periodicities are masked by the strong daily variation in the data. Digital filtering can be used to isolate the weaker components. The filtered data can then be further processed to provide estimates of the source properties. In addition, homomorphic filtering may be used to identify nonlinear interactions in the ionosphere.

  4. RESEARCH PAPERS : Ionospheric signature of surface mine blasts from Global Positioning System measurements

    Science.gov (United States)

    Calais, Eric; Bernard Minster, J.; Hofton, Michelle; Hedlin, Michael

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes are known to produce infrasonic pressure waves in the atmosphere Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic and gravity waves induce variations of the ionospheric electron density. The Global Positioning System (GPS) provides a way of directly measuring the total electron content in the ionosphere and, therefore, of detecting such perturbations in the upper atmosphere. In July and August 1996, three large surface mine blasts (1.5 Kt each) were detonated at the Black Thunder coal mine in eastern Wyoming. As part of a seismic and acoustic monitoring experiment, we deployed five dual-frequency GPS receivers at distances ranging from 50 to 200 km from the mine and were able to detect the ionospheric perturbation caused by the blasts. The perturbation starts 10 to 15 min after the blast, lasts for about 30 min, and propagates with an apparent horizontal velocity of 1200 m s- 1. Its amplitude reaches 3 × 1014 el m- 2 in the 7-3 min period band, a value close to the ionospheric perturbation caused by the M=6.7 Northridge earthquake (Calais & Minster 1995). The small signal-to-noise ratio of the perturbation can be improved by slant-stacking the electron content time-series recorded by the different GPS receivers taking into account the horizontal propagation of the perturbation. The energy of the perturbation is concentrated in the 200 to 300 s period band, a result consistent with previous observations and numerical model predictions. The 300 s band probably corresponds to gravity modes and shorter periods to acoustic modes, respectively. Using a 1-D stratified velocity model of the atmosphere we show that linear acoustic ray tracing fits arrival times at all GPS receivers. We interpret the perturbation as a direct acoustic wave caused by the explosion itself. This study shows that even relatively small subsurface events can produce

  5. Electron collision frequency variations and electric fields in the lower ionosphere

    International Nuclear Information System (INIS)

    Gokov, A.M.; Martynenko, S.I.

    1997-01-01

    Distribution of relative variations of the electron effective collision frequency at the ionosphere lower boundary is determined on the basis of analysis of radio-signals partially reflected from the lower ionosphere. Technique to evaluate the strength of electrical fields at the ionosphere lower boundary using experimentally measured variations of the effective frequency of electron collisions is elaborated. 12 refs., 2 figs

  6. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. COMPENSATION OF THE IONOSPHERIC EFFECTS ON SAR INTERFEROGRAM BASED ON RANGE SPLIT-SPECTRUM AND AZIMUTH OFFSET METHODS – A CASE STUDY OF YUSHU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    Y. F. He

    2018-04-01

    Full Text Available InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.

  8. On the mapping of ionospheric convection into the magnetosphere

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Hoffman, R.A.

    1997-01-01

    Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD

  9. A method to identify aperiodic disturbances in the ionosphere

    Science.gov (United States)

    Wang, J.-S.; Chen, Z.; Huang, C.-M.

    2014-05-01

    In this paper, variations in the ionospheric F2 layer's critical frequency are decomposed into their periodic and aperiodic components. The latter include disturbances caused both by geophysical impacts on the ionosphere and random noise. The spectral whitening method (SWM), a signal-processing technique used in statistical estimation and/or detection, was used to identify aperiodic components in the ionosphere. The whitening algorithm adopted herein is used to divide the Fourier transform of the observed data series by a real envelope function. As a result, periodic components are suppressed and aperiodic components emerge as the dominant contributors. Application to a synthetic data set based on significant simulated periodic features of ionospheric observations containing artificial (and, hence, controllable) disturbances was used to validate the SWM for identification of aperiodic components. Although the random noise was somewhat enhanced by post-processing, the artificial disturbances could still be clearly identified. The SWM was then applied to real ionospheric observations. It was found to be more sensitive than the often-used monthly median method to identify geomagnetic effects. In addition, disturbances detected by the SWM were characterized by a Gaussian-type probability density function over all timescales, which further simplifies statistical analysis and suggests that the disturbances thus identified can be compared regardless of timescale.

  10. Subduing the earth: The ionosphere inclusive (Inaugural Lecture)

    International Nuclear Information System (INIS)

    Adeniyi, J.O.

    2007-12-01

    The study of the ionosphere is basically relevant to radio propagation. Radio propagation via the ionosphere is a fascinating and important means of long-distance radio communication. Thousands of governmental, private and commercial operators use the ionosphere every day for broadcasting and making contacts over vast distances all over the world. In order to use the upper atmosphere which supports medium and high frequency radio communication effectively, a knowledge of the behaviours of this medium is of uttermost importance. This knowledge helps to determine when to listen, the best frequencies to use and where signals might come from. In fact, the knowledge of the conditions and what each radio band might produce are valuable for any radio operator. The most important feature of the ionosphere in terms of radio communications is its ability to refract radio waves. It is this feature that makes broadcasting around the globe possible. In the use of higher frequencies, particularly satellite communication, the effects of propagation in this medium has to be taken into account for effective performance. The atmosphere can be divided into a variety of different layers according to their properties. The following topics are described in detail in this lecture: the equatorial ionosphere; investigating the ionosphere from the ground station; high frequency radio communication; navigational satellite systems. The University of Ibadan, Nigeria used to be in the forefront of ionospheric studies in the past because it housed an ionosonde for over twenty years. The Ministry of Communication used to give a support for part of the running cost of that observatory and there was a periodic publication of data from the observatory sent to that ministry from time to time. The Ibadan observatory has closed down for over twenty years now because the equipment is no longer functional since it has outlived its life span and there is no replacement. In the whole of the West African

  11. Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Straus, J.M.

    1979-01-01

    We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field

  12. Surface modifications induced by hydrogen in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Evangelista, G.E.; Miranda, P.E.V. de

    1983-01-01

    Hydrogen induced surface modifications of type AISI 304 SS were studied by charging the samples in a 1N a 1N H 2 SO 4 electrolyte at room temperature. Current densities were varied from 500 to 4000 A/m 2 and charging times from 2 to 50 hours. Charged specimens were analysed using optical and electron scanning microscopy. Vickers microhardness tests with small load was also performed. Metallographic etching metodologies were developed (in black and white and colored photographies) which permited identification of all phases present. It was shown that delayed cracks appear somewhat curved on austenite and perfectly strainght on martensite, following the intersections of a phase platlets. These are the regions where α' martensite is located. The habit plane of these cracks might belong to (100) sub(γ) or (221) sub(γ) plane families. A new phenomenon termed hydrogen induced softening was observed on type AISI 304 SS at elevated current densities and/or charging times. (Author) [pt

  13. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  14. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    Science.gov (United States)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  15. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China

    OpenAIRE

    L. M. He; L. X. Wu; L. X. Wu; S. J. Liu; S. N. Liu

    2015-01-01

    Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after bo...

  16. The Multifractal Structure of Small-Scale Artificial Ionospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Vybornov F. I.

    2013-03-01

    Full Text Available We present the results of investigation of a multifractal structure of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power radio waves. The experimental studies were performed on the basis of the SURA heating facility with the help of radio sounding of the disturbed region of ionospheric plasma by signals from the Earth’s orbital satellities. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionosperic turbulence under the natural conditions. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, a nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron density was detected.

  17. Model based Computerized Ionospheric Tomography in space and time

    Science.gov (United States)

    Tuna, Hakan; Arikan, Orhan; Arikan, Feza

    2018-04-01

    Reconstruction of the ionospheric electron density distribution in space and time not only provide basis for better understanding the physical nature of the ionosphere, but also provide improvements in various applications including HF communication. Recently developed IONOLAB-CIT technique provides physically admissible 3D model of the ionosphere by using both Slant Total Electron Content (STEC) measurements obtained from a GPS satellite - receiver network and IRI-Plas model. IONOLAB-CIT technique optimizes IRI-Plas model parameters in the region of interest such that the synthetic STEC computations obtained from the IRI-Plas model are in accordance with the actual STEC measurements. In this work, the IONOLAB-CIT technique is extended to provide reconstructions both in space and time. This extension exploits the temporal continuity of the ionosphere to provide more reliable reconstructions with a reduced computational load. The proposed 4D-IONOLAB-CIT technique is validated on real measurement data obtained from TNPGN-Active GPS receiver network in Turkey.

  18. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    Science.gov (United States)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  19. Enhanced ionosphere-magnetosphere data from the DMSP satellites

    International Nuclear Information System (INIS)

    Rich, F.J.; Hardy, D.A.; Gussenhoven, M.S.

    1985-01-01

    The satellites of the Defense Meteorological Satellite Program (DMSP) represent a series of low-altitude (835 km) polar-orbiting satellites. Their primary objective is related to the observation of the tropospheric weather with a high-resolution white light and infrared imaging system. It is also possible to make images of auroras. On a daily basis, information about auroras is used to assist various communication systems which are affected by the ionospheric disturbances associated with auroras. In the past few years, there have been several improvements in the ionospheric monitoring instrumentation. Since the high-latitude ionosphere is connected to the magnetosphere, the DMSP data are used to monitor magnetospheric processes. The instrumentation of the DMSP satellites is discussed, taking into account the data provided by them. 7 references

  20. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    Science.gov (United States)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric

  1. Mobile application to induce lifestyle modifications in type 2 diabetic patients: prototype based on international guidelines

    Science.gov (United States)

    García-Jaramillo, M.; Delgado, J. S.; León-Vargas, F.

    2015-12-01

    This paper describes a prototype app to induce lifestyle modifications in newly diagnosed type 2 diabetic patients. The app design is based on International Diabetes Federation guidelines and recommendations from clinical studies related to diabetes health-care. Two main approaches, lifestyle modification and self-management education are used owing to significant benefits reported. The method used is based on setting goals under medical support related to physical activity, nutritional habits and weight loss, in addition to educational messages. This is specially implemented to address the main challenges that have limited the success of similar mobile applications already validated on diabetic patients. A traffic light is used to show the overall state of the goals compliance. This state could be understood as excellent (green), there are aspects to improve (yellow), or some individual goals are not carrying out (red). An example of how works this method is presented in results. Furthermore, the app provides recommendations to the user in case the overall state was in yellow or red. The recommendations pretend to induce the user to make changes in their eating habits and physical activity. According to international guidelines and clinical studies, a prototype of mobile application to induce a lifestyle modification in order to prevent adverse risk factors related to diabetes was presented. The resulting application is apparently consistent with clinical judgments, but a formal clinical validation is required. The effectiveness of this app is currently under consideration for the Colombian population with type 2 diabetes.

  2. A dynamic system to forecast ionospheric storm disturbances based on solar wind conditions

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    2005-06-01

    Full Text Available For the reliable performance of technologically advanced radio communications systems under geomagnetically disturbed conditions, the forecast and modelling of the ionospheric response during storms is a high priority. The ionospheric storm forecasting models that are currently in operation have shown a high degree of reliability during quiet conditions, but they have proved inadequate during storm events. To improve their prediction accuracy, we have to take advantage of the deeper understanding in ionospheric storm dynamics that is currently available, indicating a correlation between the Interplanetary Magnetic Field (IMF disturbances and the qualitative signature of ionospheric storm disturbances at middle latitude stations. In this paper we analyse observations of the foF2 critical frequency parameter from one mid-latitude European ionospheric station (Chilton in conjunction with observations of IMF parameters (total magnitude, Bt and Bz-IMF component from the ACE spacecraft mission for eight storm events. The determination of the time delay in the ionospheric response to the interplanetary medium disturbances leads to significant results concerning the forecast of the ionospheric storms onset and their development during the first 24 h. In this way the real-time ACE observations of the solar wind parameters may be used in the development of a real-time dynamic ionospheric storm model with adequate accuracy.

  3. Swift heavy ion induced modification of aliphatic polymers

    International Nuclear Information System (INIS)

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy Ion Research (GSI) in Darmstadt. In order to study ion-beam induced degradation, all polymer foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (U, Au, Sm, Xe) and experimentation sites (beam lines X0 and M3) over a large fluence regime (1 x 10 10 - 5 x 10 12 ions/cm 2 ). Five independent techniques, namely infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy, residual gas analysis (RGA), thermal gravimetric analysis (TGA), and mass loss analysis (ML), were used to analyze the irradiated samples. FT-IR spectroscopy revealed that ion irradiation led to the decrease of characteristic band intensities showing the general degradation of the polymers, with scission of side groups and the main backbone. As a consequence of the structural modification, new bands appeared. UV-Vis transmission analysis showed an absorption edge shift from the ultraviolet region towards the visible region indicating double bond and conjugated double bond formation. On-line massspectrometric residual gas analysis showed the release of small gaseous fragment molecules. TGA analysis gave evidence of a changed thermal stability. With ML analysis, the considerable mass loss was quantified. The results of the five complementary analytical methods show how heavy ion irradiation changes the molecular structure of the polymers. Molecular degradation mechanisms are postulated. The amount of radiation damage is found to be sensitive to the used type of ionic species. While

  4. Theory of imperfect magnetosphere-ionosphere coupling

    International Nuclear Information System (INIS)

    Kan, J.R.; Lee, L.C.

    1980-01-01

    Atheory of magnetosphere-ionosphere coupling in the presence of field-aligned potential drops is formulated within the framework of magnetohydrodynamic equations. Our formulation allows the magnetosphere as well as the ionosphere to respond self-consistently to the parallel potential drop along auroral field lines. Equipotential contours are distorted into a V-shaped structure near the convection reversal boundary and S-shaped on the equatorward side, each gives rise to an inverted V precipitation band. The loading effect of the imperfect coupling results in a valley in the electric field profile which occurs equatorward of the convection reversal boundary

  5. Unexpected Southern Hemisphere ionospheric response to geomagnetic storm of 15 August 2015

    Czech Academy of Sciences Publication Activity Database

    Edemskiy, I.; Laštovička, Jan; Burešová, Dalia; Habarulema, J. B.; Nepomnyashchikh, I.

    2018-01-01

    Roč. 36, č. 1 (2018), s. 71-79 ISSN 0992-7689 Institutional support: RVO:68378289 Keywords : ionosphere * ionospheric disturbances * midlatitude ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.610, year: 2016 https://www.ann-geophys.net/36/71/2018/angeo-36-71-2018.pdf

  6. Structure functions and intermittency in ionospheric plasma turbulence

    Directory of Open Access Journals (Sweden)

    L. Dyrud

    2008-11-01

    Full Text Available Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions.

  7. SPS ionosphere/microwave beam interactions: Arecibo experimental studies

    International Nuclear Information System (INIS)

    Duncan, L.M.

    1980-10-01

    The purpose of this program is to determine the environmental impacts associated with the operation of the proposed SPS microwave power transmission system. It is expected that thermal effects will provide the dominant force driving the nonlinear ionosphere/microwave beam interactions. Collisional damping of radio waves, producing ohmic heating of the ionospheric plasma, depends inversely on the square of the radio wave frequency. Therefore, equivalent heating and equivalent thermal forces can be generated at lower radiated power densities by using lower radio wave frequencies. This principle is fundamental to a large part of the experimental program. An understanding of the physics of the specific interactions excited by the SPS microwave beam is also an important part of the assessment program. This program is designed to determine instability thresholds, the growth rates and spatial extent of the resultant ionospheric disturbances, and the frequency and power dependences of the interactions. How these interactions are affected by variations in the natural ionospheric conditions, how different instabilities occurring simultaneously may affect each other, and how distinct microwave beams might mutually interact are studied. Status of the program is described

  8. Ionospheric TEC Weather Map Over South America

    Science.gov (United States)

    Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.

    2016-11-01

    Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.

  9. The ionospheric footprint of antiparallel merging regions on the dayside magnetopause

    Directory of Open Access Journals (Sweden)

    I. J. Coleman

    2000-05-01

    Full Text Available The antiparallel merging hypothesis states that reconnection takes place on the dayside magnetopause where the solar and geomagnetic fields are oppositely directed. With this criterion, we have mapped the predicted merging regions to the ionosphere using the Tsyganenko 96 magnetic field model, distinguishing between regions of sub-Alfvénic and super-Alfvénic magnetosheath flow, and identifying the day-night terminator. We present the resulting shape, width and latitude of the ionospheric dayside merging regions in both hemispheres, showing their dependence on the Earth's dipole tilt. The resulting seasonal variation of the longitudinal width is consistent with the conjugate electric fields in the northern and southern cusps, as measured by the SuperDARN HF radars, for example. We also find a seasonal shift in latitude similar to that observed in satellite cusp data.Key words: Ionosphere (ionosphere-magnetosphere interactions · Magnetospheric physics (magnetopause · cusp and boundary layers; magnetosphere-ionosphere interactions

  10. Disorder-induced modification of the transmission of light through two-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Beggs, D M; Kaliteevski, M A; Abram, R A; Cassagne, D; Albert, J P

    2005-01-01

    Disordered two-dimensional photonic crystals with a complete photonic band-gap have been investigated. Transmission and reflection spectra have been modelled for both ballistic and scattered light. The density of states and electromagnetic field profiles of disorder-induced localized states have also been calculated, for various levels of disorder. It is found that there is a threshold-like behaviour in the amount of disorder. Below the threshold, it is seen that there is a vanishing probability of disorder-induced localized states being introduced into the centre of the photonic band-gap, but that edge-states narrow the band-gap. Above the threshold, there is a non-zero probability of disorder-induced localized states throughout the photonic band-gap, and the modification of the transmission and reflection spectra due to disorder rapidly increases with increasing disorder

  11. The Role of Hydromagnetic Waves in the Magnetosphere and the Ionosphere

    Science.gov (United States)

    1988-05-01

    ionospheric heating ex- ( MINIX ) was carried out recently by the Kyoto Uni- periments [Stubbe and Kopka, 198! Stubbe et al., versity group in Japan to...ionospheric irregularities and other predicted netosphere with growth times of a few minutes. Our phenomena could not be produced in MINIX be- work...ionosphere: Project- HF produced electron density irregularities in the polar iono- MINIX for future solar power satellite, paper presented at 21st

  12. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  13. SAR Imaging through the Earth’s Ionosphere

    Science.gov (United States)

    2013-11-06

    Xiaoqing Pi, Anthony Freeman, Bruce Chapman, Paul Rosen, and Zhenhong Li . Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar. J...resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst., 30(3):827–835, 1994. [30] Lianlin Li and Fang Li . Ionosphere tomography based on...Manduchi and G. A. Mian . Accuracy analysis for correlation-based image registartion algorithms. In Proceedings of the 1993 IEEE International

  14. Far-field coseismic ionospheric disturbances of Tohoku earthquake

    Czech Academy of Sciences Publication Activity Database

    Krasnov, V. M.; Drobzheva, Ya. V.; Chum, Jaroslav

    2015-01-01

    Roč. 135, December (2015), s. 12-21 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : earthquake * infrasonic waves * ionospheric disturbances * infrasound triggered by the earthquake * co-seismic ionospheric perturbations * modeling * remote sensing Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.463, year: 2015 http://www.sciencedirect.com/science/article/pii/S1364682615300584

  15. The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness

    Science.gov (United States)

    Welling, D. T.; Liemohn, M. W.; Ridley, A. J.

    2012-12-01

    It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric

  16. An alternative ionospheric correction model for global navigation satellite systems

    Science.gov (United States)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  17. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  18. In-situ kinetics of modifications induced by swift heavy ions in Al2O3: Colour centre formation, structural modification and amorphization

    International Nuclear Information System (INIS)

    Grygiel, C.; Moisy, F.; Sall, M.; Lebius, H.; Balanzat, E.; Madi, T.; Been, T.; Marie, D.; Monnet, I.

    2017-01-01

    This paper details in-situ studies of modifications induced by swift heavy ion irradiation in α-Al2O3. This complex behaviour is intermediary between the behaviour of amorphizable and non-amorphizable materials, respectively. A unique combination of irradiation experiments was performed at the IRRSUD beam line of the GANIL facility, with three different characterisation techniques: in-situ UV–Vis absorption, in-situ grazing incidence X-Ray diffraction and ex-situ transmission electron microscopy. This allows a complete study of point defects, and by depth profile of structural and microstructural modifications created on the trajectory of the incident ion. The α-Al2O3 crystals have been irradiated by 92 MeV Xenon and 74 MeV Krypton ions, the irradiation conditions have been chosen rather similar with an energy range where the ratio between electronic and nuclear stopping power changes dramatically as function of depth penetration. The main contribution of electronic excitation, above the threshold for track formation, is present beneath the surface to finally get almost only elastic collisions at the end of the projected range. Amorphization kinetics by the overlapping of multiple ion tracks is observed. In the crystalline matrix, long range strains, unit-cell swelling, local microstrain, domain size decrease, disordering of oxygen sublattice as well as colour centre formation are found. This study highlights the relationship between ion energy losses into a material and its response. While amorphization requires electronic stopping values above a certain threshold, point defects are predominantly induced by elastic collisions, while some structural modifications of the crystalline matrix, such as unit-cell swelling, are due to contribution of both electronic and nuclear processes.

  19. Influence of Ionospheric Weather on GNSS Radio Occultation Signals

    Science.gov (United States)

    Yue, X.; Schreiner, W. S.; Pedatella, N. M.; Kuo, Y. H.

    2016-12-01

    Transient loss of lock (LOL) is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) observations during 2007-2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (> 6 cycles) occurrence is 23% per occultation, with the E (50-150 km) and F (150-600 km) layers contributing 8.3% and 14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low-Earth-orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.

  20. Medium Modifications of Hadrons in Photon Induced Reactions

    International Nuclear Information System (INIS)

    Schadmand, S.

    2004-01-01

    Indications for in-medium modifications of hadron properties are reported from photoabsorption and meson production experiments. Strong medium modifications are observed in inclusive photoabsorption experiments and theoretical models investigate the in-medium dynamics of baryon resonances and their coupling to mesons. Recent experiments study the in-medium behavior of scalar and vector mesons where theoretical models expect in-medium modifications of the meson spectral functions that might be connected to partial restoration of chiral symmetry

  1. VLF Observation of Long Ionospheric Recovery Events

    Science.gov (United States)

    Cotts, B. R.; Inan, U. S.

    2006-12-01

    On the evening of 20 November 1992, three early/fast events were observed on the great circle path (GCP) from the NAU transmitter in Puerto Rico to Gander (GA), Newfoundland. These events were found to have significantly longer recovery times (up to 20 minutes) than any previously documented events. Typical early/fast events and Lightning-induced Electron Precipitation (LEP) events affect the D-region ionosphere near the night-time VLF-reflection height of ~85 km and exhibit recovery to pre-event levels of gigantic jets. In this context, preliminary results indicate that the lightning-associated VLF long recovery events appear to be more common in oceanic thunderstorms. In this paper, we present occurrence statistics and other measured properties of VLF long recovery events, observed on all-sea based and land based VLF great circle paths.

  2. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    Science.gov (United States)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  3. A comprehensive method for GNSS data quality determination to improve ionospheric data analysis.

    Science.gov (United States)

    Kim, Minchan; Seo, Jiwon; Lee, Jiyun

    2014-08-14

    Global Navigation Satellite Systems (GNSS) are now recognized as cost-effective tools for ionospheric studies by providing the global coverage through worldwide networks of GNSS stations. While GNSS networks continue to expand to improve the observability of the ionosphere, the amount of poor quality GNSS observation data is also increasing and the use of poor-quality GNSS data degrades the accuracy of ionospheric measurements. This paper develops a comprehensive method to determine the quality of GNSS observations for the purpose of ionospheric studies. The algorithms are designed especially to compute key GNSS data quality parameters which affect the quality of ionospheric product. The quality of data collected from the Continuously Operating Reference Stations (CORS) network in the conterminous United States (CONUS) is analyzed. The resulting quality varies widely, depending on each station and the data quality of individual stations persists for an extended time period. When compared to conventional methods, the quality parameters obtained from the proposed method have a stronger correlation with the quality of ionospheric data. The results suggest that a set of data quality parameters when used in combination can effectively select stations with high-quality GNSS data and improve the performance of ionospheric data analysis.

  4. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  5. A snapshot of the polar ionosphere

    International Nuclear Information System (INIS)

    Whitteker, J.H.

    1976-01-01

    This paper presents a picture of the north polar F layer and topside ionosphere obtained primarily from three satellites (Alouette 2, ISIS 1, ISIS 2), that passed over the region within a time interval of ca. 50 min on 25 April 1971, a magnetically quiet day. The horizontal distribution of electron densities at the peak of the F layer is found to be similar to synoptic results from the IGY. Energetic particle and ionospheric plasma data are also presented, and the F layer data are discussed in terms of these measurements, and also in terms of electric field and neutral N 2 density measurements made by other satellites on other occasions. The major features observed are as follows: A tongue of F region ionization extends from the dayside across the polar cap, which is accounted for by antisunward drift due to magnetospheric convection. In the F layer and topside ionosphere, the main effect of auroral precipitation appears to be heating and expansion of the topside. A region of low F layer density appears on the morning side of the polar cap, which may be due to convection and possibly also to enhanced N 2 densities. (author)

  6. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    Science.gov (United States)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  7. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and

  8. LION: A dynamic computer model for the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Bittencourt

    2007-11-01

    Full Text Available A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC and generates color maps illustrating the

  9. Remote sensing of traveling ionospheric disturbances resulting from underground nuclear tests

    International Nuclear Information System (INIS)

    Copenhaver, C.

    1985-01-01

    Following an underground nuclear test, an acoustic pulse propagates upward through the atmosphere and sets the ionosphere in motion which, in turn, generates gravity waves. The usual ionospheric monitoring approach is to use a phase sounder to observe the acoustic pulse. However, there are other detection techniques that can be employed. These detection techniques include the use of a low-frequency filter so that only long period (approximately 10 minutes) gravity waves can be observed. Another detection technique is to correlate microbarographic measurements on the surface with HF sounder data from the ionosphere to measure Lamb waves. A third detection technique is to correlate seismometer measurements in the ground with their corresponding ionospheric perturbations. The theoretical and experimental aspects of these remote detection techniques are discussed here

  10. Time properties of ionospheric wave disturbances

    International Nuclear Information System (INIS)

    Kaliev, M.Z.; Krasnikov, I.M.; Litvinov, Yu.G.; Chakenov, B.D.; Yakovets, A.F.

    1989-01-01

    Records of Doppler frequency shifts of an ionospheric signal, taken in separate observation posts in the vicinity of Alma-Ata in 1986-1987, are analyzed. It is shown that the coherent parts of Doppler shift oscillations are wave disturbance trains in the ionospheric F region. The relation between the train duration and its central frequency is established. With the frequency decrease the mean train length increases, while the maximum train length, determined in the experiment, is about 6h. The probabilities of train detection in the low and high-frequency ranges are nearly the same, and moreover, they are equal in day time and at night

  11. Diffuse spreading of inhomogeneities in the ionospheric dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shalimov, S. L., E-mail: pmsk7@mail.ru [Russian Academy of Sciences, Schmidt Institute of Physics of the Earth (Russian Federation); Kozlovsky, A. [Sodankylä Geophysical Observatory (Finland)

    2015-08-15

    According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially on the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.

  12. Triton's Ionosphere: Chemistry and Composition

    Science.gov (United States)

    Delitsky, Mona

    2006-09-01

    The ionosphere of Triton was observed by the Voyager spacecraft in 1989 to have a remarkably high electron density of 40,000/cc at its peak altitude. Delitsky et al. (1990) modeled this ionosphere using only N2 and CH4, the constituents of the atmosphere known at that time, and found that, at the extremely cold temperatures in the Triton atmosphere, cluster ions would form. These clusters are created when N+ or N2+ resulting from photolysis or radiolysis accrete neutral N2 molecules and form ions such as (N2+(N2)n). In these clusters, n can be very high, around 50-100, depending on temperature. Cluster ions easily sweep up electrons at the low altitudes where they form (keeping the e- content low) which leads to dissociative recombination. This neutralizes the cluster ions and releases the N2 molecules back into the atmosphere. In 1991, CO and CO2 were observed on Triton (Cruikshank et al. 1991). At Tritonian temperatures, CO will have a very high vapor pressure and could constitute up to 6% of the Triton atmosphere. Any N+ or N2+ will charge exchange with CO (and NO from chemistry) to yield CO+, NO+ and C+. These then become the core ions to the clusters (CO+(N2)n), (NO+(N2)n), or (C+(N2)n). (Delitsky et al. 1992, Delitsky, 1995). Clusters cannot form at higher altitudes and lower pressures and so at the peak altitude, the ionosphere is comprised almost totally of C+ ions. From modeling, CO + hv -> C+ (+ O) does not appear to be an important source of the C+ . Rather, the charge exchange reaction, CO+ + C -> C+ + CO produces the C+ which charge balances the electrons in the ionosphere. Ref: Cruikshank et al., BAAS, 23,1208 (1991);.. Delitsky et al. GRL, 17, 1725 (1990); ..Delitsky et al. Neptune conf, 1992; ..Delitsky, BAAS, 27, 1100 (1995)

  13. Effect of ray and speed perturbations on ionospheric tomography by over-the-horizon radar: A new method, useful for SuperDarn radar

    Science.gov (United States)

    Eisenbeis, J.; Roy, C.; Bland, E. C.; Occhipinti, G.

    2017-12-01

    Most recent methods in ionospheric tomography are based on the inversion of the total electron content measured by ground-based GPS receivers. As a consequence of the high frequency of the GPS signal and the absence of horizontal raypaths, the electron density structure is mainly reconstructed in the F2 region (300 km), where the ionosphere reaches the maximum of ionization, and is not sensitive to the lower ionospheric structure. We propose here a new tomographic method of the lower ionosphere (Roy et al., 2014), based on the full inversion of over-the-horizon (OTH) radar data and applicable to SuperDarn data. The major advantage of our methodology is taking into account, numerically and jointly, the effect that the electron density perturbations induce not only in the speed of electromagnetic waves but also on the raypath geometry. This last point is extremely critical for OTH/SuperDarn data inversions as the emitted signal propagates through the ionosphere between a fixed starting point (the radar) and an unknown end point on the Earth surface where the signal is backscattered. We detail our ionospheric tomography method with the aid of benchmark tests in order to highlight the sensitivity of the radar related to the explored observational parameters: frequencies, elevations, azimuths. Having proved the necessity to take into account both effects simultaneously, we apply our method to real backscattered data from Super Darn and OTH radar. The preliminary solution obtained with the Hokkaido East SuperDARN with only two frequencies (10MHz and 11MHz), showed here, is stable and push us to deeply explore a more complete dataset that we will present at the AGU 2017. This is, in our knowledge, the first time that an ionospheric tomography has been estimated with SuperDarn backscattered data. Reference: Roy, C., G. Occhipinti, L. Boschi, J.-P. Moliné, and M. Wieczorek (2014), Effect of ray and speed perturbations on ionospheric tomography by over-the-horizon radar: A

  14. Possible ionospheric preconditioning by shear flow leading to equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2005-10-01

    Full Text Available Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities – Space plasma physics (Waves and instabilities

  15. Striation formation associated with barium clouds in an inhomogeneous ionosphere

    International Nuclear Information System (INIS)

    Goldman, S.R.; Baker, L.; Ossakow, S.L.; Scannapieco, A.J.

    1976-01-01

    The present study investigates, via linear theory, how striations (treated as perturbations) created in a plasma cloud centered at 200 km will penetrate into the background inhomogeneous (real) ionosphere as a function of wavelength, integrated Pedersen conductivity ratio of the cloud to ionosphere (Σ/sub p/ /sub b//Σ/sub p/ /sub i/), and ambient ionospheric conditions. The study is posed as an eigenvalue problem which, while determining the potential variation (eigenmode) along magnetic field lines, self-consistently solves for the growth rate (eigenvalue) in the coupled cloud-inhomogeneous ionosphere system. Perturbed particle densities, fluxes parallel to the magnetic field B, and electrostatic potential are presented as a function of altitude. The results show the importance of the transport parameter the magnitude of imaging and aspect angle of striations with respect to B (i.e., striations take on a parallel component of wave number). Our results show that clouds with smaller conductivity ratios produce image striations further down into the background E region ionosphere with a more uniform coupling as a function of wavelength. It is further shown that there is a slight dependence of the E region coupling of the perturbations on the level of solar activity (solar maximum or minimum conditions) and also that this E region coupling shows a slight dependence on the extent of F region coupling above the cloud. Finally, with a fully self-consistent treatment of F region coupling, the growth rates show negligible short-wavelength damping due to ionospheric coupling for the Σ/sub p/ /sub b//Σ/sub p/ /sub i/=4 case

  16. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    Science.gov (United States)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  17. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  18. Ion-beam induced structure modifications in amorphous germanium

    International Nuclear Information System (INIS)

    Steinbach, Tobias

    2012-01-01

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy ε n deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 μm thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of ε e HRF =(10.5±1.0) kev nm -1 was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation ε e S a =(12±2) keV nm -1 for the first time extracted for a Ge the characteristic linear behaviour of the

  19. Global scale ionospheric irregularities associated with thunderstorm activity

    CERN Document Server

    Pulinets, S A

    2002-01-01

    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstor...

  20. Electrodynamics of the magnetosphere-ionosphere coupling in the nightside subauroral zone

    International Nuclear Information System (INIS)

    Streltsov, A.V.; Foster, J.C.

    2004-01-01

    Results from a numerical study of the oscillations of the electric field measured by the Millstone Hill incoherent scatter radar in the E-layer of the nightside subauroral ionosphere during the geomagnetic storm of May 25, 2000 are presented. The frequencies of these oscillations correspond to the discrete frequencies of geomagnetic pulsations usually attributed to the field line resonances or global cavity modes at a high-latitude auroral zone, but they are well below the fundamental eigenfrequency of the subauroral magnetosphere. It is shown that these oscillations can be interpreted as an ionospheric footprint of the surface Alfven waves generated at the equatorial magnetosphere on a steep transverse gradient in the background plasma density associated with the inner edge of the plasmapause developed during strong geomagnetic storms/substorms. This density gradient together with the ionospheric Pedersen conductivity defines the location and amplitude of the electric field in the E-layer: the amplitude of the field is proportional to the amplitude of the density inhomogeneity and inversely proportional to its scale-size and the ionospheric conductivity. Interaction of the large amplitude perpendicular electric field with the low-conducting ionosphere can cause the ionospheric feedback instability, which leads to the formation of small-scale, intense structures in the electric field and the parallel current density in the subauroral magnetosphere

  1. Seasonal ionospheric scintillation analysis during increasing solar activity at mid-latitude

    Science.gov (United States)

    Ahmed, Wasiu Akande; Wu, Falin; Agbaje, Ganiyu Ishola; Ednofri, Ednofri; Marlia, Dessi; Zhao, Yan

    2017-09-01

    Monitoring of ionospheric parameters (such as Total Electron Content and scintillation) is of great importance as it affects and contributes to the errors encountered by radio signals. It thus requires constant measurements to avoid disastrous situation for space agencies, parastatals and departments that employ GNSS applications in their daily operations. The research objective is to have a better understanding of the behaviour of ionospheric scintillation at midlatitude as it threatens the performances of satellite communication, navigation systems and military operations. This paper adopts seasonal ionospheric scintillation scenario. The mid-latitude investigation of ionospheric effect of scintillation was conducted during the increasing solar activity from 2011-2015. Ionospheric scintillation data were obtained from four ionospheric monitoring stations located at mid-latitude (i.e Shenzhen North Station, Beijing Changping North Station Branch, Beijing North Station and Beijing Miyun ground Station). The data was collected from January 2011 to December 2015. There were absence of data due to software problem or system failure at some locations. The scintillation phenomenon was computed using Global Ionospheric Scintillation and TEC Monitoring Model. There are four seasons which existed in China namely: Spring, Summer, Autumn and Winter. The relationship between TEC, amplitude and phase scintillation were observed for each of these seasons. The results indicated that the weak amplitude scintillation was observed as against phase scintillation which was high. Phase scintillation was gradually enhanced from 2011 to 2012 and later declined till 2014. TEC was also at peak around 00:00-10:00 UT (08:00-18:00 LT). The seasonal events temporal density characteristics comply with solar cycle prediction as such it ascended from 2011 to 2013 and then scintillation parameters declined significantly afterwards.

  2. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS

    Science.gov (United States)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.

    2017-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  3. Could ionospheric variations be precursors of a seismic event? A short discussion

    Energy Technology Data Exchange (ETDEWEB)

    Kouris, S.S. [Thessaloniki Univ., Thessaloniki (Greece). Dept. of Electrical and Computer Engineering; Spalla, P. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca Onde Elettromagnetiche, Florence (Italy); Zolesi, B. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy)

    2001-04-01

    A short review of published papers on the perturbations in the ionosphere due to seismogenic effects is reported. The method to correlate different classes of phenomena as ionospheric variations and subsequent seismic events is discussed. Even if the theoretical attempts to understand or to explain the electromagnetic phenomena in the ionosphere, as precursors of earthquakes are not satisfactory, the reported results encourage further investigations.

  4. Ionosphere and Radio Communication

    Indian Academy of Sciences (India)

    The upperionosphere is used for radio communication and navigationas it reflects long, medium, as well as short radio waves. Sincesolar radiation is the main cause of the existence of ionosphere,any variation in the radiations can affect the entireradio communication system. This article attempts to brieflyintroduce the ...

  5. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  6. Wind effect on the motion of medium-scale travelling ionospheric disturbances in the E region of the ionosphere

    International Nuclear Information System (INIS)

    Kikvilashvili, G.B.; Sharadze, Z.S.; Mosashvili, N.V.

    1988-01-01

    Madium-scale travelling ionospheric disturbances (MSTID) in the ionosphere E region in Tbilisi area are investigated by means of spectral analysis of f 0 E s and f b E s variations, synchronously recorded in the three scattered points. The winds at the E s layers formation heights were measured simultaneously by D1 method in one of these points. It is established, that the MSTID motion direction in summer-time E region is controlled by the background thermospheric winds: disturbances mostly more across and against the wind. Tidal winds make the main contribution into the MSTID rate day variations

  7. Study of ionospheric anomalies due to impact of typhoon using ...

    Indian Academy of Sciences (India)

    Page 1 ... landing of typhoon Matsa, with TEC increasing from its monthly median over the typhoon area by. Keywords. Principal Component Analysis; total electron content; global ionospheric map; .... dent on temperature and wind structure in the atmosphere. Coupling between typhoon processes and the ionosphere has ...

  8. Preliminary results from the Arecibo Heating Experiment (HEX): HF to GNSS

    Science.gov (United States)

    Jackson-Booth, N.; Penney, R.; Bernhardt, P. A.; Martin, P. L.; Buckland, R.; Morton-Orr, T.; Nossa, E.; Buckland, R.

    2017-12-01

    The ionosphere is subject to many solar and terrestrial influences that can generate disturbances, causing degradation to modern communication and navigational systems. Whilst the disturbances are normally caused by natural phenomena such as hurricanes, earthquakes and solar storms; they can also be generated by artificially modifying the ionosphere. Artificial Ionospheric Modification (AIM) attempts to alter a small region of the ionosphere in order to perturb the RF propagation environment. This can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such modification can be detected through the deployment of sensors, including ground based high-frequency (HF) sounders and dual-band Global Navigation Satellite System (GNSS) receivers. HF sounders allow measurements of the bottom-side of the ionosphere. GNSS receivers offer a convenient means of obtaining information about the ionosphere, including ionospheric disturbances through changes in the derived total electron content information. The Heating EXperiment (HEX), which took place in March and May 2017, was designed to further our understanding of the phenomena caused by artificially heating a small region of the ionosphere, using the Arecibo facility in Puerto Rico. This was achieved by utilizing a HF measurement experiment spread between Texas and Trinidad and the deployment of a small scale travelling ionospheric disturbance (TID) network near the heater. The TID network comprised three GNSS receivers along baselines of approximately 4 km, located 20 km north of the heater. This paper presents preliminary results from the HEX campaign, including evidence of heating-induced disturbances enhancing propagation between Virginia and Trinidad. The implications of generated irregularities on GNSS will also be discussed.

  9. Features of infrasonic and ionospheric disturbances generated by launch vehicle

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    In this paper we present a model, which describe the propagation of acoustic pulses through a model terrestrial atmosphere produced by launch vehicle, and effects of these pulses on the ionosphere above the launch vehicle. We show that acoustic pulses generate disturbances of electron density. The value of these disturbances is about 0.04-0.7% of background electron density. So such disturbances can not create serious noise-free during monitoring of explosions by ionospheric method. We calculated parameters of the blast wave generated at the ionospheric heights by launch vehicle. It was shown that the blast wave is intense and it can generates disturbance of electron density which 2.6 times as much then background electron density. This disturbance is 'cord' with diameter about 150-250 m whereas length of radio line is hundreds and thousand km. Duration of ionospheric disturbances are from 0.2 s to 3-5 s. Such values of duration can not be observed during underground and surface explosions. (author)

  10. Prediction of total electron content using the international reference ionosphere

    International Nuclear Information System (INIS)

    Mcnamara, L.F.

    1984-01-01

    It is pointed out that the International Reference Ionosphere (IRI) is an empirical model of the ionosphere based on experimental observations. Rawer et al. (1978) have discussed the goals and status of the IRI. The aim of the IRI is related to the establishment of a compendium of height profiles through the ionosphere for the four main parameters, taking into account plasma density, temperature of ions and electrons, and ion composition. The present model is inadequate in some areas, and the IRI working group has encouraged tests of the model's validity. The present investigation is concerned with a test of the model's ability to reproduce observations of total electron content (TEC) over a wide range of conditions. The TEC observations were obtained with the aid of the Faraday rotation technique, which provides the TEC out to about 2000 km. Tests using the Bent ionospheric model indicate that the altitude range 1000 to 2000 km contributes up to five percent of the TEC. 12 references

  11. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  12. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    Science.gov (United States)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  13. Role of parametric decay instabilities in generating ionospheric irregularities

    International Nuclear Information System (INIS)

    Kuo, S.P.; Cheo, B.R.; Lee, M.C.

    1983-01-01

    We show that purely growing instabilities driven by the saturation spectrum of parametric decay instabilities can produce a broad spectrum of ionospheric irregularities. The threshold field Vertical BarE/sub th/Vertical Bar of the instabilities decreases with the scale lengths lambda of the ionospheric irregularities as Vertical BarE/sub th/Vertical Barproportionallambda -2 in the small-scale range ( -2 with scale lengths larger than a few kilometers. The excitation of kilometer-scale irregularities is strictly restricted by the instabilities themselves and by the spatial inhomogeneity of the medium. These results are drawn from the analyses of four-wave interaction. Ion-neutral collisions impose no net effect on the instabilities when the excited ionospheric irregularities have a field-aligned nature

  14. Remote sensing of the ionosphere using satellite radio beacons

    International Nuclear Information System (INIS)

    Davies, Kenneth

    1991-01-01

    Since the launch of Sputnik I in 1957, satellite radio beacons have been used to measure the total electron content of the ionosphere. A review of the role of satellite beacons in studies of the vertical and spatial structure of the total electron content and on the occurrence of plasma irregularities, both of which affect transionospheric radio signals, is presented. Measurements of Faraday rotation and time of flight give information on the topside of the ionosphere and on the protonosphere. Morphological studies show that the slab thickness of the ionosphere depends on the solar index but is approximately independent of geographical location. Scintillation of amplitude, phase, polarization, and angle provide information on plasma irregularity occurrence in space and time. (author). 23 refs., 16 figs ., 4 tabs

  15. Mapping of the quasi-periodic oscillations at the flank magnetopause into the ionosphere

    Directory of Open Access Journals (Sweden)

    E. R. Dougal

    2013-11-01

    Full Text Available We have estimated the ionospheric location, area, and travel time of quasi-periodic oscillations originating from the magnetospheric flanks. This was accomplished by utilizing global and local MHD models and Tsyganenko semi-empirical magnetic field model on multiple published and four new cases believed to be caused by the Kelvin–Helmholtz Instability. Finally, we used auroral, magnetometer, and radar instruments to observe the ionospheric signatures. The ionospheric magnetic latitude determined using global MHD and Tsyganenko models ranged from 58.3–80.2 degrees in the Northern Hemisphere and −59.6 degrees to −83.4 degrees in the Southern Hemisphere. The ionospheric magnetic local time ranged between 5.0–13.8 h in the Northern Hemisphere and 1.3–11.9 h in the Southern Hemisphere. Typical Alfvén wave travel time from spacecraft location to the closest ionosphere ranged between 0.6–3.6 min. The projected ionospheric size calculated at an altitude of 100 km ranged from 47–606 km, the same order of magnitude as previously determined ionospheric signature sizes. Stationary and traveling convection vortices were observed in SuperDARN radar data in both hemispheres. The vortices were between 1000–1800 km in size. Some events were located within the ionospheric footprint ranges. Pc5 magnetic oscillations were observed in SuperMAG magnetometer data in both hemispheres. The oscillations had periods between 4–10 min with amplitudes of 3–25 nT. They were located within the ionospheric footprint ranges. Some ground magnetometer data power spectral density peaked at frequencies within one tenth of a mHz of the peaks found in the corresponding Cluster data. These magnetometer observations were consistent with previously published results.

  16. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  17. Non-stationary ionization in the low ionosphere by gravitational wave action

    International Nuclear Information System (INIS)

    Nikitin, M.A.; Kashchenko, N.M.

    1977-01-01

    Non-stationary effects in the lower ionosphere caused by gravitation waves are analyzed. Time dependences are obtained for extremum electron concentrations, which describe the dynamics of heterogeneous layer formation from the initially homogeneous distribution under the effect of gravitation waves. Diffusion of plasma and its complex composition are not taken into account. The problem is solved for two particular cases of low and high frequency gravitation waves impact on the ionosphere. Only in the former case electron concentration in the lower ionosphere deviates considerably from the equilibrium

  18. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2014-05-01

    Full Text Available Modulated high-frequency (HF heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF/very low-frequency (VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of −7 s−1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10−4 s−1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  19. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    Science.gov (United States)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  20. Ionospheric precursors to large earthquakes: A case study of the 2011 Japanese Tohoku Earthquake

    Science.gov (United States)

    Carter, B. A.; Kellerman, A. C.; Kane, T. A.; Dyson, P. L.; Norman, R.; Zhang, K.

    2013-09-01

    Researchers have reported ionospheric electron distribution abnormalities, such as electron density enhancements and/or depletions, that they claimed were related to forthcoming earthquakes. In this study, the Tohoku earthquake is examined using ionosonde data to establish whether any otherwise unexplained ionospheric anomalies were detected in the days and hours prior to the event. As the choices for the ionospheric baseline are generally different between previous works, three separate baselines for the peak plasma frequency of the F2 layer, foF2, are employed here; the running 30-day median (commonly used in other works), the International Reference Ionosphere (IRI) model and the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM). It is demonstrated that the classification of an ionospheric perturbation is heavily reliant on the baseline used, with the 30-day median, the IRI and the TIE-GCM generally underestimating, approximately describing and overestimating the measured foF2, respectively, in the 1-month period leading up to the earthquake. A detailed analysis of the ionospheric variability in the 3 days before the earthquake is then undertaken, where a simultaneous increase in foF2 and the Es layer peak plasma frequency, foEs, relative to the 30-day median was observed within 1 h before the earthquake. A statistical search for similar simultaneous foF2 and foEs increases in 6 years of data revealed that this feature has been observed on many other occasions without related seismic activity. Therefore, it is concluded that one cannot confidently use this type of ionospheric perturbation to predict an impending earthquake. It is suggested that in order to achieve significant progress in our understanding of seismo-ionospheric coupling, better account must be taken of other known sources of ionospheric variability in addition to solar and geomagnetic activity, such as the thermospheric coupling.

  1. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    Science.gov (United States)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  2. Influence of Magnetic Topology on Mars' Ionospheric Structure

    Science.gov (United States)

    Adams, D.; Xu, S.; Mitchell, D. L.; Fillingim, M. O.; Lillis, R. J.; Andersson, L.; Fowler, C. M.; Benna, M.; Connerney, J. E. P.; Elrod, M. K.; Girazian, Z.; Vogt, M.

    2017-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been in Mars' orbit since September 2014 (>1 Mars year), and has collected particle and field data within the ionosphere over wide ranges of altitudes, latitudes, and local times. This study uses MAVEN data to (1) analyze the influence of magnetic topology on the day-side ionosphere and (2) identify the sources of the night-side ionosphere. On the day side, magnetic strength and elevation angle are commonly used as proxies for magnetic topology. In this study, we use pitch-angle-resolved suprathermal electron measurements by the Solar Wind Electron Analyzer (SWEA) to directly deduce the magnetic topology instead of using a proxy. On the night side, the main sources of ionospheric plasma are bulk transport and plasma pressure gradient flow from the day side, as well as in situ production by electron impact ionization (EII). Plasma transport at Mars is complicated by the presence of intense crustal magnetic fields. Closed crustal magnetic fields form isolated plasma environments ("miniature magnetospheres") that inhibit external sources of cold ionospheric plasma as well as suprathermal (ionizing) electrons. Inside these closed magnetic loops, we study how the plasma evolves with bulk flow transport as the only source. By comparing closed and non-closed magnetic configurations, the effects of pressure gradient flow and EII can be distinguished. Finally, the densities of O2+, O+, and NO+, as measured by the Neutral Gas and Ion Mass Spectrometer (NGIMS), are examined. Inside miniature magnetospheres on the night side, the abundances of these species are found to be primarily controlled by the different recombination rates, as there is little plasma created within these regions by EII or transported from the neighboring regions by plasma pressure gradient flow.

  3. TRIO (Triplet Ionospheric Observatory) Mission

    Science.gov (United States)

    Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.

    2009-12-01

    Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  4. Investigation of the seismo-ionospheric effects on the base of GPS/GLONASS measurements

    Science.gov (United States)

    Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Suslova, O.

    2012-04-01

    During last years the monitoring of the ionospheric effects of different origin is carried out mainly with use of Global Navigating Satellite Systems (GPS / GLONASS). By means of measurements of the signals temporal delays it is possible to do the mapping of total electron content (TEC) in a column of unit cross section through the Earth's ionosphere and investigate its temporal evolution depended on the variations of electron concentration (NmF2) in the F2 ionospheric region. In the given report we present results of analysis of spatial-temporal variability of the ionosphere during the earthquake preparation phase for several major earthquakes which took place in Japan. It was revealed that for considered events mainly positive TEC anomalies appeared 1-5 days prior to the earthquake. The enhancement of electron concentration reached the value of 30-70% relative to the quiet geomagnetic conditions. In order to analyze the revealed effects in more details it was additionally involved data of GPS TEC values over GPS stations located at different distances from earthquake epicenters and data of vertical sounding of the ionosphere (NICT database). The hourly values of critical frequency of ionospheric F2 and Es layers were obtained from manually scaled ionograms recorded at Japanese ionospheric sounding stations Wakkanai, Kokubunji and Yamagawa. Acknowledgments. We acknowledge the IGS community for providing GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for providing ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  5. Estimating Parameters for the Earth-Ionosphere Waveguide Using VLF Narrowband Transmitters

    Science.gov (United States)

    Gross, N. C.; Cohen, M.

    2017-12-01

    Estimating the D-region (60 to 90 km altitude) ionospheric electron density profile has always been a challenge. The D-region's altitude is too high for aircraft and balloons to reach but is too low for satellites to orbit at. Sounding rocket measurements have been a useful tool for directly measuring the ionosphere, however, these types of measurements are infrequent and costly. A more sustainable type of measurement, for characterizing the D-region, is remote sensing with very low frequency (VLF) waves. Both the lower ionosphere and Earth's ground strongly reflect VLF waves. These two spherical reflectors form what is known as the Earth-ionosphere waveguide. As VLF waves propagate within the waveguide, they interact with the D-region ionosphere, causing amplitude and phase changes that are polarization dependent. These changes can be monitored with a spatially distributed array of receivers and D-region properties can be inferred from these measurements. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a narrow propagation region. We report on an effort to improve the understanding of VLF wave propagation by estimating the commonly known h' and beta two parameter exponential electron density profile. Measurements from multiple narrowband transmitters at multiple receivers are taken, concurrently, and input into an algorithm. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received narrowband amplitude and phase and the outputs are the estimated h' and beta parameters. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Emphasis is placed on profiling the daytime ionosphere, which has a more stable and predictable profile than the nighttime. Daytime ionospheric disturbances, from high solar

  6. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  7. On preventing the destructive influence of the ionosphere on the resolution of a microwave trans-ionospheric radar system during remote Earth probing

    International Nuclear Information System (INIS)

    Shtejnshleger, V.B.; Dzenkevich, A.V.; Manakov, V.Yu.; Misezhnikov, G.S.

    1998-01-01

    The results presented testify to the efficiency of the proposed two-dimensional adaptive compensation of dispersion and fluctuation ionospheric distortions of signals from space radar station with synthesized equipment (RSE) of USW range waves. This creates a prerequisite for remote probing of the Earth using trans-ionospheric RSE of USW range wave, possessing an increased capability of penetrating through the plant mantle and upper layer of the Earth surface [ru

  8. Exploiting LF/MF signals of opportunity for lower ionospheric remote sensing

    Science.gov (United States)

    Higginson-Rollins, Marc A.; Cohen, Morris B.

    2017-08-01

    We introduce a method to diagnose and track the D region ionosphere (60-100 km). This region is important for long-distance terrestrial communication and is impacted by a variety of geophysical phenomena, but it is traditionally very difficult to detect. Modern remote sensing methods used to study the D region are predominately near the very low frequency (VLF, 3-30 kHz) band, with some work also done in the high-frequency and very high frequency bands (HF/VHF, 3-300 MHz). However, the frequency band between VLF and HF has been largely ignored as a diagnostic tool for the ionosphere. In this paper, we evaluate the use of 300 kHz radio reflections as a diagnostic tool for characterizing the D region of the ionosphere. We present radio receiver data, analyze diurnal trends in the signal from these transmitters, and identify ionospheric disturbances impacting LF/MF propagation. We find that 300 kHz remote sensing may allow a unique method for D region diagnostics compared to both the VLF and HF/VHF frequency bands, due to a more direct ionospheric reflection coefficient calculation method with high temporal resolution without the use of forward modeling.

  9. Multi-Instrument Observations of Geomagnetic Storms in the Arctic Ionosphere

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    from the solar corona on 16 February and the second one on 18 February. We focus on effects of such solar-originated geomagnetic disturbances on the high latitude ionosphere because our present understanding of the fundamental ionospheric processes – particularly during perturbed times – in this region...... is still incomplete....

  10. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Hoon [Cheongju Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.

  11. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    International Nuclear Information System (INIS)

    Kang, Jung Hoon

    2013-01-01

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD

  12. Shaping of an ion cloud's velocity field by differential braking due to Alfven wave dissipation in the ionosphere, 1. Coupling with an infinite ionosphere

    International Nuclear Information System (INIS)

    Nalesso, G.F.; Jacobson, A.R.

    1988-01-01

    We study the interaction of a plasma cloud, jetting across the geomagnetic field with the surrounding ionosphere. The cloud is assumed of finite extension in the direction normal to both the direction of motion and the magnetic field, while the ionosphere is considered a collisional anisotropic magnetized plasma. It is shown that two main mechanisms contribute to the cloud's braking: momentum exchange with the ionosphere via Alfven waves and momentum dissipation due to resistive currents. Due to the finite size of the cloud a differential braking of the different transverse harmonics of the Alfven wave appears when the momentum exchange mechanism is dominant. The result is a sharpening of the cloud's velocity field. copyright American Geophysical Union 1988

  13. Developments of STIM, the Saturn Thermosphere Ionosphere Model

    Science.gov (United States)

    Aylward, A. D.; Smith, C. G.; Miller, S.; Millward, G.

    2005-05-01

    The STIM (Saturn Thermosphere Ionosphere Model) model is a joint venture betwen University College London, Imperial College London, Boston University and the University of Arizona to develop a 3-d global circulation model of the Saturnian system - the primary aim being to use this as a tool for interpretation and testing of Cassini data. After initial work producing a basic thermosphere model (Muller-Wodarg et al 2005), examining issues to do with the ionosphere (Moore et al 2005) and examining auroral heating effects (Smith et al 2005), a global coupled ionosphere-plasmasphere has been added to the model. At low latitudes the model calculates ion densities on closed flux tubes passing through the ring plane. At high latitudes it performs self-consistent calculations of Joule heating and ion drag based on the calculated thermospheric and ionospheric parameters. The plasmasphere is complicated for Saturn by the strength of the centrifugal force which can dominate the forces in the outer flux tubes. Studies initially used H+ and H3+ as the principle ions but for the future it will be necessary to look at the consequences of the rings supplying OH or oxygen from ring ice particles. The high-latitude morphology is being refined as Cassini data constrains it. Long-term plans for the STIM development will be discussed.

  14. Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece

    Science.gov (United States)

    Perrone, Loredana; De Santis, Angelo; Abbattista, Cristoforo; Alfonsi, Lucilla; Amoruso, Leonardo; Carbone, Marianna; Cesaroni, Claudio; Cianchini, Gianfranco; De Franceschi, Giorgiana; De Santis, Anna; Di Giovambattista, Rita; Marchetti, Dedalo; Pavòn-Carrasco, Francisco J.; Piscini, Alessandro; Spogli, Luca; Santoro, Francesca

    2018-03-01

    Ionosonde data and crustal earthquakes with magnitude M ≥ 6.0 observed in Greece during the 2003-2015 period were examined to check if the relationships obtained earlier between precursory ionospheric anomalies and earthquakes in Japan and central Italy are also valid for Greek earthquakes. The ionospheric anomalies are identified on the observed variations of the sporadic E-layer parameters (h'Es, foEs) and foF2 at the ionospheric station of Athens. The corresponding empirical relationships between the seismo-ionospheric disturbances and the earthquake magnitude and the epicentral distance are obtained and found to be similar to those previously published for other case studies. The large lead times found for the ionospheric anomalies occurrence may confirm a rather long earthquake preparation period. The possibility of using the relationships obtained for earthquake prediction is finally discussed.

  15. Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2018-03-01

    Full Text Available Ionosonde data and crustal earthquakes with magnitude M ≥ 6.0 observed in Greece during the 2003–2015 period were examined to check if the relationships obtained earlier between precursory ionospheric anomalies and earthquakes in Japan and central Italy are also valid for Greek earthquakes. The ionospheric anomalies are identified on the observed variations of the sporadic E-layer parameters (h′Es, foEs and foF2 at the ionospheric station of Athens. The corresponding empirical relationships between the seismo-ionospheric disturbances and the earthquake magnitude and the epicentral distance are obtained and found to be similar to those previously published for other case studies. The large lead times found for the ionospheric anomalies occurrence may confirm a rather long earthquake preparation period. The possibility of using the relationships obtained for earthquake prediction is finally discussed.

  16. Ionospheric data available on CD-ROM and on NDADS

    International Nuclear Information System (INIS)

    Bilitza, D.

    1996-01-01

    Information is provided on two CD-ROMs (for PCs) with ionospheric data: the ionosonde CD issued by NGDC/WDC-A-STP/NOAA/Boulder and the Atmosphere Explorer CD produced by NSSDC/WDC-A-R and S/NASA/Greenbelt. We also briefly describe the ionospheric/thermospheric data available through NSSDC's automated mail retrieval system (NDADS) and explain the procedure for obtaining NDADS data. (author). 3 figs

  17. Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation (ADONIS mission proposal

    Directory of Open Access Journals (Sweden)

    Hettrich Sebastian

    2015-01-01

    Full Text Available The Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation mission (ADONIS studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO. The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG, the European Space Agency (ESA, the International Space Science Institute (ISSI and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of “Space Weather: Science, Missions and Systems”, supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams’ efforts.

  18. Irregular ionization and scintillation of the ionosphere in equator region

    International Nuclear Information System (INIS)

    Shinno, Kenji

    1974-01-01

    The latest studies on the scintillation in satellite communication and its related irregularities of ionosphere are reviewed. They were made clear by means of spread-F, the direct measurement with scientific satellites, VHF radar observation, and radio wave propagation in equator region. The fundamental occurrence mechanism may be instability of plasma caused by the interaction of movement of neutral atmosphere and magnetic field. Comparison of the main characteristics of scintillation, namely the dependence on region, solar activity, season, local time, geomagnetic activity, movement in ionosphere, scattering source, frequency and transmission mode, was made and the correlation among spread-F, TEP and scintillation was summarized. The latest principal studies were the observations made by Intelsat and by ATS. Scintillation of Syncom-3 and Intelsat-II-F2 and spread-F by ionosphere observation were compared by Huang. It is reasonable to consider that the occurrence of scintillation is caused by the irregularities in ionosphere which are particular in equator region, because of the similar characteristics of spread-F and VHF propagation in the equator region. These three phenomena may occur in relation to the irregularities of ionosphere. Interpretation of spread-F and the abnormal propagation wave across the equator are given. The study using VHF radar and the movement of irregular ionization by the direct observation with artificial satellites are reviewd. (Iwakiri, K.)

  19. The remote atmospheric and ionospheric detection system

    International Nuclear Information System (INIS)

    McCoy, R.P.; Wolfram, K.D.; Meier, R.R.

    1986-01-01

    The Remote Atmospheric and Ionospheric Detection System (RAIDS) experiment, to fly on a TIROS spacecraft in the late 1980's, consists of a comprehensive set of one limb imaging and seven limb scanning optical sensors. These eight instruments span the spectral range from the extreme ultraviolet to the near infrared, allowing simultaneous observations of the neutral and ion composition on the day and night side as well as in the auroral region. The primary objective of RAIDS is to demonstrate a system for remote sensing of the ionosphere to produce global maps of the electron density, peak altitude and critical frequency

  20. Measurements of RF-induced sol modifications in Tore Supra tokamak

    International Nuclear Information System (INIS)

    Kubic, Martin; Gunn, James P.; Colas, Laurent; Heuraux, Stephane; Faudot, Eric

    2012-01-01

    Since spring 2011, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra (TS) tokamak is equipped with a new type of Faraday screen (FS). Results from Radio Frequency (RF) simulations of the new Faraday screen suggest the innovative structure with cantilevered bars and 'shark tooth' openings significantly changes the current flow pattern on the front of the antenna which in turn reduces the RF potential and RF electrical field in particular parallel to the magnetic field lines which contributes to generating RF sheaths. Effects of the new FS operation on RF-induced scrape-off layer (SOL) modifications are studied for different plasma and antenna configurations - scans of strap power ratio imbalance, phasing, injected power and SOL density. (authors)

  1. Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2014-07-01

    Full Text Available Simultaneous measurements of the polar ionosphere with the European Incoherent Scatter (EISCAT ultra high frequency (UHF radar at Tromsø and the EISCAT Svalbard radar (ESR at Longyearbyen were made during 07:00–12:00 UT on 12 March 2012. During the period, the Advanced Composition Explorer (ACE spacecraft observed changes in the solar wind which were due to the arrival of coronal mass ejection (CME effects associated with the 10 March M8.4 X-ray event. The solar wind showed two-step variations which caused strong ionospheric heating. First, the arrival of shock structures in the solar wind with enhancements of density and velocity, and a negative interplanetary magnetic field (IMF-Bz component caused strong ionospheric heating around Longyearbyen; the ion temperature at about 300 km increased from about 1100 to 3400 K over Longyearbyen while that over Tromsø increased from about 1050 to 1200 K. After the passage of the shock structures, the IMF-Bz component showed positive values and the solar wind speed and density also decreased. The second strong ionospheric heating occurred after the IMF-Bz component showed negative values again; the negative values lasted for more than 1.5 h. This solar wind variation caused stronger heating of the ionosphere in the lower latitudes than higher latitudes, suggesting expansion of the auroral oval/heating region to the lower latitude region. This study shows an example of the CME-induced dayside ionospheric heating: a short-duration and very large rise in the ion temperature which was closely related to the polar cap size and polar cap potential variations as a result of interaction between the solar wind and the magnetosphere.

  2. Light-induced cross-linking and post-cross-linking modification of polyglycidol.

    Science.gov (United States)

    Marquardt, F; Bruns, M; Keul, H; Yagci, Y; Möller, M

    2018-02-08

    The photoinduced radical generation process has received renewed interest due to its economic and ecological appeal. Herein the light-induced cross-linking of functional polyglycidol and its post-cross-linking modification are presented. Linear polyglycidol was first functionalized with a tertiary amine in a two-step reaction. Dimethylaminopropyl functional polyglycidol was cross-linked in a UV-light mediated reaction with camphorquinone as a type II photoinitiator. The cross-linked polyglycidol was further functionalized by quaternization with various organoiodine compounds. Aqueous dispersions of the cross-linked polymers were investigated by means of DLS and zeta potential measurements. Polymer films were evaluated by DSC and XPS.

  3. On the effect of ionospheric delay on geodetic relative GPS positioning

    NARCIS (Netherlands)

    Georgiadou, P.Y.; Kleusberg, A.

    1988-01-01

    Uncorrected ionospheric delay is one of the factors limiting the accuracy in geodetic relative positioning with single frequency Global Positioning System (GPS) carrier phase observations. Dual frequency measurements can be combined to eliminate the ionospheric delay in the observations. A

  4. Structure of the polar ionosphere and convection of magnetospheric plasma outside the plazmapause

    International Nuclear Information System (INIS)

    Mozhaev, A.M.; Osipov, N.K.; AN SSSR, Moscow. Inst. Zemnogo Magnetizma, Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    The effect of large-scale magnetospheric convection on the space structure of high-latitude ionosphere was investigated. Simple analytical models were used. The continuity equation for the electron concentration at a given rate of transfer is solved. It has been found that the formation of the principal structural forms in the ionosphere is associated with the horizontal convective transfer of ionospheric plasma

  5. Is there a hole in the topside, equatorial ionosphere?

    Directory of Open Access Journals (Sweden)

    D. Gallagher

    Full Text Available A paper in 2000 (Huba, 2000 found a depression in electron density in the topside ionosphere near the magnetic equator, based on the SAMI-2 physical ionospheric model. The model showed, for the first time, the formation of a hole in electron density in the altitude range 1500–2500 km at geomagnetic equatorial latitudes. The model produced the hole because of transhemispheric O+ flows that collisionally couple to H+, transporting it to lower altitudes, and thereby reducing the electron density at high altitudes. At that time and until now, no published observations have been reported to confirm or refute this numerical result. Recent, new analysis of Dynamics Explorer 1 Retarding Ion Mass Spectrometer measurements provides the first tentative experimental support for this model result. Keywords: Ionosphere, Topside, Magnetic equator, Plasmasphere

  6. Quantitative modeling of the ionospheric response to geomagnetic activity

    Directory of Open Access Journals (Sweden)

    T. J. Fuller-Rowell

    Full Text Available A physical model of the coupled thermosphere and ionosphere has been used to determine the accuracy of model predictions of the ionospheric response to geomagnetic activity, and assess our understanding of the physical processes. The physical model is driven by empirical descriptions of the high-latitude electric field and auroral precipitation, as measures of the strength of the magnetospheric sources of energy and momentum to the upper atmosphere. Both sources are keyed to the time-dependent TIROS/NOAA auroral power index. The output of the model is the departure of the ionospheric F region from the normal climatological mean. A 50-day interval towards the end of 1997 has been simulated with the model for two cases. The first simulation uses only the electric fields and auroral forcing from the empirical models, and the second has an additional source of random electric field variability. In both cases, output from the physical model is compared with F-region data from ionosonde stations. Quantitative model/data comparisons have been performed to move beyond the conventional "visual" scientific assessment, in order to determine the value of the predictions for operational use. For this study, the ionosphere at two ionosonde stations has been studied in depth, one each from the northern and southern mid-latitudes. The model clearly captures the seasonal dependence in the ionospheric response to geomagnetic activity at mid-latitude, reproducing the tendency for decreased ion density in the summer hemisphere and increased densities in winter. In contrast to the "visual" success of the model, the detailed quantitative comparisons, which are necessary for space weather applications, are less impressive. The accuracy, or value, of the model has been quantified by evaluating the daily standard deviation, the root-mean-square error, and the correlation coefficient between the data and model predictions. The modeled quiet-time variability, or standard

  7. Quantitative modeling of the ionospheric response to geomagnetic activity

    Directory of Open Access Journals (Sweden)

    T. J. Fuller-Rowell

    2000-07-01

    Full Text Available A physical model of the coupled thermosphere and ionosphere has been used to determine the accuracy of model predictions of the ionospheric response to geomagnetic activity, and assess our understanding of the physical processes. The physical model is driven by empirical descriptions of the high-latitude electric field and auroral precipitation, as measures of the strength of the magnetospheric sources of energy and momentum to the upper atmosphere. Both sources are keyed to the time-dependent TIROS/NOAA auroral power index. The output of the model is the departure of the ionospheric F region from the normal climatological mean. A 50-day interval towards the end of 1997 has been simulated with the model for two cases. The first simulation uses only the electric fields and auroral forcing from the empirical models, and the second has an additional source of random electric field variability. In both cases, output from the physical model is compared with F-region data from ionosonde stations. Quantitative model/data comparisons have been performed to move beyond the conventional "visual" scientific assessment, in order to determine the value of the predictions for operational use. For this study, the ionosphere at two ionosonde stations has been studied in depth, one each from the northern and southern mid-latitudes. The model clearly captures the seasonal dependence in the ionospheric response to geomagnetic activity at mid-latitude, reproducing the tendency for decreased ion density in the summer hemisphere and increased densities in winter. In contrast to the "visual" success of the model, the detailed quantitative comparisons, which are necessary for space weather applications, are less impressive. The accuracy, or value, of the model has been quantified by evaluating the daily standard deviation, the root-mean-square error, and the correlation coefficient between the data and model predictions. The modeled quiet-time variability, or standard

  8. The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2

    Science.gov (United States)

    Meehan, J.; Sojka, J. J.

    2017-12-01

    The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.

  9. DEMETER Observations of Equatorial Plasma Depletions and Related Ionospheric Phenomena

    Science.gov (United States)

    Berthelier, J.; Malingre, M.; Pfaff, R.; Jasperse, J.; Parrot, M.

    2008-12-01

    DEMETER, the first micro-satellite of the CNES MYRIAD program, was launched from Baikonour on June 29, 2004 on a nearly circular, quasi helio-synchronous polar orbit at ~ 715 km altitude. The DEMETER mission focuses primarily on the search for a possible coupling between seismic activity and ionospheric disturbances as well as on the effects of natural phenomena such as tropospheric thunderstorms and man-made activities on the ionosphere. The scientific payload provides fairly complete measurements of the ionospheric plasma, energetic particles above ~ 70 keV, and plasma waves, up to 20 kHz for the magnetic and 3.3 MHz for the electric components. Several studies related to space weather and ionospheric physics have been conducted over the past years. Following a brief description of the payload and the satellite modes of operation, this presentation will focus on a set of results that provide a new insight into the physics of instabilities in the night-time equatorial ionosphere. The observations were performed during the major magnetic storm of November 2004. Deep plasma depletions were observed on several night-time passes at low latitudes characterized by the decrease of the plasma density by nearly 3 orders of magnitude relative to the undisturbed plasma, and a significant abundance of molecular ions. These features can be best interpreted as resulting from the rise of the F-layer above the satellite altitude over an extended region of the ionosphere. In one of the passes, DEMETER was operated in the Burst mode and the corresponding high resolution data allowed for the discovery of two unexpected phenomena. The first one is the existence of high intensity monochromatic wave packets at the LH frequency that develop during the decay phase of intense bursts of broadband LH turbulence. The broadband LH turbulence is triggered by whistlers emitted by lightning from atmospheric thunderstorms beneath the satellite. The second unexpected feature is the detection of a

  10. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    Science.gov (United States)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere, causing several physical and chemical atmospheric processes. The changes and phenomena, which can be seen as a result of these processes, generally called ionospheric storm. These processes depend on altitude, term of the day, and the strength of solar activity, the geomagnetic latitude and longitude. The differences between ionospheric regions mostly come from the variations of altitude dependent neutral and ionized atmospheric components, and from the physical parameters of solar radiation. We examined the data of the ground-based radio wave ionosphere sounding instruments of the European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory), called ionosonde, to determine how and what extent a given strength of a geomagnetic disturbance affect the middle latitude ionospheric regions in winter. We chose the storm for the research from November 2012 and March 2015. As the main result of our research, we can show significant differences between the each ionospheric (F1 and F2) layer parameters on quiet and strong stormy days. When we saw, that the critical frequencies (foF2) increase from their quiet day value, then the effect of the ionospheric storm was positive, otherwise, if they drop, they were negative. With our analysis, the magnitude of these changes could be determined. Furthermore we demonstrated, how a full strong geomagnetic storm affects the ionospheric foF2 parameter during different storm phases. It has been showed, how a positive or negative ionospheric storm develop during a geomagnetic storm. For a more completed analysis, we compared also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. Therefore we determined, that the data of the ionosonde at Nagycenk Geophysical Observatory are appropriate, it detects the same state of ionosphere like the

  11. An Ionospheric Index Model based on Linear Regression and Neural Network Approaches

    Science.gov (United States)

    Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John

    2017-04-01

    The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.

  12. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  13. Near real-time PPP-based monitoring of the ionosphere using dual-frequency GPS/BDS/Galileo data

    Science.gov (United States)

    Liu, Zhinmin; Li, Yangyang; Li, Fei; Guo, Jinyun

    2018-03-01

    Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.

  14. Plasma bubbles near the dawn terminator in the topside ionosphere

    International Nuclear Information System (INIS)

    Burke, W.J.

    1979-01-01

    The physical properties of plasma bubbles in the topside ionosphere near the dawn terminator are investigated. It is assumed that the bubbles result from either a Rayleigh-Taylor or an E X B instability on the bottom side of the F-layer. While the E-region is in darkness, the top and bottomsides of the ionospheres are electrically decoupled and the motion of the bubbles can be described by non-linear, two-dimensional theory. After sunrise, electric fields within the bubbles discharge through the conducting lower ionosphere. The upward drift of the bubbles is effectively halted. To achieve a dayside state of diffusive equilibrium the bubbles slowly begin to collapse from the bottom. (author)

  15. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  16. Theory of the current-driven ion cyclotron instability in the bottomside ionosphere

    International Nuclear Information System (INIS)

    Satyanarayana, P.; Chaturvedi, P.K.; Keskinen, M.J.; Huba, J.D.; Ossakow, S.L.

    1985-01-01

    A theory of the current-driven electrostatic ion cyclotron (EIC) instability in the collisional bottomside ionosphere is presented. It is found that electron collisions are destabilizing and are crucial for the excitation of the EIC instability in the collisional bottomside ionosphere. Furthermore, the growth rates of the ion cyclotron instability in the bottomside ionosphere maximize for k/sub perpendicular/ rho/sub i/> or =1, where 2π/k/sub perpendicular/ is the mode scale size perpendicular to the magnetic field and rho/sub i/ the ion gyroradius. Realistic plasma density and temperature profiles typical of the high-latitude ionosphere are used to compute the altitude dependence of the linear growth rate of the maximally growing modes and critical drift velocity of the EIC instability. The maximally growing modes correspond to observed tens of meter size irregularities, and the threshold drift velocity required for the excitation of EIC instability is lower for heavier ions (NO + , O + ) than that for the lighter ions (H + ). Dupree's resonance-broadening theory is used to estimate nonlinear saturated amplitudes for the ion cyclotron instability in the high-latitude ionosphere. Comparison with experimental observations is also made. It is conjectured that the EIC instability in the bottomside ionosphere could be a source of transversely accelerated heavier ions and energetic heavy-ion conic distributions at higher altitudes

  17. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    Science.gov (United States)

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  18. Epigenetic modifications in valproic acid-induced teratogenesis

    International Nuclear Information System (INIS)

    Tung, Emily W.Y.; Winn, Louise M.

    2010-01-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  19. Ionospheric Oblique Incidence Soundings by Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The oblique incidence sweep-frequency ionospheric sounding technique uses the same principle of operation as the vertical incidence sounder. The primary difference...

  20. Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug Zidovudine.

    Science.gov (United States)

    Ghare, Smita S; Donde, Hridgandh; Chen, Wei-Yang; Barker, David F; Gobejishvilli, Leila; McClain, Craig J; Barve, Shirish S; Joshi-Barve, Swati

    2016-09-01

    Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Analysis of temporal-longitudinal-latitudinal characteristics in the global ionosphere based on tensor rank-1 decomposition

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.

  2. Effects of High-Latitude Forcing Uncertainty on the Low-Latitude and Midlatitude Ionosphere

    Science.gov (United States)

    Pedatella, N. M.; Lu, G.; Richmond, A. D.

    2018-01-01

    Ensemble simulations are performed using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in order to understand the role of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere response to the April 2010 geomagnetic storm. The ensemble is generated by perturbing either the high-latitude electric potential or auroral energy flux in the assimilative mapping for ionosphere electrodynamics (AMIE). Simulations with perturbed high-latitude electric potential result in substantial intraensemble variability in the low-latitude and midlatitude ionosphere response to the geomagnetic storm, and the ensemble standard deviation for the change in NmF2 reaches 50-100% of the mean change. Such large intraensemble variability is not seen when perturbing the auroral energy flux. In this case, the effects of the forcing uncertainty are primarily confined to high latitudes. We therefore conclude that the specification of high-latitude electric fields is an important source of uncertainty when modeling the low-latitude and midlatitude ionosphere response to a geomagnetic storm. A multiple linear regression analysis of the results indicates that uncertainty in the storm time changes in the equatorial electric fields, neutral winds, and neutral composition can all contribute to the uncertainty in the ionosphere electron density. The results of the present study provide insight into the possible uncertainty in simulations of the low-latitude and midlatitude ionosphere response to geomagnetic storms due to imperfect knowledge of the high-latitude forcing.

  3. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)

    Science.gov (United States)

    Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.

    2018-05-01

    Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.

  4. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  5. Ionospheric effect of the magnetospheric substorms at middle latitudes

    International Nuclear Information System (INIS)

    Cander, Lj.R.; Dominici, P.; Zolesi, B.

    1988-01-01

    A study is made of the F2-layer effect of magnetospheric substorms over the Mediterranean area using data from several ionospheric stations for selected events in the current sunspot cycle 21. The night-time enhancements in the critical frequency of the F2-layer (f 0 F2) and the total electron content (TEC) have been found with both premidnight and postmidnight f 0 F2 peaks and a subsequent decrease in the minimum virtual height of the F region (h'F). It is found that the enhancements occur through the nights under steady geomagnetic conditions and that the time at which it is seen at Rome and Grocka ionospheric stations is progressively earlier as geomagnetic activity increases. It has been further shown that this type of the f 0 F2 night-time increases is not always accompanied by an increase in TEC, although the reverse holds true during the nights of increased substorm activity. The fact that the considerable variability in f 0 F2, TEC and h'F at the onset of the substorm expansion are preceded by the ionospheric dynamics associated with these observations can be very useful in the identification of precursor indicative of short-term variations of ionospheric propagation conditions

  6. Preface: The International Reference Ionosphere (IRI) at equatorial latitudes

    Science.gov (United States)

    Reinisch, Bodo; Bilitza, Dieter

    2017-07-01

    This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.

  7. Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited

    Science.gov (United States)

    Förster, M.; Haaland, S.

    2015-07-01

    The interaction between the interplanetary magnetic field and the geomagnetic field sets up a large-scale circulation in the magnetosphere. This circulation is also reflected in the magnetically connected ionosphere. In this paper, we present a study of ionospheric convection based on Cluster Electron Drift Instrument (EDI) satellite measurements covering both hemispheres and obtained over a full solar cycle. The results from this study show that average flow patterns and polar cap potentials for a given orientation of the interplanetary magnetic field can be very different in the two hemispheres. In particular during southward directed interplanetary magnetic field conditions, and thus enhanced energy input from the solar wind, the measurements show that the southern polar cap has a higher cross polar cap potential. There are persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. These persistent asymmetries are primarily a result of the significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace.

  8. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  9. A modeling study of the thermosphere-ionosphere interactions during the boreal winter and spring 2015-2016: Tidal and planetary-scale waves effect on the ionospheric structure.

    Science.gov (United States)

    Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.

    2017-12-01

    The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.

  10. Investigation on equatorial ionospheric profiles and IRI model

    International Nuclear Information System (INIS)

    Adeniyi, J.O.

    1996-01-01

    Ionospheric profiles below the F2 peak ionisation density are compared with those of the International Reference Ionosphere (IRI). The data used are those of Ibadan (Lat. 7.4 deg N, Long. 3.9 E). The IRI model gives a much thinner bottomside F region ionisation density than what is observed experimentally, in winter; both at high and low solar activity. Similar departures are observed in the summer of both solar epoch but on a reduced scale. The closet agreement occurs during the March equinox of high solar activity. (author). 3 refs, 4 figs

  11. Incoherent-scatter radar measurements of electric field and plasma in the auroral ionosphere

    International Nuclear Information System (INIS)

    Vondrak, R.

    1983-01-01

    This chapter summarizes Chatanika radar measurements of electric fields and currents, and their relation to E-region ionization and conductivity. Electric-field coupling between the ionosphere and magnetosphere and the relationship between field-aligned currents and meridional ionospheric currents are examined. Topics considered include the diurnal pattern of the ionization and electric field; electrical coupling between the ionosphere and magnetosphere; and the relationship between meridional currents and field-aligned currents. It is concluded that the incoherent-scatter radar technique has been developed into a powerful method for remotely measuring the electrical and thermal properties of the auroral ionospheric plasma, and that the usefulness of the radar measurements is greatly enhanced when combined with simultaneous satellite measurements

  12. Dynamics of the polar ionosphere structure disturbance in the Svalgaard-Mansurov effect

    International Nuclear Information System (INIS)

    Osipov, N.K.; Mozhaev, A.M.; Larina, T.N.; Ponomarev, Yu.N.

    1988-01-01

    Nonstationary disturbance model of the ionsphere of polar caps caused by change of B y component sign of interplanetary magnetic field is considered. It is shown that nonstationary convection transfer of ionospheric plasma represents the main and the most fast mechanism regulating reconstruction of ionosphere structure in polar caps during magnetosphere substorms, caused by the change of B y sign. Calculations show that characteristic time of sufficient change of ionosphere structure at ∼1500 km distances is on the order of 10-25 min

  13. Long term ionospheric electron content variations over Delhi

    Directory of Open Access Journals (Sweden)

    J. K. Gupta

    Full Text Available Ionospheric electron content (IEC observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91°E; dip Latitude 24.8°N, India, for the period 1975–80 and 1986–89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.

    Key words: Ionosphere (equatorial ionosphere · Magnetospheric physics (magnetosphere · ionosphere interactions · Radio science (ionospheric physics

  14. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Science.gov (United States)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  15. Ground-based measurements of ionospheric dynamics

    Science.gov (United States)

    Kouba, Daniel; Chum, Jaroslav

    2018-05-01

    Different methods are used to research and monitor the ionospheric dynamics using ground measurements: Digisonde Drift Measurements (DDM) and Continuous Doppler Sounding (CDS). For the first time, we present comparison between both methods on specific examples. Both methods provide information about the vertical drift velocity component. The DDM provides more information about the drift velocity vector and detected reflection points. However, the method is limited by the relatively low time resolution. In contrast, the strength of CDS is its high time resolution. The discussed methods can be used for real-time monitoring of medium scale travelling ionospheric disturbances. We conclude that it is advantageous to use both methods simultaneously if possible. The CDS is then applied for the disturbance detection and analysis, and the DDM is applied for the reflection height control.

  16. Observations of subauroral ionospheric dynamics during SED plume passage at Millstone Hill

    Science.gov (United States)

    Zhang, S.; Erickson, P. J.; Coster, A. J.

    2017-12-01

    Storm enhanced density (SED) is a characteristic ionospheric storm time structure, with a significant plasma density enhancement in a narrow zone. SED structures often (but not always) span the continental US with a base in the US northeast at the afternoon and dusk sector, extending westward or northwest into the high latitude dayside cusp region. It is a typical and repeatable space weather phenomenon occurring during the main phase of magnetic storms with intensity ranging from active to disturbed levels. Observations of stormtime ionospheric density enhancement at subauroral latitudes have a long history, and were termed the 'dusk effect' until relatively recently, when dense networks of GNSS receivers have allowed us to view this structure with much finer spatial and temporal resolution. The formation of a SED plume is a topic under intensive community investigation, but in general it is believed that stormtime ionospheric dynamics and processes within the coupling magnetosphere-ionosphere-thermosphere system are responsible. For instance, poleward and sunward plasma drifts at the edge of the expanded dusk sector high-latitude convection can be important. Subauroral polarization stream (SAPS) are often observed at the poleward edge of the SED plume where ionospheric conductivity is low. SAPS is a huge westward ion flow that can convect ionospheric plasma from the afternoon or evening sector where solar photoionization production is waning, creating low density or density troughs. Stormtime penetration electric fields also exist, creating enhanced low and mid latitude upward ion drifts that move ionospheric plasma upward from the low altitude region where they are produced. This provides another important ionization source to contribute to maintaining the SED plume. This paper will provide analysis of the relative strength of these factors by using joint datasets of current geospace storm events obtained with the Millstone Hill incoherent scatter radar, GNSS

  17. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  18. IMF By associated interhemispheric asymmetries in ionospheric convection and field-aligned currents

    Science.gov (United States)

    Kunduri, B.; Baker, J.; Ruohoniemi, J. M.; Clausen, L.; Ribeiro, A.

    2012-12-01

    The solar wind-magnetosphere interaction plays an important role in controlling the dynamics of ionospheric convection. It is widely known that the By component of IMF generates asymmetries in ionospheric convection between the northern and southern polar caps. Some studies show that IMF By-generated electric field penetrates into the closed magnetosphere producing differences in the high latitude ionospheric convection between hemispheres. The differences in convection were attributed to field-aligned potential drop between hemispheres resulting in flow of interhemispheric field aligned currents. In the current paper we present interhemispheric observations of high latitude ionospheric convection on closed field lines in the noon-dusk sector. The observations reveal that the convection is stronger in the northern (southern) hemisphere when IMF By is positive (negative) irrespective of season. The inter-hemispheric differences can be attributed to the flow of interhemispheric field aligned currents which support the existence of oppositely-directed zonal plasma flows in the closed field line regions, suppressing the convection in one hemisphere and aiding it in the other. We estimate the strength of these currents, analyze their characteristics and identify the various factors such as magnetic local time, magnetic latitude and ionospheric conductivity that impact them.

  19. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    Science.gov (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  20. Coulomb collisions of ring current particles: Indirect source of heat for the ionosphere

    Science.gov (United States)

    Cole, K. D.

    1975-01-01

    The additional energy requirements of the topside ionosphere during a magnetic storm are less than one quarter of the ring current energy. This energy is supplied largely by Coulomb collisions of ring current protons of energy less than about 20 keV with background thermal electrons which conduct the heat to the ionosphere. Past criticisms are discussed of this mechanism for the supply of energy to the SAR-arc and neighboring regions of the ionosphere.

  1. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    Science.gov (United States)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  2. Modification of Aortic Cannula With an Inlet Chamber to Induce Spiral Flow and Improve Outlet Flow.

    Science.gov (United States)

    Darlis, Nofrizalidris; Osman, Kahar; Padzillah, Muhamad Hasbullah; Dillon, Jeswant; Md Khudzari, Ahmad Zahran

    2018-05-01

    Physiologically, blood ejected from the left ventricle in systole exhibited spiral flow characteristics. This spiral flow has been proven to have several advantages such as lateral reduction of directed forces and thrombus formation, while it also appears to be clinically beneficial in suppressing neurological complications. In order to deliver spiral flow characteristics during cardiopulmonary bypass operation, several modifications have been made on an aortic cannula either at the internal or at the outflow tip; these modifications have proven to yield better hemodynamic performances compared to standard cannula. However, there is no modification done at the inlet part of the aortic cannula for inducing spiral flow so far. This study was carried out by attaching a spiral inducer at the inlet of an aortic cannula. Then, the hemodynamic performances of the new cannula were compared with the standard straight tip end-hole cannula. This is achieved by modeling the cannula and attaching the cannula at a patient-specific aorta model. Numerical approach was utilized to evaluate the hemodynamic performance, and a water jet impact experiment was used to demonstrate the jet force generated by the cannula. The new spiral flow aortic cannula has shown some improvements by reducing approximately 21% of impinging velocity near to the aortic wall, and more than 58% reduction on total force generated as compared to standard cannula. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. The peculiarities of power terrestrial ELF emission in the Earth's ionosphere

    Science.gov (United States)

    Korepanov, Valery; Dudkin, Fedir; Pronenko, Vira; Chvach, Valery

    2016-04-01

    The near-Earth space is saturated with electromagnetic (EM) waves of terrestrial origin in a wide frequency range. The most powerful natural sources of EM emission are thunderstorms and triggered by them Schumann resonance (SR) radiation which is the narrowband EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity in frequency range about 7-100 Hz. The considerable part of the terrestrial EM emission belongs to everyday human activity which increases year by year with unpredictable consequences. At the beginning of space exploration era it was considered that high frequency EM waves freely penetrate through the Earth's ionosphere, but the terrestrial EM emission below very low frequency range is limited by ionospheric F2 layer boundary due to great EM losses in plasma. About 40 years ago the power lines harmonic radiation (multiple of 50/60 Hz) was found at satellite observations in a few kilohertz range, nevertheless the ionosphere was considered fully opaque for extremely low frequency (ELF) EM emission. However recently, in spite of theoretical estimations, the SR harmonics and power line emission (PLE) 50/60 Hz were discovered during flights of low Earth orbiting satellites C/NOFS (Simões et al., 2011) and Chibis-M (Dudkin et al., 2015) at heights 400-800 km, i.e. over F2-layer. Last results are a great challenge to the theory of ELF EM emission propagation in the Earth's ionosphere as well as for study of long-term influence of constantly increasing electric energy consumption by human civilization in the Earth's environment. We present the analysis of the space and time distribution for observed PLE and SR harmonics, their connection with power terrestrial sources of ELF emission and possible relation between measured values and ionosphere conditions. Also some electromagnetic parameters have been estimated. Simões, F. A., R. F. Pfaff, and H. T. Freudenreich (2011), Satellite observations of Schumann resonances in the

  4. Modification of nylon-6 fibres by radiation-induced graft polymerisation of vinylbenzyl chloride

    International Nuclear Information System (INIS)

    Ting, T.M.; Nasef, Mohamed Mahmoud; Hashim, Kamaruddin

    2015-01-01

    Modification of nylon-6 fibres by radiation-induced graft copolymerisation (RIGP) of vinylbenzyl chloride (VBC) using the preirradiation method was investigated. A number of grafting parameters such as type of solvent, total dose, monomer concentrations, reaction temperature and reaction time were studied to obtain desired degree of grafting (DG). The DG was found to be a function of reaction parameters and achieved a maximum value of 130 wt% at 20 vol% VBC concentration in methanol, 300 kGy dose, 30 °C temperature and 3 h reaction time. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to evaluate the chemical, morphological and structural changes that occurred in the grafted fibres, respectively. Thermogravimetric analysis (TGA) was also applied to determine the thermal stability, whereas differential scanning calorimeter (DSC) and universal mechanical tester were used to analyse respective thermal and mechanical properties of the grafted fibres. The results of these analyses provide strong evidence for successful grafting of VBC onto nylon-6, and the variation in the properties of the grafted fibres depends on DG. - Highlights: • Modification of nylon-6 fibres by radiation induced grafting of VBC in methanol. • Establishment of relations between DG and reaction parameters. • Evidence of VBC grafting was provided by FTIR, SEM, XRD, DSC and TGA. • The properties of VBC-grafted nylon-6 fibres depend on DG. • Amendable VBC-grafted nylon-6 fibres retain favourable properties

  5. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.; Obayashi, T.

    1986-01-01

    A rocket-borne experiment called MINIX was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction Experiment and was carried out on August 29, 1983. The objectives of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere such as the Ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no Ohmic heating effects were detected. 4 figures.

  6. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.

  7. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    International Nuclear Information System (INIS)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.; Obayashi, T.

    1986-01-01

    A rocket-borne experiment called MINIX was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction Experiment and was carried out on August 29, 1983. The objectives of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere such as the Ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no Ohmic heating effects were detected. 4 figures

  8. Surface modifications induced by pulsed-laser texturing—Influence of laser impact on the surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Costil, S., E-mail: sophie.costil@utbm.fr [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Lamraoui, A.; Langlade, C. [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Heintz, O.; Oltra, R. [ICB, Université de Bourgogne, 21078 Dijon Cedex (France)

    2014-01-01

    Laser cleaning technology provides a safe, environmentally friendly and very cost effective way to improve cleaning and surface preparation of metallic materials. Compared with efficient cleaning processes, it can avoid the disadvantages of ductile materials prepared by conventional technologies (cracks induced by sand-blasting for example) and treat only some selected areas (due to the optical fibers). By this way, laser technology could have several advantages and expand the range of thermal spraying. Moreover, new generations of lasers (fiber laser, disc laser) allow the development of new methods. Besides a significant bulk reduction, no maintenance, low operating cost, laser fibers can introduce alternative treatments. Combining a short-pulse laser with a scanner allows new applications in terms of surface preparation. By multiplying impacts using scanning laser, it is possible to shape the substrate surface to improve the coating adhesion as well as the mechanical behaviour. In addition, during the interactions of the laser beam with metallic surfaces, several modifications can be induced and particularly thermal effects. Indeed, under ambient conditions, a limited oxidation of the clean surface can occur. This phenomenon has been investigated in detail for silicon but few works have been reported concerning metallic materials. This paper aims at studying the surface modifications induced on aluminium alloy substrates after laser texturing. After morphological observations (SEM), a deeper surface analysis will be performed using XPS (X-ray photoelectron spectroscopy) measures and microhardness testing.

  9. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  10. The ionospheric signature of Pi 2 pulsations observed by STARE

    International Nuclear Information System (INIS)

    Sutcliffe, P.R.; Nielsen, E.

    1992-01-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 degree phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere

  11. Imaging of structures in the high-latitude ionosphere: model comparisons

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available The tomographic reconstruction technique generates a two-dimensional latitude versus height electron density distribution from sets of slant total electron content measurements (TEC along ray paths between beacon satellites and ground-based radio receivers. In this note, the technique is applied to TEC values obtained from data simulated by the Sheffield/UCL/SEL Coupled Thermosphere/Ionosphere/Model (CTIM. A comparison of the resulting reconstructed image with the 'input' modelled data allows for verification of the reconstruction technique. All the features of the high-latitude ionosphere in the model data are reproduced well in the tomographic image. Reconstructed vertical TEC values follow closely the modelled values, with the F-layer maximum density (NmF2 agreeing generally within about 10%. The method has also been able successfully to reproduce underlying auroral-E ionisation over a restricted latitudinal range in part of the image. The height of the F2 peak is generally in agreement to within about the vertical image resolution (25 km.

    Key words. Ionosphere (modelling and forecasting; polar ionosphere · Radio Science (instruments and techniques

  12. Parallel Density-Based Clustering for Discovery of Ionospheric Phenomena

    Science.gov (United States)

    Pankratius, V.; Gowanlock, M.; Blair, D. M.

    2015-12-01

    Ionospheric total electron content maps derived from global networks of dual-frequency GPS receivers can reveal a plethora of ionospheric features in real-time and are key to space weather studies and natural hazard monitoring. However, growing data volumes from expanding sensor networks are making manual exploratory studies challenging. As the community is heading towards Big Data ionospheric science, automation and Computer-Aided Discovery become indispensable tools for scientists. One problem of machine learning methods is that they require domain-specific adaptations in order to be effective and useful for scientists. Addressing this problem, our Computer-Aided Discovery approach allows scientists to express various physical models as well as perturbation ranges for parameters. The search space is explored through an automated system and parallel processing of batched workloads, which finds corresponding matches and similarities in empirical data. We discuss density-based clustering as a particular method we employ in this process. Specifically, we adapt Density-Based Spatial Clustering of Applications with Noise (DBSCAN). This algorithm groups geospatial data points based on density. Clusters of points can be of arbitrary shape, and the number of clusters is not predetermined by the algorithm; only two input parameters need to be specified: (1) a distance threshold, (2) a minimum number of points within that threshold. We discuss an implementation of DBSCAN for batched workloads that is amenable to parallelization on manycore architectures such as Intel's Xeon Phi accelerator with 60+ general-purpose cores. This manycore parallelization can cluster large volumes of ionospheric total electronic content data quickly. Potential applications for cluster detection include the visualization, tracing, and examination of traveling ionospheric disturbances or other propagating phenomena. Acknowledgments. We acknowledge support from NSF ACI-1442997 (PI V. Pankratius).

  13. Aerosols: The key to understanding Titan's lower ionosphere

    Science.gov (United States)

    Molina-Cuberos, G. J.; Cardnell, S.; García-Collado, A. J.; Witasse, O.; López-Moreno, J. J.

    2018-04-01

    The Permittivity Wave and Altimetry system on board the Huygens probe observed an ionospheric hidden layer at a much lower altitude than the main ionosphere during its descent through the atmosphere of Titan, the largest satellite of Saturn. Previous studies predicted a similar ionospheric layer. However, neither previous nor post-Huygens theoretical models have been able to reproduce the measurements of the electrical conductivity and charge densities reported by the Mutual Impedance (MI) and Relaxation Probe (RP) sensors. The measurements were made from an altitude of 140 km down to the ground and show a maximum of charge densities of ≈ 2 ×109 m-3 positive ions and ≈ 450 ×106 m-3 electrons at approximately 65 km. Such a large difference between positive and negative charge densities has not yet been understood. Here, by making use of electron and ion capture processes in to aerosols, we are able to model both electron and positive ion number densities and to reconcile experimental data and model results.

  14. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    Science.gov (United States)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross

  15. Ionospheric measurements during the CRISTA/MAHRSI campaign: their implications and comparison with previous campaigns

    Directory of Open Access Journals (Sweden)

    J. Laštovicka

    1999-08-01

    Full Text Available The CRISTA/MAHRSI experiment on board a space shuttle was accompanied by a broad campaign of rocket, balloon and ground-based measurements. Supporting lower ionospheric ground-based measurements were run in Europe and Eastern Asia between 1 October-30 November, 1994. Results of comparisons with long ionospheric data series together with short-term comparisons inside the interval October-November, 1994, showed that the upper middle atmosphere  (h = 80-100 km at middle latitudes of the Northern Hemisphere in the interval of the CRISTA/MAHRSI experiment (4-12 November, 1994 was very close to its expected climatological state. In other words, the average results of the experiment can be used as climatological data, at least for the given area/altitudes. The role of solar/geomagnetic and "meteorological" control of the lower ionosphere is investigated and compared with the results of MAP/WINE, MAC/SINE and DYANA campaigns. The effects of both solar/geomagnetic and global meteorological factors on the lower ionosphere are found to be weak during autumn 1994 compared to those in MAP/WINE and DYANA winters, and they are even slightly weaker than those in MAP/SINE summer. The comparison of the four campaigns suggests the following overall pattern: in winter the lower ionosphere at northern middle latitudes appears to be fairly well "meteorologically" controlled with a very weak solar influence. In summer, solar influence is somewhat stronger and dominates the weak "meteorological" influence, but the overall solar/meteorological control is weaker than in winter. In autumn we find the weakest overall solar/meteorological control, local effects evidently dominate.Key words. Ionosphere (ionosphere · atmosphere interactions; mid-latitude ionosphere

  16. Ionospheric measurements during the CRISTA/MAHRSI campaign: their implications and comparison with previous campaigns

    Directory of Open Access Journals (Sweden)

    J. Laštovicka

    Full Text Available The CRISTA/MAHRSI experiment on board a space shuttle was accompanied by a broad campaign of rocket, balloon and ground-based measurements. Supporting lower ionospheric ground-based measurements were run in Europe and Eastern Asia between 1 October-30 November, 1994. Results of comparisons with long ionospheric data series together with short-term comparisons inside the interval October-November, 1994, showed that the upper middle atmosphere 
    (h = 80-100 km at middle latitudes of the Northern Hemisphere in the interval of the CRISTA/MAHRSI experiment (4-12 November, 1994 was very close to its expected climatological state. In other words, the average results of the experiment can be used as climatological data, at least for the given area/altitudes. The role of solar/geomagnetic and "meteorological" control of the lower ionosphere is investigated and compared with the results of MAP/WINE, MAC/SINE and DYANA campaigns. The effects of both solar/geomagnetic and global meteorological factors on the lower ionosphere are found to be weak during autumn 1994 compared to those in MAP/WINE and DYANA winters, and they are even slightly weaker than those in MAP/SINE summer. The comparison of the four campaigns suggests the following overall pattern: in winter the lower ionosphere at northern middle latitudes appears to be fairly well "meteorologically" controlled with a very weak solar influence. In summer, solar influence is somewhat stronger and dominates the weak "meteorological" influence, but the overall solar/meteorological control is weaker than in winter. In autumn we find the weakest overall solar/meteorological control, local effects evidently dominate.

    Key words. Ionosphere (ionosphere · atmosphere interactions; mid-latitude ionosphere

  17. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations

    Science.gov (United States)

    Ning, Yafei; Tang, Jun

    2018-01-01

    Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.

  18. Traveling Ionospheric Disturbances Observed by Midlatitude SuperDARN Radars

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; West, M. L.; Bristow, W. A.

    2012-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min, and are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars since 1989, and are typically attributed to auroral sources and propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. North American radar data from November 2010 - November 2011 were searched for signatures of MSTIDs. Initial results suggest that MSTIDs are observed at high latitudes primarily in the fall/winter months, which is consistent with published results. This search also reveals that mid-latitude MSTIDs often appear concurrently with high-latitude MSTIDs and share similar wave parameters. During the fall/winter months, SuperDARN mid-latitude MSTIDs appear more often than high-latitude MSTIDs, likely due to calmer ionospheric conditions at mid-latitudes. In the springtime, SuperDARN-observed MSTIDs are less likely to be seen at high-latitudes, but still appear at mid-latitudes. Selected events are analyzed for wave parameters using the Multiple Signal Classification (MUSIC) technique.

  19. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    Science.gov (United States)

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  20. Radio Interferometric Research of Ionosphere by Signals of Space Satellites

    Directory of Open Access Journals (Sweden)

    Dugin N.

    2013-03-01

    Full Text Available Since 2012, the Radiophysical Research Institute and the Lobachevsky State University at Nizhny Novgorod, Russia and the Ventspils International Radio Astronomy Centre at Irbene, Latvia are making radio interferometric experiments on study of ionosphere parameters in a quiet (natural state of medium and research of artificial turbulence of the ionosphere, heated by the emission from the SURA facility. Remote diagnostics of the ionosphere is implemented using a method of radio sounding by signals of navigation satellites in combination with the Very Long Baseline Interferometry (VLBI method. As a result of spectral and correlation analysis, interferometric responses of the two-element (RRI–UNN and three-element (RRI–UNN–Irbene interferometers were received by observations of 12 satellites of the navigation systems GLONASS and GPS. Here the first results are reported.

  1. C/NOFS Remote Sensing of Ionospheric Reflectance

    Science.gov (United States)

    Burke, W. J.; Pfaff, Robert F.; Martinis, C. R.; Gentile, L. C.

    2016-01-01

    Alfvn waves play critical roles in the electrodynamic coupling of plasmas at magnetically conjugate regions in near-Earth space. Associated electric (E*) and magnetic (dec B*) field perturbations sampled by sensors on satellites in low-Earth orbits are generally super positions of incident and reflected waves. However, lack of knowledge about ionospheric reflection coefficients (alpha) hinders understanding of generator outputs and load absorption of Alfvn wave energies. Here we demonstrate a new method for estimating using satellite measurements of ambient E* and dec B* then apply it to a case in which the Communication Navigation Outage Forecasting System (CNOFS) satellite flew conjugate to the field of view of a 630.0 nm all-sky imager at El Leoncito, Argentina, while medium-scale traveling ionosphere disturbances were detected in its field of view. In regions of relatively large amplitudes of E* and B*,calculated values ranged between 0.67 and 0.88. This implies that due to impedance mismatches, the generator ionosphere puts out significantly more electromagnetic energy than the load can absorb. Our analysis also uncovered caveats concerning the methods range of applicability in regions of low E* and B*. The method can be validated in future satellite-based auroral studies where energetic particle precipitation fluxes can be used to make independent estimates of alpha.

  2. Ionospheric Bow Wave Induced by the Moon Shadow Ship Over the Continent of United States on 21 August 2017

    Science.gov (United States)

    Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang

    2018-01-01

    A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.

  3. Substorm topology in the ionosphere and magnetosphere during a flux rope event in the magnetotail

    Directory of Open Access Journals (Sweden)

    O. Amm

    2006-03-01

    Full Text Available On 13 August 2002, at ~23:00 UT, about 10 min after a substorm intensification, Cluster observes a flux rope in the central magnetotail, followed by a localised fast flow event about oneminute later. Associated with the flux rope event, a traveling compression region (TCR is seen by those Cluster spacecraft which reside in the lobe. In the conjugate ionospheric region in Northern Scandinavia, the MIRACLE network observes the ionospheric equivalent currents, and the electron densities and electric fields are measured by the EISCAT radar along a meridional scanning profile. Further, the auroral evolution is observed with the Wideband Imaging Camera (WIC on the IMAGE satellite. We compare in detail the substorm evolution as observed in the ionosphere and in the magnetosphere, and examine whether topological correspondences to the flux rope event exist in the ionospheric signatures. The large-scale mapping of both the location and the direction of the flux rope to the ionosphere shows an excellent correspondence to a lens-shaped region of an auroral emission minimum. This region is bracketed by an auroral region equatorward of it which was preexisting to the substorm intensification, and a substorm-related auroral region poleward of it. It is characterised by reduced ionospheric conductances with respect to its environment, and downward field-aligned current (FAC observed both in the magnetosphere and in the ionosphere. As determined from the ionospheric data, this downward FAC area is moving eastward with a speed of ~2 km s-1, in good agreement with the mapped plasma bulk velocity measured at the Cluster satellite closest to that area. Further southwestward to this leading downward FAC area, a trailing upward FAC area is observed that moves eastward with the same speed. The direction of the ionospheric electric field permits a current closure between these two FAC areas through the ionosphere. We speculate that these FAC areas may correspond to

  4. Localized fast flow disturbance observed in the plasma sheet and in the ionosphere

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    2005-02-01

    Full Text Available An isolated plasma sheet flow burst took place at 22:02 UT, 1 September 2002, when the Cluster footpoint was located within the area covered by the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE. The event was associated with a clear but weak ionospheric disturbance and took place during a steady southward IMF interval, about 1h preceding a major substorm onset. Multipoint observations, both in space and from the ground, allow us to discuss the temporal and spatial scale of the disturbance both in the magnetosphere and ionosphere. Based on measurements from four Cluster spacecraft it is inferred that Cluster observed the dusk side part of a localized flow channel in the plasma sheet with a flow shear at the front, suggesting a field-aligned current out from the ionosphere. In the ionosphere the equivalent current pattern and possible field-aligned current location show a pattern similar to the auroral streamers previously obtained during an active period, except for its spatial scale and amplitude. It is inferred that the footpoint of Cluster was located in the region of an upward field-aligned current, consistent with the magnetospheric observations. The entire disturbance in the ionosphere lasted about 10min, consistent with the time scale of the current sheet disturbance in the magnetosphere. The plasma sheet bulk flow, on the other hand, had a time scale of about 2min, corresponding to the time scale of an equatorward excursion of the enhanced electrojet. These observations confirm that localized enhanced convection in the magnetosphere and associated changes in the current sheet structure produce a signature with consistent temporal and spatial scale at the conjugate ionosphere.

  5. INSPIRE Project (IoNospheric Sounding for Pre-seismic anomalies Identification REsearch): Main Results and Future Prospects

    Science.gov (United States)

    Pulinets, S. A.; Andrzej, K.; Hernandez-Pajares, M.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Davidenko, D.

    2017-12-01

    The INSPIRE project is dedicated to the study of physical processes and their effects in ionosphere which could be determined as earthquake precursors together with detailed description of the methodology of ionospheric pre-seismic anomalies definition. It was initiated by ESA and carried out by international consortium. The physical mechanisms of the ionospheric pre-seismic anomalies generation from ground to the ionosphere altitudes were formulated within framework of the Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling (LAIMC) model (Pulinets et al., 2015). The general algorithm for the identification of the ionospheric precursors was formalized which also takes into account the external Space Weather factors able to generate the false alarms. Importance of the special stable pattern called the "precursor mask" was highlighted which is based on self-similarity of pre-seismic ionospheric variations. The role of expert decision in pre-seismic anomalies interpretation for generation of seismic warning is important as well. The algorithm performance of the LAIMC seismo-ionospheric effect detection module has been demonstrated using the L'Aquila 2009 earthquake as a case study. The results of INSPIRE project have demonstrated that the ionospheric anomalies registered before the strong earthquakes could be used as reliable precursors. The detailed classification of the pre-seismic anomalies was presented in different regions of the ionosphere and signatures of the pre-seismic anomalies as detected by ground and satellite based instruments were described what clarified methodology of the precursor's identification from ionospheric multi-instrumental measurements. Configuration for the dedicated multi-observation experiment and satellite payload was proposed for the future implementation of the INSPIRE project results. In this regard the multi-instrument set can be divided by two groups: space equipment and ground-based support, which could be used for real

  6. Seismic Correlation and Coupling from Underground, Surface, to the Ionosphere

    Science.gov (United States)

    Wang, J. S.; Waysand, G.

    2009-12-01

    Electromagnetic activity correlated to seismicity is displayed in a variety of ways. Earthquake precursors and aftershocks associated with local fault slips have been detected regionally by visual observations and radar reflections, and globally by satellite measurements of electromagnetic profiles. Magnetic excitations have recently been measured underground that associated with major earthquakes (e.g., the 2008 Sichuan and the 2006 Pingtung earthquakes). In all cases, the frequencies are extremely low; hence, the corresponding wavelengths are extremely large. In other term, wherever an earthquake occurs on Earth, any electromagnetic measurement of it is always near-field from the signal source. Thus, signal-to-noise ratio is the only limiting factor. The increasing abundance of observations, and the variety of instruments enabling these observations, requires investigators to look beyond borders of their individual discipline and adopt a global approach to the problem. To elucidate the dynamic generation and propagation of seismic-induced electromagnetic signals, it is important to assess from small to large scales the variability of (1) the seismic-electromagnetic coupling at localized zones and block boundaries, (2) the potential signal paths through the earth geomagnetic fields, and (3) the ionosphere and atmospheric measurements and observations. The pre-earthquake signals as potential precursors have generated great interests for decades, especially with the deployments of satellites for geophysical measurements. The emerging understanding is that stress buildups and releases induce electromagnetic emissions which are likely associated with charged particle movements, propagations mainly along waveguides through the earth magnetic field to the atmosphere and ionosphere. The globally distributed perturbations and profiles above ground are systematically mapped. The signals could also be transmitted nearly vertically from epicenters to the ground and beyond

  7. Spontaneous generation of auroral arcs in a three dimensionally coupled magnetosphere-ionosphere system

    International Nuclear Information System (INIS)

    Watanabe, Kunihiko; Sato, Tetsuya.

    1988-01-01

    This paper presents the first full three-dimensional dynamic simulation of auroral arc formation. The magnetospheric and ionospheric dynamics are represented by one-fluid magnetohydrodynamic equations and two-fluid weakly ionized plasma equations, respectively. The feedback coupling between magnetospheric Alfven waves and ionospheric density waves are self-consistently and three-dimensionally solved. Obtained is a spontaneous generation of longitudinally elongated striations of field-aligned currents and ionospheric electron densities, which compare very well with many features of quiet auroral arcs. (author)

  8. IAR signatures in the ionosphere: Modeling and observations at the Chibis-M microsatellite

    Science.gov (United States)

    Pilipenko, V.; Dudkin, D.; Fedorov, E.; Korepanov, V.; Klimov, S.

    2017-02-01

    A peculiar feature of geomagnetic variations at middle/low latitudes in the ULF band, just below the fundamental tone of the Schumann resonance, is the occurrence of a multi-band spectral resonant structure, observed by high-sensitivity induction magnetometers during nighttime. The occurrence of such spectral structure was commonly attributed to the Ionospheric Alfvén Resonator (IAR) in the upper ionosphere. Rather surprisingly, while ground observations of the IAR are ubiquitous, there are practically no reports on the IAR signatures from space missions. According to the new paradigm, the multi-band spectral structure excited by a lightning discharge is in fact produced by a regular sequence of an original pulse from a stroke and echo-pulses reflected from the IAR upper boundary. Upon the interaction of initial lightning-generated pulse with the anisotropic lower ionosphere, it partially penetrates into the ionosphere, travels up the ionosphere as an Alfvén pulse, and reflects back from the upper IAR boundary. The superposition of the initial pulse and echo-pulses produces spectra with multiple spectral peaks. Our modeling of Alfvénic pulse propagation in a system with the altitude profile of Alfven velocity modeling the realistic ionosphere has shown that IAR spectral signatures are to be evident only on the ground and above the IAR. Inside the IAR, the superposition of upward and downward propagating pulses produces a more complicated spectral pattern and the IAR spectral signatures deteriorate. We have used electric field data from the low-orbit Chibis-M microsatellite to search for IAR signatures in the ionosphere. We found evidence that the multi-band structure revealed by spectral analysis in the frequency range of interest is indeed the result of a sequence of lightning-produced pulses. According to the proposed conception it seems possible to comprehend why the IAR signatures are less evident in the ionosphere than on the ground.

  9. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  10. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    1997-07-01

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  11. Ionospheric Gradient Threat Mitigation in Future Dual Frequency GBAS

    Directory of Open Access Journals (Sweden)

    Michael Felux

    2017-01-01

    Full Text Available The Ground Based Augmentation System (GBAS is a landing system for aircraft based on differential corrections for the signals of Global Navigation Satellite Systems (GNSS, such as GPS or Galileo. The main impact on the availability of current single frequency systems results from the necessary protection against ionospheric gradients. With the introduction of Galileo and the latest generation of GPS satellites, a second frequency is available for aeronautical navigation. Dual frequency methods allow forming of ionospheric free combinations of the signals, eliminating a large part of the ionospheric threats to GBAS. However, the combination of several signals increases the noise in the position solution and in the calculation of error bounds. We, therefore, developed a method to base positioning algorithms on single frequency measurements and use the second frequency only for monitoring purposes. In this paper, we describe a detailed derivation of the monitoring scheme and discuss its implications for the use in an aviation context.

  12. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  13. Chemistry of the galactic cosmic ray induced ionosphere of Titan

    Science.gov (United States)

    Molina-Cuberos, G. J.; López-Moreno, J. J.; Rodrigo, R.; Lara, L. M.

    1999-09-01

    Titan's lower ionosphere (from 1 to 400 km) has been studied with a one-dimensional ion-neutral model. In this region of the atmosphere, galactic cosmic rays (GCRs) are the main ionization source. They penetrate to the deeper atmosphere and ionize the neutral constituents of Titan's atmosphere (mainly N2, CH4, Ar, H2, and CO) to produce N2+, N+, Ar+, CH4+, CH3+, CH2+, H2+, H+, and CO+. Fast reactions with the neutrals convert these ions into ions such as CH5+, C2H5+, and N2H+. Different pathways are proposed to obtain the ion and electron densities. The most abundant ions are cluster ions, like CH5+.CH4, HCO+.H2, and HCNH+.C2H4, and long chain hydrocarbon ions. In atmospheres very rich in N2, such as Titan's, ions like H4C7N+ and CH3CNH+ also represent an important contribution to the total positive ion density. Three-body reactions may play an important role in the dense atmosphere of Titan, and special attention is devoted to them. The calculated electron density in the lower atmosphere reaches a peak of ~2150 cm-3 at an altitude of 90 km.

  14. Ionospheric Values (Daily Work Sheets), F-Plots, Tabulations, Booklets, Catalogs, and Log Books

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These ionospheric data consist of scaling notes, equipment usage logs, and ionospheric values in the form of daily work sheets, F-Plots, tabulations, and booklets....

  15. A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2000-04-01

    Full Text Available Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.Key words: Magnetospheric physics (magnetosphere-ionosphere interactions; plasma convection; solar wind-magnetosphere interactions

  16. Performance Analysis of Network-RTK Techniques for Drone Navigation considering Ionospheric Conditions

    Directory of Open Access Journals (Sweden)

    Tae-Suk Bae

    2018-01-01

    Full Text Available Recently, an accurate positioning has become the kernel of autonomous navigation with the rapid growth of drones including mapping purpose. The Network-based Real-time Kinematic (NRTK system was predominantly used for precision positioning in many fields such as surveying and agriculture, mostly in static mode or low-speed operation. The NRTK positioning, in general, shows much better performance with the fixed integer ambiguities. However, the success rate of the ambiguity resolution is highly dependent on the ionospheric condition and the surrounding environment of Global Navigation Satellite System (GNSS positioning, which particularly corresponds to the low-cost GNSS receivers. We analyzed the effects of the ionospheric conditions on the GNSS NRTK, as well as the possibility of applying the mobile NRTK to drone navigation for mapping. Two NRTK systems in operation were analyzed during a period of high ionospheric conditions, and the accuracy and the performance were compared for several operational cases. The test results show that a submeter accuracy is available even with float ambiguity under a favorable condition (i.e., visibility of the satellites as well as stable ionosphere. We still need to consider how to deal with ionospheric disturbances which may prevent NRTK positioning.

  17. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    Science.gov (United States)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  18. A Topside Equatorial Ionospheric Density and Composition Climatology During and After Extreme Solar Minimum

    Science.gov (United States)

    Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  19. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    Science.gov (United States)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside

  20. Advanced algorithms for ionosphere modelling in GNSS applications within AUDITOR project

    Science.gov (United States)

    Goss, Andreas; Erdogan, Eren; Schmidt, Michael; Garcia-Rigo, Alberto; Hernandez-Pajares, Manuel; Lyu, Haixia; Nohutcu, Metin

    2017-04-01

    The H2020 project AUDITOR of the European Union started on January 1st 2016, with the participation of several European institutions and universities. The goal of the project is the implementation of a novel precise positioning technique, based on augmentation data in a customized GNSS receiver. Therefore more sophisticated ionospheric models have to be developed and implemented to increase the accuracy in real-time at the user side. Since the service should be available for the public, we use public data from GNSS networks (e.g. IGS, EUREF). The contributions of DGFI-TUM and UPC are focusing on the development of high accuracy GNSS algorithms to provide enhanced ionospheric corrections. This includes two major issues: 1. The existing mapping function to convert the slant total electron content (STEC) measurable by GNSS into the vertical total electron content (VTEC) is based on a so called single layer model (SLM), where all electrons are concentrated on an infinitesimal thin layer with fixed height (between 350 and 450 kilometers). This quantity is called the effective ionospheric height (EIH). An improvement of the mapping function shall be achieved by estimating more realistic numerical values for the EIH by means of a voxel-based tomographic model (TOMION). 2. The ionospheric observations are distributed rather unevenly over the globe and within specific regions. This inhomogeneous distribution is handled by data adaptive B-Spline approaches, with polynomial and trigonometric functions used for the latitude and longitude representations to provide high resolution VTEC maps for global and regional purposes. A Kalman filter is used as sequential estimator. The unknown parameters of the filter state vector are composed of the B-spline coefficients as well as the satellite and receiver DCBs. The resulting high accuracy ionosphere products will be disseminated to the users via downlink from a dedicated server to a receiver site. In this context, an appropriate

  1. Ionospheric Electron Densities at Mars: Comparison of Mars Express Ionospheric Sounding and MAVEN Local Measurement

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Morgan, D. D.; Fowler, C.M.; Kopf, A.J.; Andersson, L.; Gurnett, D. A.; Andrews, D.J.; Truhlík, Vladimír

    2017-01-01

    Roč. 122, č. 12 (2017), s. 12393-12405 E-ISSN 2169-9402 Institutional support: RVO:68378289 Keywords : Mars * ionosphere * MARSIS * Mars Express * MAVEN * radar sounding Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) http://onlinelibrary.wiley.com/doi/10.1002/2017JA024629/full

  2. Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data

    Science.gov (United States)

    Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej

    2016-04-01

    GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.

  3. Tropospheric and ionospheric media calibrations based on global navigation satellite system observation data

    Science.gov (United States)

    Feltens, Joachim; Bellei, Gabriele; Springer, Tim; Kints, Mark V.; Zandbergen, René; Budnik, Frank; Schönemann, Erik

    2018-06-01

    Context: Calibration of radiometric tracking data for effects in the Earth atmosphere is a crucial element in the field of deep-space orbit determination (OD). The troposphere can induce propagation delays in the order of several meters, the ionosphere up to the meter level for X-band signals and up to tens of meters, in extreme cases, for L-band ones. The use of media calibrations based on Global Navigation Satellite Systems (GNSS) measurement data can improve the accuracy of the radiometric observations modelling and, as a consequence, the quality of orbit determination solutions. Aims: ESOC Flight Dynamics employs ranging, Doppler and delta-DOR (Delta-Differential One-Way Ranging) data for the orbit determination of interplanetary spacecraft. Currently, the media calibrations for troposphere and ionosphere are either computed based on empirical models or, under mission specific agreements, provided by external parties such as the Jet Propulsion Laboratory (JPL) in Pasadena, California. In order to become independent from external models and sources, decision fell to establish a new in-house internal service to create these media calibrations based on GNSS measurements recorded at the ESA tracking sites and processed in-house by the ESOC Navigation Support Office with comparable accuracy and quality. Methods: For its concept, the new service was designed to be as much as possible depending on own data and resources and as less as possible depending on external models and data. Dedicated robust and simple algorithms, well suited for operational use, were worked out for that task. This paper describes the approach built up to realize this new in-house internal media calibration service. Results: Test results collected during three months of running the new media calibrations in quasi-operational mode indicate that GNSS-based tropospheric corrections can remove systematic signatures from the Doppler observations and biases from the range ones. For the ionosphere, a

  4. Assessment of the Impact of Various Ionospheric Models on High-Frequency Signal Raytracing

    National Research Council Canada - National Science Library

    Werner, Joshua T

    2007-01-01

    .... Ionospheric refraction can strongly affect the propagation of HF signals. Consequently, Department of Defense missions such as over-the-horizon RADAR, HF communications, and geo-location all depend on an accurate specification of the ionosphere...

  5. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  6. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach

    Science.gov (United States)

    Farzaneh, Saeed; Forootan, Ehsan

    2018-03-01

    The computerized ionospheric tomography is a method for imaging the Earth's ionosphere using a sounding technique and computing the slant total electron content (STEC) values from data of the global positioning system (GPS). The most common approach for ionospheric tomography is the voxel-based model, in which (1) the ionosphere is divided into voxels, (2) the STEC is then measured along (many) satellite signal paths, and finally (3) an inversion procedure is applied to reconstruct the electron density distribution of the ionosphere. In this study, a computationally efficient approach is introduced, which improves the inversion procedure of step 3. Our proposed method combines the empirical orthogonal function and the spherical Slepian base functions to describe the vertical and horizontal distribution of electron density, respectively. Thus, it can be applied on regional and global case studies. Numerical application is demonstrated using the ground-based GPS data over South America. Our results are validated against ionospheric tomography obtained from the constellation observing system for meteorology, ionosphere, and climate (COSMIC) observations and the global ionosphere map estimated by international centers, as well as by comparison with STEC derived from independent GPS stations. Using the proposed approach, we find that while using 30 GPS measurements in South America, one can achieve comparable accuracy with those from COSMIC data within the reported accuracy (1 × 1011 el/cm3) of the product. Comparisons with real observations of two GPS stations indicate an absolute difference is less than 2 TECU (where 1 total electron content unit, TECU, is 1016 electrons/m2).

  7. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-01-01

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes

  8. Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena

    Science.gov (United States)

    Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.

    2017-12-01

    On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614

  9. Global variation in the long-term seasonal changes observed in ionospheric F region data

    Directory of Open Access Journals (Sweden)

    C. J. Scott

    2015-04-01

    Full Text Available Long-term variability has previously been observed in the relative magnitude of annual and semi-annual variations in the critical frequency (related to the peak electron concentration of the ionospheric F2 layer (foF2. In this paper we investigate the global patterns in such variability by calculating the time varying power ratio of semi-annual to annual components seen in ionospheric foF2 data sequences from 77 ionospheric monitoring stations around the world. The temporal variation in power ratios observed at each station was then correlated with the same parameter calculated from similar epochs for the Slough/Chilton data set (for which there exists the longest continuous sequence of ionospheric data. This technique reveals strong regional variation in the data, which bears a striking similarity to the regional variation observed in long-term changes to the height of the ionospheric F2 layer. We argue that since both the height and peak density of the ionospheric F2 region are influenced by changes to thermospheric circulation and composition, the observed long-term and regional variability can be explained by such changes. In the absence of long-term measurements of thermospheric composition, detailed modelling work is required to investigate these processes.

  10. Generation of Unbiased Ionospheric Corrections in Brazilian Region for GNSS positioning based on SSR concept

    Science.gov (United States)